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We have used a path integral Monte Carlo technique to simulate positr¢Riginm a cavity. The
primitive propagator is used, with a pair of interacting chains representing the positron and electron.
We calculate the energy and radial distribution function for Ps enclosed in a hard, spherical cavity,
and the polarizability of the model Ps in the presence of an electrostatic field. We find that the
positron distribution near the hard wall differs significantly from that for a single particle in a hard
cavity. This leads to systematic deviations from predictions of free-volume models which treat Ps
as an effective, single particle. A virial-type estimator is used to calculate the kinetic energy of the
particle in the presence of hard walls. This estimator is found to be superior to a kinetic-type
estimator given the interaction potentials, cavity sizes, and chain lengths considered in the current
study. © 2000 American Institute of Physids$S0021-96060)50447-4

I. INTRODUCTION to a solid environment, and compute the effect of size con-

straint on the behavior of positronium in an open-volume
Positron annihilation spectroscopy is a widely-used eXregion in a solid.

perimental probe of solids, liquids, and gas&oulomb re- In the path integral Monte Carl@PIMC) techniqueé®” a

pulsion with the nuclei makes the positron most sensitive taingle quantum particle is represented by a polymeric chain

open-volume regions such as vacancies, voids, and molecys fictitious particles, or “beads.” PIMC has lent itself natu-

lar free-volumes. In insulators, positrons often form positro—ra”y to several studies of Ps trapped within an insulating

nium (Ps, bound hydrogeniclike electron—positron pairs, gpyironment. Reese and Milfehave utilized a single chain

which diffuse into the open-volume regions. The long intrin-of beads, where each bead represents the composite Ps par-

sic lifetime of ortho-positroniunto-P9 is shortened by an- ticle in fluid Xe, to determine the annihilation rate and ten-

nihilation with _surroundmg electrons, result|.ng ina measure—dency of Ps to localize near the liquid—vapor critical point.
ment of the size of the open volume region based on th

: e . o Schmitz and Mier-Plathé have used a similar model to
observed positron lifetimé.Positron annihilation in such a L o .
. : study Ps annihilation within a polystyrene fluid whose mono-
system has been described in terms of free-volume mddels. mers are simulated as classical particles interacting with Ps
A correlation curve relating the positron lifetime to the size P 9

of the free volume has been parameterized by Nakanisﬁfia ‘,31 semie!'npirical(Bu.cki'nghan) poteptial. While these
et al® based on measurements of systems with well-define§tudies provide much insight, further information may be

open volume regions, including molecular crystals and zeo3@in€d by using a two-particle model of Ps, in which the
lites. This approach is now used extensively in measurelnteraction of the Ps with the host atoms is based on the

ments of free volumes for a wide range of insulatinginteractions of its individual constituents, rather than on ef-
system&. fective interactions. In addition, it is possible to study the

Free-volume mode?é are built on very simple assump- binding energy and ionization of Ps within a two-particle
tions, including interaction only within some limited distance approach.
of the cavity wall, and simple geometric shapes for an  Recently;® Miser and Berne have proposed an elegant
“open-volume” region. We can assess the applicability ofsolution to a longstanding problem of simulating Coulomb-
these simple approximations provided we have a suitablattracting systems with a “primitive” approximation to the
model for the behavior of the quantum mechanical positropropagator used in the path integral. They tested their for-
nium in the system. Path Integral Monte Carlo provides amalism with a successful simulation of the electron of hy-
convenient approach for this. In this paper, we present resuligrogen, a single-chain calculation. In the current work, we
of PIMC simulations of positronium treated as a two-particlewill use the Miser—Berne scheme to study a stable, two-
electron—positron system. We consider the interaction ofhain path integral representation of Ps. The approach is de-

positronium within a hard-sphere as a simple approximatioRcriped in more detail in Sec. II. In Sec. Ill, we present
results using this approach for the positronium distribution,
dAuthor to whom correspondence should be addressed. energy, and polarizability in a spherical cavity. We conclude

0021-9606/2000/113(23)/10642/9/$17.00 10642 © 2000 American Institute of Physics
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that this method provides a simple, flexible approach for Jy_3 47 +V+0.+0 (5)
simulations of Ps in solids. T L

with T, ,T_ the kinetic energies oé*,e™. In the position

representation\A/EV(r), wherer is the relative coordinate,
We wish to calculate the thermal averages of quantitiesind U, , U_ are functions ofr ™ andr~, respectively. A

related to Ps. For a quantity represented by the opeﬁator simple high-temperature approximation puts the density ma-
this amounts to finding trix in the pair-product form

Il. COMPUTATIONAL MODEL

(A)= %T rpA; Q=Trp. (1) ple)~e (T TIe=Vp(¢). ®)

In the canonical ensemble, the quantum density matist® It is formally correct to write in this, the primitive
A ) approximatiorf
p(B)=exp(—BH), 2

with 3 the inverse temperature amtl the Hamiltonian op- pole)=e"
erator for the entire system held at fixed temperature and - .
volume. In a well-known series of steb?sone expresses the However, the current study will involve an external interac-
trace in Eq.(1) in the position representation, breaks thetion with hafd walls, ar.1d will benefit from an aIterna'tt.lve
right-hand side of Eq(2) into a product ofP=p/e terms, treatment ofpo. Theoretically, convergence of the partition

and insertP—1 Comp|ete sets of pOSition states to obtain function has been shown to exist for hard walls in the primi-
tive approximation ad®— .1 But for any practical calcu-

<R|;)(B)|R'>:f <R|f3(e)|R1) lation, the approach qf a path integral Monte Carlo result to

the correct answer in the presence of hard pféhar
curved® walls is slow if one makes the naive substitution,
which in our case would be

e(0++0,). (7)

X(Ry|p(€)|Rz) - (Rp_1|p(€)|R")
Xde"'dRp,l. (3)

While this is exact, the substitution of a suitable high-

temperature approximation f(€) in Eq. (3) provides a dis-
cretized approximation tQ, and thus to

1 r"andr <r,
(r'rolpo(elr' ' )=10 otherwise - (8)

A 1 A A As an alternative, some studies on systems of hard

(A)= 6J dRdR'(R|p(B)|R")(R’|AR). (4 spheres have used exact numerical valueg§oappropriate

for an isolated pair of spheré%?! Also, various types of

Numerous computational schemes based on Monte Carlo @hage approximation have been used. For example, the exact
Molecular Dynamic”**~*®have been used to sample the density matrix for a particle between two hard planar walls
space of paths delineated in E®). Equation(4) is rarely  was derived by Barkel® and several studié!®22Zhave
calculated directly; rather, one constructs an estimator fogsed approximations to this forfil An alternative image ap-
(A) which takes advantage of the computational sch&te. proximation due to Kalos and Whitlogkis based on the

For our current study of* ande™, the position basis is exact density matrix near a single hard wall. This form was
the six-dimensional position space of the two partic|&, used by Reese and Millérand we will use this form as well,
=|r"r7). Interactions exist both betweesi ande™ and in order to compare with the best results of Ref. 23, which
with sources imagined to be external to them. Thus, thalso treats Ps within a spherical caviyThus, we will de-
Hamiltonian may be written as fine

[1—exp(—(r2—r*2)(r2—r'*?)[2¢r?)] r* andr <r,

(rrlpolefr frry= 7" : (9)
0 otherwise

However we should note that an approximation based on ® (r)=—e?r, resists a straightforward primitive path inte-
partial wave expansion of the exact wave function has beegral calculation. The strong singularity at the origin makes it
derived by Cao and Berrfé It is a theoretically robust form uncertain whether the discretized approximatio®tshould
for a system of particles in a hard spherical cavity, and issonverge to the exad@ in the limit P—o. In fact, the ap-
likely to provide the most rapidly convergent results. proximateQ seems to behave pathologically for any firfite

As mentioned in Sec. |, the attractive Coulomb potential,and one sees a collapse of the path integral chain into the
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center of force as computation proceé®in the well known erate independent configurations of the chains. This “thread-
path integral study oe~ in molten KCI?° the authors chose ing” proceduré® relies on an interpolation formula due to
to use a pseudopotential, finite at the origin, to simulate thé.evy, and amounts to removing randomly situated subsec-
interaction ofe” andK ™. Similarly, studies of Ps in liquids tions of lengthL of thee™ ande® chains {R;,....Rj .},
by Miller and co-worker$® utilized a pseudopotential be- and replacing them with new subsections of lendth
tween Ps and liquid atoms. {R{,....R/;}. The Levy construction ensures that the new
In the current work, we have adopted the $éuv—Berne configuration is drawn from the  distribution
scheme, which amounts to applying an effective potentiaK,(R{,R;, ;Le). Then, a standard Metropolis Monte Carlo
betweene™ and e~ which converges exponentially fast to procedurd’ was used to either accept or reject the new con-
the Coulomb potential as a paramei@ris sent to zero. We figuration, with an acceptance probability of

adopt their specific choice of a Yukawa potential, , , )
p p2 p ma){l H qu—EV(ri)po(Rifl,Ri;E)
V()= — —(1-exg—r/a). (10 i=1irL exp—eV(r)po(Ri-1.Rize) |
r

_ o A standard way to choode(not the only way; see Sec. II)B
They have showi that in the limita—0 andP—x, the s to varyL in order to have a fixed fraction, typically 50%,

effective potential produces the correct Coulomb partitionof accepted moves. This was done every 10 pas&se
function; and additionally, that the fastest convergence Wwillpass is an attempted move of both chains.

occur whenaxP ™23 Coulombic results are extrapolated
from a series of simulations for differeRtanda. . RESULTS

An alternative strategy would be to employ the exact _ _ i
Coulomb propagator between electron and positron. This i§- PS in @ spherical cavity
tractable analytically, as Pollock has discus$edihe exact Two issues motivate us to study Ps in a hard, spherical
Coulomb propagator has been utilized, for example, to solveavity. First, this is a frequently-used free-volume model for
problems involving biexcitons in semconductdfslt has  the environment of Ps in a porous soli#®®3°That is, Ps
also been a powerful technique with which to study purelifetime measurements in solid pores are sometimes inter-
hydrogen at a wide variety of temperatures and presstres.preted by assuming that Ps behaves like a single particle in
The advantage to using a propagator exact for each pair ¢fs ground state in such a cavity; with a uniform annihilation
particles is that the density matrix is very accurate, and ongate with electronic density in a layer at the cavity wall.
generally needs fewer beads for equivalent accufaéy-  Admittedly a great simplification, this provides a useful or-
guments for the primitive approximation are that it is highly ganizational principle for data from disparate systems. Nev-
tractable and quicker to compute than the analytical form. Aertheless, it neglects the realistic orbital structure of Ps, and
primitive approximation may be desirable for including in- the effects that even a hard cavitsnuch less one with a
teractions other than electron—positron; the computationakalistic, molecular structuyavould have on it.
advantages to using the exact form for only one part of the  Secondly, there is a technical issue: that at any finite

problem are not clear. . temperature there is a finite likelihood of Ps “ionizing” to a
Equations(3), (6), and (9) imply that we must sample continuum state. For the temperatures chosen, we expect its
the distribution behavior to be ground-state dominated. Nevertheless, one so-

lution to the formal problem is, upon each pass of the simu-

lation, to return the center of mass of teé, e~ system to
the center of a generously large.$a,) cavity.

= f dRy---dRp_y L[P Ko(Ri-1,Ri€) Figure 1 shows the radial probability density for the rela-

o tive coordinate,

p(R.R";6)=(R[p(B)R’)

Xexp(—eV(ri))po(Ri-1,Ri;€), 11

1
whereR=R,, R’=Rp, andK is the free-particlékinetic) P(r)Eaf dR'p(R",R;B)&(r" —1), (13

density matrix, . L . L .
which, in simulational terms, is just the likelihood that a

s m 4 bead pair is at a relative distance f A total of 300 K
2 mh2e exp ~ 2ﬁ26[(r - passes were used to accumulate statistics for Fig. 1. “Free”
Ps is centered in a cavity with,=10 a.u., withP=600, a
=0.132 a.u., angB=50 a.u. The solid line is the exact an-
+(r‘—r")2]>. (120 swer for the B state of Ps. These data come from a set of
simulations with P in the range P=320-800 anda
The form of K, is that of two classical polymers with har- =kP~?3, wherek=9.36. (A large number of beads is re-
monic bonds. The “classical polymer isomorphism” has quired in order to keep discretization parameteeasonably

Ko(R,R €)=

produced both analyticiland computational progress. small for values of3~* much less than 3/16, the Ps ground-
In the notation of Sprik and co-workef$,our method  to-first-excited state energy gaps suggested by the discus-
would be considered a “one-stage, image approximation.”sion in Sec. I, increasing leads toP(r) curves that fall

Sampling was performed on a pair of chaindPdfeads with  more closely on the & curve. The parameters of Fig. 1 do an
Ro=Rp. A direct sampling procedu?&®3®was used to gen- excellent job of reproducing the ground state wave function.
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FIG. 1. Radial distribution functiorP(r), for Ps in a hard cavityt is the 5 5 pjgribution functionP(r), of e* in Ps, wherer is the distance
relative coordinate between electron and positron. Solid lir@efact re- o the center of the cavity. Points are simulated data with parameters as in
sult. Open circles: “Free” Ps, fixed at the center of cavity with radits  Fig 1. Solid lines are particle-in-a-box densities for corresponding values of
=10 a.u. Filled circles: Ps in cavity with;=5 a.u. Calculations use | small black circlest =5 a.u. Large gray circles,=6 a.u. Large black
Yukawa potential, Eq(10), with a=0.132 a.u.P=600; 8=50. circles:r.=10 a.u. Crosses: single-particle simulation wit6 a.u.

Closed circles in Fig. 1 correspond to Ps which is allowed to  Some insight into these annihilation rates comes from
equilibrate freely in a spherical cavity with rading=5 a.u.  viewing the density in the cavity?(r), as in Fig. 2. The
The effect of the cavity to compress the orbital slightly waspositronic density is close to, but systematically different
noted in Ref. 23. In Table I, we give the location of the from, the distribution of a single particle in a hard cavity
maximum of P(r), rnax @s a function of cavity radius. The particle-in-a-box (For reference, a single™ particle was
exact, zero-temperature free Ps valuejs,=2 a.u., and at simulated with our path integral technique, and as the crosses
B=50, rya will fall between 2.00 and 2.01 a.Umuch in Fig. 2 show, these data have the correct distributibor
closer to the former 0.01 a.u. is the resolution of our den- the smaller cavities of.=5,6 the positronic position is
sity data. shifted closer to the cavity center, in agreement with Fig. 3
While, on average, there is no preferred directionrfor of Ref. 23. Interestingly, for.=10 a.u., the positronic den-
there are fluctuations in the shape of the Ps orbital inducesdlity is reduced both at the center and at the cavity wall. This
by the cavity; since the closest region of hard wall com-leads us to conclude that the common factor driving the
presses it in a preferred direction. In order to calculate theshapes of all of these curves is that positronic density is less
annihilation rate, one ultimately requires the overlap of theat the wall than the particle-in-a-box theory predicts. An
density ofe™ and electrons in the wall. For example, the e"—e™ bound state orbital must be accommodated next to
simple modé! presumes a uniform electronic densityore
precisely, assumes a uniform annihilation rate when the cen-

ter of Ps lieg within a layer at the wall. Based on fits to data, 02— 77—
the width of the electronic layer can be taken &s~3 1
a.u?® In Table I, we have liste@(Ar), the fraction ofe™ 0.2 o 1
density residing in this layer, for bothr =3 and 1 a.u. The ' ,50. e

e’ annihilation rate for o-Ps in this simple model would be ,{;’: ‘% ]

N=X\G, where\, is the annihilation rate in the uniform 0.15
~1 4,40
sn

L I L
3
4

layer, typically taken ag,=2 n P(r)
o o o ]
TABLE |. Calculated values of .5, the location of peak in radial distri- e O‘\‘&
bution function for Ps in cavity of radius,. Units are a.u. Also listed is o'
calculated likelihoodG(Ar), fore* to reside withinAr of cavity wall. G is 0.05 OO‘?‘Q\ 7]
calculated from path integral simulatioB,, from simple particle-in-a-box Oo"\ g
model fore*. o
0 s e
4 8 8 0
re rmax  G(3) G(1) Gn(3)/G(3)  Gp(1)/G(1) . -
r, radial position (a.u.)
10 1.96 0.13 0.0042 1.16 1.63 FIG. 3. Distribution functionP(r), wherer is the distance from the center
8 1.94 0.20 0.0067 1.30 1.87 of the cavity. Runs witlP=600 averaged overM passes, foB=50 and
6 1.88 0.41 0.016 1.22 1.79 r.=10 a.u. Large black circles: density®f in Ps. Heavy dashed line: fit of
5 1.79 0.62 0.028 1.11 1.75 these to particle-in-a-box form. Dotted circles: density of the center of Ps.

Light dashed line: fit of these to particle-in-a-box form.
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the wall, and this means that the bound positron is moré&he second term in Eq§16) can be thought of as an effective

distant from the wall, on average, than an unboefidpar-  potential energy for interaction with the cavity. It will de-

ticle would be. In Table | we list values d&&4/G, where pend on temperature, growing with increasjggbut as one

G(Ar) would result ife* behaved as a single particle-in- would hope, it remains roughly constant for fixedFor the

a-box. These corrections listed Table | are systematic—values ofP reported on in this study, it comprises less than

stemming from the depletion &" density at the wall. They 7% of the energy of a single™ particle in anr.=6 a.u.

do not vary dramatically with cavity size. We would specu- cavity at3=50; and less than 2% of the energy of Ps under

late that they approach a limit as increases further, a limit the same conditions.

not too different from the values listed in Table I. Neverthe-  The error in estimators depends on the method used to

less, a disagreement of as much as thirty percent, as seenastimate and to sample the density matrix, and these depen-

Table | forAr =3, would be noticeable on the fits of lifetime dences have been studied by a number of autlfof&If the

Vs cavity size in, for example, Fig. 4 of Ref. 2. estimated quantity has a measured valu&\@f) on thejth
Because the™ ande™ are the fundamental moieties in measurement pass, then the error<m>=(1/N)2}“:1A(j)

our model of Ps, it is natural to study hard-wall boundaryafter N passes will be

conditions that apply to these bodies. However, as mentioned

above, simple pore annihilation models treat the entire Ps Ap=+Jox27/N=5/\N

atom as the confined particle. Figure 3 shd¥(s) for e’ inwith o2 the variance across the entire run,

Ps, and also for the center of Ps in ias=10 cavity. (This N

center is not calculated from the pair of centroid positions, 2 . 5

but rather, from individual bead paiyd¥hen the densities in ‘TA_JZl (A()=(AD® (18

Fig. 3 are fit to the particle-in-a-box form,P(r)

ocsinz(ﬂ-r/ro)’ a |east_squares_fit to tl’E+ density yie|dsr0 In Eq (17), 7 is the integrated autocorrelation time, the limit

=10.0, although the fit is visibly podt. The fit of the Ps asn becomes large of

center position is of roughly the same quality; in this case 1

ro=9.5. Itis reasonable that the effective hard sphere radius  7(n)==+ > C(j)(1—j/N), (19

for the Ps center—wall interaction would be less thahy an 2 =1

amount on the order of 1 a.u. Clearly, the effective interacs

.  th I with the P d be b e whereC(j) is the normalized autocorrelation function of the
tion of the wall with the Ps center wou e better fit as aA(j): C(j):[<A(k)A(k+J)>—<A>2]/[<A2>—<A>2] The

soft, rather than hard, repulsion. Rather than refining thig; e - is imagined to be a small fraction of the total sam-

notion further, it is probably more useful to replace the har%”ng time, N. The kinetic estimator of Eq15) has a vari-
cavity with a realistic pore wall geometry, including interac- ;- whic’h grows linearly with chain size
tions with the electrons and ions in the solid. This will be the '

subject of an upcoming study. a%kinoc P. (20

(17

In the face of this drawback, Herman and co-workerke-

veloped a virial estimator for the kinetic energy of a chain
The internal energyE) of a simulated system is fre- moving in a localizing potentia¥/, based on this equality of

quently of interestat the very least, as a way to monitor the thermodynamic averages,

status of the simulation as it proce¢dBhe energy of Ps can P P

be estimated in a variety of wa§dVe have constructed the <3P Pm 1 (Xi_xi—1)2> <%|21 Xi-ViV(Xi)>-

B. Energy

“thermodynamic” estimator, based on 2B 2n2pB%i
100 7 p (21
(BEy=— QB & < ~ B Inp(Ri-1,R; ;6)>- (14 Equation(17) suggests that a combination of low vari-
=

ance and quick relaxation will minimizé, and thus mini-

For the primitivetrimage approximation to the Ps den- mize A¢ for a given number of passdy, Different schemes
sity matrix in Eq. (11), this becomegE)~(T,)+(Ve),  have been attempted for updating bead positf6n and,
where the “kinetic” or Barker estimator for the kinetic en- for example, performance benefitted from updating schemes

ergy,(T)=—(m/BQ)(4Q/dm), is!8 that reduced serial correlations &(j) without increasing
P the variance. Indeed, Janke and S&ubave shown how a
T, V= E_ m_P 2 * _px\2/3252 linear combination oboth kinetic and virial estimators will
< k|n> 2 p (r|—1 r|) IB ’ L. .
B x=1,— i=1 minimize error further; and that staging lengths, hence ac-

(15 ceptance rates, might be chosen in order to achieve peak
and the potential energy estimator is performance. Though quantitative results certainly depend
on the potential used, one might summarize the published
findings by saying that in the case of a staging algorithm like

our own, neitherrEkin, 7g,, nor aévir were found to vary

> strongly withP.

<v>w<ve>zé<i21v<ri>

Ez dInpo(Ri—1,R;;€)
P

(16) In the studies mentioned above, single particles moved
=1 de

in potential wells which were analytical functions of posi-
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TABLE II. Calculated energies, in a.u. for Ps in a hard, spherical cavity. 08 —— 7+ 71—+ 11T
Results extrapolated from runs wikh= 320, 400, 510, 600 g=50, 1 M F LA
passes per run. -1F L7 .
r AT
re (V) (E) (Kinetic estimatoy  (E) (Virial estimatoy 1.2 | e .
L A
free  —0.500(3) —0.25(1) ~0.252(5) H4L LT ]
10  —0.521(3) —0.24(2) —-0.19(1) in(s2) [ &7
8  —0528(3) ~0.23(2) ~0.18(1) T 460 .t ]
6  —0.564(3) —-0.17(1) —0.132(5) EoL
5  —0.597(2) -0.11(1) —0.06(1) 18 [ a 3
L A _-"7
2k e ]
22f Ao a ]
tion. Many-body path integral calculations have of course b —I'" | | |

also employed virial estimators, but to our knowledge the s s 6 52 64 65 68
interaction potentials were again analytical one, two, and I

) . o n(P)
higher-body forms. There is no reason that the virial argu-
ment cannot be extended to systems with hard walls, to ob=IG. 4. Natural log of the variance;?, of the kinetic energy estimator vs
tain an energy estimator consistent with an effective two-he log of P, for P=320, 400, 510, 600, 750. Open triangles;, . Filled
body density matrix as in Eq(ll). A straightforward triangles:«;%v". Dashed lines are linear least squares fits to data: slopes are
calculation similar to that of Herman and coworkers leads tor=0.93(6), 0.6(1).
this expression for the virial estimate of the kinetic energy of

Ps in a cavity, . .
y smaller in magnitude for each value Bf but also has a
=]

1 aV(ry) weakerP dependence. Equatiort8) and (22) suggest that
(Tvin= ﬁzl T 12; only beads which are in close proximity to the cavity wall
L b ' (220 will make a large contribution t¢T,;). Table IlI lists the
_ * " * . percentage of beads whose combined energies account for a
F_E<*E+,_ ;1 - Vil po(rizy.ri ) fixed percentage of the kinetic energy. One can see that
while the kinetic estimator “democratically” draws, for ex-
FIn py(r r* _6))> ample, 99% of the energy from about 91% of beads, and that
Polli »Fi+1 ' the percentage of beads contributing a fixed percentage does
) o } not vary with P, the situation is different for the virial esti-
The strictest test of the new virial form E(R2) is one  mator. Instead, a small percentage of beads contributes the
where there is no interaction potential, but only hard Wallsoverwhelming majority of the energy, and this percentage
which give rise to a kinetic energy. We tested the virial €S-4ocreases aB increases. In terms of scaling behavio?
tw_nator for a singlee™® particle in a cavity. A series of runs « P, a fit to the data of Fig. 4 yields=0.936), 0.6(1) for
with P=300, 450,600,900 andP/B=6 yield (Tun)  the kinetic and virial estimator, respectively. The idea that
=0.1244),(T,i)=0.1343), ascompared with the exact e yirial kinetic energy arises not from the bulk, but from a

answer of(T)=0.1371. The kinetic estimator is systemati- 5o rtion of the surface of the chain makes the exponent value
cally low; and it is possible that this is true, but to a much , 53 5 reasonable one.

lesser degree, for the virial estimator as well. Equatids, The relaxation behavior of the various estimators is
(16), and (22) were then used to calculate the energy of Psshown in Fig. 5. For the single*, in Fig. 5a), both the

confined in cavities of various radii. These energies Werginetic and virial estimators fo¢T) decorrelate in several
extrapolated from a set of simulations with increash@s  time steps, independent B For the two chains interacting

described in Sec. llIA; the kinetic and potential_ energies nder the Yukawa potential, Fig(t§, r is longer, but again
were aSS_Li/r?(i:‘éj to approach their asymptafioulombio val- it js poth independent d? and roughly the same fofyin(j)
ues asP~""."" Table Il contains these results. For the most,, 4 T,.(j). (In order to test the® dependence of in this

part, the potential and kinetic energies are in approximate
agreement with earlier results of Liu and Broughtdn.
Again, there is a trend of lower values from the kinetic esti-TABLE Ill. Percentage of beads which combine to produce a fixed percent-

mator, compared with both the virial estimator and data ofge of the kinetic energy. Singt" in a cavity withr.=6 a.u.; data aver-
Ref. 23 aged over 30 K passes At=50.

In order to determine the expected error in Monte Carlo Kinetic estimator virial estimator

energy estimates, it seems appropriate to determine the con-

. . . . . 0, = = = = = =
vergence properties of potential and kinetic energies sepaz °f energy P=300 P=500 P=700 P=300 P=500 P=700

rately, in case these have different characteristic relaxation 50 2254 2254 2260 0085 0.035 0.029
behaviors. Consider first the kinetic energy for a singe gg 2(5)-22 2(5)-2‘1‘ 2(5)-22 g-ggg 8-;;‘2 8-12(7)
Earthle in a cavity. F||gure 4 Elhow_s that the variance of the 99 9067 9063 9063 1553 0653 0436

inetic estimator scales roughly with as one expects, Eq. 99.9 9756 9757 9759 2830 1070  0.738

(20). The variance of the virial estimatoar,%vir, is not only
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its autocorrelation function contains at least one slowly-
decaying mode, so thdTable IV) its integrated relaxation
time, 7, is larger. In this context, we note that valuesrah
Table IV were derived by using a three-parameter fit sug-
] gested by Janke and Sadef; which assumes that at long
] times the decay is exponential with a time constang. We
find rough agreement betweenand 7., for all cases listed
gl o d in Table 1V except for the case of the virial estimator for the
¢ num1ber of passes, n | Ps kinetic energy. In that case,, is quite a bit longer; and
o2l ¢, 1 it is comparable tare,, for the Ps potent_ial energy.
i .9’63 ] We congl_ude th_at for thg systems simulated in our study,
[ 90.,. ] use of the virial estimator will result a smaller errdr; , for
oL $0000000068000000004 chain lengths greater thd=300. Figure 4 can be extrapo-
I I I D DU S PR PR lated to smalP, to predict that a crossover to a regime where
0 5 10 15 20 25 30 35 40 the kinetic estimator is more efficient occurs at somewhere
(@ pass number, aroundP =30 for the single particle in the.=6 cavity. This
might be compared with a crossoverRat 60 for the particle
] in a convex potential using staging in Ref. 46. But there
» O, 1 remains the issue of the systematic error presefitjf) for
08l o 1 a single particle in a cavity. This error may derive from the
o6 1 way chain configurations are sampled—that the image ap-
1 proximation of Eq.(11) serves as an importance function. It
06 © %0 . is likely that a different importance functiofe.g., that of
C(j) i o | Ref. 27 would produce a differently-biased average. The
04 question is left open for future investigation.

- N WA OO N 0]

0.8 [®
[ $ ©n)
0.6 [

C(j R
0 04l &

*r

0.2 * ° | C. Polarizability

T T T T T T
>
<

] Zeolites are polar, aluminosilicate solids. Within this
ol o vl o, 0799000006 type of insulating solid, guest moieties experience strong
0 20 40 60 80 100 electrostatic fields. For example, IR spectroscopic experi-
(b) pass number, j ments and theoretical calculatidfishave determined that
FIG. 5. (a) Autocorrelation functiorC(j) of energy estimator foe™ in r Sma.” gue;t molecules experience field Stre.ngths near 1 V/A
=6 cavity. Open diamonds: estimafby;, . Filled diamonds: estimatd'r\,ir(.: within zeolite A_(Where 1 V./’&%O'OZ au)' Z_eollte A h?‘S also .
Runs withP=400, 8=50. Inset: Integrated relaxation timeof Eq. (19). been the subject of positron annihilation experiments, in
(b) Autocorrelation functiorC(j) of energy estimator for Ps in=6 cavity. ~ which the decay rate of o-P@mong other signature pro-
Open diamonds: estimatcFy;,. Filled diamonds: estimatol,;. Open  cesseswas determined®*®
circles: estimatoN(j). Runs withP=400, 5=50. To know whether it might be appropriate for such a sys-
tem, we have tested the two-chain model in a uniform elec-
trostatic field, and measured its linear polarizability, Of
course, if a uniform electrostatic field is applied to Ps, it no
longer exists in a true bound stafHf the field, E, points in

case, the Yukawa radiuswas fixed ata=0.172.) The po-
tential energy estimatdv,, relaxes more slowly still. Again,
within our azbility t20 detect, this rate doeg not vary wihin 7 direction, the Coulomb—Stark potential i¥(r)

all casesor, <ot . Table IV summarizes the integrated =—1/r —Eyz. The potential minimum is approached when
autocorrelation times and the error prefactrfor kinetic 7, o and there is a saddle point between this global
and potential energies @&f* and of Ps within the cavity. minimum and the local minimum at=0, which occurs
While for Ps the virial estimator is seen to relax moregjong thez axis, atz= — 1/\/E, (atomic unit3. A semiclas-
quickly than the kinetic estimator at early timg/§g. 5b)],  sjcal argument for hydrogenic atofhsvould say that since
the potential at the saddle point\g= —2E,, we can ex-
pect Ps in its ground state to dissociate at a field strength of

TABLE IV. Relaxation timesr, Eq. (19), and error prefactors, Eq. (17), roughly E0= 1/64~0.0156: which is when the unperturbed

calculated from 350 K pass runs wikh=400 andB=50. Singlee™ and Ps

simulated in hard cavity with,=6 a.u. Coulomb ground state energy exceeds the saddle point en-
ergy. Further, one must not neglect the fact that the particles
e’ Ps can tunnel through this energy barrier. The rate of dissocia-

Estimator , 5 . 5 tion is extremely small for laboratory-strength fief§s?

= 70 L752) 252) 292) Howgveg,zthis rate is extrgmely sensitive to the magnitude of
T:;‘ 7:0(6) 1.'20(10) 32(2) 2'.6(1) the field?“ and the tunneling time may become relevant for
v, 125(15) 1.3(1) fields in zeolitic solids. Our study does not attempt to model
the dissociation behavior. We have, as before, “free” Ps
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pinned in the center of an.=10 a.u. cavity, which for the o

weakest fields we have considered is not even large enoug I ° 1

to include the saddle point of the potential surface. Ps par- -0.02 [ ]

ticles still remain associated during runs of duration 500 K I ° ]

steps for electric fields with a strength upEg=0.01.(They -0.04 [ ]

were observed to dissociate at significantly higher figlds. o 25, i . ]
The linear polarizability has theoretical value= 36 a.u. -0.06 L e o ° ]

Deriving « from the quadratic Stark shift of the energy, i e T o

AE~3aE}, is difficult, requiring an extremely large value .08 [ U IR S . 1

of B in order to resolve this tiny shift. Instead, the polariz- g--"""' S o d

ablity was inferred from the induced dipole momexrt, For 01 L o ® s ° b

weak fields,zo=aEq. Whenz, is a sizable fraction of the ot . .

size of the atomic orbitala,=2 a.u., the field is no longer .012:...‘\....\....\.... o

weak enough for the linear theory of polarizability to hofd. o 510° 0.0001 0.00015 0.0002 0.00025 0.0003

(Note that in the linear theory,~0.3a, when Ey=1/64.) p43

Fields in the rang&,=0.002—0.01 were employed in order

to find . The largest dipole moment induced in these cal-FIG. 6. Raw data of thc_a dipo!e momef®) as a function of chain lengtt®,

culations wag,=0.18,. There is yet another Iength scale for Eo:_0.0025. Each filled cm_:le repres_ents a runs of [iggth 250 K passes.
s . . Result is extrapolate@ashed lingas(z)=(z)c+constP~ .

which is relevant to the 2-chain model, the Yukawa radius

For fixed P the 2-chain model will polarize/dissociate in an

electric field more easily for largex In runs used to find the  time 27, and then integrating this iTCF over all such times
polarizability of the two-chain Ps model, it was always the . gych calculations have been performed in the course of
case thata<0.3%,, where z, was determined self- gyantum Monte Carlo simulations in order to calculate both

consistently from the run. o static and dynamic polarizabiliti€4.
For each value of the electric field, runs were performed

for five values, P=500, 600, 700, 800, 900, 1000, with
—kP~ 283 wherek=7.11. The polarizability was estimated V- CONCLUSIONS

at each pass by the displacement between correspoeding We have shown that a path integral Monte Carlo simu-

ande” beads in the direction of the field, lation involving a Yukawa approximation to the Coulomb
P primitive propagator is a simple, effective way to simulate Ps
(Z)~ 1 2 z. (23) entrapped Withi_n a s_pherical pore. The positions of the beads
Pi=a allow one to visualize the spatial orbital of the Ps atom.

There are systematic differences in the distribution of

ositronic density as compared with the corresponding free
Bolume model. Assuming a uniform electronic density at the
pore walls, these result in systematically smaller annihilation

, ) e rates. The calculated polarizability of Ps is in good agree-
which Scaj‘fz,’s a®”. So we extrapolate assumifg)=(z)c  ment with theoretical expectations. Binding energies, calcu-
+constP " Th's is how the energy IS found to scale N Jated with both kinetic and virial estimators, diminish as the
Ref. 10, and it is the way the extrapolation was performed Madius of the cavity decreases. For large numbers of beads,

S_ec. Il B. Typical raw data, fOEOZO'OOZ‘E’_’ _is sr_\own in the greater computational efficiency of the virial estimator is
Fig. 6. Runs of length 1.5 M passes were divided into blocks

of 250 K passes, so that error bars could be determined.
Figure 7 shows the extrapolated valuéz),-, as a function 0 s

In order to extrapolate these resultséde-»0, we note that
second-order perturbation theory predicts that the induce
dipole moment for the Coulomb potentidk)c, will differ
from (z) for the Yukawa potential by a correction term

of Ep. The slope is found to be = 33=3 which, though not L ' ' ' ' ]
extremely precise, is in good agreement with theory. 0.0 E E
Finally, we should note that the polarizability could al- -01F 1 N 3
ternatively have been obtained from an imaginary time cor- 0.15 3 N ]
relation function(iTCF) of the beads in the absense of an TR \}\ ]
electric field. That is, if one uses second order perturbation <Z> 02| N o ]
theory to calculateAE~ aEZ, one arrives at 025% \%\ E
ey 02VX11ZI0) 0.3} SO -
” E,—Eq 035} i’ 3
» R R W S R A R R R
=2e2f (0]e™Zze~ 2|0 d . (24) 0 0.002 0.004 0.006 0.008 0.01 0.012
0 E

Equation(24) can be approximated numerically by autocor-gig. 7. Extrapolated daté&)c, as a function oE, fit (dashed lingto the
relating the positions of beads separated by an imaginarirm (z)c=aE,, yielding a=33=3.
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lating solids.
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