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Optical activity in the smectic- A phase of a highly chiral liquid crystal

Joshua D. Rosenzweig and Peter J. Collings
Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081
(Received 20 October 1992)

Optical-activity measurements in the smectic- 4 phase of various chiral-racemic mixtures of S-4-(2'-
methylbutyl)phenyl-4’-n-octylbiphenyl-4-carboxylate (CE8) demonstrate that contributions from fluctua-
tions in more than one chiral structural mode are important near the transition to the smectic-C* phase.
Although these results are similar to earlier measurements in the isotropic phase of highly chiral liquid
crystals, previous theoretical work points out that the nature of these fluctuations and the reason for the
importance of the second structural mode are very different. Because the present measurements are re-
ported on mixtures of varying chirality, they provide a stringent test of the theory. Agreement between

theory and experiment is good.

PACS number(s): 61.30.—v, 64.70.Md, 78.20.Ek

INTRODUCTION

There has been a significant amount of theoretical and
experimental work on the optical activity caused by fluc-
tuations in the isotropic phase of highly chiral liquid
crystals. The picture which emerges from these efforts is
that the short-range order due to fluctuations can be de-
scribed successfully by a Landau—deGennes free energy,
in which the orientational order is represented by a linear
combination of five structural modes. These five
structural modes are two planar spiral modes (one right-
handed, one left-handed), two conical spiral modes (one
right-handed, one left-handed), and one achiral nematic-
like mode. See Ref. [1] for a recent review of this work.
If the chirality is not too high, fluctuations in only the
conical spiral mode contribute to the optical activity and
the result is a simple (T —T*) %5 temperature depen-
dence, where T* is a temperature slightly below the tran-
sition to the liquid-crystal phase. This optical activity is
positive in the isotropic phase of a right-handed liquid
crystal and negative in a left-handed liquid crystal, re-
gardless of whether the wavelength of light in the liquid
crystal is less than or greater than the pitch of the liquid-
crystal phase. In highly chiral systems, however, the op-
tical activity near the liquid crystal transition also de-
pends on fluctuations in the planar spiral mode, so the
situation is more complicated. This was first predicted by
Filev [2], and his ideas recently have been embellished by
Demikhov and Dolganov [3]. The planar spiral mode is
the only chiral structural mode of the chiral nematic
phase and the dominant mode in the blue phases [4], so
just as in these phases the sign of this contribution to the
optical activity can be either positive or negative depend-
ing on the relationship between the wavelength of light
and the pitch. Since this contribution is only significant
in highly chiral systems, the pitch is much shorter than
the wavelength of light and the optical activity is nega-
tive for right-handed systems and positive for left-handed
systems. The difference of sign in the two contributions
in highly chiral liquid crystals causes a nonmonotonically
increasing temperature dependence in the vicinity of the
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phase transition. According to these latest theoretical in-
vestigations [3,5], the simple (T —T*)~ %% temperature
dependence enters due to the conical spiral mode in
second order of k /q,, where k is the wave vector of the
light in the material and g, =4 /P (where P is the pitch)
is the chirality of the material. Contributions to the opti-
cal activity in fourth order of k /q, enter from both the
conical and planar spiral modes with a (T —7*)™ !> tem-
perature dependence. Although these most recent ideas
have not been fully tested by experiment, they do agree
with the experimental finding that the second-order term
contains a contribution from only the conical spiral
mode, while the fourth-order term contains contributions
from both the conical and planar spiral modes [6].
Fluctuations in the smectic- 4 phase also produce opti-
cal activity near the transition to the smectic-C* phase
[7,8]. Again, if the chirality is not too high, only the con-
ical spiral mode contributes to the optical activity. How-
ever, the nature of the fluctuations in the smectic-A
phase is very different from the fluctuations in the isotro-
pic phase. In the isotropic phase, the spiral axis of a
structural mode can make any angle with the light propa-
gation direction, so the optical activity is due to an ““aver-
age” over all directions. For light propagating along the
director of the smectic-4 phase (perpendicular to the
smectic layers), the spiral axis of a structural mode is re-
stricted to be close to the light propagation direction. Al-
though the result is again the simple (T'—7*) %5 tem-
perature dependence, this very different ‘“average” pro-
duces optical activity of the opposite sign from the isotro-
pic phase (negative for a right-handed system and posi-
tive for a left-handed system). The sign and temperature
dependence have been verified by experiments using a sin-
gle liquid-crystal compound of moderate chirality [7,8].
However, Filev again predicts the fluctuations in the pla-
nar spiral mode are important at high chirality near the
transition to the smectic-C phase [2]. This structural
mode is not necessarily the dominant mode of the
smectic-C* phase (it depends on the value of the tilt an-
gle), but it is the sole contribution to the optical activity
for light propagating perpendicular to the smectic layers.
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This contribution to the optical activity in the smectic- 4
phase therefore can have either sign, depending on the
values of the wavelength of light and the pitch. If the
pitch of the smectic-C* phase is greater than the wave-
length of light in the material, the contribution of the pla-
nar spiral mode is opposite from the conical spiral mode,
so again it is possible that the optical activity has a non-
monotonically increasing temperature dependence in the
smectic- A phase near the transition to the smectic-C*
phase. In order to fully test the predictions for both the
conical and planar spiral contributions, experiments must
be performed (1) in a highly chiral system, and (2) in a
system where the chirality can be varied.

We report the results of optical activity measurements
in the smectic-4 phase in several chiral-racemic mix-
tures of §-4-(2'-methylbutyl)phenyl-4'-n-octylbiphenyl-
4-carboxylate (CE8). The presence of a nonmonotonical-
ly increasing temperature dependence verifies that the
contribution of the planar spiral mode is important at
high chirality. By studying mixtures of varying chirality,
it is shown that both the strength of the conical spiral
mode contribution and the temperature interval over
which the planar spiral mode contributes significantly in-
crease with chirality just as predicted by the theory.

THEORY

Demikhov, Dolganov, and Filev calculate the optical
activity due to fluctuations in the smectic-A4 phase in
much the same way as in the isotropic phase [7]. The
Landau-deGennes free-energy functional is written for
the smectic- 4 to smectic-C* transition in terms of the or-
der parameter for that transition. Instead of the tensor
order parameter appropriate for the isotropic phase, a
vector order parameter is used, B=(f3,,5,,0), which
denotes the position of the axis of orientational order rel-
ative to the normal to the smectic planes n=(0,0,1). The
free-energy functional is thus

(F—Fo)/T=1% [ dr{aBi+b(3,8,)?
+2bg.e,,,B,(3,8,)+ABBLY , (1)

where a, b, and A are coefficients in the expansion
[a =ao(T —T*)], and g, =2m /P, where P is the pitch of
the smectic-C* phase. The anisotropic part of the dielec-
tric tensor deviates from its value in the smectic- 4 phase
due to fluctuations in B

€ar(Q)=Ae[By(qIn, +n,B8,(Q)], Bl <<1, b))

where Ae€ is the dielectric anisotropy, and from this the
optical activity can be calculated for light propagating
along the z axis. For temperatures far from the transi-
tion, only the conical spiral mode contributes, giving the
result

¢=—A(T—T*) " +4¢,, 3)

where A4 is a proportionality constant which depends
linearly on k and g, and quadratically on Ae€, and ¢, is
the optical activity in the absence of fluctuations.
Perhaps the most important aspect of this result is that

the sign of the optical activity is opposite to the optical
activity caused by fluctuations in the isotropic phase.
Again, the reason for this is that the light is propagating
along the director in the smectic-4 phase, with fluctua-
tions creating a spiral axis which deviates only slightly
from the direction of light propagation. The situation is
much different in the isotropic phase, where fluctuations
produce small regions of orientational order which have
spiral axes pointing in all directions. Another prediction
of this calculation is that the coefficient A should in-
crease linearly with the chirality if all other parameters
are kept constant.

Filev further argues that because the optical activity
for light propagating along the spiral axis is zero for the
conical spiral mode but nonzero for the planar spiral
mode, the optical activity very close to the smectic-C*
transition may also show a nonmonotonically increasing
temperature dependence [2]. As the transition tempera-
ture is approached, the contribution to the optical activi-
ty from the conical mode decreases as the spiral axis is in-
creasingly restricted to lie parallel to the light propaga-
tion direction. The contribution from the planar spiral
mode is not similarly affected, so it continues to increase
(although it does not show singular behavior as in the iso-
tropic phase). Since these contributions have opposite
signs, the optical activity reaches a maximum near the
transition and then decreases.

The temperature interval near the transition where the
contribution from the planar spiral mode is important de-
pends on the relationship between the bare correlation
length £ 4, and the product of k and ¢,

(T —T*)/T*E;2<2kq, . @)

Thus this temperature interval should increase linearly as
the chirality is increased if all other parameters remain
constant.

It is important to note that the reason for the compli-
cated behavior is very different in the isotropic and
smectic- A phases. In the isotropic phase, the fact that
the T* temperature for the planar spiral mode is higher
than for the conical spiral mode is the reason that near
the transition the contribution from the planar spiral
mode becomes significant. In the smectic-A4 phase, the
fact that the light is propagating along the spiral axis
causes the optical activity from the conical spiral mode to
decrease, and thus allows the contribution from the pla-
nar spiral mode to become important.

EXPERIMENT

The sample of CE8 was contained between two pieces
of glass which had been coated with octadecyltriethoxysi-
lane to produce homeotropic alignment. The thickness of
the cell was 100 pum. Uniform textures of the smectic- 4
phase were obtained by cooling from the chiral nematic
phase to the smectic-4 phase (transition temperature
~135°C). Measurements of the optical activity were tak-
en upon cooling starting at 105 °C and ending at the tran-
sition between the smectic-4 and smectic-C* phases
which occurred between 84.8 and 84.9°C. Three chiral-
racemic mixtures were studied: 50% optically active
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TABLE I. Least-squares-fitted values for the optical activity of the three CE8 mixtures using Eq. (3).

Chiral fraction A (degK'7?) T* (°C) ¢ (deg)
0.50 0.0478+0.0050 84.431+0.14 —0.0610+0.0019
0.75 0.0927+0.0131 83.13+0.40 —0.0397+0.0037
1.00 0.1056+0.0160 83.65+0.40 0.0176£0.0047

CE8 (CE8*) and 50% racemic CE8 (CE8R), 75% CE8*
and 25% CES8R, and 100% CE8*. The transition from
the smectic- 4 to smectic-C* phase was visible under the
microscope in the 50% and 75% CES8* mixtures, since
pitch bands were visible in the smectic-C* phase. This
transition was visible under the microscope for 100%
CES8*, but only in a wedge-shaped sample where Cano
lines were visible in the smectic-C* phase. Determina-
tion of this transition temperature was crucial to ensure
that data could be obtained close to the transition, but al-
ways in the smectic- 4 phase.

The sample was contained in an Instec HS-1 hot stage,
the temperature of which was maintained to within 0.001
K. The temperature inhomogeneity across the illuminat-
ed part of the sample was less than 0.01 K. The sample
thickness was maintained by a 100-um spacer.

The optical-activity measurement system consisted of
an argon-ion laser operating at 488 nm, two Glan-
Thompson cube polarizers, a Faraday-effect modulator,
and a silicon diode detector. Light from the laser passed
through the first polarizer, was modulated by a fraction
of a degree by the Faraday-effect modulator, and then
passed through the sample. The light then passed
through a polarizer mounted in a computer-controlled
rotation stage before striking the detector. The output
from the detector went to a lock-in amplifier. The refer-
ence signal for the lock-in amplifier was the alternating
voltage driving the modulator. The computer rotated the
second polarizer in steps of 0.01° and recorded the output
of the lock-in amplifier at each step. Linear interpolation
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FIG. 1. Optical activity in the 50% mixture of CE8*. The
inset shows the lowest temperature data; each horizontal
division is 0.5°C and each vertical division is 0.01°. The solid
line is the least-squares fit using Eq. (3) with the three lowest
temperature points omitted. The wavelength of the light is 488
nm and the sample thickness is 100 um.

of the data determined the angle at which the lock-in out-
put crossed zero, which was a measurement of the
amount of optical rotation introduced by the sample.
The typical standard deviation for such a measurement in
the smectic- 4 phase was about 0.003°.

The results for the 50%, 75%, and 100% CE8* mix-
tures are shown in Figs. 1-3. The inset in each graph
contains the data very close to the transition to the
smectic-C* phase. Notice that in all three mixtures, the
optical activity is negative (CE8 is a right-handed system)
and a nonmonotonically increasing function of tempera-
ture, but that the effect increases as the chirality in-
creases. To illustrate this more clearly, least-squares fits
of the data to Eq. (3) were generated, dropping off the
lowest temperature point one at a time until the fit with
the lowest x? per data point was obtained. This fit is
shown in the figures for each of the three mixtures and
the values of the fitting parameters are contained in
Table I.

DISCUSSION

The fitting parameter values can be used to check
quantitatively the theory concerning the contribution
from the conical spiral mode. The coefficient A4 is sup-
posed to be linear with the chirality. As Fig. 4 demon-
strates, the data are consistent with a straight line
through the origin. The theory does not predict much
concerning the value of T*. Because the free-energy
functional depends on g, the temperature dependence of

-0.05 T T T

75% CEB8*

84 89.5 95 100.5 106
Temperature (°C)

FIG. 2. Optical activity in the 75% mixture of CE8*. The
inset shows the lowest temperature data; each horizontal
division is 0.5°C and each vertical division is 0.01°. The solid
line is the least-squares fit using Eq. (3) with the two lowest tem-
perature points omitted. The wavelength of the light is 488 nm
and the sample thickness is 100 um.
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FIG. 3. Optical activity in the 100% mixture of CE8*. The
inset shows the lowest temperature data; each horizontal
division is 0.5°C and each vertical division is 0.01°. The solid
line is the least-squares fit using Eq. (3) with the five lowest tem-
perature points omitted. The wavelength of the light is 488 nm
and the sample thickness is 100 um.

the fluctuations should depend on chirality, although
without firm knowledge of the free-energy coefficients it
is difficult to determine how large this effect is. As can be
seen from Table I, the results reported here do not allow
for a strong conclusion, although there is some indication
that T* decreases with increasing chirality as is the case
for the isotropic phase [9]. The values for ¢, are also in-
teresting. They represent the intrinsic optical activity of
the molecules themselves (which is positive in CES8), and
the optical activity of the smectic phase due to the corre-
lations which result from interactions between the chiral
molecules. This latter effect has been investigated by Osi-
pov using the molecular field approximation [10]. Unfor-
tunately, even the sign, not to mention the magnitude, of
the optical activity depends on molecular parameters
which are not known for CES.

As predicted, the temperature interval over which the
contribution of the planar spiral mode is important
definitely increases with chirality. It is worthwhile to
determine if the theory is also quantitatively correct.
Equation (4) can be used to estimate this temperature in-
terval in CE8*, since the wavelength of the light in CE8*
(0.30 um) and the pitch of CE8* (0.40 pm) are known
[11]. The bare correlation length can also be estimated
from relaxation-time measurements in the smectic-4
phase of CE8* just above the smectic-C* transition (1.6
nm) [11]. These numbers give temperature intervals of
0.31, 0.46, and 0.61 K for the 50%, 75%, and 100% mix-
tures, respectively, which agree nicely with the data.

One last interesting feature of the data is that the opti-
cal activity decreases rapidly but is still negative after

0.14 T T T T T

0.12 ]
CE8

0.1 .
0.08 |- -

0.06 .

A (deg K'?)

0.04 B
0.02 b

0 1 1 1 ] 1
0 0.2 0.4 0.6 0.8 1 1.2

Chiral Fraction

FIG. 4. Dependence of the parameter A in Eq. (3) on chirali-
ty. The straight line through the origin has been drawn to aid
the eye.

entering the smectic-C* phase. It crosses zero about 0.4
K below the transition. This indicates that the fluctua-
tions in the smectic-C* phase include a contribution from
the conical spiral structural mode, since this is the mode
with negative optical activity. This is similar to what
occurs just below the isotropic to blue phase transition,
where the optical activity crosses zero just below the
transition, as the planar spiral mode which dominates the
blue phase contributes more to the optical activity than
the conical spiral mode which dominates the optical ac-
tivity of the isotropic phase [12]. In the rest of the
smectic-C* phase, the optical activity is positive and in-
creases linearly with decreasing temperature as has been
reported previously [13].

CONCLUSION

By using mixtures of a highly chiral liquid crystal and
its racemate, a strong experimental test of the theory for
the optical activity produced by fluctuations in the
smectic- A phase has been performed. The dependence of
the optical activity on chirality, the nonmonotonically in-
creasing temperature dependence of the optical activity
in the vicinity of the transition to the smectic-C* phase,
and the temperature interval over which the planar spiral
mode is important all show quantitative agreement with
the theory.
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