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Abstract  

This dissertation focuses on the preventive maintenance decision modeling in healthcare and 

service systems. In the first part of this dissertation, some issues in preventive health decisions 

for breast cancer are addressed, and in the second part, the required characteristics for preventive 

maintenance of an unreliable queuing system are derived.  

Adherence to cancer screening is the first issue that is addressed in this dissertation. Women’s 

adherence or compliance with mammography screening remained low in the recent years. In this 

dissertation, we first develop a design-based logistic regression model to quantify the probability 

of adherence to screening schedules based on women’s characteristics. In Chapter 3, we develop 

a randomized finite-horizon partially observable Markov chain to evaluate and compare different 

mammography screening strategies for women with different adherence behaviors in terms of 

quality adjusted life years (QALYs) and lifetime breast cancer mortality risk. The results imply 

that for the general population, the American Cancer Society (ACS) policy is an efficient frontier 

policy. In Chapter 4, the problem of overdiagnosis in cancer screening is addressed. 

Overdiagnosis is a side effect of screening and is defined as the diagnosis of a disease that will 

never cause symptoms or death during a patient's lifetime. We develop a mathematical 

framework to quantify the lifetime overdiagnosis and mortality risk for different screening 

policies, and derive the (near) optimal policies with minimum overdiagnosis risk. 

In the second part, we consider an unreliable queuing system with servers stored in a shared 

stack. In such a system, servers have heterogeneous transient usage since servers on the top of 

the stack are more likely to be used. We develop a continuous-time Markov chain model to 



 

derive the utilization and usage time of servers in the system. These quantities are critical for the 

decision maker for deriving a maintenance policy. 
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 Introduction: Preventive Maintenance in Healthcare and Service Systems 1

“Prevention is better than treatment.” This proverb has inspired much research in a wide range of 

areas such as health, service and manufacturing systems.  

For health systems, preventive healthcare, or preventive medicine, focuses on disease prevention 

and health maintenance. Preventive healthcare includes early diagnosis of disease, counseling, 

and other interventions to avert a health problem. The goal of preventive healthcare is to prevent 

health problems or identify and treat them early before their effect on the patient’s life is 

irreversible. Chronic diseases, such as heart diseases and cancers, are the causes for 7 in every 10 

deaths among Americans each year, and they account for 75% of the nation’s health spending [1]. 

These chronic diseases can be largely preventable through appropriate preventive care like 

screening tests. Screening tests can advance the time of disease detection and detect the disease 

at stages when it is more curable and the treatment works more effectively. For example, 

mammography screening can detect breast cancer 1.7 years before a woman can feel a lump in 

her breast [2], and ultimately it can reduce breast cancer mortality rate by 15% [3]. 

Preventive maintenance in manufacturing and service systems, on the other hand, focuses on the 

care and maintenance of equipment and facilities to keep them in a satisfactory operating 

condition and to prevent them from sudden failure. The goal of preventive maintenance is to 

avoid and/or mitigate the consequences of failure of equipment. Preventive maintenance can 

save overall cost by decreasing equipment downtime, increasing life expectancy and efficiency 

of the equipment, enhancing customers’ satisfaction in service-oriented systems, etc. 

The focus of this dissertation is on the preventive care modeling in two areas: health systems and 

service-oriented systems. The former addresses the problem of preventive healthcare decisions 
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for chronic diseases with a focus on breast cancer, while the latter part provides insight on 

preventive maintenance of a service system with unreliable servers. Specifically, in the first part, 

we focus on the evaluation and optimization of preventive healthcare decisions which includes 

analysis and estimation of individual adherence behavior to preventive care, as well as the 

evaluation and optimization of cancer screening policies in terms of different patient outcomes. 

The following breast cancer screening issues are addressed: (1) characterizing the factors 

associated with patient’s adherence to mammography screening recommendations and 

estimating the probability of patient adherence to a prescribed screening test, (2) evaluating and 

comparing various screening mammography policies while incorporating heterogeneity in 

women’s adherence behaviors, and (3) minimizing overdiagnosis in cancer screening under 

various sources of uncertainty such as disease progression and efficacy of mammography tests. 

In the second part of this dissertation, an unreliable multi-server queuing system with stacked 

servers is studied. In such a system, the equipment/servers are used in a non-uniform fashion, i.e., 

servers on the top of the stack are more likely to be used in a finite time horizon than servers at 

the bottom. This implies that some servers deteriorate faster than the others. For such systems, an 

estimate of the transient utilization and usage time of servers can provide insight on deterioration 

patterns and preventive maintenance decisions.  

A more detailed outline of this dissertation is presented below. 

Chapter 2 addresses the problem of adherence to preventive mammography screening since the 

efficacy of mammography screening policies is strongly associated with women’s compliance 

with the recommendations. We developed a statistical model that characterizes significant factors 

associated with women’s adherence to mammography screening recommendations. The model is 

then used to estimate the probability that a woman complies with her physician’s 
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recommendation of undergoing a screening mammogram. The second chapter is the cornerstone 

for the next chapter since the results of this chapter serve as inputs for Chapter 3. 

In Chapter 3, we develop a randomized discrete-time finite-horizon partially observable Markov 

chain model to investigate the effect of imperfect adherence on the patients’ health outcomes for 

a wide range of screening mammography policies. The policies are evaluated in terms of the 

expected remaining quality adjusted life years (QALYs) and breast cancer lifetime mortality risk. 

Three possibilities for the cancer detection are considered in the proposed model: mammography 

screening detection, self-detection and interval cancer which represents fast growing cancers that 

show symptoms within 12 months following a negative mammogram. Various uncertainties such 

as breast cancer natural history, unreliability of mammography screening, interval cancer 

detection, and heterogeneity in patients’ adherence behaviors are incorporated into the proposed 

model.  

Chapter 4 addresses the overdiagnosis issue in cancer screening. Overdiagnosis is the major 

disadvantage of cancer screening and is defined as the diagnosis of screen-detected cancers that 

would not have presented clinically in a woman’s lifetime in the absence of screening [4]. In this 

chapter, a probabilistic model is developed to evaluate the overdiagnosis and cancer mortality 

risks of a screening schedule. Furthermore, we propose an optimization model to minimize the 

risk of overdignosis of preventive screening schedules while maintaining the patient’s lifetime 

breast cancer mortality risk at a predefined level. We incorporate uncertainty in disease onset, 

cancer sojourn time, and competing causes of death. 

Chapter 5 focuses on a service-oriented environment. In this chapter, an unreliable queueing 

system with � identical servers that are stored in a stack is studied. In such a queuing system, 
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customers may find it more convenient to select the server that is on the top of the stack. 

Similarly, customers finished with a server may find it more convenient to place the server back 

to the top of the stack. As a result, servers that begin at or near the top of the stack are used more 

frequently than the servers that are placed lower in the stack. In such a system, a server’s 

utilization is stochastically dependent on its initial location in the stack and the usage of the other 

servers.  In Chapter 5, we develop a continuous-time Markov chain model to estimate transient 

utilization and usage time of servers in such a system.  This study provides estimate on the 

deterioration behavior of servers which is critical information for the systems maintenance 

decisions. 
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 Analyzing Factors Associated with Women’s Attitudes and Behaviors Toward 2

Screening Mammography Using Design-Based Logistic Regression 

2.1 Introduction 

Breast cancer is the most common cancer worldwide in women contributing more than 25% of 

the total number of cancer cases diagnosed in 2012 [1]. It is also the most common non-skin 

cancer affecting women in the United States. According to the American Cancer Society, about 

one in eight US women will develop breast cancer in her lifetime. In 2015, an estimated 231,840 

invasive breast cancer cases will be diagnosed, and about 40,290 will die from breast cancer [2].  

Mammography plays an important role in detection of breast cancer when the cancer is in its 

early stage. It is known to be an effective method and the current standard practice for early 

diagnosis of breast cancer. On average, mammography can detect breast cancer 1.7 years before 

a woman can feel a lump in her breast [3]. In addition, it can reduce breast cancer mortality rate 

by a reasonable estimate of 15% [4].  

There are varying recommendations from different agencies for screening mammography in the 

U.S. The two most referred guidelines are from the American Cancer Society (ACS) and the U.S. 

Preventive Services Task Force (USPTF). The ACS recommends starting annual mammography 

at age 40 but recommends no ending age [5]. In November 2009 the USPSTF issued new breast 

cancer screening guidelines, which recommend biennial screening for women ages 50 to 74. The 

USPSTF also recommended that women ages 40 to 49 should not undergo screening 

mammography unless they are in a high-risk group [6]. 
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The impact of mammography on women’s outcomes is strongly associated with women’s 

compliance with the mammography recommendations. Examination of a clinic-based group of 

216 women with a strong family history of breast or ovarian cancer showed that 50%, 83%, 69%, 

and 53% of the women at age groups of 30–39, 40–49, 50–64, and 65 years and older, 

respectively, had only one mammogram between 1995 and 1999 [7]. More recently, a study by 

the Centers for Disease Control and Prevention (CDC) revealed that, in 2010 about 67.1% of 

women aged 40 and older had one mammogram between 2008 and 2010 [8]. 

In this study, we aim to (1) identify significant factors (socio-demographic, health-related, 

behavioral attributes and knowledge mammography) associated with women’s adherence to 

mammography screening, and (2) study the attitudes toward mammography in non-adherent 

women. We assume that women’s compliance with screening mammography is strongly 

correlated with their intentions to get a mammogram (i.e., their expectations about their next 

mammogram or their thoughts about getting a mammogram [9]). Based on this assumption, if a 

woman has a positive attitude toward screening mammograms and her plan for the next 

mammogram is within the next one or two years, then she is considered to be adherent.  

2.2 Methods 

2.2.1 Data Source 

We used the 2003 Health Information National Trends Survey (HINTS) data for this study [10]. 

HINTS, developed by the National Cancer Institute (NCI), is a nationally representative 

telephone survey of 6,369 adults aged 18 and older. The 2003 data is currently the only HINTS 

data that provides information on women’s attitudes and perceptions toward mammography. 

HINTS 2005 and 2007 data do not include questions regarding mammography. HINTS 2012 
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only reports the time of a most recent mammogram and whether a doctor has informed about a 

mammogram; however, no data is collected on women’s intentions or attitudes toward 

mammograms, which is the focus of this study.  

2.2.2 Study Design 

There are two stages for this study. In the first stage, we aim to identify significant factors 

associated with women’s adherence to mammography screenings. To be consistent with current 

mammography guidelines and practices, we focus on women older than 40. We perform the 

analyses separately for two age groups: women younger than 65, and women 65 and older. In 

contrast to earlier studies, we measure adherence based on women’s intentions and attitudes 

toward mammography.  

In the second stage, we focus only on women older than 42 with poor mammography history, i.e. 

women who have never had mammography or their most recent mammography was more than 

two years ago and they did not say "never heard of it" when asked why they had not had a 

mammogram. Age 42 is used as the lower boundary for these analyses because an every-other-

year interval for mammography requires enough time for women over age 40 to have a 

mammogram. We do not separate women younger and older than 65 in order to achieve an 

adequate sample size. We examine the differences between those who think about getting a 

mammogram and other women in this population. 

2.2.3 Predicting Factors 

We categorized factors that may be associated with women’s adherence to mammography 

screening into four groups: Socio-demographic characteristics including age, race, marital status, 

employment, education, income, health coverage, and living area based on Census Division; 
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Health-related characteristics including body mass index (BMI), average number of visits to a 

healthcare provider a year, family history of cancer, psychological distress composite score, 

being advised to have a mammogram, and having had a Pap smear; Behavioral characteristics 

including trusting cancer information from doctors, looking for cancer information, perception of 

chance of getting breast cancer, eating habits (consumption of fruits and vegetables), having 

exercised in the last month, and lifetime number of smoked cigarettes; Knowledge of breast 

cancer/mammography including knowing the age at which mammography should begin and the 

frequency of receiving mammograms. 

2.2.4 Statistical Analysis 

HINTS data includes a set of 50 replicate weights, which were generated according to jackknife 

variance estimation [10]. Data were weighted to produce overall and stratified estimates that 

represent the U.S. population. We incorporate weights in the analyses for the population study.  

To handle missing values for the predicting factors, we use the naive nearest neighbor hot deck 

method, which takes advantage of the similarity between the observations to impute the missing 

values. Each missing value is replaced with the observed response from the nearest observation 

in the data set [11]. The distance between two observations (x and y) is  

���, 
� = �∑ �����, 
������ , 2-1 

Where � is the number of the variables in the data set and  �����, 
�� is 1 if �� ≠ 
� and 0 if �� = 
� . 
We defined adherence to mammography (�) separately for women aged 40 and 41 years versus 

those aged 42 and older, as a women aged 40 or 41 without any mammography history can still 

be considered adherent if she plans to get a mammogram in the near future (2 years or 1 year 
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respectively). We defined a woman older than 42 as adherent if the interval between her most 

recent self-reported mammogram and the next expected mammogram was less than two years. 

Otherwise she was considered non-adherent. We categorized those who answered the question 

“Do you have a plan to get mammography” with “undecided” or “not planned” as non-adherent. 

For this response variable, we built separate models and compared results between those less 

than 65 years and those age 65 and older. 

For the outcome of thinking about getting a mammogram in non-adherent women (τ), we narrow 

our attention to women who never had a mammogram or their most recent mammogram was 

more than two years ago. The response variable is one if the answer to the question “Have you 

thought about getting a mammogram” is yes, or zero otherwise.  

We examined bivariate associations between all potential independent variables to select 

significant covariates for inclusion in subsequent models. We used Rao-Scott corrections to chi-

squared tests to incorporate the survey design (50 jackknife weights) of the HINTS data.  

The standard logistic regression assumes that the data come from a simple random sample (i.e., 

independent and identically distributed (iid)). Thus, the standard logistic regression may be 

inappropriate for analyzing sample survey data due to clustering and stratification methods used 

in the survey designs [12]. Since the HINTS data are collected based on complicated multistage 

sampling designs, the classic methods for simple random sampling data may be inefficient for 

analyzing the HINTS data.  

Suppose that in the complex survey data collection, the population is separated into k strata 

(� = 1, 2, … , �), with j primary sampling units (PSUs, � = 1, 2, . . . , ��) in each stratum and i 

elements � = 1,2, … ,��  in the ��!"PSU. Suppose the number of observations is: n =
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∑ ∑ n$%&'%��($��  where n$% is the number of elements from m$	primary sampling unit from stratum 

k. The pseudo-maximum likelihood function for the “design-based” logistic regression model is 

+++,-� � × 
� �/ × ln,12�� �3/ + ,-� � × �1 − 
� ��/ × ln,1 − 12�� �3/,678
���

97
 ��

:
���  2-2 

 

where w$%< is the known sampling weight for the kji th observation [13]. 

Design-based multiple logistic regression models [12-13] were developed to identify significant 

factors associated with (1) adherence to mammography and (2) thinking about getting a 

screening mammogram in non-adherent women. The design based multivariate logistic 

regression model for the logistic regression is 

��=>	?� = @� A 1���1 − 1���B = C + D × EF + � ∗ HI + � ∗ JI + K ∗ �JL&�, 2-3 

 

where SD, HR, BR and KBC&M	are the vectors of socio-demographic, health related, behavior 

related and knowledge related features and C, D, �, �, R��	K are the coefficients vectors of 

parameter estimates. 

We used the Wald tests [13] to determine the statistical significance of each coefficient in the 

model. Classification tables [13] are used to evaluate the performance of the logistic regression 

models. We considered a predicted value of 0.5 as the cut off point for our classification analyses. 

Suppose ��S  and �TS  represent the predicted values from the regression models for adherence in 

women younger than 65 and women 65 and older, respectively. We consider a woman younger 

than 65 (65 and older) to be adherent if her probability to be adherent, ��S 	��TS �,	is greater than 0.5 

and non-adherent otherwise. The same strategy is implemented for the outcome “thinking about 
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getting a mammogram” (?� in non-adherent women.  The observed values for the dependent 

outcomes and the predicted values are then cross-classified to evaluate the predictive accuracy of 

the models. All analyses are performed at the significance level of 5%. 

2.3 Results 

The distributions of all predicting factors for the two response variables are presented in Table 2-

1. There are a total of 2,370 women included for the adherence to mammography response 

variable and 451 women included for the thinking about getting a mammogram response 

variable.   

2.3.1 Comparing mammography adherence among women in the two age groups 

The logistic regression results (Table 2-2) suggest that in the socio-demographic characteristics 

category, women who are single, separated, divorced or widowed are less likely to adhere to 

screening mammography compared to married women in both age groups (OR=0.685 and 

OR=0.499 for women younger than 65 and women aged 65 and older, respectively). As income 

increases, adherence to screening mammography also increases. Specifically among women 

younger than 65 the difference between women with income more than $75,000 and women 

whose income is less than $25,000 is significant (OR=2.526 for income greater than $75,000 

versus income less than $25,000). Women younger than 65 who have health insurance are also 

more likely to adhere to screening mammography (OR= 2.959).  

 

 



 

Table  2-1 Distribution of socio-demographic, health related, behavioral, and knowledge related characteristics  

Independent Variables 

Women’s intentions and attitudes toward 
mammography 

Thinking about 
mammogram in non-

adherent women 
Age < 65 (N=1612)  Age ≥ 65 (N=758)   ��∗ = 0 

(N=441) 
�� =1 

(N=1171) 
�T∗∗ = 0 
(N=265) 

�T = 1 
(N=493) 

?ϯ = 0 
(N=199) 

? = 1 
(N=252) 

Socio-demographic characteristics 

Race 
Black 64 (14.51) 154 (13.15)  17 (6.41) 43 (8.72) 12 (6.03) 40 (15.87) 
White 284 (64.40) 914 (78.05)  199 (75.09) 420 (85.19) 14 (7.03) 16 (6.35) 
Other 36 (8.16) 53 (4.53)  11 (4.15) 10 (2.03) 160 (80.40) 183 (72.62) 

 Missing 57 (12.95) 50 (4.27)  38 (14.34) 20 (4.06) 13 (6.53) 13 (5.16) 

Marital status 
Married 200 (45.35) 726 (62.00)  45 (16.98) 197 (39.96) 56 (28.14) 115 (45.63) 
Single/Divorced/widowed 202 (45.80) 429 (36.63)  192 (72.45) 291 (59.03) 137 (68.84) 135 (53.57) 

 Missing 39 (8.84) 16 (1.36)  28 (10.56) 5 (1.01) 6 (3.01) 2 (0.79) 

Employment 
Employed 257 (58.28) 775 (66.18)  23 (8.68) 62 (12.58) 53 (26.63) 145 (57.54) 
Unemployed 144 (32.65) 383 (32.71)  214 (80.75) 424 (86.00) 141 (70.85) 102 (40.48) 

 Missing 40 (9.07) 13 (1.11)  28 (10.56) 7 (1.42) 5 (2.51)  5 (1.98) 

Education 
 

Some high school or less 65 (14.74) 94 (8.03)  68 (25.66) 73 (14.81) 45(22.61) 39 (15.48) 
High school Graduate 134 (30.38) 334 (28.52)  84 (32.70) 177 (35.90) 68 (34.17) 127 (50.40) 
Some college/College 
graduate 

204 (46.26) 723 (61.74)  86 (32.45) 237 (48.07) 81 (40.70) 84 (33.33) 

 Missing 38 (8.62) 114 (9.73)  27 (10.19) 6 (1.22) 5 (2.51) 2 (0.79) 

Income 
≤ $25,000 146 (33.11) 249 (21.26)  147 (55.47) 204 (41.38) 106 (53.27) 100 (39.68) 
>$25,000 and ≤$75,000 161 (36.51) 543 (46.37)  50 (18.87) 178 (36.11) 50 (25.13) 94 (37.30) 
>$75,000 47 (10.66) 291 (24.85)  5 (1.89) 22 (4.06) 10 (5.02) 31 (12.30) 

 Missing 87 (19.73) 337 (28.78)  66 (23.77) 89 (18.05) 33 (16.58) 27 (10.71) 

Insurance 
No 107 (24.26) 79 (6.74)  4 (1.5) 2 (0.41) 31 (15.58) 46 (18.25) 
Yes 296 (67.12) 1071 (91.46)  232 (87.54) 487 (98.78) 161 (80.90) 204 (80.95) 

 Missing 38 (8.62) 21 (1.79)  29 (10.94) 4 (0.81) 7 (3.52) 2 (0.79) 

Living area based on 
Census Division 

East North Central 65 (14.74) 201 (17.16)  45 (16.98) 78 (15.82) 37 (18.59) 30 (11.90) 
East South Central 28 (6.35) 67 (5.72)  30 (11.32) 29 (5.88) 17 (8.54) 15 (5.95) 
Middle Atlantic 66 (14.97) 164 (14.00)  25 (9.43) 73 (14.81) 26 (13.06) 38 (15.08) 
Mountain 44 (9.97) 67 (5.72)  20 (7.54) 37 (7.50) 16 (8.04) 25 (9.92) 
New England 21 (4.76) 76 (6.49)  3 (1.13) 23 (4.66) 7 (3.52) 8 (3.17) 
Pacific 51 (11.56)  171 (14.60)  36 (13.58) 55 (11.16) 27 (13.57) 31 (12.30) 
South Atlantic 88 (19.95) 224 (19.13)  45 (16.98) 113 (22.92) 37 (18.59) 57 (22.62) 
West North Central 32 (7.26) 90 (7.69)  30 (11.32) 37 (7.50) 19 (9.55) 21 (8.33) 
West South Central 46 (10.43) 111 (9.49)  31 (11.7) 48 (9.74) 13 (6.53) 27 (10.71) 
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Table  2-1 Distribution of socio-demographic, health related, behavioral, and knowledge related characteristics  

Independent Variables 

Women’s intentions and attitudes toward 
mammography 

Thinking about 
mammogram in non-

adherent women 
Age < 65 (N=1612)  Age ≥ 65 (N=758)   ��∗ = 0 

(N=441) 
�� =1 

(N=1171) 
�T∗∗ = 0 
(N=265) 

�T = 1 
(N=493) 

?ϯ = 0 
(N=199) 

? = 1 
(N=252) 

 Missing 0 (0) 0 (0)  0 (0) 0 (0) 0 (0) 0 (0) 
Health-related characteristics 

Body mass index 
(BMI) 

Underweight 8 (1.81) 18 (1.54)  10 (3.77) 8 (1.63) 9 (4.52) 5 (1.98) 
Normal 148 (33.56) 475 (40.56)  96 (36.23) 184 (37.32) 86 (43.22) 84 (33.33) 
Overweight 112 (25.40) 321 (27.41)  68 (25.66) 190 (38.54) 51 (25.63) 70 (27.78) 
Obese 114 (25.85) 306 (26.13)  50 (18.87) 97 (1.97) 36 (18.09) 78 (30.95) 

 Missing 59 (13.37) 51 (4.35)  41 (15.47) 14 (2.84) 17 (8.54) 15 (5.95) 

 

Less than twice a year 85 (19.27) 197 (16.82)  29 (10.94) 60 (12.17) 86 (43.22) 107 (42.46) 
2 to 4 times a year 135 (30.61) 519 (44.32)  120 (45.28) 214 (43.41) 59 (29.65) 88 (34.92) 
5 or more a year 93 (21.09) 405 (34.59)  74 (27.92) 201 (40.77) 49 (24.62) 56 (22.22) 

 Missing 128 (29.02) 50 (4.23)  42 (15.85) 18 (3.65) 5 (2.51) 1 (0.40) 
Family history of 
cancer 

No 145 (32.88) 324 (27.67)  97 (36.60) 148 (30.02) 75 (37.69) 77 (30.56) 
Yes 294 (66.67) 844 (72.07)  166 (62.64) 342 (69.37) 123 (61.81) 175 (69.44) 

 Missing 2 (0.45) 3 (0.26)  2 (0.75) 3 (0.61) 1 (0.50) 0 (0) 

Psychological distress 
No 355 (80.50) 1084 (92.57)  221 (83.40) 471 (95.54) 179 (89.95) 226 (89.68) 
Yes 46 (10.43) 69 (5.89)  11 (4.15) 11 (2.23) 10 (5.02) 24 (9.52) 
Missing 40 (9.07) 15 (1.54)  33 (12.45) 11 (2.23) 10 (5.02) 2 (0.79) 

Have been advised to 
have a mammography 

No 133 (30.16) 111 (9.48)  120 (45.28) 49 (9.94) 111 (55.78) 96 (38.09) 
Yes 155 (35.15) 1012 (86.42)  92 (34.72) 429 (87.02) 33 (16.58) 94 (37.30) 

 Missing 153 (34.69) 48 (4.09)  53 (20) 15 (3.04) 55 (27.64) 62 (24.60) 

Having had Pap smear 
No 8 (1.81) 6 (0.51)  26 (9.81) 10 (2.03) 23 (11.56) 8 (3.17) 
Yes 383 (86.84) 1127 (96.24)  209 (78.87) 472 (95.74) 165 (82.91) 234 (92.86) 

 Missing 50 (11.34) 38 (3.24)  30 (11.32) 11 (2.23) 11 (5.53) 10 (3.97) 
Behavioral characteristics 

Trust cancer info from 
doctors 

Not at all 10 (2.27) 4 (0.34)  9 (3.34) 4 (0.81) 9 (4.52) 4 (1.59) 
A little  35 (7.94) 46 (3.93)  15 (5.66) 20 (4.06) 19 (9.55) 14 (5.56) 
Some 162 (36.73) 392 (33.48)  89 (33.58) 131 (26.57) 73 (36.68) 88 (34.92) 
A lot 224 (50.79) 716 (61.14)  148 (55.85) 330 (66.94) 95 (47.74) 143 (56.75) 

 Missing 20 (4.53) 13 (1.11)  4 (1.51) 8 (1.62) 3 (1.51) 3 (1.19) 
Looking for cancer 
information 

No 217 (49.21) 443 (37.83)  182 (68.68) 280 (56.79) 144 (72.36) 123 (48.81) 
Yes 224 (50.79) 726 (62.00)  82 (30.94)  210 (42.60) 54 (27.14) 129 (51.19) 

 Missing 0 (0) 2 (0.17)  1 (0.38) 3 (0.61) 1 (0.50) 0 (0) 
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Table  2-1 Distribution of socio-demographic, health related, behavioral, and knowledge related characteristics  

Independent Variables 

Women’s intentions and attitudes toward 
mammography 

Thinking about 
mammogram in non-

adherent women 
Age < 65 (N=1612)  Age ≥ 65 (N=758)   ��∗ = 0 

(N=441) 
�� =1 

(N=1171) 
�T∗∗ = 0 
(N=265) 

�T = 1 
(N=493) 

?ϯ = 0 
(N=199) 

? = 1 
(N=252) 

Perception of chance 
of getting breast 
cancer 

Low 209 (47.39) 541 (46.20)  157 (59.24) 265 (53.75) 134 (67.34) 130 (51.59) 
Moderate 129 (29.25) 414 (35.35)  58 (21.89) 156 (31.64) 43 (21.61) 82 (32.54) 
High  49 (11.11) 184 (15.71)  11 (4.15) 44 (8.92) 6 (3.01) 31 (12.30) 

 Missing 54 (12.24) 32 (2.73)  39 (14.72) 28 (5.68) 16 (8.04) 9 (3.57) 

Fruit and vegetable 
consumption 

Per day  193 (43.76) 615 (52.52)  137 (51.70) 306 (62.07) 32 (16.08) 43 (17.06) 
Per week 113 (25.62) 333 (28.44)  59 (22.26) 110 (22.31) 52 (26.13) 74 (29.36) 
Per Month 76 (17.23) 199 (16.92)  37 (13.96) 70 (14.20) 99 (49.75) 122 (48.41) 

 Missing 59 (13.38) 24 (2.05)  32 (12.07) 7 (1.42) 16 (8.04) 13 (5.16) 
Lifetime number of 
smoked cigarettes 

<100 187 (42.4) 642 (54.82)  152 (57.36) 283 (57.40) 112 (56.28) 120  (47.62) ≥ 100 221 (50.11) 526 (44.92)  87 (32.83) 207 (41.99) 86 (43.22) 131 (51.98) 
 Missing 33 (7.48) 3 (0.26)  29 (9.81) 3 (0.61) 1 (0.50) 1 (0.40) 
Exercise in the past 
month 

No 137 (31.06) 840 (71.73)  133 (50.19) 334 (67.75) 77 (38.69) 90 (35.71) 
Yes 267 (60.54) 321 (27.41)  105 (39.62) 154 (31.24) 116 (58.69) 159 (63.09) 

 Missing 37 (8.39) 10 (0.85)  27 (10.19) 5 (1.01) 6 (3.01) 3 (1.19) 
Knowledge of Breast Cancer/Mammography 

Age at which women 
should start getting 
mammography 

40-50 227 (51.47) 755 (64.47)  87 (32.83) 280 (56.79) 89 (44.72) 132 (52.38) 

Others 140 (31.75) 371 (31.68)  83 (31.32) 144 (29.21) 58 (29.15) 95 (37.70) 

 Missing 74 (16.78) 45 (3.84)  95 (35.84) 69 (13.99) 52 (26.13) 25 (9.92) 
Frequency of getting 
mammograms  

Every 1 to 2 years 257 (58.28) 909 (77.63)  136 (51.32) 384 (77.89) 106 (53.27) 159 (63.09) 
Others 118 (26.76) 249 (21.26)  68 (25.66) 97 (19.67) 57 (28.64) 79 (31.35) 

 Missing 66 (14.97) 13 (1.11)  61 (23.02) 12 (2.43) 36 (18.09) 14 (5.55) 
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For the health-related characteristics, as the number of visits to a health care provider increases, 

women are more likely to adhere to screening mammography (OR=2.358 for women with more 

than 5 visits to doctor per year versus women with less than two visits per year). Being advised 

to have mammogram is the strongest factor in this category OR= 5.298 and 10.711 for women 

younger than 65 and women 65 and older, respectively compared to women who are not advised. 

Women who have had a prior Pap smear are more adherent than those who have not (OR=3.203 

and OR=3.809 for women younger than 65 and women 65 and older, respectively).  

For the behavioral characteristics, women who trust the cancer information from their doctor “a 

little”, “some” and “a lot” are 6.727, 13.194, and 14.824 times more likely to adhere compared to 

women who do not trust their doctor at all. Women who have an increased risk perception of 

breast cancer are more adherent. For women younger than 65, the corresponding ORs for women 

with “moderate” and “high” risk perception are 1.519 and 1.541, respectively. The corresponding 

values for women older than 65 are 1.645 and 3.036, respectively. Women younger than 65, who 

have smoked at least 100 cigarettes in their lifetimes are less likely to be adherent (OR=0.687).  

For the knowledge related class of factors, women whose answer to the appropriate interval 

between two subsequent mammograms is other than every one or two years are less likely to 

adhere. The corresponding odds ratios are 0.812 and 0.636 for women younger than 65 and 

women 65 and older, respectively.  
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Table  2-2 Results for design-based multiple logistic regression on mammography adherence 
comparing women younger than 65 and women aged 65 and older 

Independent Variables 
Age < 65   Age ≥ 65  

Odds  
ratio  

P-value 
 

Odds  ratio  P-value 

 Socio-demographic characteristics 

Race 
Black -  - 
White 0.874 0.606  1.329 0.536 
Other 0.548 0.077  0.425 0.148 

Marital status 
Married -  - 
Single/Divorced/Separated 0.685 0.025  0.499 0.012 

Education 
 

Some high school or less -  - 
High school Graduate 1.750 0.089  1.460 0.310 
Some college/ College 
graduate 

1.457 0.231  
1.507 0.320 

Income 
≤ $25,000 -  - 
>$25,000 and ≤$75,000 1.324 0.186  1.341 0.044 
>$75,000 2.526 0.004  1.992 0.609 

Insurance 
No -  - 
Yes 2.959 <0.0001  2.771 0.130 

 Health-related characteristics 

Number of visits to 
health provider a year 

Less than twice a year -  - 
2 to 4 times a year 1.618 0.019  1.016 0.969 
5 or more a year 2.358 0.001  1.610 0.313 

Being advised to have 
a mammography 

No -  - 
Yes 5.298 <0.0001  10.711 <0.0001 

Having had Pap 
smear 

No -  - 
Yes 3.203 0.0004  3.809 0.001 

 Behavioral characteristics 

Trust cancer info 
from doctors 

Not at all -  

NA 
A little  6.727 0.052  
Some 13.194 0.007  
A lot 14.824 0.004  

Looking for cancer 
information 

No -  - 
Yes 1.134 0.457  0.883 0.484 

Perception of chance 
of getting breast 
cancer 

Low -  - 
Moderate 1.519 0.011  1.645 0.054 
High 1.541 0.079  3.036 0.043 

Lifetime number of 
smoked cigarettes 

<100 -  
NA ≥ 100 0.687 0.047  

Exercise in the past 
month 

Yes NA  1.134 0.623 
No  - 

 Knowledge of Breast Cancer/Mammography 
Age at which women 
should start getting 
mammography 

40-50 -  - 
Others 0.921 0.605  0.692 0.101 

Frequency of getting 
mammograms  

Every 1 to 2 years -  - 
Others 0.812 0.043  0.636 0.048 

“-“ represents the reference group. 
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2.3.2 Thinking about Getting a Mammogram in Non-Adherent Women 

In the bivariate analysis, age, marital status, income, and insurance are among the variables, 

which proved to be significant in the socio-demographic class of factors. In the health related 

class of factors, being advised to have a mammography, having had Pap smear are statistically 

significant in bivariate analyses. Looking for cancer information, risk perception of breast cancer, 

lifetime number of smoked cigarettes, and exercise in the past month are significant factors in the 

bivariate analyses in the behavioral characteristics class.  

However, in the multiple logistic regression analyses (Table 2-3), the only significant factor is 

age. As women’s age increased, they reported thinking about getting mammograms less often. 

Women ages 60 to 69 years, and older than 70 years are 0.377 and 0.112 times less likely to 

think about getting a mammogram compared to women aged 42 to 49 years.  
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Table  2-3 Results for design-based multiple logistic regression on attitudes toward 
mammography in non-adherent women 

Independent Variables 
Non-Adherent Women (N=510) 

Odds  ratio (OR) P-value 

Socio-demographic characteristics 

Age 

42-49 - 
55-59 0.784 0.572 
60-69 0.377 0.015 
70+ 0.112 <0.0001 

Marital status 
Married - 
Single/Divorced/Separated 0.965 0.917 

Income 
≤ $25,000 - 
>$25,000 and ≤$75,000 1.579 0.193 
>$75,000 1.738 0.363 

Insurance 
No - 
Yes 1.277 0.496 

Health-related characteristics 
Being advised to have 
a mammography 

No - 

Yes 1.789 0.083 

Having had Pap smear 
No - 
Yes 1.156 0.727 

Behavioral characteristics 
Looking for cancer 
information 

No - 

Yes 1.676 0.081 
Perception of chance 
of getting breast 
cancer 

Low - 
Moderate 1.412 0.207 
High 2.049 0.337 

Lifetime number of 
smoked cigarettes 

<100 - ≥ 100 0.817 0.541   
Exercise in the past 
month 

No - 
Yes 1.061 0.848 

Knowledge of Breast Cancer/Mammography  
Age at which women 
should start getting 
mammography 

40-50 - 

Others 1.102 
0.737 

Frequency of getting 
mammograms 

Every 1 to 2 years - 

Others 0.967 0.925 
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2.3.3 Evaluation of Regression Models  

Table 2-4 and 2-5 present the classification tables for the first response variable and the second 

response variable, respectively. Sensitivity, specificity and accuracy of the proposed logistic 

regression models are presented in the tables. Note that the numbers presented in the tables are 

weighted according to the replication jackknife weights in the data to be representative of the 

national population. For example, the number 4,727,850 in Table 2-4 is the number of non-

adherent women younger than 65 who are correctly classified as non-adherent by the design 

based logistic regression. 

 
Table  2-4 Classification table of logistic regression model on mammography adherence*  

  Actual Data  

  
Non-Adherent 

(����T�=0) 
Adherent 

(����T� = 1�  

Logistic 
Regression 

Model Result 

Younge
r than 

65 

�W� <	0.5 4,727,850 7,816,121 

Accuracy=77.7 �W� ≥	0.5 2,234,154 30,291,566 

Measures Specificity=67.91 Sensitivity=79.49 
65 and 
older  

�WT <	0.5 3,914,902 2,164,589 
Accuracy=80.50 �WT ≥	0.5 1,086,976 9,505,231 

Measures Specificity=78.27 Sensitivity=81.45 
* �W1 and �W2 are the adherence likelihood calculated from the logistic regression models for women younger than 65 
and women 65 and older, respectively. 
 
Table  2-5 Classification table of logistic regression model on attitudes toward mammography in 

non-adherent women 
  Actual Data  

  
Do not think about 

getting a 
mammogram (?=0) 

Think about getting 
a mammogram 

(?=1) 
 

Logistic 
Regression 

Model Result 

?̂ < 0.5 3,427,551 2,071,371 
Accuracy=74.43 ?̂ ≥ 0.5 1,290,733 6,360,130 

Measure Specificity=72.64 Sensitivity=75.43 
*  ?W is the likelihood of being concerned about getting mammogram in non-adherent women calculated from the 
logistic regression model. 
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As the results show, for the adherence to mammography response variable the proposed design-

based logistic regression models correctly classify 77.7% of women younger than 65 and 80.5% 

of women 65 and older. For the thinking about getting a mammogram response variable 73.43% 

of women are correctly classified.  

2.4 Conclusion 

In this study, we evaluated the association between women’s adherence to mammography 

screening and four classes of factors including various socio-demographic, health-related, 

behavioral characteristics and knowledge of breast cancer/mammography factors using the 2003 

HINTS data.  

In the literature, definitions of adherence to mammography screening vary widely across studies. 

Zapka et al. [14] and Wu et al. [15] defined adherence based on the ACS guideline, “had a 

mammogram in the last year”. Maxwell et al. [16], Murabito et al. [17], Tejeda et al. [18], 

Schonberg et al., [19] and Vyas, et al. [20], considered “had a mammogram in the past two years” 

as a measure of adherence, which is consistent with the USPSTF guideline. Wu et al. [15], 

Maxwell et al. [16], Tejeda et al. [18] and Meissner et al. [21] considered “ever had a 

mammogram” to measure women’s decisions in mammography participation. However, this 

measure cannot be interpreted as the adherence to mammography guidelines since it does not 

incorporate a specific time interval.  Other time intervals are also considered in the literature. For 

example, Harrison et al. [22] defined “had any mammogram in the preceding 5-year period” as 

their response variable. Many studies defined adherence based on “ever had” or “the most recent” 

mammogram rather than considering whether the women returned for repeat mammography or 

not. To bridge this gap, Carney et al. [23] defined the response variable as “returning for a 

screening mammogram within 24 months of the initial exam” and identified factors that had 
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significant effect, such as health insurance coverage, first degree relatives with breast cancer, and 

knowledge about breast cancer. In other studies, Allen et al. [24. 25] explored the relationship 

between mammography use and social network characteristics while considering “receipt of at 

least two mammograms, the most recent of which was within the past 2 years with a maximum 

interval of 2 years between screenings” as the adherence measure. Rakowski et al. [26] 

considered “two exams on schedule, based on an every-other-year interval” in their study. A 

systematic literature review of the studies on the mammography use and the associated factors 

published from 1988 to 2004 was completed by Schueler et al. [27]. In summary, they found that 

the strongest predictors of mammography use were past screening behavior (clinical breast 

examination and Pap test), having access to a physician, and having a physician-recommend 

mammography. These results are in line with our findings as the design based logistic regression 

result show that “having been advised to get mammogram”, “have had Pap test” are the two most 

important factors. We also found that “perception of chance of getting breast cancer”, “income”, 

“insurance” and “knowledge about mammography” are significant factors. 

Most of these studies used data at the local, regional or state level, making national 

generalizations difficult. In addition, these studies did not consider if a woman underwent a 

mammogram because she intended to do so, or for a diagnostic purpose (e.g. after the woman 

had felt a lump in her breast), or because her doctor prescribed the mammogram. In addition, for 

the studies that used longitudinal data (sequential mammograms), it is difficult to keep track of 

women who died, moved, etc. This can potentially cause bias in the data analysis, and as a result, 

these measures may not truly represent women’s adherence to mammography guidelines.  

This study differs from prior studies [14-27] in that adherence is defined based on women’s 

intention and plans of obtaining mammograms rather than their mammography history behavior. 
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Results from our work will likely helps decision makers to differentiate between women who are 

concerned about mammography and have regular plans for getting mammograms from those 

who are not concerned. The results of this analysis can help policy makers identify non-adherent 

populations. We also examine the relationship between aforementioned four classes of factors 

with women’s attitudes toward getting mammograms for women with poor mammography 

history. By characterizing the factors associated with attitudes toward mammography in the non-

adherent population, policy makers can differentiate between the women who are concerned 

about receiving a mammogram but may have some barriers versus those who are not concerned 

at all.  

As for the limitations of our study, it is based on self-reported data and may yield biased results 

if a woman did not report the exact time of her last mammogram. We also used the 2003 HINTS 

data set since it is the only HINTS data that provides information on women’s intention toward 

mammography. 

Adherence to screening mammography is lower among minorities [28]. Based on the 2010 

National Health Interview Survey, 69.4% of American Indian/Alaska native women and 64.1% 

of Asian women had a mammogram between 2008 and 2010, while participation rates among 

white and black women were about 72.8% and 73.2%, respectively [29]. Our results also imply 

that the percent of women intending to have regular screening mammography is lower in races 

other than white and black. However, we do not have enough evidence to conclude that these 

differences are statistically significant. The results reveal that for both age groups, married 

women are more likely to comply with the mammography guidelines. For women younger than 

65, financial aspects such as insurance and income are also significant factors the policy makers 

should consider for improving adherence. 
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Physicians’ involvement in achieving mammography adherence is important. However, many 

physicians do not make referrals at the recommended intervals, even though they may endorse 

the guidelines [30]. Our results show that prior advice to have a mammogram by the woman’ 

physician is the most significant factor in health related class of factors. This suggests that to 

enhance women’s adherence, doctors should recommend that their patients have regular 

screening mammograms. Mammography referrals are more frequent for women who have access 

to the health care system (i.e. women with regular physician and health insurance), but less 

frequent among vulnerable women, (i.e., older women with lower educational attainment or 

lower annual family income [31]). It would be worth investigating the factors associated with 

low mammogram referral rates by physicians. Having history of Pap smear was found to be 

significant for both age groups. This is in line with a previous study by Augustson et al. [32], in 

which they characterize the association between clinical breast exam (CBE), Pap smear, fecal 

occult blood testing (FOBT) adherence, and mammography adherence. Therefore, low 

compliance with other cancer screenings can help identify women in need of additional 

interventions to improve mammography adherence. Although the number of visits to a health 

provider is significant for women younger than 65, this factor is not significant for older women. 

This is interesting as older women, regardless of being adherent or not, are expected to visit their 

doctors more frequently than younger women because of aging associated diseases.  

In the behavioral characteristics class, “lifetime number of smoked cigarettes” is a significant 

factor for younger women but not for older women. Trusting doctor’s information about cancer 

is proved to be significant for younger women, however, we do not have enough evidence to say 

that it is also significant for older women. Previous studies differ about whether fear motivated 

or inhibits precautionary behaviors. McCaul et al. tested different predictors in the context of fear 
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of breast cancer and breast cancer screening and showed that greater fear was related to higher 

levels of screening intentions and behaviors [33]. Our data analysis confirms this finding and 

shows that risk perception of breast cancer is a significant predictor on intention of getting 

regular mammograms for both age groups.  

For the last class of covariates, as expected, knowledge about frequency of getting mammograms 

is significant. Thus, increasing women’s knowledge about breast cancer and mammography 

recommendations is also likely to significantly influence women’s adherence. 

For the second response variable (thinking about getting a mammogram in non-adherent women), 

we found little difference between women who are and are not concerned about getting 

mammograms. For this response variable, younger women are more likely to think about 

obtaining a mammogram. Women who have been advised to get a mammogram before and those 

who are looking for cancer information may be more concerned about getting mammograms, 

although these findings are not statistically significant. 

This study enables decision makers to identify barriers women may face to obtain a screening 

mammogram and also allows for the identification of characteristics of non-adherent women 

who are not concerned about getting a mammogram. Our findings suggest the most significant 

factors influencing women’s compliance are being advised to have a mammogram and insurance. 

The former has been applied on a systematic level in some European countries (e.g. the UK, 

Sweden, Norway), which have organized population-based screening programs where women 

are invited through a personal letter for a free mammogram every two or three years [34]. A 

recent analysis of the European Network for Information on Cancer (EUNICE) data for years 

2005, 2006 and/or 2007 (10 national and 16 regional programs for women aged 50-69 in 18 
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European countries) reported that in 13 of the 26 programs the participation rate exceeded the 

European Union benchmark of 70%, and 9 programs achieved a participation level >75% [35]. 

According to the CDC, 66.6% and 67.1% of U.S. women 40 years and over received a 

mammogram in the past two years based on data from 2005 and 2008, respectively [8]. Although 

a direct comparison of screening mammography participation rates between European countries 

and the U.S. is difficult due to difference in recommendations (i.e. age at which to begin 

screening, interval between mammograms), our results support the benefit of future policies that 

systematically advise and provide resources to women to receive a mammogram, as is already 

done in other countries. Several studies also identified significant factors associated with 

attendance in population-based mammography programs in European countries (the UK, France 

and Sweden) [36-41]. Some of these factors such as income, visiting healthcare providers, 

having had Pap smear and perceived risk of breast cancer are also found significant in our 

analysis. As in most European countries mammography is free, none of these studies reported 

insurance as an influencing factor for getting a mammogram. However, as our results show, lack 

of insurance is still a barrier in the U.S., especially for women younger than 65. 

In summary, sending reminders and having insurance were shown to be the most influential 

factors in screening mammography. Other significant factors include marital status, number of 

visits to health provider a year, having had Pap smear, risk perception of breast cancer, and 

knowledge of breast cancer/mammography.  These findings can help in designing programs 

aimed at improving screening rates and provides policy makers with data to allow for 

interventions to remove these barriers and make the targeted population more concerned about 

getting breast cancer screenings.   
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 Evaluation of breast cancer mammography screening policies considering adherence 3

behavior 

3.1 Introduction 

Mammography screening recommendations have been the subject of significant debate in recent 

years.  As discussed in Chapter 2, there are varying screening guidelines from different 

organizations about when to start and end mammograms and how frequently a woman should 

undergo mammography screenings. For example, the American Cancer Society (ACS), the 

department of Health and Human Services (HHS), the American Medical Association (AMA), 

and the American College of Radiology (ACR) recommend screening mammography every year, 

beginning at age 40. In 2009, the U.S. Preventive Services Task Force (USPSTF) issued revised 

screening mammography guidelines, which resulted in a significant controversy. According to 

the USPSTF guidelines, screening mammograms should be done every two years between age 

50 and 75 for women at average risk of breast cancer [1].  

Although mammography is known to be one of the most effective methods of detecting breast 

cancer, there are many concerns on its adverse effects on women’s quality of life. Unreliability 

of mammography, i.e., false negative and false positive results and overdiagnosis are among the 

deficiencies of mammography [2]. A prospective cohort study of 7 mammography registries of 

the Breast Cancer Surveillance Consortium (BCSC) showed that the adjusted sensitivity 

increased with age from 68.6% in women ages 40 to 44 to 83.3% in women ages 80 to 89 

[3].  Similarly, the specificity rate increased from 88.2% for women aged 40 through 44 years to 

93.4% in women older than 75 [4]. Moreover, about one-third of all aggressive cancers are 

diagnosed in the interval between successive annual mammograms [5]. These cancers are known 
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as interval cancers and are defined as cancers detected within 12 months after a negative 

mammogram [6]. Some of the interval cancers are present at the time of mammography 

screening (false-negatives) while others grow rapidly in the interval between a mammogram and 

detection [7]. Generally, interval cancers grow rapidly and are frequently diagnosed at advanced 

stages [8]. In addition, studies have shown that receiving mammograms increases a woman’s 

chance of developing breast cancer due to exposure to radiation [2, 9-10]. Each radiation-

absorbed dose (rad) of exposure increases breast cancer risk by 1 percent [2]. Moreover, Bleyer 

et al. also found that up to a third of diagnosed breast cancers are overdiagnosed cases and do not 

need treatment [11]. 

Various studies have been conducted to evaluate and compare different screening policies or to 

identify optimal policies. Kirch et al. [12] developed an inspection strategy for the detection of 

an age-dependent disease with the objective of minimizing detection delay. To illustrate their 

methodology, they developed optimal schedules for breast cancer examinations. Shwartz [13] 

developed a mathematical model to evaluate life expectancy gain associated with different 

screening policies under different assumptions about the rate of disease progression, the 

characteristics of the screening technique, and the frequency of screenings. Parmigiani [14] 

presented a continuous time non-Markovian stochastic process model of disease progression to 

analyze which age groups and what part of the population should undergo breast cancer 

screening, while minimizing the total expected loss or risk including financial costs, side effects, 

wasted time, stress due to false-negative test results, etc. Zelen [15] formulated a screening 

scheduling problem to maximize a weighted utility function in a continuous time setting. In 

Zelen’s model all the parameters were assumed to be stationary except for the incidence rate. 

Baker [16] used a mathematical parametric model to assess different screening policies in terms 
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of minimizing the cost of cancer plus the cost of carrying out any screening. Baker’s model was 

developed based on a small data set used to estimate the model parameters, and compares a small 

set of cost optimal policies under different sets of constraints. Hanin et al. [17] developed a 

model to study screening strategies based on tumor size at detection. In their model they 

combined several processes such as tumor latency, tumor growth and tumor detection to estimate 

the tumor size at detection. As a measure of the screening efficiency, they proposed the 

difference between the expected tumor sizes at detection with and without screening, when both 

spontaneous and screening-based detections are in place. They concluded that in the case of 

exponential tumor growth, the optimal screening schedules with a fixed number of exams are 

uniform or very close to uniform (same interval between subsequent screening tests). Maillart et 

al. [18] formulated a partially observable Markov chain model to evaluate a wide range of 

dynamic mammography screening policies as well as current practices. They compared different 

policies in terms of the resulting lifetime breast cancer mortality risk and the expected number of 

mammograms women should undergo for each policy and generated a frontier of efficient 

policies. In their formulation, they considered age-based dynamics of breast cancer (i.e., 

increasing incidence, decreasing aggression). They also incorporated the imperfect nature of the 

screening outcomes and dynamics of test result accuracy (increasing sensitivity and specificity 

rates with age). Ayer et al. [19] developed a finite-horizon partially observable Markov decision 

process (POMDP) model to determine the optimal personalized mammography screening 

strategy based on personal risk characteristics of women such as their prior screening history. 

Ahern et al. [20] developed a mathematical model to optimize cancer screening schedules, taking 

into account the trade-off between the benefits and costs of screenings in their proposed utility 

function. They considered two different optimization frameworks: optimize the number of 
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screening examinations with equal screening intervals between exams but without a pre-fixed 

total cost; and optimize the ages at which screening should be given for a fixed total cost and 

prove that the optimal solution exists under each of the two frameworks.  In another study, Hanin 

et al. [21] developed a model to construct optimal schedules of cancer screening that maximize 

the probability that by the time of primary tumor detection, it has not yet metastasized. They 

applied their model to mammographic screening for breast cancer. Their model includes all main 

stages of cancer progression: cancer latency, primary tumor growth, its detection and metastatic 

spread.  

However, none of the above mentioned studies have taken patient behavior into consideration. 

They all assume that patients adhere to the guidelines perfectly and undergo the prescribed 

screening mammograms. This is also true for the current screening recommendations which are 

based on the assumption of 100% adherence to the guidelines. However, as discussed in Chapter 

2, not all women have the same attitudes toward breast cancer screening. There are a limited 

number of studies taking individual adherence behavior into consideration. Brailsford et al. [22] 

used a three-phase discrete event simulation to model breast cancer and screening policies 

incorporating women’s behavioral factors in their model. They assigned behavioral attributes to 

each simulated woman to control her compliance with the prescribed mammograms in their 

model. They compared a limited number of screening policies, including the current UK policy, 

in terms of the number of screen detected cancers, and life yeas saved. In another study, Ayer et 

al. [23] analyzed the role of behavioral heterogeneity in women's adherence on optimal 

mammography screening recommendations.  

In this research, incorporating women’s adherence behavior to mammography recommendations, 

a mathematical framework is proposed to evaluate and compare various screening policies in 
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terms of QALYs and the lifetime mortality risk of breast cancer. Our study is different from the 

two studies discussed above in the approach of incorporating patient adherence to the screening 

tests. In contrast to earlier studies, we allow uncertainty in a patient’s adherence probabilities in 

the model. Adherence is also a function of the length of the interval between two subsequent 

screenings. Moreover, assuming a patient’s adherence behavior is related to and can be estimated 

from her perception/planning toward mammography, not only can we evaluate and compare 

screening policies for a specific patient knowing her personal characteristics, but we can identify 

efficient policies for the general population as well. In addition, we incorporate in our model the 

possibility of interval cancer detection, and the increased risk of developing breast cancer due to 

exposure to X-ray radiation during a mammography test.  

The remainder of this chapter is organized as follows. In Section 3.2, the proposed model is 

presented. In Section 3.3, model inputs and parameters estimation, and computational results are 

presented. Finally, Section 3.4 summarizes the findings and discusses future work.  

3.2 Model Formulation 

A randomized discrete-time finite-horizon partially observable Markov chain model is developed 

to evaluate various mammography screening policies in terms of the expected QALYs and 

lifetime breast cancer mortality risk. This problem is formulated as a partially observable 

Markov chain because the women’s true health states are not outwardly observable due to the 

imperfect nature of mammography screening tests. 
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Figure  3-1 One period sample path of the breast cancer detection process 

The model takes into account two methods of detection: screening mammography and self-

detection (SD), i.e., breast self-examination. Interval cancer detection is considered separately 

from self-detection, depending on the time interval between the detection and the last 
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mammogram. The detailed mammography screening process is presented in Figure 1 and is 

described as follows.  

At epoch t if a mammogram is recommended, a woman may undergo the recommended 

mammogram with probability Z�[� or skip it with probability 1 − Z�[�. If she undergoes the 

prescribed mammogram, she may receive a positive or negative result. After a positive result, 

since mammography is not perfect and has a relatively low sensitivity (the probability of 

receiving true positive result), a breast biopsy test is usually conducted to check the suspicious 

area found on a mammogram and see whether the result is true positive or not. Biopsy is 

assumed to be perfect since it has a relatively high sensitivity and specificity (probability of 

receiving true negative) rates [24]. If the biopsy result is negative suggesting a false positive 

mammogram, the patient proceeds to the next epoch. However, if the biopsy confirms the 

mammographic findings, cancer is detected and the patient leaves the model. We do not model 

the treatment explicitly. Instead, we assume that when the patient is diagnosed with breast cancer, 

regardless of the method of detection, she receives a terminal (lump sum) reward and leaves the 

model. After a negative result, the woman proceeds to the next epoch. However, it is possible 

that after a negative result the cancer becomes symptomatic and be detected (interval cancer 

detection in this case). 

If the woman skips the recommended mammogram or the recommended action at time t is to 

wait, she may or may not develop some symptoms suggesting there is cancer present. If she 

develops symptoms, depending on the action in the previous epoch we have either a self-

detection (if the previous action is a wait), or an interval cancer (if the previous action is a 

mammogram). Note that the interval between two decision epochs in the process is six month. 
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Therefore, if the action in a previous epoch was a mammogram and symptoms occur after the 

current epoch, we have an interval cancer and not a self-detection. We assume that when the 

woman feels a lump in her breast (symptom) she would go for a mammogram, and if the result 

of the mammogram is positive, she would have a biopsy test to confirm that the cancer is present. 

If both the mammography and biopsy tests are positive, similar to the previous case the patient 

leaves the model. However, if the follow-up tests (i.e., mammogram or biopsy) are negative, the 

patient proceeds to the next epoch. 

For consistency, we refer to the woman as the “patient,” irrespective of her health condition. 

Below is the list of notation used in the problem formulation.  

t Decision epochs, [ = 0,… , \. We consider the earliest and latest age a policy may 

recommend a patient undergo a mammogram to be 40 and 100, respectively. The 

start age of 40 is considered in order to be consistent with the current 

mammography screening policies (e.g. ACS). In addition, we assume the process 

ends at age 100 because of the negligible probability of surviving after this age 

according to the U.S. life tables [25]. Mammography decisions are made every six 

months. Patients enter the process at age 40 ([ = 0� and, if cancer is not detected, 

stay in the process up to age 100 ([ = \ = 120), regardless of the policy under 

study. 

]! Underlying health state a patient occupies at epoch t and	]! ∈ S = {0, 1, 2, 3, 4}. 
The five states considered in the model are cancer free (state 0), early breast cancer 

(state 1), advanced breast cancer (state 2), death from breast cancer (state 3), and 

death from other causes (state 4). We define cancer states similarly to Maillart et al. 
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[18]. States 0 through 2 are partially observable due to the imperfect nature of 

mammography tests. However, states 3 and 4 are fully observable. 

R! Action prescribed at time t, and	R! ∈ c = {W,M}. W and M represent “Wait” and 

“Mammogram”, respectively. 

1! Belief state distribution, where 1! = [1!�0�, 1!�1�, 1!�2�] and represents the 

occupancy distribution of partially observable states at which the patient is believed 

to be, i.e., 1!�]� represents the probability that a patient is believed to be in state s. 

P!�]́|], R� Underlying transition probability, i.e., the probability of being in state	]́ at time	[ +
1, when the patient is in state s and takes action a at time t. Note that the transition 

probability is a function of action R since undergoing a mammogram increases the 

patient’s chance of developing radiation-induced breast cancer.  

=jk Observation when a patient takes action R!. If	R! = M, the observation space is 

lm = {M+,M−}, where M+ 	and, M − represent a positive mammogram, and a 

negative mammogram, respectively. In the case of receiving a negative 

mammogram (M−�, the patient may show symptoms within one year, which results 

in interval cancer detection. In this case the observation space is	lno = {IC+, IC−}, 
where IC + and IC −	represent interval cancer and no interval cancer, respectively. 

If 	R! = W and the patient did not have a mammogram test within the past year, 

then lq = {SD+, SD−}, where SD + and SD − represent self-detection and no 

self-detection, respectively. 

s!�o|s, R� Observation probabilities, i.e., the probability of observing o at time t when the 

patient is in state s and action a is taken at time t. Note that for the case that 

observation is IC + or	IC −, for simplicity, we use the notation s!�o|s� since 
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interval cancers can happen both after a wait and a mammogram action. However, 

in “wait” cases we should have had a mammogram in the previous epoch (at time 

[ − 1 or six month prior to time [). 
>!�]|R, =� Immediate reward that a woman receives when she is at state s, takes action a and 

receives observation o at time t. 

I�,!�]�							 The total expected reward a patient receives when she is in one of the cancer states 

(s= 1 or 2) and her cancer is detected through screening mammography. 

IT,!�]� The total expected reward when a patient is in cancer state s in the case of interval 

cancer or when the cancer is diagnosed via self-detection. Different total expected 

reward values are considered for screen-detected and symptomatic cancers since 

previous studies have shown a systematic survival benefit for screen-detected 

cancers comparing to symptomatic cancers [26]. However, the expected reward for 

interval cancers and self-detected cancers is assumed to be the same as it has been 

shown that there is no statistical difference in survival between interval cancers and 

clinical cancers [27]. 

w�,!�]�								 Probability of eventually dying from breast cancer when the cancer is diagnosed 

through screening mammography and the patient is in state s (=1 or 2) at time t. 

wT,!�]� Probability of eventually dying from breast cancer in the case of interval cancer or 

when the cancer is diagnosed through self-detection. 

tγ  Probability of dying from causes other than breast cancer. Note that tγ is 

independent of the state the patient is in and (4 | , )t tP s aγ = . 

x�[� Indicator function representing whether the previous action at epoch [ − 1 was a 

mammogram (x�[� = 1) or not (x�[� = 0). 
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d Mammography screening policy or a sequence of prescribed actions 

d=(�y, ��, … , �z� where �! represents the action at time t under policy d. 

F!m Disutility of mammography at time t. 

F!{ Disutility of biopsy at time t. 

Z�[� Probability that a woman undergoes the prescribed mammogram at epoch t. q(t) 

varies in the interval of [Z��[�		ZT�[�], where Z�	�[� and		ZT�[�	 are bounds of the 

confidence interval of the adherence probabilities and can be estimated based on 

the woman’s various characteristics. Estimation for Z�	�[�	and	ZT�[�	is discussed in 

Section 3.1.  

The state transition diagram of the underlying Markov chain representing the disease natural 

history is presented in Figure 3-2.  Note that cancer death only occurs when the cancer 

progresses to an advanced stage [18]. 

 

 

 

 

 

 

Figure  3-2 Transitions between different health states 

 

The policies are evaluated and compared in terms of two outcome measures: total expected 

quality adjusted life years (QALYs), and lifetime mortality risk of breast cancer. 
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The value functions of policy d in our model follows a randomized Markov model in which the 

actions are chosen under uncertainty, i.e., at age t the woman may take action M (mammogram) 

with probability ( )q t  or choose to skip a mammogram (W) with probability1 ( )q t− . Given that 

1( )q t  and 2 ( )q t  are the lower and upper confidence bounds for ( )q t , the value function of 

policy d at time t is defined as below: 
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 3-1 

 

 

where V
t
a(π )  is the value function at time t when the action a is taken and the occupancy 

distribution is	1.  Note that although 1 is a function of time as introduced in the notation section, 

we drop this time index in all equations for the clarity of the notation.  Equation 3-1 calculates 

the average value of function M W( ) ( ) (1 ( )) ( )t tq t V q t Vπ π⋅ + − ⋅  over the interval 1 2[ ( ), ( )]q t q t . 

3.2.1 Total Expected Quality Adjusted Life Years (QALYs)  

Suppose ( )a
tϕ π  represents the value function (V

t
a(π )  in Equation 3-1) for our first outcome 

measure: the total expected quality adjusted life years (QALYs) the patient can attain when the 

current belief state distribution is	1 and action a is taken. If at time t the screening policy 

recommends a mammogram, then 
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where ~�1, R, =� is the updated occupancy distribution at time 1t +  when the current occupancy 

distribution (at time t) is 1 and action a is chosen and the result is observation o. ~�1, R, =�	is 

calculated using Equations 3-3a and 3-3b. 
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3-3b 

 

Note that ( , , ) ( )a o sπξ  is the updated occupancy upon observing o at the current epoch and 

( , , ) ( ')a o sπϑ  is the updated occupancy at the beginning of the next epoch. Time indices are dropped 
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for clarity.  The first line in Equation 3-3a represents the case when the patient undergoes a 

prescribed mammogram, receives a negative result and does not develop any symptoms within 

six months of the mammogram test. The second and third lines both represent the case when the 

recommended action is to wait in the current epoch. However, the second line is when the action 

at epoch t − 1 is a wait and the third line is when the recommended action at	t − 1 is a 

mammogram. These two cases need to be considered separately since the third case represents an 

interval cancer rather than self-detection because of the negative results in the previous 

mammogram at epoch t − 1	(within 12 month of a negative mammogram). The fourth line 

represents a false positive result. In such cases the follow-up tests reveal that the patient is 

healthy. In the case when the result is true positive (M+, SD+ and IC+ and	s = 1	or	2), the 

woman receives a lump sum reward and leaves the model. Therefore, no occupancy distribution 

update is needed. 

The logic of Equation 3-2 is as follows. When a patient undergoes a mammogram, she either 

receives a positive or a negative result. If the patient is in the cancer free state and she receives a 

negative result, an immediate reward is calculated and the patient will transit to time 1t + . If the 

patient is in cancer states but she receives a negative result, then she may develop some 

symptoms with probability (IC | )tQ s+  before the next epoch, which results in cancer detection. 

In this case, interval cancer is identified and the patient receives the lump sum reward and leaves 

the model. We assume that interval cancer can only occur in cancer states since even the fastest 

growing cancers cannot grow from a single cell to a symptomatic size within six months [28], 

which is the interval between two subsequent epochs in our model. If the patient does not 

develop any symptoms, she stays in the model and transits to time 1t + . If the woman is in the 

cancer free state and she receives a positive result, her true health state will be determined via a 
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follow-up biopsy and she remains in the model. However, if she is in any of the two cancer states 

and receives a positive result, she will receive a lump sum reward and the process is terminated.   

If the screening policy does not recommend a mammogram at time t, then the expected QALYs 

is calculated as 

4
1( |0,W) ( ( ,W,SD ))1

0

W ( ) (0) (SD | 0, W) (0, W,SD )
t

4
1( ) (SD | , W) ( , W,SD ) ( | , W) ( ( , W,SD ))

1
1, 2 0                (1 ( ))

( ) (SD | , W)

dtP st t
s

Q r
t t

d
ts Q s r s P s s

t t t t
s sI t

s Q s
t

ϕ ϑ πϕ π π

π ϕ ϑ π

π

+′∑ ⋅ −+′=
= ⋅ − − +

+′⋅ − − + ⋅ −∑ ∑
+′= =+ − ⋅

+ ⋅ +

 
  

 
 
  

( )
2,

1, 2

4
1                (0) (SD | 0, W) (0, W,SD ) ( | 0, W) ( ( , W,SD ))

1
0

1( ) (IC | ) ( , W, IC ) ( | , W) ( ( , W, IC ))
1

                 + ( )

t

R s
t

s

d
tQ r P s

t t t
s

d
ts Q s r s P s s

t t t t
sI t

π ϕ ϑ π

π ϕ ϑ π

⋅∑
=

+′+ ⋅ + + + ⋅ +∑
+′ =

+′⋅ − − + ⋅ −
+′⋅

 
 
 
 
 
  

 
 
  

.

4

1, 2 0

( ) (IC | ) ( )
2,

1, 2

s

s Q s R s
t t

s
π

∑ ∑

= =
+ ⋅ + ⋅∑

=

  
      
 
  

 

3-4 

 

The logic of Equation 3-4 is as follows. When the action at time t is to wait (R! = W), as 

discussed above, two separate cases need to be considered: 1) the prescribed action at time [ − 1 

is to wait, and 2) the prescribed action at time [ − 1 is a mammogram. In Case (1), if the woman 

waits or does not get a mammogram at time t, there are two possible outcomes: whether 

symptoms are developed or not during the time interval between epoch t and t +1. In the case 

when no symptom develops, the patient receives an immediate reward(s, W,SD )tr − , remains in 

the model and her belief state distribution is updated using Equation 3-3a and 3-3b. However, if 

some symptoms are developed (with probability(SD+ | , W)tQ s ) and the patient is in the cancer 

free state, a follow-up test reveals her true health state, then her occupancy distribution is 
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updated and she remains in the model. If she is in a cancer state s (s=1, 2) and some symptoms 

are shown, the follow-up tests will detect the presence of breast cancer. In this case, the patient 

receives a lump sum reward R
2,t

(s)  and leaves the model. In Case (2), given that the patient had 

a negative mammogram at epoch	[ − 1, she may develop some symptoms (with probability 

Q
t
(IC+ |s)) that results in interval cancer detection in which case she receives a lump sum reward 

R
2,t

(s) and leaves the model. It is also possible that no symptom occurs, which means the patient 

receives an immediate reward ( , W, IC )r s
t

− , her belief state gets updated and she proceeds to the 

next epoch.  

Assuming ( , , )tr s W SD−  is determined, the immediate rewards in Equation 3-2 and 3-4 are 

calculated using the following relationship: 
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3-5 

3.2.2 Lifetime Breast Cancer Mortality Risk 

Suppose ( )a
tω π  represents the value function (V

t
a(π )) for the second outcome measure: the 

probability that the patient eventually dies from breast cancer when the current belief state is π , 

and action a is taken at time t. If the screening policy recommends a mammogram at time t, then 
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If the patient does not get the prescribed mammogram at time t or the policy recommends the 

patient to wait, then her lifetime breast cancer mortality risk is 
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where ( , , )a oϑ π  is the updated occupancy distribution as presented in Equations 3-3a and 3-3b. 

The logic behind the Equations 3-6 and 3-7 is as follows. If a patient undergoes the mammogram 

(Equation 3-6), she either receives a negative result or a positive one. If the mammography result 

is negative (with probability (M | , M)tQ s− ) and the woman is in the cancer free state (s=0), she 

may survive to time 1t +  with probability1 tγ− , and her risk of eventually dying from breast 

cancer is calculated by 1
1 ( ( , M,M ))td

tω ϑ π+
+ − . If she is in the early stage cancer state (s=1) or 
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advanced cancer state (s=2), after receiving a negative result (false negative) she may develop 

some symptoms with probability (IC | )tQ s+ , which results in her cancer detection by follow-up 

tests (mammogram and biopsy if needed). In this case, her lifetime breast cancer mortality risk 

would be ρ
2,t

(s)  and she leaves the model. However, if she is in state	] = 1 (or	] = 2), and she 

does not develop any symptoms after a false negative result (with probability (IC | )tQ s− ), she 

survives to time 1t +  with probability 1−γ
t
 (or 1 (3 | 2,M, M )t tP γ− − − ) and her lifetime breast 

cancer mortality risk at time 1t +  is calculated by 1

1 ( ( , M, M &IC ))td

tω ϑ π+

+ − − . Note that if the 

patient is in the advanced cancer state (] = 2�, she may die from breast cancer in the current 

period with probability (3 | 2,M,M )tP − . If the mammography result is positive and the woman is 

in the cancer free state, her true health state will be determined via a follow-up biopsy and she 

survives to time 1t +  with probability 1 tγ−  and her value function is determined through

1
1 ( ( , M,M ))td

tω ϑ π+
+ + . However, if she is in one of the cancer states, her probability of eventually 

dying from breast cancer would be ρ
1,t

(s). 

In Equation 3-7, similar to Equation 3-4, two cases need to be distinguished, based on the action 

at time [ − 1, to account for the possibility of interval cancer. If the action at epoch [ − 1	is to 

wait then two outcomes in the current period are possible: developing symptoms ((SD | ,W)Q s
t

+ ) 

and no symptoms ( (SD | ,W)Q s
t

− ). If the patient does not develop any symptom when she is in 

the cancer free or early cancer state, she may survive to the next time period with probability 

1 tγ− . Then her lifetime breast cancer mortality risk is calculated using the recursive function at 

time [ + 1. However, if she is in the advanced cancer state, she will either die from breast cancer 
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before the next period with probability(3 | 2,W,SD )tP −  or survive to the next period with 

probability1 (3 | 2, W,SD )t tP γ− − − and her probability of eventually dying from breast cancer is 

calculated through 1
1 ( ( , W,SD ))td

tω ϑ π+
+ − . The patient might develop some symptoms with 

probability (SD | , W)tQ s+ when she is in state s. If the patient is in the cancer free state and 

develops some symptoms, a follow-up mammogram (or biopsy) reveals her true health status, so 

her belief state occupancy distribution is updated, and the probability of her eventually dying 

from breast cancer is calculated by 1
1 ( ( , W,SD ))td

tω ϑ π+
+ + . If the patient is in cancer states (s=1 or 

2) and develops symptoms, her lifetime breast cancer mortality risk would be ρ
2,t

(s). In this case 

she leaves the model. In the second case when the previous action was a mammogram, the 

patient may develop interval cancer in the current epoch or not. Similar to the first part, the 

corresponding lifetime breast cancer mortality risks for this case is calculated. 

3.3 Numerical Studies 

A wide range of routine screening policies and two-phase policies (with changing screening 

intervals) are evaluated in this section. Policies are defined as a quintuple (starting age, first 

screening interval, switching age, second screening interval, stopping age). For example, policy 

(40,1,50,2,80) represents a policy that recommends women start getting mammograms at age 40 

and undergo the screening test every year up to age 50 and then undergo mammogram every 2 

years up to age 80. Another example for routine screening policy would be (50,1,n,n,100) that 

recommends women undergo annual screenings from age 50 to 100. Table 3-1 provides polices 

considered in the analysis. The earliest screening start age considered is 40 since it is the earliest 

age among the current screening guidelines. We also include the USPSTF policy and no 

mammogram policy in our analysis. In total we evaluate 362 policies. Note that the numerical 
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examples presented in this section do not include six-month policies (i.e., screening every six 

month) because the data source for estimating patient adherence discussed in Section 3.1 does 

not include six-month policies. However, the six-month decision epoch in our model formulation 

allows better representation of disease natural progression. The readers can evaluate more 

policies of interest if they have data for estimating patient adherence behaviors. Different 

adherence cases are also presented as numerical examples in this section.    

Table  3-1 Screening policies considered in the numerical analysis* 
Policy Parameter Range Evaluated 

Start age 40,45,50,55 
First screening interval 1,2,3 
Switch age 50,60,70 
Second screening interval 1,2,3 
Stop age 80,85,90,95,100 

*Two special policies “No mammography” and “USPSTF” policies are also included in the 

numerical analysis but are not shown in the table. 

3.3.1 Model Inputs 

As discussed in Chapter 2, a patient’s level of adherence can be approximated based on her 

personal attributes such as socio-demographic, health, behavioral and knowledge related 

characteristics [29-31]. Three different adherence cases are evaluated in this study: a specific 

woman, the general population, and a perfect adherence case. Adherence probabilities for these 

three cases are extracted using the 2003 Health Information National Trend Survey (HINTS) 

data and the developed design-based logistic regression in Chapter 2. The three adherence cases 

considered in this study are:  

1) A white unemployed woman who is not married and does not have a family history of breast 

cancer and believes she has a low chance of developing breast cancer. This case represents 

very low adherence.  
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2) The general population. This case represents the average adherence rate of the U.S. 

population derived from the HINTS data, which is a nationally-representative stratified 

survey. For this case we adjust our logistic regression model for patients’ ages.  

3) Perfect adherence for which a patient adheres to a prescribed mammogram test with 

certainty.  

Table 3-2 shows the confidence intervals of adherence probabilities for the general population 

(Case 2). These results are consistent with the CDC report for 2-year interval between 2008 and 

2010 [32]. As expected, adherence probabilities are increasing in age until late 60’s and then 

start to decrease. This decrease can be related to morbidity and aging associated diseases in older 

ages.  Adherence probabilities for Case 1 are significantly lower than those of Case 2.  For 1-

year screening interval, the highest adherence probabilities appear in ages 65-69 (confidence 

interval (0.0581, 0.2226)), with lowest in ages 40-44 (confidence interval (0.0240, 0.0906)).  

Adherence is only slightly better for 2-year and 3-year screening intervals.  Summary of these 

numbers is omitted for brevity.   

 Table  3-2 Confidence interval of adherence probabilities for the general population (Case 2) 
Age  1-year Interval 2-year Interval  3-year Interval  

40-44 (0.4018, 0.5007) (0.5383, 0.6362) (0.5539, 0.6512) 

45-49 (0.4667, 0.5680) (0.6746, 0.7656) (0.6914, 0.7385) 

50-54 (0.5440, 0.6490) (0.7078, 0.7998) (0.7204, 0.8109) 

55-59 (0.5968, 0.7067) (0.7466, 0.8398) (0.7579, 0.8493) 

60-64 (0.5723, 0.6945) (0.6863, 0.7972) (0.7043, 0.8127) 

65-69 (0.6033, 0.7302) (0.6982, 0.8138) (0.6983, 0.8138) 

70-74 (0.5629, 0.6972) (0.6365, 0.7638) (0.6365, 0.7638) 

>75 (0.4006, 0.5012) (0.5256, 0.6256) (0.5391, 0.6386) 

Initial belief states (risks of early and invasive cancers) for women aged 40 are estimated using 

the Gail model [33]. The Gail model estimates the invasive breast cancer risk for an individual 

based on some risk factors such as age, age at menarche, age at first live birth, number of first-
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degree relatives with breast cancer, etc. To estimate the in situ cancer risk, Gail et al. [34] 

proposed using the incidence ratio between in situ and invasive cancers. For example, for 

average population, the initial risk of early and advanced cancer at age 40 is 0.3% and 0.6%, 

respectively. For the policies with start age greater than 40, the initial belief states are updated 

using the belief states for women at age 40, and Equations 3-3a and 3-3b. 

Table 3-3 presents the data source for our numerical analyses. To specify the post-cancer life 

expectancies we use age-specific mortality rates for patients under cancer treatment from the 

SEER data [35] based on the method described in Arias et al. [25]. To adjust the life 

expectancies for symptomatic cancers, we use the relative hazard rates presented in Wishart et al. 

[26]. 

Table  3-3 Input data sources for model parameter estimation 
Parameter Reference 

Transition probabilities Maillart et al. [18], and Epstein et al. [2] 
BSE sensitivity and specificity  Baxter [38] 
Mammography sensitivity and specificity Maillart et al. [18] 
Lump sum rewards for screen detected cancers SEER [35], and Arias et al. [25] 
Lump sum rewards for symptomatic cancers SEER [35], Arias et al. [25], and Wishart et al.[26] 
Immediate rewards Sonnenberg and Beck [36], and Stout et al. [37] 
Initial risk of early and advanced breast cancer Gail model [33], and Gail et al. [34] 
Interval cancer rate Croteau et al. [7]  

Lifetime breast cancer mortality risk under 
treatment for screen detected cancers 

Schairer et al. [39] 

Lifetime breast cancer mortality risk under 
treatment for symptomatic cancers 

Schairer et al. [39], and Wishart et al. [26] 

Adherence Probabilities Madadi et al. [29], and HINTS [40] 

 

The expected immediate reward for the case the woman waits and no symptom is developed, i.e., 

( , W,SD )tr s − is determined using the half-cycle correction method [36] which assigns 0.5 (six 

months) life years if the patient is alive in the current decision epoch and 0.25 life years if the 
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patient dies in the current decision epoch. The immediate rewards for the other cases are 

calculated using Equation 3-5 and the numbers reported in Stout et al. [37]. 

3.3.2 Results 

3.3.3 Analyses on QALYs 

Table 3-4 presents the top five policies for the three different adherence cases in terms of 

QALYs. It also presents the associated lifetime breast cancer mortality risk for each policy. 

Table  3-4 The five best policies for different adherence cases in terms of QALYs 
Policy QALYs Lifetime BC mortality risk 

Case 1- A Specific Woman 
(40,1,n,n,95) 37.4439 0.0263 

(40,1,n,n,100) * 37.4439 0.0263 
(40,1,n,n,90) 37.4429 0.0264 
(40,1,n,n,85) 37.4405 0.0267 
(40,1,n,n,80) 37.4371 0.0276 

Case 2- General Population 
(40,1,n,n,95) 37.5307 0.0256 

(40,1,n,n,100) 37.5307 0.0256 
(40,1,n,n,90) 37.5306 0.0256 
(40,1,n,n,85) 37.5268 0.0258 
(45,1,n,n,95) 37.5240 0.0264 

Case 3- Perfect Adherence  
(40,1,70,2,90) 37.5252 0.0262 
(40,1,70,2,95) 37.5252 0.0262 
(40,1,70,2,100) 37.5249 0.0262 
(40,1,60,2,90) 37.5205 0.0275 
(40,1,60,2,95) 37.5205 0.0274 

*Policy in bold refers to the ACS policy. 

The best policies for both Case 1 and the general population include the ACS policy. However, 

Case 1 has lower QALYs and higher breast cancer mortality risk comparing to the general 

population due to lower adherence probabilities. The best policies for the perfectly adherent case, 

however, does not include the ACS policy and prescribe less frequent mammograms (2 year 
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interval) at older ages. For very frequent policies (e.g., the ACS), the imperfect adherence cases 

benefit more. Note that the USPSTF policy is not among the best policies for any of the 

adherence cases presented above.   

Evaluation of the impact of adherence behavior on the outcomes of a specific screening policy 

shows that higher adherent women always have lower breast cancer mortality risk. However, this 

does not apply to the QALYs; for some policies Case 2 with imperfect adherence behavior have 

higher QALYs than perfect adherent women (Case 3).   Let	∆<%	denote the percent of QALYs a 

woman in the adherence Case �	�= 1,2� loses due to her imperfect adherence to the prescribed 

screening policy	�, i.e., 

∆� = sc��]� − sc��]� sc��]� , � = 1,2 
3-8 

where sc��]�  is the QALYs of policy � for Case 3, a perfectly adherent woman. Figure 3-3 

shows 29 policies that have negative losses, implying that women with average adherence as the 

general population (Case 2) benefit more than perfectly adherent women.  Note that for all the 

policies considered in this study, Case 1 always has the lowest QALYs and thus positive values 

of ∆<% for all policies. 
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Figure  3-3 QALYs loss due to imperfect adherence 

3.3.4 Analyses on Lifetime Breast Cancer Mortality Risk 

The five best policies in terms of lifetime breast cancer mortality risk, interestingly, are the same. 

These policies are presented in Table 3-5. Note that the calculated breast cancer mortality 

presented here are very close to the CDC estimate of 1 in 37 women (~ 0.027) [41]. Unlike the 

first objective function (QALYs), the breast cancer lifetime mortality risk has a straightforward 

relation to the expected number of prescribed mammograms and the expected number of actual 

mammograms the woman undergoes. In other words, policies with more frequent mammograms 

decrease the risk of dying from breast cancer. The results show that among the adherence cases 

presented here, Case 3 (perfect adherent women) benefits the most and has the lowest risk of 

dying from breast cancer. This implies that, although exposure to mammography X-ray may 

increase women’s risk of developing breast cancer, on average it is not strong enough to affect 

the benefits of mammography examination in deceasing breast cancer lifetime mortality risk. 
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This is in line with a previous study on estimating the risk of radiation-induced breast cancer 

following exposure of the breast to ionizing radiation occurring during mammography tests [9]. 

Table  3-5 The five best policies for different adherence cases in terms of lifetime breast cancer 
mortality risk 

Policy 
Lifetime breast cancer 

mortality risk  
QALYs 

Case 1- A Specific Woman 
(40,1,n,n,100) 0.0263 37.4437 
(40,1,n,n,95) 0.0263 37.4439 
(40,1,n,n,90) 0.0264 37.4429 
(40,1,n,n,85) 0.0267 37.4405 

(40,2,50,1,100) 0.0273 37.4193 
Case 2- General Population 

(40,1,n,n,100) 0.0256 37.5304 
(40,1,n,n,95) 0.0256 37.5307 
(40,1,n,n,90) 0.0256 37.5306 
(40,1,n,n,85) 0.0258 37.5268 

(40,2,50,1,100) 0.0273 37.5214 
Case 3- Perfect Adherence  

(40,1,n,n,100) 0.0242 37.5013 
(40,1,n,n,95) 0.0242 37.5025 
(40,1,n,n,90) 0.0242 37.5044 
(40,1,n,n,85) 0.0244 37.5033 
(45,1,n,n,100) 0.0249 37.5172 

 

3.3.5 Efficient Frontier Policies and Policies in General Practice 

Table 3-6 presents the results for policies in general practice and no mammography policy for 

the three adherence cases.  
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Table  3-6 QALYs and, mortality risk for screening policies in general practice 

Policy 

Case 1- A Specific 
Woman 

Case 2-General 
Population 

Case 3- Perfect 
Adherence 

QALYs Mortality  QALYs Mortality QALYs Mortality  

ACS* 37.4437 0.0263 37.5304 0.0256 37.5013 0.0242 
USPSTF 37.2772 0.0362 37.3890 0.0348 37.4255 0.0339 

Every 2 Years*  37.3585 0.0313 37.4756 0.0299 37.5107 0.0289 

Every 3 Years* 37.3066 0.0347 37.4091 0.0334 37.4514 0.0327 
No mammography  37.0142 0.0527 37.0142 0.0527 37.0142 0.0527 
* Screening start age and end age for this policy is 40 and 100, respectively.  

As the results in sections 3.2.1 and 3.2.2 suggest, there is a tradeoff between the two objective 

functions. Figure 3-4 provides all policies (excluding “no mammogram” policy) along with the 

lists of efficient policies for each adherence cases. The efficient policies, ACS and USPSTF 

policies are highlighted in Figure 3-4. The screening starting age for all efficient policies (except 

for the perfect adherence case) is 40. It is in contrary to the earlier study [42] in which the author 

argues that the benefits for women younger than 50 are less certain because of the lower 

incidence of the disease. However, since disease progression rate is higher and the cancer 

sojourn time is shorter in women younger than 50, benefits of getting screened before age 50 is 

justifiable [43].  
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Policies QALYs BC 
Mortality 

Risk 

 

Case 1- A Specific Woman 
(40,1,n,n,95) 
(40,1,n,n,100) 

37.4439 
37.4439 

0.0263 
0.0263 
 
 
 

 

   
   
   

   

Case 2- General Population 
(40,1,n,n,95) 
(40,1,n,n,100) 

37.5307 
37.5307 

0.0256 
0.0256 

 
Case 3- Perfect Adherence  

(40,1,n,n,90) 37.5044 0.0242 

 

(45,1,n,n,90) 37.5202 0.0250 
(45,1,n,n,95) 37.5183 0.0249 
(40,1,70,2,90) 37.5252 0.0262 
(40,1,70,2,95) 37.5252 0.0262 

Figure  3-4 Efficient frontier policies for the three adherence cases 
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The current ACS policy (listed in bold in Figure 3-4) is only efficient for Case 1 and Case 2. For 

perfect adherence case, efficient frontier policies are similar to the ACS with one year interval 

between subsequent tests but smaller ending age. Note that, the USPSTF policy and other 

policies in general practice (for which the associated QALYs and breast cancer lifetime mortality 

risk are presented in Table 3-6) are not among the efficient policies for any of the adherence 

groups.  

It can be seen that there are more efficient policies for the perfect adherence case compared to 

the other two cases. This occurs because of the tradeoff between the two objective functions. For 

the perfect adherence case, the first objective (QALYs) requires less frequent mammograms due 

to disutility of mammogram tests and perfect compliance of this case with the prescribed policies. 

On the other hand, the second objective (lifetime breast cancer mortality risk) requires more 

frequent mammography tests to have a lower risk of dying from breast cancer. Therefore, for this 

case the efficient policies are more spread out. For the other two adherence cases, since women 

are more likely to skip a prescribed mammogram, the first objective requires more frequent 

mammograms (every year) to compensate for the skipped mammograms. Thus, we have fewer 

efficient policies for these cases.  

The tradeoff plots presented in Figure 3-4 are more spread for the perfect adherence case and 

gets denser and less spread as the adherence level decreases. This happens because as the 

adherence level decrease, policies converge to “no mammogram” policy with associated QALYs 

and lifetime breast cancer mortality risk of 37.0142 and 0.0527, respectively. 
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3.4 Conclusion 

Current screening mammography guidelines assume that women’s compliance with the 

recommendations is perfect, i.e., women undergo their mammograms as prescribed by their 

physicians/health providers. However, this is not the case in reality. Women skip mammograms 

for different reasons. This study investigates the effect of imperfect adherence for a wide range 

of screening mammography policies. Two different method of breast cancer detection are 

considered: mammography examination and self-detection. We also incorporate the possibility 

of detecting breast cancer within 12 months after a normal mammography screening (interval 

cancer), and the risk of developing radiation-induced breast cancer during mammography 

examination. A randomized partially observable Markov chain is proposed to evaluate and 

compare various screening policies and current practices in terms of two important health 

outcomes: quality adjusted life years (QALYs), and the lifetime mortality risk of breast cancer 

while incorporating women’s adherence behavior to mammography guidelines. 

Three different adherence cases are considered, including perfect adherence and two imperfect 

adherence cases. The adherence probabilities for imperfect adherence cases are estimated using a 

woman’s characteristics (e.g., age, race, marital status, perception of breast cancer risk, etc.). Our 

results indicate that depending on the policy under study, there is one adherence group that 

benefits the most in terms of QALYs. As the policies get more intense (more frequent policies), 

the general population case obtains higher QALYs comparing to the perfect adherence case. 

However, Case 1 (a specific woman), which has a very low adherence level, always has lower 

QALYs than the other two cases. In terms of lifetime breast cancer mortality risk, higher 

adherence cases experience lower mortality risk for all policies. A set of efficient frontier 
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policies are extracted for different adherence cases. The ACS policy was among the efficient 

frontier policies for the two imperfect cases, but not for the perfect adherence case. Comparing 

efficient frontier policies for different adherence cases indicates that on average women with 

higher level of adherence experience higher QALYs, lower lifetime breast cancer mortality risk 

and longer interval between two subsequent prescribed mammograms. 

The outcomes of this chapter along with the results of Chapter 2  can help physicians/health 

providers to tailor screening mammography recommendations based on their patient’s estimated 

adherence likelihood. In other words, based on the patient characteristics and estimated 

adherence level, physicians can decide if they should shorten or lengthen the interval between 

two subsequent mammograms. 

The direction for our future research is to incorporate the risk behavior of the decision maker and 

explore how different risk attitudes (risk averse, risk seeking) along with adherence behavior 

may affect a policy’s efficiency. In this study, our purpose is to evaluate the impact of adherence 

on patient outcomes.  Another possible direction is to optimally find a screening policy based on 

the patient estimated adherence behavior. It seems that screening adherence may be a function of 

a woman’s screening history; i.e., a woman with better screening history are more likely to 

adhere to the current screening recommendation. Although our study considers the screening 

history in estimating adherence probabilities based on a survey data, it does not incorporate the 

dynamic feature of this factor. In addition, adherence strongly depends on a patient’s experience 

in her previous screenings (e.g., false positives). We do not include these factors in our study due 

to lack of data with regard to these characteristics. 
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 Minimizing Overdiagnosis in Breast Cancer Screening 4

4.1 Introduction 

In Chapter 3, the potential benefits and risks associated with screening mammography are 

discussed. Unreliability of screening examinations, increased risk of radiation-induced cancer, 

and overdiagnosis are among the potential risks of screening. Overdiagnosis is known to be the 

most important disadvantage of cancer screening [1] as it can adversely affect people’s lives. 

Overdiagnosis is defined as the diagnosis of screen-detected cancers that would not have 

presented clinically in a woman’s lifetime in the absence of screening [2]. Overdiagnosis causes 

physical, psychosocial and economic harms by unnecessary labeling of patient with a lifelong 

diagnosis as well as unneeded treatments and surveillance [3].  

There are two possible explanations for overdiagnosis: 1) The cancer never progresses (or, in 

fact, regresses), or 2) the cancer progresses slowly enough that the patient dies from a competing 

cause before the cancer becomes symptomatic [3]. In other words, overdiagnosis occurs when 

"very slow" growing cancers (more precisely, at a slow enough pace that individuals die from 

something else before the cancer ever causes symptoms) are detected. The second explanation 

incorporates the interaction of three factors: the tumor size at detection, its growth rate, and the 

patient’s competing risks for mortality. Thus, even a rapidly growing cancer may still represent 

overdiagnosis if detected when it is very small or in a patient with limited life expectancy [4].  

Note that overdiagnosis is different from false positive. Overdiagnosis occurs when a disease is 

diagnosed correctly, but the diagnosis is irrelevant suggesting that the treatment for the disease 

is not needed. However, false positive is an initial test result that suggests the presence of a 

disease, but it is later proved (with additional testing) that the disease is not present. 
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As it is not possible to distinguish between lethal and harmless cancers, all detected cancers are 

treated. Overdiagnosis and overtreatment are therefore inevitable [5]. However, tailoring 

screening strategies can control the probability of overdiagnosis, and thus decrease the cost 

associated with overdiagnosis and overtreatment. 

Quantifying overdiagnosis, however, is challenging because it is impossible to distinguish 

between an overdiagnosed cancer and one that will become clinical at the time of diagnosis. 

There are various studies that quantified overdiagnosis resulting from cancer screenings. The 

magnitude of overdiagnosis estimates varies widely from one study to another. For example, 

according to Welch and Black [2], 25% of mammographically detected breast cancers are 

overdiagnosed. However, based on Jørgensen & Gøtzsche [4], one in three breast cancers 

detected in publicly organized mammography screening programs is overdiagnosed. Biesheuvel 

et al. [6] provided a very rough estimate of overdiagnosis, ranging from around 3 to 50% or more. 

In an earlier study in 2008, Duffy et al. [7] estimated the breast cancer overdiagnosis risk to be 

39%. However, in a later study [8] after a prolonged follow-up of a screening program in 

England and Wales, Duffy and Parmar reported an overdiagnosis risk of 7–8% for a biannual 

screening schedule. They found this estimate to be considerably more plausible than their own 

previous estimate of 39%. Carter et al. [9] conducted a systematic review on overdiagnosis 

studies, and identified the methods that have been used for measuring overdiagnosis of cancer. 

They analyzed the advantages and disadvantages of each method in providing reliable estimates 

of overdiagnosis. 

Most of the studies mentioned above are cohort studies or randomized controlled trial follow-up 

studies which estimate the overdiagnosis risk based on the changes in breast cancer incidence 
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following the introduction of screening programs in a population setting [4-8]. However, the 

downside of these studies is the substantial time and resource requirements due to the need for 

follow-up observations over a long period of time in order to get a reliable overdiagnosis 

estimate. Another approach in estimating overdiagnosis is through mathematical modeling. 

There are a few relevant studies in the literature that propose a mathematical framework for 

estimating overdiagnosis risk [10-12]. Davidov et al. [10] developed a mathematical model to 

evaluate the probability of overdiagnosis for cancer screening. They applied their model to 

hypothetical early detection programs for prostate cancer. Gunsoy et al. [11] developed a 

Markov simulation model for the evaluation of mammography screening in a cohort of British 

women born in 1935-40. They evaluated the impact of the screening frequency, starting and 

ending ages on breast cancer mortality reduction and overdiagnosis. Seigneurin et al. [12] 

developed a stochastic simulation model and an approximate Bayesian computation approach to 

quantify overdiagnosis.  

In this chapter, we propose a mathematical framework to estimate breast cancer lifetime 

overdiagnosis and mortality risks for different screening policies. In addition, we propose an 

optimization model to minimize lifetime risk of overdignosis of breast cancer while maintaining 

a patient’s lifetime breast cancer mortality risk at a predefined level. Our model provides a more 

flexible framework for modeling different uncertainty sources such as cancer sojourn time. 

Cancer sojourn time is defined as a time interval between the onset of a detectable preclinical 

cancer and the point when the cancer progresses to the clinical stage, causing signs and/or 

symptoms [13]. In addition, different from previous studies, we seek for the optimal screening 

policy that yields the minimum lifetime overdiagnosis risk.  
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The remainder of this chapter is organized as follows. In Section 4.2, the proposed model is 

presented. Section 4.3 presents the data sources and parameters estimation for our numerical 

studies. In Section 4.4, some mammography screening policies are evaluated and (near) optimal 

policies are obtained. Finally, Section 4.5 summarizes the findings and concludes this chapter.  

4.2 Proposed Model 

In the proposed model, we incorporate uncertainty in the onset of detectable preclinical cancer, 

variation in the cancer sojourn time, and competing causes of death. Our goal is to find the 

optimal breast cancer screening policies that minimize the overdiagnosis risk which is defined as 

the probability of detecting a cancer that would never develop symptoms or cause death during 

the patient’s lifetime in the absence of screening. The model also maintains the lifetime breast 

cancer mortality risk at a predefined threshold. Following is the list of notation used in the 

problem formulation. 

m number of screening examinations in the prescribed policy 

? screening schedule,? ={?�, … , ?9},where ?�’s are the decision variables 

representing the age at which a mammogram should be prescribed. We denote the 

beginning and ending of the decision period with ?y and	?9��, respectively. Note 

that ?y and ?9�� are not decision variables and just represent the decision 

horizon. 

\ random variable representing the patient’s age at the onset of the detectable 

preclinical cancer 

E random variable representing the cancer sojourn time  

E  random variable representing the remaining sojourn time (also known as forward 
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recurrence time) measured from age ?  
X patient health state space, X = {L�, EL, LL}, where L�, EL, LL represent a cancer-

free individual, a patient with screen detected breast cancer, and a patient with 

clinical (symptomatic) breast cancer, respectively. 

I� random variable representing the life years of an individual in health state � ∈ X 

I � random variable representing the remaining life years of a patient in health state 

� ∈ X at age ?  
��. � probability density function of  \ 

���. � probability density function of the cancer sojourn time when the cancer 

preclinical onset is in the �!" screening interval [?���, ?�� 
� |��. � probability density function of the forward recurrence time measured from age  

? 	given that the cancer preclinical onset (\) is in the �!" screening interval 

[?���, ?�� 
ℎ�|��. � conditional probability density function of  I � ,	the remaining life years of an 

individual in health state � given that she has survived to age  � 

H�|��. � conditional cumulative distribution function of I � ,	the remaining life years of an 

individual in health state � given that she has survived to age  �  

  

  

C  sensitivity of mammography (probability of detecting a cancer when it is present) 

at age ?  



 

71 

 

4.2.1 Overdiagnosis 

The objective of the model is to minimize the probability of breast cancer overdiagnosis, i.e., the 

probability of detecting a cancer through screening that would never develop symptoms or 

causes death during a patient’s lifetime. Figure 4-1 shows the case when overdiagnosis occurs.  

 

 

 

 

 

 

Figure  4-1 Representation of overdiagnosis in cancer screening 

 

In the case of overdiagnosis, the breast cancer is detected through a screening examination and 

treatment starts upon cancer detection. However, if the breast cancer was not detected through 

screening, the patient would have died from a competing cause before the breast cancer grows to 

the clinical stage. In other words, the cancer grows slowly enough that the patient would die 

from a cause other than breast cancer before the cancer became symptomatic. Therefore, the 

probability of overdiagnosis is equivalent to the conditional probability that at the time of cancer 

detection (? �, the remaining cancer sojourn time (E ) is greater than the remaining life years of a 

cancer-free individual �I ���, given that the cancer is diagnosed through screening. Suppose F is 

the event that the cancer is detected through screening examinations. Then the probability of 

overdiagnosis is 
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�>2E > I ���F3. 4-1 

Let [ ∈ [?���, ?��, � = 1, 2, … ,�, be the onset of the detectable preclinical breast cancer. Given 

that the cancer is diagnosed at the �!"screening (at age	? , � = �, � + 1,… ,�), the conditional 

probability of overdiagnosis is 

�� �[� = � � � |��], [�ℎ��| �>��>�]�
y

�
y 																						

= � � |��], [�H��| �]��],�
y  

4-2 

which calculates the probability that the remaining sojourn time is greater than the remaining life 

years of a cancer-free individual at age ? . Note that the remaining life years of a cancer-free 

patient is independent of the cancer onset and remaining sojourn time. The upper bound of the 

remaining sojourn time is infinity (+∞) implying that it is possible that the cancer would never 

advance to the clinical stage or produce symptoms. In addition, the conditional probability 

density function of the cancer sojourn time (���. �) and the conditional probability density 

function of the forward recurrence time (the remaining sojourn time,	� |��. �) are related through 

the following equation.  

 

� |��], [� = �>2E = ? − [ + ]�E > ? − [3 = ��2? − [ + ]3�̅�2? − [3 , ∀] > 0 4-3 

 

where �̅��. � is the survival function of the cancer sojourn time when the cancer onset is at 

[ ∈ [?���, ?��.  
In addition, diagnosing the cancer at age ?  through screening implies that the cancer has not 

become symptomatic yet. Let � �[� be the probability that a cancer with onset [ ∈ [?���, ?�� has 
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not developed to a clinical stage at age ? 	yet (i.e., the cancer sojourn time is greater than	? − [, 
Figure 4-2), given that the cancer sojourn time is greater than	? �� − [, i.e., 

� �[� = �>2E > ? − [3�>2E > ? �� − [3 = �̅�2? − [3�̅�2? �� − [3 , � > �.			 4-4 

 

Note in the case that � = �, � �[� reduces to �>�E > ?� − [�. 
 

 

 

 

 

Figure  4-2 Representation of a hypothesized screening policy, cancer onset and detection 

 

Let F�  be the event that the cancer is diagnosed at the �!" screening when the onset of the 

detectable preclinical cancer is in the �!" screening interval.  This implies that the cancer was 

missed in all previous screenings (�!", �� + 1�!", … , �� − 1�!"�, and then detected at the �!" 

examination which occur with probability  

�>2F� 3 = �C 																					� = �,
C ��1 − C@��−1

@=� � > �. 4-5 

Moreover, assume that F� is the event that the cancer is diagnosed through screening given that 

its preclinical onset is in the ��� screening interval. Then, F� 	= ⋃ F� 9 �� , and F�   ] are mutually 

? �� 

Time 

[ Cancer  
Detection 

?� ?T ?��� … ?� … ?  
? − [ 

Symptomatic 
Cancer  
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exclusive events. Therefore, the probability that a cancer with preclinical onset in the �!" interval 

is diagnosed through screening is	 
�>�F�� = +�>2F� 39

 �� . 4-6 

Hence, following is the probability of overdiagnosis given that the cancer onset is at [ ∈
[?���, ?�� 

���[� = +�� �[�9
 �� � �[�	�>2F� 3�>�F�� . 4-7 

In addition, given that the patient develops breast cancer in her lifetime, the probability that the 

cancer onset is in the screening interval [?���, ?�� is 
¡ ¢�!�£!¤¥¤¥¦§: , where �is the lifetime probability 

of developing breast cancer and � = ¡ ��[��[.¨©ª§y  Therefore, since cancer onset at different 

intervals are mutually exclusive, the probability of overdiagnosis for screening schedule 

? = {?�, ?T, … , ?9} is  

«¨ = 1�+� ��[����[��[¨¥
¨¥¦§

9
��� 															 

																																																									
= 	 1�++�>2F� 3�>�F�� � ��[�¨¥

¨¥¦§
9
 �� � �[�� �� �], [�H��| �]�	�]�[�

y .9
���  

4-8 

 

4.2.2 Lifetime Breast Cancer Mortality Risk 

To calculate the lifetime breast cancer mortality risk, two cases need to be considered: i) when 

the cancer is diagnosed through screening examination, and ii) when the cancer progresses to a 
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clinical stage and becomes symptomatic in the interval between two prescribed screening tests. 

These two distinct cases are considered because symptomatic cancers, as opposed to screening 

detected cancers, are more advanced and may lead to higher breast cancer mortality risk [14]. 

Suppose that the cancer preclinical onset is in the �!"	prescribed screening interval, i.e. \ = [ ∈
[?���, ?��. The lifetime cancer mortality risks for these two cases are discussed below. 

Consider the first case when the cancer is diagnosed at age ?  or the �!" screening test (� ≥ ��. In 

this case the probability that the patient dies from breast cancer is 

¬ ,� = �>2I � < I ��3 = � ℎ��| �>�H�| �>��
y �>. 4-9 

 

Given that the cancer is detected at the �!" screening test, the patient should survive to age ? . 
The probability that the patient does not die from other causes before age ? 	given that she has 

survived to age ? �� is  

�2I�� > ? 3�2I�� > ? ��3. 4-10 

 

Detecting the cancer at the �!" screening test implies that the cancer sojourn time is greater than 

? − [.	This is also suggesting the cancer does not develop any symptoms up to age 	? ��. The 

associated probability of this event as presented in Equation 4-4 is � �[� = ®̅¥2¨8�!3®̅¥2¨8¦§�!3. 
In addition, the probability that the cancer is diagnosed at the �!"screening is presented in 

Equation 4-5. Therefore, using the total probability rule the unconditional probability that a 

screen detected cancer causes death is  
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+¬ ,� ��I�� > ? ���I�� > ? ��� � �[��>2F� 39
 �� . 4-11 

Since cancer onset at different intervals are mutually exclusive, using the total probability rule, 

the lifetime breast cancer mortality risk for the first case is 

K¨,� = ++�>2F� 3 ��I�� > ? ���I�� > ? ��� ¬ ,� � ��[�� �[��[¨¥
¨¥¦§

9
 ��

9
��� . 4-12 

 

The second case considers a situation in which the cancer becomes symptomatic. Assume that 

the cancer becomes symptomatic at age u	∈ 2? ��, ? 3, � = � + 1,… ,�. Given that the cancer has 

not been detected up to age	? ��, the probability that the cancer becomes symptomatic at age u in 

the interval between ? �� and ?  is 

�T�[, ¯� = °¥�±�®̅¥�¨8¦§�!�. 4-13 

In this case, the conditional breast cancer lifetime mortality risk at age ̄ is  

¬ ,T�¯� = � ℎ��|±�>� ∙ H��|±�>��
y �>. 4-14 

Similar to the first case, the probability that the patient does not die from a competing cause 

given that she has survived to age ? �� (when she received a false negative screening result) is 

��I�� > ¯��2I�� > ? ��3. 4-15 

Therefore, the associated cancer mortality risk when the cancer onset is in the interval [?���, ?��, 
and the cancer becomes symptomatic at age ¯ in the interval 2? ��, ? 3, � = � + 1, …� is 

��1− C³� ��
³�� � �2�[, ¯� �´IL� > ¯µ�´IL� > ?�−1µ

?�
?�−1 ¬�,2�¯�	�¯, 4-16 
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which calculates the probability that the cancer does not get detected through previous 

screenings (∏ �1 − C³� ��³�� �	and the probability that the individual dies from breast cancer when 

the cancer becomes symptomatic in the interval �? ��, ? �. Summing over all screening intervals 

after the cancer onset interval, the cancer mortality risk is  

 

·��[� = + ��1 − C³� ��
³�� � �T�[, ¯� ��I�� > ¯��2I�� > ? ��3¨8

¨8¦§ ¬ ,T�¯�	�¯9��
 ���� . 4-17 

 

In addition, it is possible that the cancer becomes symptomatic before the first scheduled 

screening in the interval �[, ?��. In such a case, the following is the associated cancer mortality 

risk, which has a similar logic as Equation 4-17.  

·T�[� = � ���¯� ��I�� > ¯��2I�� > ? ��3¨¥
! ¬ ,T�¯�	�¯ 4-18 

Equation 4-18 calculates the probability that the cancer becomes symptomatic at age ¯	����¯��, 
the patient does not die from a competing cause in the interval (? ��, ¯�, i.e., 

¸2¹º»¼±3¸2¹º»¼¨8¦§3, and she 

eventually dies from cancer (¬ ,T�¯�). 
Similar to the first case, since cancer onset at different intervals are mutually exclusive, the 

lifetime cancer mortality risk of screening schedule ? for a symptomatic cancer is  

K¨,T = +� ��[�[·��[� + ·T�[�]¨¥
¨¥¦§ �[9

��� . 4-19 
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Considering both cases of cancer detection, the lifetime cancer mortality risk for schedule ? is  

½¨ = K¨,� + K¨,T. 4-20 

Optimization Model 

The proposed optimization model can then be written as  

Min	«¨  Min	�  

s.t.  ½¨ < ¿ 4-21 ? < ? ��   ∀� 4-22 ? ∈ {?y, ?y + δ, ?y + 2δ… , ?9�� − δ} ∀�,	 4-23 

 

where constraint 4-21 ensures that the lifetime mortality risk is less than a predefined threshold; 

constraints 4-22 and 4-23 determine the order of screening decisions and age range in which the 

screening tests should be prescribed, respectively. ?y and ?9��	in equation 4-23 represent 

starting and ending age of a screening schedule. In addition, δ in constraint 4-23 represents the 

minimum interval between two subsequent screening tests. 

4.3 Model Inputs 

Table 4-1 presents the summary of data sources for the different inputs (parameters and 

probability distributions) incorporated in the model.  
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Table  4-1 Data sources for the model input estimations 
Description Reference 

Distribution of onset of preclinical detectable 
breast cancer 

 Parmigiani and Skates [15] 

Parameters of preclinical sojourn time distribution 
(exponential case) 

Shen and Zelen [16] 
Tabar et al. [17] 

Parameters of preclinical sojourn time distribution 
(lognormal case) 

Peer et al. [21] 

Probability density of remaining life years of a 
cancer-free individual 

The US life table for females (Center for 
Disease Control and Prevention) [22] 
and Surveillance, Epidemiology and 
End Results (SEER)  [23] 

Age and stage specific probability distribution of 
death from breast cancer 

Schairer et al. [24] and Zhang [25]  

Stage distribution of screen detected breast cancers Bleyer and Welch [26] 
Stage distribution of clinically detected breast 
cancers 

Plevritis et al. [27] 

Age specific mammography sensitivity Kerlikowske et al. [28] 

The probability distribution of breast cancer onset is the most challenging distribution in this 

study to estimate. Parmigiani and  Skates [15] developed a convolution model to estimate the age 

of disease onset distribution based on the natural history of disease and the data available on 

disease incidence rate, cancer sojourn time, competing causes of death, etc. They then used 

singular value decomposition method to solve their developed model numerically. We applied 

their method to estimate breast cancer preclinical onset age distribution in this study. Figure 4-3 

shows the extracted probability density for the preclinical breast cancer onset. 

 



 

80 

 

  

Figure  4-3 Estimated distribution of the age of onset of detectable breast cancer 

There are various studies in the literature estimating the distribution of breast cancer sojourn time. 

Some of these studies used exponential specification in estimating the sojourn time distributions 

[16-19]. However, the assumption of exponential duration in the preclinical stage has some 

limitations. The first concern is the implausible assumption of mode at zero, which corresponds 

to an instant transition from preclinical to clinical stage, and the fast decaying tail, which does 

not adequately account for slow growing tumors [15]. The second limitation is due to the 

memoryless property of the exponential distribution, which implies that the sojourn time and 

remaining sojourn time upon cancer detection through screening have the same distribution. In 

other words, the hazard function of sojourn time is constant, implying that as time passes the 

instantaneous probability that the cancer develops to a clinical stage is constant. However, it 

would be more plausible that the instantaneous probability of developing to a clinical stage 

increases with time. A second distribution proposed for modeling cancer sojourn time is 

lognormal distribution. Spratt et al. [20] postulated a lognormal distribution for sojourn time 

based on the growth patterns of breast tumors. In this study, we examine both exponential and 

lognormal sojourn time distributions.  
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For the exponential case, the age-specific rate parameters are adopted from the mean sojourn 

time provided in Shen and Zelen [16], and Tabar et al. [17]. Figure 4-4 presents the estimated 

exponential breast cancer sojourn time distributions for the different age groups: 40-49, 50-59, 

and 60 and older. It also presents the corresponding hazard function for different age groups.  

For the case with lognormal sojourn time, the age-specific distribution parameters are estimated 

using the median and upper 95% quantile matching Peer et al. [21]. The estimated lognormal 

breast cancer sojourn time distributions for the three age groups, along with the corresponding 

hazard functions are presented in Figure 4-5. As the results show, the hazard functions for this 

case are increasing for most parts. However, for the first and second age groups, the hazard rate 

starts decreasing very slowly for after about three years and five years, respectively. This 

suggests that if no symptom appears by a certain amount of time after the cancer onset, then the 

instantaneous probability that the cancer actually becomes symptomatic starts to decrease 

(because the tumor stops growing or it regresses). 

The probability distribution of the remaining life years for a cancer-free individual is extracted 

from the 2008 US life table for females [22] and the Surveillance, Epidemiology and End Results 

(SEER) data [23]. SEER data is used to exclude the probability of death from breast cancer in the 

life table and adjust the probabilities for women without breast cancer.  
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Figure  4-4 Estimated exponential breast cancer sojourn time distribution for different age groups 
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Figure  4-5 Estimated lognormal breast cancer sojourn time distribution for different age groups 
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We estimate the probability density of remaining life years for the two cases of cancer detection 

(screen detected and symptomatic breast cancer) using the data available in Schairer et al. [24] 

and Zhang [25]. We adopt the stage distributions of screen detected and symptomatic breast 

cancer from Bleyer and Welch [26] and Plevritis et al. [27], respectively, and adjust the 

probability density of remaining life years for the two cases.  

The mortality probabilities in [22, 24-25] are presented in tabular format, and therefore we used 

piecewise-constant density function to model the probability density functions. Let ��� be the 

probability that an individual of age � in health state � dies in the age interval ��, � + 1]. 
Therefore,  

�>2I� ≤ �3 = 1 −���Â� 1 − ���� 4-24 

and, 

ℎ |��>� = �>2I� ≤ � + 13 − �>2I� ≤ �3�>�I� ≥ �� , � < > ≤ � + 1, � > �. 
 

4-25 

Lastly, age specific mammography screening sensitivities are extracted from Kerlikowske et al. 

[28]. 

4.4 Computational Results 

Disease onset ad conditional remaining life year functions do not have a general closed form and 

are only available in tabular format. This makes analytical calculation of integration very 

challenging or even impossible. Therefore, in this study we exploit Monte Carlo integration 

method to calculate the integrations in the proposed model.  Monte Carlo integration methods are 
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sampling methods to calculate complicated integrations, based on the central limit theorem and 

the law of large numbers. Please refer to Robert and Casella [29] for more details.  

In addition, due to the complexity of the model, solving the optimization model through 

analytical approaches is not feasible. Therefore, we apply a combination of bisection method and 

Particle Swarm Optimization (PSO) method to find the (near) optimal solution of the proposed 

model. 

The results presented in this section have two parts. In the first part we evaluate different 

screening policies, including the ACS and the USPSTF policies, in terms of the breast cancer 

overdiagnosis and mortality risks. The second part presents the (near) optimal policies obtained 

using the bisection and PSO algorithm. 

4.4.1 Policies Evaluation  

In this section we present the overdiagnosis and lifetime mortality risks of different policies for 

two reasons: (1) to validate our model by comparing the obtained risk values with numbers 

reported in the literature, and (2) to evaluate these polices and compare their performance in 

terms of breast cancer overdiagnosis and mortality risks. We evaluate different static as well as 

dynamic screening policies with two and three different screening intervals between subsequent 

tests. Table 4-2 presents the policies evaluated in this chapter. Including the USPSTF policy, in 

total we evaluated 241 policies. We present these policies using the same structure as introduced 

in Chapter 3. For a policy with three different screening intervals, we use a similar structure as 

well. For example, policy (40,1,50,2,60,3,80) recommends women get annual screening tests 

between age 40 to 50, then switch to biennial screenings up to age 60, and finally undergo 

screenings every three years up to age 80. 
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Table  4-2 Screening policies considered in the numerical analysis 

policy 
Starting 

age 
1st 

interval 
1st switch 

age 
2nd  

interval 
2nd switch 

age 
3rd 

interval Ending age 

Static 40,50 1,2,3 - - - - 80,90,100 
Dynamic with 2 
screening 
intervals 

40,50 1,2,3 50,60,70 1,2,3 - - 80,90,100 

Dynamic with 3 
screening 
intervals 

40,50 1,2,3 50,60,70 1,2,3 60,70,80 1,2,3 80,90,100 

4.4.2 Exponential Sojourn Time 

Figure 4-6 presents the breast cancer overdiagnosis and mortality risks of the policies considered 

in this chapter along with the efficient frontier policies (highlighted) for the case with 

exponential sojourn time.  

 

 

Figure  4-6 Overdiagnosis and mortality risks of the screening policies in Table 4-2 under 
exponential sojourn time 

The overdiagnosis risk estimates for biannual screening schedules are very close to the values 

reported in the literature: Duffy et al.’s estimate of 7%-8% [8], Zackrisson et al.’s estimate of 10% 
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[30], De Gelder estimate of 8.9–15.2% [31] and 7.2% [32]. To the best of our knowledge there is 

no overdiagnosis reported in the literature for annual screening policies. Therefore, we did not 

have a reference to compare our results with. The breast cancer mortality risks are also 

comparable with the mortality risks estimated in Chapter 3 (reported in Table 3-6). Note that, the 

underlying sojourn time distribution for both results in Table 3-6 and Figure 4-6 is exponential.  

The results in Figure 4-6 show that both the ACS and the USPSTF policies are efficient. In fact, 

the USPSTF policy and the ACS policy have the lowest overdiagnosis and mortality risk among 

the evaluated policies, respectively. Most of the efficient frontier policies (except for the ACS 

and (40,1,n,n,90)) recommend women stop screening at or before age 80. This is because after 

age 80, the probability of death from competing causes significantly increases which results in 

high overdiagnosis risk. In addition, most efficient policies (except for the USPSTF and 

(50,1,60,3,80)) recommend women start screenings at age 40. This maintains both the 

overdiagnosis and mortality risks at a lower level. In addition, in terms of the distribution of 

screening tests in the efficient frontier policies, more frequent tests are recommended in the age 

interval 50 to 60 when the breast cancer onset is more likely. 

4.4.3 Lognormal Sojourn Time 

The corresponding overdiagnosis and mortality risks for the case with lognormal sojourn time 

with efficient frontier policies highlighted are presented in Figure 4-7. The overdiagnosis risks 

for this case are very close to the exponential case, and therefore comparable with the reported 

values in the literature [8, 30-32]. Also, the mortality risks are very close to the mortality risk 

estimations reported in Table 3-6 in Chapter 3.  
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Similar to the case with exponential sojourn time, the ACS policy with the highest number of 

screening tests has the highest overdiagnosis and lowest lifetime breast cancer mortality risk and 

the USPSTF, on the other hand has the lowest overdiagnosis risk. In addition, the recommended 

stopping age in most efficient policies is 80 to maintain a low overdiagnosis risk. Similar to the 

exponential sojourn time case, more screening tests are distributed between age 50 to 60 

comparing to the other age intervals. 

 

Figure  4-7 Overdiagnosis and mortality risks of the screening policies in Table 4-2 under 
lognormal sojourn time 

4.5 Policy Optimization 

In this section, the algorithm to obtain the (near) optimal polices and the extracted (near) optimal 

policies are presented. A combination of bisection and binary Particle Swarm Optimization (PSO) 

is applied to obtain near optimal policies.  
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PSO is originally attributed to Kennedy, Eberhart [33] and is a biologically-inspired algorithm 

motivated by a social analogy, such as flocking, herding, and schooling behavior in animal 

populations. The idea behind PSO is that the individuals that are part of a society hold an opinion 

that is part of a "belief space" and shared by every possible individual. Individuals may modify 

this "opinion state" based on the knowledge of the environment and the individual's previous 

history of states (its memory). For more details on PSO, please refer to [33]. 

The solutions or particles (policies) are encoded as a binary string so that a one (zero) represents 

a screening (no screening) at the corresponding age. There are two stages for the optimization 

process. In the first stage, we determine the minimum number of screening examinations (�∗) 
needed to guarantee a mortality risk lower than the predefined threshold, ¿.		We use the bisection 

method and PSO to determine the optimum number of screening tests. The number of tests is 

determined based on the bisection method. For each fixed number of tests, the policy with 

minimum mortality risk is obtained using PSO. Note that, it is critical for our algorithm to 

preserve the number of screening tests when generating a new particle. Therefore, we develop a 

variant of PSO in which the number of swaps between 0’s and 1’s in a particle (solution) is the 

same (Please refer to Figure 4-8). 

In the second stage, the (near) optimal policy with the following objective function is extracted 

using a similar PSO algorithm.  

� = «¨ +� ∗ �½¨ − ¿� 4-27 

In Equation 4-27, �	is the penalty for violating constraint 4-21 in the proposed model. The 

pseudocode of the bisection and particle swarm optimization is presented in Figure 4-8. Note that 

we used the (near) optimal policy found in the first stage as an input for the second stage. 
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We assume that the threshold for the mortality risk (¿� is 0.0270 (the lifetime breast cancer 

mortality risk reported by the American Cancer Society: 1 in 37 [34]). We also assume that	?y =
40, ?9�� = 100, and	� = 1	year.  

4.5.1 Parameter Tuning 

The selection of PSO parameters influences the performance of the heuristic. Thus, we conduct a 

formal investigation through design of experiments (DOE) to select the best combination. 

Following is the list of parameters considered in the experimental design.  

1) Swarm size: the swarm size influences performance of PSO. Too few particles may cause 

the algorithm to get trapped in local optima, while too many particles slow down the 

algorithm. There is no exact rule in the literature for selection of swarm size. But 

generally, when dimension of the problem increases, the swarm size should also be 

increased [36]. 

2) Cognitive acceleration coefficient (Ã�): this represents the weighting of the stochastic 

acceleration terms that pull particles towards	�ÄÅ�!, i.e., the best solution found by a 

specific particle. If the value of this constant is too high, the particles move abruptly and 

the risk of getting trapped in local optima increases. Conversely, if the value is too low, 

the particles move too slowly, and computational effort increases significantly [35]. 

3) Social acceleration coefficient (ÃT): this represents the weighting of the stochastic 

acceleration terms that pull particles towards	gÄÅ�!, i.e., the best solution found. Similar 

to the cognitive acceleration coefficient, too high or too low value for this parameter can 

cause getting stuck to local optima or non-convergence of the algorithm, respectively 

[36].  
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Step 1: Bisection method and Particle Swarm Optimization ��El�� to determine Ç∗ 

procedure J�EÈÃ�@, ¯� � ← @ + ¯2  

   While	�¯ − @ ≥ 1� 

       If	��El�	��� < 	¿� then ¯ ← � 

       If	��El����	 ≥ ¿� then 	@ ← � 

  EndWhile 

end procedure 

 

procedure �El���� 

initialization; 

   repeat     

      for i = 1 to number of individuals do 

           if ������� < ��JÈ][ − ����� then              	��� evaluates the mortality risk (Eq. 4-21) 

                         JÈ][ − ���� ← ����  
          end if 

           if ������� < ��JÈ][� then  

                         JÈ][ ← ����  
          end if 

      end for 

      for i = 1 to number of individuals do 

          for d = 1 to number of dimensions do 

                Ê�£�[� = Ê�£�[ − 1� + Ã�Ë���JÈ][�=@� − �=@�� + ÃTËT��JÈ][�=@� − �=@�� 

              R�[� = Ê�£�[� − Ê�£�[ − 1� 

              sort R�[� according to a descending order 

              randomly choose an index ���� from the Max range of R�[�  

                �������� ← 1 

              randomly choose an index ��T� from the Min range of R�[� and  

                 ������T� ← 0 

      end for 

   end for 

  until stopping criteria 

end procedure 

 

Step 2: Particle Swarm optimization �ÌÍÎÏ� with Ç = Ç∗ to determine the (near) optimal policy 

with the minimum overdiagnosis and a mortality risk less than ¿ �ElT��∗, �JÈ][� is similar to �El� with � = «¨ +� ∗ �½¨ − ¿� 

Figure  4-8 Pseudocode of the bisection and Particle Swarm Optimization methods 
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In addition, the relative value of these cognitive and social acceleration coefficients is critical 

and affects the algorithm’s performance. When the value of the cognitive acceleration coefficient 

(Ã�) increases, it enhances particles’ attraction towards �ÄÅ�! and decreases their attraction 

towards gÄÅ�!, and vice versa. In the literature, the setting of Ã� = ÃT = 2	has been proposed as a 

generally acceptable setting for most problems, and is widely used in practical applications of 

PSO [35]. 

Three levels of each factors considered in the experimental design analysis are shown in Table 4-

3. A 3�	factorial design is conducted. Response variables for each combination are calculated as 

the average of objective function values over all best values found by particles in the swarm. The 

algorithm performance is not sensitive to the swarm size, and does better with lower value for 

cognitive acceleration coefficient comparing to social acceleration coefficient.  

 
Table  4-3 Factorial design results 

Parameter Levels 
Final 

Selection 
Swarm size  30, 40, 50 30 
Cognitive acceleration coefficient (Ã�� 1, 2, 3 1 
Social acceleration coefficient (ÃT� 1, 2, 3 2 

4.5.2 Optimization Results  

Table 4-4 presents the (near) optimal policies for the cases with exponential and lognormal 

sojourn time.  

For the case with the exponential sojourn time, the (near) optimal policy includes 20 

examinations	��∗ = 20�. The corresponding breast cancer overdiagnosis and mortality risks for 

this policy are 0.0326 and 0.0269, respectively. Note that most screenings are distributed in early 

ages (40 to 65) and there are very few tests in the interval between 66 and 74, and no tests after 
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age 74. This is due to the fact that at older ages, sojourn time is longer, and there are more aging-

related mortality causes. Therefore, from both the overdiagnosis and mortality risk perspectives, 

it is plausible to have fewer tests at older ages. Increasing the number of prescribed screenings 

yields a policy with slightly higher overdiagnosis and lower mortality risks.  

The (near) optimal policy for the case with lognormal sojourn time includes 19 screening 

tests	��∗ = 19�. This policy yields overdiagnosis and mortality risks of 0.0398 and 0.0269, 

respectively, which are very close to the risks of the (near) optimal policy with exponential 

sojourn time. Similar to the exponential case, most screening tests are prescribed at early ages 

(between age 40 and 65) and there is no prescribed examination after age 81.  

Note that in both exponential and lognormal sojourn time models, the (near) optimal policies 

have the same number of tests as or fewer tests than the “every three years” policy, and yet has a 

lower mortality risk and evidently lower overdiagnosis risk. Therefore, the results suggest that, 

in-practice policies with evenly distributed screening tests throughout the patient life are not 

efficient.  

Comparing the results for the exponential and lognormal cases implies that the (near) optimal 

policies follow a similar structure in both cases: more tests at younger ages and fewer tests as a 

woman ages. However, the (near) optimal policy in the case with lognormal distribution 

prescribes screenings till older ages (age 81). This is due to the increasing probability of 

instantaneous symptomatic cancer with time when the sojourn time is modeled as lognormal, as 

opposed to the constant probability of instantaneous symptomatic cancer when sojourn time is 

exponential.   
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Table  4-4 (Near) optimal policies found for both exponential and lognormal sojourn time 

Age 
Exponential 

Sojourn Time  
Lognormal 

Sojourn Time Ç∗ = ÏÑ Ç∗ = ÒÓ 
40 0 1 
41 1 0 
42 1 1 
43 1 0 
44 1 1 
45 1 0 
46 1 1 
47 1 0 
48 1 1 
49 0 1 
50 1 1 
51 0 0 

52 1 0 
53 0 1 
54 1 0 
55 1 1 
56 1 0 
57 0 1 
58 1 1 
59 0 0 
60 1 0 
61 0 1 
62 1 0 
63 0 1 
64 1 0 
65 0 1 
66 1 0 
67 0 0 
68 0 1 
69 1 0 
70 0 0 
71 0 1 
72 0 0 
73 0 0 
74 1 1 
75 0 0 
76 0 0 
77 0 1 
78 0 0 
79 0 0 
80 0 0 
81 0 1 

Mortality Risk 0.0269 0.0269 
Overdiagnosis Risk 0.0326 0.0398 
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4.6 Conclusion 

Ideally, screening interventions aim to detect diseases that will ultimately cause harms, and the 

purpose of screening intervention is to advance the detection time, when the disease is in its early 

stages and is more likely to be cured. However, there is always risk of overdiagnosis and 

overtreatment when detecting a disease in its early stages. Overdiagnosis of a disease is defined 

as the diagnosis of an asymptomatic disease having no signs or symptoms, which would have 

never become symptomatic during an individual’s remaining lifetime. The fundamental idea of 

overdiagnosis is that screening intervention detects the disease at an earlier age than it would 

have been diagnosed under usual care. 

In this chapter we derive the equations for the probability of breast cancer overdiagnosis and 

mortality risks. Although applied to breast cancer, the proposed model can be generalized to 

calculate risks for any other types of cancer. We evaluate the risks associated with in-practice 

and alternative mammography screening policies recommended with different health agencies. 

The overdiagnosis and mortality risks for several in-practice policies including the ACS and the 

USPSTF policies are derived. Our estimates of the overdiagnosis and mortality risks are 

consistent with the values reported in previous studies in the literature and the derived mortality 

risk estimation based on the model proposed in Chapter 3. 

In addition, we derive the (near) optimal policies with minimum overdiagnosis risk that are 

guaranteed to have a mortality risk lower than the average breast cancer mortality risk reported 

by the American Cancer Society (1 in 37 lifetime risk of dying from breast cancer). We consider 

two possible distributions for cancer sojourn time: exponential and lognormal distributions. The 

derived (near) optimal policies mainly recommend more screenings at early ages (40-65) when 

the cancer sojourn time is shorter and the probability of dying from competing causes are lower. 
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There are more dispersed examinations after age 65, and no recommended screening after age 74 

and 81 for exponential and lognormal sojourn time, respectively. Results show that more 

efficient policies with fewer screening examinations and lower overdiagnosis and mortality risks 

than in-practice policies can be obtained. 



 

97 

 

References 

1. Heywang-Köbrunner, S. H., Hacker, A., & Sedlacek, S. (2011). Advantages and 
disadvantages of mammography screening. Breast Care, 6(3), 199-207. 
 

2. Welch, H. G., & Black, W. C. (2010). Overdiagnosis in cancer. Journal of the National 
Cancer Institute, 102(9), 605-613. 

 
3. Black W. C. 2000. Overdiagnosis: an underrecognized cause of confusion and harm in cancer 

screening. J Natl Cancer Inst; 92:1280-2. 
 
4. Jørgensen, K. J., & Gøtzsche, P. C. (2009). Overdiagnosis in publicly organised 

mammography screening programmes: systematic review of incidence trends.Bmj, 339. 
 
5. Welch GH. Should I be tested for cancer?. 2004. California: University of California Press. 

 
6. Biesheuvel C, Barratt A, Howard K, Houssami N, Irwig L. 2007. Effects of study methods 

and biases on estimates of invasive breast cancer overdetection with mammography 
screening: a systematic review. Lancet Oncol. 8:1129–1138 

 
7. Duffy SW, Lynge E, Jonsson H, Ayyaz S, Olsen AH (2008) Complexities in the estimation 

of overdiagnosis in breast cancer screening. Br J Cancer 99: 557–562 
 

8. Duffy, S. W., & Parmar, D. (2013). Overdiagnosis in breast cancer screening: the importance 
of length of observation period and lead time. Breast Cancer Res, 15(3), R41. 

 
9. Carter, J. L., Coletti, R. J., & Harris, R. P. 2015. Quantifying and monitoring overdiagnosis 

in cancer screening: a systematic review of methods. BMJ, 350, g7773. 
 

10. Davidov, O., & Zelen, M. (2004). Overdiagnosis in early detection programs. 
Biostatistics, 5(4), 603-613. 

 
11. Gunsoy, N. B., Garcia-Closas, M., & Moss, S. M. (2014). Estimating breast cancer mortality 

reduction and overdiagnosis due to screening for different strategies in the United 
Kingdom. British journal of cancer. 

 
12. Seigneurin, A., François, O., Labarère, J., Oudeville, P., Monlong, J., & Colonna, M. 2011. 

Overdiagnosis from non-progressive cancer detected by screening mammography: stochastic 
simulation study with calibration to population based registry data. BMJ, 343. 
 

13. Shen, Y., & Zelen, M. (2001). Screening sensitivity and sojourn time from breast cancer 
early detection clinical trials: mammograms and physical examinations. Journal of Clinical 
Oncology, 19(15), 3490-3499 

 



 

98 

 

14. Caumo, F., Vecchiato, F., Strabbioli, M., Zorzi, M., Baracco, S., & Ciatto, S. (2010). Interval 
cancers in breast cancer screening: comparison of stage and biological characteristics with 
screen-detected cancers or incident cancers in the absence of screening. Tumori, 96(2), 198-
201. 

 
15.  Parmigiani G.,  Skates S. (2001). Estimating distribution of age of the onset of detectable 

asymptomatic cancer. Mathematical and Computer Modelling, 33: 1347-1360. 
 
16. Shen, Y., & Zelen, M. (2005). Robust modeling in screening studies: estimation of sensitivity 

and preclinical sojourn time distribution. Biostatistics, 6(4), 604-614. 
 
17. Tabar L, Duffy SW, Vitak B, Chen H. H., Prevost T.C., (1999). The natural history of breast 

carcinoma. Cancer 86:449-462, 1999 
 

18. Chen, H. H., Duffy, S. W., & Tabar, L. (1997). A mover-stayer mixture of Markov chain 
models for the assessment of dedifferentiation and tumour progression in breast cancer. 
Journal of Applied Statistics, 24(3), 265-278. 

 
19.  Michaelson, J., Satija, S., Moore, R., Weber, G., Halpern, E., Garland, A., & Kopans, D. B. 

(2003). Estimates of breast cancer growth rate and sojourn time from screening database 
information. Journal of Womens Imaging, 5, 11-19. 

 
20. Spratt, J. S., Greenberg, R. A., & Heuser, L. S. (1986). Geometry, growth rates, and duration 

of cancer and carcinoma in situ of the breast before detection by screening. Cancer research, 
46(2), 970-974. 

 
21. Peer, P. G., Van Dijck, J. A., Verbeek, A. L., Hendriks, J. H., & Holland, R. (1993). Age‐

dependent growth rate of primary breast cancer. Cancer, 71(11), 3547-3551. 
 
 
22. Center for Disease Control and Prevention, 

ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/NVSR/61_03/Table03.xls, 
accessed September 2014. 

 
23. Surveillance, epidemiology and end results, 

http://seer.cancer.gov/archive/csr/1975_2009_pops09/results_merged/topic_lifetime_risk.pdf
, accessed September 2014. 

 
24. Schairer, C., Mink, P. J., Carroll, L., & Devesa, S. S. (2004). Probabilities of death from 

breast cancer and other causes among female breast cancer patients. Journal of the National 
Cancer Institute, 96(17), 1311-1321. 

 
25. Zhang S., (2011). Modeling the Complexity of Breast Cancer under Conditions of 

Uncertainty. Ph.D. dissertation, Department of Industrial Engineering, North Carolina State 
University, Raleigh, North Carolina 

 



 

99 

 

26. Bleyer, A., & Welch, H. G. (2012). Effect of three decades of screening mammography on 
breast-cancer incidence. New England Journal of Medicine, 367(21), 1998-2005. 
 

27. Plevritis, S. K., Salzman, P., Sigal, B. M., & Glynn, P. W. (2007). A natural history model of 
stage progression applied to breast cancer. Statistics in medicine, 26(3), 581-595. 
 

28. Kerlikowske, K., Carney, P. A., Geller, B., Mandelson, M. T., Taplin, S. H., Malvin, K., 
Ernster V., ... & Ballard-Barbash, R. (2000). Performance of screening mammography 
among women with and without a first-degree relative with breast cancer. Annals of Internal 
Medicine, 133(11), 855-863. 
 

29. Roberts, C.P., Casells, G. (2013). Monte Carlo Statistical Methods. Springer Science & 
Business Media 

 
30. Zackrisson S, Andersson I, Janzon L, Manjer J, Garne JP. Rate of overdiagnosis of breast 

cancer 15 years after end of Malmo mammographic screening trial: follow-up study. BMJ 
2006;332:689-91. 

 
31. De Gelder R, Fracheboud J, Heijnsdijk EAM, den Heeten G, Verbeek ALM, Broeders MJM, 

et al. Digital mammography screening: weighing reduced mortality against increased 
overdiagnosis. Prev Med 2011;53:134-40. 
 

32. De Gelder R, Heijnsdijk EAM, Van Ravesteyn NT, Fracheboud J, Draisma G, De Koning 
HJ. Interpreting overdiagnosis estimates in population-based mammography screening. 
Epidemiol Rev 2011;33:111-21. 

 
33. Kennedy, J. (2010). Particle swarm optimization. In Encyclopedia of Machine Learning (pp. 

760-766). Springer US. 
 

34. American Cancer Society,  http://www.cancer.org/cancer/cancerbasics/lifetime-probability-
of-developing-or-dying-from-cancer, accessed May 2015 

 
35. Rezaee Jordehi, A., & Jasni, J. (2013). Parameter selection in particle swarm optimisation: a 

survey. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 527-542. 
 
 

  



 

100 

 

 Estimation of Utilization and Usage Time of Servers Stored in a Shared Stack in an 5

Unreliable Queueing System 

5.1 Introduction 

It is very important to keep service systems operating normally in this service oriented era. 

Failing to operate a system continuously will inevitably result in waste and inefficiency, 

including downtime cost, loss of customers, and delay in providing services to customers or 

production of goods. That is the reason why preventive maintenance is of great importance in 

modem complex systems. Preventive maintenance policies enable us to reduce operating costs as 

well as the risk of breakdowns. 

In general, reliability and maintenance literature can be categorized into two broad classes: single 

component models and multi-component models. Since almost every system in the real world is 

multi-component, there has been a growing interest in the optimization of maintenance of multi-

components systems. Multi-component systems are specifically important because of the 

interactions between components in the system. These interactions between components can be 

classified into three different types: economic dependence, structural dependence, and stochastic 

dependence. Economic dependence implies that costs can be saved when several components are 

jointly maintained instead of separately (economies of scales can be obtained). Stochastic 

dependence occurs if the condition of components influences the lifetime distribution of other 

components. Structural dependence applies if components structurally form a part, so that 

maintenance of a failed component implies maintenance of working components [1]. As an 

example of economically dependent components, assume a system in which the maintenance of 

each component requires set-up work that can be shared when several components are 
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maintained simultaneously. Set-up costs can be saved when maintenance activities on different 

components are executed simultaneously, since execution of a group of activities requires only 

one set-up. This can yield considerable cost savings, and therefore, the development of 

optimization models for multiple components is an important research issue.  

In recent years, a large amount of research has been devoted to finding optimal maintenance 

policies for multi-component systems under various assumptions. Comprehensive reviews of the 

literature on maintenance of multi-component systems are given in Dekker and Wildeman [1], 

Nicolai and Dekker [2], and Wang [3]. Recently, the relatively new problem of optimal 

maintenance policies for “queues with unreliable servers” caught the interest of researchers in 

the maintenance optimization area. There are a considerable number of studies addressing the 

problem of unreliable queuing systems. However, most of these studies deal with single 

unreliable server queueing systems [4-8]. A detailed literature review on unreliable queues with 

single server was given by Choudhury and Tadj [4]. However, there are a limited number of 

studies on unreliable multi-server queueing systems. The very first study on unreliable multi-

server queues is by Mitrany and Avi-Itzhak [9].  They studied a steady-state M/M/N queuing 

system where each server is subject to random breakdowns of exponentially distributed duration. 

They derived the explicit form of moment generating function of the queue size when the 

number of servers in the system is less than 3, and proposed a numerical method for systems 

with larger number of servers.  Neuts and Lucantoni [10] studied a queue with �	identical 

servers in parallel that may break down and require repairs. They assumed that there are Ã 

repairmen in the system and the service time, time to failure and repair time are exponential. 

They derived the stationary distributions of various waiting times in the system. Wang and 

Chang [11] considered a queue with balking, reneging, and server breakdowns in which arrival, 
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service times, breakdown times and repair times of the servers are assumed to follow a negative 

exponential distribution. They developed a cost model to determine the optimum number of 

servers in the system. Wu and Ke [12] derived the necessary and sufficient condition of system 

equilibrium in an M/M/c queueing system with balking, reneging, and server breakdowns. 

Gharbi and Dutheillet [13] developed a Generalized Stochastic Petri Nets (GSPNs) model to 

analyze multi-server finite-source retrial systems with unreliable servers subject to breakdowns 

and repairs. They formulated the main stationary performance and reliability indices as a 

function of the number of servers, the size of the customer source and the stationary probabilities 

of the systems. 

There are very few papers addressing the maintenance optimization aspect in unreliable queueing 

systems. Chapin [14], in his Master’s thesis, addressed the problem of periodic replacement for a 

multi-server queueing system in which each server is subject to degradation as a function of the 

mean service rate and a stochastic and dynamic environment. Liu [15] developed a specific class 

of m-failure group replacement policy for an �/�/Ã	queueing system where repair is started as 

soon as the number of failed machines reaches a predetermined level	�. He assumed that the 

servers are unreliable with identically exponentially distributed failure times and the repair cost 

consists of a fixed cost and a variable cost proportional to the number of machines repaired. In 

addition, they assumed that there is a holding cost for each customer in the system per unit of 

time. In another study, Liu [16] developed three m-failure group maintenance models for 

�/�/Ã	queues. The first model is the basic model with positive repair time and allows server 

failures during maintenance. The second one is a modified model with positive repair time, but 

does not allow server failures during maintenance. The last model is considering instantaneous 

repair. They proved that there exists an optimal group maintenance parameter m* which can be 
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used to find the minimal average cost for all three models. Kocuk et al. [17] studied an infinite 

server queue that is subject to randomly occurring shocks. They assumed that shocks increase the 

service time of all servers, and can cause further service deterioration. They identified the 

optimal repair rate that minimizes the expected long-run average cost incurred due to delay and 

repairs. Wu et al. [18] introduced a controllable repair policy for an infinite-capacity multi-server 

queueing system in which the servers are assumed unreliable and may fail at any time. The failed 

servers will be sent to the repair facility only when the number of failed machines in the system 

achieves a preset threshold value. They developed a cost model to determine the optimal values 

of the number of servers, service rate and repair rate simultaneously at a minimal total expected 

cost per unit time.  

The common assumption of all of these studies is that the servers (components) are operating in 

parallel and are selected randomly for service. This implies that the servers (components) are 

used in a homogeneous manner leading to independent usage and transient deterioration behavior. 

However, there exist systems in which servers (components) are not being used homogeneously. 

In such systems, some servers (components) are more likely to be used because of various 

possible reasons.  For example, the layout of the servers (components) in the system makes some 

components more accessible than others. In this case, there is stochastic dependence among 

components since the system layout and conditions of components affect the utilization and 

lifetime distributions of components.  

In 2011, Gandhi et al. [19] introduced a Most-Recently-Busy (MRB) routing policy in which an 

arriving customer is routed to the idle server that was most recently busy. Note that in a system 

with the MRB routing policy, the usage of a server is stochastically dependent on its and the 
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other servers status in the system. In this chapter, we consider a queueing system with a similar 

routing policy as MRB. In particular, we consider a queueing system with � identical servers that 

are used intermittently and, when not in use, servers are stored in a shared stack. In such cases, 

customers may find it more convenient to select the server that is on the top of the stack. 

Similarly, customers finished with a server may find it more convenient to place the server back 

to the top of the stack. As a result, servers that begin at or near the top of the stack are used more 

frequently than the servers that are placed lower in the stack. In such a system, a server’s 

utilization is stochastically dependent on its initial location in the stack and the usage of the other 

servers.  Note that although we consider a queueing system with stacked servers, the outcomes of 

this study are applicable to any queuing systems with the MRB routing policy.  

An everyday example of a queueing system with stacked servers or MRB routing policy is a set 

of shopping carts in a retail store. Often, shopping carts (the servers in this example) are arranged 

in stacks, so that the customers typically choose the cart at the front (the top in this example) of 

the stack. After usage, carts are often returned at or near the front of the stack.  

The goal of this study is to compute the cumulative, transient utilization and usage time of a 

server as well as the expected complete reshuffling time in such a queuing system based on the 

number of servers in the stack, the initial position of the server in the stack, and the arrival and 

service rates. The expected complete reshuffling time is defined as the minimum time it takes for 

all the servers in the system to be used. We assume that the servers are identical and numbered 

based on their initial position in the stack. We also assume that the demand for servers occurs 

according to a Poisson process and the duration of a single service instance follows an 

exponential distribution. Customers arriving to a full system balk. This study provides a tool to 
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investigate the utilization and aging patterns of components in such a system. The outcomes of 

this study can assist decision makers to have an accurate estimate on the deterioration behavior 

of components in such a system, and thus maintain a more effective maintenance policy for 

components and have a more robust estimate of reliability measure of such systems.  

The remainder of this chapter is organized as follows. In Section 5.2, the proposed continuous-

time Markov chain model is presented. Section 5.3 presents the computational results. Finally, 

Section 5.4 summarizes the findings and discusses future directions.  

5.2 Proposed Model 

Consider a queueing system with � identical servers stored in a stack. Let server �	�� =
1, 2, … , �� be the server whose initial position in the stack is �. We develop a continuous-time 

Markov chain (CTMC) model to compute the cumulative, transient utilization, and usage time of 

server � and the expected reshuffling time of the system. The states of the system are represented 

by Ö�[� = ��, Z�, where � ∈ {0, 1, … , �} represents the server’s position in the stack and 

Z ∈ {0, 1, 2, … , �}  represents the total number of busy servers at time	[. For the first element of 

the states � = 0 represents the situation when the server is busy and is not stored in the stack, 

and	� = �	�� = 1, 2, … , �) represents the situation when the server is stored in the �!" position 

in the stack. Note that in the remainder of this chapter, the �!"server refers to the server with 

initial position � in the system. We assume that at time zero the system is empty, i.e., Ö�[ = 0� =
��, 0�. The total number of states in the proposed CTMC is	� = 6�6���T + �. Figure 5-1 shows the 

transition diagram of the system along with the transition rates.  
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Figure  5-1 Transition diagram of the proposed Markov chain model 

5.2.1 Servers’ Utilization and Usage Time 

Let	×6 be the “in use” set, or the set of states in which the server is busy when there are � servers 

in the system (the states in the first row of the transition diagram in Figure 5-1). 

×6 = {�0, ��, � = 1, 2, … , �} 
Let Ø�6�[� be the utilization of the server up to time 	[. Ø�6�[�	is the proportion of time that the 

server is in the “in use” set, or set ×6, when starting from state ��, 0�, as defined in Equation (5-1)  
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Ø�6�[� = ∑ ���,y�,��[��∈ÜÝ [ , 5-1 

where ���,y�,��[� is the occupancy time of  state ] up to time [ when starting from state ��, 0�, and 

is calculated as  

���,y�,��[� = � ���,y���Ê��Ê,!
y  5-2 

where ���,y���Ê� is the transition probability from state ��, 0� to state ] at time Ê. ���,y���Ê�	can be 

calculated using different methods: e.g., Chapman-Kolmogrov equations, Laplace transform and 

eigenvalue decomposition of the infinitesimal generator matrix s	of the CTMC model [20]. In 

eigenvalue decomposition method, the transition probability matrix of a CTMC with 

infinitesimal generator matrix s is given by  

��[� = ÖÈÞ!Ö��, 5-3 

where F is a diagonal matrix for which the elements on the diagonal are the eigenvalues of 

matrix s, and Ö is an invertible matrix whose columns are the eigenvectors of matrix s. 

 

Note that since we consider balking in our queuing system, the effective arrival rate of the 

system is 	ßÄ = �1 − �Ä� ∙ ß, where �Ä is the probability that an arriving customer balks and is 

presented in Equation 5-4.  

�Ä = lim!→� ���y,6�	�[�, ∀] 5-4 

Therefore, as shown in Equation 5-5, the server’s long run utilization is	áâ6ã, which is smaller than 

the stationary utilization level in a non-balking system. That is,  
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lim!→� Ø�6�[� = áâ6ã < 
á6ã. 5-5 

A main characteristic of the system that is critical in identifying an optimal maintenance policy is 

a server’s age at time	[. To model the deterioration pattern and failure probabilities of the servers, 

it is critical to know for how long a server has been used in the system. The usage time of a 

server i is the area under the utilization curve up to time	[, as presented in Equation 5-6. 

A�6�[� = � Ø�6�Ê�dÊ!
y  5-6 

 

5.2.2 Complete Reshuffling Time 

Reshuffling time of the first �	servers in the stack is defined as the time it takes for the system to 

use the server with initial position � in the stack for the first time. Equivalently, reshuffling time 

of the first �	servers is the first passage time to state �0, �� in the proposed Markov model.  We 

specifically are interested in the “complete reshuffling time” which is the time that it takes for 

the system to have a complete reshuffling of all servers in the stack, or the time to hit state �0, �� 
in the model for the first time. This measure is important since once we have a complete 

reshuffling, all servers become identical from that point forward. In other words, the transient 

effect of their starting positions in the stack is effectively over. 

Let T��  be the time to visit state	]′ for the first time when starting from state	]. Reshuffling time 

of the first � servers in the system or time to visit state �0, �� for the first time is defined in 

Equation 5-7.  

\��,y��y,�� ≡ min{[ ≥ 0	|Ö�[� = �0, ��, 	Ö�0� = ��, 0�} , � = 1, 2, … , � 5-7 
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Note that the reshuffling time is independent of �	(the initial position of the server in the system) 

since we assume that the system is empty at time [ = 0.  
Let �� be the expected first passage time to state �0, ��	when starting from state ], i.e.,   

�� = è,\��y,6�/. 5-8 

Then � = [��, �T, … ]′ can be calculated by solving this system of equations  

�� + Ò = 0, 5-9 

where � is obtained by deleting the row and column corresponding to state �0, �� in matrix s 

[20].  Note that when ] = ��, 0�, � = 1, 2, … , �, the corresponding value �� presents the expected 

complete reshuffling time. 

5.3 Numerical Examples 

This section illustrates the cumulative transient utilization, virtual age and complete reshuffling 

time for different queuing systems. Note that in all numerical examples without loss of generality 

we assume that	é = 1.  

Figures 5-2 and 5-3 present the utilization and usage time plots for all servers in the stack along 

with the expected complete reshuffling time for a queueing system with � = 3 servers and 

arrival rates	ß = 0.25, and		ß = 1, respectively.  
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a) Usage time (ß = 0.25� 
 

 

 

b) Utilization (ß = 0.25� 
 

 

Figure  5-2 a) Usage time and b) utilization of servers in a queuing system with � = 3 and arrival 
rate 0.25 
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a) Usage time (ß = 1� 
 

 

 

b) Utilization (ß = 1� 
 

 

Figure  5-3 a) Usage time and b) utilization of servers in a queuing system with � = 3 and arrival 
rate 1 
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The corresponding balking probabilities for the two different arrival rates are	0.002, and 0.062, 

respectively.  The horizontal dark gray lines in the utilization plots show the servers’ stationary 

utilization in a non-balking system, which, as expected, is larger than the servers’ stationary 

utilization in the system under study. Note that in the first case where λ= 0.25, the system has 

not yet reached the steady state after 1000 time units and it has a significantly longer mean 

complete reshuffling time than the case with arrival rate λ= 1	(188 time units versus 8	for the 

second case).   

Figures 5-4 to 5-6 present the results for a queueing system with � = 10 servers and arrival rates 

λ= 1, λ = 2, and	λ = 3� for the first 5000 time units, respectively. For none of the cases, the 

system has reached the steady state after 5000 unites of time. All the three cases have negligible 

balking probabilities. The complete reshuffling times for these cases are 1,112,083, 3,410.56, 

and 192.94, respectively. Note that for the first case with ß = 1	at time	[ = 5,000, the ages of the 

first four servers in the stack are over 800 each. However, the last two servers in the stack have 

not been used yet. In the case with	ß = 3, however, the servers have a more consistent aging 

pattern. 
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a) Usage time (ß = 1� 
 

 

 

b) Utilization (ß = 1� 
 

 

Figure  5-4 a) Usage time and b) utilization of servers in a queuing system with � = 10 and 
arrival rate 1 
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a) Usage time (ß = 2� 
 

 

 

b) Utilization (ß = 2� 
 

 

Figure  5-5 a) Usage time and b) utilization of servers in a queuing system with � = 10 and 
arrival rate 2 
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a) Usage time (ß = 3� 
 

 

 

b) Utilization (ß = 3� 
 

 

Figure  5-6 a) Usage time and b) utilization of servers in a queuing system with � = 10 and 
arrival rate 3 
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5.4 Conclusion 

All the previous studies on unreliable multi-server queuing systems assume that servers’ 

utilizations are independent from each other and an arriving customer selects one of the available 

servers randomly. However, there exist systems in which the customers routing pattern is non-

random and customers select a server according to a defined pattern. An example of a non-

random routing policy is the Most Recently Busy (MRB) policy, in which an arriving customer 

selects the idle server that was the most recently busy.  

In this chapter, we considered an unreliable queuing system with the MRB routing policy. In 

particular, we considered a queueing system for which the servers are stored in a stack when they 

are not in use. In such systems, an arriving customer picks the idle servers on the top of the stack 

for service. Similarly, when the service is over, the server is returned to the top of the stack. In 

such a system servers have heterogeneous utilization and deterioration behaviors because of the 

stochastic dependence of a server usage on its position in the stack and the utilization of the other 

servers in the system. 

To maintain such systems more effectively, the decision maker needs to have an understanding 

of the utilization behavior and deterioration pattern of each server in the system. In this chapter 

we proposed a model to characterize and quantify the critical feature in estimating the 

deterioration of each server. We developed a continues-time Markov chain (CTMC) model to 

measure the transient utilization and usage time of each server based on the initial position of the 

server, the arrival rate and the service rate in the system. We also proposed a formula to compute 

the system’s expected complete reshuffling time, i.e., the expected time to use the last server in 

the stack for the first time. This measure is of interest since when the last server in the stack is 
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used for the first time, all servers become identical in terms of their possible position in the stack 

from that point on. 

This study provides insight to the decision maker to have a more efficient maintenance policy for 

a queueing system with the MRB routing policy, or more specifically a queueing system with 

stacked servers. The model presented in this study helps the decision maker to effectively 

estimate the viral age of each server in the system, and accordingly approximate the deterioration 

of a specific server and derive the optimal maintenance policy based on the estimated 

deterioration.  

A future direction for this research is to study different individual and group maintenance 

policies such as age replacement, block replacement, �–failure, or policy (� − \� policy (the 

combination of block replacement and	�–failure policy) , and perform a cost analysis to derive 

the optimal maintenance policy for such systems.  
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