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TOWARD BAYESIAN INFERENCE OF THE SPATIAL
DISTRIBUTION OF PROTEINS FROM THREE-CUBE
FÖRSTER RESONANCE ENERGY TRANSFER DATA1

BY JAN-OTTO HOOGHOUDT∗, MARGARIDA BARROSO† AND

RASMUS WAAGEPETERSEN∗

Aalborg University∗ and Albany Medical College†

Förster resonance energy transfer (FRET) is a quantum-physical phe-
nomenon where energy may be transferred from one molecule to a neigh-
bor molecule if the molecules are close enough. Using fluorophore molecule
marking of proteins in a cell, it is possible to measure in microscopic images
to what extent FRET takes place between the fluorophores. This provides
indirect information of the spatial distribution of the proteins. Questions of
particular interest are whether (and if so to which extent) proteins of possibly
different types interact or whether they appear independently of each other.
In this paper we propose a new likelihood-based approach to statistical infer-
ence for FRET microscopic data. The likelihood function is obtained from a
detailed modeling of the FRET data-generating mechanism conditional on a
protein configuration. We next follow a Bayesian approach and introduce a
spatial point process prior model for the protein configurations depending on
hyperparameters quantifying the intensity of the point process. Posterior dis-
tributions are evaluated using Markov chain Monte Carlo. We propose to infer
microscope-related parameters in an initial step from reference data without
interaction between the proteins. The new methodology is applied to simu-
lated and real datasets.

1. Introduction. In the biology community there is a vast interest in studying
the biomolecular structure and dynamics of macromolecular assemblies in order to
understand their functions [Alber et al. (2017), Polo and Jackson (2011), Krissinel
and Henrick (2007), Puglisi (2005)]. Because the interactions between proteins and
the typical size of proteins (1–100 nm) is at the nanoscale level [Erickson (2009)],
no information can be obtained from conventional optical microscopic techniques,
which at best can resolve distances down to ∼200 nm [van Putten et al. (2011)].
Instead, Förster resonance energy transfer—also referred to as fluorescence res-
onance energy transfer—microscopy is widely used to obtain such information.
Förster resonance energy transfer (FRET) provides information about distances of
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the order of 2 to 10 nm within or between molecular structures and is the preferred
tool for investigating spatial relationships in biochemistry [Wu and Brand (1994),
Gryczynski, Gryczynski and Lakowicz (2005), Clegg (1995, 2006)].

FRET is the nonradiative transfer of the surplus of energy from an excited
donor fluorophore (fluorescent molecule) to a sufficiently nearby acceptor fluo-
rophore by dipole–dipole interaction [Heitler (1954), Rohatgi-Mukherjee (1978)].
The widespread use of FRET in biological research is based on the possibility to
label, in vivo or in vitro, proteins with fluorophores that are spectrally matched
[Miyawaki, Sawano and Kogure (2003), Bunt and Wouters (2004)]. The energy
transfer due to the FRET mechanism is a stochastic process, and the probability
that energy transfer occurs between a donor and an acceptor fluorophore is heav-
ily dependent on the distance between them. The probability that energy transfer
occurs is commonly referred to as the efficiency of the energy transfer. The use-
fulness of FRET lies in the fact that various techniques exist by which the fraction
of donor excitations that result in energy transfer—that is, the efficiency—can be
quantified.

Two main methods for determining the FRET efficiency are as follows: fluores-
cence lifetime measurements [Wallrabe and Periasamy (2005), Lakowicz (2009),
Chen et al. (2013)] and spectral methods [Sun et al. (2011), Zimmermann, Riet-
dorf and Pepperkok (2003)]. We focus in this paper on the most commonly ap-
plied spectral method called three-cube FRET. Due to the FRET mechanism, a
certain fraction of the de-excitations of a donor result in energy transfer to an ac-
ceptor instead of donor photon emission, thereby the rate by which photons are
emitted from the donors decreases—a phenomenon referred to as quenching of
the donor—while instead photons are emitted by the acceptors. Spectral meth-
ods now rely on determining the decrease in the donor emission due to FRET. For
three-cube FRET, intensity measurements are carried out using three different filter
sets—often referred to as cubes—each comprising an excitation filter, a dichroic
mirror, and an emission filter. This results in three digital intensity images [Zal and
Gascoigne (2004), Wallrabe et al. (2006), Periasamy et al. (2008), Periasamy and
Day (2011)]. Two images are obtained by exposing the sample to light in the donor
absorption spectrum and recording emitted intensities both in the donor and the ac-
ceptor excitation spectrum. The third image is obtained by exposing the sample to
light in the acceptor spectrum and also recording light in the acceptor spectrum.

Given FRET image data, the task is to obtain information concerning the spatial
configuration of the donors and acceptors in the sample. For example, Wallrabe
et al. (2003) study the clustering of ligand–receptor complexes in endocytic mem-
branes using confocal FRET microscopy. They differentiate between a clustered
or a random distribution of proteins by considering the dependence of the FRET
efficiency on donor and acceptor concentrations. In particular, independence of
the efficiency on acceptor concentration or a decrease in the efficiency for a higher
unquenched donor signal for a fixed acceptor concentration are both indicators
for clustering [Kenworthy and Edidin (1998), Kenworthy (2001)]. Goswami et al.
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(2008) instead compare observed distributions of fluorescence intensity and fluo-
rescence anisotropy with values expected from a Poisson distribution of nanoclus-
ters.

Other, computational, approaches mainly rely on the construction of a config-
uration of donors and acceptors and computing the FRET efficiency related to
this configuration by numerical computation of the energy transfer probabilities
for each of the donors [Wolber and Hudson (1979), Corry, Jayatilaka and Rigby
(2005)]. This simple approach has been extended by various authors by simulat-
ing FRET events explicitly using Monte Carlo techniques. The extended approach
gives the possibility to include additional physical complexity into the model to
account for possible photobleaching of donors and acceptors during a FRET mea-
surement or the effect that temporarily unavailable acceptors can have on the FRET
efficiency [Frederix et al. (2002), Berney and Danuser (2003), Corry, Jayatilaka
and Rigby (2005)]. Corry, Jayatilaka and Rigby (2005) further carefully studied
the FRET efficiency in relation to various fixed donor and acceptor configurations
(e.g., pentamers) and give a concise overview of the development of the numerical
Monte Carlo approaches.

Loura and Prieto (2011), Loura, Fernandes and Prieto (2010) and Lakowicz
(2009) give excellent reviews of methods to extract spatial information in mem-
brane biophysics from FRET data. Methods determining the complex structures of
a protein or the spatial distribution of protein complexes in living cells are given
in e.g. Raicu et al. (2009) and Bonomi et al. (2014).

The previous mentioned contributions are based on a detailed understanding of
the FRET data generating mechanism. This knowledge, however, so far has not
been applied to obtain a complete statistical model of FRET data allowing for a
principled statistical analysis. In this paper we present a first attempt to conduct
a full likelihood-based Bayesian analysis of three-cube FRET image data. The
potential advantages of such an approach are that the posterior distribution gives
detailed quantitative information regarding model parameters and donor–acceptor
interactions as well as measures of uncertainty regarding this information. To ob-
tain the likelihood function, we derive, based on physical considerations, an accu-
rate statistical model for the distribution of the image intensities, conditional on a
point pattern consisting of donors and acceptors. We further impose a spatial point
process prior [Møller and Waagepetersen (2004)] for the unknown configuration of
donors and acceptors. Since our resulting posterior distribution is of a complicated
form, we use Markov chain Monte Carlo (MCMC) to sample from the posterior
distribution [Gamerman and Lopes (2006), Gilks, Richardson and Spiegelhalter
(1996)]. It is difficult to infer simultaneously microscope-related parameters and
possible interactions between donors and acceptors. We therefore propose to infer
microscope-related parameters in an initial step based on reference data without
interactions between donors and acceptors. We asses the Bayesian inference pro-
cedure by a simulation study and by applying it to an empirical in-vitro reference
dataset.
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2. Observation model for three-cube FRET image data. A three-cube
FRET dataset consists of three images each corresponding to a rectangular region
W which is a union of rectangular pixels, W = ⋃

i∈G Ci , indexed by a grid G. Each
pixel Ci records a light intensity due to emission from donors or acceptors. The
images are created by (1) excitation of donors and measurement of donor emission,
(2) excitation of acceptors and measurement of acceptor emission or (3) excitation
of donors and measurement of acceptor emission (due to FRET). We represent
the images by vectors YDD = (Y i

DD)i∈G , YAA = (Y i
AA)i∈G and YDA = (Y i

DA)i∈G .
The first letter in the subscripts denotes whether donors (D) or acceptors (A) were
excited, and the second letter denotes in which channel emission was measured.
We assume that a pixel value Y i

k , k = DD,AA,DA, i ∈ G, is subject to additive
normal noise; that is,

(2.1) Y i
k = I i

k + εi,

where I i
k denotes light intensity due to emission and the noise terms εi are inde-

pendent and N(0, σ 2) distributed.
We now specify models for the I i

k given configurations of donor and acceptor
proteins in W whose positions form point patterns, respectively, XD and XA.

2.1. Some fluorescence resonance energy transfer theory. An excited donor
d ∈ XD surrounded by a configuration XA of acceptors can de-excite in three ways:
either by emission with a rate kDE , by nonradiative decay (e.g., internal heat con-
version) with a rate kDN , or by FRET to an acceptor a ∈ XA with a rate kF,da . We
will refer to the sum of the first two mechanisms as the intrinsic de-excitation rate
kD , that is, kD = kDE + kDN . According to Förster (1948), kF,da is given by

kF,da = kD

(
R0

‖d − a‖
)6

,

where R0 is the so-called Förster distance, defined as the distance between the
donor and acceptor at which the de-excitation rate due to FRET equals the intrinsic
de-excitation rate; that is, kF,da = kD if ‖d − a‖ = R0. The probability that d de-
excites due to FRET to a specific donor a in XA thus becomes

Pda = kF,da

kD + ∑
ã∈XA

kF,dã

= (R0/‖d − a‖)6

1 + ∑
ã∈XA

(R0/‖d − ã‖)6 .

Figure 1 shows an example of the computation of Pda for a specific configuration
of acceptors a around a donor d . The total probability that d de-excitates due to
FRET is PdA = ∑

a∈XA
Pda . The probability that d de-excites by emission or by

nonradiative decay is PdD = 1 − PdA.
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FIG. 1. (a) Donor fluorophore surrounded by three acceptors at distances R0, 1
2R0 and 2R0.

(b) The table shows the de-excitation “path widths” (R0/‖d − a‖)6 for energy transfer from the
donor to each of the acceptors and the corresponding energy transfer probabilities Pda .

2.2. Model for intensities given protein configurations. Our model for the in-
tensities given the configurations XD and XA is inspired by the model for simula-
tion of FRET data in Corry, Jayatilaka and Rigby (2005). However, in contrast to
Corry, Jayatilaka and Rigby (2005), we introduce the simplifying assumption that
a donor or acceptor is always available for excitation [see also Wolber and Hudson
(1979), Berney and Danuser (2003)]. This is a reasonable assumption if the inten-
sity of the laser is moderate so that the inter arrival times of photons at a donor
are large compared with the de-excitation times. We can then regard the times of
excitations of donors and acceptors as Poisson processes and use standard results
for Poisson processes to obtain closed-form distributional results for the I i

k .
In the Appendix we show that I i

DD = GDNi
DD and I i

DA = GANi
DA, where

Ni
DD and Ni

DA are the number of photons detected by the detector in, respec-
tively, the DD-channel and the DA-channel, and Ni

DD and Ni
DA are both Poisson

distributed. Further, GD and GA are unknown positive parameters related to the
sensitivity of the detector in, respectively, the donor and acceptor emission spec-
trum. The means of I i

DD and I i
DA are

μi
DD = MD

∑
d∈XD∩Ci

(1 − PdA)

and

μi
DA = GMD

∑
a∈XA∩Ci

∑
d∈XD

Pda,
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where MD and G are unknown positive parameters. We assume that the means
μi

DD/GD and μi
DA/GA of, respectively, Ni

DD and Ni
DA are sufficiently large so

that the Poisson distributions of Ni
DD and Ni

DA can be well approximated by nor-
mal distributions. Then

(2.2) I i
DD ∼ N

(
μi

DD,GDμi
DD

)
and I i

DA ∼ N
(
μi

DA,GAμi
DA

)
.

By a similar line of arguments, we also obtain

(2.3) I i
AA ∼ N

(
μi

AA,GAμi
AA

)
,

where

μi
AA = (MD/K)n(XA ∩ Ci),

K is an unknown positive parameter and n(XA ∩Ci) denotes the number of accep-
tors within pixel Ci . In cases of intensity data with a large proportion of zeros, we
instead use truncated normal distributions with point masses at zero for I i

DD , I i
DA

and I i
AA; see Section 2 of Supplement B [Hooghoudt and Waagepetersen (2017a)].

Equations (2.1), (2.2) and (2.3) specify the distribution of the FRET data con-
ditional on the protein configurations XD and XA. The distribution is parame-
terized by ψ = (MD,G,K,GD,GA,σ 2). We refer to the components of ψ as
microscope-related parameters. The parameters G and K are known as the so-
called G- and K-factors [Zal, Zal and Gascoigne (2002), Chen, Puhl and Ikeda
(2007)]. The parameter MD can be interpreted as the mean donor emission detec-
tor read-out intensity due to one donor excitation.

3. Bayesian inference of spatial characteristics of protein configurations.
We adopt a Bayesian approach to infer the microscope-related parameters ψ and
spatial characteristics of the configurations XD and XA of proteins. A spatial point
process prior (specified in Section 3.1) is used for X = (XD,XA), where this prior
again depends on a parameter vector θ . We also assign a prior to θ , thus includ-
ing also this parameter in the posterior inference. As detailed later in Sections 4.4
and 5, we recommend to infer the microscope-related parameters in an initial step
using reference data without interactions between donors and acceptors. In a sec-
ond step, investigating interactions in a dataset of biological scientific interest, ψ

can then be fixed at estimates obtained from the first step. Letting y denote an
observation of Y = (YDD,YDA,YAA) and (xD,xA) a realization of X, the joint
posterior distribution is

(3.1) p(xD,xA, θ |y,ψ) ∝ p(y|xD,xA,ψ)p(xD,xA|θ)p(θ).

Here p(z) and p(z|u) are generic notation for a probability density of a random
quantity Z and the conditional density of Z given another random quantity U = u.
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3.1. Priors. We model a priori XD and XA as independent Poisson processes
on W with intensities θD and θA; that is, the prior density of (XA,XD) with respect
to independent unit rate Poisson processes is

p(xD,xA|θ) = θ
n(xA)
A θ

n(xD)
D exp

[−|W |(θA + θD − 2)
]
,(3.2)

where |W | denotes the area of W and n(x) denotes the number of points in a point
configuration x [see, for instance, equation (6.2) in Møller and Waagepetersen
(2004)]. We further impose independent conjugate Gamma hyperpriors for θD and
θA. The Poisson prior can be viewed as a null model for the case of no interaction
between donors and acceptors or within donors, respectively, acceptors. Compared
with other more complex point process models like Markov point processes (like
the Strauss hard core model considered in Section 4), the Poisson prior is advanta-
geous in having a known density function. A potential problem is that the Poisson
prior is in some sense a strong prior which assigns little probability to point con-
figurations with strong clustering or regularity. This can lead to biased results as
demonstrated in Section 4. Densities for more flexible Markov point process prior
models, on the other hand, contain intractable normalizing constants that depend
on the unknown parameters in the point process model. This then precludes the
use of standard Markov chain Monte Carlo algorithms (Section 3.2) for evaluation
of the posterior distribution.

The Gamma distributions for θD and θA are defined through shape parameters
α and rate parameters β . As the mean of the Gamma distribution is α/β and its
variance α/β2, the signal-to-noise ratio related to the distribution is defined by the
square root of the shape parameter, that is,

S

N
= α/β√

α/β2
= √

α.

In a typical FRET experiment there is quite some uncertainty concerning the true
values of the numbers of proteins within the sample, and so we have defined not
too confined priors for the intensities θD and θA. We have chosen to set the signal-
to-noise ratio always equal to 2, resulting in the value of 4 for the shape parameter.
In our applications we further specify the prior mean m of each of the parameters
so that the rate parameter β follows from β = α/m = 4/m. We also use Gamma
priors for the components of ψ ; see the discussion of prior elicitation for ψ in
Section 6.

3.2. Markov chain Monte Carlo. To evaluate the posterior distribution, we use
a Markov chain Monte Carlo algorithm [Gamerman and Lopes (2006)] where the
components (XD,XA), θD , θA and (if applicable) the components of ψ are updated
in turn. Gibbs updates are used for the full conditional Gamma distributions of θD

and θA, while random walk Metropolis updates on the log scale are used for the
components of ψ . For the point configurations (XA,XD) we first randomly choose
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to either update XA or XD (with probability 1/2 for each choice). We then use birth-
death updates as outlined in Sections 7.1.2–7.1.3 in Møller and Waagepetersen
(2004). If, for example, XA is chosen to be updated, then with probability 1/2 it is
proposed to remove a point chosen from the uniform distribution on XA. Otherwise
it is proposed to insert a new acceptor point at a location chosen from the uniform
distribution on W . In case it is proposed to remove a point u ∈ XA, the Metropolis–
Hastings ratio becomes

p(xD,xA\{u}, θ |y,ψ)n(xA)

p(xD,xA, θ |y,ψ)|W | = p(y|xD,xA\{u},ψ)n(xA)

p(y|xD,xA,ψ)θA|W | .

If it is proposed to insert a new acceptor point v ∈ W , then the Metropolis–Hastings
ratio is

p(y|xD,xA ∪ {v},ψ)θA|W |
p(y|xD,xA,ψ)(n(xA) + 1)

.

The expressions for updating XD are similar. The described birth-death updates
are repeated a large fixed number of times between the updates of the parameters
θD , θA and ψ .

To keep the MCMC updates for donor and acceptor points numerically feasi-
ble, only those acceptors that reside within 4R0 of a donor are taken into account
as a possible path for energy transfer for the donor. This important simplification
will not lead to any significant difference in posterior results, as the transfer prob-
ability Pda for a donor d and an acceptor a is very small when ‖d − a‖ > 4R0,
thereby adding or removing a point in pixel i can only affect the values of likeli-
hood factors p(yl

DD,yl
DA, yl

AA|xD,xA,ψ) for pixels l in a neighborhood of i [note
that the likelihood factors as

∏
i∈G p(yi

DD,yi
DA, yi

AA|xD,xA,ψ)]. Exploiting this
simplification, we have implemented an ingenious algorithm that recomputes the
transfer probabilities Pda only for donors and acceptors which are influenced by
the adding/removing of a point. A detailed description of the MCMC sampler is
provided in Supplement B [Hooghoudt and Waagepetersen (2017a)].

3.3. Inferring spatial characteristics. In statistics for spatial point processes,
the K-function is a common tool for inferring interactions from a spatial point
pattern. We adapt this approach and use the cross K-function [e.g., Møller and
Waagepetersen (2004)] to measure interactions between donors and acceptors
given point configurations xA and xD . In general, for point processes X1 and X2
of intensities ρ1 and ρ2, ρ2K12(t) is the expected number of X2 points within dis-
tance t from a typical point of X1. In case of no interaction between X1 and X2,
K12(t) = πt2. Values of K12(t) greater (smaller) than πt2 signifies positive (nega-
tive) interaction between X1 and X2. It is common to consider the cross L-function
L12(t) = √

K12(t)/π which is equal to t in the case of no cross interaction, while
L12(t) > t [L12(t) < t] means positive (negative) cross interactions. We will refer
to L12(t) − t as the “centered” cross L-function. The centered cross L-function is
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equal to zero in the case of no cross interaction, while larger (smaller) than zero
for positive (negative) cross interactions.

Given configurations xD and xA of donors and acceptors, we estimate the cross
K-function by

K̂x(t) = ∑
u∈xA,v∈xD

1[‖u − v‖ ≤ t]
n(xA)n(xD)|W ∩ Wu−v||W |−2 ,

where Wu−v is W translated by u − v [e.g., Section 4.4.3 in Møller and

Waagepetersen (2004)]. The cross L-function is estimated by L̂x(t) =
√

K̂x(t)/π .
To infer cross spatial interactions between donors and acceptors given FRET data,

we consider the posterior distribution of L̂X(t) =
√

K̂X(t)/π or its centered ver-
sion. We also considered so-called cross G- and J -functions [e.g., Møller and
Waagepetersen (2004)], but in our simulation studies the cross L-function gave a
more clear impression of the nature of donor–acceptor interactions.

4. Simulation studies. Our primary target of inference is the cross L-
function, L̂X for the configuration X = (XA,XD) of donors and acceptors which
is unknown in practice. However, we also need to infer the microscope-related
parameters ψ . From a Bayesian perspective, if the right prior distribution is cho-
sen, the posterior distribution by definition provides the correct inference given
the data Y and prior information. However, in our case, the Poisson prior (3.2) is
partly chosen for convenience in order to yield tractable MCMC computations, and
is not necessarily the best possible representation of prior information. Thus, from
a pragmatic point of view, it makes sense to assess possible bias of our Bayesian
inference procedure.

In particular, we focus in Section 4.3.1 on the posterior mean L|Y of L̂X as a
predictor of L̂X. The posterior mean L|Y is further an estimate of LE = E[L̂X],
which is the expected value of L̂X over replicated data X. Note in this connection
that had we used the true distribution of X as the prior, then EL|Y and LE would
be exactly equal—that is, L|Y would be an unbiased predictor/estimate both of L̂X
and LE . In Section 4.3.3 we assess the performance of the full posterior distribu-
tion of L̂X given Y for inference regarding L̂X. In Section 4.3 we consider ψ to be
a fixed known parameter. Section 4.4 is concerned with inference regarding ψ .

4.1. Simulation of synthetic data. To generate synthetic data for the simula-
tion study, the point configuration X = (XA,XD) is generated on a 1000 nm by
1000 nm square region as a realization of a bivariate Strauss hard core process.
This point process has density (with respect to a bivariate process of independent
unit rate Poisson processes) of the form

(4.1) f (xA,xD) ∝ β
n(xD)
D β

n(xA)
A γ sR(xA,xD) HC(xA,xD,�A,�D,�DA),
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where sR(xA,xD) is the number of unordered pairs of points {u, v} with u ∈ xA,
v ∈ xD , and interpoint distance ‖u− v‖ less than R. Values of γ less than one lead
to repulsion between donors and acceptors, while values of γ greater than one lead
to attraction. The term HC(xA,xD,�A,�D,�DA) is one if the following hard core
condition is satisfied: all donors have an interpoint distance greater than �D , all
acceptors have an interpoint distance greater than �A, and all pairs of points where
one is a donor and the other an acceptor have an interpoint distance greater than
�DA. Otherwise the hard core term is zero, whereby it serves to model that donors
and acceptors have a physical extent that prevents them from getting arbitrarily
close to each other. Different settings of the Strauss hard core process parameters
are used to create different point pattern types described in Section 4.2 below.

Next, conditional on the configuration X and the various microscope-related
parameters ψ , the intensity data Y is generated from the model specified in
Section 2. Regarding the observation model, we fix the measurement variance
σ 2 at 25, let each of G,K,GD,GA equal to 1, and consider values 1,5,20
of MD in order to generate data of varying signal to noise ratios defined by
E[μi

DD/(GDμi
DD + σ 2)1/2] and E[μi

k/(GAμi
k + σ 2)1/2], k = DA,AA. For each

point pattern type we generate 100 independent synthetic point patterns Xsynth,i

and associated synthetic image data Y synth,i , i = 1, . . . ,100.

4.2. Point pattern types. The basic point pattern types considered are dimer,
clustered, Poisson hard core and repulsive. For all types, �D , �A and �DA are
at least 2 nm. The parameters βD and βA are further adjusted to have on average
1000 donors and 1000 acceptors.

In case of dimer, we specify large values of �D = �A, which essentially means
that only proteins of different types can appear close to each other. Thus the only
clusters possible are mini-clusters consisting of one donor and one acceptor, that
is, dimer clusters. For the clustered case, �D = �A are reduced, which enables
formation of a wider range of clusters containing several donors and acceptors.
In case of dimer and clustered, values of γDA = 2,8 correspond to respectively
moderate and strong interactions. For Poisson hard core, γDA = 1, while all hard
core distances are 2. In case of repulsive, varying values of �DA, r and γDA < 1
generate different strengths of repulsive interaction between donors and acceptors.
Table 1 gives an overview of the different parameter settings considered.

4.3. Inference regarding spatial characteristics. We estimate LE by the em-
pirical average of L-functions L̂Xsynth,i obtained from the Xsynth,i . From each syn-
thetic dataset Y synth,i we further obtain an MCMC estimate L̄|Y synth,i of the poste-
rior mean L|Y synth,i of L̂X given Y synth,i . The mean posterior L-function EL|Y is
estimated by the mean of the L̄|Y synth,i . The sampling variability of L|Y is further
represented by the variation of the L̄|Y synth,i . When considering inference for the
cross L-function in the following Sections 4.3.1–4.3.3, ψ is fixed at the value used
for generating the synthetic datasets.
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TABLE 1
Parameter settings used in the Strauss hard core model (4.1) to create the various point pattern

types. The values for the homo (�DD , �AA) and hetero (�DA) hard core distances and the hetero
interaction radius (R) presented in the table follow from the considerations stated in the text and by

the choice of the Förster distance R0 = 6

Type number �DD = �AA �DA R γDA Short name

1 18 2 6 2 Dim.12
2 18 2 6 8 Dim.18

3 12 2 6 2 Dim.22
4 12 2 6 8 Dim.28

5 6 2 6 2 Clu.12
6 6 2 6 8 Clu.18

7 2 2 6 2 Clu.22
8 2 2 6 8 Clu.28

9 2 2 0 1.0 Poi.HC

10 2 6 0 1.0 Rep.h1
11 2 12 0 1.0 Rep.h2

12 2 2 10 0.5 Rep.s1
13 2 2 10 0.1 Rep.s2

4.3.1. Bias of posterior mean. We assess the bias of L|Y by considering the
mean (over replicated data X, Y ) of L̂X and its prediction L|Y , thereby we also
assess how L|Y performs as an estimate of LE (the expected cross L-function
for X).

In Figures 2 and 3 the estimates of LE(t) − t and EL|Y (t) − t are shown for
each of the point pattern types in Table 1 for the three values of MD (1,5,20). In
Figure 2(a), for example, LE for dimer-type 1.2 shows that the underlying point
patterns are clustered for distances r < 16 (as LE > 0) and are slightly repul-
sive for distances 16 < r < 24. Further, for distances 24 < r < 40, there seems
to be some slight clustering again, while, for r > 40, the pattern displays com-
plete spatial randomness. The negative values that occur for r < 5 are due to
the minimum imposed hardcore distance of 2. The negative part for small r is
also visible in the plots (b)–(h), where LE otherwise indicates clustering among
donors and acceptors and in plot (i), where LE(t) − t is close to zero other-
wise.

The general impression from the plots is that L|Y is biased downward when
the true point patterns are of dimer or clustered types (a)–(h) and biased upward
in the cases of the repulsive types (i)–(m) (including the Poisson hard core case).
For MD = 1, where the signal-to-noise ratio is very low, the mean of L|Y is very
close to zero, and it does not seem possible to infer in this case cross interactions
between donors and acceptors. However, for MD = 5,20, there is always a pro-
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FIG. 2. In each plot the solid line is the centered LE -function. The other lines show the centered
EL|Y for varying MD : dashed line: MD = 1, dotted line: MD = 5, dashed-dotted line: MD = 20.
The plots are for the dimer and clustered point pattern types.

nounced peak (positive or negative) of the mean L|Y -function where the peak is of
the right sign and located in the right place of the peak of the LE-function. More-
over, the bias consistently decreases when MD and hence the signal-to-noise ratio
increases. Despite the bias, the results suggest that qualitatively correct statements
can be made regarding independence, clustering or repulsion between donors and
acceptors.

4.3.2. Variability of posterior mean L-function. In addition to bias, the extent
to which valid qualitative conclusions can be made from the posterior L|Y -function
of course also depend on its variability. Figure 4 shows for each basic point pattern
type and MD either 5 or 20, 98% envelopes for L|Y (t) based for each t on the min-
imal and maximal values of L|Y (t) over the 100 replications. These envelopes are
fairly narrow for distances up to 100 and show that, in the setting of the simulation
study, qualitative conclusions regarding the nature of interaction between donors
and acceptors will be consistently correct over replicates.
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FIG. 3. Continuation of Figure 2. Plots are for the Poisson hard core and repulsive types.

4.3.3. Inference based on full posterior distribution. The results in Sec-
tion 4.3.1 showed that the posterior mean L-function L|Y can exhibit substan-
tial bias as an estimate of LE and hence also as a predictor of L̂X. This can
invalidate the use of the full posterior distribution for inferring the uncertainty
regarding the estimation of LE or the prediction of L̂X. As an example Figure 5
shows L|Y synth,1(t) − t and the 98% central posterior interval for L̂X(t) − t given
Y = Ysynth,1 for the same point pattern types as in Figure 4 and MD = 5,20. Also,
the true L̂Xsynth,1(t) − t are shown in each plot.

For the lower signal-to-noise ratio with MD = 5, L̂Xsynth,1(t) falls outside
the 98% posterior interval for several point pattern types. Thus the poste-
rior intervals do not always give a useful quantification of the uncertainty re-
garding the knowledge of LX. However, for the higher signal-to-noise ratio
with MD = 20, the envelopes do include or almost include the L̂Xsynth,1 func-
tion.

4.4. Simulation studies for microscope parameters. So far the vector ψ of
microscope-related parameters has been assumed to be known, which is rarely
the case. We have investigated Bayesian inference for ψ in a simulation study for
which the full details are given in Supplement C [Hooghoudt and Waagepetersen
(2017b)]. We here just comment on results obtained for simulations with GD =
GA = K = G = 1, MD = 20 and σ 2 = 25. Figure 6 shows boxplots of the poste-
rior mean of each microscope parameter over 40 replicated datasets for each point
pattern type. The main features are as follows:
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FIG. 4. Distribution of the centered L̄|Y -function for the various point pattern types, summarized
by 98% envelopes based on L̄|Y synth,i , i = 1, . . . ,100, together with the mean value ÊL|Y (middle

solid line). The value of MD is 5 or 20. In each plot twenty of the L̄|Y synth,i ’s are shown with solid

gray curves, the dashed line is the centered L̂E -function.

1. for the Poisson hard core patterns the posterior means of all the parameters
coincide with or are very close to their respective synthetic values [see plots (a)–(f)
for type number 9].

2. for all the clustered patterns (type number 1–8) inference for MD,G and K

is biased. The posterior means M̄D are significantly below their synthetic value,
while Ḡ and K̄ are above their target values. Further, the bias increases for the
patterns generated with γDA = 8 (type number 2, 4, 6, 8) compared to the corre-
sponding patterns generated with γDA = 2 (type number 1, 3, 5, 7).

3. for repulsive patterns (type number 11–13) M̄D and K̄ are on or close to
target, while Ḡ is negatively biased.

4. the posterior means of σ , GA and GD are on target for almost all point
pattern types [plots (d)–(f)].

As explained in detail in Supplement C, the biased results are due to the mismatch
between the Poisson point process prior and the actual point processes used for the
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FIG. 5. Posterior distribution of L̂X given the first synthetic dataset Y synth,1 for each point pat-
tern type. Dashed: posterior mean L|Y synth,1 , dashed-dotted: 98% envelopes and solid gray: twenty

posterior realizations of L̂X. Solid black shows the true L̂Xsynth,1 .

simulations. The microscope-related parameters thus a posteriori take on values
to “soothe” this mismatch, resulting in biased results. Further, in this setting with
joint inference of ψ and spatial characteristics, the posterior mean L-functions are
strongly biased as well, being close to zero for all distances for all point pattern
types (not shown).

5. Two-step approach to likelihood-based inference. In the previous Sec-
tion 4.4 we observed that applying the Bayesian inference methodology using
the Poisson process prior on Poisson hard core patterns gave reliable estimates
for all microscope parameters. This suggests an approach where microscope-
related parameters are inferred from reference datasets constructed with absence of
donor–acceptor interactions. Therefore, we propose a two-step approach where the
microscope-related parameters are inferred in a first step using reference data. In
the second step the values of the microscope parameters are fixed at the posterior
estimates from the first step in order to make inference on the spatial configura-
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FIG. 6. Boxplots of the posterior mean of all the six microscope parameters for the forty replicated
runs for each of the point pattern types (referred to by their type number, see Table 1) for Ms

D = 20.
The horizontal lines are drawn at the corresponding synthetic values.

tion of donors and acceptors of a three-cube FRET sample of biological scientific
interest. To illustrate the approach, we have carried out the first step on empirical
reference three-cube FRET data, as discussed in the following section.

6. Data example. In this section we apply our Bayesian methodology to em-
pirical in vitro three-cube FRET data obtained from donor or acceptor fluorophore
labeled transferrin proteins [Welch (1992)] attached to polylysine slides [Shima
and Sakai (1977)]. Transferrin bound to polylysine is known to be approximately
randomly (i.e., Poisson hardcore) distributed [Wallrabe et al. (2007)]. The objec-
tive is to infer the microscope parameters related to the experimental setup.
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We initially conducted an exploratory analysis [described in Supplement A,
Hooghoudt, Barroso and Waagepetersen (2017)] where we quantified the amount
of photobleaching and compared empirical mean–variance relationships of the im-
age data with the ones implied by our model. From these mean–variance rela-
tionships, as well as other non-Bayesian methods discussed in Supplement A, we
obtained rough estimates for the microscope parameters that were used to set the
prior means in the Bayesian analysis. We thus use a pragmatic Bayesian approach
where the rough non-Bayesian estimates entering in the priors are refined by intro-
ducing information obtained through the likelihood derived from our observation
model.

Due to certain computational issues discussed in Section 6.2 and Section 6.3.1,
we are at this stage only able to use a small subset of the full data in the Bayesian
inference. Improving the computational methodology is an important topic of fur-
ther research.

6.1. The image dataset. Three cube FRET measurements have been carried
out on three samples, to which we refer as samples 1, 2 and 3. Sample 1 is prepared
to consist of twice as many donors (D) as acceptors (A), that is, D : A ≈ 1 : 1

2 ,
while samples 2 and 3 are prepared such that, respectively, D : A ≈ 1 : 1 and D :
A ≈ 1

2 : 1. Three-cube FRET data is obtained on each sample on a square grid
containing 512 × 512 square pixels. The pixel side length is 0.279 μm and the
focal volume depth is approximately 5 pixels (1.4 μm) [Wallrabe et al. (2007)].
The image data are shown in Figure 7.

The emission in the DD-channel (YDD) and AA-channel (YAA) are corrected
for background emission, while the DA-channel data (YDA) is also corrected for
spectral bleedthrough by the methods described in Elangovan et al. (2003).

We noticed that around the edges of the 512 × 512 images, often very low or
zero intensity regions occurred due to improper sample preparation. Therefore,
the exploratory statistical analysis has been based solely on the central rectangu-
lar section of the images consisting of 100 × 100 pixels (see also Supplement A,
Section 1).

In order to obtain sufficient photon count statistics—that is, sufficiently high
signal-to-noise ratio for each pixel—each sample has been remeasured ten times.
We then create an aggregated dataset by summing pixelwise over the ten measured
intensities for each channel. We note that by remeasuring the sample instead of
increasing the measurement time, we obtain information concerning the amount
of photobleaching occurring for remeasurements (Supplement A, Section 3) and
the pixel intensity variance in the three channels. The latter information gives the
possibility to deduce the empirical mean–variance relationship of the image data
and to obtain estimates for GD and GA (Supplement A, Section 6).

6.2. Inference procedure setup. The prior distributions for the microscope and
Poisson point process parameters were specified as Gamma distributions. For each
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FIG. 7. Channel intensity images of the aggregated channel dataset of sample 2. (a) DD-channel,
(b) AA-channel, (c) DA-channel. Plots (a)–(c) consist each of 512 × 512 pixels. Plots (d)–(f) show
enlargements of the square subregions of the plots (a)–(c), each consisting of 100×100 pixels. Above
each plot is stated the mean (me), maximum (ma) and minimum (mi) pixel intensity value in the image.
In each image the gray levels are constructed by using ten equally spaced intervals between zero and
the maximum value of the image. Black/white refers to the lowest/highest intensity interval.

parameter the shape parameter is set to 4 based on the reasoning in Section 3.1, and
we use a pragmatic Bayesian approach where the prior means of five of the micro-
scope parameters are set by aid of the rough estimates MD ≈ 2.6,G ≈ 0.7,K ≈
0.7, GD ≈ 7.4 and GA ≈ 5.5 obtained from the preliminary statistical analysis in
Supplement A, Sections 3–6 and 8. The prior mean of the measurement noise σ 2

we have set, rather ad hoc, to 50.
By the statistical analysis in Section 8 of Supplement A, it was further found that

the point process intensities θA and θD of the samples can be roughly related to
the donor and acceptor solution concentrations applied for the sample preparation,
thereby we found that, for sample 1, θD ≈ 2e3 μm−2 and θA ≈ 1e3 μm−2; while,
for sample 2, θD ≈ 2e3 μm−2 and θA ≈ 2e3 μm−2; and, for sample 3, θD ≈
1e3 μm−2 and θA ≈ 2e3 μm−2. We use these values as prior means for θA and θD

for each of the samples. The applied prior means as used in the Bayesian analyses
are summarized in Table 2.

In the MCMC computations we used random walk Metropolis–Hastings up-
dates for the log microscope-related parameters. The values of the random walk
update standard deviations τ are also shown in Table 2. We tuned the τ values
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TABLE 2
Prior means for the microscope parameters and the Poisson point process intensities, as well as the

values of the tuning parameter τ applied to generate proposals for the microscope parameters

Samples 1, 2 and 3 Sample 1 Sample 2 Sample 3

MD G K GD GA σ 2 θD θA θD θA θD θA

Prior mean 2.5 1.0 1.0 5.0 5.0 50.0 2e3 1e3 2e3 2e3 1e3 2e3
τ 0.05 0.1 0.1 0.5 0.5 1.0 – – – – – –

to get an approximately 30% proposal acceptance rate for each of the microscope
parameters. The total number of MCMC updates is 5e9 for each run. Metropolis–
Hastings updates for the microscope parameters and Gibbs updates for the point
process parameters are made after every 1e4 birth/death updates of donor or ac-
ceptor points.

The MCMC chains converge slowly due to bad mixing as discussed in Sec-
tion 6.3. This means that we need many rounds of birth-death updates for the
donor/acceptor points followed by updates of microscope and point process param-
eters. In each round we need to update a large fraction of the donors and acceptors.
Thus, for a fixed fraction, each round takes more computing time the higher pos-
terior expected number of donors and acceptors. The a posteriori expected number
of donors and acceptors in each pixel is fairly high (of the order 300). To keep the
computation time at an acceptable level, we therefore perform the inference on a
small 10×10 subset of pixels which contain a posteriori of the order of 3e4 donors
and acceptors.

6.3. Results of the inference.

6.3.1. Assessment of MCMC samples. In Figure 8 the traceplots of the micro-
scope parameters and the Poisson point process intensities for sample 1 are shown.
Posterior mean values are displayed in the upper left corner of each of the plots.
The traceplots indicate poor mixing of the MCMC samples except for GA, GD

and σ .
The poor mixing is due to high posterior correlation between certain parameters

as visualized by the scatterplots in Figure 9 in which the posterior realizations
of MD,G,K, θD, θA are plotted against each other. Especially MD and θD and G

and θA are highly correlated, but fairly strong correlations are also evident between
MD and K and between K and θD . Similar scatterplots of GD,GA and σ 2 versus
each of the other parameters (not shown) do not show any clear correlation with
any of the parameters.

6.3.2. Posterior results. In Table 3 the 95% posterior intervals and posterior
means for each of the microscope parameters and Poisson intensities are stated
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FIG. 8. Traceplots of the microscope and the Poisson point process parameters for sample 1. Poste-
rior mean values are displayed in the upper left corner of each of the plots. For plotting a subsampling
of 10 has been applied.

for each of the three samples. The microscope parameters MD , G, GA, GD and
σ should be equal for all samples, and this may seem contradicted by their pos-
terior means that vary across samples. There is, on the other hand, considerable
overlap between almost all 95% posterior intervals so that the Bayesian infer-
ence does not contradict that the microscope parameters are equal across sam-
ples.

Figure 10 shows the posterior distributions of the centered L-function for the
three samples. As expected, there is no indication of clustering nor repulsion since
the centered posterior L-functions are close to zero and the posterior means are
approximately zero.

7. Discussion. This paper presents a first attempt to implement likelihood-
based inference for FRET data. We thus, based on physical considerations, devel-
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FIG. 9. Scatterplots of the posterior realizations of MD,G,K,θD, θA versus each other for sam-
ple 1. For plotting a subsampling of 100 has been applied.

oped a realistic observational model for FRET data given the underlying configu-
rations of donors and acceptors. Based on this model, we proposed to implement
Bayesian inference using MCMC.

TABLE 3
Posterior results for each of the three samples: 95% posterior intervals and posterior means (in

brackets) for each of the parameters. Prior means of the parameters are given in Table 2

Sample

1 2 3

MD 2.3–7.0 (4.2) 3.1–8.6 (5.5) 2.8–6.8 (4.7)
G 0.46–1.21 (0.78) 0.50–1.36 (0.89) 0.19–0.52 (0.32)
K 0.61–1.93 (1.08) 0.31–0.98 (0.60) 0.51–1.49 (0.92)
GA 1.9–6.2 (4.0) 5.3–12.7 (8.9) 8.0–13.4 (10.6)
GD 1.2–5.7 (3.3) 3.0–10.0 (6.3) 1.7–6.5 (3.9)
σ 4.4–12.0 (8.3) 3.8–10.7 (7.2) 4.2–11.6 (7.9)
θD 6.1e2–19.3e2 (11.1e2) 7.8e2–2282 (13.4e2) 9.0e2–23.5e2 (14.7e2)
θA 6.1e2–15.0e2 (9.7e2) 8.3e2–20.4e2 (12.8e2) 15.0e2–34.1e2 (23.5e2)
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FIG. 10. Posterior distribution of the L-function for samples 1–3. For each sample the posterior
distribution is summarized by the posterior mean (solid line) of the L-function and 95% envelopes
based on minimal (lower dashed-dotted line) and maximal (upper dashed-dotted line) values of 39
posterior realizations of the L-function.

We quantify spatial dependence by considering the posterior mean of the cross
L-function for the donors and acceptors. Our simulation results show that the pos-
terior mean of the L-function can be used to distinguish between clustering, ab-
sence of interaction and repulsion between donors and acceptors. Due to bias, one
needs to be careful when making quantitative statements regarding strength of in-
teraction based on the posterior means of the L-functions. However, we believe
that it is meaningful to make relative comparisons of strength of interactions be-
tween samples observed under the same experimental conditions and thus with the
same signal-to-noise ratios.

Partly due to poor mixing of the proposed MCMC procedure, we were forced to
consider only a small subset of the full data. A key objective for further research is
therefore to obtain a more efficient MCMC scheme so that efficient use of the full
data becomes feasible. Haario, Saksman and Tamminen (2001) suggest to use joint
updates, but they consider posterior distributions of fixed dimensional random vec-
tors. However, preliminary experiments with this approach indicate that we need
joint updates involving both the microscope parameters and the donor-acceptor
point patterns. It is not clear how to do this. Our data example illustrated the use of
reference data with no donor–acceptor interactions to infer the microscope-related
parameters. In future work it would interesting to apply an improved MCMC al-
gorithm to conduct Bayesian inference for an experimental sample with possible
interactions.

The Poisson point process prior for protein configurations was chosen partly
for computational reasons. To implement Bayesian inference with more flexible
Markov point process priors allowing for both repulsive and attractive interactions
requires more advanced Markov chain Monte Carlo methods developed in Møller
et al. (2006) and Murray, Ghahramani and MacKay (2006). However, these meth-
ods are highly computationally demanding since they involve so-called perfect
simulation from the point process prior, which can lead to unacceptable computing



TOWARD BAYESIAN INFERENCE FOR FRET DATA 1733

times in the case of protein configurations of high cardinality which are frequently
encountered for FRET data.

APPENDIX: DERIVATION OF OBSERVATION MODEL

In this section we refer to notation introduced in Section 2. Let Ld denote the
set of times in the observation time span [0, T ] where a donor d in XD is excited
by a photon from the laser. We assume that Ld is a homogeneous Poisson process
on [0, T ] with intensity λD > 0. The process Ld can be decomposed as

Ld = LdE ∪ LdN

⋃
a∈XA

Lda,

where LdE denotes the times of excitations of d which resulted in emission in the
D channel, LdN is the times of excitations resulting in nonradiative de-excitation
and Lda denotes the times of excitations that resulted in FRET to acceptor a

and subsequent emission in the A channel. The so-called quantum yield 0 <

qD < 1 is the probability of emission for donors conditional on that de-excitation
is by emission or nonradiatively, that is, qD = kDE/kD . Similarly, qA denotes the
quantum yield for acceptors. Invoking the random labeling theorem for Poisson
processes [e.g., Proposition 3.7 in Møller and Waagepetersen (2004)], LdE , Lda

and LdN are independent Poisson processes with intensities λDqDPdD , λDqAPda

and λD[(1 − qD)PdD + ∑
a∈XA

(1 − qA)Pda].
For each i ∈ G we let

Li
DD = ⋃

d∈XD∩Ci

LdE

and

Li
DA = ⋃

d∈XD,a∈XA∩Ci

Lda

be the Poisson processes of donor excitation times which result in photon emis-
sions for respectively donors and acceptors in the pixel Ci .

The emitted photons fall on the detector independently of each other with a
probability 0 < h < 1 of detection. In the point process literature the detected
photons are called an independent thinning with retention probability h. Further,
of the detected photons only independent thinnings with retention probabilities
0 < QD < 1 (0 < QA < 1) are registrated in the donor (acceptor) channel of
the detector. The probabilities QD and QA are respectively the detector quantum
yields in the donor and acceptor channel [Pawley (2006)]. The detected photon
counts Ni

DD and Ni
DA of emissions in the pixel Ci are thus Poisson distributed

with means QDhqDλDT
∑

d∈XD∩Ci
PdD and QDhqAλDT

∑
d∈XD,a∈XA∩Ci

Pda .
Finally, I i

DD = GDNi
DD and I i

DA = GANi
DA, where GD and GA are amplification

factors depending on the detector and channel. Defining MD = GDQDhqDλDT
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and G = (GAQAqA)/(GDQDqD), we arrive at the specified means of I i
DD

and I i
DA.

The mean of I i
AA is found in a similar fashion. In the AA-channel acceptors are

directly excited by the laser which is now broadcasting in the acceptor excitation
spectrum with an intensity λA > 0. An excited acceptor can only de-excite due
to emission or nonradiatively, and the detected photon counts Ni

AA of emissions
in the pixel Ci are Poisson distributed with means QAhqAλAT

∑
a∈XA∩Ci

1 and
I i
AA = GANi

AA. Defining MA = GAQAhqAλAT and K = MD/MA, we arrive at
the specified mean of I i

AA.
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SUPPLEMENTARY MATERIAL

Supplement A: Preliminary statistical analysis of the in vitro three-cube
FRET dataset (DOI: 10.1214/17-AOAS1054SUPPA; .pdf). The supplementary
material contains a preliminary statistical analysis of the in vitro three cube FRET
dataset. Sample preparation and experimental setup are discussed as well the chan-
nel dataset extracted from the samples. The amount of photobleaching for the re-
measurements in the three channels is studied and the mean–variance relations of
the dataset are compared with the ones given by our statistical model. Further, es-
timates for the microscope parameters are obtained through various non-Bayesian
methods.

Supplement B: The MCMC sampler (DOI: 10.1214/17-AOAS1054SUPPB;
.pdf). The supplementary material contains a detailed description of the steps per-
formed in the MCMC sampler.

Supplement C: Inference of the microscope parameters (DOI: 10.1214/17-
AOAS1054SUPPC; .pdf). The supplementary material contains a detailed descrip-
tion of the inference of the microscope parameters.
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