International Journal of Pure and Applied Mathematics

Volume 107 No. 4 2016, 971-981 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v107i4.15

UNIQUENESS OF DIFFERENCE POLYNOMIALS OF MEROMORPHIC FUNCTIONS

Harina P. Waghamore^{1 §}, Rajeshwari S.²

^{1,2}Department of Mathematics Jnanabharathi Campus Bangalore University Bangalore, 560 056, INDIA

Abstract: In this paper, we study the zero distributions on the derivatives of q-shift difference polynomials of meromorphic functions with zero order and obtain two theorems that extend results of [3].

AMS Subject Classification: 30D35

Key Words: uniqueness, meromorphic function, difference polynomials, shared function

1. Introduction

In this paper, a meromorphic functions f means meromorphic in the complex plane. If no poles occur, then f reduces to an entire function. Throughout of this paper, we denote by $\rho(f)$ and $\rho_2(f)$ the order of f and the hyper order of f (Laine, 1993 and Yang and Yi, 2003). In addition, if f - a and g - ahave the same zeros, then we say that f and g share the value a IM(ignoring multiplicities). If f - a and g - a have the same zeros, then we say that f and g share the value a CM(counting multiplicities). We assume that the reader is familiar with standard symbols and fundamental results of Nevanlinna Theory(Halburd Korhonen and Tohge; Laine, 1993 and Yang and Yi, 2003).

Given a meromorphic function f(z), recall that $\alpha(z) \neq 0, \infty$ is a small function with respect to f(z), if $T(r, \alpha) = S(r, f)$, where S(r, f) is used to denote any quantity satisfying S(r, f) = o(T(r, f)), and $r \to \infty$ outside of a

© 2016 Academic Publications, Ltd. url: www.acadpubl.eu

Received: January 5, 2016

Published: May 7, 2016

[§]Correspondence author

possible exceptional set of finite logarithmic measure.

Recently, K. Liu, X. Liu and T. B. Cao (2012) proved the following.

Theorem A. (Liu, Liu and Coa, 2012) Let f be a transcendental entire function of $\rho_2(f) < 1$. For $n \ge t(k+1) + 1$, then $[P(f)f(z+c)]^{(k)} - \alpha(z)$ has infinitely many zeros.

Theorem B. (Liu, Liu and Coa, 2012) Let f be a transcendental meromorphic function of $\rho_2(f) < 1$, not a periodic function with period c. If $n \ge (t+1)(k+1) + 1$, then $[f(z)^n (\Delta_c f)^s]^{(k)} - \alpha(z)$ has infinitely many zeros.

Theorem C. (Liu, Liu and Coa, 2012) Let f be a transcendental meromorphic function of $\rho_2(f) < 1$. For $n \ge t(k+1) + 5$, then $[P(f)f(z+c)]^{(k)} - \alpha(z)$ has infinitely many zeros.

Theorem D. (Liu, Liu and Coa, 2012) Let f be a transcendental meromorphic function of $\rho_2(f) < 1$. If $n \ge (t+2)(k+1) + 3 + s$, then $[P(f)(\Delta_c f)^s]^{(k)} - \alpha(z)$ has infinitely many zeros.

Theorem E. (Liu, Liu and Coa, 2012) Let f and g be a transcendental entire function of $\rho_2(f) < 1$, $n \ge 2k + m + 6$. If $[f^n(f^m - 1)f(z+c)]^{(k)}$ and $[g^n(g^m - 1)g(z+c)]^{(k)}$ share the 1 CM, then f = tg, where $t^{n+1} = t^m = 1$.

Theorem F. (Liu, Liu and Coa, 2012) The conclusion of Theorem E is also valid, if $n \ge 5k + 4m + 12$. and $[f^n(f^m - 1)f(z+c)]^{(k)}$ and $[g^n(g^m - 1)g(z+c)]^{(k)}$ share the 1 IM.

In 2013, Harina P. Waghamore and Tanuja A. extend Theorem E and Theorem F to meromorphic functions.

Theorem G. (Harina P.W and Tanuja A, 2013) Let f and g be a transcendental meromorphic function with zero order. If $n \ge 4k + m + 8$, $[f^n(f^m - 1)f(qz+c)]^{(k)}$ and $[g^n(g^m - 1)g(qz+c)]^{(k)}$ share the 1 CM, then f = tg, where $t^{n+1} = t^m = 1$.

Theorem H. (Harina P.W and Tanuja A, 2013) Let f and g be a transcendental meromorphic function with zero order. If $n \ge 5k + 4m + 17$, $[f^n(f^m-1)f(qz+c)]^{(k)}$ and $[g^n(g^m-1)g(qz+c)]^{(k)}$ share the 1 IM, then f = tg, where $t^{n+1} = t^m = 1$.

In this paper, we extend Theorem G and Theorem H to difference polynomials and obtain the following results.

Theorem 1. Let f and g be a transcendental meromorphic(resp. entire) function with zero order. If $n \ge 4k + 8(n \ge 2k + 6)$, $[P(f)f(qz + c)]^{(k)}$ and $[P(g)g(qz + c)]^{(k)}$ share the 1 CM, then:

1. $f \equiv tg$ for a constant t such that $t^d = 1$.

2. f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(w_1, w_2) = P(w_1)w_1(qz+c) - P(w_2)w_2(qz+c)$.

Theorem 2. Let f and g be a transcendental meromorphic(resp. entire) function with zero order. If $n \ge 10k + 14(n \ge 5k + 12)$, $[P(f)f(qz+c)]^{(k)}$ and $[P(g)g(qz+c)]^{(k)}$ share the 1 IM, then the conclusion of theorem 1 still holds.

2. Some Lemmas

In this section, we present some definitions and lemmas which will be needed in the sequel.

Lemma 2.1. (Halburd, Korhonen and Tohge, Theorem 5.1) Let f(z) be a transcendental meromorphic function of $\rho_1(f) < 1$, $\varsigma < 1$, ϵ is enough small number. Then

$$m(r, \frac{f(z+c)}{f(z)}) = o\left(\frac{T(r, f)}{r^{1-\varsigma-\epsilon}}\right) = S(r, f),$$
(2.1)

for all r outside of a set of finite logarithmic measure. Combining the proof of (Luo and Lin, 2011, Lemma 5) with Lemma 2.1, we can get the following Lemma 2.2.

Lemma 2.2. Let f(z) be a transcendental entire function $\rho_2(f) < 1$. If F = P(f)f(z+c), then

$$T(r,F) = T(P(f)f(z)) + S(r,f) = (n+1)T(r,f) + S(r,f).$$
(2.2)

Lemma 2.3. (Liu, Liu and Cao, 2012, Lemma 2.5) Let f(z) be a transcendental meromorphic function of $\rho_2(f) < 1$. If F = P(f)f(z+c), then

$$(n-1)T(r,f) + S(r,f) \le T(r,F) \le (n+1)T(r,f) + S(r,f).$$
(2.3)

Lemma 2.4. (Zhang and Korhonen, 2010, Theorem 1.1) Let f(z) be a transcendental meromorphic function of zero order. Then

$$T(r, f(qz)) = T(r, f(z)) + S(r, f)$$

on a set of logarithmic density 1.

The following lemma has little modifications of the original version (Theorem 2.1 of Chiang and Feng, 2008).

Lemma 2.5. Let f(z) be a transcendental meromorphic function of finite order. Then

$$T(r, f(z+c)) = T(r, f) + S(r, f).$$
(2.4)

combining Lemma 2.4 with Lemma 2.5, we get the following result easily.

Lemma 2.6. Let f(z) be a transcendental meromorphic function of zero order. Then

$$T(r, f(qz+c)) = T(r, f(z)) + S(r, f)$$
(2.5)

on a set of logarithmic density 1.

Lemma 2.7. (Yang and Hua, 1997, Lemma 3) Let F and G be non constant meromorphic functions. If F and G share 1 CM, then one of the following three cases holds:

(i) max {T(r, F), T(r, G)} $\leq N_2(r, \frac{1}{F}) + N_2(r, F) + N_2(r, \frac{1}{G}) + N_2(r, G) + S(r, F) + S(r, G).$

- (ii) F = G.
- (iii) F.G = 1.

Lemma 2.8. (Xu an Yi, 2007, Lemma 2.3) Let F and G be non constant meromorphic function sharing the value 1 IM. Let

$$H = \frac{F''}{F'} - 2\frac{F'}{F-1} - \frac{G''}{G'} + 2\frac{G'}{G-1}$$

If $H \neq 0$, then

$$T(r,F) + T(r,G) \le 2\left(N_2\left(r,\frac{1}{F}\right) + N_2(r,F) + N_2\left(r,\frac{1}{G}\right) + N_2(r,G)\right)$$

$$+ 3\left(\overline{N}(r,F) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}(r,G) + \overline{N}\left(r,\frac{1}{G}\right)\right) + S(r,F) + S(r,G).$$
(2.6)

Lemma 2.9. Let f(z) be a meromorphic function, and p, k be positive integers. Then

$$T(r, f^{(k)}) \le T(r, f) + k\overline{N}(r, f) + S(r, f).$$
 (2.7)

$$N_p\left(r, \frac{1}{f^{(k)}}\right) \le T(r, f^{(k)}) - T(r, f) + N_{p+k}\left(r, \frac{1}{f}\right) + S(r, f).$$
(2.8)

$$N_p\left(r,\frac{1}{f^{(k)}}\right) \le k\overline{N}(r,f) + N_{p+k}\left(r,\frac{1}{f}\right) + S(r,f).$$
(2.9)

Lemma 2.10. Let f and g be a transcendental meromorphic function of zero order. If $n \ge k + 6$ and

$$[P(f)f(qz+c)]^{(k)} = [P(g)g(qz+c)]^{(k)}$$
(2.10)

then f = tg, where $t^{n+1} = t^m = 1$, and f and g satisfy the algebraic equation

$$R(w_1, w_2) = P(w_1)w_1(qz+c) - P(w_2)w_2(qz+c).$$

Proof. From (2.10), we have

$$P(f)f(qz+c) = P(g)g(qz+c) + Q(z).$$

Where Q(z) is a polynomial of degree at most k = 1. If $Q(z) \neq 0$, then we have

$$\frac{P(f)f(z+c)}{Q(z)} = \frac{P(g)g(qz+c)}{Q(z)} + 1$$

From the second main theorem of Nevanlinna and by Lemma 2.2, we have

$$(n+1)T(r,f) = T\left(r, \frac{P(f)f(qz+c)}{Q(z)}\right) + S(r,f)$$

$$\leq \overline{N}\left(r, \frac{P(f)f(qz+c)}{Q(z)}\right) + \overline{N}\left(r, \frac{Q(z)}{P(f)f(qz+c)}\right)$$

$$+ \overline{N}\left(r, \frac{Q(z)}{P(g)g(qz+c)}\right) + S(r,f)$$

$$\leq \overline{N}(r,P(f)) + \overline{N}(r,f(qz+c)) + \overline{N}\left(r, \frac{1}{P(f)}\right) \qquad (2.11)$$

$$+ \overline{N}\left(r, \frac{1}{f(qz+c)}\right)$$

$$+ \overline{N}\left(r, \frac{1}{g(z)}\right) + \overline{N}\left(r, \frac{1}{g(qz+c)}\right) + S(r,f) + S(r,g)$$

$$\leq 4T(r,f) + 2T(r,g) + S(r,f) + S(r,g).$$

Similarly as above, we have

$$(n+1)T(r,g) \le 4T(r,g) + 2T(r,f) + S(r,f) + S(r,g).$$
(2.12)

Thus, we get

$$(n+1)[T(r,f) + T(r,g)] \le 6[T(r,f) + T(r,g)] + S(r,f) + S(r,g).$$
(2.13)

which is in contradiction with $n \ge k+6$. Hence, we get $Q(z) \equiv 0$, which implies that

$$P(f)f(qz + c) = P(g)g(qz + c).$$
 (2.14)

Set $h(z) = \frac{f(z)}{g(z)}$, we break the rest of the proof into two cases.

Case 1. Suppose h(z) is a constant. Then by substituting f = gh into (2.14), we obtain

$$g(qz+c)[a_ng^n(h^{n+1}-1) + a_{n-1}g^{n-1}(h^n-1) + \dots + a_0(h-1)] \equiv 0 \quad (2.15)$$

where $a_n \neq 0$, $a_{n-1}, ..., a_0$ are complex constants. By the fact that g is a transcendental entire functions, we have $g(qz+c) \neq 0$. Hence, we obtain

$$[a_n g^n (h^{n+1} - 1) + a_{n-1} g^{n-1} (h^n - 1) + \dots + a_0 (h-1)] \equiv 0.$$
(2.16)

Equation (2.16) implies that $h^{n+1} = 1$ and $h^{i+1} = 1$ when $a_i \neq 0$ for i = 0, 1, ..., n - 1. Therefore $h^d = 1$, where $d = GCD(\lambda_0, \lambda_1, ..., \lambda_n)$.

Case 2. Suppose that *h* is not a constant, then we know by (2.14) that *f* and *g* satisfy the algebraic equation R(f,g) = 0, where $R(w_1, w_2) = p(w_1)w_1(qz+c) - p(w_2)w_2(qz+c)$.

Lemma 2.11. Let f and g be transcendental entire function of finite order. If $n \ge k + 4$, and $[P(f)f(qz+c)]^{(k)} = [P(g)g(qz+c)]^{(k)}$ then the condition of Lemma 2.10 holds.

Proof. Substituting $\overline{N}(r, f) = \overline{N}(r, g) = 0$ and proceeding as in the proof of Lemma 2.10, we get Lemma 2.11.

3. Proof of the Theorem

Proof of Theorem 1.1. Let $F = [P(f)f(qz+c)]^{(k)}$ and $G = [P(g)g(qz+c)]^{(k)}$. Thus F and G share the value 1 CM. From (2.7) and f is a transcendental meromorphic function, then

$$T(r,F) \le T(r,P(f)f(qz+c)) + k\overline{N}(r,f) + S(r,P(f)f(qz+c))$$
(3.1)

combining (3.1) with Lemma 2.2, we have S(r, F) = S(r, f). We also have S(r, G) = S(r, g), from the same reason as above, from (2.8) we obtain

$$N_{2}(r.\frac{1}{F}) = N_{2}\left(r, \frac{1}{[P(f)f(qz+c)]^{(k)}}\right)$$

$$\leq T(r,F) - T(r,P(f)f(qz+c)) + N_{k+2}\left(r, \frac{1}{P(f)f(qz+c)}\right) + S(r,f).$$
(3.2)

Thus, from Lemma 2.2 and (3.2) we get

$$(n+1)T(r,f) = T(r,P(f)f(qz+c)) + S(r,f)$$

$$\leq T(r,F) - N_2(r,\frac{1}{F}) + N_{k+2}\left(r,\frac{1}{P(f)f(qz+c)}\right) + S(r,f)$$
(3.3)

From (2.9), we obtain

$$N_{2}(r.\frac{1}{F}) \leq N_{k+2}\left(r,\frac{1}{P(f)f(qz+c)}\right) + S(r,f)$$

$$\leq (k+2)N(r,\frac{1}{f}) + N\left(r,\frac{1}{f(qz+c)}\right) + k\overline{N}(r,f) + S(r,f) \qquad (3.4)$$

$$\leq (2k+3)T(r,f) + S(r,f).$$

H.P. Waghamore, Rajeshwari S.

Similarly as above, we have

$$(n+1)T(r,g) \le T(r,G) - N_2(r,\frac{1}{G}) + N_{k+2}\left(r,\frac{1}{P(g)g(qz+c)}\right) + S(r,g) \quad (3.5)$$

$$N_2(r.\frac{1}{G}) \le (2k+3)T(r,g) + S(r,g).$$
(3.6)

If the (i) of Lemma 2.7 is satisfied implies that

$$max\{T(r,F)T(r,G)\} \le N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + N_2(r,F) + N_2(r,G) + S(r,F) + S(r,G).$$

Thus, combining above with (3.3)-(3.6) we obtain

$$\begin{aligned} (n+1)\{T(r,f)+T(r,g)\} &\leq 2[N(r,f)+N(r,g)]+2N_{k+2}\left(r,\frac{1}{P(f)f(qz+c)}\right) \\ &+ 2N_{k+2}\left(r,\frac{1}{P(g)g(qz+c)}\right)+S(r,f)+S(r,g) \\ &\leq 2(2k+4)\{T(r,f)+T(r,g)\}+S(r,f)+S(r,g). \end{aligned}$$

Which is in contradiction with $n \ge 4k + 8$. Hence F = G or FG = 1. From Lemma 2.10, we get f = tg for $t^m = t^{n+1} = 1$ and f and g satisfy the algebraic equation R(f,g) = 0, where $R(w_1, w_2) = P(w_1)w_1(qz+c) - p(w_2)w_2(qz+c)$.

Proof of Theorem 1.2. Let

$$F = [P(f)f(qz+c)]^{(k)}, \quad G = [P(g)g(qz+c)]^{(k)}.$$

Let H be defined as in Lemma 2.8. Assume that $H \neq 0$, from (2.6) we get

$$T(r,F) + T(r,G) \leq 2 \left[N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + N_2(r,F) + N_2(r,G) \right] + 3 \left[\overline{N}(r,F) + \overline{N}(r,G) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{G}\right) \right]$$
(3.7)
+ $S(r,F) + S(r,G).$

Combining above with (3.3)-(3.6) and (2.9), we obtain

$$\begin{split} (n+1)[T(r,f)+T(r,g)] &\leq T(r,F)+T(r,G)-N_2(r,\frac{1}{F})-N_2(r,\frac{1}{G}) \\ &+ N_{k+2}\left(r,\frac{1}{P(f)f(qz+c)}\right)+N_{k+2}\left(r,\frac{1}{P(g)g(qz+c)}\right) \\ &+ S(r,f)+S(r,g) \\ &\leq 2\left(N_2(r,F)+N_2(r,G)\right)+2N_{k+2}\left(r,\frac{1}{P(f)f(qz+c)}\right) \\ &+ 2N_{k+2}\left(r,\frac{1}{P(g)g(qz+c)}\right)+3\left[\overline{N}(r,\frac{1}{F})+\overline{N}(r,\frac{1}{G})\right] \\ &+ S(r,f)+S(r,g) \\ &\leq 2(2k+4)\{T(r,f)+T(r,g)\}+3(2k+2)\{T(r,f)+T(r,g)\} \\ &+ S(r,f)+S(r,g) \\ &\leq (10k+14)\{T(r,f)+T(r,g)\} \end{split}$$

which is a contradiction with $n \ge 10k + 14$. Thus we get $H \equiv 0$. The following proof is trivial, we give the complete proof. By integration for H twice, we obtain

$$F = \frac{(b+1)G + (a-b-1)}{bG + (a-b)}, \quad G = \frac{(a-b-1) - (a-b)F}{Fb - (b+1)}$$
(3.8)

which implies that T(r, F) = T(r, G) + O(1). Since

$$T(r,F) \leq T(r,P(f)f(qz+c)) + S(r,f)$$

$$\leq (n+1)T(r,f) + S(r,f),$$

then S(r,F) = S(r,f). So S(r,G) = S(r,g) is. We distinguish into three cases as follows.

Case 1. $b \neq 0, -1$. If $a - b - 1 \neq 0$, then by (3.8), we get

$$\overline{N}\left(r,\frac{1}{F}\right) = \overline{N}\left(r,\frac{1}{F-\frac{a-b-1}{b+1}}\right)$$
(3.9)

By the Nevanlinna second main theorem, (2.8) and (2.9), we have

$$(n+1)T(r,g) \leq T(r,G) + N_{k+2}\left(r,\frac{1}{P(g)g(qz+c)}\right) - N\left(r,\frac{1}{G}\right) + S(r,g)$$

$$\leq (k+1)T(r,g) + (2k+2)T(r,f) + S(r,f) + S(r,g)$$
(3.10)

H.P. Waghamore, Rajeshwari S.

Similarly, we get

$$(n+1)T(r,f) \le (k+1)T(r,f) + (2k+2)T(r,g) + S(r,f) + S(r,g).$$
(3.11)

Thus from (3.10) and (3.11), then

$$(n+1)\{T(r,f) + T(r,g)\} \le (3k+3)\{T(r,f) + T(r,g)\} + S(r,f) + S(r,g).$$

Which is in contradiction with $n \ge 10k + 14$. Thus a - b - 1 = 0, then

$$F = \frac{(b+1)G}{bG+1} \tag{3.12}$$

using the same method as above, we get

$$\begin{aligned} (n+1)T(r,g) &\leq T(r,G) + N_k \left(r, \frac{1}{P(g)g(qz+c)}\right) \\ &- N(r, \frac{1}{G}) + S(r,g) \\ &\leq N_k \left(r, \frac{1}{P(g)g(qz+c)}\right) + \overline{N}\left(r, \frac{1}{G+\frac{1}{b}}\right) + S(r,g) \\ &\leq (k+1)T(r,g) + S(r,g). \end{aligned}$$

Which is a contradiction.

Case 2. $b = 0, a \neq 1$. From (3.8), we have

$$F = \frac{G+a-1}{a}.$$

Similarly, we also can get a contradiction. Thus a = 1 follows, it implies that F = G.

Case 3. $b = -1, a \neq -1$. From (3.8), we obtain

$$F = \frac{a}{a+1-G}$$

Similarly, we can get a contradiction, a = -1 follows. Thus, we get $F \cdot G = 1$.

From Lemma 2.10, we get f = tg for $t^m = t^{n+1} = 1$, and f and g satisfy the algebraic expression R(f,g) = 0, where

$$R(w_1, w_2) = P(w_1)w_1(qz+c) - P(w_2)w_2(qz+c)$$

Thus, we have completed the proofs.

980

References

- [1] Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105–129.
- [2] R. Halburd, R. Korhonen and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267–4298.
- [3] H. P. Waghamore and A. Tanuja, Uniqueness of difference polynomials of meromorphic functions, Bull. Calcutta Math. Soc. 105 (2013), no. 3, 227–236.
- W. K. Hayman, *Meromorphic functions*, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- [5] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15, de Gruyter, Berlin, 1993.
- [6] Liu Kai; Liu Xinling and Cao Tingbin (2012): Some results on zeros distributions and uniqueness of derivatives of difference polynomials, Ann. Polon. Math., 109, 137.
- [7] X. Luo and W.-C. Lin, Value sharing results for shifts of meromorphic functions, J. Math. Anal. Appl. 377 (2011), no. 2, 441–449.
- [8] A. Z. Mohon'ko, The Nevanlinna characteristics of certain meromorphic functions, Teor. Funkciĭ Funkcional. Anal. i Priložen. No. 14 (1971), 83–87.
- [9] J. Xu and H. Yi, Uniqueness of entire functions and differential polynomials, Bull. Korean Math. Soc. 44 (2007), no. 4, 623–629.
- [10] C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Acad. Publ., Dordrecht, 2003.
- [11] C.-C. Yang and X. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395–406.
- [12] J. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. **369** (2010), no. 2, 537–544.