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Composite Poisson Models for Goal Scoring
Phil Everson and Paul S. Goldsmith-Pinkham

Abstract

Goal scoring in sports such as hockey and soccer is often modeled as a Poisson process. We
work with a Poisson model where the mean goals scored by the home team is the sum of
parameters for the home team's offense, the road team's defense, and a home advantage. The mean
goals for the road team is the sum of parameters for the road team's offense and for the home
team's defense. The best teams have a large offensive parameter value and a small defensive
parameter value. A level-2 model connects the offensive and defensive parameters for the k teams.
Parameter inference is made by imagining that goals can be classified as being strictly due to
offense, to (lack of) defense, or to home-field advantage. Though not a realistic description, such a
breakdown is consistent with our model assumptions and the literature, and we can work out the
conditional distributions and generate random partitions to facilitate inference about the team
parameters. We use the conditional Binomial distribution, given the Poisson totals and the current
parameter values, to partition each observed goal total at each iteration in an MCMC algorithm.

KEYWORDS: gibbs sampler, jeffreys' prior, latent variables, poisson additivity, soccer, two-level
model
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1. Introduction and Summary

The sparse scoring in goal scoring sports such as hockey, lacrosse and soccer suggests
a Poisson model might be a good description. The Poisson distribution arises as
the limit of a Binomial distribution as the number of trials grows and the success
probability shrinks in such a way that the mean number of “successes” approaches
a constant θ. Each minute (e.g.) of a contest could be thought of as a “trial” with
some probability of yielding a goal for either team. Of course, multiple goals could
be scored in a single minute, and goals scored (or not scored) in different minutes
are probably not independent outcomes with the same probability. The inter-arrival
time for goals in soccer does not follow an exponential distribution, as is required
for the Poisson process. However, a Poisson model is common in the literature for
predicting soccer scores, such as in [2], and Figure 1 shows that the number of goals
scored in the 2005-2006 English Premier League (EPL) season is well-approximated
by a Poisson distribution with mean 1.23. While we will use the EPL data as an
illustrative example, the primary goal of this paper is to lay out the framework to
carry out inference for an additive Poisson model that could be applied to a variety
of sports and data sets.

The literature currently contains models estimating team strength with Poisson
distributions [2, 3] as well as models with differing home-field advantages across
teams [1]. However, to our knowledge, our model is the first to use a hierarchical
framework with Poisson additivity and differing home-field advantages.

Section 2 outlines the most general model, which allows for team offensive and
defensive strengths, as well as different team offensive and defensive home advan-
tages. Offensive home advantage is the propensity to score more goals when at home
than when on the road (or on a neutral field) when playing comparable opponents.
Defensive home advantage is the propensity to yield fewer goals when playing at
home. If a common home advantage is assumed for all teams, as is commonly as-
sumed for ranking purposes, then it is not possible to distinguish between offensive
and defensive advantage, and a common offensive advantage is fit, with the defensive
advantage set to zero. Section 3 describes a Gibbs sampler algorithm to estimate the
parameters for the full model, and adjustments for fitting simpler models, such as
the common home advantage or no home advantage models. Section 4 summarizes
the inference for the EPL data and discusses future directions.

2. The Composite-Poisson Model

Let Yhi represent the goals scored for the home team in game i, i = 1, . . . , N , and
let Yri represent the goals scored by the road team in game i (with an arbitrary
home/road designation in events such as the World Cup, in which neither team has
an obvious home field advantage). We assume that each of the k teams has an
offensive parameter θoj and a defensive parameter θdj , and that these combine with
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offensive and defensive home field advantage parameters δoj and δdj to determine
the mean number of goals scored by a particular team. Let hi and ri represent the
indices for the home and road teams in game i, so hi and ri take values 1, . . . , k.
Our model for the goals scored in game i is then:

Level-1 Model

Yhi | θohi
, θdri , δohi

, δdri ∼ Poisson(θohi
+ θdri + δohi

+ δdri), i = 1, . . . , N,

independent of

Yri | θori , θdhi
, δohi

, δdri ∼ Poisson(θori + θdhi
), i = 1, . . . , N.

This composite mean structure allows teams to vary in their ability both to
produce goals and to prevent goals. Team j is one of the better teams if it has
a large θoj , meaning they tend to score a lot, and a small θdj , meaning they tend
to not allow many goals. Figure 2 displays the fitted θoj and θdj values for the
k = 20 teams in the English Premier League. These values were estimated using the
procedure described in Section 3, and predicts that Manchester United and Chelsea
as the strongest teams that season, and Sheffield United as the weakest team. See
Table 1 in Section 3 for a comparison to the actual results.

The home advantage parameters δoj and δdj indicate how much stronger a team
is when playing at home compared to playing on the road or on a neutral field. The
model requires that teams play at least as well at home (i.e., no negative δ’s) so the
offensive and defensive home advantages both appears as non-negative additions
(δohi

+ δdri) to the home team’s mean. The defensive advantages parameters are
essentially a penalty for not playing at home. By forcing the defensive advantage to
be positive, we maintain the additive property of the Poisson distribution and avoid
possibly fitting a negative mean. The neutral-field means are therefore

Neutral Field Means

Yhi | θohi
, θdri , δohi

, δdri ∼ Poisson(θohi
+ θdri + δdri), i = 1, . . . , N,

independent of
Yri | θori , θdhi

, δohi
, δdri ∼ Poisson(θori + θdhi

+ δdhi
), i = 1, . . . , N.

There are 4k parameters in this level-1 model: two θ’s and two δ’s for each of
the k teams. For a given set of parameters, we can achieve the same mean structure
if we add a constant c to every θo (e.g.) and subtract c from every θd. To facilitate
inference (and to recognize that the parameters for the different teams should be
more similar than different) we assume common conjugate Gamma distributions for
the θoj ’s and θdj ’s, and common Gamma distribution for the δoj ’s and the δoj ’s.

Level-2 Model

θoj , θdj
i.i.d.∼ Gamma(αθ, αθ/µθ), j = 1, . . . , k,
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independent of

δoj , δdj
i.i.d.∼ Gamma(αδ, αδ/µδ), j = 1, . . . , k.

The team θ’s and δ’s are modeled to have mean µ and variance µ2/α, so µ defines a
typical value for the k teams, and increasing α makes the level-2 distribution more
concentrated about µ.

3. Parameter Inference

In reality, there is no way to classify goals as being strictly offensive or defensive, or
due to home field advantage. However, the Level-1 model in Section 2 is equivalent
to a model for which “offensive”, “defensive” and “advantage” goals occur according
to independent Poisson processes and add to give the goal totals:

Hypothetical Partitioning

Home Goals: Yhi = Yhoi + Yrdi + Yhai + Yrai, i = 1, . . . , N.

Yhoi | θohi

indep∼ Poisson(θohi
)

Yrdi | θdri

indep∼ Poisson(θdri)

Yhai | δohi

i.i.d.∼ Poisson(δohi
)

Yrai | δohi

i.i.d.∼ Poisson(δdri)

Road Goals: Yri = Yroi + Yhdi, i = 1, . . . N.

Yroi | θori

indep∼ Poisson(θori)

Yhdi | θdhi

indep∼ Poisson(θdhi
)

The equivalence follows from the additivity of the Poisson distribution. If total
goals are modeled as following a Poisson distribution, then it is reasonable to think
of goals as the sum of two or four independent Poisson random variables, with rates
that add to the desired means.

3
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The simplicity of the distributions for the partitioned totals suggests that, were
we to learn the values of these hypothetical, latent variables, we could easily estimate
the unknown θ’s and δ’s using standard Poisson inference techniques. For example,
we could estimate the offensive parameter for team j by θ̂oj , the average of the
offensive totals for team j in its nj games. Conversely, were we to know all of the
θ’s and δ’s, we could make inference about the unknown partitioned counts. Here we
exploit another nice property of Poisson additivity: conditional on the total count,
the distribution of the partial counts are Binomial.
Conditional Partitions

Home Goals: Yhi = Yhoi + Yrdi + Yhai + Yrai, i = 1, . . . , N.

Yhoi | θ, δ, yhi ∼ Binomial (yhi, φhoi) , φhoi =
θohi

θohi
+ θdri + δohi

+ δdri

.

Yrdi | θ, δ, yhi, yhoi ∼ Binomial (yhi − yhoi, φrdi) , φrdi =
θdri

θdri + δohi
+ δdri

.

Yhai | θ, δ, yhi, yhoi, yrdi ∼ Binomial(yhi − yhoi − yrdi, φhai), φhai =
δohi

δohi
+ δdri

.

Yrai | yhi, yhoi, yrdi, yha = yhi − yhoi − yrdi − yha

Road Goals: Yri = Yroi + Yhdi, i = 1, . . . N.

Yroi | θ, δ, yri ∼ Binomial (yri, φroi) , φroi =
θori

θori + θdhi

As well as facilitating inference about the θ’s, the simulated partitions of goal totals
also enable us to make inference about µθ and αθ, the level-2 parameters governing
the distributions of the θ’s, and about µδ and αδ, the parameters governing home
advantage. This leads to the following iterative simulation algorithm:

Outline of Gibbs Sampler Algorithm
(See appendix for details)

0. Determine starting values for the θoj ’s, θdj ’s, δoj ’s and δdj ’s, for j = 1, . . . , k.

1. Use the θ’s and δ’s to generate random partitions of the Yhi’s into Yhoi’s, Yrdi’s,
Yhai’s and Yrai’s and of the Yri’s into Yroi’s and Yhdi’s.

2. Use the partitioned Yi’s to form estimates θ̂oj , θ̂dj , δ̂oj and δ̂dj , for j = 1, . . . , k.
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3. Generate {αθ, µθ} and {αδ, µδ} pairs from their joint posterior densities given
the θ̂j ’s and δ̂j ’s using rejection sampling.

4. Generate θoj , θdj , δoj , δdj , j = 1, . . . , k, from their conditional posterior distri-
butions given the current θ̂j ’s, δ̂j ’s, αθ, µθ, αδ and µδ.

With appropriate prior specifications for αθ, µθ, αδ and µδ, repeating steps 1-4 con-
stitutes a Gibbs sampler, and yields draws from the joint posterior distribution of
the unknownθ’s and δ’s, given the goal totals. The details of the posterior calcula-
tions are given in the appendix.

4. Results of Estimation

In order to apply the algorithm described in the previous section, we took a dataset
consisting of scores from the 2006 English Premier League season and split the
dataset into two parts. Using the first 119 games, we generated estimates for each
team’s parameters: θo, θd, δo, and δd. For ranking purposes, we used the simpler
method with equal home-field advantage (HFA) parameters across teams, and then
used the difference of the teams’ θo and θd to rank them. The results can be seen
in Table 1.

Using the full set of parameters generated with different team HFAs, we then pre-
dicted scores for the remaining 261 games in the season, and estimated the amount
of points that each team would accumulate in the remaining games. Points in the
EPL are given as follows: three points for a win, one point for a tie, and zero points
for a loss. The predicted points for teams are given with 90% bands in Figure 2.
The actual points fall within the 90% interval for 13 out of the 20 teams. The fig-
ure suggests that the fitted values were perhaps shrunk too strongly, with the most
extreme observations falling outside of the prediction interval. This may imply an
overestimate of the alpha’s which could be a result of our prior specifications. It
could also be an artifact of the conversion to the EPL point system, or a limitation
of our model assumptions for this particular example.

We wish to stress that, while we have emphasized goal scoring in sports as the
motivation for this paper, we believe this approach of partitioning Poisson counts
will have applications in many situations where Poisson models are used. For exam-
ple, multiple detectors generate counts of cosmic rays in the presence of background
radiation. The counts are therefore the sum of true counts and false counts (which
often have a “known” rate). To compare the rates of true counts at the two lo-
cations, the corrupted counts could first be partitioned using the methods of this
paper (and in this case the partition is not hypothetical). With larger numbers of
means to be estimated, a hierarchical structure facilitates ”borrowing strength from
the ensemble” to compensate for small sample sizes for individual teams, detectors
or groups. An obvious extension of this method will be to fit parameters for teams’
abilities to generate and allow shots, shots on goal, or some combined classification
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such as “potential goals”. Then parallel hierarchical Binomial models could be fit
for each team’s propensities to convert shots into goals and to allow shots to be con-
verted into goals. The goal totals would still be modeled as Poisson, but additional
information about shot totals would also be incorporated in the model.

Appendix:

Computational Steps:

0: Set δoj = δdj =
∑N

i=1(Yhi − Yri)/(2N).

Set θoj =

η
∑
hi=j

Yhoi +
∑
ri=j

Yroi

 /nj , η =
∑N

i (Yhi − Yri)∑N
i Yhi

.

Set θdj =

∑
hi=j

Yhdi +
∑
ri=j

Yrdi

 /nj

in the equations specified below, but the general idea is contained in the above
“Basic Algorithm.” Without the partitions, we can’t estimate the parameters. And
without the parameters, we can’t estimate the partitions. But given a reasonable
starting guess at the parameters, we can iterate between these two operations, and
learn about both the hypothetical partitions and the unknown parameters.
Prior and Posterior densities
The algorithm for using Binomial draws to partition the goal counts, given the team
θ’s and δ, is outlined earlier in this section. Given these breakdowns, we can form
an unbiased estimate for δ by averaging the N Yai’s, and for each θoj and θdj by
averaging the appropriate partitioned counts for the nj games involving team j.
This gives the following sampling distributions:

nj θ̂oj | θoj
indep∼ Poisson(njθoj), j = 1, . . . , k

nj θ̂dj | θdj
indep∼ Poisson(njθdj), j = 1, . . . , k

Nδ̂ | δ ∼ Poisson(Nδ)

Inference for δ
The likelihood function for δ given δ̂ is

L(δ) =
(Nδ)Nδ̂ e−Nδ

(Nδ̂)!
∝ δNδ̂ e−Nδ, δ > 0.

The posterior density for δ is proportional to this likelihood function multiplied
by a prior density for δ. We would like to choose a prior density that is non-
informative in that it adds little or no information. We could specify an improper
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Uniform distribution for δ, but this would imply a non-uniform density for a non-
linear transformation of δ. One approach is to assign a Uniform prior density to a
transformation of δ for which the expected curvature of the log-likelihood function
does not change for different values of δ̂. The implied density for δ is known as
“Jeffreys’ prior”, and is defined as the square root of the negative expected second
derivative of the log-likelihood function. The expectation is taken with respect to
the data, given the parameter value.

Jeffreys’ prior

p(δ) = −E

(
∂2

∂λ2
(Nδ̂ log(δ)−Nδ)

))1/2

=

(
−E

(
∂

∂λ

Nδ̂

δ
−N

)))1/2

= E
∂

∂λ

Nδ̂

δ2

)))1/2

=
(

Nδ

δ2

)1/2

∝ δ−1/2, δ > 0.

This is equivalent to specifying a Uniform prior density for
√

δ. With this specifica-
tion, the posterior density is recognizable as a Gamma(Nδ̂ + 1/2, N) distribution:

f(δ | δ̂) ∝ δNδ̂+1/2−1 e−Nδ, δ > 0.

We notice that, despite using an improper prior density (its integral is infinite),
it is guaranteed that the posterior density will be proper. Even if a particular
random partition assigned no “advantage” goals, meaning that δ̂ = 0, the posterior
would still be a proper Gamma(1/2, N) density (equivalent to that of a scaled Chi-
square(1) random variable).
Inference for the θj’s
For estimating the θoj ’s and θdj ’s, we have two equivalent problems of the form:

Xj | θj
indep∼ Poisson(njθj), j = 1, . . . , k

θj |λ
i.i.d.∼ Exp(λ), j = 1, . . . , k.

For example, for the θoj ’s, each Xj represents nj θ̂j , the total number of “offensive”
goals for team j in its nj games.

Given λ, the posterior distribution for each θj is Gamma(xj + 1, nj + λ):

f(θj |Xj = xj , λ) ∝
(

(njθj)xj

xj !
e−njθj

)(
λ e−λθj

)
∝ θ

xj+1−1
j e−(nj+λ)θj , θj > 0.

The marginal likelihood function for the parameter λ can be found by integrating
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the θj ’s out of the joint likelihood function:.

L(λ) = P (X1 = x1, . . . , Xk = xk |λ) =
k∏

j=1

n
xj

j λ

xj !

∫ ∞
0

θ
xj+1−1
j e(nj+λ)θj dθj

)

=
k∏

j=1

λ

nj + λ

)(
nj

nj + λ

)xj

, λ > 0.

This likelihood function simplifies considerably if all of the k teams have all played
the same number of games, meaning nj = n, j = 1, . . . , k. This is the case for the
entire EPL season, with n = 38 games for each of the k = 20 teams. There are
also several times during the season at which point all of the teams have played
the same number of games. We focus on this special case in order to simplify the
computations.

With equal nj ’s, it is convenient to work with the transformation φ = λ/(n + λ).
Then the marginal probability distribution of each Xj is given by

P (Xj = xj |λ) =
nxjλ

xj !

∫ ∞
0

θ
xj+1−1
j e(n+λ)θj dθj

=
nxjλ

(n + λ)xj+1 = φ(1− φ)xj , xj = 0, 1, . . . ,

This is the distribution of the number of failures (e.g.) before the first success for
independent trials with success probability φ on each trial. The inverse transforma-
tion is λ = nφ/(1− φ), so the expectation of each θj given φ is 1/λ = (1− φ)/(nφ).
The expected value of each Xj given θj is nθj , so the marginal mean of each Xj is

E(Xj |φ) = E(E(Xj | θj) |φ) = E(nθj |φ) =
1− φ

φ
.

The marginal likelihood function for φ is

L(φ) ∝ φk(1− φ)s, s =
∑

xj , 0 < φ < 1.

This leads to the following log-likelihood function and derivatives. These define
Jeffreys’ prior distribution for the parameter φ = λ/(n + λ):

log(L(φ)) = c + k log(φ) + s log(1− φ), 0 < φ < 1.

∂

∂φ
log(L(φ)) =

k

φ
− s

1− φ
;

∂2

∂φ2
log(L(φ)) = − k

φ2
− s

(1− φ)2

p(φ) ∝
(

k

φ2
+

k

φ(1− φ)

)
∝ φ−1(1− φ)−1/2, 0 < φ < 1.
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Combining this prior density with the likelihood function for φ yields a posterior
density that is Beta(k, s + 1/2):

f(φ |X1, . . . , Xk) =
P (X1 = x1, . . . , Xk = xk |φ)p(φ)∫ 1

0 P (X1 = x1, . . . , Xk = xk |φ)p(φ) dφ
∝ L(φ)p(φ)

∝ φk−1(1− φ)s+1/2−1, 0 < φ < 1.

Once again we are guaranteed a proper posterior density. Even if a particular
random partition assigned no “offensive” goals (for example) in any of the games,
meaning all of the xj ’s are 0 and therefore s = 0, the posterior for φ would still be
a proper Beta(k, 1/2) density.

We can now fill in the gaps in the Basic Algorithm:
Detailed Algorithm:

0. Starting values:
Set δ(0) to be the difference in the average home team score and the average
road team score in the N games. After correcting every home goal total Yhi

by subtracting off δ(0), set θ
(0)
oj equal to be half the average goals scored by

team j and θ
(0)
dj to be half the average goals allowed by team j in its n games,

for each j = 1, . . . , k.

1. Given θ
(t−1)
oj and θ

(t−1)
dj , j = 1, . . . k, generate λ(t)

o
, λ

(t)
d , θ

(t)
oj and θ

(t)
dj .

2. Random partitions:
Partition each home team goal total Yhi into Y

(t)
hoi , Y

(t)
rdi and Y

(t)
ai using θ

(t−1)
ohi

,

θ
(t−1)
dri

and δ(t−1) (the values at iteration t − 1) to compute the probabilities
for the breakdown.

3. Conditional estimates:
Set δ̂(t) =

∑
Y

(t)
ai /N .

Set θ̂
(t)
oj = (

∑
Y

(t)
hohi=j +

∑
Y

(t)
rori=j)/n and θ̂

(t)
dj = (

∑
Y

(t)
hdhi=j +

∑
Y

(t)
rdri=j)/n

for j = 1, . . . , k, summing over the games i for which each team j is a home
team (hi = j) or a road team (ri = j), as appropriate.
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4. Update λ’s:
Compute s(t)

o =
∑

θ̂
(t)
oj and s

(t)
d =

∑
θ̂
(t)
dj .

Generate φ(t)
o ∼ Beta(k, s(t)

o + 1/2) and φ
(t)
d ∼ Beta(k, s

(t)
d + 1/2).

Set λ(t)
o = nφ(t)

o /(1− φ(t)
o ) and λ

(t)
d = nφ

(t)
d /(1− φ

(t)
d ).

5. Update θ’s:
Generate θ

(t)
oj ∼ Gamma(θ̂(t)

oj +1, n+λ(t)
o ) and θ

(t)
dj ∼ Gamma(θ̂(t)

dj +1, n+λ
(t)
d ),

for j = 1, . . . , k.

The algorithm works by iterating between steps 1-4 until the simulated values
appear to have converged to stationary distributions. There is extensive theory on
how to determine this, but we simply ran 1000 iterations and did not see a reason
to doubt that the Markov Chain had converged. After convergence, we collected
the parameter values generated on every 100th iteration until we had collected 1000
sets of values. Taking only every 100th draw reduces the auto-correlation in the
Markov Chain, and gives us a nearly independent sample from the joint posterior
distribution of the unknown parameters.
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Figure 1: Hanging Rootogram of 2006 EPL Goal Scoring.
The square roots of the counts of goal totals for the two teams in each of the
380 matches played during the 2006 EPL season are compared to the expected
root-counts for a fitted Poisson distribution. With a Poisson model, the counts
of individual goal totals are distributed Binom(n = 2 ∗ 380, p(x)), where p(x) is
the Poisson probability of a particular goal total x. The variance of each count is
approximately np(x), and a square-root transformation stabilizes the variances for
the different values of x and p(x). The dots mark the square roots of the expected
Poisson counts for 760 draws from a Poisson distribution with mean 1.23 (the overall
average of the 760 goal totals). The height of each bar corresponds to the square-
root of the actual count and the bars “hang” from the dots. So the deviations from
0 indicate prediction errors, on a scale with roughly constant variance for all goal
totals. The data are very consistent with a Poisson distribution.
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Figure 2: Red points represent the actual points accumulated in EPL. Blue lines
represent the 90% interval predicted by algorithm.
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Figure 3: A comparison of predicted game scores using the initial parameters vs.
the derived parameters.
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Figure 4: A comparison of team home field advantages. Team IDs are given in Table
1. Offensive advantage is an additional propensity for a team to score goals when
playing on its home field. Defensive advantage is a penalty for a team not playing
on its home field, and enters the model as an additional propensity to allow goals
when not playing at home. The difference between a teams Offensive and Defensive
advantages is an indication of the overall home advantage it enjoys.
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Table 1: Team Ranking using Equal Home Advantage
id Team Name θo θd Strength Final Standing
6 Man United 1.18 0.16 1.03 1
5 Chelsea 0.84 0.22 0.62 2
8 Arsenal 0.73 0.23 0.50 4
3 Portsmouth 0.58 0.24 0.34 3
7 Aston Villa 0.47 0.26 0.21 11
10 Wigan 0.62 0.44 0.18 17
16 Everton 0.53 0.38 0.16 6
18 Bolton 0.40 0.24 0.16 7
12 Fulham 0.51 0.41 0.10 16
2 Man City 0.21 0.28 -0.07 14
1 Liverpool 0.32 0.4 -0.08 3
9 Charlton 0.31 0.42 -0.11 19
19 Tottenham 0.24 0.36 -0.12 5
17 Reading 0.41 0.59 -0.18 8
13 Watford 0.22 0.44 -0.21 20
11 Middlesbrough 0.30 0.51 -0.22 12
15 Newcastle 0.19 0.43 -0.25 13
20 Blackburn 0.26 0.52 -0.26 10
4 West Ham 0.22 0.55 -0.33 15
14 Sheffield United 0.18 0.55 -0.38 18

References

[1] Stephen R. Clarke and John M. Norman. Home ground advantage of individual
clubs in english soccer. The Statistician, 1995.

[2] Mark J. Dixon and Stuart G. Coles. Modeling association football scores and
inefficiencies in the football betting market. Applied Statistics, 1997.

[3] John Goddard. Regression models for forecasting goals and match results in
association football. International Journal of Forecasting, 2005.

15

Everson and Goldsmith-Pinkham: Composite Poisson Models

Brought to you by | CBB Consortium / YBP
Authenticated

Download Date | 7/16/15 9:57 PM


	Swarthmore College
	Works
	4-1-2008

	Composite Poisson Models For Goal Scoring
	Philip J. Everson
	P. Goldsmith-Pinkham
	Recommended Citation


	Journal of Quantitative Analysis in Sports
	Composite Poisson Models for Goal Scoring
	Composite Poisson Models for Goal Scoring
	Abstract


