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Abstract

This dissertation focuses on the preventive maartea decision modeling in healthcare and
service systems. In the first part of this disgema some issues in preventive health decisions
for breast cancer are addressed, and in the s@aohdhe required characteristics for preventive

maintenance of an unreliable queuing system arneeger

Adherence to cancer screening is the first issaeishaddressed in this dissertation. Women'’s
adherence or compliance with mammography screerim@ined low in the recent years. In this
dissertation, we first develop a design-based timgisegression model to quantify the probability
of adherence to screening schedules based on wemlearacteristics. In Chapter 3, we develop
a randomized finite-horizon partially observablerkéas chain to evaluate and compare different
mammography screening strategies for women wiflerdit adherence behaviors in terms of
quality adjusted life years (QALYs) and lifetimeslsst cancer mortality risk. The results imply
that for the general population, the American Casmxiety (ACS) policy is an efficient frontier
policy. In Chapter 4, the problem of overdiagnasisancer screening is addressed.
Overdiagnosis is a side effect of screening amtdiged as the diagnosis of a disease that will
never cause symptoms or death during a patiefetsrie. We develop a mathematical
framework to quantify the lifetime overdiagnosisianortality risk for different screening

policies, and derive the (near) optimal policiethwninimum overdiagnosis risk.

In the second part, we consider an unreliable aquesystem with servers stored in a shared
stack. In such a system, servers have heterogetramsgent usage since servers on the top of

the stack are more likely to be used. We developninuous-time Markov chain model to



derive the utilization and usage time of serverhesystem. These quantities are critical for the

decision maker for deriving a maintenance policy.
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1 Introduction: Preventive Maintenance in Healthcareand Service Systems

“Prevention is better than treatment.” This provieds inspired much research in a wide range of

areas such as health, service and manufacturingnsys

For health systems, preventive healthcare, or ptexeemedicine, focuses on disease prevention
and health maintenance. Preventive healthcaredaeslearly diagnosis of disease, counseling,
and other interventions to avert a health problEne goal of preventive healthcare is to prevent
health problems or identify and treat them earlfpteetheir effect on the patient’s life is
irreversible. Chronic diseases, such as heartshkseand cancers, are the causes for 7 in every 10
deaths among Americans each year, and they actmuri% of the nation’s health spending [1].
These chronic diseases can be largely preventatdegh appropriate preventive care like
screening tests. Screening tests can advancenbefidisease detection and detect the disease
at stages when it is more curable and the treatmerkts more effectively. For example,
mammography screening can detect breast cancgedar3 before a woman can feel a lump in

her breast [2], and ultimately it can reduce breaster mortality rate by 15% [3].

Preventive maintenance in manufacturing and sesysgems, on the other hand, focuses on the
care and maintenance of equipment and facilitideép them in a satisfactory operating
condition and to prevent them from sudden faillitge goal of preventive maintenance is to
avoid and/or mitigate the consequences of failfilegaipment. Preventive maintenance can
save overall cost by decreasing equipment downiimecegasing life expectancy and efficiency

of the equipment, enhancing customers’ satisfadtigervice-oriented systems, etc.

The focus of this dissertation is on the preventiae modeling in two areas: health systems and

service-oriented systems. The former addressgsrtiidem of preventive healthcare decisions



for chronic diseases with a focus on breast camdate the latter part provides insight on
preventive maintenance of a service system witkliainle servers. Specifically, in the first part,
we focus on the evaluation and optimization of preiwwe healthcare decisions which includes
analysis and estimation of individual adherencealih to preventive care, as well as the
evaluation and optimization of cancer screeningcped in terms of different patient outcomes.
The following breast cancer screening issues aileeaded: (1) characterizing the factors
associated with patient’s adherence to mammograpt@ening recommendations and

estimating the probability of patient adherenca fwescribed screening test, (2) evaluating and
comparing various screening mammaography policiegevitncorporating heterogeneity in
women’s adherence behaviors, and (3) minimizingaiagnosis in cancer screening under
various sources of uncertainty such as diseasegssign and efficacy of mammography tests.

In the second part of this dissertation, an unbi&ianulti-server queuing system with stacked
servers is studied. In such a system, the equigeenérs are used in a non-uniform fashion, i.e.,
servers on the top of the stack are more likelygased in a finite time horizon than servers at
the bottom. This implies that some servers detatgoiaster than the others. For such systems, an
estimate of the transient utilization and usage tohservers can provide insight on deterioration

patterns and preventive maintenance decisions.

A more detailed outline of this dissertation isgaeted below.

Chapter 2 addresses the problem of adherenceuerginee mammography screening since the
efficacy of mammography screening policies is sifpmassociated with women’s compliance
with the recommendations. We developed a statisticalel that characterizes significant factors
associated with women’s adherence to mammograpbgsiag recommendations. The model is

then used to estimate the probability that a wonmanplies with her physician’s

2



recommendation of undergoing a screening mammogramsecond chapter is the cornerstone

for the next chapter since the results of this tdragerve as inputs for Chapter 3.

In Chapter 3, we develop a randomized discrete-finite-horizon partially observable Markov
chain model to investigate the effect of imperfedherence on the patients’ health outcomes for
a wide range of screening mammography policies.piieies are evaluated in terms of the
expected remaining quality adjusted life years (§A8).and breast cancer lifetime mortality risk.
Three possibilities for the cancer detection amesatered in the proposed model: mammography
screening detection, self-detection and intervateawhich represents fast growing cancers that
show symptoms within 12 months following a negativemmogram. Various uncertainties such
as breast cancer natural history, unreliabilityr@gimmography screening, interval cancer
detection, and heterogeneity in patients’ adheréebaviors are incorporated into the proposed

model.

Chapter 4 addresses the overdiagnosis issue irrcatieening. Overdiagnosis is the major
disadvantage of cancer screening and is defindteadiagnosis of screen-detected cancers that
would not have presented clinically in a womarfstime in the absence of screening [4]. In this
chapter, a probabilistic model is developed to @ata the overdiagnosis and cancer mortality
risks of a screening schedule. Furthermore, weqga®jan optimization model to minimize the
risk of overdignosis of preventive screening scheslwhile maintaining the patient’s lifetime
breast cancer mortality risk at a predefined |ew&. incorporate uncertainty in disease onset,

cancer sojourn time, and competing causes of death.

Chapter 5 focuses on a service-oriented environnretitis chapter, an unreliable queueing

system withn identical servers that are stored in a stackudistl. In such a queuing system,



customers may find it more convenient to selecstieer that is on the top of the stack.
Similarly, customers finished with a server mayfihmore convenient to place the server back
to the top of the stack. As a result, serverslbegin at or near the top of the stack are used more
frequently than the servers that are placed lowéne stack. In such a system, a server’s
utilization is stochastically dependent on itsialitocation in the stack and the usage of therothe
servers. In Chapter 5, we develop a continuous-Markov chain model to estimate transient
utilization and usage time of servers in such &sys This study provides estimate on the
deterioration behavior of servers which is criticdbrmation for the systems maintenance

decisions.
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2 Analyzing Factors Associated with Women'’s Attitudesand Behaviors Toward

Screening Mammography Using Design-Based Logisticdgression

2.1 Introduction

Breast cancer is the most common cancer worldwideoimen contributing more than 25% of
the total number of cancer cases diagnosed in PJ1R is also the most common non-skin
cancer affecting women in the United States. Adogrtb the American Cancer Society, about
one in eight US women will develop breast cancdranlifetime. In 2015, an estimated 231,840

invasive breast cancer cases will be diagnosedabadt 40,290 will die from breast cancer [2].

Mammography plays an important role in detectiobrefast cancer when the cancer is in its
early stage. It is known to be an effective metand the current standard practice for early
diagnosis of breast cancer. On average, mammoghgietect breast cancer 1.7 years before
a woman can feel a lump in her breast [3]. In aoldjtit can reduce breast cancer mortality rate

by a reasonable estimate of 15% [4].

There are varying recommendations from differemnages for screening mammography in the
U.S. The two most referred guidelines are fromAheerican Cancer Society (ACS) and the U.S.
Preventive Services Task Force (USPTF). The AC8matends starting annual mammography
at age 40 but recommends no ending age [5]. In Mbee 2009 the USPSTF issued new breast
cancer screening guidelines, which recommend béésoreening for women ages 50 to 74. The
USPSTF also recommended that women ages 40 tood@dstot undergo screening

mammography unless they are in a high-risk grodp [6



The impact of mammography on women’s outcomegagly associated with women’s
compliance with the mammography recommendationantixation of a clinic-based group of

216 women with a strong family history of breasbwarian cancer showed that 50%, 83%, 69%,
and 53% of the women at age groups of 30-39, 4B&+%K4, and 65 years and older,
respectively, had only one mammogram between 1883899 [7]. More recently, a study by

the Centers for Disease Control and Prevention (OB@aled that, in 2010 about 67.1% of

women aged 40 and older had one mammogram betvi@énahd 2010 [8].

In this study, we aim to (1) identify significarddtors (socio-demographic, health-related,
behavioral attributes and knowledge mammographggaated with women’s adherence to
mammography screening, and (2) study the attittmeard mammography in non-adherent
women. We assume that women’s compliance with sarfgenammography is strongly
correlated with their intentions to get a mammog(ae, their expectations about their next
mammogram or their thoughts about getting a mamamd®]). Based on this assumption, if a
woman has a positive attitude toward screening magnams and her plan for the next

mammogram is within the next one or two years, stenis considered to be adherent.

2.2 Methods

2.2.1 Data Source

We used the 2003 Health Information National TreBds/ey (HINTS) data for this study [10].
HINTS, developed by the National Cancer InstitINEI), is a nationally representative
telephone survey of 6,369 adults aged 18 and older 2003 data is currently the only HINTS
data that provides information on women'’s attituded perceptions toward mammography.
HINTS 2005 and 2007 data do not include questieganding mammography. HINTS 2012

7



only reports the time of a most recent mammogradwamether a doctor has informed about a
mammogram; however, no data is collected on womatesitions or attitudes toward

mammograms, which is the focus of this study.

2.2.2 Study Design

There are two stages for this study. In the firatys, we aim to identify significant factors
associated with women’s adherence to mammograpbegsiags. To be consistent with current
mammography guidelines and practices, we focusanen older than 40. We perform the
analyses separately for two age groups: women yanthgn 65, and women 65 and older. In
contrast to earlier studies, we measure adhereaszdlon women's intentions and attitudes

toward mammography.

In the second stage, we focus only on women oldar #2 with poor mammography history, i.e.
women who have never had mammography or their ,eosnt mammography was more than
two years ago and they did not say "never hearti when asked why they had not had a
mammogram. Age 42 is used as the lower boundamhése analyses because an every-other-
year interval for mammography requires enough fonevomen over age 40 to have a
mammogram. We do not separate women younger aed thigh 65 in order to achieve an
adequate sample size. We examine the differendegére those who think about getting a

mammogram and other women in this population.

2.2.3 Predicting Factors

We categorized factors that may be associatedwothen’s adherence to mammography
screening into four groupSocio-demographic characteristioecluding age, race, marital status,

employment, education, income, health coverage)iging) area based on Census Division;

8



Health-related characteristiancluding body mass index (BMI), average numbevisits to a
healthcare provider a year, family history of canpsychological distress composite score,
being advised to have a mammogram, and having Ragp ameaBehavioral characteristics
including trusting cancer information from doctdmgking for cancer information, perception of
chance of getting breast cancer, eating habitss(goption of fruits and vegetables), having
exercised in the last month, and lifetime numbesrobked cigarette&nowledge of breast
cancer/mammographincluding knowing the age at which mammographyusthbegin and the

frequency of receiving mammograms.
2.2.4 Statistical Analysis

HINTS data includes a set of 50 replicate weightsich were generated according to jackknife
variance estimation [10]. Data were weighted tadpo® overall and stratified estimates that
represent the U.S. populatioe incorporate weights in the analyses for the fadjmun study.

To handle missing values for the predicting factars use th@aivenearest neighbor hot deck
method, which takes advantage of the similarityMeen the observations to impute the missing
values. Each missing value is replaced with thetesl response from the nearest observation

in the data set [11]. The distance between tworghsiens (x and y) is

d(x,y) = ’Z?zl 8 (X, ¥i), 2-1

Wherep is the number of the variables in the data set&d;, y;) is 1 ifx; # y; and 0O ifx; = y;.

We definedadherence to mammography) 6eparately for women aged 40 and 41 years versus
those aged 42 and older, as a women aged 40 oitdduvany mammography history can still

be considered adherent if she plans to get a mamammoig the near future (2 years or 1 year



respectively). We defined a woman older than 42dkerent if the interval between her most

recent self-reported mammogram and the next exgpp@ctanmogram was less than two years.
Otherwise she was considered non-adherent. Wearaed those who answered the question
“Do you have a plan to get mammography” with “unided” or “not planned” as non-adherent.
For this response variable, we built separate nscalell compared results between those less

than 65 years and those age 65 and older.

For the outcome ahinking about getting a mammogram in non-adhevemnen £), we narrow
our attention to women who never had a mammogratiear most recent mammogram was
more than two years ago. The response variableasfahe answer to the question “Have you

thought about getting a mammogram” is yes, or bénerwise.

We examined bivariate associations between allnpi@dléndependent variables to select
significant covariates for inclusion in subsequaodels. We used Rao-Scott corrections to chi-

squared tests to incorporate the survey desigmfiBnife weights) of the HINTS data.

The standard logistic regression assumes thatataecdme from a simple random sample (i.e.,
independent and identically distributed (iid)). Bhthe standard logistic regression may be
inappropriate for analyzing sample survey datatduwstustering and stratification methods used
in the survey designs [12]. Since the HINTS datacatlected based on complicated multistage
sampling designs, the classic methods for simpidam sampling data may be inefficient for

analyzing the HINTS data.

Suppose that in the complex survey data collectlmpopulation is separated irfkgtrata
(k =1,2,..,K), withj primary sampling units (PSUs= 1, 2,..., M) in each stratum and
elements = 1,2,..., Ny; in thekj""PSU. Suppose the number of observations is:

10



YK . Z]“;‘; ny; Whereny; is the number of elements fram, primary sampling unit from stratum

k. The pseudo-maximum likelihood function for tleSign-based” logistic regression model is

my Mkj

K
Z Z Z[iji X yieji] X [ (xeji)] + [wisi X (1= yig)] X In[1 = m(51))], 2-2
i=1

k=1 j=1
wherewy; is the known sampling weight for th@" observation [13].
Design-based multiple logistic regression mode®s13] were developed to identify significant
factors associated with (1) adherence to mammograpt (2) thinking about getting a
screening mammogram in non-adherent women. Thgmésised multivariate logistic

regression model for the logistic regression is

(x)

1—m(x)

y(orr)=ln( )=a+,6’xSD+6*HR+)/*BR+9*KBC&M, 2-3

where SD, HR, BR anKBC&M are the vectors of socio-demographic, health rediehavior
related and knowledge related features @1t} 6, y, and 6 are the coefficients vectors of

parameter estimates.

We used the Wald tests [13] to determine the sitalissignificance of each coefficient in the
model. Classification tables [13] are used to es@ihe performance of the logistic regression
models. We considered a predicted value of 0.hasut off point for our classification analyses.
Supposer; andy, represent the predicted values from the regressmatels for adherence in
women younger than 65 and women 65 and older, cégply. We consider a woman younger
than 65 (65 and older) to be adherent if her proiyato be adherenty; (3), is greater than 0.5

and non-adherent otherwise. The same strategypiemented for the outcome “thinking about

11



getting a mammogram’j in non-adherent women. The observed values todépendent
outcomes and the predicted values are then crassHikd to evaluate the predictive accuracy of

the models. All analyses are performed at the Bagmice level of 5%.

2.3 Results

The distributions of all predicting factors for ttveo response variables are presented in Table 2-
1. There are a total of 2,370 women included feratffherence to mammographgsponse
variable and 451 women included for thenking about getting a mammograssponse
variable.

2.3.1 Comparing mammography adherence among women in thigvo age groups

The logistic regression results (Table 2-2) sugtiestin the socio-demographic characteristics
category, women who are single, separated, divasceddowed are less likely to adhere to
screening mammography compared to married wombntimage groups (OR=0.685 and
OR=0.499 for women younger than 65 and women a§exh@ older, respectively). As income
increases, adherence to screening mammographinatsases. Specifically among women
younger than 65 the difference between women withrne more than $75,000 and women
whose income is less than $25,000 is significalR£2526 for income greater than $75,000
versus income less than $25,000). Women youngar@havho have health insurance are also

more likely to adhere to screening mammography (QRS59).

12
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Table 2-1Distribution of socio-demographic, health relateelhavioral, and knowledge related characteristics

Women'’s intentions and attitudes toward

mammography

Thinking about
mammogram in non-
adherent women

Independent Variables

Age < 65 (N=1612) Age 65 (N=758)

¥ =0 y1 =1 =0 y,=1 =0 =1
(N=441) (N=1171) (N=265) (N=493) (N=199) (N=252)
Socio-demographic characteristics
Black 64 (14.51) 154 (13.15) 17 (6.41) 43 (8.72) (6.p3) 40 (15.87)
Race White 284 (64.40) 914 (78.05) 199 (75.09) 420 (85.19 14 (7.03) 16 (6.35)
Other 36 (8.16) 53 (4.53) 11 (4.15) 10 (2.03) 1B040) 183 (72.62)
Missing 57 (12.95) 50 (4.27) 38 (14.34) 20 (4.06) 3 (A53) 13 (5.16)
Marital status Married 200 (45.35) 726 (62.00) 45(16.98)  19798Y. 56 (28.14) 115 (45.63)
Single/Divorced/widowed 202 (45.80) 429 (36.63) 19245p. 291 (59.03) 137 (68.84) 135 (53.57)
Missing 39 (8.84) 16 (1.36) 28 (10.56) 5 (1.01) 301) 2 (0.79)
Employment Employed 257 (58.28) 775 (66.18) 23 (8.68) 6258p. 53 (26.63) 145 (57.54)
Unemployed 144 (32.65) 383 (32.71) 214 (80.75) (&B400) 141 (70.85) 102 (40.48)
Missing 40 (9.07) 13 (1.11) 28 (10.56) 7 (1.42) 251) 5 (1.98)
Some high school or less 65 (14.74) 94 (8.03) 6866)5. 73 (14.81) 45(22.61) 39 (15.48)
Education High school Graduate 134 (30.38) 334 (28.52) 84 (2.7 177 (35.90) 68 (34.17) 127 (50.40)
;&”&‘l‘j‘a‘;g"ege/ College 204 (46.26) 723 (61.74) 86(32.45) 237 (48.07) (&170) 84 (33.33)
Missing 38 (8.62) 114 (9.73) 27 (10.19) 6 (1.22) (251) 2 (0.79)
<$25,000 146 (33.11) 249 (21.26) 147 (55.47) 20438) 106 (53.27) 100 (39.68)
Income >$25,000 ane$75,000 161 (36.51) 543 (46.37) 50 (18.87)  1781(B6 50 (25.13) 94 (37.30)
>$75,000 47 (10.66) 291 (24.85) 5 (1.89) 22 (4.06) 10 (5.02) 31 (12.30)
Missing 87 (19.73) 337 (28.78) 66 (23.77) 89 (1B.05 33 (16.58) 27 (10.71)
InsUrance No 107 (24.26) 79 (6.74) 4 (1.5) 2 (0.41) 31(8%.5 46 (18.25)
Yes 296 (67.12) 1071 (91.46) 232 (87.54) 487 @B.7 161 (80.90) 204 (80.95)
Missing 38 (8.62) 21 (1.79) 29 (10.94) 4 (0.81) 35P) 2 (0.79)
East North Central 65 (14.74) 201 (17.16) 45 (16.98) 78 (15.82) 37 (18.59) 30 (11.90)
East South Central 28 (6.35) 67 (5.72) 30 (11.32)  (528B) 17 (8.54) 15 (5.95)
Middle Atlantic 66 (14.97) 164 (14.00) 25 (9.43) 7381. 26 (13.06) 38 (15.08)
Living area based on Mountain 44 (9.97) 67 (5.72) 20 (7.54) 37 (7.50) (8.64) 25 (9.92)
Census Division New England 21 (4.76) 76 (6.49) 3(1.13) 23 (4.66) 7 (3.52) 8 (3.17)
Pacific 51 (11.56) 171 (14.60) 36 (13.58) 55 (11.16 27 (13.57) 31 (12.30)
South Atlantic 88 (19.95) 224 (19.13) 45(16.98) 11892) 37 (18.59) 57 (22.62)
West North Central 32 (7.26) 90 (7.69) 30 (11.32)  (B30) 19 (9.55) 21 (8.33)
West South Central 46 (10.43) 111 (9.49) 31 (11.7)  (94B) 13 (6.53) 27 (10.71)
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Table 2-1Distribution of socio-demographic, health relateelhavioral, and knowledge related characteristics

Women'’s intentions and attitudes toward

Thinking about
mammogram in non-

mammography
Ind dent Variabl adherent women
ndependent vanaoles Age < 65 (N=1612) Age 65 (N=758)
¥ =0 y1 =1 =0 y,=1 =0 =1
(N=441) (N=1171) (N=265) (N=493) (N=199) (N=252)
Missing 0 (0) 0 (0) 0(0) 0 (0) 0(0) 0 (0)
Health-related characteristics
Underweight 8(1.81) 18 (1.54) 10 (3.77) 8 (1.63) (4%2) 5(1.98)
Body mass index Normal 148 (33.56) 475 (40.56) 96 (36.23)  18433Y. 86 (43.22) 84 (33.33)
(BMI) Overweight 112 (25.40) 321 (27.41) 68 (25.66)  13MF4) 51 (25.63) 70 (27.78)
Obese 114 (25.85) 306 (26.13) 50 (18.87) 97 (1.97) 36 (18.09) 78 (30.95)
Missing 59 (13.37) 51 (4.35) 41 (15.47) 14 (2.84) 7 (&54) 15 (5.95)
Less than twice a year 85 (19.27) 197 (16.82) 2940. 60 (12.17) 86 (43.22) 107 (42.46)
2 to 4 times a year 135 (30.61) 519 (44.32) 120 §)5.2 214 (43.41) 59 (29.65) 88 (34.92)
5 or more a year 93 (21.09) 405 (34.59) 74 (27.92)201 (40.77) 49 (24.62) 56 (22.22)
Missing 128 (29.02) 50 (4.23) 42 (15.85) 18 (3.65) 5 (2.51) 1 (0.40)
Family history of No 145 (32.88) 324 (27.67) 97 (36.60) 148 (30.02) 75 (37.69) 77 (30.56)
cancer Yes 294 (66.67) 844 (72.07) 166 (62.64) 342 (69.37 123 (61.81) 175 (69.44)
Missing 2 (0.45) 3 (0.26) 2 (0.75) 3(0.61) 1(0.50 0 (0)
No 355 (80.50) 1084 (92.57) 221 (83.40) 471 (95.54 179 (89.95) 226 (89.68)
Psychological distress Yes 46 (10.43) 69 (5.89) 11 (4.15) 11 (2.23) 10%» 24 (9.52)
Missing 40 (9.07) 15 (1.54) 33 (12.45) 11 (2.23) (3.02) 2 (0.79)
Have been advised to No 133 (30.16) 111 (9.48) 120 (45.28) 49 (9.94) 1 (85.78) 96 (38.09)
have a mammography Yes 155 (35.15) 1012 (86.42) 92 (34.72) 429 (87.02 33 (16.58) 94 (37.30)
Missing 153 (34.69) 48 (4.09) 53 (20) 15 (3.04)  (BB64) 62 (24.60)
Having had Pap smear No 8 (1.81) 6 (0.51) 26 (9.81) 10 (2.03) 23 (1).56 8(3.17)
Yes 383 (86.84) 1127 (96.24) 209 (78.87) 472 @b.7 165 (82.91) 234 (92.86)
Missing 50 (11.34) 38 (3.24) 30 (11.32) 11 (2.23) 1 (8.53) 10 (3.97)
Behavioral characteristics
Not at all 10 (2.27) 4 (0.34) 9 (3.34) 4 (0.81) 5. 4 (1.59)
Trust cancer info from A little 35 (7.94) 46 (3.93) 15 (5.66) 20 (4.06) 156) 14 (5.56)
doctors Some 162 (36.73) 392 (33.48) 89 (33.58) 131 (26.57 73 (36.68) 88 (34.92)
A lot 224 (50.79) 716 (61.14) 148 (55.85) 330 (@6.9 95 (47.74) 143 (56.75)
Missing 20 (4.53) 13 (1.11) 4 (1.51) 8 (1.62) 30. 3(1.19)
Looking for cancer No 217 (49.21) 443 (37.83) 182 (68.68) 280 (56.79)144 (72.36) 123 (48.81)
information Yes 224 (50.79) 726 (62.00) 82(30.94) 210 (42.60 54 (27.14) 129 (51.19)
Missing 0 (0) 2(0.17) 1 (0.38) 3(0.61) 1 (0.50) (0D
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Table 2-1Distribution of socio-demographic, health relateelhavioral, and knowledge related characteristics

Independent Variables

Women'’s intentions and attitudes toward

mammography

Thinking about
mammogram in non-
adherent women

Age < 65 (N=1612)

Age 65 (N=758)

¥ =0 y1 =1 =0 y,=1 =0 =1
(N=441) (N=1171) (N=265) (N=493) (N=199) (N=252)
Perception of chance Low 209 (47.39) 541 (46.20) 157 (59.24) 265 (58.75 134 (67.34) 130 (51.59)
of getting breast Moderate 129 (29.25) 414 (35.35) 58 (21.89) 1566@1 43 (21.61) 82 (32.54)
cancer High 49 (11.11) 184 (15.71) 11 (4.15) 44 (8.92)  (381) 31 (12.30)
Missing 54 (12.24) 32 (2.73) 39 (14.72) 28 (5.68) 6 (8.04) 9 (3.57)
Fruit and vegetable Per day 193 (43.76) 615 (52.52) 137 (51.70) ®@607) 32 (16.08) 43 (17.06)
consumption Per week 113 (25.62) 333 (28.44) 59 (22.26)  1P03®) 52 (26.13) 74 (29.36)
Per Month 76 (17.23) 199 (16.92) 37 (13.96) 704Q%. 99 (49.75) 122 (48.41)
Missing 59 (13.38) 24 (2.05) 32 (12.07) 7 (1.42) (4.64) 13 (5.16)
Lifetime number of <100 187 (42.4) 642 (54.82) 152 (57.36) 283 (57.40 112 (56.28) 120 (47.62)
smoked cigarettes > 100 221 (50.11) 526 (44.92) 87 (32.83) 207 (41.99) (&522) 131 (51.98)
Missing 33 (7.48) 3 (0.26) 29 (9.81) 3(0.61) B(). 1 (0.40)
Exercise in the pastNo 137 (31.06) 840 (71.73) 133 (50.19) 334 (67.75) 77 (38.69) 90 (35.71)
month Yes 267 (60.54) 321 (27.41) 105 (39.62) 154 (31.24 116 (58.69) 159 (63.09)
Missing 37 (8.39) 10 (0.85) 27 (10.19) 5 (1.01) 301) 3(1.19)
Knowledge of Breast Cancer/Mammography
Age at which women  40-50 227 (51.47) 755 (64.47) 87 (32.83) 280 (8p.7 89 (44.72) 132 (52.38)
should start getting ¢y, 140 31.75) 371 (31.68) 83(31.32)  144(@9.2 58 (29.15) 95 (37.70)
mammography ' ) ) ) ) )
Missing 74 (16.78) 45 (3.84) 95 (35.84) 69 (13.99) 52 (26.13) 25 (9.92)
Frequency of getting Every 1 to 2 years 257 (58.28) 909 (77.63) 136371. 384 (77.89) 106 (53.27) 159 (63.09)
mammograms Others 118 (26.76) 249 (21.26) 68 (25.66) 97 (19.67 57 (28.64) 79 (31.35)
Missing 66 (14.97) 13 (1.11) 61 (23.02) 12 (2.43) 6 (88.09) 14 (5.55)




For the health-related characteristics, as the murbvisits to a health care provider increases,
women are more likely to adhere to screening mamapdy (OR=2.358 for women with more
than 5 visits to doctor per year versus women \ei$is than two visits per year). Being advised
to have mammogram is the strongest factor in @tisgory OR=5.298 and 10.711 for women
younger than 65 and women 65 and older, respegtogghpared to women who are not advised.
Women who have had a prior Pap smear are moreeamtiban those who have not (OR=3.203

and OR=3.809 for women younger than 65 and womesm@older, respectively).

For the behavioral characteristics, women who tiusicancer information from their doctor “a
little”, “some” and “a lot” are 6.727, 13.194, ahd.824 times more likely to adhere compared to
women who do not trust their doctor at all. Womedrovinave an increased risk perception of
breast cancer are more adherent. For women yotimge65, the corresponding ORs for women
with “moderate” and “high” risk perception are 1954nd 1.541, respectively. The corresponding
values for women older than 65 are 1.645 and 3.@3pectively. Women younger than 65, who

have smoked at least 100 cigarettes in theirifes are less likely to be adherent (OR=0.687).

For the knowledge related class of factors, womkasg answer to the appropriate interval
between two subsequent mammograms is other thay ewe or two years are less likely to
adhere. The corresponding odds ratios are 0.81D.&3& for women younger than 65 and

women 65 and older, respectively.
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Table2-2 Results

for design-based multiple logistic esgion on mammography adherence

comparing women younger than 65 and women ageadblder

Age < 65 Age> 65
Independent Variables ?a(:%s P-value Odds ratio P-value
Socio-demographic characteristics
Black - -
Race White 0.874 0.606 1.329 0.536
Other 0.548 0.077 0.425 0.148
Marital status Married i R}
Single/Divorced/Separated  0.685 0.025 0.499 0.012
Some high school or less - -
Education High school Graduate 1.750 0.089 1.460 0.310
Some college/ College 1.457 0.231 1507 0.320
graduate
<$25,000 - -
Income >$25,000 and&$75,000 1.324 0.186 1.341 0.044
>$75,000 2.526 0.004 1.992 0.609
No - -
Insurance Yes 2.959 <0.0001 2.771 0.130
Health-related characteristics
Number of visits to  SCSS than twice a year i i
health provider a year 2 to 4 times a year 1.618 0.019 1.016 0.969
5 or more a year 2.358 0.001 1.610 0.313
Being advised to have No - -
a mammography Yes 5.298 <0.0001 10.711 <0.0001
Having had Pap No - -
smear Yes 3.203 0.0004 3.809 0.001
Behavioral characteristics
Not at all -
Trust cancer info A little 6.727 0.052 NA
from doctors Some 13.194 0.007
A lot 14.824 0.004
Looking for cancer  No - -
information Yes 1.134 0.457 0.883 0.484
Perception of chance Low - -
of getting breast Moderate 1.519 0.011 1.645 0.054
cancer High 1.541 0.079 3.036 0.043
Lifetime number of <100 - NA
smoked cigarettes > 100 0.687 0.047
Exercise in the pastYes NA 1.134 0.623
month No -
Knowledge of Breast Cancer/Mammography
Age at which women 40-50 - -
should start getting  Others 0.921 0.605
mammography 0.692 0.101
Frequency of getting Every 1 to 2 years -
mammograms Others 0.812 0.043 0.636 0.048

“-“ represents the reference group.
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2.3.2 Thinking about Getting a Mammogram in Non-AdherentWomen

In the bivariate analysis, age, marital statusomne, and insurance are among the variables,
which proved to be significant in the socio-dem@dpia class of factors. In the health related
class of factors, being advised to have a mammabgrdraving had Pap smear are statistically
significant in bivariate analyses. Looking for canmformation, risk perception of breast cancer,
lifetime number of smoked cigarettes, and exercighe past month are significant factors in the
bivariate analyses in the behavioral charactesstiass.

However, in the multiple logistic regression anaky¢Table 2-3), the only significant factor is
age. As women’s age increased, they reported tingrddbout getting mammograms less often.
Women ages 60 to 69 years, and older than 70 geai®.377 and 0.112 times less likely to

think about getting a mammogram compared to wongexd 42 to 49 years.
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Table2-3 Results for design-based multiple logistic esgion on attitudes toward
mammography in non-adherent women

Non-Adherent Women (N=510)

Independent Variables

Odds ratio (OR) P-value
Socio-demographic characteristics
42-49 -
55-59 0.784 0.572
Age
60-69 0.377 0.015
70+ 0.112 <0.0001
Marital status Married )
Single/Divorced/Separated 0.965 0.917
< $25,000 -
Income >$25,000 and&$75,000 1.579 0.193
>$75,000 1.738 0.363
No -
Insurance
Yes 1.277 0.496

Health-related characteristics

Being advised to have No -

a mammography Yes 1.789 0.083
Having had Pap smear \© )

Ye 1.156 0.727

Behavioral characteristics

Looking for cancer No -
information Yes 1.676 0.081
Perception of chance Low -
of getting breast Moderate 1.412 0.207
cancer High 2.049 0.337
Lifetime number of <100 -
smoked cigarettes > 100 0.817 0.541
Exercise in the pastNo -
month Yes 1.061 0.848

Knowledge of Breast Cancer/Mammography

Age at which women 40-50 -

should start getting Others 1.102

0.737
mammography
Frequency of getting Every 1 to 2 years -
mammograms Others 0.967 0.925
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2.3.3 Evaluation of Regression Models

Table 2-4 and 2-5 present the classification tafdethe first response variable and the second
response variable, respectively. Sensitivity, @ty and accuracy of the proposed logistic
regression models are presented in the tables.tNat¢he numbers presented in the tables are
weighted according to the replication jackknife gigs in the data to be representative of the
national population. For example, the number 48207 jn Table 2-4 is the number of non-
adherent women younger than 65 who are corredhlsdied as non-adherent by the design

based logistic regression.

Table2-4 Classification table of logistic regression mbonh mammography adherence*

Actual Data
Non-Adherent Adherent
(v1(r2)=0) r1(r2) =1)
Younge| 7; <0.5 4,727,850 7,816,121
rthan | _ _
Logistic 65 71 =05 2,234,154 30,291,566 | Accuracy=77.7
Regression Measures Specificity=67.91Sensitivity=79.49
Model Resultf 65and| 7, <0.5 3,914,902 2,164,589
older | ,>0.5 1,086,976 9,505,231 | Accuracy=80.50
Measures Specificity=78.2[7Sensitivity=81.45

* ¥, andy, are the adherence likelihood calculated from tiggstic regression models for women younger than 65
and women 65 and older, respectively.

Table2-5 Classification table of logistic regression rabon attitudes toward mammography in
non-adherent women

Actual Data
Do not think about | Think about getting
getting a a mammogram
mammogram=0) (r=1)
Logistic <05 3,427,551 2,071,371
Regression 7>0.5 1,290,733 6,360,130 Accuracy=74.43
Model Result Measure Specificity=72.64 Sensitivity=75.43

* 7is the likelihood of being concerned about gettingmmogram in non-adherent women calculated froen th

logistic regression model.
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As the results show, for the adherence to mammabgregsponse variable the proposed design-
based logistic regression models correctly clas&ify % of women younger than 65 and 80.5%
of women 65 and older. For the thinking about ggth mammogram response variable 73.43%

of women are correctly classified.

2.4 Conclusion

In this study, we evaluated the association betwamnen’s adherence to mammography
screening and four classes of factors includingpuarsocio-demographic, health-related,
behavioral characteristics and knowledge of breaster/mammography factors using the 2003

HINTS data.

In the literature, definitions of adherence to masgraphy screening vary widely across studies.
Zapka et al. [14] and Wu et al. [15] defined adheesbased on the ACS guideline, “had a
mammogram in the last year”. Maxwell et al. [16]utdbito et al. [17], Tejeda et al. [18],
Schonberg et al., [19] and Vyas, et al. [20], cdesed “had a mammogram in the past two years”
as a measure of adherence, which is consistenthattd SPSTF guideline. Wu et al. [15],

Maxwell et al. [16], Tejeda et al. [18] and Meisseeal. [21] considered “ever had a
mammaogram” to measure women’s decisions in mamrnpbgrparticipation. However, this
measure cannot be interpreted as the adherencantonography guidelines since it does not
incorporate a specific time interval. Other tim&ervals are also considered in the literature. For
example, Harrison et al. [22] defined “had any magram in the preceding 5-year period” as
their response variable. Many studies defined amftoer based on “ever had” or “the most recent”
mammogram rather than considering whether the waetenmed for repeat mammography or
not. To bridge this gap, Carney et al. [23] defitieel response variable as “returning for a

screening mammogram within 24 months of the ingddm” and identified factors that had
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significant effect, such as health insurance cayerérst degree relatives with breast cancer, and
knowledge about breast cancer. In other studidenAdt al. [24. 25] explored the relationship
between mammography use and social network chasticie while considering “receipt of at
least two mammograms, the most recent of whichwitsn the past 2 years with a maximum
interval of 2 years between screenings” as theradlce measure. Rakowski et al. [26]
considered “two exams on schedule, based on ag-eteer-year interval” in their study. A
systematic literature review of the studies onrtfanmography use and the associated factors
published from 1988 to 2004 was completed by Sametlal. [27]. In summary, they found that
the strongest predictors of mammography use wesesgeaeening behavior (clinical breast
examination and Pap test), having access to a@agsand having a physician-recommend
mammography. These results are in line with oudifigs as the design based logistic regression
result show that “having been advised to get mamarg “have had Pap test” are the two most
important factors. We also found that “perceptibcttance of getting breast cancer”, “income”,

“insurance” and “knowledge about mammography” @geiicant factors.

Most of these studies used data at the local, negjiar state level, making national
generalizations difficult. In addition, these segldid not consider if a woman underwent a
mammogram because she intended to do so, or fagaabtic purpose (e.g. after the woman

had felt a lump in her breast), or because herdgrescribed the mammogram. In addition, for
the studies that used longitudinal data (sequem@hmograms), it is difficult to keep track of
women who died, moved, etc. This can potentiallysegbias in the data analysis, and as a result,

these measures may not truly represent women'seiteeto mammography guidelines.

This study differs from prior studies [14-27] imthadherence is defined based on women’s

intention and plans of obtaining mammograms rétien their mammography history behavior.
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Results from our work will likely helps decision keais to differentiate between women who are
concerned about mammography and have regular fuagetting mammograms from those
who are not concerned. The results of this anabaishelp policy makers identify non-adherent
populations. We also examine the relationship betwaforementioned four classes of factors
with women'’s attitudes toward getting mammograntsffiomen with poor mammography
history. By characterizing the factors associatéd attitudes toward mammography in the non-
adherent population, policy makers can differeatlzdtween the women who are concerned
about receiving a mammogram but may have someebanrersus those who are not concerned

at all.

As for the limitations of our study, it is based s®if-reported data and may yield biased results
if a woman did not report the exact time of het laemmmogram. We also used the 2003 HINTS
data set since it is the only HINTS data that ptesiinformation on women'’s intention toward

mammography.

Adherence to screening mammaography is lower amadngrities [28]. Based on the 2010
National Health Interview Survey, 69.4% of Ameridadian/Alaska native women and 64.1%
of Asian women had a mammogram between 2008 an@, ¥@file participation rates among
white and black women were about 72.8% and 73.2%peactively [29]. Our results also imply
that the percent of women intending to have regadagening mammography is lower in races
other than white and black. However, we do not ren@ugh evidence to conclude that these
differences are statistically significant. The flesteveal that for both age groups, married
women are more likely to comply with the mammograghidelines. For women younger than
65, financial aspects such as insurance and ineoenalso significant factors the policy makers

should consider for improving adherence.
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Physicians’ involvement in achieving mammographlyeadnce is important. However, many
physicians do not make referrals at the recommemmdedrals, even though they may endorse
the guidelines [30]. Our results show that priovied to have a mammogram by the woman’
physician is the most significant factor in heaktated class of factors. This suggests that to
enhance women’s adherence, doctors should recomthantheir patients have regular
screening mammograms. Mammography referrals are meguent for women who have access
to the health care system (i.e. women with regolfgssician and health insurance), but less
frequent among vulnerable women, (i.e., older womih lower educational attainment or

lower annual family income [31]). It would be woitivestigating the factors associated with
low mammogram referral rates by physicians. Hawistpry of Pap smear was found to be
significant for both age groups. This is in linelwa previous study by Augustson et al. [32], in
which they characterize the association betweernceli breast exam (CBE), Pap smear, fecal
occult blood testing (FOBT) adherence, and mamnptgyradherence. Therefore, low
compliance with other cancer screenings can helptity women in need of additional
interventions to improve mammography adherencéddigh the number of visits to a health
provider is significant for women younger than &bs factor is not significant for older women.
This is interesting as older women, regardlesseaidadherent or not, are expected to visit their

doctors more frequently than younger women becafiaging associated diseases.

In the behavioral characteristics class, “lifetimenber of smoked cigarettes” is a significant
factor for younger women but not for older womerusking doctor’s information about cancer

is proved to be significant for younger women, heg&rewe do not have enough evidence to say
that it is also significant for older women. Praygcstudies differ about whether fear motivated

or inhibits precautionary behaviors. McCaul etested different predictors in the context of fear
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of breast cancer and breast cancer screening amedithat greater fear was related to higher
levels of screening intentions and behaviors [BRir data analysis confirms this finding and
shows that risk perception of breast cancer igRifszant predictor on intention of getting

regular mammograms for both age groups.

For the last class of covariates, as expected, lauge about frequency of getting mammograms
is significant. Thus, increasing women’s knowledfpeut breast cancer and mammography

recommendations is also likely to significantlyliig/nce women’s adherence.

For the second response variable (thinking abatihgea mammogram in non-adherent women),
we found little difference between women who aré are not concerned about getting
mammograms. For this response variable, youngeramame more likely to think about
obtaining a mammogram. Women who have been adtosget a mammogram before and those
who are looking for cancer information may be mawacerned about getting mammograms,

although these findings are not statistically digant.

This study enables decision makers to identifyibeswomen may face to obtain a screening
mammogram and also allows for the identificatiorclmdracteristics of non-adherent women

who are not concerned about getting a mammogramfilings suggest the most significant
factors influencing women’s compliance are beingisetl to have a mammogram and insurance.
The former has been applied on a systematic levabime European countries (e.g. the UK,
Sweden, Norway), which have organized populatiosetdascreening programs where women

are invited through a personal letter for a freemmagram every two or three years [34]. A
recent analysis of theuropean Network for Information on Cancer (EUNIGBja for years

2005, 2006 and/or 2020 national and 16 regional programs for womesdas)-69 in 18
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European countries) reported that in 13 of ther@gm@ams the participation rate exceeded the
European Union benchmark of 70%, and 9 programieaeth a participation level >75% [35].
According to the CDC, 66.6% and 67.1% of U.S. wo@ryears and over received a
mammogram in the past two years based on dataZfffs and 2008, respectively [8]. Although
a direct comparison of screening mammography paation rates between European countries
and the U.S. is difficult due to difference in remoendations (i.e. age at which to begin
screening, interval between mammograms), our iesufpport the benefit of future policies that
systematically advise and provide resources to wotlieéeceive a mammogram, as is already
done in other countries. Several studies also ifleshsignificant factors associated with
attendance in population-based mammography prograigropean countries (the UK, France
and Sweden) [36-41]. Some of these factors suamcame, visiting healthcare providers,
having had Pap smear and perceived risk of breastec are also found significant in our
analysis. As in most European countries mammograpfrge, none of these studies reported
insurance as an influencing factor for getting ammegram. However, as our results show, lack

of insurance is still a barrier in the U.S., esplgifor women younger than 65.

In summary, sending reminders and having insuramre shown to be the most influential
factors in screening mammography. Other signifi¢actiors include marital status, number of
visits to health provider a year, having had Papamnrisk perception of breast cancer, and
knowledge of breast cancer/mammography. Thesefisccan help in designing programs
aimed at improving screening rates and providegyatakers with data to allow for
interventions to remove these barriers and makéatigeted population more concerned about

getting breast cancer screenings.
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3 Evaluation of breast cancer mammography screeningglicies considering adherence

behavior

3.1 Introduction

Mammography screening recommendations have beeubject of significant debate in recent
years. As discussed in Chapter 2, there are v@sgreening guidelines from different
organizations about when to start and end mammageartt how frequently a woman should
undergo mammography screenings. For example, theridam Cancer Society (ACS), the
department of Health and Human Services (HHS)Atherican Medical Association (AMA),

and the American College of Radiology (ACR) recomthscreening mammography every year,
beginning at age 40. In 2009, the U.S. Preventami€es Task Force (USPSTF) issued revised
screening mammography guidelines, which resulteadsignificant controversy. According to
the USPSTF guidelines, screening mammograms stheuttbne every two years between age

50 and 75 for women at average risk of breast ¢date

Although mammography is known to be one of the naffsictive methods of detecting breast
cancer, there are many concerns on its adversg®fia women’s quality of life. Unreliability

of mammography, i.e., false negative and falsetpesiesults and overdiagnosis are among the
deficiencies of mammography [2]. A prospective ablstudy of 7 mammography registries of
the Breast Cancer Surveillance Consortium (BCSG)ved that the adjusted sensitivity
increased with age from 68.6% in women ages 4@ tw83.3% in women ages 80 to 89

[3]. Similarly, the specificity rate increasedimd8.2% for women aged 40 through 44 years to
93.4% in women older than 75 [4]. Moreover, abag-third of all aggressive cancers are

diagnosed in the interval between successive aitaaimograms [5]. These cancers are known
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as interval cancers and are defined as cancerste@twithin 12 months after a negative
mammogram [6]. Some of the interval cancers aregnteat the time of mammography

screening (false-negatives) while others grow dgprdthe interval between a mammogram and
detection [7]. Generally, interval cancers growidgpand are frequently diagnosed at advanced
stages [8]. In addition, studies have shown theg¢iveng mammograms increases a woman’s
chance of developing breast cancer due to exptsuegliation [2, 9-10]. Each radiation-

absorbed dose (rad) of exposure increases breastraask by 1 percent [2]. Moreover, Bleyer

et al. also found that up to a third of diagnosexhbt cancers are overdiagnosed cases and do not

need treatment [11].

Various studies have been conducted to evaluate@ngare different screening policies or to
identify optimal policies. Kirch et al. [12] devgled an inspection strategy for the detection of
an age-dependent disease with the objective oinmzimg detection delay. To illustrate their
methodology, they developed optimal schedules fleast cancer examinations. Shwartz [13]
developed a mathematical model to evaluate lifeeetgmcy gain associated with different
screening policies under different assumptions attwurate of disease progression, the
characteristics of the screening technique, andréugiency of screenings. Parmigiani [14]
presented a continuous time non-Markovian stoohasticess model of disease progression to
analyze which age groups and what part of the @tjoul should undergo breast cancer
screening, while minimizing the total expected lossisk including financial costs, side effects,
wasted time, stress due to false-negative teslisestc. Zelen [15] formulated a screening
scheduling problem to maximize a weighted utilitpétion in a continuous time setting. In
Zelen’s model all the parameters were assumed statienary except for the incidence rate.

Baker [16] used a mathematical parametric modeks®ss different screening policies in terms
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of minimizing the cost of cancer plus the costafrging out any screening. Baker's model was
developed based on a small data set used to estiheamodel parameters, and compares a small
set of cost optimal policies under different sdteanstraints. Hanin et al. [17] developed a
model to study screening strategies based on taimemat detection. In their model they
combined several processes such as tumor latamgy tgrowth and tumor detection to estimate
the tumor size at detection. As a measure of theesmg efficiency, they proposed the
difference between the expected tumor sizes atti@tewith and without screening, when both
spontaneous and screening-based detections d@ca ffhey concluded that in the case of
exponential tumor growth, the optimal screeningesicites with a fixed number of exams are
uniform or very close to uniform (same intervalibe¢n subsequent screening tests). Maillart et
al. [18] formulated a partially observable Markdvam model to evaluate a wide range of
dynamic mammography screening policies as welba®nt practices. They compared different
policies in terms of the resulting lifetime breaahcer mortality risk and the expected number of
mammograms women should undergo for each policyganérated a frontier of efficient
policies. In their formulation, they considered dgsed dynamics of breast cancer (i.e.,
increasing incidence, decreasing aggression). alseyincorporated the imperfect nature of the
screening outcomes and dynamics of test resultracg\fincreasing sensitivity and specificity
rates with age). Ayer et al. [19] developed a &rlibrizon partially observable Markov decision
process (POMDP) model to determine the optimalgrerized mammography screening
strategy based on personal risk characteristiegoafien such as their prior screening history.
Ahern et al. [20] developed a mathematical modeliimize cancer screening schedules, taking
into account the trade-off between the benefitsasds of screenings in their proposed utility

function. They considered two different optimizativpameworks: optimize the number of
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screening examinations with equal screening intetvatween exams but without a pre-fixed
total cost; and optimize the ages at which screpsimould be given for a fixed total cost and
prove that the optimal solution exists under eddhetwo frameworks. In another study, Hanin
et al. [21] developed a model to construct optistdledules of cancer screening that maximize
the probability that by the time of primary tumatection, it has not yet metastasized. They
applied their model to mammographic screening feast cancer. Their model includes all main
stages of cancer progression: cancer latency, pyitaenor growth, its detection and metastatic

spread.

However, none of the above mentioned studies rawantpatient behavior into consideration.
They all assume that patients adhere to the guekelperfectly and undergo the prescribed
screening mammograms. This is also true for theeatiscreening recommendations which are
based on the assumption of 100% adherence to theliges. However, as discussed in Chapter
2, not all women have the same attitudes towarddbr@ancer screening. There are a limited
number of studies taking individual adherence beanto consideration. Brailsford et al. [22]
used a three-phase discrete event simulation tehtwdast cancer and screening policies
incorporating women’s behavioral factors in theodal. They assigned behavioral attributes to
each simulated woman to control her compliance thighprescribed mammograms in their
model. They compared a limited number of screepolgies, including the current UK policy,
in terms of the number of screen detected canartslife yeas saved. In another study, Ayer et
al. [23] analyzed the role of behavioral heteroggrne women's adherence on optimal

mammography screening recommendations.

In this research, incorporating women’s adheremt@bior to mammography recommendations,
a mathematical framework is proposed to evaluatikcampare various screening policies in
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terms of QALYs and the lifetime mortality risk ofdast cancer. Our study is different from the
two studies discussed above in the approach ofpocating patient adherence to the screening
tests. In contrast to earlier studies, we allowentasnty in a patient’s adherence probabilities in
the model. Adherence is also a function of the tlerod the interval between two subsequent
screenings. Moreover, assuming a patient’s adhereelsavior is related to and can be estimated
from her perception/planning toward mammography,amy can we evaluate and compare
screening policies for a specific patient knowireg personal characteristics, but we can identify
efficient policies for the general population adlwle addition, we incorporate in our model the
possibility of interval cancer detection, and thereased risk of developing breast cancer due to

exposure to X-ray radiation during a mammographby. te

The remainder of this chapter is organized aswdldn Section 3.2, the proposed model is
presented. In Section 3.3, model inputs and paemsiestimation, and computational results are

presented. Finally, Section 3.4 summarizes therfgeland discusses future work.

3.2 Model Formulation

A randomized discrete-time finite-horizon partiatlgservable Markov chain model is developed
to evaluate various mammography screening poliniésrms of the expected QALYs and
lifetime breast cancer mortality risk. This problesviormulated as a partially observable

Markov chain because the women'’s true health stateaot outwardly observable due to the

imperfect nature of mammography screening tests.
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Figure3-1 One period sample path of the breast cancecti@h process

The model takes into account two methods of detecicreening mammography and self-

detection (SD), i.e., breast self-examination.riveiecancer detection is considered separately

from self-detection, depending on the time intehetiveen the detection and the last
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mammogram. The detailed mammography screening ggas@resented in Figure 1 and is

described as follows.

At epocht if a mammogram is recommended, a woman may undbegeecommended
mammogram with probability(t) or skip it with probabilityl — g(t). If she undergoes the
prescribed mammogram, she may receive a positinegative result. After a positive result,
since mammography is not perfect and has a relatiow sensitivity (the probability of
receiving true positive result), a breast biopsy t& usually conducted to check the suspicious
area found on a mammogram and see whether thé ifwle positive or not. Biopsy is
assumed to be perfect since it has a relativelly sansitivity and specificity (probability of
receiving true negative) rates [24]. If the biopssgult is negative suggesting a false positive
mammogram, the patient proceeds to the next eptmhever, if the biopsy confirms the
mammographic findings, cancer is detected and a@tierg leaves the model. We do not model
the treatment explicitly. Instead, we assume tHamthe patient is diagnosed with breast cancer,
regardless of the method of detection, she receitesminal (lump sum) reward and leaves the
model. After a negative result, the woman procéedlse next epoch. However, it is possible
that after a negative result the cancer becomegpteynatic and be detected (interval cancer

detection in this case).

If the woman skips the recommended mammogram aett@mmended action at tinhes to
wait, she may or may not develop some symptomsesiigg there is cancer present. If she
develops symptoms, depending on the action intl@qus epoch we have either a self-
detection (if the previous action is a wait), oriaterval cancer (if the previous action is a

mammogram). Note that the interval between twogl@eiepochs in the process is six month.
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Therefore, if the action in a previous epoch wasaanmogram and symptoms occur after the
current epoch, we have an interval cancer and setfaletection. We assume that when the
woman feels a lump in her breast (symptom) she @vgalfor a mammogram, and if the result

of the mammogram is positive, she would have adyidest to confirm that the cancer is present.
If both the mammography and biopsy tests are pesisimilar to the previous case the patient
leaves the model. However, if the follow-up teses. (mammogram or biopsy) are negative, the

patient proceeds to the next epoch.

For consistency, we refer to the woman as the épgtiirrespective of her health condition.

Below is the list of notation used in the problesmfiulation.

t Decision epochg, = 0, ..., T. We consider the earliest and latest age a poley m
recommend a patient undergo a mammogram to bedtQ@ respectively. The
start age of 40 is considered in order to be ctarsisvith the current
mammography screening policies (e.g. ACS). In aalditve assume the process
ends at age 100 because of the negligible probabflsurviving after this age
according to the U.S. life tables [25]. Mammograplegisions are made every six
months. Patients enter the process at age 400() and, if cancer is not detected,
stay in the process up to age 106=(T = 120), regardless of the policy under
study.

St Underlying health state a patient occupies at epactils, € S = {0, 1, 2, 3, 4}.

The five states considered in the model are caneer(state 0), early breast cancer
(state 1), advanced breast cancer (state 2), ffeathbreast cancer (state 3), and

death from other causes (state 4). We define catats similarly to Maillart et al.
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Pc(3ls, a)

ot

Q¢(ols,a)

[18]. States 0O through 2 are partially observabie t the imperfect nature of
mammography tests. However, states 3 and 4 akeddiervable.

Action prescribed at timg anda, € A = {W, M}. W andM represent “Wait” and
“Mammogram”, respectively.

Belief state distribution, where, = [r;(0), m:(1), 7 (2)] and represents the
occupancy distribution of partially observable asaat which the patient is believed
to be, i.e.;t;(s) represents the probability that a patient is belieto be in state
Underlying transition probability, i.e., the prolii#ly of being in states at timet +
1, when the patient is in stat@nd takes actioa at timet. Note that the transition
probability is a function of actioa since undergoing a mammogram increases the
patient’s chance of developing radiation-induceshbt cancer.

Observation when a patient takes actignif a;, = M, the observation space is
oM = {M+,M-}, whereM + andM — represena positive mammogram, and a
negative mammogram, respectively. In the caseadiveng a negative
mammogrami—), the patient may show symptoms within one yeaickhesults
in interval cancer detection. In this case the platon space i8¢ = {IC+,1C-},
wherelC + andIC — represent interval cancer and no interval canespectively.
If a; = W and the patient did not have a mammogram testrwiitie past year
thenoW = {SD+, SD—}, whereSD + andSD — represent self-detection and no
self-detection, respectively.

Observation probabilities, i.e., the probabilityadfservingo at timet when the
patient is in state and actiora is taken at timé. Note that for the case that

observation i9C + or IC —, for simplicity, we use the notatia@ (o|s) since
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r(sla, o)

R1,t(5)

Ry, (s)

P1,e (s)

P2,:(s)

Vi

I(t)

interval cancers can happen both after a wait amdramogram action. However,
in “wait” cases we should have had a mammograrherptevious epoch (at time

t — 1 or six month prior to time).

Immediate reward that a woman receives when saesstes, takes actiom and
receives observatiomat timet.

The total expected reward a patient receives whenssin one of the cancer states
(s= 1 or 2) and her cancer is detected through strgenammography.

The total expected reward when a patient is in @astates in the case of interval
cancer or when the cancer is diagnosed via seffetlen. Different total expected
reward values are considered for screen-detectkdyanptomatic cancers since
previous studies have shown a systematic survadtit for screen-detected
cancers comparing to symptomatic cancers [26]. Wewehe expected reward for
interval cancers and self-detected cancers is asstobe the same as it has been
shown that there is no statistical difference irvsal between interval cancers and
clinical cancers [27].

Probability of eventually dying from breast canedren the cancer is diagnosed
through screening mammography and the patientssates (=1 or 2) at time.
Probability of eventually dying from breast cantethe case of interval cancer or
when the cancer is diagnosed through self-detection

Probability of dying from causes other than breasicer. Note thay, is
independent of the state the patient is injardR (4 | s, a).

Indicator function representing whether the presiaation at epoch— 1 was a

mammogrami((t) = 1) or not ((t) = 0).
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d Mammography screening policy or a sequence of plestactions

d=(d,, d, ..., d7) whered, represents the action at tirnender policyd.

pM Disutility of mammography at time
DE Disutility of biopsy at timet.
q(t) Probability that a woman undergoes the prescribashmogram at epodhq(t)

varies in the interval ofgf; (t) g, (t)], whereq, (t) and g,(t) are bounds of the
confidence interval of the adherence probabilitied can be estimated based on
the woman'’s various characteristics. Estimationgfait) and g, (t) is discussed in
Section 3.1.
The state transition diagram of the underlying Markhain representing the disease natural
history is presented in Figure 3-2. Note that eamleath only occurs when the cancer

progresses to an advanced stage [18].

Death
from BC
3)

Early
Breast

Cancer
Free (0)

Advanced
Cancer (2)

Cancer (1)

Death from
other causes
(4)

Figure3-2 Transitions between different health states

The policies are evaluated and compared in termwvof outcome measures: total expected

guality adjusted life years (QALYSs), and lifetimeortality risk of breast cancer.
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The value functions of policgtin our model follows a randomized Markov model ihigh the
actions are chosen under uncertainty, i.e., at #gewoman may take action M (mammogram)
with probability g(t) or choose to skip a mammogram (W) with probalility (t) . Given that
q,(t) and g, (t) are the lower and upper confidence boundsifay, the value function of

policy d at timet is defined as below:

1 %) " ) o
) S D e O A= DY 1 ) it =

V" () a4 =w 31
SO (v )+ () it 0 =M
v," (1) if d, =W,

whereV?(7) is the value function at timtewhen the actiom is taken and the occupancy

distribution ist. Note that although is a function of time as introduced in the notatsection,
we drop this time index in all equations for tharity of the notation. Equation 3-1 calculates

the average value of functia(t) v, () + (1- q(t)) D" (77) over the interva[q,(t), q,(1)] .

3.2.1 Total Expected Quality Adjusted Life Years (QALYS)
Supposep(77) represents the value functio’(77) in Equation 3-1) for our first outcome

measure: the total expected quality adjusted kary (QALY'S) the patient can attain when the
current belief state distributionisand actiora is taken. If at time the screening policy

recommends a mammogram, then
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whered(m, a, 0) is the updated occupancy distribution at tim& when the current occupancy
distribution (at time) is T and actiora is chosen and the result is observatiofi(r, a, 0) is

calculated using Equations 3-3a and 3-3b.

m(s)[Q(M-| s M)OQ(IC-| 9 fo = M-& IC -

Zﬂ(])[@t(M—IJ,M )@ (IC-1j)

m(s)[Q(SD-| s W _ _ _

2 . ] 'ét—l_ Wq - V\Q = Sb 3-33

g‘T(ﬂ,a,o)(s): goﬂ(l)@t(SD_l ],W)

() Q(IC-|s) 4 = Ma= Wq=IC-
ZH(J)E(DIUC—I D)
1 i§ = 0Q= M+ orSD+

and,
NCES WANCIL CIEE -

Note that‘t(”’avf’)(s) is the updated occupancy upon observing o atuhremnt epoch and

nac(S) is the updated occupancy at the beginning of &xt @poch. Time indices are dropped
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for clarity. The first line in Equation 3-3a repests the case when the patient undergoes a
prescribed mammogram, receives a negative restditi@es not develop any symptoms within
six months of the mammogram test. The second ardllihes both represent the case when the
recommended action is to wait in the current epbldwever, the second line is when the action
at epocht — 1 is a wait and the third line is when the recomneehaction at — 1 is a
mammogram. These two cases need to be considgraxhtsy since the third case represents an
interval cancer rather than self-detection becafisiee negative results in the previous
mammogram at epoah- 1 (within 12 month of a negative mammogram). The tloline
represents a false positive result. In such cdmetlow-up tests reveal that the patient is
healthy. In the case when the result is true p@sii1+, SD+ and IC+ ansl= 1 or 2), the

woman receives a lump sum reward and leaves thelmblakerefore, no occupancy distribution

update is needed.

The logic of Equation 3-2 is as follows. When agratundergoes a mammogram, she either
receives a positive or a negative result. If thiiepdiis in the cancer free state and she receives
negative result, an immediate reward is calculatetithe patient will transit to time+ 1. If the
patient is in cancer states but she receives aigegasult, then she may develop some

symptoms with probabilityQ, (IC+| s) before the next epoch, which results in canceratiete

In this case, interval cancer is identified andghgent receives the lump sum reward and leaves
the model. We assume that interval cancer canasdyr in cancer states since even the fastest
growing cancers cannot grow from a single cell symptomatic size within six months [28],
which is the interval between two subsequent epothsr model. If the patient does not

develop any symptoms, she stays in the model angits to timet +1. If the woman is in the

cancer free state and she receives a positivet régultrue health state will be determined via a
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follow-up biopsy and she remains in the model. Heoaveif she is in any of the two cancer states

and receives a positive result, she will receilenap sum reward and the process is terminated.

If the screening policy does not recommend a manmamogat timet, then the expected QALYs

is calculated as

4
¢2N(rr):ﬂ(0)EQt (SD- |o,w{rt (O,W,SB ¥ 3 R(loW)pl 9 oz, w SD- ))}
s=0

4 d
L P(IswW, t+1 6 4 w,Sb )}

)3 IT(S)[Q[(SD—|S,W)|:{(S,W,SD-)+ i
0

+ (E1t()Es=12
X SR (SDH s WR, (9
s=1,2 ’ 3-4

4 d
+77 (0)R, (SB |0,\/\{)rt O.W,SBH T P 'o'thHl 8 (71 ,W,SD:I))
s=0

S

4 d
) n(s)EQ[(|c—|s){tr(sw,|c—)+ T P(s SW)E¢tiJ£1Q9(n,W,IC—)):|
+i()Es=12 s=0 .

+ X H(S)EQ(ICH S)DR?t($
s=1,2 '

The logic of Equation 3-4 is as follows. When tleéan at timet is to wait @, = W), as
discussed above, two separate cases need to hdareds 1) the prescribed action at time 1

is to wait, and 2) the prescribed action at ttme1 is a mammogram. In Case (1), if the woman
waits or does not get a mammogram at timbere are two possible outcomes: whether
symptoms are developed or not during the time valdvetween epochandt +1. In the case

when no symptom develops, the patient receivesamediate rewarrd(s, W,SD- ), remains in

the model and her belief state distribution is updaising Equation 3-3a and 3-3b. However, if

some symptoms are developed (with probalditgD+ |s, w)) and the patient is in the cancer

free state, a follow-up test reveals her true hesttite, then her occupancy distribution is
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updated and she remains in the model. If sheascancer state(s=1, 2) and some symptoms

are shown, the follow-up tests will detect the pre of breast cancer. In this case, the patient

receives a lump sum rewaﬁ;’i]t (s) and leaves the model. In Case (2), given that dtiemt had

a negative mammogram at epach 1, she may develop some symptoms (with probability

Q(IC+|9)) that results in interval cancer detection in vahtase she receives a lump sum reward
RM(S) and leaves the model. It is also possible thatyngpsom occurs, which means the patient
receives an immediate rewartcds,w, IC-), her belief state gets updated and she proceedts to
next epoch.

Assumingr,(s,W, SD-) is determined, the immediate rewards in Equatioh &d 3-4 are

calculated using the following relationship:

r.(s,W,SD-)- D" f§ =Mandq = M- and IG-
r(s,a0)= r(s,W,SD-)-D" - D] ifs =@ =Mandq= M+
o r.(s,W,SD-) ifa = Wandq= IG orSB 35

r(s,W,SD-)-D" -Q (M+ |s,M)IF ifs =0, a= Wandp= SB

3.2.2 Lifetime Breast Cancer Mortality Risk

Supposeqf () represents the value functiod(77)) for the second outcome measure: the

probability that the patient eventually dies fronedst cancer when the current belief state is

and actiora is taken at timé. If the screening policy recommends a mammogratmaitt, then
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s=1,2
If the patient does not get the prescribed mamnmgriatimet or the policy recommends the

patient to wait, then her lifetime breast cancertality risk is

() = m0) @ (5D 10, WG 1 YL 6 (r WS )
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where $(r7,a,0) is the updated occupancy distribution as preseantéduations 3-3a and 3-3b.

The logic behind the Equations 3-6 and 3-7 is #evis. If a patient undergoes the mammogram
(Equation 3-6), she either receives a negativdtresa positive one. If the mammography result

is negative (with probabilit®, (M —| s,M) ) and the woman is in the cancer free stst@), she
may survive to time +1 with probabilityl— y;, and her risk of eventually dying from breast

cancer is calculated by’ (9(;7, M,M-)) . If she is in the early stage cancer statd ) or
+1
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advanced cancer stateR), after receiving a negative result (false negatshe may develop

some symptoms with probabili@ (IC+ | s), which results in her cancer detection by follogv-u
tests (mammogram and biopsy if needed). In this,daer lifetime breast cancer mortality risk

would bep, (s) and she leaves the model. However, if she is te st& 1 (ors = 2), and she
does not develop any symptoms after a false negegsult (with probabilit®), (IC—| s)), she
survives to timet +1 with probability1- (or 1- R (3| 2,M, M=)~ ;) and her lifetime breast
cancer mortality risk at time+1 is calculated by ($(r,M,M -&IC -)) . Note that if the

t+1

patient is in the advanced cancer state ), she may die from breast cancer in the current

period with probability? (3| 2, M, M-). If the mammography result is positive and the \&ons

in the cancer free state, her true health staldb@itletermined via a follow-up biopsy and she

survives to timeé+1 with probabilityl- ), and her value function is determined through

ot (8(r, M, M +)) . However, if she is in one of the cancer states pnobability of eventually

dying from breast cancer would iz (s).

In Equation 3-7, similar to Equation 3-4, two casesd to be distinguished, based on the action
at timet — 1, to account for the possibility of interval candéthe action at epoch— 1is to

wait then two outcomes in the current period argsfie: developing symptom@t((SD+ |s, W))

and no symptomth(SD— |s, W)). If the patient does not develop any symptom wétemis in

the cancer free or early cancer state, she maywsuiv the next time period with probability

1-y,. Then her lifetime breast cancer mortality riskadculated using the recursive function at

timet + 1. However, if she is in the advanced cancer sséite will either die from breast cancer
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before the next period with probabil®(3| 2, W,SD- | or survive to the next period with
probabilityl- P (3|2, W,SDG- )} y, and her probability of eventually dying from breeshcer is
calculated through®: (J(7r, W,SD-)). The patient might develop some symptoms with
probability Q (SD+ |s, W)when she is in state If the patient is in the cancer free state and

develops some symptoms, a follow-up mammogramifgsly) reveals her true health status, so
her belief state occupancy distribution is updasedi the probability of her eventually dying

from breast cancer is calculated & (9(/r, W,SD+)). If the patient is in cancer statess ] or
2) and develops symptoms, her lifetime breast cameetality risk would bepzlt(s). In this case

she leaves the model. In the second case whendh®ps action was a mammogram, the
patient may develop interval cancer in the curegttch or not. Similar to the first part, the

corresponding lifetime breast cancer mortalitysifi this case is calculated.
3.3 Numerical Studies

A wide range of routine screening policies and ptase policies (with changing screening
intervals) are evaluated in this section. Polieesdefined as a quintuple (starting age, first
screening interval, switching age, second screeniegval, stopping age). For example, policy
(40,1,50,2,80) represents a policy that recommemisen start getting mammograms at age 40
and undergo the screening test every year up t&@ged then undergo mammogram every 2
years up to age 80. Another example for routineesang policy would be (50,1,n,n,100) that
recommends women undergo annual screenings frorBGage100. Table 3-1 provides polices
considered in the analysis. The earliest screestang age considered is 40 since it is the earliest
age among the current screening guidelines. Weirathade the USPSTF policy and no

mammogram policy in our analysis. In total we eas#362 policies. Note that the numerical
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examples presented in this section do not inclixdensnth policies (i.e., screening every six
month) because the data source for estimatingrgataherence discussed in Section 3.1 does
not include six-month policies. However, the sixatiodecision epoch in our model formulation
allows better representation of disease naturarpssion. The readers can evaluate more
policies of interest if they have data for estimgtpatient adherence behaviors. Different
adherence cases are also presented as numeriogblegan this section.

Table3-1 Screening policies considered in the numesnalysis*

Policy Parameter Range Evaluated
Start age 40,45,50,55
First screening interval 1,2,3
Switch age 50,60,70
Second screening interval 1,2,3
Stop age 80,85,90,95,100

*Two special policies “No mammography” and “USPSTpblicies are also included in the

numerical analysis but are not shown in the table.

3.3.1 Model Inputs

As discussed in Chapter 2, a patient’s level okaeiice can be approximated based on her

personal attributes such as socio-demographicthhdmhavioral and knowledge related

characteristics [29-31]. Three different adherereses are evaluated in this study: a specific

woman, the general population, and a perfect adberease. Adherence probabilities for these

three cases are extracted using the 2003 Heattmbiation National Trend Survey (HINTS)

data and the developed design-based logistic reigresn Chapter 2. The three adherence cases

considered in this study are:

1) A white unemployed woman who is not married andsdo& have a family history of breast
cancer and believes she has a low chance of denglbpeast cancer. This case represents

very low adherence.
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2) The general population. This case represents thiege adherence rate of the U.S.
population derived from the HINTS data, which isaionally-representative stratified
survey. For this case we adjust our logistic regogsmodel for patients’ ages.

3) Perfect adherence for which a patient adheregptescribed mammogram test with
certainty.

Table 3-2 shows the confidence intervals of adregmobabilities for the general population

(Case 2). These results are consistent with the @pGort for 2-year interval between 2008 and

2010 [32]. As expected, adherence probabilitiesrameasing in age until late 60’s and then

start to decrease. This decrease can be relatedrtmdity and aging associated diseases in older

ages. Adherence probabilities for Case 1 arefsigntly lower than those of Case 2. For 1-

year screening interval, the highest adherenceghibties appear in ages 65-69 (confidence

interval (0.0581, 0.2226)), with lowest in ages#bDconfidence interval (0.0240, 0.0906)).

Adherence is only slightly better for 2-year ange2y screening intervals. Summary of these

numbers is omitted for brevity.

Table3-2 Confidence interval of adherence probabilitegghe general population (Case 2)

Age 1-year Interval 2-year Interval 3-year Intdrv
40-44 (0.4018, 0.5007) (0.5383, 0.6362 (0.5535512)
45-49 (0.4667, 0.5680) (0.6746, 0.7656 (0.6914386)
50-54 (0.5440, 0.6490) (0.7078, 0.7998 (0.72081.@9)
55-59 (0.5968, 0.7067) (0.7466, 0.8398 (0.7578493)
60-64 (0.5723, 0.6945) (0.6863, 0.7972 (0.70481.21)
65-69 (0.6033, 0.7302) (0.6982, 0.8138 (0.69831.88)
70-74 (0.5629, 0.6972) (0.6365, 0.7638 (0.6366588)
>75 (0.4006, 0.5012) (0.5256, 0.6256) (0.5391, 853

Initial belief states (risks of early and invassancers) for women aged 40 are estimated using
the Gail model [33]. The Gail model estimates thasive breast cancer risk for an individual

based on some risk factors such as age, age atechepage at first live birth, number of first-
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degree relatives with breast cancer, etc. To egtii@ in situ cancer risk, Gail et al. [34]
proposed using the incidence ratio between inagitiinvasive cancers. For example, for
average population, the initial risk of early antya@nced cancer at age 40 is 0.3% and 0.6%,
respectively. For the policies with start age gee#ttan 40, the initial belief states are updated

using the belief states for women at age 40, ancgtimns 3-3a and 3-3b.

Table 3-3 presents the data source for our numenedyses. To specify the post-cancer life
expectancies we use age-specific mortality ratepdtients under cancer treatment from the
SEER data [35] based on the method described esAti al. [25]. To adjust the life

expectancies for symptomatic cancers, we use theveehazard rates presented in Wishart et al.

[26].
Table3-3 Input data sources for model parameter estimati
Parameter Reference
Transition probabilities Maillart et al. [18], afgpstein et al. [2]
BSE sensitivity and specificity Baxter [38]
Mammography sensitivity and specificity Maillartadt [18]
Lump sum rewards for screen detected cancers SBERR4Nnd Arias et al. [25]
Lump sum rewards for symptomatic cancers SEER P8&4s et al. [25], and Wishart et al.[26]
Immediate rewards Sonnenberg and Beck [36], anat 8tal. [37]
Initial risk of early and advanced breast cancer il @adel [33], and Galil et al. [34]
Interval cancer rate Croteau et al. [7]
Lifetime breast cancemortality risk under Schairer et al. [39]
treatment for screen detected cancers
Lifetime breast cancenortality risk under Schairer et al. [39], and Wishart et al. [26]
treatment for symptomatic cancers
Adherence Probabilities Madadi et al. [29], and H8\40]

The expected immediate reward for the case the womagts and no symptom is developed, i.e.,

r.(s, W,SD-)is determined using the half-cycle correction mdtf®6] which assigns 0.5 (six

months) life years if the patient is alive in tharent decision epoch and 0.25 life years if the
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patient dies in the current decision epoch. The edhate rewards for the other cases are

calculated using Equation 3-5 and the numbers tegan Stout et al. [37].
3.3.2 Results
3.3.3 Analyses on QALYs

Table 3-4 presents the top five policies for thedhdifferent adherence cases in terms of

QALYSs. It also presents the associated lifetimeabteancer mortality risk for each policy.

Table3-4 The five best policies for different adherenases in terms of QALYs

Policy | QALYs | Lifetime BC mortality risk
Case 1- A Specific Woman
(40,1,n,n,95) 37.4439 0.0263
(40,1,n,n,100" 37.4439 0.0263
(40,1,n,n,90) 37.4429 0.0264
(40,1,n,n,85) 37.4405 0.0267
(40,1,n,n,80) 37.4371 0.0276
Case 2- General Population
(40,1,n,n,95) 37.5307 0.0256
(40,1,n,n,100) 37.5307 0.0256
(40,1,n,n,90) 37.5306 0.0256
(40,1,n,n,85) 37.5268 0.0258
(45,1,n,n,95) 37.5240 0.0264
Case 3- Perfect Adherence
(40,1,70,2,90) 37.5252 0.0262
(40,1,70,2,95) 37.5252 0.0262
(40,1,70,2,100) 37.5249 0.0262
(40,1,60,2,90) 37.5205 0.0275
(40,1,60,2,95) 37.5205 0.0274

*Policy in bold refers to the ACS policy.

The best policies for both Case 1 and the genemllption include the ACS policy. However,
Case 1 has lower QALYs and higher breast cancetafitgrrisk comparing to the general
population due to lower adherence probabilitiee bast policies for the perfectly adherent case,

however, does not include the ACS policy and pibedess frequent mammograms (2 year
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interval) at older ages. For very frequent polideeg., the ACS), the imperfect adherence cases
benefit more. Note that the USPSTF policy is nobagithe best policies for any of the

adherence cases presented above.

Evaluation of the impact of adherence behaviomenautcomes of a specific screening policy
shows that higher adherent women always have lbvearst cancer mortality risk. However, this
does not apply to the QALYSs; for some policies Casdth imperfect adherence behavior have
higher QALYs than perfect adherent women (Case[3tA;; denote the percent of QALYs a
woman in the adherence Cdge= 1,2) loses due to her imperfect adherence to the pbescr

screening policy, i.e.,

ALYSsz: — QALYs;; -
Aij= Q 3j Q l]’ i=12 3-8
QALY s3;

whereQALY s3; is the QALYs of policy for Case 3, a perfectly adherent woman. Figure 3-3
shows 29 policies that have negative losseglying that women with average adherence as the
general population (Case 2) benefit more than ptyfadherent women. Note that for all the
policies considered in this study, Case 1 alwagstha lowest QALYs and thus positive values

of A;; for all policies.
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Figure3-3 QALYs loss due to imperfect adherence

3.3.4 Analyses on Lifetime Breast Cancer Mortality Risk

The five best policies in terms of lifetime breeahcer mortality risk, interestingly, are the same.
These policies are presented in Table 3-5. Notettieacalculated breast cancer mortality
presented here are very close to the CDC estinidténo37 women (~ 0.027) [41]. Unlike the
first objective function (QALYS), the breast canti&time mortality risk has a straightforward
relation to the expected number of prescribed magnams and the expected number of actual
mammograms the woman undergoes. In other wordsjgmlvith more frequent mammograms
decrease the risk of dying from breast cancer.rébelts show that among the adherence cases
presented here, Case 3 (perfect adherent womealjitsethe most and has the lowest risk of
dying from breast cancer. This implies that, altfloexposure to mammography X-ray may
increase women'’s risk of developing breast carmegverage it is not strong enough to affect

the benefits of mammography examination in decegdsiaast cancer lifetime mortality risk.
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This is in line with a previous study on estimatthg risk of radiation-induced breast cancer
following exposure of the breast to ionizing ragiatoccurring during mammography tests [9].

Table3-5 The five best policies for different adherenases in terms of lifetime breast cancer

mortality risk

. Lifetime breast cancer
Policy mortality risk QALYS
Case 1- A Specific Woman
(40,1,n,n,100) 0.0263 37.4437
(40,1,n,n,95) 0.0263 37.4439
(40,1,n,n,90) 0.0264 37.4429
(40,1,n,n,85) 0.0267 37.4405
(40,2,50,1,100) 0.0273 37.4193
Case 2- General Population
(40,1,n,n,100) 0.0256 37.5304
(40,1,n,n,95) 0.0256 37.5307
(40,1,n,n,90) 0.0256 37.5306
(40,1,n,n,85) 0.0258 37.5268
(40,2,50,1,100) 0.0273 37.5214
Case 3- Perfect Adherence
(40,1,n,n,100) 0.0242 37.5013
(40,1,n,n,95) 0.0242 37.5025
(40,1,n,n,90) 0.0242 37.5044
(40,1,n,n,85) 0.0244 37.5033
(45,1,n,n,100) 0.0249 37.5172

3.3.5 Efficient Frontier Policies and Policies in GeneraPractice

Table 3-6 presents the results for policies in gan@actice and no mammography policy for

the three adherence cases.
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Table3-6 QALYs and, mortality risk for screening polisign general practice

Case 1- A Specific Case 2-General Case 3- Perfect
Policy Woman Population Adherence

QALYs | Mortality | QALYs | Mortality |QALYs [Mortality
ACS* 37.4437| 0.0263 37.5304 0.0256 37.5013 0.0242
USPSTF 37.2772| 0.0362 37.3890 0.0348 37.4255 0.0339
Every 2 Years* 37.3585| 0.0313 37.4756 0.0299 37.5107 0.0289
Every 3 Years* 37.3066 0.0347 37.4091 0.0334 37.4514 0.0327
No mammography | 37.0142| 0.0527 37.0142 0.0527 37.0142 0.0527

* Screening start age and end age for this potici0iand 100, respectively.

As the results in sections 3.2.1 and 3.2.2 sugfestie is a tradeoff between the two objective

functions. Figure 3-4 provides all policies (exahgl‘no mammograripolicy) along with the

lists of efficient policies for each adherence sa3ée efficient policies, ACS and USPSTF

policies are highlighted in Figure 3-4. The scregrstarting age for all efficient policies (except

for the perfect adherence case) is 40. It is irtreoy to the earlier study [42] in which the author

argues that the benefits for women younger thaaré0ess certain because of the lower

incidence of the disease. However, since diseasggssion rate is higher and the cancer

sojourn time is shorter in women younger than Bddhits of getting screened before age 50 is

justifiable [43].
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Policies

QALYs

BC
Mortality
Risk

Case 1- A Specific Woman

(40,1,n,n,95)
(40,1,n,n,100)

37.4439
37.4439

0.0263
0.0263

QALYs

37.60

37.55

37.50
37.45

37.40

37.35
37.30

37.25

37.20
37.15

37.10
0.0235

0.0285 0.0335 0.0385

Lifetime BC Mortality Risk

Case 2- General Population

(40,1,n,n,95)
(40,1,n,n,100)

37.5307
37.5307

0.0256
0.0256

QALYs

37.60

USPSTF

37.10
0.0230

0.0280 0.0330 0.0380

Lifetime BC Mortality Risk

Case 3- Perfect Adherence

(40,1,n,n,90)
(45,1,n,n,90)
(45,1,n,n,95)
(40,1,70,2,90)
(40,1,70,2,95)

37.5044
37.5202
37.5183
37.5257
37.5257

0.0242
0.0250
0.0249
1 0.0262
1 0.0262

QALYs

37.60

37.10

0.0230

0.0280 0.0330 0.0380

Lifetime BC Mortality Risk

Figure3-4 Efficient frontier policies for the three adeece cases
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The current ACS policy (listed in bold in FiguredBis only efficient for Case 1 and Case 2. For
perfect adherence case, efficient frontier polieiessimilar to the ACS with one year interval
between subsequent tests but smaller ending age.thit, the USPSTF policy and other
policies in general practice (for which the assmdaALYs and breast cancer lifetime mortality
risk are presented in Table 3-6) are not amongtiaent policies for any of the adherence

groups.

It can be seen that there are more efficient pesior the perfect adherence case compared to
the other two cases. This occurs because of tHedfebetween the two objective functions. For
the perfect adherence case, the first objectivel({F) requires less frequent mammograms due
to disutility of mammogram tests and perfect comnptie of this case with the prescribed policies.
On the other hand, the second objective (lifetimeabt cancer mortality risk) requires more
frequent mammography tests to have a lower rigkyowfg from breast cancer. Therefore, for this
case the efficient policies are more spread outtti@other two adherence cases, since women
are more likely to skip a prescribed mammogramfitkeobjective requires more frequent
mammograms (every year) to compensate for the slipppmmograms. Thus, we have fewer

efficient policies for these cases.

The tradeoff plots presented in Figure 3-4 are nspread for the perfect adherence case and
gets denser and less spread as the adherenceéevehses. This happens because as the
adherence level decrease, policies converge tort@mmmogram” policy with associated QALY's

and lifetime breast cancer mortality risk of 37.2&hd 0.0527, respectively.

59



3.4 Conclusion

Current screening mammography guidelines assun&titaen’s compliance with the
recommendations is perfect, i.e., women undergo th@nmograms as prescribed by their
physicians/health providers. However, this is het¢ase in reality. Women skip mammograms
for different reasons. This study investigatesdtiect of imperfect adherence for a wide range
of screening mammography policies. Two differenthrod of breast cancer detection are
considered: mammography examination and self-detedtVe also incorporate the possibility
of detecting breast cancer within 12 months afteoranal mammography screening (interval
cancer), and the risk of developing radiation-iretlbreast cancer during mammography
examination. A randomized partially observable Markhain is proposed to evaluate and
compare various screening policies and currentipezcin terms of two important health
outcomes: quality adjusted life years (QALYSs), &nel lifetime mortality risk of breast cancer

while incorporating women’s adherence behavior &mmmography guidelines.

Three different adherence cases are considerddding perfect adherence and two imperfect
adherence cases. The adherence probabilities fmrfect adherence cases are estimated using a
woman’s characteristics (e.g., age, race, matigalis, perception of breast cancer risk, etc.). Our
results indicate that depending on the policy urstiedy, there is one adherence group that
benefits the most in terms of QALYSs. As the polscget more intense (more frequent policies),
the general population case obtains higher QALYaparing to the perfect adherence case.
However, Case 1 (a specific woman), which has @ sy adherence level, always has lower
QALYs than the other two cases. In terms of lifetibreast cancer mortality risk, higher

adherence cases experience lower mortality risklfgolicies. A set of efficient frontier
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policies are extracted for different adherence £aBke ACS policy was among the efficient
frontier policies for the two imperfect cases, bat for the perfect adherence case. Comparing
efficient frontier policies for different adherencases indicates that on average women with
higher level of adherence experience higher QALMser lifetime breast cancer mortality risk

and longer interval between two subsequent presgmbammograms.

The outcomes of this chapter along with the resaflShapter 2 can help physicians/health
providers to tailor screening mammography recomragods based on their patient’s estimated
adherence likelihood. In other words, based orp#ient characteristics and estimated
adherence level, physicians can decide if theylshshorten or lengthen the interval between

two subsequent mammograms.

The direction for our future research is to incogte the risk behavior of the decision maker and
explore how different risk attitudes (risk avensgk seeking) along with adherence behavior
may affect a policy’s efficiency. In this study,rquurpose is to evaluate the impact of adherence
on patient outcomes. Another possible directiaio igptimally find a screening policy based on
the patient estimated adherence behavior. It séeshscreening adherence may be a function of
a woman’s screening history; i.e., a woman withdyetcreening history are more likely to
adhere to the current screening recommendatiohoAgth our study considers the screening
history in estimating adherence probabilities based survey data, it does not incorporate the
dynamic feature of this factor. In addition, adimeee strongly depends on a patient’s experience
in her previous screenings (e.g., false positiwd&).do not include these factors in our study due

to lack of data with regard to these charactesstic
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4  Minimizing Overdiagnosis in Breast Cancer Screening

4.1 Introduction

In Chapter 3, the potential benefits and risks @iased with screening mammography are
discussed. Unreliability of screening examinationsteased risk of radiation-induced cancer,
and overdiagnosis are among the potential rislsxi@ening. Overdiagnosis is known to be the
most important disadvantage of cancer screening4 1 can adversely affect people’s lives.
Overdiagnosis is defined as the diagnosis of sede¢ected cancers that would not have
presented clinically in a woman’s lifetime in tHesance of screening [2]. Overdiagnosis causes
physical, psychosocial and economic harms by urssecg labeling of patient with a lifelong

diagnosis as well as unneeded treatments and Baneei [3].

There are two possible explanations for overdiaignd3 The cancer never progresses (ofr, in
fact, regresses), or 2) the cancer progressesystvaugh that the patient dies from a competing
cause before the cancer becomes symptomatic [8thkr words, overdiagnosis occurs when
"very slow" growing cancers (more precisely, ataavsenough pace that individuals die from
something else before the cancer ever causes symaptre detected. The second explanation
incorporates the interaction of three factors:tthmor size at detection, its growth rate, and the
patient’s competing risks for mortality. Thus, eaerapidly growing cancer may still represent

overdiagnosis if detected when it is very smalihoa patient with limited life expectancy [4].

Note that overdiagnosis is different from falseipes. Overdiagnosis occurs when a disease is
diagnosedorrectly, but the diagnosis isrelevantsuggesting that the treatment for the disease
is not needed. However, false positive is an ihi@at result that suggests the presence of a

disease, but it is later proved (with additionatiteg) that the disease is not present.
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As it is not possible to distinguish between letradl harmless cancers, all detected cancers are
treated. Overdiagnosis and overtreatment are threr@ievitable [5]. However, tailoring
screening strategies can control the probabilitgvardiagnosis, and thus decrease the cost

associated with overdiagnosis and overtreatment.

Quantifying overdiagnosis, however, is challendnegause it is impossible to distinguish
between an overdiagnosed cancer and one thateedirbe clinical at the time of diagnosis.
There are various studies that quantified overdaggresulting from cancer screenings. The
magnitude of overdiagnosis estimates varies wittely one study to another. For example,
according to Welch and Black [2], 25% of mammogreglty detected breast cancers are
overdiagnosed. However, based on Jgrgensen & Getfd]; one in three breast cancers
detected in publicly organized mammography scregpimgrams is overdiagnosed. Biesheuvel
et al. [6] provided a very rough estimate of ovagtiosis, ranging from around 3 to 50% or more.
In an earlier study in 2008, Duffy et al. [7] estited the breast cancer overdiagnosis risk to be
39%. However, in a later study [8] after a prolothd@low-up of a screening program in
England and Wales, Duffy and Parmar reported andeagnosis risk of 7-8% for a biannual
screening schedule. They found this estimate wobsiderably more plausible than their own
previous estimate of 39%. Carter et al. [9] condd@& systematic review on overdiagnosis
studies, and identified the methods that have ised for measuring overdiagnosis of cancer.
They analyzed the advantages and disadvantagesloiheethod in providing reliable estimates

of overdiagnosis.

Most of the studies mentioned above are cohoriesunt randomized controlled trial follow-up

studies which estimate the overdiagnosis risk basettie changes in breast cancer incidence
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following the introduction of screening programsaipopulation setting [4-8]. However, the
downside of these studies is the substantial tingerasource requirements due to the need for
follow-up observations over a long period of timeorder to get a reliable overdiagnosis
estimate. Another approach in estimating overdiagnis through mathematical modeling.
There are a few relevant studies in the literatiiae propose a mathematical framework for
estimating overdiagnosis risk [10-12]. Davidov ke{®0] developed a mathematical model to
evaluate the probability of overdiagnosis for carsseening. They applied their model to
hypothetical early detection programs for prostatecer. Gunsoy et al. [11] developed a
Markov simulation model for the evaluation of mangraphy screening in a cohort of British
women born in 1935-40. They evaluated the impath@fscreening frequency, starting and
ending ages on breast cancer mortality reductiohoaerdiagnosis. Seigneurin et al. [12]
developed a stochastic simulation model and anoappate Bayesian computation approach to

guantify overdiagnosis.

In this chapter, we propose a mathematical framkwmestimate breast cancer lifetime
overdiagnosis and mortality risks for differentesming policies. In addition, we propose an
optimization model to minimize lifetime risk of awBgnosis of breast cancer while maintaining
a patient’s lifetime breast cancer mortality rislkagredefined level. Our model provides a more
flexible framework for modeling different uncertirsources such as cancer sojourn time.
Cancer sojourn time is defined as a time interetvieen the onset of a detectable preclinical
cancer and the point when the cancer progresdés tinical stage, causing signs and/or
symptoms [13]. In addition, different from previosisidies, we seek for the optimal screening

policy that yields the minimum lifetime overdiagmosask.
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The remainder of this chapter is organized aswdldn Section 4.2, the proposed model is
presented. Section 4.3 presents the data sourdgsmaameters estimation for our numerical
studies. In Section 4.4, some mammography screguligjes are evaluated and (near) optimal

policies are obtained. Finally, Section 4.5 sumaesithe findings and concludes this chapter.

4.2 Proposed Model

In the proposed model, we incorporate uncertaimtyné onset of detectable preclinical cancer,
variation in the cancer sojourn time, and competiagses of death. Our goal is to find the
optimal breast cancer screening policies that mierthe overdiagnosis risk which is defined as
the probability of detecting a cancer that woulderedevelop symptoms or cause death during
the patient’s lifetime in the absence of screeniige model also maintains the lifetime breast
cancer mortality risk at a predefined thresholdldvang is the list of notation used in the
problem formulation.
m number of screening examinations in the prescrimidy
T screening schedute={t,, ..., 7,,},wheret;’s are the decision variables
representing the age at which a mammogram shoubddseribed. We denote the
beginning and ending of the decision period wittandz,, ., ;, respectively. Note
thatt, andr,,,; are not decision variables and just representi¢icesion
horizon.
T random variable representing the patient’s agheabnhset of the detectable
preclinical cancer
S random variable representing the cancer sojoure tim

random variable representing the remaining sojtiama (also known as forward
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(1]

fC)
gi()

gjii ()

hf|x(-)

Hf|x(')

recurrence time) measured from age

patient health state spa&y= {CF,SC,CC}, whereCF,SC, CC represent a cancer-
free individual, a patient with screen detectedabte€ancer, and a patient with
clinical (symptomatic) breast cancer, respectively.

random variable representing the life years ofmalividual in health staté € E
random variable representing the remaining lifery@d a patient in health state
¢ € E at ager;

probability density function ofl’

probability density function of the cancer sojotime when the cancer
preclinical onset is in thé" screening intervdk;_,, 7;)

probability density function of the forward recuroe time measured from age
7; given that the cancer preclinical onsE} is in theit" screening interval
[Ti-1,70)

conditional probability density function ®?, the remaining life years of an
individual in health staté given that she has survived to age

conditional cumulative distribution function Bf, the remaining life years of an

individual in health staté given that she has survived to age

sensitivity of mammography (probability of detectia cancer when it is present)

at ager;
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4.2.1 Overdiagnosis

The objective of the model is to minimize the piobey of breast cancer overdiagnosis, i.e., the
probability of detecting a cancer through screeinag would never develop symptoms or

causes death during a patient’s lifetime. Figufeshows the case when overdiagnosis occurs.

Treatment starts

Treatment )
\ Time
] { | 1
Onset of Cancer detection Death from other Cancer becoming symptomatic
preclinical cancer  through screening cause in the absence of screening

Figure4-1 Representation of overdiagnosis in cancer aarge

In the case of overdiagnosis, the breast canaatected through a screening examination and
treatment starts upon cancer detection. Howevéreibreast cancer was not detected through
screening, the patient would have died from a camgeause before the breast cancer grows to
the clinical stage. In other words, the cancer grelewly enough that the patient would die

from a cause other than breast cancer before tileececame symptomatic. Therefore, the
probability of overdiagnosis is equivalent to tlemditional probability that at the time of cancer

detection §;), the remaining cancer sojourn tin#)(is greater than the remaining life years of a
cancer-free individuadeF), given that the cancer is diagnosed through sergeSuppose® is

the event that the cancer is detected through sicigexaminations. Then the probability of

overdiagnosis is
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Pr(s; > RfF|D). 4-1
Lett € [t;_1,71),i = 1,2,...,m, be the onset of the detectable preclinical breaster. Given
that the cancer is diagnosed at tffescreening (at agg,j =i,i+1,..,m), the conditional
probability of overdiagnosis is

® s
w;j(t) = f f 9jii(s, hcp|j(r)drds
0Oo 0 45
=f0 9jii (s, ) Hp)j(s)ds,

which calculates the probability that the remainsogourn time is greater than the remaining life
years of a cancer-free individual at ageNote that the remaining life years of a canceefr
patient is independent of the cancer onset andinemgasojourn time. The upper bound of the
remaining sojourn time is infinity{co) implying that it is possible that the cancer wboever
advance to the clinical stage or produce symptémaddition, the conditional probability
density function of the cancer sojourn tinge(()) and the conditional probability density
function of the forward recurrence time (the renvarsojourn timeg;);(.)) are related through

the following equation.

gi(rj —t+ s)

= , Vs> 0 4-3
Gi( —t)

gjis,)=Pr(S=1,—t+s|S>1—t) =

whereG;(.) is the survival function of the cancer sojourndimhen the cancer onset is at
t € [Ti-1,T0).
In addition, diagnosing the cancer at agéhrough screening implies that the cancer has not

become symptomatic yet. Lgf(t) be the probability that a cancer with onset[r;_,,7;) has
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not developed to a clinical stage at agget (i.e., the cancer sojourn time is greater thant,

Figure 4-2), given that the cancer sojourn timgresater tham;_; — t, i.e.,

PT(S > Tj —t) _ Gl‘('l'j —t)

(1) = == ) > 1. 4-4
Y bG5> t0-0 G-t
Note in the case that= i, y;(t) reduces t®Pr(S > t; — t).
Tj —t
Time
— ] g .-
(2 Ty Ti_1 1\ T Tj1 T Symptomatic
t Cancer
t Cancer
Detection

Figure4-2 Representation of a hypothesized screeningyaancer onset and detection

Let D;; be the event that the cancer is diagnosed gttreereening when the onset of the
detectable preclinical cancer is in fi& screening interval. This implies that the carvas

missed in all previous screening&((i + 1), ..., (j — 1)), and then detected at tjfé

examination which occur with probability

r(Dy) ajl_[u—al) j>i

Moreover, assume tha is the event that the cancer is diagnosed thrsagtening given that

its preclinical onset is in thé® screening interval. Thed,; = UL D;j, andD;;s are mutually
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exclusive events. Therefore, the probability thafacer with preclinical onset in tif interval

is diagnosed through screening is
m
Pr(D)) = Z Pr(D;j). 4-6
=i

Hence, following is the probability of overdiagnesgjiven that the cancer onset is at

[Ti-1,T1)
= Pr(D;;
w(®) = ) ay(© y(® PZ((D{)). 47
j=i '

In addition, given that the patient develops breasicer in her lifetime, the probability that the

. o _Jel fat . e . -
cancer onset is in the screening inteffeal,, ;) is % whereKis the lifetime probability

Tm+1

of developing breast cancer akid= f f(t)dt. Therefore, since cancer onset at different
intervals are mutually exclusive, the probabilifyoperdiagnosis for screening schedule

T ={11,T2, ., T} IS

IS
NI»—‘
Ms

f f(w;(t)dt

i-1

1l
-

i

4-8

. %ii Pr(Dy) f FORO f 91(, O Hoy (5) dsdt

i=1 j=i

4.2.2 Lifetime Breast Cancer Mortality Risk

To calculate the lifetime breast cancer mortaigy rtwo cases need to be considered: i) when

the cancer is diagnosed through screening exammmand ii) when the cancer progresses to a
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clinical stage and becomes symptomatic in thenatdretween two prescribed screening tests.
These two distinct cases are considered becausg@yratic cancers, as opposed to screening

detected cancers, are more advanced and may |&éaghter breast cancer mortality risk [14].

Suppose that the cancer preclinical onset is iri‘thgrescribed screening interval, ie= t €

[ti_1,T;). The lifetime cancer mortality risks for these teases are discussed below.

Consider the first case when the cancer is diaghatager; or thejt" screening tesy & i). In

this case the probability that the patient diesiflareast cancer is

Vi1 = PT(RJSC < R]CF) = f hCF|j(T)Hsc|j(T) dr. 4-9
0

Given that the cancer is detected atjtfiescreening test, the patient should survive torage
The probability that the patient does not die fratimer causes before agegiven that she has
survived to age;_; is

P(R°F > 1))

: 4-10
P(RCF >1;_,)

Detecting the cancer at tfi¢ screening test implies that the cancer sojoure isrgreater than
7; — t. This is also suggesting the cancer does not dewlggymptoms up to agg_;. The

G_i(‘[j—t)

associated probability of this event as presemtdequation 4-4 iy;(t) = PR ERS
il\Tj-1—

In addition, the probability that the cancer isgiiased at thgf*screening is presented in
Equation 4-5. Therefore, using the total probabiiitte the unconditional probability that a

screen detected cancer causes death is
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i P(RCF > r])

Vi, 1P(RCF > T ) Yj

¥;(©)Pr(Dy;). 4-11
j=i
Since cancer onset at different intervals are nilyteaclusive, using the total probability rule,
the lifetime breast cancer mortality risk for thstf case is
R P(RCF > r,)
Z Pr(0y) pepers £ g 1f F©Y;®dt. 4-12

i=1 j=i Ti-1

The second case considers a situation in whickdheer becomes symptomatic. Assume that
the cancer becomes symptomatic at@age(z;_y,7;),j = i + 1, ..., m. Given that the cancer has
not been detected up to age,, the probability that the cancer becomes sympticnaatageu in

the interval between;_; andz; is

_ g )
yZ(t' u) - G_L'(Tj_l—t). 4 13
In this case, the conditional breast cancer lifetmortality risk at aga is
200 = [ o)+ Hoc () dr. 414
0

Similar to the first case, the probability that fregient does not die from a competing cause

given that she has survived to age, (when she received a false negative screenindfyésu

P(RF > u)
P(RF >1j_4)

4-15

Therefore, the associated cancer mortality risknwthe cancer onset is in the interjgl 4, 7;),

and the cancer becomes symptomatic ataigethe interval(z;_;,7;), j =i+ 1,..mis

CF
ﬂ(l—al) J v, (tu) P(RY > u) V2 () du, 4-16

Tj—1 (RCF > Tj—l)
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which calculates the probability that the cancegsdioot get detected through previous
screenings]’([{;l.l(l — a;)) and the probability that the individual dies frone&st cancer when
the cancer becomes symptomatic in the intefwal, 7;). Summing over all screening intervals

after the cancer onset interval, the cancer moytasik is

SR g P(RF > 1)

o=y [Ja-a| new g v.du 417
R ] Tj_ P(R > Tj—l)
j=i+1 1=i -1

In addition, it is possible that the cancer becosysptomatic before the first scheduled
screening in the intervdt, 7;). In such a case, the following is the associatetter mortality

risk, which has a similar logic as Equation 4-17.

T:

(" P(RF > u)
wy(t) = f O e

Equation 4-18 calculates the probability that taraer becomes symptomatic at aggy; (u)),

vj2(u) du 4-18

P(RCF>u)

’P(RT>TJ-_1)' and she

the patient does not die from a competing causledannterval ;_;, u), i.e.

eventually dies from cancew;( (u)).
Similar to the first case, since cancer onsetférént intervals are mutually exclusive, the

lifetime cancer mortality risk of screening schedufor a symptomatic cancer is

m T

0= | FOIB© + P@)de 4-19

i=1 "Ti-1
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Considering both cases of cancer detection, teare cancer mortality risk for schedulés

@T = 9-[’1 + 0‘[,2' 4'20

Optimization Model

The proposed optimization model can then be wridten

Min (2,

Min m

s.t.

0, <e 4-21
T, <Tjy1 Vj 4-22
Tj € {Tg, To + 6,79 + 28 ..., Typy1 — 6} V), 4-23

where constraint 4-21 ensures that the lifetimetatity risk is less than a predefined threshold;
constraints 4-22 and 4-23 determine the order réfeseng decisions and age range in which the
screening tests should be prescribed, respectwgbndr,, ., in equation 4-23 represent
starting and ending age of a screening schedukddition,s in constraint 4-23 represents the

minimum interval between two subsequent screer@stpt

4.3 Model Inputs

Table 4-1 presents the summary of data sourcdabdatifferent inputs (parameters and

probability distributions) incorporated in the made
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Table4-1 Data sources for the model input estimations

Description

Reference

Distribution of onset of preclinical detectable
breast cancer

Parmigiani and Skates [15]

Parameters of preclinical sojourn time distributi
(exponential case)

b®hen and Zelen [16]
Tabar et al. [17]

Parameters of preclinical sojourn time distributi
(lognormal case)

DiPeer et al. [21]

Probability density of remaining life years of a
cancer-free individual

The US life table for females (Center for
Disease Control and Prevention) [22]
and Surveillance, Epidemiology and
End Results (SEER) [23]

Age and stage specific probability distribution o
death from breast cancer

f Schairer et al. [24] and Zhang [25]

Stage distribution of screen detected breast canddeyer and Welch [26]

Stage distribution of clinically detected breast
cancers

Plevritis et al. [27]

Age specific mammography sensitivity

Kerlikowskeabt[28]

The probability distribution of breast cancer oniséhe most challenging distribution in this

study to estimate. Parmigiani and Skates [15] ldg@esl a convolution model to estimate the age

of disease onset distribution based on the nahistdry of disease and the data available on

disease incidence rate, cancer sojourn time, congpeauses of death, etc. They then used

singular value decomposition method to solve tdewreloped model numerically. We applied

their method to estimate breast cancer preclimnakt age distribution in this study. Figure 4-3

shows the extracted probability density for thecpingcal breast cancer onset.
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Figure4-3 Estimated distribution of the age of onsetetkedtable breast cancer

There are various studies in the literature estimgahe distribution of breast cancer sojourn time.
Some of these studies used exponential specificatiestimating the sojourn time distributions
[16-19]. However, the assumption of exponentiabtion in the preclinical stage has some
limitations. The first concern is the implausiblsamption of mode at zero, which corresponds
to an instant transition from preclinical to cliaistage, and the fast decaying tail, which does
not adequately account for slow growing tumors [T%le second limitation is due to the
memoryless property of the exponential distributihich implies that the sojourn time and
remaining sojourn time upon cancer detection thinoagyeening have the same distribution. In
other words, the hazard function of sojourn timeasstant, implying that as time passes the
instantaneous probability that the cancer deveiogsclinical stage is constant. However, it
would be more plausible that the instantaneousagiitiby of developing to a clinical stage
increases with time. A second distribution propdeednodeling cancer sojourn time is
lognormal distribution. Spratt et al. [20] postelta lognormal distribution for sojourn time
based on the growth patterns of breast tumorsisnstudy, we examine both exponential and

lognormal sojourn time distributions.
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For the exponential case, the age-specific ratenpeters are adopted from the mean sojourn
time provided in Shen and Zelen [16], and Tabal.gtL7]. Figure 4-4 presents the estimated
exponential breast cancer sojourn time distribtifmm the different age groups: 40-49, 50-59,

and 60 and older. It also presents the correspgrithzard function for different age groups.

For the case with lognormal sojourn time, the ggeesic distribution parameters are estimated
using the median and upper 95% quantile matchirg &eal. [21]. The estimated lognormal
breast cancer sojourn time distributions for thre¢hage groups, along with the corresponding
hazard functions are presented in Figure 4-5. Asé¢Bults show, the hazard functions for this
case are increasing for most parts. However, ®fitst and second age groups, the hazard rate
starts decreasing very slowly for after about tthyesrs and five years, respectively. This
suggests that if no symptom appears by a certaouatrof time after the cancer onset, then the
instantaneous probability that the cancer actuslyomes symptomatic starts to decrease

(because the tumor stops growing or it regresses).

The probability distribution of the remaining lijears for a cancer-free individual is extracted
from the 2008 US life table for females [22] and Burveillance, Epidemiology and End Results
(SEER) data [23]. SEER data is used to exclud@tbleability of death from breast cancer in the

life table and adjust the probabilities for womeithwut breast cancer.
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Figure4-4 Estimated exponential breast cancer sojoure distribution for different age groups
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We estimate the probability density of remainirig {iears for the two cases of cancer detection
(screen detected and symptomatic breast cancel ths data available in Schairer et al. [24]
and Zhang [25]. We adopt the stage distributionscoéen detected and symptomatic breast
cancer from Bleyer and Welch [26] and Plevritisle{27], respectively, and adjust the

probability density of remaining life years for ttveo cases.

The mortality probabilities in [22, 24-25] are peesed in tabular format, and therefore we used
piecewise-constant density function to model thebpbility density functions. thf be the
probability that an individual of agein health staté dies in the age intervél, i + 1].

Therefore,

Pr(Rg < k) =1- 1_[(1 - pf) 4-24

i<k

and,

Pr(Ré <k +1)—Pr(R® <k)
Pr(R¢ =)

hjje(r) = ,  k<r<k+1, k>]j. 4-95

Lastly, age specific mammography screening seitsigvare extracted from Kerlikowske et al.
[28].
4.4 Computational Results

Disease onset ad conditional remaining life yeacfions do not have a general closed form and
are only available in tabular format. This makealgiical calculation of integration very
challenging or even impossible. Therefore, in #tigly we exploit Monte Carlo integration

method to calculate the integrations in the progasedel. Monte Carlo integration methods are

84



sampling methods to calculate complicated integnati based on the central limit theorem and

the law of large numbers. Please refer to RobeattCGasella [29] for more details.

In addition, due to the complexity of the modelyst the optimization model through
analytical approaches is not feasible. Therefoeegpply a combination of bisection method and
Particle Swarm Optimization (PSO) method to fine thear) optimal solution of the proposed

model.

The results presented in this section have twephrthe first part we evaluate different
screening policies, including the ACS and the USP8adlicies, in terms of the breast cancer
overdiagnosis and mortality risks. The second jpaasents the (near) optimal policies obtained

using the bisection and PSO algorithm.

4.4.1 Policies Evaluation

In this section we present the overdiagnosis datirtie mortality risks of different policies for
two reasons: (1) to validate our model by compativegobtained risk values with numbers
reported in the literature, and (2) to evaluatesé¢heolices and compare their performance in
terms of breast cancer overdiagnosis and mortadkg. We evaluate different static as well as
dynamic screening policies with two and three défe screening intervals between subsequent
tests. Table 4-2 presents the policies evaluat#asrchapter. Including the USPSTF policy, in
total we evaluated 241 policies. We present thesieips using the same structure as introduced
in Chapter 3. For a policy with three differentesming intervals, we use a similar structure as
well. For example, policy (40,1,50,2,60,3,80) recoemds women get annual screening tests
between age 40 to 50, then switch to biennial sings up to age 60, and finally undergo

screenings every three years up to age 80.
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Table4-2 Screening policies considered in the numeseaoalysis

policy Starting | 1% | 1%switch | 2™ | 2"switch | 3" Ending age
age interval age interval age interval

Static 40,50 | 1,2,3 - - - - 80,90,100
Dynamic with 2
screening 40,50 1,2,3 50,60,70 1,2,3 - - 80,90,100
intervals
Dynamic with 3
screening 40,50 1,2,3 50,60,70 1,2,3 60,70,80 1,23 80,90,100
intervals

4.4.2 Exponential Sojourn Time

Figure 4-6 presents the breast cancer overdiagandisnortality risks of the policies considered
in this chapter along with the efficient frontiesligies (highlighted) for the case with

exponential sojourn time.

0.0395 -
0.0375 - ¢ @
*d » ME A
0.0355 - L/
. “‘ 4 g‘ * ¢
® 0 ’Q ® 0
0.0335 - MadIR MR @ 2 L 2
, USPSTF o @ 0“3 X '0’
Mortality 151 ® L 2 PR * AL T o
Risk (50,1,60,3,80) ®® ¢ "@w & *»
0.0295 (40,2,60,3,80) ¢ ¢ PO "? ¢ e O
' N N Loag *
(40,1,502,60,380) 4 . S YR e o0 2
0.0275 - (40,1,60,3.80) ® ” . NI PN
(40,1,60,2,703,80) @ @
0.0255 - (40,1,70,3,80) @ * .
(40,1,n,n,80) (40,1,n,n,90) ACS
0.0235 : . . : : . .
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Overdiagnosis Risk

Figure4-6 Overdiagnosis and mortality risks of the sciegpolicies in Table 4-2 under
exponential sojourn time

The overdiagnosis risk estimates for biannual sengeschedules are very close to the values

reported in the literature: Duffy et al.’s estimafe7%-8% [8], Zackrisson et al.’s estimate of 10%
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[30], De Gelder estimate of 8.95.2% [31] and 7.2% [32]. To the best of our knalge there is

no overdiagnosis reported in the literature foruairscreening policies. Therefore, we did not
have a reference to compare our results with. Taadb cancer mortality risks are also
comparable with the mortality risks estimated ire@ter 3 (reported in Table 3-6). Note that, the

underlying sojourn time distribution for both retsuh Table 3-6 and Figure 4-6 is exponential.

The results in Figure 4-6 show that both the AC& thie USPSTF policies are efficient. In fact,
the USPSTF policy and the ACS policy have the Iawesrdiagnosis and mortality risk among
the evaluated policies, respectively. Most of tfieient frontier policies (except for the ACS

and (40,1,n,n,90)) recommend women stop screemioglefore age 80. This is because after
age 80, the probability of death from competingsesusignificantly increases which results in
high overdiagnosis risk. In addition, most effidipolicies (except for the USPSTF and
(50,1,60,3,80)) recommend women start screeninggeat0. This maintains both the
overdiagnosis and mortality risks at a lower leWgladdition, in terms of the distribution of
screening tests in the efficient frontier policiegre frequent tests are recommended in the age

interval 50 to 60 when the breast cancer onsebi® ikely.

4.4.3 Lognormal Sojourn Time

The corresponding overdiagnosis and mortality riskshe case with lognormal sojourn time
with efficient frontier policies highlighted aregsented in Figure 4-7. The overdiagnosis risks
for this case are very close to the exponentiad,caisd therefore comparable with the reported
values in the literature [8, 30-32]. Also, the nadity risks are very close to the mortality risk

estimations reported in Table 3-6 in Chapter 3.

87



Similar to the case with exponential sojourn tithe, ACS policy with the highest number of
screening tests has the highest overdiagnosisoavest lifetime breast cancer mortality risk and
the USPSTF, on the other hand has the lowest agrdsis risk. In addition, the recommended
stopping age in most efficient policies is 80 tamtein a low overdiagnosis risk. Similar to the
exponential sojourn time case, more screening éestdistributed between age 50 to 60

comparing to the other age intervals.
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Figure4-7 Overdiagnosis and mortality risks of the sciegmpolicies in Table 4-2 under
lognormal sojourn time

4.5 Policy Optimization

In this section, the algorithm to obtain the (negdimal polices and the extracted (near) optimal
policies are presented. A combination of bisectind binary Particle Swarm Optimization (PSO)

is applied to obtain near optimal policies.
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PSO is originally attributed to Kennedy, Eberh&8][and is a biologically-inspired algorithm
motivated by a social analogy, such as flockingdimg, and schooling behavior in animal
populations. The idea behind PSO is that the idd@&is that are part of a society hold an opinion
that is part of a "belief space" and shared byyepessible individual. Individuals may modify
this "opinion state" based on the knowledge ofaheronment and the individual's previous

history of states (its memory). For more detaildP&0O, please refer to [33].

The solutions or particles (policies) are encoded hinary string so that a one (zero) represents
a screening (no screening) at the correspondingTdgee are two stages for the optimization
process. In the first stage, we determine the mimmumber of screening examinations')
needed to guarantee a mortality risk lower tharptieeefined threshol@d, We use the bisection
method and PSO to determine the optimum numbecreesing tests. The number of tests is
determined based on the bisection method. For feeath number of tests, the policy with
minimum mortality risk is obtained using PSO. Ntitat, it is critical for our algorithm to
preserve the number of screening tests when gamgeahew particle. Therefore, we develop a
variant of PSO in which the number of swaps betw@srand 1's in a particle (solution) is the

same (Please refer to Figure 4-8).

In the second stage, the (near) optimal policy withfollowing objective function is extracted

using a similar PSO algorithm.

G=0,+Mx*(0,—¢€) 4-27
In Equation 4-27M is the penalty for violating constraint 4-21 in h®posed model. The
pseudocode of the bisection and particle swarmmopdition is presented in Figure 4-8. Note that

we used the (near) optimal policy found in thetfatage as an input for the second stage.
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We assume that the threshold for the mortality @ggks 0.0270 (the lifetime breast cancer
mortality risk reported by the American Cancer 8bcil in 37 [34]). We also assume that=

40, 7,41 = 100,and § = 1 year.

4.5.1 Parameter Tuning
The selection of PSO parameters influences th@peédnce of the heuristic. Thus, we conduct a
formal investigation through design of experimglI©E) to select the best combination.

Following is the list of parameters considerechia éxperimental design.

1) Swarm sizethe swarm size influences performance of PSO.féaoparticles may cause
the algorithm to get trapped in local optima, wiide many particles slow down the
algorithm. There is no exact rule in the literattmeselection of swarm size. But
generally, when dimension of the problem increagesswarm size should also be
increased [36].

2) Cognitive acceleration coefficiefd,): this represents the weighting of the stochastic
acceleration terms that pull particles towabgls;, i.e., the best solution found by a
specific particle. If the value of this constantas high, the particles move abruptly and
the risk of getting trapped in local optima incresConversely, if the value is too low,
the particles move too slowly, and computationtdréincreases significantly [35].

3) Social acceleration coefficielit,): this represents the weighting of the stochastic
acceleration terms that pull particles towaggs;, i.e., the best solution found. Similar
to the cognitive acceleration coefficient, too hattoo low value for this parameter can
cause getting stuck to local optima or non-convecgeof the algorithm, respectively

[36].
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Step 1: Bisection method and Particle Swarm Optimization (PSO,) to determine m*
procedure BiSec(l,u)

l+u
me ——

While (u—-12>1)
If (PSO; (m) < €)thenu «m
If (PSO;(m) > €)then [ «m
EndWhile
end procedure

procedure PSO,(m)
initialization;
repeat
for i = 1 to number of individuals do
if G(ind;) < G(Best — ind;) then <1G() evaluates the mortality risk (Eq. 4-21)

Best — ind; < ind;
end if
if G(ind;) < G(Best) then
Best < ind;
end if
end for
for i =1 to number of individuals do
for d = 1 to number of dimensions do
viq(t) = v;q(t — 1) + c;0,(LBestPol; — Pol;) + c,¢,(GBestPol; — Pol;)
a(t) = via(t) —vig(t — 1)
sort a(t) according to a descending order
randomly choose an index (i) from the Max range of a(t)
ind;(i;) « 1
randomly choose an index (i,) from the Min range of a(t) and
ind;(i,) < 0
end for
end for
until stopping criteria
end procedure

Step 2: Particle Swarm optimization (PS0,) with m = m" to determine the (near) optimal policy
with the minimum overdiagnosis and a mortality risk less than ¢
PS0,(m", GBest) is similar to PSO; with G = 2, + M x (0, — €)

Figure4-8 Pseudocode of the bisection and Particle Sv@ptimization methods
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In addition, the relative value of these cognit@vel social acceleration coefficients is critical
and affects the algorithm’s performance. When tileer of the cognitive acceleration coefficient
(c;) increases, it enhances particles’ attraction tdw/B,.,; and decreases their attraction
towardsg,.s:, and vice versa. In the literature, the setting,0f ¢, = 2 has been proposed as a
generally acceptable setting for most problems,ismddely used in practical applications of

PSO [35].

Three levels of each factors considered in the xgatal design analysis are shown in Table 4-
3. A 33 factorial design is conducted. Response varialolesdch combination are calculated as
the average of objective function values over afitbvalues found by particles in the swarm. The
algorithm performance is not sensitive to the swaize, and does better with lower value for

cognitive acceleration coefficient comparing toiabacceleration coefficient.

Table4-3 Factorial design results

Parameter Levels Flna!
Selection
Swarm size 30, 40, 50 30
Cognitive acceleration coefficient;() 1,2,3 1
Social acceleration coefficient,() 1,2,3 2

4.5.2 Optimization Results
Table 4-4 presents the (near) optimal policiegtiercases with exponential and lognormal

sojourn time.

For the case with the exponential sojourn time (tie&ar) optimal policy includes 20
examinationgm* = 20). The corresponding breast cancer overdiagnosisramtality risks for
this policy are 0.0326 and 0.0269, respectivelyteNbat most screenings are distributed in early

ages (40 to 65) and there are very few tests imtieeval between 66 and 74, and no tests after
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age 74. This is due to the fact that at older agmgsurn time is longer, and there are more aging-
related mortality causes. Therefore, from bothaherdiagnosis and mortality risk perspectives,
it is plausible to have fewer tests at older affegeasing the number of prescribed screenings

yields a policy with slightly higher overdiagnosisd lower mortality risks.

The (near) optimal policy for the case with lognafrsojourn time includes 19 screening
tests(m* = 19). This policy yields overdiagnosis and mortalityks of 0.0398 and 0.0269,
respectively, which are very close to the risk¢hef (near) optimal policy with exponential
sojourn time. Similar to the exponential case, nsostening tests are prescribed at early ages

(between age 40 and 65) and there is no prescekeaination after age 81.

Note that in both exponential and lognormal sojdinme models, the (near) optimal policies
have the same number of tests as or fewer tesidhid'every three years” policy, and yet has a
lower mortality risk and evidently lower overdiagmorisk. Therefore, the results suggest that,
in-practice policies with evenly distributed scragntests throughout the patient life are not

efficient.

Comparing the results for the exponential and logyab cases implies that the (near) optimal
policies follow a similar structure in both casew®re tests at younger ages and fewer tests as a
woman ages. However, the (near) optimal policshand¢ase with lognormal distribution
prescribes screenings till older ages (age 81} iBhilue to the increasing probability of
instantaneous symptomatic cancer with time whersti@urn time is modeled as lognormal, as
opposed to the constant probability of instantasesyumptomatic cancer when sojourn time is

exponential.
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Table4-4 (Near) optimal policies found for both exponahénd lognormal sojourn time

Exponential Lognormal
Age Sojourn Time | Sojourn Time

m* =20 m* =19
40 0 1
41 1 0
42 1 1
43 1 0
44 1 1
45 1 0
46 1 1
47 1 0
48 1 1
49 0 1
50 1 1
51 0 0
52 1 0
53 0 1
54 1 0
55 1 1
56 1 0
57 0 1
58 1 1
59 0 0
60 1 0
61 0 1
62 1 0
63 0 1
64 1 0
65 0 1
66 1 0
67 0 0
68 0 1
69 1 0
70 0 0
71 0 1
72 0 0
73 0 0
74 1 1
75 0 0
76 0 0
77 0 1
78 0 0
79 0 0
80 0 0
81 0 1

Mortality Risk 0.0269 0.0269

Overdiagnosis Risk 0.0326 0.0398
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4.6 Conclusion

Ideally, screening interventions aim to detect aé&s that will ultimately cause harms, and the
purpose of screening intervention is to advancealétection time, when the disease is in its early
stages and is more likely to be cured. Howevergtiealways risk of overdiagnosis and
overtreatment when detecting a disease in its staityes. Overdiagnosis of a disease is defined
as the diagnosis of an asymptomatic disease haarsigns or symptoms, which would have
never become symptomatic during an individual’sagmmg lifetime. The fundamental idea of
overdiagnosis is that screening intervention detdwt disease at an earlier age than it would
have been diagnosed under usual care.

In this chapter we derive the equations for théphility of breast cancer overdiagnosis and
mortality risks. Although applied to breast candbe proposed model can be generalized to
calculate risks for any other types of cancer. Wedwaate the risks associated with in-practice
and alternative mammography screening policiesagended with different health agencies.
The overdiagnosis and mortality risks for sevemngbiactice policies including the ACS and the
USPSTF policies are derived. Our estimates of tleeddagnosis and mortality risks are
consistent with the values reported in previoudistiin the literature and the derived mortality

risk estimation based on the model proposed in @n&p

In addition, we derive the (near) optimal policikth minimum overdiagnosis risk that are
guaranteed to have a mortality risk lower thanaberage breast cancer mortality risk reported
by the American Cancer Society (1 in 37 lifetimskrof dying from breast cancer). We consider
two possible distributions for cancer sojourn tiraeponential and lognormal distributions. The
derived (near) optimal policies mainly recommendengcreenings at early ages (40-65) when
the cancer sojourn time is shorter and the proibabil dying from competing causes are lower.
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There are more dispersed examinations after agangbno recommended screening after age 74
and 81 for exponential and lognormal sojourn tinegpectively. Results show that more
efficient policies with fewer screening examinasand lower overdiagnosis and mortality risks

than in-practice policies can be obtained.
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5 Estimation of Utilization and Usage Time of Server$tored in a Shared Stack in an

Unreliable Queueing System

5.1 Introduction

It is very important to keep service systems ompegatormally in this service oriented era.

Failing to operate a system continuously will inakly result in waste and inefficiency,

including downtime cost, loss of customers, anéy@l providing services to customers or
production of goods. That is the reason why pravenhaintenance is of great importance in
modem complex systems. Preventive maintenanceig®knable us to reduce operating costs as

well as the risk of breakdowns.

In general, reliability and maintenance literatoa® be categorized into two broad classes: single
component models and multi-component models. Sitroest every system in the real world is
multi-component, there has been a growing inténetfte optimization of maintenance of multi-
components systems. Multi-component systems a@fgadly important because of the
interactions between components in the system.eTimésractions between components can be
classified into three different types: economicelagence, structural dependence, and stochastic
dependence. Economic dependence implies that caistise saved when several components are
jointly maintained instead of separately (econoroiescales can be obtained). Stochastic
dependence occurs if the condition of componeiiiisences the lifetime distribution of other
components. Structural dependence applies if coemgerstructurally form a part, so that
maintenance of a failed component implies mainteaari working components [1]. As an
example of economically dependent components, assusystem in which the maintenance of

each component requires set-up work that can bredhehen several components are
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maintained simultaneously. Set-up costs can bedsatien maintenance activities on different
components are executed simultaneously, since sgaaf a group of activities requires only
one set-up. This can yield considerable cost sayiaigd therefore, the development of

optimization models for multiple components is maportant research issue.

In recent years, a large amount of research hasdmeted to finding optimal maintenance
policies for multi-component systems under variassumptions. Comprehensive reviews of the
literature on maintenance of multi-component systane given in Dekker and Wildeman [1],
Nicolai and Dekker [2], and Wang [3]. Recently, tk&tively new problem of optimal
maintenance policies foqtieues with unreliable servérsaught the interest of researchers in
the maintenance optimization area. There are adenable number of studies addressing the
problem of unreliable queuing systems. However,trobthese studies deal with single
unreliable server queueing systems [4-8]. A dalditerature review on unreliable queues with
single server was given by Choudhury and TadjH#jwever, there are a limited number of
studies on unreliable multi-server queueing systéie very first study on unreliable multi-
server queues is by Mitrany and Avi-ltzhak [9]. eVtstudied a steady-stad#M/N queuing
system where each server is subject to random @hoeais of exponentially distributed duration.
They derived the explicit form of moment generatimgction of the queue size when the
number of servers in the system is less than 3pamgbsed a numerical method for systems
with larger number of servers. Neuts and Lucantbdj studied a queue withi identical

servers in parallel that may break down and reqgejpairs. They assumed that thereare
repairmen in the system and the service time, torfailure and repair time are exponential.
They derived the stationary distributions of vadgauaiting times in the system. Wang and

Chang [11] considered a queue with balking, rergggand server breakdowns in which arrival,
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service times, breakdown times and repair timab@&ervers are assumed to follow a negative
exponential distribution. They developed a cost ehdal determine the optimum number of
servers in the system. Wu and Ke [12] derived #xeeasary and sufficient condition of system
equilibrium in anM/M/c queueing system with balking, reneging, and seweakdowns.

Gharbi and Dutheillet [13] developed a Generali@éathastic Petri Nets (GSPNs) model to
analyze multi-server finite-source retrial systemith unreliable servers subject to breakdowns
and repairs. They formulated the main stationarfopmance and reliability indices as a

function of the number of servers, the size ofdhstomer source and the stationary probabilities

of the systems.

There are very few papers addressing the maintengptanization aspect in unreliable queueing
systems. Chapin [14], in his Master’s thesis, asleltd the problem of periodic replacement for a
multi-server queueing system in which each sewwsubject to degradation as a function of the
mean service rate and a stochastic and dynamicoemwent. Liu [15] developed a specific class
of m-failure group replacement policy for &y M /c queueing system where repair is started as
soon as the number of failed machines reachesdeterenined leveln. He assumed that the
servers are unreliable with identically exponehtidistributed failure times and the repair cost
consists of a fixed cost and a variable cost pitogual to the number of machines repaired. In
addition, they assumed that there is a holding fowstach customer in the system per unit of
time. In another study, Liu [16] developed thredailure group maintenance models for

M /M /c queues. The first model is the basic model withtp@srepair time and allows server
failures during maintenance. The second one isdiflrad model with positive repair time, but
does not allow server failures during maintenanée. last model is considering instantaneous

repair. They proved that there exists an optimaligrmaintenance parameterwhich can be
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used to find the minimal average cost for all thremlels. Kocuk et al. [17] studied an infinite
server queue that is subject to randomly occushnacks. They assumed that shocks increase the
service time of all servers, and can cause fudberice deterioration. They identified the

optimal repair rate that minimizes the expectedjiaim average cost incurred due to delay and
repairs. Wu et al. [18] introduced a controllat@eair policy for an infinite-capacity multi-server
gueueing system in which the servers are assunretiable and may fail at any time. The failed
servers will be sent to the repair facility onlyavhthe number of failed machines in the system
achieves a preset threshold value. They developedtanodel to determine the optimal values

of the number of servers, service rate and rep#ersimultaneously at a minimal total expected

cost per unit time.

The common assumption of all of these studiesasttie servers (components) are operating in
parallel and are selected randomly for services Tiplies that the servers (components) are
used in a homogeneous manner leading to independagé and transient deterioration behavior.
However, there exist systems in which servers (amapts) are not being used homogeneously.
In such systems, some servers (components) arelikelseto be used because of various
possible reasons. For example, the layout oféineess (components) in the system makes some
components more accessible than others. In thes taesre is stochastic dependence among
components since the system layout and conditibnsrmaponents affect the utilization and

lifetime distributions of components.

In 2011, Gandhi et al. [19] introduced a Most-RelgeBusy (MRB) routing policy in which an
arriving customer is routed to the idle server thias most recently busy. Note that in a system

with the MRB routing policy, the usage of a sengestochastically dependent on its and the
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other servers status in the system. In this chap®consider a queueing system with a similar
routing policy as MRB. In particular, we considegueueing system with identical servers that
are used intermittently and, when not in use, seraee stored in a shared stack. In such cases,
customers may find it more convenient to selectseeer that is on the top of the stack.
Similarly, customers finished with a server maydfinmore convenient to place the server back
to the top of the stack. As a result, serverslbegin at or near the top of the stack are used more
frequently than the servers that are placed lowéne stack. In such a system, a server’s
utilization is stochastically dependent on itsialitocation in the stack and the usage of therothe
servers. Note that although we consider a quewssisgm with stacked servers, the outcomes of

this study are applicable to any queuing systentis the MRB routing policy.

An everyday example of a queueing system with stéddervers or MRB routing policy is a set
of shopping carts in a retail store. Often, shogmarts (the servers in this example) are arranged
in stacks, so that the customers typically chobsectrt at the front (the top in this example) of

the stack. After usage, carts are often returned aear the front of the stack.

The goal of this study is to compute the cumulatikensient utilization and usage time of a
server as well as the expected complete reshufiimg in such a queuing system based on the
number of servers in the stack, the initial positid the server in the stack, and the arrival and
service rates. The expected complete reshuffling is defined as the minimum time it takes for
all the servers in the system to be used. We asgumhéhe servers are identical and numbered
based on their initial position in the stack. Weoahssume that the demand for servers occurs
according to a Poisson process and the duratiarsofgle service instance follows an

exponential distribution. Customers arriving taufl §ystem balk. This study provides a tool to
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investigate the utilization and aging patternsarhponents in such a system. The outcomes of
this study can assist decision makers to have @raie estimate on the deterioration behavior
of components in such a system, and thus maintaiara effective maintenance policy for

components and have a more robust estimate obilgljfameasure of such systems.

The remainder of this chapter is organized asWadldn Section 5.2, the proposed continuous-
time Markov chain model is presented. Section B3¢nts the computational results. Finally,

Section 5.4 summarizes the findings and discusgasefdirections.

5.2 Proposed Model

Consider a queueing system withdentical servers stored in a stack. Let seivér=

1,2, ...,n) be the server whose initial position in the stisak We develop a continuous-time
Markov chain (CTMC) model to compute the cumulativansient utilization, and usage time of
serveri and the expected reshuffling time of the systehe 3Jtates of the system are represented
by X(t) = (p,q), wherep € {0,1, ..., n} represents the server’s position in the stack and

q €{0,1,2,...,n} represents the total number of busy serversnaitti For the first element of

the statep = 0 represents the situation when the server is bogdysanot stored in the stack,
andp = k (k = 1,2, ...,n) represents the situation when the server is dtoréhek'" position

in the stack. Note that in the remainder of thiapthr, thet"server refers to the server with

initial positioni in the system. We assume that at time zero themyis empty, i.eX(t = 0) =

n(n+1)
2

(i,0). The total number of states in the proposed CTMI is + n. Figure 5-1 shows the

transition diagram of the system along with thesraon rates.

105



Figure5-1 Transition diagram of the proposed Markov chmaodel

5.2.1 Servers’ Utilization and Usage Time

LetV, be the “in use” set, or the set of states in whinghserver is busy when there arservers

in the system (the states in the first row of fa@sition diagram in Figure 5-1).

V, ={(0,i),i=1,2,..,n}

Let U/*(t) be the utilization of the server up to timmeU;*(t) is the proportion of time that the

server is in the “in use” set, or 9&t when starting from statg, 0), as defined in Equation (5-1)
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Uln (t) — ZSEVn 1\4t(l,0),5(t)’ 5_1

whereM; 5 s(t) is the occupancy time of stateip to timet when starting from statg, 0), and

is calculated as

t

M 0),s(t) = f Pi0)s(v)dv, 5-2
0

whereP; 5)s(v) is the transition probability from stagé 0) to states at timev. P; ¢)s(v) can be
calculated using different methods: e.g., Chapmahmiggrov equations, Laplace transform and
eigenvalue decomposition of the infinitesimal gemer matrixQ of the CTMC model [20]. In
eigenvalue decomposition method, the transitiomaodity matrix of a CTMC with
infinitesimal generator matri@ is given by

P(t) = XePtx1, 5-3
whereD is a diagonal matrix for which the elements ondlagional are the eigenvalues of

matrix Q, andX is an invertible matrix whose columns are the ewgetors of matrixQ.

Note that since we consider balking in our quewiysfem, the effective arrival rate of the
system isd, = (1 — P,) - A, whereP, is the probability that an arriving customer badksl is

presented in Equation 5-4.

Therefore, as shown in Equation 5-5, the serverig un utilization i%’ which is smaller than

the stationary utilization level in a non-balkingseem. That is,
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lim,_ o, UP(t) = i—z < ﬁ 5-5

A main characteristic of the system that is crltinadentifying an optimal maintenance policy is
a server’'s age at time To model the deterioration pattern and failurebabilities of the servers,
it is critical to know for how long a server hashaised in the system. The usage time of a

server is the area under the utilization curve up to tign&s presented in Equation 5-6.

t

AT(E) = f UR(v)dv 5-6

5.2.2 Complete Reshuffling Time

Reshuffling time of the firsk servers in the stack is defined as the time itsdkethe system to
use the server with initial positidnin the stack for the first time. Equivalently, hegfling time
of the firstk servers is the first passage time to s(@jé) in the proposed Markov model. We
specifically are interested in the “complete refimg time” which is the time that it takes for
the system to have a complete reshuffling of allesss in the stack, or the time to hit stélen)
in the model for the first time. This measure ipartant since once we have a complete
reshuffling, all servers become identical from tpaint forward. In other words, the transient

effect of their starting positions in the stacleffectively over.

Let Ty, be the time to visit state for the first time when starting from stateReshuffling time
of the firstk servers in the system or time to visit stigigk) for the first time is defined in
Equation 5-7.

Ti0y0 = min{t = 01X (¢) = (0,k), X(0) = (;,0)},i =1,2,.... k 5-7
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Note that the reshuffling time is independent @he initial position of the server in the system)

since we assume that the system is empty atttimé.

Let m; be the expected first passage time to gi@te) when starting from state i.e.,

mg = E[TS(O,TL)]' 5-8

Thenm = [m4, m,, ...]" can be calculated by solving this system of equati

Mm+1=0, 5-9

whereM is obtained by deleting the row and column comesiing to stat€0,n) in matrixQ
[20]. Note that when = (i,0),i = 1, 2, ..., n, the corresponding value, presents the expected

complete reshuffling time.
5.3 Numerical Examples

This section illustrates the cumulative transidilization, virtual age and complete reshuffling
time for different queuing systems. Note that imaimerical examples without loss of generality

we assume that = 1.

Figures 5-2 and 5-3 present the utilization andjessne plots for all servers in the stack along
with the expected complete reshuffling time foruggeing system with = 3 servers and

arrival ratest = 0.25,and A = 1, respectively.
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The corresponding balking probabilities for the wfferent arrival rates at®@002, and0.062,
respectively. The horizontal dark gray lines ia thilization plots show the servers’ stationary
utilization in a non-balking system, which, as extpéd, is larger than the servers’ stationary
utilization in the system under study. Note thathie first case where= 0.25, the system has
not yet reached the steady state after 1000 tirite and it has a significantly longer mean
complete reshuffling time than the case with atmage 1= 1 (188 time units versudfor the

second case).

Figures 5-4 to 5-6 present the results for a queepgystem witlm = 10 servers and arrival rates
A= 1, A = 2,and A = 3) for the first 5000 time units, respectively. Fane of the cases, the
system has reached the steady state after 50@& wfitime. All the three cases have negligible
balking probabilities. The complete reshuffling éisfor these cases are 1,112,083, 3,410.56,
and 192.94, respectively. Note that for the fieewithA = 1 at timet = 5,000, the ages of the
first four servers in the stack are over 800 elldwever, the last two servers in the stack have
not been used yet. In the case witlk 3, however, the servers have a more consistent aging

pattern.
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5.4 Conclusion

All the previous studies on unreliable multi-sergeeuing systems assume that servers’
utilizations are independent from each other andrawing customer selects one of the available
servers randomly. However, there exist systemshiciwthe customers routing pattern is non-
random and customers select a server accordingéd@ireed pattern. An example of a non-
random routing policy is the Most Recently Busy (B)Rolicy, in which an arriving customer
selects the idle server that was the most recéunsy.

In this chapter, we considered an unreliable quesystem with the MRB routing policy. In
particular, we considered a queueing system foclthe servers are stored in a stack when they
are not in use. In such systems, an arriving custguneks the idle servers on the top of the stack
for service. Similarly, when the service is ovée server is returned to the top of the stack. In
such a system servers have heterogeneous utitizatid deterioration behaviors because of the
stochastic dependence of a server usage on itsquosi the stack and the utilization of the other
servers in the system.

To maintain such systems more effectively, theslesimaker needs to have an understanding
of the utilization behavior and deterioration pattef each server in the system. In this chapter
we proposed a model to characterize and quan#fgtitical feature in estimating the
deterioration of each server. We developed a coesisime Markov chain (CTMC) model to
measure the transient utilization and usage timreaoh server based on the initial position of the
server, the arrival rate and the service rateersifstem. We also proposed a formula to compute
the system’s expected complete reshuffling tinge, the expected time to use the last server in

the stack for the first time. This measure is ¢diast since when the last server in the stack is
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used for the first time, all servers become idextiic terms of their possible position in the stack
from that point on.

This study provides insight to the decision makendave a more efficient maintenance policy for
a queueing system with the MRB routing policy, arenspecifically a queueing system with
stacked servers. The model presented in this stalhs the decision maker to effectively
estimate the viral age of each server in the syséeh accordingly approximate the deterioration
of a specific server and derive the optimal maiatee policy based on the estimated
deterioration.

A future direction for this research is to studffetient individual and group maintenance
policies such as age replacement, block replacemetiailure, or policy fn — T) policy (the
combination of block replacement amd-failure policy) , and perform a cost analysis ¢oivke

the optimal maintenance policy for such systems.
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