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A two-chain path integral model of positronium
L. Larrimore and R. N. McFarland
Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081

P. A. Sterne
Lawrence Livermore National Laboratory, Livermore, California 94550

Amy L. R. Buga)

Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081

~Received 7 August 2000; accepted 19 September 2000!

We have used a path integral Monte Carlo technique to simulate positronium~Ps! in a cavity. The
primitive propagator is used, with a pair of interacting chains representing the positron and electron.
We calculate the energy and radial distribution function for Ps enclosed in a hard, spherical cavity,
and the polarizability of the model Ps in the presence of an electrostatic field. We find that the
positron distribution near the hard wall differs significantly from that for a single particle in a hard
cavity. This leads to systematic deviations from predictions of free-volume models which treat Ps
as an effective, single particle. A virial-type estimator is used to calculate the kinetic energy of the
particle in the presence of hard walls. This estimator is found to be superior to a kinetic-type
estimator given the interaction potentials, cavity sizes, and chain lengths considered in the current
study. © 2000 American Institute of Physics.@S0021-9606~00!50447-4#

I. INTRODUCTION

Positron annihilation spectroscopy is a widely-used ex-
perimental probe of solids, liquids, and gases.1 Coulomb re-
pulsion with the nuclei makes the positron most sensitive to
open-volume regions such as vacancies, voids, and molecu-
lar free-volumes. In insulators, positrons often form positro-
nium ~Ps!, bound hydrogeniclike electron–positron pairs,
which diffuse into the open-volume regions. The long intrin-
sic lifetime of ortho-positronium~o-Ps! is shortened by an-
nihilation with surrounding electrons, resulting in a measure-
ment of the size of the open volume region based on the
observed positron lifetime.2 Positron annihilation in such a
system has been described in terms of free-volume models.3,4

A correlation curve relating the positron lifetime to the size
of the free volume has been parameterized by Nakanishi
et al.5 based on measurements of systems with well-defined
open volume regions, including molecular crystals and zeo-
lites. This approach is now used extensively in measure-
ments of free volumes for a wide range of insulating
systems.2

Free-volume models3,4 are built on very simple assump-
tions, including interaction only within some limited distance
of the cavity wall, and simple geometric shapes for an
‘‘open-volume’’ region. We can assess the applicability of
these simple approximations provided we have a suitable
model for the behavior of the quantum mechanical positro-
nium in the system. Path Integral Monte Carlo provides a
convenient approach for this. In this paper, we present results
of PIMC simulations of positronium treated as a two-particle
electron–positron system. We consider the interaction of
positronium within a hard-sphere as a simple approximation

to a solid environment, and compute the effect of size con-
straint on the behavior of positronium in an open-volume
region in a solid.

In the path integral Monte Carlo~PIMC! technique,6,7 a
single quantum particle is represented by a polymeric chain
of fictitious particles, or ‘‘beads.’’ PIMC has lent itself natu-
rally to several studies of Ps trapped within an insulating
environment. Reese and Miller8 have utilized a single chain
of beads, where each bead represents the composite Ps par-
ticle in fluid Xe, to determine the annihilation rate and ten-
dency of Ps to localize near the liquid–vapor critical point.
Schmitz and Mu¨ller-Plathe9 have used a similar model to
study Ps annihilation within a polystyrene fluid whose mono-
mers are simulated as classical particles interacting with Ps
via a semiempirical~Buckingham! potential. While these
studies provide much insight, further information may be
gained by using a two-particle model of Ps, in which the
interaction of the Ps with the host atoms is based on the
interactions of its individual constituents, rather than on ef-
fective interactions. In addition, it is possible to study the
binding energy and ionization of Ps within a two-particle
approach.

Recently,10 Müser and Berne have proposed an elegant
solution to a longstanding problem of simulating Coulomb-
attracting systems with a ‘‘primitive’’ approximation to the
propagator used in the path integral. They tested their for-
malism with a successful simulation of the electron of hy-
drogen, a single-chain calculation. In the current work, we
will use the Müser–Berne scheme to study a stable, two-
chain path integral representation of Ps. The approach is de-
scribed in more detail in Sec. II. In Sec. III, we present
results using this approach for the positronium distribution,
energy, and polarizability in a spherical cavity. We concludea!Author to whom correspondence should be addressed.

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 23 15 DECEMBER 2000

106420021-9606/2000/113(23)/10642/9/$17.00 © 2000 American Institute of Physics

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.58.65.13 On: Fri, 06 Feb 2015 15:05:53



that this method provides a simple, flexible approach for
simulations of Ps in solids.

II. COMPUTATIONAL MODEL

We wish to calculate the thermal averages of quantities
related to Ps. For a quantity represented by the operatorÂ,
this amounts to finding

^Â&5
1

Q
Tr r̂Â; Q[Tr r̂. ~1!

In the canonical ensemble, the quantum density matrixr̂ is11

r̂~b!5exp~2bĤ !, ~2!

with b the inverse temperature andĤ the Hamiltonian op-
erator for the entire system held at fixed temperature and
volume. In a well-known series of steps,12 one expresses the
trace in Eq.~1! in the position representation, breaks the
right-hand side of Eq.~2! into a product ofP[b/e terms,
and insertsP21 complete sets of position states to obtain

^Rur̂~b!uR8&5E ^Rur̂~e!uR1&

3^R1ur̂~e!uR2& •••^RP21ur̂~e!uR8&

3dR1•••dRP21 . ~3!

While this is exact, the substitution of a suitable high-
temperature approximation tor̂(e) in Eq. ~3! provides a dis-
cretized approximation toQ, and thus to

^Â&5
1

QE dRdR8^Rur̂~b!uR8&^R8uÂuR&. ~4!

Numerous computational schemes based on Monte Carlo or
Molecular Dynamics6,7,13–16 have been used to sample the
space of paths delineated in Eq.~3!. Equation~4! is rarely
calculated directly; rather, one constructs an estimator for

^Â& which takes advantage of the computational scheme.6,17

For our current study ofe1 ande2, the position basis is
the six-dimensional position space of the two particles,uR&
[ur1r2&. Interactions exist both betweene1 and e2 and
with sources imagined to be external to them. Thus, the
Hamiltonian may be written as

Ĥ5T̂11T̂21V̂1Û11Û2 , ~5!

with T̂1 ,T̂2 the kinetic energies ofe1,e2. In the position
representation,V̂[V(r ), wherer is the relative coordinate,
and U1 , U2 are functions ofr1 and r2, respectively. A
simple high-temperature approximation puts the density ma-
trix in the pair-product18 form

r̂~e!'e2e(T̂11T̂2)e2eV̂r̂0~e!. ~6!

It is formally correct to write in this, the primitive
approximation,6

r̂0~e!5e2e(Û11Û2). ~7!

However, the current study will involve an external interac-
tion with hard walls, and will benefit from an alternative
treatment ofr̂0 . Theoretically, convergence of the partition
function has been shown to exist for hard walls in the primi-
tive approximation asP→`.10 But for any practical calcu-
lation, the approach of a path integral Monte Carlo result to
the correct answer in the presence of hard planar18 or
curved19 walls is slow if one makes the naive substitution,
which in our case would be

^r1r2ur̂0~e!ur 81r 82&5H 1 r 1 and r 2<r c

0 otherwise . ~8!

As an alternative, some studies on systems of hard
spheres have used exact numerical values forr̂0 appropriate
for an isolated pair of spheres.20,21 Also, various types of
image approximation have been used. For example, the exact
density matrix for a particle between two hard planar walls
was derived by Barker,18 and several studies18,19,22,23have
used approximations to this form.24 An alternative image ap-
proximation due to Kalos and Whitlock25 is based on the
exact density matrix near a single hard wall. This form was
used by Reese and Miller,8 and we will use this form as well,
in order to compare with the best results of Ref. 23, which
also treats Ps within a spherical cavity.26 Thus, we will de-
fine

^r1r2ur̂0~e!ur 81r 82&5H )
* 51,2

@12exp~2~r c
22r * 2!~r c

22r 8* 2!/2er c
2!# r 1 and r 2<r c

0 otherwise
. ~9!

However we should note that an approximation based on a
partial wave expansion of the exact wave function has been
derived by Cao and Berne.27 It is a theoretically robust form
for a system of particles in a hard spherical cavity, and is
likely to provide the most rapidly convergent results.

As mentioned in Sec. I, the attractive Coulomb potential,

Vc(r )52e2/r , resists a straightforward primitive path inte-
gral calculation. The strong singularity at the origin makes it
uncertain whether the discretized approximation toQ should
converge to the exactQ in the limit P→`. In fact, the ap-
proximateQ seems to behave pathologically for any finiteP,
and one sees a collapse of the path integral chain into the

10643J. Chem. Phys., Vol. 113, No. 23, 15 December 2000 A path-integral model of positronium
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center of force as computation proceeds.28 In the well known
path integral study one2 in molten KCl,29 the authors chose
to use a pseudopotential, finite at the origin, to simulate the
interaction ofe2 andK1. Similarly, studies of Ps in liquids
by Miller and co-workers8,30 utilized a pseudopotential be-
tween Ps and liquid atoms.

In the current work, we have adopted the Mu¨ser–Berne
scheme, which amounts to applying an effective potential
betweene1 and e2 which converges exponentially fast to
the Coulomb potential as a parameter,a, is sent to zero. We
adopt their specific choice of a Yukawa potential,

V~r !52
e2

r
~12exp~2r /a!!. ~10!

They have shown10 that in the limit a→0 and P→`, the
effective potential produces the correct Coulomb partition
function; and additionally, that the fastest convergence will
occur whena}P22/3. Coulombic results are extrapolated
from a series of simulations for differentP anda.

An alternative strategy would be to employ the exact
Coulomb propagator between electron and positron. This is
tractable analytically, as Pollock has discussed.31 The exact
Coulomb propagator has been utilized, for example, to solve
problems involving biexcitons in semconductors.32 It has
also been a powerful technique with which to study pure
hydrogen at a wide variety of temperatures and pressures.33

The advantage to using a propagator exact for each pair of
particles is that the density matrix is very accurate, and one
generally needs fewer beads for equivalent accuracy.34 Ar-
guments for the primitive approximation are that it is highly
tractable and quicker to compute than the analytical form. A
primitive approximation may be desirable for including in-
teractions other than electron–positron; the computational
advantages to using the exact form for only one part of the
problem are not clear.

Equations~3!, ~6!, and ~9! imply that we must sample
the distribution

r~R,R8;e![^Rur̂~b!uR8&

5E dR1•••dRP21 )
i 51,P

K0~Ri 21 ,Ri ,e!

3exp~2eV~r i !!r0~Ri 21 ,Ri ;e!, ~11!

whereR5R0 , R85RP , andK0 is the free-particle~kinetic!
density matrix,

K0~R,R8;e!5S m

2p\2e
D 3

expS 2
m

2\2e
@~r12r 81!2

1~r22r 82!2# D . ~12!

The form of K0 is that of two classical polymers with har-
monic bonds. The ‘‘classical polymer isomorphism’’ has
produced both analytical35 and computational progress.

In the notation of Sprik and co-workers,22 our method
would be considered a ‘‘one-stage, image approximation.’’
Sampling was performed on a pair of chains ofP beads with
R0[RP . A direct sampling procedure6,19,36was used to gen-

erate independent configurations of the chains. This ‘‘thread-
ing’’ procedure21 relies on an interpolation formula due to
Levy, and amounts to removing randomly situated subsec-
tions of lengthL of the e2 and e1 chains,$Rj ,...,Rj 1L%,
and replacing them with new subsections of lengthL,
$Rj8 ,...,Rj 1L8 %. The Levy construction ensures that the new
configuration is drawn from the distribution
K0(Rj8 ,Rj 1L8 ;Le). Then, a standard Metropolis Monte Carlo
procedure37 was used to either accept or reject the new con-
figuration, with an acceptance probability of

maxF1, )
i 5 j , j 1L

exp~2eV~r i8!r0~Ri 218 ,Ri8;e!

exp~2eV~r i !r0~Ri 21 ,Ri ;e! G .

A standard way to chooseL ~not the only way; see Sec. III B!
is to varyL in order to have a fixed fraction, typically 50%,
of accepted moves. This was done every 10 passes.~One
pass is an attempted move of both chains.!

III. RESULTS

A. Ps in a spherical cavity

Two issues motivate us to study Ps in a hard, spherical
cavity. First, this is a frequently-used free-volume model for
the environment of Ps in a porous solid.4,5,38,39That is, Ps
lifetime measurements in solid pores are sometimes inter-
preted by assuming that Ps behaves like a single particle in
its ground state in such a cavity; with a uniform annihilation
rate with electronic density in a layer at the cavity wall.4

Admittedly a great simplification, this provides a useful or-
ganizational principle for data from disparate systems. Nev-
ertheless, it neglects the realistic orbital structure of Ps, and
the effects that even a hard cavity~much less one with a
realistic, molecular structure! would have on it.

Secondly, there is a technical issue: that at any finite
temperature there is a finite likelihood of Ps ‘‘ionizing’’ to a
continuum state. For the temperatures chosen, we expect its
behavior to be ground-state dominated. Nevertheless, one so-
lution to the formal problem is, upon each pass of the simu-
lation, to return the center of mass of thee1, e2 system to
the center of a generously large (r c@a0) cavity.

Figure 1 shows the radial probability density for the rela-
tive coordinate,

P~r ![
1

QE dR8r~R8,R;b!d~r 82r !, ~13!

which, in simulational terms, is just the likelihood that a
bead pair is at a relative distance ofr. A total of 300 K
passes were used to accumulate statistics for Fig. 1. ‘‘Free’’
Ps is centered in a cavity withr c510 a.u., withP5600, a
50.132 a.u., andb550 a.u. The solid line is the exact an-
swer for the 1S state of Ps. These data come from a set of
simulations with P in the range P5320– 800 anda
5kP22/3, wherek59.36. ~A large number of beads is re-
quired in order to keep discretization parametere reasonably
small for values ofb21 much less than 3/16, the Ps ground-
to-first-excited state energy gap.! As suggested by the discus-
sion in Sec. II, increasingP leads toP(r ) curves that fall
more closely on the 1S curve. The parameters of Fig. 1 do an
excellent job of reproducing the ground state wave function.

10644 J. Chem. Phys., Vol. 113, No. 23, 15 December 2000 Larrimore et al.
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Closed circles in Fig. 1 correspond to Ps which is allowed to
equilibrate freely in a spherical cavity with radiusr c55 a.u.
The effect of the cavity to compress the orbital slightly was
noted in Ref. 23. In Table I, we give the location of the
maximum ofP(r ), r max, as a function of cavity radius. The
exact, zero-temperature free Ps value isr max52 a.u., and at
b550, r max will fall between 2.00 and 2.01 a.u.~much
closer to the former!; 0.01 a.u. is the resolution of our den-
sity data.

While, on average, there is no preferred direction forr ,
there are fluctuations in the shape of the Ps orbital induced
by the cavity; since the closest region of hard wall com-
presses it in a preferred direction. In order to calculate the
annihilation rate, one ultimately requires the overlap of the
density of e1 and electrons in the wall. For example, the
simple model4 presumes a uniform electronic density~more
precisely, assumes a uniform annihilation rate when the cen-
ter of Ps lies! within a layer at the wall. Based on fits to data,
the width of the electronic layer can be taken asDr'3
a.u.2,5 In Table I, we have listedG(Dr ), the fraction ofe1

density residing in this layer, for bothDr 53 and 1 a.u. The
e1 annihilation rate for o-Ps in this simple model would be
l5l0G, wherel0 is the annihilation rate in the uniform
layer, typically taken asl052 ns21.4,40

Some insight into these annihilation rates comes from
viewing the density in the cavity,P(r ), as in Fig. 2. The
positronic density is close to, but systematically different
from, the distribution of a single particle in a hard cavity~a
particle-in-a-box!. ~For reference, a singlee1 particle was
simulated with our path integral technique, and as the crosses
in Fig. 2 show, these data have the correct distribution.! For
the smaller cavities ofr c55, 6 the positronic position is
shifted closer to the cavity center, in agreement with Fig. 3
of Ref. 23. Interestingly, forr c510 a.u., the positronic den-
sity is reduced both at the center and at the cavity wall. This
leads us to conclude that the common factor driving the
shapes of all of these curves is that positronic density is less
at the wall than the particle-in-a-box theory predicts. An
e2 –e1 bound state orbital must be accommodated next to

FIG. 1. Radial distribution function,P(r ), for Ps in a hard cavity.r is the
relative coordinate between electron and positron. Solid line: 1S exact re-
sult. Open circles: ‘‘Free’’ Ps, fixed at the center of cavity with radiusr c

510 a.u. Filled circles: Ps in cavity withr c55 a.u. Calculations use
Yukawa potential, Eq.~10!, with a50.132 a.u.,P5600; b550.

TABLE I. Calculated values ofr max, the location of peak in radial distri-
bution function for Ps in cavity of radiusr c . Units are a.u. Also listed is
calculated likelihood,G(Dr ), for e1 to reside withinDr of cavity wall.G is
calculated from path integral simulation,Gth from simple particle-in-a-box
model fore1.

r c r max G(3) G(1) Gth(3)/G(3) Gth(1)/G(1)

free 2.01 ••• ••• ••• •••
10 1.96 0.13 0.0042 1.16 1.63
8 1.94 0.20 0.0067 1.30 1.87
6 1.88 0.41 0.016 1.22 1.79
5 1.79 0.62 0.028 1.11 1.75

FIG. 2. Distribution function,P(r ), of e1 in Ps, wherer is the distance
from the center of the cavity. Points are simulated data with parameters as in
Fig. 1. Solid lines are particle-in-a-box densities for corresponding values of
r c . Small black circles:r c55 a.u. Large gray circles:r c56 a.u. Large black
circles: r c510 a.u. Crosses: single-particle simulation withr c56 a.u.

FIG. 3. Distribution functionP(r ), wherer is the distance from the center
of the cavity. Runs withP5600 averaged over 2M passes, forb550 and
r c510 a.u. Large black circles: density ofe1 in Ps. Heavy dashed line: fit of
these to particle-in-a-box form. Dotted circles: density of the center of Ps.
Light dashed line: fit of these to particle-in-a-box form.

10645J. Chem. Phys., Vol. 113, No. 23, 15 December 2000 A path-integral model of positronium
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the wall, and this means that the bound positron is more
distant from the wall, on average, than an unbounde1 par-
ticle would be. In Table I we list values ofGth/G , where
Gth(Dr ) would result ife1 behaved as a single particle-in-
a-box. These corrections listed Table I are systematic—
stemming from the depletion ofe1 density at the wall. They
do not vary dramatically with cavity size. We would specu-
late that they approach a limit asr c increases further, a limit
not too different from the values listed in Table I. Neverthe-
less, a disagreement of as much as thirty percent, as seen in
Table I forDr 53, would be noticeable on the fits of lifetime
vs cavity size in, for example, Fig. 4 of Ref. 2.

Because thee1 ande2 are the fundamental moieties in
our model of Ps, it is natural to study hard-wall boundary
conditions that apply to these bodies. However, as mentioned
above, simple pore annihilation models treat the entire Ps
atom as the confined particle. Figure 3 showsP(r ) for e1 in
Ps, and also for the center of Ps in anr c510 cavity. ~This
center is not calculated from the pair of centroid positions,
but rather, from individual bead pairs.! When the densities in
Fig. 3 are fit to the particle-in-a-box form,P(r )
}sin2(pr/r0), a least-squares-fit to thee1 density yieldsr 0

510.0, although the fit is visibly poor.41 The fit of the Ps
center position is of roughly the same quality; in this case
r 059.5. It is reasonable that the effective hard sphere radius
for the Ps center–wall interaction would be less thanr c by an
amount on the order of 1 a.u. Clearly, the effective interac-
tion of the wall with the Ps center would be better fit as a
soft, rather than hard, repulsion. Rather than refining this
notion further, it is probably more useful to replace the hard
cavity with a realistic pore wall geometry, including interac-
tions with the electrons and ions in the solid. This will be the
subject of an upcoming study.

B. Energy

The internal energŷE& of a simulated system is fre-
quently of interest~at the very least, as a way to monitor the
status of the simulation as it proceeds!. The energy of Ps can
be estimated in a variety of ways.6 We have constructed the
‘‘thermodynamic’’ estimator, based on

^E&[2
1

Q

]Q

]b
5(

i 51

P K 2
]

]b
ln r~Ri 21 ,Ri ;e!L . ~14!

For the primitive1image approximation to the Ps den-
sity matrix in Eq. ~11!, this becomeŝ E&'^Tkin&1^Ve&,
where the ‘‘kinetic’’ or Barker estimator for the kinetic en-
ergy, ^T&52(m/bQ)(]Q/]m), is18

^Tkin&[K 3P

b
2

mP

2 (
* 51,2

(
i 51

P

~r i 21* 2r i* !2/\2b2L ,

~15!

and the potential energy estimator is

^V&'^Ve&[
1

P K (
i 51

P

V~r i !

2
1

P (
i 51

P
] ln r0~Ri 21 ,Ri ;e!

]e L . ~16!

The second term in Eq.~16! can be thought of as an effective
potential energy for interaction with the cavity. It will de-
pend on temperature, growing with increasingb, but as one
would hope, it remains roughly constant for fixede. For the
values ofP reported on in this study, it comprises less than
7% of the energy of a singlee1 particle in anr c56 a.u.
cavity atb550; and less than 2% of the energy of Ps under
the same conditions.

The error in estimators depends on the method used to
estimate and to sample the density matrix, and these depen-
dences have been studied by a number of authors.42–46If the
estimated quantity has a measured value ofA( j ) on the j th
measurement pass, then the error in^A&5(1/N)( j 51

N A( j )
after N passes will be

DA5AsA
22t/N[d/AN ~17!

with sA
2 the variance across the entire run,

sA
25(

j 51

N

~A~ j !2^A&!2. ~18!

In Eq. ~17!, t is the integrated autocorrelation time, the limit
asn becomes large of

t~n!5
1

2
1(

j 51

n

C~ j !~12 j /N!, ~19!

whereC( j ) is the normalized autocorrelation function of the
A( j ): C( j )5@^A(k)A(k1 j )&2^A&2#/@^A2&2^A&2#. The
time t is imagined to be a small fraction of the total sam-
pling time, N. The kinetic estimator of Eq.~15! has a vari-
ance which grows linearly with chain size,

sTkin

2 }P. ~20!

In the face of this drawback, Herman and co-workers43 de-
veloped a virial estimator for the kinetic energy of a chain
moving in a localizing potentialV, based on this equality of
thermodynamic averages,

K 3P

2b
2

Pm

2\2b2 (
i 51

P

~xi2xi 21!2L 5K 1

2P (
i 51

P

xi•¹ iV~xi !L .

~21!

Equation~17! suggests that a combination of low vari-
ance and quick relaxation will minimized, and thus mini-
mizeDE for a given number of passes,N. Different schemes
have been attempted for updating bead positions;44–46 and,
for example, performance benefitted from updating schemes
that reduced serial correlations inA( j ) without increasing
the variance. Indeed, Janke and Sauer46 have shown how a
linear combination ofboth kinetic and virial estimators will
minimize error further; and that staging lengths, hence ac-
ceptance rates, might be chosen in order to achieve peak
performance. Though quantitative results certainly depend
on the potential used, one might summarize the published
findings by saying that in the case of a staging algorithm like
our own, neithertEkin

, tEvir
nor sEvir

2 were found to vary

strongly withP.
In the studies mentioned above, single particles moved

in potential wells which were analytical functions of posi-
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tion. Many-body path integral calculations have of course
also employed virial estimators, but to our knowledge the
interaction potentials were again analytical one, two, and
higher-body forms. There is no reason that the virial argu-
ment cannot be extended to systems with hard walls, to ob-
tain an energy estimator consistent with an effective two-
body density matrix as in Eq.~11!. A straightforward
calculation similar to that of Herman and coworkers leads to
this expression for the virial estimate of the kinetic energy of
Ps in a cavity,

^Tvir&5K 1

2P (
i 51

P

r i

]V~r i !

]r i
L 2F/2;

~22!

F5
1

b K (
* 51,2

(
i 51

P

r i* •¹ i~ ln r0~r i 21* ,r i* ;e!

1 ln r0~r i* ,r i 11* ;e!!L .

The strictest test of the new virial form Eq.~22! is one
where there is no interaction potential, but only hard walls
which give rise to a kinetic energy. We tested the virial es-
timator for a singlee1 particle in a cavity. A series of runs
with P5300, 450, 600, 900 andP/b56 yield ^Tkin&
50.124(4), ^Tvir&50.134(3), as compared with the exact
answer of^T&50.1371. The kinetic estimator is systemati-
cally low; and it is possible that this is true, but to a much
lesser degree, for the virial estimator as well. Equations~15!,
~16!, and ~22! were then used to calculate the energy of Ps
confined in cavities of various radii. These energies were
extrapolated from a set of simulations with increasingP as
described in Sec. III A; the kinetic and potential energies
were assumed to approach their asymptotic~Coulombic! val-
ues asP24/3.10 Table II contains these results. For the most
part, the potential and kinetic energies are in approximate
agreement with earlier results of Liu and Broughton.23

Again, there is a trend of lower values from the kinetic esti-
mator, compared with both the virial estimator and data of
Ref. 23.

In order to determine the expected error in Monte Carlo
energy estimates, it seems appropriate to determine the con-
vergence properties of potential and kinetic energies sepa-
rately, in case these have different characteristic relaxation
behaviors. Consider first the kinetic energy for a singlee1

particle in a cavity. Figure 4 shows that the variance of the
kinetic estimator scales roughly withP as one expects, Eq.
~20!. The variance of the virial estimator,sTvir

2 , is not only

smaller in magnitude for each value ofP, but also has a
weakerP dependence. Equations~9! and ~22! suggest that
only beads which are in close proximity to the cavity wall
will make a large contribution tôTvir&. Table III lists the
percentage of beads whose combined energies account for a
fixed percentage of the kinetic energy. One can see that
while the kinetic estimator ‘‘democratically’’ draws, for ex-
ample, 99% of the energy from about 91% of beads, and that
the percentage of beads contributing a fixed percentage does
not vary withP, the situation is different for the virial esti-
mator. Instead, a small percentage of beads contributes the
overwhelming majority of the energy, and this percentage
decreases asP increases. In terms of scaling behavior,sT

2

}Pa, a fit to the data of Fig. 4 yieldsa50.93(6), 0.6(1) for
the kinetic and virial estimator, respectively. The idea that
the virial kinetic energy arises not from the bulk, but from a
portion of the surface of the chain makes the exponent value
a'2/3 a reasonable one.

The relaxation behavior of the various estimators is
shown in Fig. 5. For the singlee1, in Fig. 5~a!, both the
kinetic and virial estimators for̂T& decorrelate in several
time steps, independent ofP. For the two chains interacting
under the Yukawa potential, Fig. 5~b!, t is longer, but again
it is both independent ofP and roughly the same forTkin( j )
and Tvir( j ). ~In order to test theP dependence oft in this

TABLE II. Calculated energies, in a.u. for Ps in a hard, spherical cavity.
Results extrapolated from runs withP5320, 400, 510, 600 atb550, 1 M
passes per run.

r c ^V& ^E& ~Kinetic estimator! ^E& ~Virial estimator!

free 20.500(3) 20.25(1) 20.252(5)
10 20.521(3) 20.24(2) 20.19(1)
8 20.528(3) 20.23(2) 20.18(1)
6 20.564(3) 20.17(1) 20.132(5)
5 20.597(2) 20.11(1) 20.06(1)

FIG. 4. Natural log of the variance,sT
2 , of the kinetic energy estimator vs

the log of P, for P5320, 400, 510, 600, 750. Open triangles:sTkin

2 . Filled

triangles:sTvir

2 . Dashed lines are linear least squares fits to data: slopes are

a50.93(6), 0.6(1).

TABLE III. Percentage of beads which combine to produce a fixed percent-
age of the kinetic energy. Singlee1 in a cavity with r c56 a.u.; data aver-
aged over 30 K passes atb550.

% of energy

Kinetic estimator Virial estimator

P5300 P5500 P5700 P5300 P5500 P5700

50 22.54 22.54 22.60 0.085 0.035 0.029
80 50.33 50.34 50.43 0.330 0.148 0.100
90 65.64 65.61 65.65 0.557 0.252 0.167
99 90.67 90.63 90.63 1.553 0.653 0.436
99.9 97.56 97.57 97.59 2.830 1.070 0.738
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case, the Yukawa radiusa was fixed ata50.172.) The po-
tential energy estimatorVe relaxes more slowly still. Again,
within our ability to detect, this rate does not vary withP. In
all cases,sTvir

2 ,sTkin

2 . Table IV summarizes the integrated

autocorrelation times and the error prefactord, for kinetic
and potential energies ofe1 and of Ps within the cavity.
While for Ps the virial estimator is seen to relax more
quickly than the kinetic estimator at early times@Fig. 5~b!#,

its autocorrelation function contains at least one slowly-
decaying mode, so that~Table IV! its integrated relaxation
time, t, is larger. In this context, we note that values oft in
Table IV were derived by using a three-parameter fit sug-
gested by Janke and Sauer,46,47 which assumes that at long
times the decay is exponential with a time constanttexp. We
find rough agreement betweent andtexp for all cases listed
in Table IV except for the case of the virial estimator for the
Ps kinetic energy. In that case,texp is quite a bit longer; and
it is comparable totexp for the Ps potential energy.

We conclude that for the systems simulated in our study,
use of the virial estimator will result a smaller error,DE , for
chain lengths greater thanP5300. Figure 4 can be extrapo-
lated to smallP, to predict that a crossover to a regime where
the kinetic estimator is more efficient occurs at somewhere
aroundP530 for the single particle in ther c56 cavity. This
might be compared with a crossover atP560 for the particle
in a convex potential using staging in Ref. 46. But there
remains the issue of the systematic error present in^Tkin& for
a single particle in a cavity. This error may derive from the
way chain configurations are sampled—that the image ap-
proximation of Eq.~11! serves as an importance function. It
is likely that a different importance function~e.g., that of
Ref. 27! would produce a differently-biased average. The
question is left open for future investigation.

C. Polarizability

Zeolites are polar, aluminosilicate solids. Within this
type of insulating solid, guest moieties experience strong
electrostatic fields. For example, IR spectroscopic experi-
ments and theoretical calculations48 have determined that
small guest molecules experience field strengths near 1 V/Å
within zeolite A~where 1 V/Å'0.02 a.u.!. Zeolite A has also
been the subject of positron annihilation experiments, in
which the decay rate of o-Ps~among other signature pro-
cesses! was determined.38,49

To know whether it might be appropriate for such a sys-
tem, we have tested the two-chain model in a uniform elec-
trostatic field, and measured its linear polarizability,a. Of
course, if a uniform electrostatic field is applied to Ps, it no
longer exists in a true bound state.50 If the field,E0 , points in
the z direction, the Coulomb–Stark potential isV(r )
521/r 2E0z. The potential minimum is approached when
z→2`, and there is a saddle point between this global
minimum and the local minimum atr 50, which occurs
along thez axis, atz521/AE0 ~atomic units!. A semiclas-
sical argument for hydrogenic atoms51 would say that since
the potential at the saddle point isVs522AE0, we can ex-
pect Ps in its ground state to dissociate at a field strength of
roughly E051/64'0.0156; which is when the unperturbed
Coulomb ground state energy exceeds the saddle point en-
ergy. Further, one must not neglect the fact that the particles
can tunnel through this energy barrier. The rate of dissocia-
tion is extremely small for laboratory-strength fields.50,52

However, this rate is extremely sensitive to the magnitude of
the field,52 and the tunneling time may become relevant for
fields in zeolitic solids. Our study does not attempt to model
the dissociation behavior. We have, as before, ‘‘free’’ Ps

FIG. 5. ~a! Autocorrelation functionC( j ) of energy estimator fore1 in r c

56 cavity. Open diamonds: estimatorTkin . Filled diamonds: estimatorTvir .
Runs withP5400, b550. Inset: Integrated relaxation timet of Eq. ~19!.
~b! Autocorrelation functionC( j ) of energy estimator for Ps inr c56 cavity.
Open diamonds: estimatorTkin . Filled diamonds: estimatorTvir . Open
circles: estimatorVe( j ). Runs withP5400, b550.

TABLE IV. Relaxation timest, Eq. ~19!, and error prefactorsd, Eq. ~17!,
calculated from 350 K pass runs withP5400 andb550. Singlee1 and Ps
simulated in hard cavity withr c56 a.u.

Estimator

e1 Ps

t d t d

Tkin 7.0(1) 1.75(2) 25(2) 4.9(2)
Tvir 7.0(6) 1.20(10) 32(2) 2.6(1)
Ve ••• ••• 125(15) 1.3(1)
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pinned in the center of anr c510 a.u. cavity, which for the
weakest fields we have considered is not even large enough
to include the saddle point of the potential surface. Ps par-
ticles still remain associated during runs of duration 500 K
steps for electric fields with a strength up toE050.01. ~They
were observed to dissociate at significantly higher fields.!

The linear polarizability has theoretical valuea536 a.u.
Deriving a from the quadratic Stark shift of the energy,
DE' 1

2aE0
2 , is difficult, requiring an extremely large value

of b in order to resolve this tiny shift. Instead, the polariz-
ablity was inferred from the induced dipole moment,z0 . For
weak fields,z05aE0 . Whenz0 is a sizable fraction of the
size of the atomic orbital,a052 a.u., the field is no longer
weak enough for the linear theory of polarizability to hold.53

~Note that in the linear theory,z0'0.3a0 when E051/64.)
Fields in the rangeE050.002– 0.01 were employed in order
to find a. The largest dipole moment induced in these cal-
culations wasz050.18a0 . There is yet another length scale
which is relevant to the 2-chain model, the Yukawa radiusa.
For fixedP the 2-chain model will polarize/dissociate in an
electric field more easily for largera. In runs used to find the
polarizability of the two-chain Ps model, it was always the
case that a,0.3z0 , where z0 was determined self-
consistently from the run.

For each value of the electric field, runs were performed
for five values, P5500, 600, 700, 800, 900, 1000, witha
5kP22/3, wherek57.11. The polarizability was estimated
at each pass by the displacement between correspondinge1

ande2 beads in the direction of the field,

^z&'
1

P (
i 51

P

zi . ~23!

In order to extrapolate these results toa→0, we note that
second-order perturbation theory predicts that the induced
dipole moment for the Coulomb potential,^z&C , will differ
from ^z& for the Yukawa potential by a correction term
which scales asa2. So we extrapolate assuming^z&5^z&C

1constP24/3. This is how the energy is found to scale in
Ref. 10, and it is the way the extrapolation was performed in
Sec. III B. Typical raw data, forE050.0025, is shown in
Fig. 6. Runs of length 1.5 M passes were divided into blocks
of 250 K passes, so that error bars could be determined.
Figure 7 shows the extrapolated values,^z&C , as a function
of E0 . The slope is found to bea53363 which, though not
extremely precise, is in good agreement with theory.

Finally, we should note that the polarizability could al-
ternatively have been obtained from an imaginary time cor-
relation function~iTCF! of the beads in the absense of an
electric field. That is, if one uses second order perturbation
theory to calculateDE' 1

2aE0
2 , one arrives at

a'2e2(
n

^0uzun&^nuzu0&
En2E0

52e2E
0

`

^0uetĤẑe2tĤẑu0&dt. ~24!

Equation~24! can be approximated numerically by autocor-
relating the positions of beads separated by an imaginary

time 2t, and then integrating this iTCF over all such times
t. Such calculations have been performed in the course of
quantum Monte Carlo simulations in order to calculate both
static and dynamic polarizabilities.54

IV. CONCLUSIONS

We have shown that a path integral Monte Carlo simu-
lation involving a Yukawa approximation to the Coulomb
primitive propagator is a simple, effective way to simulate Ps
entrapped within a spherical pore. The positions of the beads
allow one to visualize the spatial orbital of the Ps atom.
There are systematic differences in the distribution of
positronic density as compared with the corresponding free
volume model. Assuming a uniform electronic density at the
pore walls, these result in systematically smaller annihilation
rates. The calculated polarizability of Ps is in good agree-
ment with theoretical expectations. Binding energies, calcu-
lated with both kinetic and virial estimators, diminish as the
radius of the cavity decreases. For large numbers of beads,
the greater computational efficiency of the virial estimator is

FIG. 6. Raw data of the dipole moment^z& as a function of chain length,P,
for E050.0025. Each filled circle represents a runs of length 250 K passes.
Result is extrapolated~dashed line! as ^z&5^z&C1constP24/3.

FIG. 7. Extrapolated datâz&C , as a function ofE0 fit ~dashed line! to the
form ^z&C5aE0 , yielding a53363.
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confirmed. In summary, this approach offers a simple, ver-
satile model on which to base simulations of Ps within insu-
lating solids.
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