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THE DECOMPOSITION THEOREM 
FOR TWO-DIMENSIONAL SHIFTS OF FINITE TYPE 

AIMEE S. A. JOHNSON AND KATHLEEN M. MADDEN 

(Communicated by Mary Rees) 

ABSTRACT. A one-dimensional shift of finite type can be described as the 
collection of bi-infinite "walks" along an edge graph. The Decomposition The- 
orem states that every conjugacy between two shifts of finite type can be 
broken down into a finite sequence of splittings and amalgamations of their 

edge graphs. When dealing with two-dimensional shifts of finite type, the ap- 
propriate edge graph description is not as clear; we turn to Nasu's notion of 
a "textile system" for such a description and show that all two-dimensional 
shifts of finite type can be so described. We then define textile splittings and 

amalgamations and prove that every conjugacy between two-dimensional shifts 
of finite type can be broken down into a finite sequence of textile splittings, 
textile amalgamations, and a third operation called an inversion. 

1. INTRODUCTION 

Let A be a finite alphabet. Then the full two-dimensional shift space on A is 
AZ2, with shift map Ca defined, for each a E Z2, by [0Ca(Y)]b = Yb+a for all b E Z2. 

We let p denote the usual metric on AZ2 : p(x,y) = 2-k where k is the largest 
integer such that Xb = Yb for all b c [-k, k]2 C Z2. A two-dimensional shift space 
Y is a closed subset of AZ2 which is invariant under all shift maps oa, a C Z2. 

A two-dimensional shift of finite type (SFT) X is a shift space defined using two 
transition matrices A1 and A2 indexed by elements in A. Thus 

X = X(A1,A2) = {x E AZ2 : Ai(Xa,Xa+ei) = 1 for all a E Z2,i = 1,2}. 

SFTs are more usually defined using allowable blocks, which can be shown to be 
equivalent to the above definition (see Proposition 2.3.9 in [LM95] for the one- 
dimensional result; the proof for higher dimensions is similar). 

Difficulties arise in the two-dimensional case which do not occur in the traditional 
one-dimensional case. For example, given a single transition matrix, it is relatively 
easy to determine whether the corresponding one-dimensional SFT is nonempty. 
In two dimensions, the question of whether there are any two-dimensional arrays 
of symbols satisfying the transition requirements of A1 and A2 is referred to as 
the nonemptiness problem and is undecidable. The extension problem, which asks 
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whether a given admissible block will actually occur in a two-dimensional array in 
X(A1, A2), is also undecidable. 

In one dimension, a SFT is nonempty if and only if it contains periodic points. 
This is false in higher dimensions as the existence of aperiodic tiling dynamical 
systems illustrates. The undecidability results described above are closely related 
to this fact [B66], [R71]. 

There are settings in which these difficulties can be avoided. N. Markley and M. 
Paul consider matrix subshifts satisfying an overlapping condition [MP81], [MP281] 
and B. Kitchens and K. Schmidt restrict their attention to higher dimensional 
shifts for which A has a group structure [KS88], [KS92]. For these classes of two- 
dimensional SFTs , the nonemptiness and extension problems can be answered and 
progress has been made towards understanding other dynamical properties. (See 
again [MP81], [MP281], [KS88] and [KS92].) In general, however, little is known 
about higher dimensional SFTs. (For a complete list of references and a thorough 
overview of higher dimensional shifts see [LM95], Chapter 13.) 

A useful tool in studying one-dimensional SFTs is the edge graph. Bi-infinite 
walks along an edge graph yield a SFT and conversely, using a higher block presen- 
tation if necessary, every one-dimensional SFT can be obtained in this way. The 
appropriate edge graph representation of a two-dimensional shift is not immediately 
obvious. In [N95], Nasu proposes the textile system, involving two edge graphs and 
two graph homomorphisms as a way of constructing two-dimensional SFTs. In fact, 
moving to a higher block presentation if necessary, all two-dimensional shifts can 
be represented in this way. In Section 2 we discuss these facts and propose the 
textile system as the appropriate two-dimensional "edge graph". 

In Section 3 we define textile splittings and amalgamations. These definitions 
involve splitting (or amalgamating) one of the edge graphs in the textile system and 
extending to the other graph appropriately. The main theorem of this section is a 
two-dimensional decomposition theorem which states that any conjugacy between 
two-dimensional SFTs can be broken down into a finite sequence of textile splittings, 
amalgamations and a third operation which interchanges the horizontal and vertical 
directions. The formal definition of this operation, called a shift inversion, is given 
below. 

We conclude this section with a review of some vocabulary and notation involving 
shift conjugacies and with the definition of a shift inversion. We also remark that 
similar results involving bipartite codes have been obtained by Hirashi Aso [A97]. 
Bipartite codes are used by Nasu [N86] to prove a variant of the Decomposition 
Theorem which states that any conjugacy between one-dimensional subshifts is the 
composition of a finite number of bipartite codes. Aso generalizes this result to two 
dimensions. 

In two dimensions, a continuous, shift commuting map 1> between shifts X C AZ2 

and X C AZ2 is a sliding block code. An ((m, n), (r, s))-block code 4: X -+ X is 
defined via 

X(i-m,j+s) 
... 

X(i,j+s) * X(i+n,j+s) 

(X) (ij)= Xi-m,j) ... 
X(i,j) .* * 

X(i+n,j) 

X(i-m,j-r) ... X(i,j-r) X(i+n,j-r) / 
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THE DECOMPOSITION THEOREM FOR TWO-DIMENSIONAL SFTS 

where 4) is a map from ((m, n), (r, s))-blocks (as depicted above) of symbols from 
A to symbols in A. Note that a ((O, 0), (0, O))-block map is defined using a map ) 
which sends symbols to symbols. We call m (r) the horizontal (vertical) memory 
and n (s) the horizontal (vertical) anticipation. If 1' is invertible, we say that X 
and X are conjugate, denoted (X, Z2) 

r 
(X, Z2). 

In two dimensions, the choice of horizontal versus vertical direction is somewhat 
arbitrary and so we define an inversion which interchanges these directions. Let 0 
map a two-dimensional shift X to the two-dimensional shift 0(X) via 0(x)(ij) 

(j,i) and let ai = oei, i = 1,2. It is clear that a, o 0 = 0 oc2 and2 o 0 = 
0 o ac and thus (X, 01,2) 2 (0(X),Uc2, o1). Furthermore, 0-1 = 0. Note that if 

4 : X -* X is an ((m, n), (r, s))-block map, then 0 o <I o 0 : 0(X) -0 0(X) is an 
((r, s), (m, n))-block map. 

2. TEXTILE SYSTEMS AND SFTS 

We begin this section by reviewing edge graphs before using them to define a 
textile system. For a more complete review, see [LM95]. 

Let G be an edge graph with vertices VG and arcs EG . For each a E EG, let 
iG(a) (tG(oa)) be the initial (terminal) vertex of a. We say that G is essential if 
both iG and tG are onto. 

Let XG denote the collection of bi-infinite walks on G. That is, 

X = * X-XOX1X2 ...* * 

is in XG if and only if xi E EG for all i E Z and iG(xi+l) = tG(Xi). 
The transition matrix associated with an edge graph G is the EG X EG 0-1 matrix 

A = [A,j8] where AQ,f = 1 if and only if tG(ao) = iG(,3). 
A graph homomorphism between graphs F and G is a pair of mappings )E 

Er - EG and )v : Vr -- VG such that 

iG o 0E = XV O ir, 

tG O? E = XV o tr. 

A graph homomorphism ) -: r - G induces a one-block factor map <I : Xr -> XG 
in the obvious way. 

Definition 2.1. A textile system consists of an essential edge graph F, a single 
vertex edge graph G, and two graph homomorphisms, p, q : F -r G, such that the 
quadruple (ir(at), tr(a),p(a), q(a)) uniquely determines a E Er. 

Definition 2.2. A textile weaved by T is a two-dimensional array 

(al(i,j) i,jECz E E (r 

where (a(ij))iEz E Xr for all j E Z and q(a(i,j-_1)) = P(a(i,j)) for all i, j E Z. 

We can view a textile system as a means of associating the edges in r with a 
collection of Wang tiles: the edge a is associated with the tile depicted below. 

q(a) 

ir(a) tr (a) 

p(a) 
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If we let XT be the set of all textiles weaved by T then XT is a closed invariant 
subset of E 2, and the textile dynamical system and the geometric tiling dynamical 
system are isomorphic. 

We remark that in Nasu's original definition, r is not required to be essential and 
G is not required to be a single vertex graph. However, these are not fundamental 
restrictions. If r is not essential, then there exists an essential graph r with 
Xr = Xr'. If G is not a single vertex graph, then we can construct G', consisting of 
a single vertex and the edges from G, and T' = (p', q' : r -> G') with p'(a) = p(a), 
q'(a) = q(a) for a e E Er. It is clear that XT = XT'. 

The inversion of a textile dynamical system XT is also given by a textile system, 
known as the dual T* of T. We define the dual rT of F by 

ErT = Er and 

VrT = EG, 

and for a E VrT = Er 

irT(a) = p(a) and 

trT(a) = q(a). 

The single vertex graph GT has edges indexed by Vr. The inversion of the textile 
dynamical system XT is then given by the textile system T* = (pT, qT: FT - GCT) 
where 

pT(a) = ir(a), 

qT(ya) = tr(a). 

It follows from the definition that (T*)* = T and if (a(i,j))i,jEZ E XT, then 

(a(j,i))i,jez E XT*. 
A textile dynamical system is isomorphic to a geometric tiling dynamical system 

and thus it is clear that textile dynamical systems are two-dimensional SFTs. The 
converse is also true, as the following proposition demonstrates. 

Proposition 2.3. Let (X,ui, a2) be a SFT given by transition matrices A1 and 
A2. Then, moving to a higher block presentation of X if necessary, there exists a 
textile system T = (p, q : F -> G) such that X = XT. 

Proof. Consider the higher block presentation X of X given by the ((0,1), (0,1))- 
block map b : X -- X where 

(x)( j) = cd when x(i,j+1) X(i+,j+l) _ cd 
ab cX(i,j) x(i+1,j) ab 

Then X is given by transition matrices A1 and A2 defined in the obvious way. 
We show that (X, Z2) is given by a textile system T = (p, q: F -r G). Let 

S = {2 x 2 A1, A2 admissible blocks}. 

Construct an edge graph r by 

Vr = {columns of 2 x 2 blocks in S}, 
Er = S, 

with 
c d 

ir (B)= a ir (B) = b 
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cd 
for all B = b E Er. Then construct a single vertex edge graph G with edges 

labeled by 

EG = {rows of 2 x 2 blocks in S}. 

Define graph homomorphisms p, q : r -* G via 

p(B) = ab, q(B) = cd 

for all B = cd E Er. Then T = (p, q: rF G) is a textile system and XT = X. 

This follows from the fact that if a, P E S then 

A (a, ) = 1 if and only if 

ir(o) = tr(r) 

and 

A2(a,,3) = 1 if and only if 

q(a>) = p(3). 

Proposition 2.3 is not surprising since every two-dimensional SFT is isomorphic 
to a tiling dynamical system. (See for instance [M89].) 

3. A TWO-DIMENSIONAL DECOMPOSITION THEOREM 

In one dimension, the decomposition theorem states that any conjugacy between 
SFTs can be decomposed into a finite sequence of splittings and amalgamations. 
We will prove an analogous theorem for two dimensions. The crucial lemmas will 
show that horizontal and vertical memory and anticipation of a block map can be 
reduced using a notion of textile splittings and amalgamations. A textile splitting 
(or amalgamation) of T = (p, q : F -r G) will involve a splitting (or amalgamation) 
of r, extended appropriately. r determines the horizontal transition rules and thus, 
such operations will be able to decrease horizontal memory and anticipation. To 
decrease vertical memory and anticipation, we will first interchange the horizontal 
and vertical direction with an inversion and secondly apply textile splittings and 
amalgamations. 

Let T = (p,q : -> G) be a textile system with Vr = {vl,... v,n}, Er = 

{1i,... r,a}, and EG = {13,... ,/3t}. We next define T = (p,q : -> G) , the 
textile out-splitting of T. First, we out-split the graph r by refining the natural 
partition of Er; for each v E Vr, we partition Ev = {a E Er : ir(a) = v} into 
subsets 1, ... , m(v). Then set 

fr 1 m(vil) 1 m(V2 ) 1 m(v) } 
y?= f ,?... 

, i 1 V2) ... ^2 I**n^ ...? Vn 

and 

Er-- = a a m(tr(ai)) 1 .. m(tr(c,))} 

with i(oa) = ir(oi)l where oli 1E C(,() and toi(a&) = tr(ai)i . This new graph is 

denoted F. Next, extend p and q by setting p(oa) = p(ai) and q(ai) = q(ai) for all 
a e EE. 
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In a similar way we can construct the textile in-splitting T' of T by refining the 
partition of incoming edges. 

In the following two lemmas we verify that T is indeed a textile system and that 
XT = XT. 

Lemma 3.1. T = (p, q : -> G) is a textile system. 

Proof. Clearly F is essential if r is, and p, q are graph homomorphisms. It remains 

only to check that the quadruple (ir (oai), ti (?a), p(oaj), (ac)) uniquely determines 

a\ E Er. Suppose that ao c4 a and consider their respective quadruples. 

Case 1. Suppose i = k. Thus j I1 and tp(ac) = tr(ai)j3 $ tr(ai)l = tp(ac) and 
the second entry will distinguish the two quadruples. 

Case 2. Suppose i 4 k and aci E <E'(a)> ak E (Y). If ir(ai) 7 ir(ak) or 

if x $4 z, then ij(oi) = ir(oai)x 7 ir(ack)Z = ir(jc) and the quadruples are 

distinguished by their first element. Similarly, if tr(ai) =7 tr( ak) or j =7 1, the 
quadruples are distinguished by their second element. Finally, if ir( ai) = ir(caj), 
x = z, tr(ai) = tr((ak), and j = 1, then because T is a textile system, we know 
(ir (ai), tr (ai),p(ai), q (ai)) Z (ir (ak), tr (ak),p(ak), q(ak)). So either 

P(a&3) = p(ai) # p(ak) = P(a) or a(ai) = q(cai) 7 q(ak) = 4(a 

Lemma 3.2. Let T be a textile out-splitting of T. Then 

(XT), o1, 2) - (XT, 1, U2) 

Proof. Define a ((0,0), (0,0))-block map 4 : XI - XT via q(a&) = ai and a 
((0, 1), (O, 0))-block map : XT -- Xrj via Ol(aoioj) = ca, where a j E -F((j) 

It is not difficult to check that I(XT) C XT and I(XT) C XT. It is clear that 

(D(TX))(i,j) = x(i,j) for all x c XT since adding and removing superscripts has 
no effect. Thus we only need check that T({(x))(j) = x(i,j) for all x E XT. Let 
x C XT;. We need to show that 

T(b(X))(i,j) = Mx(i,j))x(i+1,j))) = X(ij)- 

Suppose (ij) = k i+j) = al E rF. Because (x(i,j))iz E XI, tpr(a) = 
tr(am)k = ir(an) = i(oa), where a E ig (a). Thus tr(am) = ir(an), k = s 

anda E ( 
k 

). So 

(O(z(j))O(x(j+lj))) = O (O(a k)(a)) =a 0(aman) = 
k 

= 
(i,j)X 

When the partition P consists of singleton sets then T is called the complete 
out-splitting of T and, in general, if T is a textile out-splitting of T then we call 
i : XT -> XT the out-amalgamation code from Xt to XT and we call T : XT -> Xi; 

the out-splitting code from XT to XT. 
We can define a textile in-splitting T' of T analogously by using an in-splitting F' 

of r. We will then have a ((1, 0), (0, 0))-block in-splitting code and a ((O, 0), (0, 0))- 
block in-amalgamation code, both giving XT'- XT. 

In the remainder of this section, we give a proof of the two dimensional decompo- 
sition theorem. In Lemma 3.8 we show that a higher block presentation of a textile 
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system is the composition of a finite sequence of textile splittings, amalgamations 
and inversions. Then, by moving to a higher block presentation if necessary, we 
may assume that the conjugacy (p between two textile systems is a ((O, 0), (0, 0))- 
block map with an ((m, n), (r, s))-block inverse. If m = n = r = s = 0, then this 

conjugacy is just a relabeling of the symbols and as such is a trivial splitting. So 
we would like a way to reduce the horizontal and vertical memory and anticipa- 
tion of the inverse of cp. We will reduce the horizontal memory and anticipation in 
Lemmas 3.3 and 3.4 by using textile splittings and amalgamations. Then, in Corol- 
lary 3.6, we interchange the vertical and horizontal directions using an inversion 
and reduce the vertical memory and anticipation, again using textile splittings and 
amalgamations. 

Lemma 3.3. Let Tk = (Pk,Qk : rk -* Gk) , k = 1 and 2, be textile systems. 
Suppose p : XT1 -* XT, is a ((0, 0), (0, 0))- block conjugacy with an ((m, n), (r, s))- 
block inverse. Then there are textile out-splittings Tk of Tk such that the following 
diagram commutes: 

XTI - +- XT2 

where 1l, L2 are out-splittings and where ,( is a ((0,0), (0,0))-block conjugacy 
with an ((m, n - 1), (r, s))- block inverse. 

Proof. For v E Vr,, we partition 4E by the image of y? into UaEEr {lb E : W(b) 
= p(a)}. (In a slight abuse of notation, we are using p to denote both the 

((0, 0), (O, 0))-block conjugacy between XT1 and XT2 and the map from symbols 
in Erl to symbols in Erp which determines this conjugacy.) Then we can denote 

Vf = {v : v E Vr ,, e Er2 with So(a) = a for some a E E}}, 

E = {a3 : a E Er1 with (p(b) = 3 for someb E Er, with tr1(a) = ir, (b)} 

and 

i1 (ar) = irl(a)wI(a), t- (a") = trl(a)P. 

For aP E Erl, we define i1 (a1) = P1(a). The homomorphism ji is defined similarly. 
As shown in Lemmas 3.1 and 3.2, T1 = (pi, q1 : Fr - G1) is a textile system and 

T1: XT, - X- 1 is a conjugacy via Ti1 (x)(i,j) = '1 (x(i,j)x;(i+l,j)) = (i,j)(((i+lj)). 
Now let F2 be a complete out-splitting of r2. So 

Vrf = {v :v E Vr2, a E Ar2 with ir2 (a) = v}, 

Er = {2 : a, , E Ar2 with tr2(a) = r2 (3)} 

and 

2 (a") = ir2 (a)a, tr2 (a') = tr2 (a)3 

For a3 E Er we define p12(aO) = P2 (a). The homomorphism q42 is defined similarly. 
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As shown in Lemmas 3.1 and 3.2 , 2= (1P2,2 : r2 - G2) is a textile system and 

XF2 :XT2 -> XT2 is a conjugacy via 2(X)(i,j) = 02 (x(i,j)x(i+l,j)) = x(i,j)X(i+1f). 
Now we define the ((0, 0), (0, O0))- block map p : X1 -' XT2 via 

(z)(i,j) 
= 

(X(i+'j)) = (x(ij))(X(i+l j)). 

Clearly the diagram commutes and thus (p is one-to-one and onto. It remains only to 
check that p-1 = bW0S-loo'l 1 is a ((m, n-1), (r, s))- block map. That is, we must 
show that for any x C XT2, the coordinates in an ((m, n - 1), (r, s))- block about 

x(o,o) determine -1(x)(o,o). But this follows from the observation that a ((m, n - 

1), (r, s))- block about x(o,O) determines both po(x(l,o)) and a ((m, n), (r, s))- block 
about '21(zx)(o,o). L 

The proof of this lemma is similar to the proof of an analogous one-dimensional 
result. See [LM95], Lemma 7.1.3. 

Lemma 3.4. Let Tk = (pk, qk : rk -> Gk) , k = 1 and 2, be textile systems. 
Suppose p : XT1 -* XT2 is a ((0, 0), (0, O))- block conjugacy with an ((m, n), (r, s))- 
block inverse. Then there are textile in-splittings Tk of Tk such that the following 
diagram commutes: 

XT1 -- > XT2 

l1 1t2 

XT1 > XT2 

where '1, 2 are in-splittings and where p' is a ((0,0), (0,0))- block conjugacy 
with an ((m - 1, n), (r, s))- block inverse. 

Proof. The proof of Lemma 3.4 is analogous to the proof of Lemma 3.3. L 

Corollary 3.5. Let Tk = (pk,qk : rk -+ Gk) , k = 1 and 2, be textile systems. 
Suppose p : XT1 -- XT2 is a ((0, 0), (O, 0))-block conjugacy with an ((m, n), (r, s))- 
block inverse. Then there are textile systems Tk such that the following diagram 
commutes: 

XT1 I XT2 

XT > XTi 

where the rk 's are the composition of a finite collection of in- and out-splittings and 
(p is a ((0, 0), (0, O0))- block conjugacy with an ((O, 0), (r, s))- block inverse. 

Corollary 3.6. Let Tk = (pk, qk: rk -- Gk) , k = 1 and 2, be textile systems. 
Suppose p : XT1 -* XT2 is a ((0, 0), (0, O0))- block conjugacy with an ((m, n), (r, s))- 
block inverse. Then there are textile systems Tk' such that the following diagram 
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commutes: 

XT1 --> XT2 

XT > XT2* 

??I 1+2 

XT1 -+> XT2 

where the r1i 's are the composition of a finite collection of in- and out-splittings and 
p is a ((O, 0), (0, 0))- block conjugacy with an ((O, 0), (m, n))- block inverse. 

Proof. We see that because cp is a ((O, 0), (0, O0))- block conjugacy with an ((m, n), 
(r, s))- block inverse, 0opo 0 is a ((0, 0), (0, O0))- block conjugacy and (0o po0)-l = 
0 o Op-I o 0 is an ((r, s), (m, n))- block map. Thus Corollary 3.6 follows from 
Corollary 3.5. c 

Proposition 3.7. Let Tk = (pk, qk : k -> Gk) , k = 1 and 2, be textile systems. 
Suppose (p : XT1 -> XT2 is a ((0, 0), (0, 0))- block conjugacy with an ((m, n), (r, s))- 
block inverse. Then ,p is the composition of a finite sequence of textile splittings, 
amalgamations and shift inversions. 

Proof. Use Corollaries 3.6 and 3.5 to obtain cp = 2 1 o 0o rlo fo rj o 0 o? 1, where 

P is a ((0, 0), (0, 0))-block conjugacy with a ((0, 0), (0, O0))-block inverse, that is, a 
relabeling. DI 

In general a conjugacy between shift spaces is a ((m, n), (r, s))-block map but 
the following lemma shows that by moving to a higher block presentation we may 
assume it is a ((0, 0), (0, O0))-block map. 

Lemma 3.8. Let Tk = (Pk, qk : Ik --> Gk) , k = 1 and 2, be textile systems. Let p : 

XT1 -* XT2 be a ((m, n), (r, s))-block conjugacy and let XT1 be the ((m, n), (r, s))- 

higher block presentation of XT1. Then there exists a map r]: XT1 -> XT1 which is 
a sequence of splittings and inversions, such that p o r1-1 is a ((O, 0), (0, 0))-block 
conjugacy. 

Proof. Clearly, p o r-1 is a ((0,0), (0, O0))-block conjugacy. We need to show that 
r1 is a sequence of splittings and inversions. 

First note that XT1 can be written as a textile system, using the technique of The- 
orem 2.1, with ((m, n), (r, s))-blocks playing the role of the ((0, 1), (0, 1))-blocks 
used there. 

A complete out-splitting of a textile system yields a higher block presentation 
by 

x(i+l ,j) 

Similarly, a complete in-splitting gives 

(x) (i1j) 
= X(i-1 i)x(i.j) 

Thus we can find I1, a sequence of splittings, such that 71 o J1 is a ((O, 0), (r, s))- 
block conjugacy. Then 0 o 7 o I1' o 0 is an ((r, s), (0, 0))-block conjugacy on the 
dual spaces and the process can be repeated to find T2, a sequence of splittings, so 
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that 0 o7 o Tf 
1 o 0 o f 1 is a ((0, 0), (0, 0))-block conjugacy, or simply a relabeling. 

Let us denote this by ij. Then r = 0 o r o T2 0 0 ?o oi, and we have the necessary 
result. OZ 

We are now ready to state the main result of this section, a two-dimensional 
decomposition theorem: 

Theorem 3.9. Let Tk = (pk,qk : rk -> Gk) , k = 1 and 2, be textile systems. 
Every conjugacy between XT1 and XT2 is the composition of a finite sequence of 
textile splittings, amalgamations and shift inversions. 

Proof. This theorem follows from Proposition 3.7 and Lemma 3.8. D 

By Proposition 2.3, we can view a two-dimensional SFT as a textile system and 
thus apply the last theorem to that scenario. We restate the result as follows: 

Corollary 3.10. Given two two-dimensional SFTs, X = X(A1,A2) and Y 
Y(B1, B2), any conjugacy between them is the composition of a finite sequence of 
textile splittings, amalgamations and shift inversions. 

In one dimension, the Decomposition Theorem for edge shift conjugacies results 
in the notion of strong shift equivalence for matrices; a splitting or an amalgamation 
is described by a matrix condition and the Decomposition Theorem allows us to 
deduce that two edge shifts are equivalent if and only if their adjacency matrices 
are related by a sequence of these matrix conditions. It is possible to find matrix 
conditions for textile splittings and amalgamations. For example, suppose (A1, A2) 
((A', A)) are the transition matrices for the edge graphs r and rT in textile 
system T (T'). Then T' is an outsplitting of T if and only if there exist matrices 
R and S with A1 = RS, A' = SR, and RTA^R = A' where R is an "enhanced 
identity" matrix, that is an identity matrix with some columns repeated. The 
matrix condition for out amalgamations has the roles of A1 and A' reversed; this 
leads to difficulty in defining a symmetric matrix relation. Another difficulty lies in 
the fact that edge labelings play a more fundamental role in two dimensions thus 
requiring the use of 0-1 transition matrices to determine SFTs. These matrices are 
not closed under matrix operations. These difficulties remain to be surmounted 
and we are left with the open question: can Corollary 3.10 be used to classify 
conjugacies between two-dimensional SFTs using a matrix condition? 
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