
Journal of the Arkansas Academy of Science

Volume 70 Article 37

2016

Vegetation Diversity in Natural and Restored
Forested Wetland Sites in Southeast Arkansas
C. J. Sheldon
University of Arkansas at Monticello, cjsheldo@gmail.com

R. L. Ficklin
University of Arkansas at Monticello

K. P. Fawley
University of Arkansas at Monticello

M. W. Fawley
University of Arkansas at Monticello

M. Bataineh
University of Arkansas at Monticello

See next page for additional authors

Follow this and additional works at: http://scholarworks.uark.edu/jaas

Part of the Forest Biology Commons, and the Forest Management Commons

This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to
read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior
permission from the publisher or the author.
This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy
of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu, drowens@uark.edu,
scholar@uark.edu.

Recommended Citation
Sheldon, C. J.; Ficklin, R. L.; Fawley, K. P.; Fawley, M. W.; Bataineh, M.; Nelson, A. S.; and Wilson, S. (2016) "Vegetation Diversity in
Natural and Restored Forested Wetland Sites in Southeast Arkansas," Journal of the Arkansas Academy of Science: Vol. 70 , Article 37.
Available at: http://scholarworks.uark.edu/jaas/vol70/iss1/37

http://scholarworks.uark.edu/jaas?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol70%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/jaas/vol70?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol70%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/jaas/vol70/iss1/37?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol70%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/jaas?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol70%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/91?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol70%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/92?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol70%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/jaas/vol70/iss1/37?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol70%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu,%20drowens@uark.edu,%20scholar@uark.edu
mailto:ccmiddle@uark.edu,%20drowens@uark.edu,%20scholar@uark.edu


Vegetation Diversity in Natural and Restored Forested Wetland Sites in
Southeast Arkansas

Authors
C. J. Sheldon, R. L. Ficklin, K. P. Fawley, M. W. Fawley, M. Bataineh, A. S. Nelson, and S. Wilson

This article is available in Journal of the Arkansas Academy of Science: http://scholarworks.uark.edu/jaas/vol70/iss1/37

http://scholarworks.uark.edu/jaas/vol70/iss1/37?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol70%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of the Arkansas Academy of Science, Vol. 70, 2016
221

Vegetation Diversity in Natural and Restored
Forested Wetland Sites in Southeast Arkansas

C.J. Sheldon1*, R.L. Ficklin1, K.P. Fawley2, M.W. Fawley2, M. Bataineh1, A.S. Nelson3 and S. Wilson1

1School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, AR 71655
2School of Mathematical and Natural Sciences, University of Arkansas at Monticello, Monticello, AR 71655

3College of Natural Resources, University of Idaho, Moscow, ID, 83844

* Correspondence: cjsheldo@gmail.com

Running Title: Vegetation Diversity in Southeast Arkansas

Abstract

The loss of forested wetlands in the Lower
Mississippi River Alluvial Valley in Arkansas has
altered regional vegetation communities. Multiple
restoration projects have been established in this region
to restore wetlands and the services they provide. In
order to return these functions to the environment,
microtopographic features were constructed in 2001 at
Bob White Memorial Wetlands Research and Teaching
Station (Bob White). Vegetation diversity was
examined at Cut-Off Creek Wildlife Management Area
(Cutoff), a naturally forested wetland, and Bob White,
an area formally converted to cropland that is now
undergoing forest wetland restoration. Vegetation
diversity is one way to determine if restoration efforts
are effectively restoring ecosystem structure and
functions to natural wetland conditions. Vegetation
diversity and composition were examined across three
topographical features: hummocks/ridges, swales, and
flats. Vegetation diversity was examined in the spring,
summer, and fall. Indices were used for determining
composition similarities between Bob White and
Cutoff. Bob White had a species richness of 33 and
Cutoff’s species richness was 47. Beta diversity
between the two sites was 76 species, this value is high
and suggests there is low similarity between the two
sites. Sorensen-Dice Similarity Index value was
calculated as 0.05, where on a scale of zero to one a
low value indicates low similarity in composition. The
low similarity between the two sites suggests that
vegetation composition at Bob White has not been
fully restored to conditions comparable to a natural
setting. An explanation for this is the presence of
Baccharis halimifolia (Eastern baccharis). B.
halimifolia inhibits other species from colonizing.
Another factor for the difference between the
vegetation at Bob White and Cutoff is that Cutoff is an
older forest. Hydrophyte communities in a forested

wetland take 50 years after restoration begins for them
to resemble a natural forested wetland. The results
from this study provide mixed evidence that restoration
at Bob White is succeeding; there is a high percentage
of wetlands species, while vegetation lacks similarity.
This study improves our understanding of the influence
that anthropogenic changes have on wetland functions
as agricultural lands are restored to their previous land
cover. Ecosystem functions should continue to be
monitored to determine time frames as these functions
are restored to Bob White.

Introduction

Wetlands provide important environmental
services to human and biological communities, such as
flood attenuation, wetland-dependent wildlife habitat,
water quality enhancement, sediment filtration, and
pollution control through denitrification, wood
products, and food production (Walbridge 1993,
Gilliam 1994, Kleiss 1996, Mitsch and Gosselink
2000, Zedler 2003). In 1972 the Clean Water Act
Section 404 was created to mitigate wetland loss
(Hough and Robertson 2009), but this Act was largely
unsuccessful. An estimated 25,212 hectare of wetlands
were lost in the US between 2004 and 2009 (Dahl
2011). Wetland loss has decreased in recent years due
to not only the Clean Water Act Section 404 but also
successful education programs and fewer economic
incentives available to drain wetlands (EPA 2011).

The physical properties of a soil determine its
hydraulic character (Mitsch and Gosslink 2000).
Depositional events in the Lower Mississippi Alluvial
Valley (LMAV) are variable over time and result in
differential microtopography and hydrological
gradients. The Lower Mississippi River, its tributaries,
and the landscape within these watersheds have
undergone immense change in the past (Dahl and
Johnson 1991), resulting in the loss of hydrologic
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characteristics found in natural wetlands (Mitsch and
Gosselink 1993). Since the 1970s, the most extensive
losses of wetlands have occurred in Arkansas,
Mississippi, and Louisiana (Dahl and Johnson 1991,
Kress et al. 1996). The change in land cover type from
wetland to agriculture likely change the capacity of the
land to lessen flood events (Hopkinson and Day 1980a,
Hopkinson and Day 1980b), and improve downstream
water quality (Hupp and Morris 1990, Hupp and
Bazemore 1993).

Mature forested wetlands are known to exhibit
varied microtopography due to erosion and
sedimentation processes (Barry et al. 1996).
Microtopography refers to any surface roughness in a
forest stand or wetland area, usually at most ± one m of
average elevation. Microtopographic lows hold water
seasonally and have been suggested to be beneficial for
maintaining hydric soil properties and hydrophytes
during restoration (Bruland and Richardson 2005,
Moser et al. 2009, Simmons et al. 2011).
Microtopographic manipulations (Swales, Flats, and
Hummocks) benefit a wetland’s hydrologic regime
(Tweedy and Evans 2001). Restoration with roughened
microtopography ± 0.5 m was found to retain surface
water more frequently throughout a year compared to a
planar restoration site of similar age in coastal North
Carolina (Tweedy and Evans 2001). Soil survey
hydrologic classifications, poorly drained, somewhat
poorly drained, and somewhat excessively drained can
be predictors of the duration water is ponded on a soil.

Swale and hummock microtopography
reestablishment during wetland restoration is expected
to provide hydrological and edaphic benefits on
otherwise planar sites. In less than a year saturated
soils tend to develop characteristic redox potentials as
well as denitrification processes (Megonigal et al.
1993). Following these processes prolonged anoxic
conditions, slow soil microorganism activity, and
promote the accumulation of soil organic matter
(SOM), a key soil response to wetlands restoration
(Bruland and Richardson 2006; Ballantine and
Schneider 2009). SOM refers to any undecayed animal
and plant matter as well as other humic substances,
mainly composed of four elements: C (52-58%), O
(34-39%), H (3.3%-4.8%), and N (3.7%-4.1%) (Sparks
2002). No differences in soil total carbon was found
though total nitrogen was greater in the swale features
five years after swale and hummock establishment in
east Texas. (Simmons et al. 2011). It was also noted
that hydrophytes colonized an initially bare site and
swales held surface water as expected (Simmons et al.
2011).

Topographic modifications were evaluated for
hydrologic, edaphic, and vegetative responses at a
three year old wetland restoration site in coastal North
Carolina (Bruland and Richardson 2005). Restored
features included, hummocks rising one meter above
average elevation, swales, and unaltered flats. Soil bulk
density and soil organic matter did not differ among
recreated swales, hummocks, and associated flats. Soil
nitrogen, nitrate-nitrite-ammonium, significantly
differed among the features. The authors suggest that
microtopography heterogeneity provides
heterogeneous aerobic and anaerobic zones within a
wetland, benefiting nitrogen transformation and
retention during restoration. Greater plant species
richness and diversity has been found at intermediate
flat areas (Simmons et al. 2011, Bruland and
Richardson 2005). This is attributed to intermediate
duration hydroperiod, whereas swales and hummocks
experience moisture extremes.

The Wetland Reserve Program (WRP) developed
by USDA Natural Resources Conservation Service
(NRCS) was created to provide incentives for private
land owners to conserve their property. These
incentives have been the subject of public attention for
their lack of effectiveness in conserving land. Specific
research has focused on the assessment of the
effectiveness of riparian buffers and wetland
restoration methods (Gilliam 1994, Hill 1996, Hughes
et al. 2005). Conservation incentives have been
provided for the establishment of riparian buffers and
wetlands in agricultural watersheds totaling 51,757
hectares in the LMAV (Faulkner et al. 2011). The
titles of these conservation programs are varied:
Riparian Forest Buffer, Wetland Wildlife Habitat
Improvement, and Wetland Reserve Enhancement. The
objective of these programs is to return marginally
productive, poorly drained farmlands and pasture to
forested wetlands. It has been suggested that ecological
restoration strategies must address the challenge of
structural complexities that vary greatly by ecoregion
and the criticism over the lack of standard restoration
monitoring practices (Suding 2011). Limited progress
of wetland restoration toward reference features is due
to failure to establish hydrophytes and planted
hardwood trees at desired locations (Stanturf et al.
2001, Patterson and Adams 2003). In wetland
restoration, progress toward reference conditions can
refer to an abundance of hydrophytes, as well as
appropriate water levels, and soil organic matter
accumulation (Ballantine and Schneider 2009).

Evaluating wetland function is difficult because
there is no standard to use for comparison when
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studying a specific function. Therefore, numerous
studies have used reference wetlands to represent
optimal habitat conditions (Brinson 1993, Brinson and
Rheinhardt 1996, Wilson and Mitsch 1996, Ashworth
1997, Brown and Smith 1998, Stolt et al. 2000).
Studying vegetation composition is one of the most
commons metrics used to compare restored wetlands to
reference wetlands. Studying vegetation alone is a poor
measure of a wetland’s function but is a quick and
effective method for studying the biogeochemical
condition of a wetland and is commonly used as a
measure of success (Breaux and Serefiddin 1999).
There are many advantages to using vegetation as a
biological indicator: they are present in most wetlands,
relatively easy to identify, sampling methods are well
established, and their low mobility creates a direct link
between onsite environmental conditions and plant
community characteristics (Cronk and Fennessy 2001).
Balcombe et al. (2005) found that species composition
indicate wetland quality. Atkinson et al. (2005) found
that there are very few studies that examined
vegetation of wetlands more than ten years after
construction. The long-term development of wetlands
is poorly understood (Zedler 2000).

It has been accepted that changes in the vegetation
diversity are associated with the different stages of
succession (Hill and Jones 1978, Sykes et al. 1989,
Gilliam et al. 1995). It is expected that more mature
sites have a higher plant species richness than restored
sites, because the vegetation on the mature sites has
been undisturbed for a longer time than restored sites.
Hydrophytic vegetation generally returns to wetlands
three to five years after restoration begins (Brown
1999).

Materials and Methods

Site Description
Two study sites were used in this study. Their

relation to each other is shown in Figure 1. The two
sites are 32.2 kilometers apart. One area, Cutoff is a
natural forested wetland, and Bob White is a former
agricultural land undergoing wetland restoration.
Cutoff is located in Drew County in southeast
Arkansas. The 3,488 hectare wildlife management area
consists mainly of bottomland hardwood forest. The
majority of the property was acquired in a purchase in
1955 through the Wildlife Restoration Program Grant
Fund. Before the purchase, Cutoff was high-graded for
timber, only the highest quality of trees were harvested
for timber resulting in relatively poor quality residual
stands. The average forest age ranges from 50-100

years. The area is located within the Bayou
Bartholomew Ecobasin, which is located within the
LMAV ecoregion. Elevations range from 38 - 46
meters above mean sea level. The majority of
hydrology in Cutoff is influenced by two drainage
points: one just north of the management area, and the
Cut-off Creek-Bayou Bartholomew drainage. The
Perry Clay soil series (very-fine, smectitic, thermic
Chromic epiaquerts) is the primary soil mapped for the
site. This hydric soil is very poorly drained, with zero
to three percent slopes and composed of Arkansas
River sediments (Cloutier and Finger 1967). Cutoff
had a gradient in microtopography features: swales
(low laying areas), hummocks/ridges (mounds), and
flats (the intermediate between the other two features).

Bob White comprises 146 hectares and is located
in the LMAV in Chicot County, Arkansas. Elevations
range from 32-34 meters above sea level. Similar to
Cutoff, the soils on the Bob White tract are mapped as
Perry Clay series. Bob White was bottomland
hardwood forest (BLHF), until the 1960’s when it was
converted into row crop production. Once Bob White
was enrolled in the WRP in 2001 Swale excavation and
hardwood planting of bald cypress (Taxodium
distichum), water oak (Quercus nigra), overcup oak
(Quercus lyrata), green ash (Fraxinus pennsylvanica),
and willow oak (Quercus phellos) occurred. The swale
excavations created low laying features called swales,
the excavated material was used to create mounds or
hummocks, high laying areas, and lastly the areas not
manipulated created flats, the intermediate between the
two other features. The region where the
microtopographic manipulations were done and where
the plots for this study were placed has an average
planted tree survival zero per ha (Smith 2006).

Study Design
Five plots were randomly placed within each of

three microtopographic features at each study site. The
gradient of microtopographic features included swales
(low laying areas), hummocks/ridges (mounds), and
flats (the intermediate between the other two features).
The vegetation plots were one m2 plots. These plots
were surveyed May 6th – May 11th, August 28th -
August 31st, and October 22nd – October 29th in 2015.
Plants were identified using Schummer et al. (2011).
Species richness was determined for each plot. A plant
was considered in the plot if it was rooted within the
plot. Vines were counted if they were present in the
plot. Plants that could not be identified were collected
from the surrounding area and identified in a lab. Some
of the species were only found in the plots, so pictures
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Figure 1. The location of the study sites coordinates for the
vegetation plots at both study sites.

were taken and used for identification. Beta diversity
was defined as the spatial variation in species
composition and abundance between sampling units
(Whittaker 1972). Sorensen-Dice Similarity Index and
Jaccard/Tanimoto Coefficient were calculated across
the two sites and within the sites and topographic
features. The index ranges from zero to one where zero
is no similarity between sites and one is exact
similarity in species composition (Murguía and
Villaseňor 2003, Tan et al. 2005). 

The wetland indicator status of the plants that were
identified to species were determined for the Atlantic
and Gulf Coastal Plain region using the National
Wetland Plant List by Lichvar et al. (2014). The
wetland indicator status categories are defined as:
Obligate (OBL)- almost always occurring under
natural wetland conditions, Facultative Wetland
(FACW)- usually occurring in wetlands but
occasionally found in non-wetlands, Facultative
(FAC)- equally likely to occur in wetlands and non-
wetlands, Facultative Upland (FACU)- usually occurs
in non-wetlands but occasionally found in wetlands,
and Upland (UPL)- occurs in wetlands in another

region, but almost always under natural conditions in
non-wetlands in the region specified (Lichvar et al. 2012).

Beta diversity was calculated as

Where A is the total number of species found at a site,
B is the total number of species found at another site,
and C is the total number of species shared between the
sites. Sorensen-Dice Similarity Index was calculated as

Where A, B, and C are the same as above.
Jaccard/Tanimoto Coefficient was calculated as

Where A, B, and C are the same as above.
Linear mixed-effects regression models were used

to assess species richness. All models were fit using
PROC MIXED in SAS 9.4 for Windows (SAS
Institute, Cary, NC, U.S.A.). Species richness, models
included study site, topographic feature, and
topographic feature within study site. The random
statements used included study site, topographic
feature within study site, and survey period within
topographic feature. All parameters were evaluated at
an alpha level of 0.05.

Results

Thirty-three different plant species were identified
at Bob White compared with 47 different species at
Cutoff with two shared species between these two
sites. There was no significant difference in the species
richness between the two sites or the three topographic
features. Species richness among the topographic
features within site however was significantly different
(Table 1). Within a study site only Bob White ridges
and Bob White swales were not significantly different.
Across study site only Bob White swales and Cutoff
swales were not significantly different, shown in Table 1.

There were only two species found at both study
sites. The shared species were Brunnichia ovata, and
Juncus effusus. A list of the most common and rare
species at both sites and topographic features within
site is shown in Table 2.

When comparing the two study areas, the Beta
diversity was calculated as 76, with a Sorensen-Dice
Similarity Index of 0.05, and a Jaccard/Tanimoto
Coefficient of 0.03. Cutoff ridges had the greatest
overall diversity, whereas flats had the highest
diversity at Bob White as shown in Table 3.

224

Journal of the Arkansas Academy of Science, Vol. 70 [2016], Art. 37

http://scholarworks.uark.edu/jaas/vol70/iss1/37



Vegetation Diversity in Southeast Arkansas

Journal of the Arkansas Academy of Science, Vol. 70, 2016
225

Table 1. The p-values for species richness at each
topographic feature within each site.

Table 2. List of the most common and rare species at
each site and at each topographic feature within site.

Table 3. The shared species, Beta diversity, Sorensen-Dice Similarity Index, Jaccard/Tanimoto Coefficient between
each topographic feature and study site.

Table 4. The species richness, percent OBL species, % of FACW species, % of FAC species, % of FACU species, %
of UPL species, found at each topographic feature at each study site.

Of the plants identified to species, swales at both
sites had the most plants and highest percentage of
OBL species shown in Table 4. Two-thirds of plants
identified to species were OBL or FACW species at
Bob White. Only 34% of the species found at Cutoff
were OBL or FACW species. Bob White flats had the
highest number of individual species with a wetland
indicator status of OBL or FACW. At Cutoff the
topographic feature with the most OBL and FACW
species were the swales.

Ipomoea wrightii (Wright’s morning glory) and
Rumex crispus (Curly dock) Triadica sebifera (Chinese
tallow), and Cardiospermum halicacabum (Balloon
vine) are introduced species found at Bob White. T.

sebifera and C. halicacabum were not in any of the
survey plots but was seen at the site. Vicia sativa
(Common vetch) was the only introduced species at
Cutoff.

Discussion

The results demonstrated that Bob White did not
have a significantly different species richness from
Cutoff even though species composition was different.
Vegetation diversity differences are, however, common
between restored wetlands and natural wetlands
(Galatowitsch and van der Valk 1996, Ashworth 1997,
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Fennessy and Roehrs 1997). There were differences in
species richness between the topographic features
across site except for the swales. There should be a
difference in plant diversity between the topographic
features at both sites because it is accepted that
hydrologic regime impacts plant diversity (Brinson et
al. 1981, Keddy 2000). Flats had the highest species
richness at Bob White which is supported by Simmons
et al. (2011) and Bruland and Richardson (2005) who
both reported greater plant species richness and
diversity at intermediate elevation, flat areas. This is
attributed to intermediate duration of hydroperiod,
whereas swales and hummocks experience moisture
extremes. These extremes in moisture may explain
why there was not a significant difference in species
richness between the swales and ridges at Bob White
although the composition of the diversity was different.
The flats shared the most species in common with
swales and ridges/hummocks within study sites. The
amount of shared species is likely because flats are a
transitional landscape between the two topographic
features and could have varying hydrologic regimes
that do not favor swale or ridge/hummock species over
the other. Strangely the shared species that were found
were found at Bob White’s flats and hummocks and
Cutoff’s flat and swales. This was unusual because the
gradient of topographic features should have different
hydrologic regimes, which should influence species
composition. Bob White hummocks had the lowest
species richness, while the ridges at Cutoff had the
highest species richness. The presence of B. halimifolia
may be the reason for the low richness at Bob White
hummocks.

There were not many tree species at Bob White.
Only Salix nigra was found in the survey plots but
planted T. distichum, Q. nigra, Q. lyrata, F.
pennsylvanica, and Q. phellos can be found at Bob
White. T. sebifera has naturally invaded Bob White.
Smith (2006) found a tree survival of zero trees per ha
in the area where the topographic manipulations were
done. In New Jersey a tree layer was not found at old-
field sites in the coastal plain region until 25 years after
abandonment (Hanks 1971). In addition Noon (1996)
found no tree recruitment for the first 11 years
following wetland creation on mineral soils of
reclaimed mine lands. Battaglia et al. (2002) reported
on a restoration site in the LMAV where ten species
were planted. Fifteen years after planting there was a
total of 16 tree and shrub species found at the site.
After 16 years Battaglia et al. (2002) found a tree layer
emerging from beneath the ground layer of vegetation.
This shift in community is indicative of the transition

phase between an old-field and young forest
community (Bonck and Penfound 1945, Hopkins and
Wilson 1974). A successful bottomland restoration
project should include more than 15 woody species,
such as oak, and hickory species (Allen 1990, 1997,
Allen et al. 1998). Our study suggests that Bob White
has not yet transitioned to a young forest community.
One factor could be the presence of B. halimifolia
(Groundsel bush). B. halimifolia was found within all
topographic features of Bob White but was absent from
Cutoff. Battaglia et al. (2008) found that B. halimifolia
inhibits the regeneration of some plant species. This is
consistent with many other studies that have shown
that shrub species negatively interact with colonizing
plants (Callaway 1992, Holl et al. 2000, Posada et al.
2000, Slocum 2001, Gomez-Aparicio et al. 2004,
Zanini and Ganade 2005, Battaglia et al. 2008).
Management of T. sebifera and C. halicacabum is
suggested so they like B. halimifolia will not inhibit
other plants from colonizing.

Woody vegetation generally takes longer to
establish in created wetlands (Niswander and Mitsch
1995). De Steven et al. (2010) found that the cover of
woody species in restored wetlands average 40% after
five years and that restored sites had 53% of the same
species in forested reference sites. Yepsan (2014)
however found no correlation between time since
restoration and percent of woody species. Seed banks
and seed dispersal are the major sources of propagules
in restored wetlands. However, the seed banks of farm
fields are dominated by herbaceous species and often
do not contain woody species (De Steven et al. 2006,
Middleton 2003). Restored wetlands including Bob
White are often surrounded by agricultural fields rather
than forests, limiting dispersal of the propagules of
woody species may explain their lower abundance in
restored wetland (Herault and Thoen 2009, Kettenring
and Galatowitsch 2011). Swales and flats are
exceptionally isolated because they rarely receive
overland flow of water from other wetlands, which
leaves wind transport as the major source of woody
propagules (Greene and Johnson 1996). Diversity in
early succession is positively influenced by external
dispersal of seeds (Pacala and Rees 1998). The
previous land use history is important in determining
the species composition of secondary forests (Grau et
al. 1997, Chinea and Helmer 2003, Ito et al. 2004).
Both sites in this study are surrounded by agricultural
fields, and the dispersal rate should be low. Bob White
does have a narrow riparian zone of trees that consists
of animal or wind dispersed seed species surrounding
the dike system that supplies the adjacent agricultural
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fields. This riparian area may be a source of seeds for
Bob White but shortest distance from the surrounding
patch of trees to one of the excavated swales is 230 m.
The majority of preferred bottomland species density
decreases at 60-80 m from a remnant forest but this
issue decreases as the forests ages (Allen 1997, Brunet
et al. 2000) as animal dispersion increases. Natural
invasion should not be the only method of dispersion
for plant species other than trees. Mid-story and shrub
species should be planted; they are an important part of
the natural forest structure.

At both sites and at all three topographic features
there was a decrease in species richness over the study
period. During the first survey in May water was still
present at both sites which may have inhibited some
plants from growing in the swales. The presence of
water could explain why the inundated swales had an
increase in diversity between the spring and summer
surveys, as the presence of water may have inhibited
some plants from growing early in the spring. Besides
the changing of the seasons and a plant’s natural life
cycle causing a decrease in species richness over time
there was also a dry spell from August 28th – October
19th, where only 1.8 cm of rain fell and 0.43 cm of that
rain fell on October 9th (NADP 2016). This dry spell
may have also been a factor in the loss of species
richness over the time period of this study.

One indication that wetlands species are becoming
reestablished at Bob White is that the swales had a
significant proportion of OBL vegetation. Hydrophytic
vegetation typically returns to a wetland 3-5 years after
restoration begins (Erwin and Best 1985, Confer and
Niering 1992, Reinartz and Warne 1993, Mitsch et al.
1998, Brown 1999). It had been 14 years after
restoration at Bob White therefore the proportion of
hydrophytes is to be expected. The U.S. Army Corps
of Engineers (1987) stated that in order for a site to be
considered to have a hydrophytic vegetation
community the total number of species that are OBL,
FACW and FAC+ must equal at least 50%. Examining
just OBL and FACW species, Bob White Swales and
Flats and Cutoff Swales met this criterion. The
hummocks at Bob White also do not have any OBL
species but have UPL species suggesting that swale
excavation was successful at forming a landscape with
diverse hydrology and therefore a wide range of plant
species. OBL species are indicative of wetlands and
ecosystem services (Naeem et al. 1999). Bob White
may be providing ecosystem services since ecosystem

The time frame for a restored bottomland
hardwood forest to resemble a natural bottomland
hardwood forest can take decades (Kusler 1986,

Mitsch and Gosselink 1993, King et al. 2006). Cutoff
is in the range of 50-100 years old on average. Bob
White’s restoration began in 2001; it is therefore
unreasonable to expect Bob White to resemble a
natural bottomland forest at this point in time.
According to Frenkel and Morlan (1991) success of
forested wetlands should not be judged until 15-50
years after restoration. It is too early to tell if Bob
White has been a success because the factor one uses
to determine success will determine whether or not
restoration has been successful. To determine if Bob
White will be successfully restored more studies like
this should be conducted.
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