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SCF-MO ANDMONTE CARLO CALCULATIONS
OF POLY (DIMETHYLSILOXANE)

SHANNON H. BROWNFIELD and JERRY A. DARSEY
Department of Chemistry

University of Arkansas at LittleRock
LittleRock, AR 72204

ABSTRACT

Self-consistent-field molecular orbital calculations are being used more and more extensively in
determining the energies and properties of various confirmations of polymers. We are using the semi-
quantum mechanical procedure MNDO (moderate neglect of differential overlap) to obtain various
rotational conformations! states of poly(dimethylsiloxane) (POMS). Before calculation of these states,
the molecule is geometrically optimized by using the ab initioprocedure Guassian 86 at the 3-21G
basis set level. Generations of 144 rotational states by rotating about two bonds simultaneously in
increments of 30° were created. A potential energy surface was created from which Monte Carlo
generated several polymer characteristics including characteristic ratio and radial distributions.

INTRODUCTION

Advanced computers and programs are allowing for numerous, very
tedious calculations to be done on a variety ofapplications. One of those
applications is the self-consistent-field molecular orbital ab initio
calculations (SCF-MO) to obtain rotational potential energy surfaces of
molecules. Once a rotational potential energy surface is created, a Monte
Carlo calculation procedure can predict certain characteristics of polymer
chains itgrows, using the optimized geometry and energy surface
supplied. Some of these characteristics include characteristic ratio and
radial distribution. These Monte Carlo simulations can be run at different
temperatures toprovide another characteristic, temperature coefficient.

The inorganic polymer poly(dimethylsiloxane) (PDMS) is one of
several polymers studied in this research over the past year. PDMS was
chosen because ofit's unique structure withan alternating silicon-oxygen
backbone, containing methylated silicons, which puts itin the class of
polymers called siloxanes. These silicon polymers are used in such ap-
plications as lubricants, greases, defoamers, and elastomers (Billmeyer,
1984). PDMS is very important in this class of polymers in that ithas
applications in gaskets and seals, and has been a subject of controversy
lately because of use in prosthetic devices such as breast implants
(Billmeyer, 1984; Rochow, 1987).

The configurational properties of poly(dimethylsiloxane) have been
studied over the years both experimentally in laboratories, and with
calculations. These configurational properties are unique in that PDMS
has differing bond angles. The Si-O-Si angle ismuch greater than that of
the O-Si-O angle, giving the accepted preferred conformation of the all-
trans form, or cyclic form. These properties were obtained in large part
due to calculations based on rotational isometric state theory (Mark and
Flory, 1964; Flory et at., 1964; Flory and Chang, 1976; Mark, 1978;
Flory, 1969). Due to this cyclic form, the polymer closes upon itself after
about 22 bonds (Mark and Flory, 1964; Floryet al., 1964; Flory, 1969).

Itis the purpose of this study to continue efforts to upgrade prediction
of polymer characteristics using calculations, and in particular, to predict
and confirm average poly(dimethylsiloxane) characteristics.

MATERIALSANDMETHODS

The segment of poly(dimethylsiloxane) used for this research
consisted ofa fivemember backbone starting with oxygen and is depicted
in Figure 1. The size of this segment was determined by calculation,
computer, and time constraints. The overall process of this research was
to optimize the geometry of the specified segment of PDMS using the
Guassian 86 (Frisch et al., 1988) ab initio program, then calculate the
rotational potential energies using the procedure MNDO (ChemDraft II,
1989; Dewar and Thiel, 1977), and finally, use the Monte Carlo method
(Binder, 1987) to make polymer predictions based on the created
potent'd energy surface. These calculations were carried out on a VAX
Station 3100 and various 286/386 computers.
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Figure 1. PDMS segment used in calcilations withrotation sites.

The segment of PDMS chosen had to be optimized before other
calculations could be carried out. First, an internal coordinate data set
was created in the Z-matrix form that included bond lengths, bond angles,
and dihedral angles, all of which had the appropriate reference atom
included. The initial geometrical parameters (Flory, 1969) are listed in
Table I.To make sure the Z-matrix geometry was correct, the program
Chem Draft II(1989) was used to visually check the geometry. To
optimize, the Guassian 86 program was used first to optimize first the
bond lengths, then the bond angles. The basis set used for optimization
was the STO-3G level of approximation, followed by a higher basis set,

3-21G, which is a split-valence basis set. Higher basis sets would have
been better, but program restraints wouldnot allow for this due to the size
of the silicon atoms. Once optimization was completed, the geometry was
again visually checked to make sure the optimized parameters looked
reasonable.

Table 1. Some initial parameters from Flory (1969).

GEOM. PARAM. INITIAL STO-3G 3-21G
1.67 A 1.6422 A 1.6767 A
1.80 A 1.8683 A 1.8952 A
0.90 A 0.9830 A 0.9712 A
1.00 A 1.0807 A 1.0863 A

Si-O
Si-C
O-H
C-H

108.0° 104.1256° 108.9325*
143.0° 143.2753° 143.0753°
109.5° 110.8980' 110.5136°
109.5° 111.4374° 111.2324°
109.5° 108.3012° 126.9710°

o

O-Si-0

Si-O-Si
C-Si-0
H-C-Si
H-O-Si

22

s*
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The rotational potential energies were created by routing about two each chain, from which the characteristic ratio and temperature

internal backbone bonds seen as 0j and 02 in Figure 1. While 0 t was coefficient were calculated. These characteristics are given by the
i jiCjji02 was rotated through 360° by 30° increments; then 0lwas formulas

rotated 30° and the process repeated until 0, had been rotated through
360°. To reflect these rotations, the dihedrals of the atoms one bond away q

_
<[i> #n/i

from the rotation bond were changed according to the rotation amount. n n

These rotations were represented by a total of 144 rotation data sets that

were to be used in the actual calculations. The energies of these 144 data an

sets were calculated by the semi-quantum mechanic?! procedure MNDO ,
(moderate neglect of differential overlap) in the program ChemDraft II. n T "
The reason this calculation procedure was used rather than the Guassian
86 calculation was because each rotational energy calculation using , ,. . ... ,. inrvv

, . ¦

Guassian 86 took approximately two to three hours to complete, while the ferc «*>1S «•»"«" arc distance ofthe 10,000 chams,

MNDO procedure took two To three minutes. Since there were 144 (!s *e average bond length, and n is the number ofbonds in the chaur

rotations in each run, the MNDO procedure was very advantageous. Monte Cario dso 8ave the radial distributions, which are the number of

Sese calculations produced a list of144 rotations with there corre- times two atoms are n angstroms apart and it also gave the angular

spending energies expressed in Hartree units. These energies were then distribution, the number of times aparticular rotation set was used.

converted intokilocalories relative to the lowest energy, where the lowest
energy was set at 0.0 kilocalories.

The list of relative rotational potential energies was used by Monte
Carlo to produce a rotational energy map as depicted by Figure 2. Monte

RESULTS AND DISCUSSION

PDMS RCTAT ONALENERGY MAP
The minimal basis set of function, STO-3G, was used to obtain the

•jssS^^S second set of parameters seen in Table I. The parameters most concerned
wiln were *he Si-O bond length, the O-Si-O angle, and the Si-O-Si angle.

/^^^^^^^^^^^^^ck These three when optimized by the STO-3G basis set were an average of
a. .-c^^^^k^/my^WWy^^^^^^^^^ 1.81% off the experimental parameters listed in Table I.To achieve better
n\pfr^^^^^^^^^^(Ww(A^^^^^!^^^^0^^ optimized results, the split level basis set function, 3-21G, was used.

%y^^^^^p^^^^^^^V^OJ^P^^ Usin8 3"21G basis sel achieved an average deviation of 0.44% for the

io\ 1 1'P^ll»e»»»i&ii'!r v£wW$8£&^ffit$'V$&'-lip three parameters previously mentioned, which was a four fold decrease.
g<A As noticed in Table I,the H-O-Si bond angle changes considerably when
\ optimized by the 3-21G basis set. This can be explained by the fact that

\M^\t^^^^^^^^^^^^^^^W^^y^f' 109.5° was arbitrarily used as an initial value, as were the C-Si-O and the

"\ v$w^yli^vw^^^ H-C-Si angles, inaccordance to expected sp3 bonding. The angle of

-o s\ 126.97° is not unexpected in light of it's environment in the polymer

%\ * V$^***3&\ "
ne MNDO method of calculation was used in determining the

A rotational potential energies, and the results can be seen in the three
tJ>\ dimensional rotational energy map of Figure 2. The X in the energy map

<^% marks the lowest energy (map global minimum) rotation set, 180-210.
Some other low rotation sets in order of increasing energy include the_ following: 180-150, 180-180, 150-240, and 180-240. Conversely, the

Figure 2. Three dimensional rotational potential energy map, phi 1 vs. highest nation setS( in order ofincreasing energy, include the following:
phi 2vs. relative energy inkilocalories. 30.90 50.90 90.90 and 300-240. These rotation sets would seem to

suggest that a polymer using these preferred sets would be in the cyclic,
convoluted conformation, and would shun the unpreferred, which would

Urlo used this energy map tomathematically create a probability space. put melhyl groups close to other melhyl groups md/or oxygen atoms
Hie Boltzman factor is the basis of the mathematics and is given by the The Mome Carlo melhod was used to predict PDMS polymer

owing formula: characteristics that included characteristic ratio and temperature
coefficient. Table IIlists characteristic ratios with the corresponding

_.. „ ._ temperature of this research and other sources. The characteristic ratios
Pij oe e

-
VT r

Table 2. Characteristic ratios with corresponding temperatures and
Using the probability space created, each rotation set had its own temperature coefficients of this work (Monte Carol) and others. a(Curro

probability ofbeing chosen in a random number generator. The lower the and Mark, 1984), b(Flory and Chang, 1976), c(Darsey, 1990), d(This
relative energy, the greater chance the rotation set had to be used in a work )t e(Mar1c and Erman, 1988), f(Mark and Erman, 1988), 8(Darsey,
growing polymer chain. The Monte Carlo program was set to grow a set 1990), n(This work).
of 10,000 polymers, that were approximately 100 bonds long (put in two

'¦

at a time), consisting of only the backbone atoms. Only the backbone
atoms were used because the methyl groups were taken in account when ¦.*¦«• „„„„

kl
, ,..„.-¦-, ,-« „ .,,...r,,-^the probability space was created The reason that there were 10,000 300 K NUMBER 400 K NUMBER 500K NUMBER

simulations of 100 bond long polymer chains was because at these 180 150 14155 180 210 10730 180 210 8667
Parameters, the characteristics calculated didn't change appreciably 180 210 14014 180 150 10509 180 150 8623
between repeated runs. Another parameter in the Monte Carlo program 180 180 13931 180 180 10235 150 240 8578was the temperature at which the simulations were to be run. Changing of <~nnn *>«*.•« .•«...¦« -or...,,,, „,-,„•»

temperature allowed the calculation of the temperature coefficieniTby 150240 13299 150240 10149 180 180 8530
using data from the temperatures 300, 400, and 500 K. Monte Carlo 180 240 12355 180 240 9175 180 240 7896
calculated various average statistical properties by calculating over the
10,000 chains. The mean square end-to-end distance was calculated for __
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b

calculated seem in accordance with other values from literature, which
vary greatly in some. Using our three characteristic ratios, a temperature
coefficient graph was created, Figure 3, from which the PDMS
temperature coefficient was calculated and is listed in Table II.The

Table 3. Five most used angular distributions for each temperature from
Monte carlo calculations.

TEMP. COEFF.
CHAR. RATIO TEMP K x10"3i/K

4.62-5.90 (a) 298.0 +0.59 (e)
6.43 (b) 383.0 +0.52 (f)

4.17 (c) 423.0 +0.511 (g)

4.1025 (d) 300.0 -0.61 (h)
3.7783 (d) 400.0
3.6466 (d) 500.0

Several factors could have influenced the data obtained in this
research. First, and most important, since MNDOhad to be used in the
calculation of the rotational potential energies, they were not as accurate
as with using a Gaussian split valence basis set. We believe this has the
greatest affect on the results. In optimizing, we were also restrained in
that a higher basis set level could not be used due to program ability. A
higher basis set here also would have been an asset. Another factor is that
our segment of PDMS that was utilized started with oxygen rather than
silicon, which had been used in earlier studies. Inthe data referenced in
Table II,for the experiments, PDMS was dissolved in solvents that affect
characteristics that can not be taken into account when using theoretical
calculations. Allof these factors in differing importance, probably
represent the differences seen in our data.

This research has been invaluable in that future projects can be refined
using what was learned here, and hopefully theoretical calculations of this
type can be done with increasing certainty. This research is also valuable
in that it willbe used in a neural network project that is ongoing.

SUMMARY

A segment of poly(dimethylsiloxane) was geometrically optimized
using a split valence level, 3-21G, Gaussian program. A set of 144
rotational potential energies was created using the MNDO method to
calculate. The optimized geometry and the rotational potential energies
were used in a Monte Carlo method to create a probability space that
simulated 10,000 polymer chains at three different temperatures. The
characteristics determined suggest that PDMS is in a cyclic form,
preferring to use the angles 180° and 210°, and convolutes to a greater
extent when energy is increased, thus giving a negative temperature
coefficient.
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Figure 3. Graph of In<r2> vs. Temp, in K to produce temperature
coefficient.

temperature coefficient, -0.61 x 1O3 K"1,as seen with others in Table II,
has approximately the same magnitude, but is a negative value rather than
a positive one, which predicts that the polymer actually tightens rather
than relaxing withincreased temperature. Some insight into our value can
be given ifthe radial distribution (Figure 4) and the angular distribution
(Table III)are studied. As the energy was increased from 300K to 500K,
the characteristic ratio, a measure of the "tightness" of a polymer,
decreases, which means the polymer became more convoluted. As seen in
Table III,as energy was increased the polymer tended to not spend as
much time in the normal conformation denoted by the angles listed, but
occupied higher energy rotational sets which convolutes the polymer to a
more globular shape. The radial distribution, Figure 4, shows that at
300K, the number of atoms apart by 22A to 55A is more than at 400K or
500K, and at OA to 22A is less than the other temperatures. Looking at
500K, just the opposite is true, and 400K falls in between. This graph
supports the findings that as the temperature increases, thus the energy,
the polymer conforms to a state where itis more compact.

Figure 4. Graph of radial distributions produced by Monte Carlo at three
temperatures from 0 to 5SA further points cut offdue to graphing
purposes).
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