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Ping-Pong Beam Training with Hybrid
Digital-Analog Antenna Arrays

Carles Navarro Manchón, Elisabeth de Carvalho, and Jørgen Bach Andersen
Department of Electronic Systems, Aalborg University, Denmark

Email: {cnm, edc, jba}@es.aau.dk

Abstract—In this article we propose an iterative training
scheme that approximates optimal beamforming between two
transceivers equipped with hybrid digital-analog antenna arrays.
Inspired by methods proposed for digital arrays that exploit alge-
braic power iterations, the proposed training procedure is based
on a series of alternate (ping-pong) transmissions between the
two devices over a reciprocal channel. During the transmissions,
the devices update their digital beamformers by conjugation and
normalization operations on the received digital signal, while
the analog beamformers are progressively updated by a simple
“beam split and drop” strategy that tracks the directions from
which signals with largest magnitude are being received. The
resulting scheme has minimal computational complexity and
converges with only a handful of iterations. As shown in the
numerical assessment, the method approximates the top singular
mode of the channel, hence performing very closely to optimal
beamforming.

I. INTRODUCTION

Wireless communication systems employing large carrier

frequencies enable the implementation of antenna arrays with

a large number of elements, as the physical size of the

array is proportional to the carrier wavelength. This aspect,

together with the saturation of the wireless spectrum below

6 GHz, have directed the attention of researchers towards the

frequency bands in the range of 30–300 GHz as candidate

bands for the development of 5th generation (5G) cellular

systems [1], [2]. It is expected that the beamforming gains that

can be obtained with large antenna arrays will compensate for

the large free-space propagation losses at these frequencies.

Wireless communication systems operating in these bands are

usually encompassed under the umbrella of millimeter-wave

(mmWave) communication systems.
Although the use of mmWave bands makes it feasible to

design antenna arrays with very large number of elements

and a small physical size –such that they can be used in

small devices– it also entails some challenges. First, the close

spacing between antennas makes it hard to implement all the

circuitry necessary to digitally control each of the antenna

elements. Second, even if the physical implementation was

possible, the power consumption associated with the digital

signal processing needed for such large number of elements

becomes prohibitive [3]. A promising architecture to alleviate

these drawbacks is that of a hybrid digital-analog antenna

array [4], [5]. In hybrid antenna arrays, a small number of

radio-frequency (RF) chains are connected to a network of

phase shifters that perform beamforming/combining in the

analog domain, as illustrated in Fig. 1. While this architecture

has clear advantages in terms of cost and power consumption,

it complicates the acquisition of channel state information

(CSI) and the processing needed to compute beamformers

and/or precoders, as we discuss next.

There are two main obstacles for the acquisition of CSI

in systems with large hybrid antenna arrays at both ends.

On the one hand, the large dimensionality of the channel

matrix implies that long training sequences are needed, which

is further aggravated in the mmWave case due to the low

SNR resulting from high propagation losses. On the other

hand, the fact that the MIMO channel matrix is not directly

observable, but is instead observed only after analog precoding

and combining, prohibits the use of typical estimators used

with fully digital arrays. Nonetheless, the assumed sparse

nature of mmWave channels has enabled the proposal of

compressed-sensing based solutions, as in [6], [7]. The pro-

posed approaches, however, still involve significant complexity

and latency. A simpler alternative is that of beam search

protocols [8], [9]. In beam search protocols, the involved

devices align their beamformers by means of a (possibly

hierarchical) search over directional beams in a predefined

codebook. To enable the beam search, the devices need to

scan transmission and reception over the different beams in the

codebook, which may imply significant latency. Beam search

protocols have the advantage of simplicity, at the cost of a

suboptimal beamformer alignment. Beamforming performance

can be improved by using larger codebooks with better spatial

resolution at the expense of further latency due to the search

procedures.

Here, however, we focus on a different beam training

strategy: ping-pong beam training (PPBT). The core of the

idea was first sketched for digital arrays in [10], [11] and

recently extended to systems involving large antenna arrays

and frequency-selective channels in [12]. PPBT relies on alter-

nate transmissions through a reciprocal channel in which each

device simply conjugates and normalizes its received signal

before transmitting it back to the other device. The sequence

of transmissions inherently implements an algebraic power

iteration that converges to the right and left singular vectors

associated to the maximum singular value of the channel

matrix. The principle was extended to spatial multiplexing

MIMO in [13], which has in turn inspired a related proposal

for mmWave systems [14].

In this article, we present a PPBT approach that estimates

the top singular mode of reciprocal MIMO channels between
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Fig. 1. Hybrid Digital-Analog Antenna Arrays.

two devices equipped with hybrid antenna arrays, which we

coin hybrid PPBT. To enable the use of PPBT with hybrid

arrays, we include an algorithm that progressively chooses

the analog beamformers at each device from a predefined

hierarchical codebook. Starting with beams of maximal width,

the purpose of the algorithm is to steer beams that are more and

more directive (thinner beams) towards the directions where

most signal power is received, in order to maximize the chance

to align the most directive beams with the strongest channel

multipath components. After one round-trip transmission, the

received power in each beam is measured. The beam with

largest power is replaced by two more directive beams while

the beam with smaller power is deleted, in order to keep

the number of simultaneously active analog beams equal to

the number of RF chains. We call this strategy “beam split

and drop”. At the same time, the digital beamformers are

updated via conjugation and normalization operations on the

received signal, as in the digital PPBT. As illustrated in the

numerical results, our proposed scheme performs very closely

to optimal beamforming for moderate and high signal-to-

noise ratios (SNR), while being much more robust than PPBT

algorithms using digital arrays at low SNRs. The robustness

of our proposed method against low SNR conditions prior

to beam alignment makes it especially suitable for mmWave

communications. In comparison to the approach in [14], hybrid

PPBT is much simpler in terms of computational complexity

and requires significantly less training data.

II. SYSTEM MODEL

We consider a system consisting of two transceivers A and

B that exchange single-layer transmissions over a recipro-

cal MIMO channel. Transceiver A (B) is equipped with a

hybrid, uniform linear antenna array consisting of NA (NB)

isotropic antennas, with inter-element distance d = λ/2, with

λ denoting the wavelength. The array is controlled by NRF
A

(NRF
B ) RF chains whose input can be digitally modulated, and

which are each connected to a set of analog phase shifters, as

illustrated by Fig. 1.

With the system configuration described above, a training

sequence is transmitted by device A. The purpose of the

training sequence is to estimate the useful part in the received

signal, i.e. vector F T
BHFAwA as defined below, and average

out the noise. Once conjugated and normalized, the estimate

serves as the digital beamforming vector for transmission.

After the processing required by least-squares training-based

estimation, the received signal is

yB = F T
BHFAwA + F T

BnB (1)

where H ∈ C
NB×NA denotes the MIMO channel matrix,

FA ∈ C
NA×NRF

A and FB ∈ C
NB×NRF

B contain the states

of the analog precoder and combiner of transceivers A and B,

wA ∈ C
NRF

A denotes the digital precoder of transceiver A, and

nB ∈ C
NB is a complex, circularly-symmetric AWGN vector

with variance σ2. We stress that nB denotes the equivalent

noise vector resulting from last-squares training processing.

Since we assume channel reciprocity, the equivalent signal

received by device A after a training transmission by device

B and corresponding receive processing reads

yA = F T
AH

TFBwB + F T
AnA (2)

with wB ∈ C
NRF

B denoting the digital precoder of transceiver

B and nA ∈ C
NA being again a complex, circularly-

symmetric AWGN vector with variance σ2.

We assume a finite scatterer channel model with P prop-

agation paths. Hence, the channel matrix can be expressed

as [15]

H =

√
NANB

P

P∑
p=1

αpaB(ΩB,p)a
T
A(ΩA,p) (3)

where αp are independent, standard complex Gaussian vari-

ables denoting the gain of the pth multipath component

between the first elements of the transmit and receive ar-

rays; aA(ΩA,p) = [1, e−jΩA,p , . . . , e−j(NA−1)ΩA,p ]T/
√
NA

and aB(ΩB,p) = [1, e−jΩB,p , . . . , e−j(NB−1)ΩB,p ]T/
√
NB are

the steering vectors of the pth path between arrays A and

B; ΩA,p = 2πd cos(θA,p)/λ = π cos(θA,p) and ΩB,p =
2πd cos(θB,p)/λ = π cos(θB,p) are the directional cosines

corresponding to the pth path at arrays A and B; finally, θA,p

and θB,p are the angles of incidence of the pth propagation

path at arrays A and B, which are uniformly distributed in

the range [0, 2π) radians. The geometric modeling in (3) will

be exploited in the ping-pong beamforming algorithm to set

the analog precoders FA and FB , as will be detailed in the

following section.

III. PROPOSED TRAINING WITH HYBRID ARRAYS

The analog precoders FA,FB and digital precoders

wA,wB fulfill some constraints due to the hybrid array

structure employed. Firstly, we impose a power normalization

constraint on the effective precoders such that ||FAwA||22 =
||FBwB ||22 = 1. Secondly, since the entries of the analog

precoding matrices FA,FB represent the operation of analog

phase shifters, they fulfill FA[m,n],FB [m
′, n′] ∈ {0}∪{ejφ :

φ ∈ [0, 2π)}. The case FA[m,n] = 0 accounts for the situation

in which the mth array element of transceiver A is left unused

by the nth RF chain.



Subject to these constraints, transceivers A and B must

select their analog and digital precoders to optimize a given ob-

jective function. As we only consider single layer transmission

in this work, we select as objective function the beamforming

gain1, defined as

G =
∣∣wT

BF
T
BHFAwA

∣∣2 . (4)

The precoders that maximize the above gain are well-known

to be FAwA = vmax and FBwB = u∗
max, where vmax and

umax denote respectively the right and left singular vectors

of matrix H associated to its maximum singular value λmax.

This solution leads to the optimal beamforming gain Gopt =
λ2
max, as transmission is performed over the top singular mode

of the channel. The optimal beamformers vmax and u∗
max

can be computed by performing a (computationally costly)

singular value decomposition of the MIMO channel matrix,

but this requires full knowledge of H .
In order to circumvent the estimation of the channel matrix

H , we propose a beam training procedure based on alternating

transmissions between the two devices in such a way that the

digital and analog precoders approximate the optimal beam-

formers without explicit channel estimation. The proposed

procedure mainly consists of two parts: 1) a “beam split and

drop” approach to select the analog precoders FA and FB from

predefined multilevel codebooks, and 2) a method to select the

digital beamformers wA and wB inspired by the digital beam-

training procedure in [12]. In the following, we shortly review

the beam training procedure for digital antenna arrays, then

present the proposed codebook for the analog precoders, and

our proposed beam-training solution.

A. Ping-Pong Beam Training with Digital Antenna Arrays
We review the digital PPBT algorithm over a narrowband

reciprocal channel H as described in [12]. We consider two

devices A and B equipped with digitally controlled antenna

arrays with NA and NB elements respectively. At the initial

(0th) iteration, the process starts with a random initialization

of the beamforming vector at device A, w
[0]
A . With this,

device A transmits a training sequence to device B. Based on

the training sequence, device A gets an estimate of Hw
[0]
A ,

then conjugates and normalizes it. The result is used as the

beamforming vector w
[0]
B to transmit a training sequence back

to device A, who repeats the same operations. This process is

reiterated until convergence.
There are 2 parallel iteration sets: one set for device A

based on composite channel HHH and one set for device

B based on composite channel H∗HT. Each set corresponds

to a separate power iteration algorithm [16]: one computing

the max-eigenvector of HHH and the other one the max-

eigenvector of H∗HT. At device A, the algorithm converges

to the right max-singular vector of H . At device B, the

algorithm converges to the right max-singular vector of HT.

Further details, including an analysis of the perturbation in-

troduced by noise, can be found in [12].

1Note that the beamforming gain defined in (4) is directly proportional to
the post-processing SNR.

B. Analog Precoder Codebooks

The codebook2 is implemented so that the columns fA,i,

i = 1, . . . , NRF
A of FA are chosen from a predefined,

finite set of vectors CA, which we will henceforth call the

codebook. The codebook CA is a hierarchical codebook with

LA = log2(NA/N
RF
A ) + 1 levels. Each of the levels com-

prises a subset C(k)A , k = 1, . . . , LA of all vectors in the

codebook, fulfilling CA =
⋃LA

k=1 C(k)A and
⋂LA

k=1 C(k)A = ∅.
The sub-codebooks C(k)A contain a number of NA-dimensional

column vectors which increases with the level k, and we

define the sub-codebook size for the kth level as M
(k)
A =∣∣∣C(k)A

∣∣∣ = NRF
A 2k−1. With this, we can define the kth

level sub-codebook for transceiver A as the set C(k)A ={
ϕ

(k)
A,i : i = 0, 1, . . . ,M

(k)
A − 1

}
, with elements given by

ϕ
(k)
A,i =

[
1, e−jψ

(k)
A,i , . . . , e−j(M

(k)
A −1)ψ

(k)
A,i ,0T

NA−M
(k)
A

]T

(5)

where ψ
(k)
A,i = π − π(2i + 1)/M

(k)
A and 0N denotes the all-

zeroes column vector of size N .

The rationale behind this codebook can be understood

by inspecting the expression in (5). The vector ψ
(k)
A,i can

be seen as a beamforming vector for a M
(k)
A -dimensional

uniform linear array, which steers the signal in the direction

arccos(ψ
(k)
A,i/π). For a fixed level k, the directional cosines

ψ
(k)
A,i, i = 0, . . . ,M

(k)
A − 1 are set to uniformly sample the

directional cosine range [−π, π]. As the codebook level k
increases, this range is sampled with larger resolution. In

addition, as k increases, more antenna elements are used,

hence resulting in beamforming vectors with narrower main

lobes. An illustration of the directional patterns implemented

by the proposed codebook is provided in Fig. 2.

We remark that the optimization of the RF codebooks CA
and CB are not the main focus of this article. For a method

allowing for optimizing the RF codebook design subject to

quantization constraints we refer the reader to [17].

C. Ping-Pong Beam Training with Hybrid Antenna Arrays

The proposed algorithm for beam training with hybrid

arrays is outlined in pseudocode in Algorithm 1.

1) Initialization: At the initialization step, the analog pre-

coders of both devices, FA and FB , are initialized by setting

their columns to all the precoding vectors corresponding to

the first level of their respective codebooks. In addition, the

baseband precoder of device A, wA, is initialized randomly

and normalized to fulfill the unit power constraint of the

effective precoder.

2) Ping-Pong Iterations: After initialization, devices A
and B start a series of alternate transmissions of training

sequences while simultaneously updating their baseband and

RF precoders. First, device A transmits a training sequence

using the initial precoder settings. Upon reception, device

2We present here the design of the proposed codebook for device A, while
the codebook for transceiver B is defined in an equivalent manner.
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Fig. 2. Array gains obtained with the analog beamformers of the proposed
multi-level codebook. NA = 16, NRF

A = 4, LA = 3.

B obtains an estimate of F T
BHFAwA and sets its digital

precoder wB to the conjugate of the result, following the

same procedure as the digital ping-pong beam training method.

Immediately after, device B performs a transmission using its

newly updated digital precoder. After this transmission, device

B updates its RF precoder3 using the procedure described in

lines 20–30 of Algorithm 1, while device A uses the received

signal to update its digital precoder. Then, device A performs a

transmission with its updated digital precoder. Upon reception,

device B conjugates and normalizes the signal, which will

be used as its new digital precoder, while device A updates

its analog precoders. This completes the first iteration of the

ping-pong scheme. The devices continue operating in the same

manner for the number of iterations set for beam training.

3) Update of Analog Precoders: The proposed procedure

to update the RF precoders requires some further explanation.

The update is based on the current state of the device’s RF

precoder F , its codebook C, and the latest update of its

baseband precoder w, which has entries whose magnitude are

proportional to the magnitude of the latest received signal.

First, two sequences of values kn and in, n = 1, . . . , NRF are

generated. The value kn identifies the level of the codebook to

which the nth column of the RF precoder belongs; similarly,

the value in indexes the element within the subcodebook C(kn)

corresponding to the nth column of F . This is, if the nth

column of F is equal to the vector ϕ
(k̃)

ĩ
in codebook C, then

3The update is performed after transmission in order to keep the equivalent
channel F T

BHFA seen by the digital processing part constant during a round
trip transmission. In this way, each round-trip transmission mimics an iteration
of a power iteration algorithm.

Algorithm 1 Ping-Pong Beam Training with Hybrid Arrays

1: Initialize:

F
[0]
A ←

[
ϕ

(1)
A,0,ϕ

(1)
A,1, . . . ,ϕ

(1)

A,M
(1)
A −1

]
,

F
[0]
B ←

[
ϕ

(1)
B,0,ϕ

(1)
B,1, . . . ,ϕ

(1)

B,M
(1)
B −1

]
,

a ∼ CN (0NRF
A

, I),w
[0]
A ← a∥

∥
∥F

[0]
A a

∥
∥
∥
2

.

2: A transmits.

3: B receives y
[0]
B = (F

[0]
B )THF

[0]
A w

[0]
A + (F

[0]
B )Tn

[0]
B .

4: w
[0]
B ←

(
y
[0]
B

)∗

5: w
[0]
B ← w

[0]
B∥

∥
∥F

[0
B w

[0]
B

∥
∥
∥
2

6: t← 1
7: loop
8: B transmits.

9: A receives y
[t]
A = (F

[t−1]
A )THTF

[t−1]
B w

[t−1]
B +

(F
[t−1]
A )Tn

[t]
A .

10: w
[t]
A ←

(
y
[t]
A

)∗

11: w
[t]
A ← w

[t]
A∥

∥
∥F

[t−1]
A w

[t]
A

∥
∥
∥
2

12: F
[t]
B ← UPD. AN. PRECODER(F

[t−1]
B , w

[t−1]
B , CB)

13: A transmits.

14: B receives y
[t]
B = (F

[t]
B )THF

[t−1]
A w

[t]
A + (F

[t]
B )Tn

[t]
B .

15: w
[t]
B ←

(
y
[t]
B

)∗

16: w
[t]
B ← w

[t]
B∥

∥
∥F

[t]
B w

[t]
B

∥
∥
∥
2

17: F
[t]
A ← UPD. AN. PRECODER(F

[t−1]
A , w

[t]
A , CA)

18: t← t+ 1
19: end loop

20: function UPD. AN. PRECODER(F , w, C)

21: generate kn, in, n = 1, . . . , NRF

22: vn ← |wn| /
√
M (kn), n = 1, . . . , NRF

23: nmax ← argmaxn{vn : kn < L}
24: nmin ← argminn{vn : n = 1, . . . , NRF }
25: if nmax �= nmin then
26: remove nmaxth, nminth columns of F
27: add new columns ϕ

(knmax+1)
2inmax

, ϕ
(knmax+1)
2inmax+1 to F

28: end if
29: return F
30: end function

kn = k̃ and in = ĩ. Then, the magnitudes of the baseband

precoder weights are divided by the square root of the number

of array elements active in their corresponding RF chain,

producing the sequence vn, n = 1, . . . , NRF (line 22). This

operation compensates for the fact that RF precoder columns

belonging to the different levels of the codebook have different

Euclidean norms
(∥∥∥ϕ(k)

i

∥∥∥
2
=
√
M (k)

)
. The coefficients vn

will determine which columns of the RF precoder will be

updated: first, the index n of the largest coefficient which does

not belong to a column in the highest level of the codebook is

selected as nmax (line 23); then, the index corresponding to the
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over 4 iterations. N = 16, NRF = 4, L = 3.

minimum among all coefficients nmin is also selected (line 24).

The selected indices correspond to the columns that will be re-

moved from the RF precoder, and to which the “beam split and

drop” strategy will be applied. In their place, two vectors from

the codebook level immediately above the level corresponding

to nmax are included: ϕ
(knmax+1)
2inmax

and ϕ
(knmax+1)
2inmax+1 . With this, the

nmaxth precoder column which was steering the array towards

the directional cosine ψ
(knmax )
inmax

= π − π(2inmax
+ 1)/M

(knmax )
A

is replaced by two columns that steer the array towards the

directional cosines ψ
(knmax+1)
2inmax

= π−π(4inmax
+1)/(2M

(knmax )
A )

and ψ
(knmax+1)
2inmax+1 = π−π(4inmax

+3)/(2M
(knmax )
A ), i.e. directional

cosines at ±π/(2M (knmax )
A ) of the original directional cosine

ψ
(knmax )
inmax

. As the two new columns added to F belong to an

upper level in the codebook than the nmaxth column, they

result in a directional pattern that is twice as directive, steering

the array in two directions around the original direction. This

update provides better gain and spatial resolution than the

original nmaxth column. The improvement is accomplished at

the cost of dropping the nminth precoder column, which had

observed the lowest signal among all RF branches. The “split-

and-drop” update procedure is illustrated in Fig. 3.

As a result of the update procedure outlined above, Al-

gorithm 1 tends to set the RF precoders to steer the arrays

towards the directions where most signal is received with high

directivity. Meanwhile, the baseband precoders are set follow-

ing a power iteration scheme that, with fixed RF precoders

FA and FB , will converge (in the absence of noise) to the

max left and right singular vectors of the effective baseband

channel F T
BHFA. Although the algorithm is heuristic, we will

show in the coming section that it yields effective precoders

that result in a beamforming gain very close to the optimum
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gain Gopt, and hence approximates the channel’s top singular

mode.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed training

scheme via Monte Carlo simulations for several configurations

of the hybrid array at devices A and B. The channel matrix H
is generated according to the model (3), which assumes that

the channel response is made of P paths with equal variance

and uniformly distributed directions of departure and arrival.

The average SNR for the link between the nth element of

the array at device B and the mth element of the array at

A is defined as ρ = E{|Hnm|2}/E{|nB
n |2} = 1/σ2, where

nB
n denotes the nth entry of the noise vector nB , Hnm is

the channel coefficient between the nth and mth elements of

arrays B and A and E{·} is the expectation operator.

The performance is measured by means of the average

beamforming gain across iterations of the training procedure.

For integer iteration t, the beamforming gain is calculated as

(w
[t−1]
B )T(F

[t−1]
B )THF

[t−1]
A w

[t]
A , while for half integer itera-

tion (t + 0.5) is (w
[t]
B )T(F

[t]
B )THF

[t−1]
A w

[t]
A . We benchmark

the performance of our proposed training procedure (Hybrid

PPBT) against the performance of the digital ping-pong beam

training method (Digital PPBT) described in [12], for which

the beamforming gain is calculated in an equivalent manner. In

addition, we compare with two other ideal beamformers. First,

the optimal beamformers (Optimal BF) obtained by using the

left and right top singular vectors of H , which result in the

optimal gain Gopt. Second, we compare with beamformers

that steers the arrays in the pair of directions of departure and

arrival of the multipath components that provides the larges

beamforming gain (Main-Path Steering). This bound can be

interpreted as the beamforming gain obtained by an ideal

beam search procedure with arbitrary spatial resolution and

unaffected by noise.

First, we evaluate the performance of the algorithms over a

noiseless channel with 5 multipath components, and for hybrid



arrays made of different number of RF chains. The purpose

of this experiment is to evaluate the suitability of the analog

precoder updating procedure when the training algorithm is

not impaired by noise.4 The results obtained when the two

devices are equipped with identical arrays made of NA =
NB = 32 elements and a number of RF chains that varies

between 2 and 16 are depicted in Fig. 4. Not surprisingly, the

effectiveness of the algorithm increases with the number of

RF chains, as the spatial resolution of the initial beamforming

setup improves. When using only 2 RF chains, all angular

domain is covered by just 2 beams at initialization, which leads

to occasionally dropping important signal components in the

initial iterations. When using 4 or more RF chains, however,

the training algorithm converges to a beamforming gain that

is within 2 dB of that of the fully digital array, which in turn

converges to the optimal beamforming gain. Convergence is

slower when using hybrid arrays than in the digital case, since

the training includes updates of both the digital and the analog

precoders. Nonetheless, most of the gain is already achieved

after only 4 ping-pong iterations.

Next, in Fig. 5 we fix the number of RF chains of both

devices to 8, and evaluate the performance of the training

algorithm for different SNRs. As expected, the performance

of the training algorithm degrades for lower SNRs, both in the

digital and the hybrid array cases. An interesting result is that

the hybrid array is less sensitive to noise for very low SNRs.

The reason for this is that the signal seen in the digital part of

the hybrid array has already benefitted from some beamform-

ing gain provided by the analog combiners and, hence, the

power iteration performed in the digital part is more robust to

noise. This makes the training algorithm especially attractive

for communication at high frequencies, e.g. mmWave systems,

since the large propagation losses make it likely that low

SNRs will be encountered often. At moderate and high SNRs

digital PPBT performs better due to the suboptimality of

the “beam split and drop” analog updates. Nonetheless, the

performance achieved by the algorithm for hybrid arrays is

still very close to that of the digital counterpart, although with

slower convergence.

As our training scheme has been devised under the as-

sumption of a sparse directional channel with a small number

of multipath conponents, we next test the robustness of the

approach against channels with richer scattering. First, we

evaluate the performance of the training scheme against an

increasing number P of channel components in Fig. 6. It

is seen that, as P increases, the optimal beamforming gain

degrades. This is expected, as in richer scattering conditions

the magnitude of the channel’s singular values tends to be

more evenly distributed and, consequently, the largest eigen-

value’s magnitude decreases. A similar effect is seen for

the main-path steering gain. The gains obtained by hybrid

and digital PPBT degrade with increasing number of paths

at the same rate as the bounds for SNRs of -5 dB and

4In these conditions, the power iteration implemented by the digital
precoder updates converges exactly to the max singular vectors of the analog-
beamformed channel.
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NA = NB = 32, NRF

A = NRF
B = 8, P = 5.

above, showing remarkable resilience against rich multipath

conditions. In addition, it can be observed that, for SNRs

which are large enough, hybrid PPBT outperforms the main-

path steering beamformer. This result shows that hybrid PPBT

goes beyond the performance of beam search protocols which

align all energy in the direction of the main path and, in fact,

tries to approximate the top singular mode of the channel. This

results from the combination of the “beam split and drop”

updates of the analog beamformers with the power iteration

performed in the digital part.

To conclude, we evaluate our proposed training procedure

in a system in which only one of the devices is equipped with

a large, hybrid array (NA = 128, NRF
A = 16), while the other

has a full digitally-controlled array of moderate size (NB = 8).

In addition, for this case we use an alternative channel model,

expressed as

H =

√
NANB

P
ABGAT

A (6)

where AA contains in its columns the steering vectors

aA(ΩA,p), p = 1, 2, . . . , P , AB is defined analogously, P is

again the number of multipath components, and G is a P ×P
matrix with i.i.d standard complex Gaussian entries. This

model reflects the possibility that multipath components are

mixed together by the scattering environment, which is more

representative of propagation at microwave frequencies [18].

Hence, the presented setup can be interpreted as a massive

MIMO system operating at microwave frequencies. As seen by

the results shown in Fig. 7, due to the multipath mixing effect

there is a larger gap between the beamforming gain obtained

with main-path steering and optimal beamforming. As can be

seen in the results, the hybrid PPBT scheme convergence is

slower than with the channel model (3), but its performance

is still very close to optimal for moderate SNRs, and better

than the digital counterpart for low SNR. In addition, hybrid

PPBT shows again the ability to outperform significantly the

main-path steering beamformer. This fact again shows that the
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training procedure approximates the top singular of the MIMO

channel, rather than just aligning the transmit and receive

beamformers in the single directions with largest signal power.

V. CONCLUSION

We have proposed a beam training procedure for devices

equipped with hybrid digital-analog antenna arrays, coined

hybrid ping-pong beam training. The main virtue of our

proposed training is its simplicity, as it involves minimal

computational complexity. The procedure relies on an alge-

braic power iteration method for the setting of the digital

precoders, and a codebook search based on a “beam split and

drop” strategy in the analog domain. Our results show that

the proposed procedure approximates closely the performance

of optimal beamforming, given by using the singular vectors

of the channel matrix associated to its largest singular value.

In addition, the method exhibits great robustness against very

low SNR conditions, which makes it especially attractive for

use in mmWave systems. Although some training iterations

are needed to achieve near-optimal beamforming, the training

procedure can be interleaved with transmission of payload

with increasing data-rate. This and the extension to multi-user

environments will be the subject of our future research.
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