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Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled
nonlinear networks
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(Received 5 September 2015; published 16 June 2016)

Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for
efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its
output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the
compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The
accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using
the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for
understanding the structure-function relationship as well as compressive sensing principle in nonlinear network

dynamics.

DOI: 10.1103/PhysRevE.93.060201

The structural connectivity in a network is often key to the
understanding of its function. However, for many physical
systems, e.g., neuronal networks, it is currently infeasible
to obtain the full network connectivity due to experimental
difficulties [1-7]. Recently, network analysis approaches,
such as partial spectral coherence, Granger causality, and
dynamic Bayesian network analysis, have been developed in an
attempt to reconstruct network connectivity based on measured
network outputs [8—12]. However, these methods generally
demand long observational data, which severely limit their
utility in applications.

Although the connectivity in many biological, social, and
technological networks is found to be sparse [13—18], how to
reconstruct the connectivity of such networks in general is still
adifficult task. Compressive sensing (CS) proves to be a useful
technique for reconstructing sparse data via very few mea-
surements [19-21] and thus may facilitate connectivity recon-
struction using relatively little observational data. Although
CS has been applied in recovering the connectivity of many
networks [22-25], its application has been restricted to static
systems with explicit linear input-output relations. However,
many networks possess nonlinear dynamics, and whether CS
can be applied to reconstructing their connectivities remains a
great theoretical challenge.

In this Rapid Communication, we address under what
conditions the CS reconstruction framework can be applied
to a general class of pulse-coupled nonlinear networks, i.e.,
integrate-and-fire (I&F) networks. These network systems
emerge from many applications, e.g., gene regulatory model-
ing, speech recognition, and neuronal dynamics [26-29]. Since
the complete structure of the underlying network connectivity
usually cannot be obtained, we further address the issue of
how to verify the CS reconstructed networks. To answer
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these questions so as to deepen the understanding of network
structure-function relationships as well as the CS mechanism
for sparse signal transmission in nonlinear systems, we develop
a theoretical framework for CS reconstruction of sparse
feed-forward connectivity of nonlinear I&F networks. First,
using nonequilibrium statistical mechanics methods, we reveal
a linear mapping between network input and output activity
embedded in such nonlinear network dynamics. Then, using
a significantly small set of random inputs with short-time
duration, we apply CS theory to reconstruct the network
connectivity. We further demonstrate that the reconstructed
connectivity can be verified by a successful recovery of
complex inputs. Our analysis indicates that this reconstruction
can even be achieved when the dimension of the network input
is significantly greater than the dimension of the measured
output. In addition, the recovery of feed-forward connectivity
is still possible in the presence of recurrent connections.

We consider the following I&F dynamics with m nodes and
the activity of the ith node with state variable x;,

m

n
T% =—(x —xp)+ ) Fiij+NiR > R Y 8t — ).
= R
(1)
where the input n-vector p = (p;) is fed into the network
through connections determined by a sparse feed-forward
m x n matrix F = (F;;). Recurrent connections among the
nodes are described by an m x m matrix R = (R;;), where S
is the connection strength and Ny is the average number of
connections per node. x; evolves continuously according to
Eq. (1) with time-scale 7 until reaching a threshold value
x7 at which point the node is said to fire and its state is
instantaneously reset to the value xg. At the moment of the /th
firing event of the ith node 7;;, the activity of all neighboring
nodes is offset by (S/Ng). Integrating over the Dirac § function
4(-) in Eq. (1) takes into account this instantaneous offset at
each firing event.
To illustrate the idea of CS reconstruction of sparse feed-
forward connectivity, we first consider the network without
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recurrent connectivity, i.e., S = 0. As typical in experiment,
we seek to reconstruct F in the case where we only possess
information regarding r inputs, denoted by {p@}/_,, and
measure the corresponding network output response, i.e., firing
rates of network nodes, denoted by {u”}_,, by accumulating
firing events in a short-time duration (~ 7). Note that u©) is an
m vector and p*”) is an n vector. For our reconstruction, we use
random input for each p'”, i.e., the elements of p”) are chosen
as independent uniformly distributed random variables.

Note that the total number of network-output measurements
is mr, whereas the number of unknowns in the feed-forward
connectivity is mn. Here, the experimental constraint is
reflected in the fact that r is much less than n. Theoretically, to
reconstruct the feed-forward connectivity F is an underdeter-
mined inverse problem and in general is ill posed. However,
since F is sparse, i.e., the number of unknowns in F is much
less than mn, the recently developed compressive sensing
theory might provide a potential tool for such sparse data
reconstruction if the dynamics were linear. Here, we however
confront a conceptual difficulty because the dynamics of the
network system (1) is instead nonlinear.

As outlined in the Appendix, through techniques of
nonequilibrium statistical mechanics [30-32], we can coarse
grain the nonlinear network dynamics in the relatively high
firing-rate regime and obtain an embedded linear mapping
between the network inputs p and the network output firing
rates p as

Fp = (ru + %m)(xr — XR)s (2)

where e, is an m vector of ones. Note that the firing-rate
system (2) was previously derived in the population sense
for ensembles of I&F networks with stochastic inputs of
homogeneous strength in traditional coarse-graining applica-
tions [30-32]. Our work reveals that, over an ensemble of
network realizations differing in initial conditions, Eq. (2) is
also valid for the case where each network realization is forced
by the same set of heterogeneous deterministic inputs.

We are now ready to address the question of whether
F can be successfully reconstructed using CS based on the
linear mapping (2). The theory of CS demonstrates that
finite bandwidth signals with a sparse representation may
be reconstructed using particularly few measurements of
number determined by the signal sparsity rather than the
full bandwidth [19,20]. Therefore, for most efficient signal
recovery, one should intuitively choose the reconstruction with
the most zero components in the sparse domain. Although
this optimization problem is generally computationally ex-
pensive, it is possible to equivalently reconstruct the sparse
representation by instead minimizing the sum of the absolute
values (L; norm) of the signal components. This L; mini-
mization problem can be efficiently solved through numerous
algorithms, such as the orthogonal matching pursuit, least
absolute shrinkage and selection operator, and the polytope
faces pursuit [21,33]. For a large class of measurement
matrices with random distributions, CS theory proves that
successful reconstruction is achievable in this framework with
near certainty [19,20,26-29]. Therefore, recovering the full
feed-forward connectivity matrix F requires solving a total of
m CS problems. Each corresponds to a distinct row F;, for
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i = 1---m using the full set of inputs P = [pV ... p™] and
respective evoked firing rates of node i, U; = [uﬁl) e uf")].
Each CS problem thus has the form

F.P = (zU,» n %)(XT — xp). 3)

where F;, is chosen to be the solution to Eq. (3) with a minimal
L norm.

To assess the accuracy of the reconstructed connec-
tivity F™°", we measure the relative reconstruction er-
ror € = ||F — F°"||/||F|| using the Frobenius norm |F| =

I3 j Fj In Fig. 1(a), we consider a network consisting

of m = 10? nodes, and the input dimension is n = 10*. For
simplicity, each feed-forward connection F;; is chosen as
a product between a Bernoulli-distributed random variable
with success probability pg = 1073 and the input strength
f. As will be discussed below, our results can be naturally
extended to alternative sparse feed-forward connectivity with
more complex structures, e.g., with local receptive field
properties. By using a one order of magnitude smaller number
of random inputs, i.e., r = 10, the relative reconstruction
error is ~12%. In addition, if the feed-forward connection
strength is known [34,35], we have verified that the error can
be further reduced by thresholding the magnitudes of entries
in the reconstructed matrix F°".

Since an efficient reconstruction of F should minimize the
number of necessary measurements of network output activity,
we plot in Fig. 1(a) the impact of the input ensemble size on
the quality of the reconstruction of F. It can be seen that
the reconstruction error initially rapidly decreases as more
inputs are used and then remains nearly constant with further
increases in the number of inputs. Therefore, the reconstruction
error in this case is already small even using a two orders of
magnitude smaller number of inputs, e.g., r = 250. Since the
measurement of network dynamics may be subject to noise
in applications, we also examine the impact of zero-mean
Gaussian noise added to the measured firing rates on the
reconstruction quality in Fig. 1(b). We observe that there is a
nearly linear increase in error with the noise standard deviation
after an initial slow rise, yielding accurate reconstructions in
the presence of moderate measurement noise.

Considering that the true feed-forward connectivity F in
general is not available in applications, one encounters an
important issue of how to verify the accuracy of F**°". In fact,
the linear mapping (2) can provide a methodology to verify the
quality of reconstruction by solving another inverse problem,
namely, one can apply new inputs p and examine whether these
new inputs can be well recovered using F'*°°" in combination
with the measured network firing rate p in response to these
new inputs.

However, this inverse problem may also be ill posed if
the number of measurements m is much less than the input
dimension n. Instead of designing artificial sparse inputs,
we can use inputs which are sparse under some linear
transformation. Therefore, the effective amount of freedom
in p is much less than », and CS can be applied to reconstruct
these inputs. Here, we use visual images as an example of
such inputs since it is well known that visual images p'™a®
are sparse in the sense that p = Dp'™%°, where the matrix D is
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FIG. 1. Relative reconstruction error € dependence on input set
and matrix density. (a) € as a function of the input ensemble size
for a feed-forward network (blue) and for a network with recurrent
connections that are known (red) or assumed negligible (dashed
green). Here, m = 10° and n = 10*. (b) € as a function of the noise
(see the text). (c) € as a function of recurrent connection strength
S/Ng for a square network of m =n = 100 and r = 33 inputs.
(d) Number of inputs required to produce a reconstruction of F
with € less than 0.15 as a function of the connection density of
F. Network parameters are the same as in (c). In (c) and (d), the error
considered is the mean over ten realizations of F, exhibiting a small
average variance of 104, Unless varied, the parameters are chosen as
S=1, Ng=0.05m? t=20ms, xg =0, x7 =1, f = pF'pM, and
p; € [0,255], modeling input pixel intensities. Note characteristic
pixel intensity p. = 50 and f are chosen such that as the connection
density of F is varied, the feed-forward input into each node remains
O(1).1In (a) and (b), the network-averaged firing rate is approximately
100 Hz.
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FIG. 2. Input reconstructions using recovered network connec-
tivity. (a)=(c) Input images of size (a) and (b) n = 100 and (c)
n = 2507 pixels. (d)—(f) CS reconstructions using the original F.
(g)—(1) CS reconstructions using F™°". For images (d)—(f), €’s
are 0.23, 0.23, and 0.24, respectively. For images (g)—(i), €’s are
0.27, 0.27, and 0.22, respectively. Each connection matrix was
reconstructed using an ensemble of » = 400 random inputs. For each
image, the corresponding downstream network size is m = n/10 with
a feed-forward connection density of 0.001. € for F™°" is 14% for
the networks corresponding to (a) and (b) and 15% for (c).

a sparsifying transform [19,20,36] and p is a sparse n vector.
We thus rewrite this inverse problem as

Freconpimage — Frecoanlf) — (_L,,Limage + e_m)(xT _ xR)’

2

A “4)
where p'™*° is the network firing-rate vector corresponding
to visual image input p™2. Using CS based on the linear
mapping (4), we recover the sparse representation p, and, in
turn, the original visual image p'™#° even when the dimension
of p'™4° is much greater than the number of network-output
activity measurements in M3,

Visual images in Figs. 2(a)-2(c) are inputs into the network
of m = n/10nodes, and the corresponding network firing rates
are measured. We first obtain F°°" utilizing r = 400 random
inputs in the reconstruction as discussed previously. Then,
using F™°" and the measured network firing rate, we recover
each of the respective images as shown in Figs. 2(g)-2(i). It
can be seen that the recovered images capture major features of
the original visual images. In comparison, Figs. 2(d)-2(f) are
recovered images using CS with the original true feed-forward
connectivity matrix F. We note that there is no significant
difference in the reconstruction quality using F°" relative to
F, indicating a high quality of connectivity reconstruction. As
shown in Figs. 2(c), 2(f), and 2(i), the recovery of inputs can
be further improved for larger networks. In our simulations,
even visual inputs varying in time, such as videos composed
of time-evolving image frames, can also be well recovered.

Finally, we investigate the case where the network possesses
recurrent connectivity R in which the corresponding linear
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network input-output relationship is

Fp = (ru + e—”’)m - SR 5)
2 Ng

If the recurrent connectivity R is also known to be sparse, the
CS theory can similarly be applied to reconstruct both F and
R through solving the above inverse problem by measuring
the network firing-rate set {u#?}/_, corresponding to given
input ensemble {p®}/_,. In addition, we find that the CS
reconstruction performs well when the recurrent connection
strength S/ Ny is relatively weak as shown in Fig. 1(a) in which
two cases are also presented, i.e., the recurrent connectivity is
known, or the recurrent connectivity is neglected. It can be
seen that there is only a minor change in the reconstruction
error for F relative to the fully feed-forward network (no
recurrent connectivity). Therefore, the presence of the recur-
rent connectivity often does not greatly degrade the accuracy
of reconstruction. In Fig. 1(c), we depict the reconstruction
error dependence on the recurrent connection strength, noting
that there is little change in reconstruction quality for small
S/Ng and there is an approximately linear increase in error
for larger S/Ng. Therefore, an accurate reconstruction is
not achievable once the drive from neighboring nodes due
to strong recurrent connections drowns out the feed-forward
input information and thus diminished reconstruction quality
of F is to be expected. In general, CS signal recovery from
observed network dynamics is feasible when the network
is in an asynchronous regime characterized by relatively
uncorrelated firing events [37].

In addition, we investigate the number of inputs sufficient
for successful reconstruction as a function of the connection
density of F as shown in Fig. 1(d). As the connection density
of F increases and thus more nonzero elements need to be
determined, the necessary input ensemble size increases. Once
the density of F is sufficiently high, we observe a more
rapid increase in the number of necessary inputs. This is
consistent with the fact that CS is only effective for sparse
data reconstruction.

To summarize, we have shown that our framework is
useful in reconstructing network wiring diagrams as well
as understanding the CS principle in nonlinear network dy-
namics. Unlike other methods for connectivity reconstruction
which rely on learning or specific input design [38,39], our
framework utilizes the intrinsic underlying network input-
output relationship and does not depend on the input structure.
In addition, the connectivity reconstruction can be verified by
the recovery of any sparse-signal inputs without the need for
comparison with the actual but usually unknown structural
connectivity.

Although we have demonstrated that sparse feed-forward
connectivity can be reconstructed from measured network
activity in response to a relatively small ensemble of inputs for
I&F network dynamics, we remark that our framework could
be generalized to other network models or experimentally
measured networks once an underlying linear input-output
relationship can be determined, such as through nonlinear
system analysis [40-42]. Both physiological neurons [43,44]
and nonlinear neuronal models, such as the quadratic integrate-
and-fire, exponential integrate-and-fire, and Hodgkin-Huxley
models [28,45,46], are known to have linear input-output
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mappings for specific regimes of input strength. Once the
dynamics of the nodes are in such a linear regime, our frame-
work could be used to reconstruct the network feed-forward
connectivity. Moreover, if the sparse feed-forward connectivity
is somewhat structured as in the case of receptive fields in the
visual system, CS techniques can be similarly applied and may
potentially yield improved reconstructions [47-49].

This work was supported by N.Y.U. Abu Dhabi Institute
Grant No. G1301 (VJ.B., D.Z,, D.C.), by Grant No. NSFC-
91230202, by the Shanghai Rising-Star Program Grant No.
15QA1402600 (D.Z.), Shanghai Grants No. 14JC1403800,
No. 15JC1400104, and No. NSFC-31571071, the SITU-UM
Collaborative Research Program (D.C., D.Z.), and by NSF
Grant No. DMS-1009575 (D.C.).

APPENDIX

Seeking a linear input-output mapping, we perform a
coarse-graining procedure derived using nonequilibrium sta-
tistical mechanics arguments [29,32]. We consider a statistical
ensemble of networks, which in general contain both feed-
forward and recurrent connections, differing only in the initial
state of nodes x;(t = 0) and resultant input for j =1, ... ,m.
For each realization of the network in the ensemble, node
J 1is injected with a new independent spike train of pulses
transmitted by neighboring nodes in addition to a constant
input current (Fp) ;. Moreover, the network possesses the same
connectivity structure in each realization.

Over the set of all such realizations considered, we
analyze the configuration probability P;(x,dx,t) of node j
having a state variable inside the infinitesimally small interval
(x,x + dx) ata specific time ¢. To compute this probability, we
introduce a probability density function p;(x,f) such that the
probability we seek is p;(x,#)dx. In determining the dynamics
of Pj(x,dx,t), we consider changes in the configuration
probability over a short time interval (¢,7 4 dt).

There are two possible changes the configuration proba-
bility can undergo, namely (i) smooth and (ii) instantaneous
changes. When node j receives no spikes and is therefore
smoothly evolving, its configuration probability will update
continuously by Eq. (1) with forcing only from feed-forward
input (Fp);. However, the instant node j receives a spike,
its state will jump, thereby instantaneously changing the
configuration probability. We group the smooth parts of Eq. (1)
into function ¢(x) and rewrite the dynamics of node j in the
form

dx,- S -
- ¢>(x,)+tNR; ,,{[: (t — )
k#j

where ¢(x;) = M + (F%)’ Hence, for node j, the smooth
change will be

[P(x)pj(x,1) — P(x +dx)p;(x +dx,1)ldt,

and the instantaneous change will be

3w (= SR ) (x,1) |dx dt
Ki| Pj TNp pjlx, .

i#]
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Therefore, the configuration probability evolves according to

[pj(x,t +dt) — pj(x,0)]ldx = [¢p(x)p;(x,1) — Pp(x
+dx)p;(x + dx,t)]dt

SR
i#]
Taylor expanding to O(dx) and dividing by the product of
differentials dx dt in the limit as dx — 0 and dt — 0, we
obtain the Boltzmann equation for p;(x,?),

3pj ad SR]',‘
_ —_= . i . — g — pilx,t
at ox @es) + Z,u I:'Oj (x TNg PiCe1)
i#]
valid for xg < x < x7. Assuming the jumps in the state
variable at firing events are small, considering the elicited

magnitude of a postsynaptic potential due to the firing event of
a single presynaptic neuron is in general small, we Taylor

; 2
expand in fng to O[(%’;) ], obtaining the Fokker-Planck
equation,

8,0j d 2 a,Oj

a5 = a((x —xp)/tpj — gjpj +0; o )
where

SR;;  (Fp);
S SYELC
i#]j

is the mean input injected into node j and

o? — SRj; ( SRjip;
TNR 2TNR

is the variance in the input fluctuations of node ;.

The Fokker-Planck equation may be expressed in terms of
the probability flux —J; of the state variable in conservation
form

by 5

at 0x
To derive boundary conditions, we note that, when the state
variable of a node reaches threshold x7, we instantaneously
reset the state variable to xr. Thus, the state variable flux at
x = x7 and x = xx must be identical. Furthermore, assuming
node j has a firing rate of y;, the equality of flux across the
boundary requires J;(x = x7) = J;(x = xg) = u;.
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To conclude the coarse graining, we analyze the Fokker-
Planck equation in the mean-driven operating regime. This
means that 0]2 vanishes, and we obtain the reduced partial
differential equation,

o _ 0 ()

or oax\ ¢ T8I

Assuming the firing rates and corresponding configuration
probability density function reach a temporal steady state in
which % = 0, the Fokker-Planck equation is reduced to the

ordinary differential equation,
a ((x —xg)
ax T

which can be solved exactly for p; with

8J;
Pj = 8iPi | =—75= =0,

T
Tg; — (X — XR)
Since p; is a probability density function over domain [xz,x7],
it must satisfy the normalization condition fxxr pix)dx =1,

. . . . .. R .
and therefore we obtain the implicit definition for the firing
rate,

pj =

_ ) 8
l=(tp;)In (—rgj o _XR)>'

The drive from the feed-forward input (Fp); can then be
explicitly solved for yielding

(x7 — xR) S
_ TR N_(R“)j'
1 —exp <#) R

Assuming the feed-forward input into each node is relatively
large, the number of firing events for each node within time
scale T is O(1). Under this assumption, we Taylor expand

(Fp); =

about small parameter L to O(-1-) and obtain
T T

(x7 — xR)
2

The above equation can be written in vector form, yielding
the linear input-output mapping (2) in the absence of recurrent
connectivity and linear mapping (5) in the presence of recurrent
connectivity.

S
(Fp); = tij(xr —xg) + - N—(RIL)J'-
R
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