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Abstract

The bromodomain containing 1 gene, BRD1 is essential for embryogenesis and CNS devel-

opment. It encodes a protein that participates in histone modifying complexes and thereby

regulates the expression of a large number of genes. Genetic variants in the BRD1 locus

show association with schizophrenia and bipolar disorder and risk alleles in the promoter

region correlate with reduced BRD1 expression. Insights into the transcriptional regulation

of BRD1 and the pathogenic mechanisms associated with BRD1 risk variants, however,

remain sparse. By studying transcripts in human HeLa and SH-SY5Y cells we provide evi-

dence for differences in relative expression of BRD1 transcripts with three alternative 5’

UTRs (exon 1C, 1B, and 1A). We further show that expression of these transcript variants

covaries negatively with DNA methylation proportions in their upstream promoter regions

suggesting that promoter usage might be regulated by DNA methylation. In line with findings

that the risk allele of the rs138880 SNP in the BRD1 promoter region correlates with reduced

BRD1 expression, we find that it is also associated with moderate regional BRD1 promoter

hypermethylation in both adipose tissue and blood. Importantly, we demonstrate by inspect-

ing available DNA methylation and expression data that these regions undergo changes in

methylation during fetal brain development and that differences in their methylation propor-

tions in fetal compared to postnatal frontal cortex correlate significantly with BRD1 expres-

sion. These findings suggest that BRD1 may be dysregulated in both the developing and

mature brain of risk allele carriers. Finally, we demonstrate that commonly used mood stabi-

lizers Lithium, Valproate, and Carbamazepine affect the expression of BRD1 in SH-SY5Y

cells. Altogether this study indicates a link between genetic risk and epigenetic dysregulation

of BRD1 which raises interesting perspectives for targeting the mechanisms

pharmacologically.
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Introduction

BRD1 encodes the bromodomain-containing protein 1 (BRD1), which is widely expressed in

human tissues including the brain [1]. BRD1 has been identified in protein complexes possess-

ing acetyltransferase activity towards histone H3 [2,3] and it binds chromatin in regions adja-

cent to transcription start sites (TSSs) of numerous genes [3,4]. Inactivation of Brd1 in mice is

incompatible with postnatal life due to severe embryonic mal-development including impaired

neural tube closure [3]. Cerebral changes in Brd1 expression upon electroconvulsive seizures

[5] and chronic restraint stress in rats [6], suggest an important function of BRD1 in the

mature CNS that might include a role in gene regulatory processes underlying adaptation to

stress.

The BRD1 promoter SNP, rs138880, was recently identified as the variant showing the most

significant association with schizophrenia in a large GWAS meta-analysis (>11,000 cases and

>10,000 controls) ensued by a family-based replication study (>6,000 individuals including

>3,000 cases) [7]. This augmented previous studies linking rs138880 with both schizophrenia

and bipolar disorders in large Caucasian case-control samples [8,9] as well as the identification

of a susceptibility locus containing BRD1 in the Faroese population [10]. The BRD1 locus

approached genome-wide significance in the Psychiatric Genomics Consortium (PGC) schizo-

phrenia mega-GWASs using conventional statistical methods (p = 4.38E-05 in PGC1 [11] and

p = 3.31E-07 in PGC2 [12], and moreover it was found genome-wide significant and predicted

to be highly replicable when applying an Empirical Bayes statistical approach already in the

smaller PGC1 data set [13].

We have recently provided evidence that individuals carrying the schizophrenia risk allele

(the C-allele) of rs138880 (or SNP alleles in high LD with it) express significantly less BRD1
mRNA than non-carriers both in blood and brain [14] suggesting that the promoter variant

has a role in transcriptional regulation of BRD1. That this effect can be attributed either fully

or partly to the promoter risk allele of rs138880 is substantiated by our in vitro evidence for a

lower transcriptional drive of the C allele compared to the A allele in a dual luciferase pro-

moter assay using mouse neuroblastoma Neuro2A cells [14]. In addition, we show that

reduced expression of Brd1 in a genetically modified mouse strain is associated with several

phenotypes with translational relevance to schizophrenia and these phenotypes are co-occur-

ring with brain region expression changes affecting schizophrenia risk genes to a higher degree

than expected by change [14].

The majority of risk variants associated with schizophrenia do not directly alter protein

sequence but rather seem to be important for regulating gene expression [12,15] being in line

with the more general findings that disease-associated variants affect transcription factor rec-

ognition sequences and frequently alter allelic chromatin states [16]. In human brain samples,

it has been established that methylation of a high number of CpG sites show significant cis

associations with SNPs and a lower number show significant trans associations [17]. A recent

study has demonstrated that 62 out of the 104 (59.6%) genome-wide significant loci in schizo-

phrenia investigated in the study had a risk (or proxy) SNP that is a methylation quantitative-

trait locus (metQTL) in human cortex [18].

To reveal insights into the transcriptional regulation of BRD1 and the dysfunction associ-

ated with the rs138880 risk allele of the BRD1 promoter, we have delineated BRD1 promoter

usage and DNA methylation patterns in human cell lines and tissue. We have further studied

the effect of three different mood stabilizers on BRD1 expression and promoter DNA

methylation.
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Materials and Methods

Cell culture

Human adenocarcinoma HeLa cells (American Type Culture Collection, CCL-2) and human

neuroblastoma SH-SY5Y cells (American Type Culture Collection, CRL-2266) were cultured

in RPMI 1640 Medium, GlutaMAX™ Supplement containing 10% FCS and 1% Penicillin-

Streptomycin (10,000 U/mL) (all from Life Technologies, CA, USA). For bisulfite sequencing

experiments cells were harvested during these standard conditions. For the experiments

involving drugs we used Zebularine (Z4775), Valproic acid sodium salt (P4543), Lithium chlo-

ride (L7026), and Carbamazepine (C4024) (all from Sigma, MO, USA). Zebularine and Carba-

mazepine were dissolved in DMSO. Lithium and Valproate were dissolved in EtOH. Drugs

were diluted in culture medium to give the minimum and maximum therapeutic concentra-

tions: Valproate, 0.3 and 0.6 mM; Lithium, 0.6 and 1.2 mM; Carbamazepine 0.05 and 0.1 mM

[19]. Zebularine was diluted in culture medium to doses of 0.05, 0.1, and 0.25 mM. In all

experiments, control cells were exposed to the same concentration of solvent (DMSO or

EtOH) but without addition of drug. All experiments were performed in triplicates. On day

one, 2,000 HeLa cells/cm2 or 20,000 SH-SY5Y cells/cm2 were plated in 6-well plates (Techno

Plastic Products, Trasadingen, Switzerland) and left for 24 hours to adhere. On day two, the

drugs were added directly to the culture medium at the indicated concentrations and left for

24 hours. On day three, the cell medium was replaced with fresh medium containing drug at

the indicated concentrations and left for 48 hours. On day 5, DNA and RNA were extracted

with an AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) according to manufacturer’s

protocol.

Subjects

The subjects used for DNA methylation analysis included 48 female Caucasian university stu-

dents. DNA was isolated from blood and the subjects had previously been genotyped for SNP

rs138880 as described in [9]. A total of 24 homozygous (A/A) and 24 heterozygous (A/C) indi-

viduals were included. Subjects provided written, informed consent for participation, and

approval was obtained from the ethics committee for Central Denmark Region.

RNA quality assessment and cDNA synthesis

RNA concentration and purity was assessed using a NanoDrop Spectrophotometer (Thermo

Scientific, Wilmington, DE, USA). Integrity of the RNA was assessed on a 1.2% agarose gel

stained with ethidium bromide and cDNA synthesis was performed as described [20]. For cells

grown with Zebularine, 400 ng of total RNA was used and for the remaining drugs, 1 μg of

total RNA was reverse transcribed. Detailed description of the materials and methods used for

transcript variant analysis can be found in S1 Supporting Information and related primer

sequences, expected amplicon sizes, and PCR extension times are listed in S1 Table.

Real-time quantitative PCR

The real-time quantitative PCR (qPCR) reactions were run in a LightCycler1480 System

(Roche Applied Science, Mannheim, Germany), using white 384-well PCR plates sealed with

adhesive sealing film (Roche Applied Science). The reaction mixtures consisted of 1x LightCy-

cler1 480 SYBR Green I Master (Roche Applied Science), 0.5 μM of each primer, and 2.5 μL

diluted cDNA in a total volume of 5 μL. The cycling protocol started with one cycle of 95˚C for

10 min, followed by 45 cycles of: 95˚C for 10 sec, 60˚C for 20 sec, and 72˚C for 20 sec. Melting

curve analyses were performed subsequent to amplification of target sequences. All samples

DNA Methylation Analysis of BRD1
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were run in triplicate. Primer sequences are listed in S2 Table. For measuring the basal expres-

sion levels of total BRD1 and transcript variants containing exon 1C, 1B, and 1A in HeLa and

SH-SY5Y cells, gene expression was calculated by the efficiency corrected method [21] using

the expression of the TBP and PGK1 genes for normalization. For experiments involving drug

addition to cell cultures, relative gene expression was calculated for each gene by the “standard

curve method” [22] using serial dilutions of 1/5, 1/25, 1/125, and 1/625 from a pool of cDNA.

Five normalization candidate genes (HPRT, PGK1, POLR2A, RPS13, and TBP) were included

for each treatment and target gene expression was normalized to the geometric mean of the

expression levels of the two most stable reference genes as determined by the Normfinder soft-

ware [23]. The efficiencies of all primers pairs designed were tested prior to final sample mea-

surements and only those with efficiencies close to 100% (90–110%) were included in the

study.

Bisulfite conversion

500 ng DNA isolated from each subject were bisulfite converted using an EZ DNA Methyla-

tion kit (Zymo Research, CA, USA) according to the manufacturer’s instructions. Briefly, after

addition of M-dilution buffer to DNA each sample was incubated at 37˚C for 15 min. CT con-

version reagent was added and samples were incubated at 50˚C for 16 hours before final clean

up. The same procedure was used for conversion of DNA extracted from cell lines except for

using 400 ng DNA of each sample.

Bisulfite sequencing of single clones

Four genomic regions upstream of the BRD1 gene were included for bisulfite sequencing. The

regions were amplified with HotStarTaq DNA Polymerase (Qiagen) with the primers listed in

S3 Table. The primers were designed to be methylation independent by avoiding CpGs at

primer binding sites. To prevent amplification bias, the primers were tested at several anneal-

ing temperatures, and the highest temperature providing sufficient product was selected [24].

For each region, a 20 μL reaction was prepared according to standard protocol with 30 ng

bisulfite converted DNA (theoretical amount), and a final concentration of 0.5 μM of each

primer, and 1.5 mM MgCl2. The cycling conditions were: 95˚C for 15 min followed by 40

cycles of: 94˚C 30 sec, x˚C 2 min, and 72˚C 1 min, with a final step at 72˚C for 10 min. The

annealing temperature for each assay is listed in S3 Table. PCR products were separated on a

2% agarose gel stained with ethidium bromide. PCR products of expected sizes were cut out

from the gel and isolated with a QIAquick Gel Extraction Kit (Qiagen). PCR products were

cloned using the InsTAclone™ PCR Cloning Kit (Thermo Scientific) and selected plasmid

DNA was extracted with a GeneJET Plasmid Miniprep Kit (Thermo Scientific). Plasmid was

sequenced with primers M13-F20 and if necessary T7-981079 (GATC Biotech, Constance,

Germany).

Pyrosequencing assay

Two genomic regions upstream of the BRD1 gene were selected for pyrosequencing and ampli-

fied with the primers listed in S3 Table. The first assay (Pyrosequencing region 2) was designed

to target rs138880 and cg15145965 (specifying a probe for a specific CpG site on the Illumina

Infinium Human Methylation 450K Bead Array). The second assay (Pyrosequencing region 3)

was designed to target cg06057569 and CpG sites in its close proximity. As described above,

the primers were designed to be methylation independent and the highest possible annealing

temperature was used. Amplification was performed as described above with the following

deviations: 50 μL reactions were prepared with 40 ng bisulfite converted DNA (theoretical

DNA Methylation Analysis of BRD1
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amount) and a final concentration of 0.2 μM of each primer was used. The annealing tempera-

ture for each assay is listed in S3 Table. Amplification products were sequenced on a PyroMark

Q24 Advanced (Qiagen) using the PyroMark Q24 Advanced CpG Reagents (Qiagen), accord-

ing to the manufacturer’s instructions.

MetQTL analysis and correlation testing

Associations between DNA methylation proportions and rs138880 genotype (cis-MetQTLs ± 5

kb from SNP) in adipose tissue was analyzed using the Genevar (GENe Expression VARiation)

platform [25] applying default settings with a p-value cutoff of<0.001. The samples (n = 603)

were collected from the TwinsUK cohort comprising healthy females of European descent

[26]. For details on statistics see Grundberg et al. [27]. Correlation between methylation pro-

portion and fetal age was assessed with the Pearson’s correlation test (assuming that both X

and Y values were sampled from populations that follow a Gaussian distribution) using the

GraphPad Prism 5.0 software.

Results

Differences in relative expression of three alternative BRD1 5’ UTRs

In order to evaluate genomic regions in the BRD1 locus for their potential importance in tran-

scriptional regulation, we aimed to quantify the relative abundances of three different 5’ UTRs

(exon 1C, 1B, and 1A) located upstream of exon 1 (Fig 1a) in RNA samples from HeLa

(n = 3/group) and SH-SY5Y (n = 3/group) cells. The alternative versions of exon 1 (exon 1C,

1B, and 1A) are supported by evidence from respectively, GenBank mRNA variant AF005067,

CR456408, and AK292428 as well as EST sequences. To quantify transcripts containing these

different 5’ UTRs irrespective of which downstream exons were present primers were located

internally in the exons (S2 Table). In HeLA cells each 5’ UTR comprised: exon 1A, 88.2%;

exon 1B, 11%; and exon 1C, 0.8%. In SH-SY5Y cells each 5’ UTR comprised: exon 1A, 97.5%;

exon 1B, 2.2%; and exon 1C, 0.3%. To further investigate whether transcripts containing exon

1A, 1B, and 1C are separate entities, we PCR amplified and DNA sequenced transcript regions

starting at either exon 1A, 1B, or 1C and ending in exon 2 using oligo(dt) primed cDNA from

HeLa and SH-SY5Y cells (S1 Fig). Amplification revealed in each case one major fragment of a

size and DNA sequence in accordance with the following: exon 1A splicing to exon 1-exon 2;

exon 1B splicing to exon 1-exon 2; and exon 1C splicing to exon 2, demonstrating that the 5’

UTRs are part of different transcripts. Similar results were obtained by amplifications ending

in exon 4 and 6, respectively (S1 Fig), although longer fragments containing exon 1C were not

efficiently amplified most likely due to its low expression levels. BRD1 exists in a short and

long transcript variant resulting from alternative splicing of exon 7 and it has been suggested

that transcription from exon 1A results in the long variant whereas transcription from exon

1C results in the short variant [1]. Transcript predictions available e.g. in the Ensembl browser

indicates the existence of up to 6 additional BRD1 transcript variants including an exon 1C

variant with a long version of exon 7. However, we note that the associated evidence for these

8 transcript variants does not clearly reveal whether certain 5’ UTRs are selectively associated

with specific versions of exon 7. Additionally, this has neither been characterized in the cell

lines investigated in the present study. In HeLa and SH-SY5Y cells, amplification from exon

1A and 1B ending in either exon 7 or 8 revealed in our experiments almost equal amplification

of two fragments (S1 Fig). These fragments had sizes and DNA sequences (in those cases were

they could be analyzed separately) comparing to respectively, long and short variants of exon

7. This suggests that differential splicing of exon 7 is independent of the actual 5’ UTR of the

transcript.

DNA Methylation Analysis of BRD1
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Fig 1. Structure of the BRD1 promoter regions and methylation proportions in region 1–4 in cell lines. (a)

Structure of the BRD1 promoter regions. BRD1 comprises 12 coding exons with the first coding exon 1 illustrated in the

figure. BRD1 was initially described to feature two splice variants, a long and a short resulting from alternative splicing

of exon 7 and with transcription initiated from respectively, exon 1 with a 487 bp 5’ UTR (exon 1C) or from a non-coding

exon located more than 3 kb upstream of the common exon 1 (exon 1A). We confirm the presence of a third non-coding

DNA Methylation Analysis of BRD1
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DNA methylation vary between BRD1 alternative promoters and

between cell lines

To investigate whether the differences in relative expression of the three 5’ UTRs are associated

with differences in DNA methylation we performed bisulfite sequencing of four regions within

and upstream of the BRD1 gene (Fig 1a). For the 33 CpG sites investigated in region 1 (within

the coding region of exon 1/exon 1C), the average CpG methylation proportion was 97.6% in

HeLa cells (Fig 1b) and 97.3% in SH-SY5Y cells (Fig 1c). In region 2 (upstream of exon 1C), all

four CpG sites were fully methylated in HeLa cells (Fig 1b) whereas in SH-SY5Y cells the aver-

age methylation proportion for the four CpG sites was 92.5% (Fig 1c). For region 3 (upstream

of exon 1B), methylation proportions were low in HeLa cells at most CpG sites with an average

of 7.5% (Fig 1b) whereas in SH-SY5Y cells, methylation was substantially higher with an aver-

age proportion of 45.8% (Fig 1c). For region 4 (upstream of exon 1A), methylation proportions

were generally low in both cell lines with an average of 4.5% in HeLa cells (Fig 1b) and 2.6% in

SH-SY5Y cells (Fig 1c). In this region, most methylation was attributed to sites that were spe-

cific to each cell line.

The co-occurrence of high DNA methylation proportions in region 2 and very low relative

abundance of exon 1C containing transcripts (0.8% and 0.3%, respectively) suggests that DNA

methylation could be a determining factor in transcriptional repression of this variant in HeLa

and SH-SY5Y cells. DNA methylation in region 3 could play a role in the apparent differences

in the transcription of the exon 1B containing variant between cell lines (11% and 2.2%,

respectively), as higher DNA methylation proportions in SH-SY5Y cells corresponds with

lower expression levels and vice versa in HeLa cells. In contrast, the high relative abundance of

exon 1A containing transcripts in both cell lines (88.2% and 97.5%, respectively) suggests that

the high methylation proportions of CpG site 65 and 66 in region 4 may not be important

determinants for transcriptional regulation.

Inhibition of DNA methylation is associated with increased BRD1

transcription and reduced promoter methylation

To confirm that DNA methylation is important for transcriptional regulation of BRD1, HeLa

and SH-SY5Y cells were treated with the DNA methyltransferase (DNMT) inhibitor Zebu-

larine for 72 hours and the relative expression of different BRD1 exons were measured using

qPCR. In HeLa cells, the total BRD1 expression (as measured by quantification of transcripts

exon located 1.4 kb upstream exon 1 (exon 1B). Additionaly, the alternative versions of exon 1 (exon 1C, 1B, and 1A)

are supported by sequence evidence from different cell types including respectively, GenBank mRNA variant

AF005067, CR456408, and AK292428 as well as EST sequences. On the figure the genomic localizations of SNP

rs138880 and 6 CpG probes from the Illumina Infinium Human Methylation 450K Bead Array are illustrated:

cg15144773, cg21032013, cg02550151, cg15145965, cg06057569, and cg16001335. For DNA methylation analysis,

four regions (region 1–4) were analyzed by bisulfite sequencing. The number of CpG sites in each region is: region 1:

33, region 2: 4, region 3: 12, and region 4: 66. Region 2 and 3 was also examined by pyrosequencing. Pyrosequencing

of region 2 included CpG sites 3 and 4 from the region 2 bisulfite sequencing assay, including cg15145965 (region 2,

CpG site 3) and SNP rs138880. Pyrosequencing of region 3 covered the same region as examined by bisulfite

sequencing but because of sequencing limitations it only included CpG sites 1–6 and 9–12. These CpG sites include

cg06057569 (region 3, CpG site 6) and cg16001335 (region 3, CpG site 12). The genomic localizations of three CpG

islands in the region are shown as well. (b) Methylation proportions as determined by bisulfite sequencing of region 1–4

in HeLa cells. Cells were cultured under standard conditions and DNA was isolated for bisulfite sequencing with

primers listed in S3 Table. Data are presented as mean cytosine methylation proportions (C-methylation) at each CpG

site +SEM (n = 9–10 clones for each region). For Region 1 and 4 CpG positions were merged when the methylation

proportions were equal for adjacent sites. (c) Methylation proportions as determined by bisulfite sequencing of region

1–4 in SH-SY5Y cells using the same conditions as described for HeLa cells. Data are presented as mean cytosine

methylation proportions (C-methylation) at each CpG site +SEM (n = 9–10 clones for each region).

doi:10.1371/journal.pone.0170121.g001
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containing the exon 11–12 boundary) increased 100% above the levels measured in

untreated cells (p<0.001) at Zebularine doses of 0.25 mM (Fig 2a). This was accompanied by

a 131% increase in expression of exon 1B containing transcripts (p<0.001). Although the

expression of exon 1C containing transcripts under the same conditions were 185% above

the levels measured in untreated cells the difference was not statistically significant likely due

to high variance arising from its low expression levels (Fig 2a). In SH-SY5Y cells there was

no significant effect of Zebularine on the expression of any of the BRD1 transcripts investi-

gated (S2 Fig).

To investigate whether Zebularine actually affects DNA methylation in the BRD1 locus,

we measured changes in DNA methylation upon treatment of HeLa cells with 0.25 mM

Zebularine. Because of the increase in expression of exon 1C and 1B containing transcripts

upon Zebularine treatment (Fig 2a), we focused on the genomic regions immediately

upstream of these exons, that is region 2 and 3, respectively (Fig 1a). Pyrosequencing assays

revealed methylation patterns in untreated cells (Fig 2b) that were consistent with those

observed by bisulfite sequencing (Fig 1b). The analysis further revealed that Zebularine had

profound effects on DNA methylation in both regions. For region 2, Zebularine treatment

resulted in a significant reduction in methylation proportions from 94.0% to 69.7%

Fig 2. Expression of BRD1 transcripts and methylation proportions in region 2 and 3 following Zebularine treatment

in HeLa cells. (a) Expression of BRD1 transcripts in HeLa cells following Zebularine treatment. The total BRD1 expression and

expression of transcript variants containing exon 1C, 1B, and 1A were measured in RNA extracted from HeLa cells following

exposure to 0, 0.05, 0.1, or 0.25 mM Zebularine for 72 hours. PGK1 and TBP were found to be the most stably expressed

reference genes and were used for normalization. Data are presented as mean percentages of the mean value of the control

group (no Zebularine treatment) +SEM (n = 3/group). *p<0.05, ***p<0.001, one-way ANOVA with Dunnett’s post-hoc tests.

(b) Methylation proportions as determined by pyrosequencing of region 2 and 3 following Zebularine treatment in HeLa cells.

Methylation proportions were measured by pyrosequencing of region 2 and 3 in DNA extracted from HeLa cells following

exposure to 0 or 0.25 mM Zebularine for 72 hours. Data are presented as mean cytosine methylation proportions (C-

methylation) at each CpG site +SEM (n = 3/group). *p<0.05, ***p<0.001, unpaired t-test.

doi:10.1371/journal.pone.0170121.g002
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(p<0.001) at CpG site 3 and a reduction from 90.3% to 67.7% at site 4 (p<0.001) (Fig 2b).

For Region 3, a significant reduction from 6.7% to 4.3% was observed at CpG site 1 (p<0.05),

from 10.7% to 9.3% at site 3 (p<0.05), from 16.3% to 14.0% at site 4 (p<0.05), from 7.0% to

4.0% at site 9 (p<0.05), from 6.7% to 4.0% at site 10 (p<0.05), from 25.0% to 12.7% at site 11

(p<0.001), and from 46.3% to 25.0% at site 12 (p<0.001) (Fig 2b). Thus, although some of

the differences in region 3 were very small, the increase in expression of transcripts contain-

ing exon 1C and 1B in general corresponds with reduced methylation proportions in their

upstream genomic regions.

Association between the rs138880 risk allele and increased DNA

methylation in adipose tissue

Because of the genomic location of the schizophrenia rs138880 risk variant immediately

upstream of exon 1C (Fig 1a) and the observation that it is associated with reduce BRD1
expression [14], we decided to investigate if it is also associated with increased methylation in

its vicinity in a public available dataset including Ilumina 450K adipose methylome data from

648 twins (the Multiple Tissue Human Expression Resource (MuTHER)) [27]. MetQTL analy-

sis encompassing a distance up to 10 kb surrounding the SNP (+/- 5 kb) using the Genevar

(GENe Expression VARiation) platform [25] revealed that the risk allele was significantly asso-

ciated with increased methylation at three probe sites (p-value threshold = 0.001): cg02550151,

cg15145965, and cg06057569 (Fig 1a). As cg02550151 and cg15145965 are located in genomic

region 2 and cg06057569 in region 3, it is possible that increased methylation of these sites

represses transcription of BRD1 in risk allele carriers.

The rs138880 risk allele is associated with moderate regional BRD1

promoter hypermethylation in blood

To assess whether DNA methylation may also be correlated to the rs138880 genotype in

other tissues, we measured methylation in DNA extracted from blood obtained from 48

healthy females; 24 homozygous (A/A) and 24 heterozygous (A/C) that had previously been

genotyped [9]. Since the sex of the subjects was recorded in the biobank, we were able to

obtain a homogenous collection of samples in relation to this parameter, however only

females were analysed since they were far more abundant in the biobank than males. Pyro-

sequencing was used to measure DNA methylation proportions at several sites in region 2

and 3 (Fig 1a), including cg15145965 (region 2, CpG site 3) and cg06057569 (region 3, CpG

site 6). In addition, the pyrosequencing assay for region 2 was designed to allow confirma-

tion of the rs138880 genotype (S3 Fig). In region 2, we observed that both investigated CpG

sites were highly methylated in both A/A and A/C individuals with levels above 93% for

CpG site 3 and above 88% for CpG site 4 (Fig 3). Additionally, for CpG site 3 we observed a

very modest though significant difference in DNA methylation with a methylation propor-

tion of 93.08% in A/A individuals compared to 93.38% in A/C individuals (p<0.05). In

region 3, we observed a larger variation in methylation proportions with levels ranging

from 12% to 51% at the investigated CpG sites in A/A individuals (Fig 3). Importantly, we

found that at all the 10 investigated CpG sites, methylation proportions were significantly

higher (between 3.6% and 6.9%) in A/C compared to A/A individuals (Fig 3). Thus, it seems

that risk allele carriers have slightly increased DNA methylation in the BRD1 locus also in

blood, a finding that agrees well with the approximately 3% reduction in BRD1 mRNA

expression found in B lymphoblastoid cell lines derived from individuals of the same

rs138880 genotype [14].
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Risk allele hypermethylated regions undergo epigenetic changes during

brain development

It has previously been suggested that BRD1 plays an important role in neurodevelopment [3,8]

and reduced levels of BRD1 could be a risk factor in schizophrenia with a pathogenic mecha-

nism in line with the neurodevelopmental hypothesis of the disorder [28]. To examine if geno-

mic regions being hypermethylated in rs138880 risk allele carriers undergo methylation

changes during fetal brain development, we assessed the correlation between DNA methyla-

tion proportions near the promoter region of BRD1 and fetal age in an online dataset with Ilu-

mina 450K brain methylome data from 179 fetuses (range = 23–184 days post-conception)

[29]. Two probes, cg15144773 and cg21032013 located in exon 1/exon 1C (Fig 1a) revealed no

correlation (Fig 4). Two probes located immediately upstream of exon 1C (Fig 1a) revealed sig-

nificant increases in DNA methylation proportions with increasing fetal age, cg02550151

(p<0.0001, r = 0.41) and cg15145965 (p<0.05, r = 0.16) (Fig 4). Among probes located

upstream of exon 1B (Fig 1a), one revealed no correlation (cg06057569) whereas the other,

cg16001335 revealed significant decreases in methylation with increasing fetal age (p<0.0001,

r = 0.30) (Fig 4). To further explore whether these risk allele hypermethylated regions undergo

epigenetic changes also when comparing fetal and adult frontal cortex, we extracted summary

statiscs data for the same probes (S4 Table) from a recent DNA methylation study including

n = 35 fetal and n = 300 postnatal samples [18]. Interestingly, we find significant (although

small to moderate) differences in DNA methylation proportions for 5 out of the 6 probes

(cg15144773, cg02550151, cg15145965, cg06057569, and cg16001335, p<0.001 for all). The

largest differences in methylation proportions (and the most significant) are observed for the

cg06057569 and cg16001335 probes in region 3 (with the fetal brains having higher methyla-

tion proportion than postnatal brains), hereafter the differences in methylation observed for

the cg02550151 and cg15145965 probes in region 2 (also with the fetal brains having higher

methylation proportion than postnatal brains), whereas the methylation differences observed

for the cg15144773 and cg21032013 probes in region 1 are, respectively, only very slight (with

the fetal brains having lower methylation proportions than the postnatal brains) or not signifi-

cant. Of further note, there seems to be a significant and high correlation between DNA meth-

ylation differences in both region 2 and region 3 and differences in BRD1 expression assessed

in the same samples (p<0.001 for all), especially for DNA methylation differences observed

Fig 3. Methylation proportions in region 2 and 3 in blood from healthy individuals. Methylation proportions as determined

by pyrosequencing of region 2 and 3 in blood from healthy individuals. Methylation proportions were measured by

pyrosequencing of region 2 and 3 in DNA extracted from blood obtained from healthy females being either homozygous (A/A) or

heterozygous (A/C) for SNP rs138880. The assay designed for region 2 allowed confirmation of the rs138880 genotype. Data are

presented as mean cytosine methylation proportions (C-methylation) at each CpG site +SEM (n = 24/group). *p<0.05, **p<0.01,

***p<0.001, unpaired t-test.

doi:10.1371/journal.pone.0170121.g003
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with the cg16001335 probe in region 3, p = 9.86E-26. Unfortunately, we were not able to per-

form cis-MetQTL analysis of the rs138880 SNP in this dataset since it was not genotyped.

Commonly used mood stabilizers differently affect BRD1 transcription

It has been suggested that upregulation of BRD1 is involved in stress resilience and response to

antidepressants [5,6] and reduced risk for schizophrenia [14]. Thus, we decided to investigate

if therapeutic doses of three commonly used mood stabilizers that have profound effect on

Fig 4. Methylation proportion changes in the BRD1 locus during fetal neocortex development.

Methylation proportions in the BRD1 locus during fetal neocortex development. A public available dataset was

utilized to correlate DNA methylation proportions with fetal age (n = 179, range = 23–184 days post-

conception). DNA methylation data was available for probes from the Illumina Infinium Human Methylation

450K Bead Array. Probes located near the promoter region of BRD1 were assessed for correlation between

DNA methylation proportions and fetal age. All probes that revealed age related changes in methylation

proportions and some that did not are illustrated. Statistical analysis was performed with Pearson’s correlation

test.

doi:10.1371/journal.pone.0170121.g004
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DNA methylation levels [19] affect expression of BRD1 in SH-SY5Y cells. We find that

SH-SY5Y cells due to their origin (neuroblastoma) and neuronal characteristics represent a

better model than HeLA cells to investigate whether brain directed drugs (mood stabilizers)

would result in increased expression of BRD1 and associated changes in methylation. Gener-

ally, the mood stabilizers caused diverse effects on the expression of BRD1 as measured using

qPCR (Fig 5a). For Lithium, the highest dosage (1.2 mM) caused a 13% decrease in the

Fig 5. Expression of BRD1 transcripts and methylation proportions in region 2 and 3 in SH-SY5Y cells following drug treatment.

(a) Expression of BRD1 transcripts in SH-SY5Y cells following Lithium, Valproate, and Carbamazepine treatment. The total BRD1

expression and expression of transcript variants containing exon 1C, 1B, and 1A were measured in RNA extracted from control cells or

following exposure of the cells to the lowest and highest therapeutic dosage of the drugs for 72 hours in SH-SY5Y cells. Data are presented

as mean percentages of the mean value of the control group (no drug treatment) +SEM (n = 3/group). ***p<0.001, one-way ANOVA with

Dunnett’s post-hoc tests. (b) Methylation proportions as determined by pyrosequencing of region 2 and 3 following Carbamazepine

treatment in SH-SY5Y cells. Methylation proportions were measured by pyrosequencing of region 2 and 3 in DNA extracted from SH-SY5Y

cells following exposure to 0 or 0.1 mM Carbamazepine for 72 hours. Data are presented as mean cytosine methylation proportions (C-

methylation) at each CpG site +SEM (n = 3/group). Group means were compared by unpaired t-test.

doi:10.1371/journal.pone.0170121.g005
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expression of exon 1B containing transcripts (p<0.05). Valproate, both 0.3 mM and 0.6 mM,

caused an approx. 10% increase in the expression of exon 1A containing transcripts (p<0.05).

Carbamazepine in a dosage of 0.1 mM caused a 15% increase in the expression of total BRD1
(p<0.001). In the latter case, the changes in the expression of the alternative exon 1 variants

were not significant albeit tendencies for increased expression of 90%, 24%, and 10% for exon

1C, 1B, and 1A, respectively, were observed (Fig 5a). To dissect mechanisms of action of the

mood stabilizer causing the most profound transcriptional upregulation of BRD1, we mea-

sured methylation proportions in DNA extracted from cells treated with 0.1 mM Carbamaze-

pine for 72 hours with the pyrosequencing assays designed for region 2 and 3. The

pyrosequencing assays revealed methylation patterns (Fig 5b) consistent with those observed

by bisulfite sequencing in untreated cells (Fig 1c), however Carbamazepine treatment in

SH-SY5Y cells had no effect on DNA methylation proportions at any of the investigated CpG

sites (Fig 5b). Thus, these results indicate that Carbamazepine most likely affects BRD1 tran-

scription in SH-SY5Y cells by another mechanism.

Discussion

We present evidence that BRD1 transcription is initiated from three alternative promoters

that show large differences in activity and might be regulated by DNA methylation. We also

find that the schizophrenia-associated C allele of rs138880 not only correlates with slightly

reduced BRD1 expression but also with moderately increased DNA methylation in BRD1
promoter regions in both adipose tissue and blood. Interestingly, we find that these risk allele

hypermethylated regions undergo changes in methylation during brain development and

that these changes correlate well with changes in BRD1 expression. Finally, we demonstrate

that commonly used mood stabilizers affect the expression of BRD1 in SH-SY5Y cells, how-

ever most likely by mechanisms other than DNA methylation changes in the promoter

regions studied.

For the genomic regions upstream of exon 1A and exon 1B, data from The ENCODE Proj-

ect: ENCyclopedia Of DNA Elements [30] show binding of RNA Polymerase II, large clusters

of transcription factors as well as acetylation of lysine 27 of the H3 histone protein, all of which

support our evidence that these regions participate in transcriptional regulation of BRD1 in

cell lines. For the exon 1C containing transcript variant we find very low expression in both

cell lines investigated, however still the genomic region located upstream do show promoter

activity in murine neuroblastoma cells [14]. Our finding that exon 1A and 1B are part of both

long and short exon 7 transcript variants encoding protein isoforms with clearly distinct prop-

erties [1,4] indicate that the 5’ UTRs are more likely to be important for developmental and/or

tissue specific expression than for alternative splicing [31].

When genes have several promoters, DNA methylation may serve as a mechanism for con-

trolling alternative promoter usage [32]. In HeLa cells treated with Zebularine we observed

that methylation covaried negatively with expression of exon 1B containing transcripts

whereas it covaried only somewhat or not at all with the expression of exon 1A containing

transcripts. This is likely because the sites in region 3 with highest methylation proportions are

located approximately 400 bp upstream of exon 1B (CpG site 11 and 12) whereas in region 4,

the sites with highest methylation proportions are located approximately 700 bp upstream of

exon 1A (CpG sites 65 and 66). Thus, CpG site 65 and 66 in region 4 may rather be important

for creating a boundary and stabilizing the nucleosomes at the interface before the potentially

nucleosome depleted region [33,34]. Indeed most cell lines examined in The ENCODE Project

are highly methylated at CpG site 66. In HeLa cells, Zebularine treatment increased expression

of exon 1C and decreased methylation of CpG site 3 and 4 in region 2. This emphasizes that
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DNA methylation at these sites are most likely repressing transcription but several other CpG

sites located in the region could be equally important. In SH-SY5Y cells we observe no effect of

Zebularine on BRD1 expression. Zebularine blocks DNMT activity and this prevents mainte-

nance methylation during DNA replication. Therefore, the most likely explanation for the lack

of effect in SH-SY5Y cells is that the growth rate is substantially higher in HeLa than in

SH-SY5Y cells resulting in a higher loss of methylation upon treatment.

Much effort put into identification of risk factors for schizophrenia has revealed SNPs sig-

nificantly associated with the disorder however studies are needed to reveal their mechanistic

contribution to the pathogenesis. We have recently demonstrated that the risk allele of

rs138880 located in one of the BRD1 promoter regions very close to the transcription start site

causes a small (approximately 3%) but significant decrease in the expression of BRD1 in B lym-

phoblastoid cell lines [14]. In addition, the risk allele has lower transcriptional drive in a neu-

ronal cell line (approximately 23% compared to the A allele) [14]. Here we find that the risk

allele of rs138880 (the C allele) is associated with a moderate increased methylation in region

3. This genomic region is located in the potential promoter region of the exon 1B containing

transcript variant. Based on our data, DNA methylation in this specific genomic region may

affect the expression of the exon 1B containing transcript variant. With this transcript being

an apparent minor variant in cell lines, it may explain why the effect of the risk allele on BRD1
expression is small in B lymphoblastoid cell lines. This said, the rs138880 SNP is also signifi-

cantly associated with expression of other genes e.g. in cerebellum it seems to associate with

eventual expression of a lincRNA (RP3-522J7.6) encoded by a locus located approximately 13

kb further upstream of the BRD1 promoter region. This association could contribute to further

effects on epigenetic regulation, however due to the design of our experiments this can not be

further enlightened in the present study.

The risk allele of rs138880 is associated with moderately increased methylation at several

CpG sites in region 3 and the reason for this is currently unknown. However, evidence sug-

gests that DNA methylation could be a secondary event following decreased promoter activity

[35]. Active promoter regions are nucleosome-depleted [36] and it has been found that

DNMT binding requires nucleosomes and that binding cannot occur if the nucleosomes are

marked with the activating histone marks H3K4me2 or H3K4me3 [37]. Thus in the case of

BRD1, it might be that methylation is a secondary consequence of decreased binding of a tran-

scriptional activator or increased binding of a transcriptional repressor to the risk allele. This

is supported by other studies, for example the finding that a SNP in the promoter region of the

MLH1 gene caused a decreased transcriptional drive and the less active allele was more likely

to become methylated in somatic cells [38]. Previous comparisons of predicted transcription

factor binding at the genomic region surrounding rs138880 with the MatInspector software

[39] suggested that the transcriptional repressor HES1 could bind specifically to the risk allele

[8]. In addition, the same software predicts that BPFT and RBP2 could bind specifically to the

A-allele wheras the HaploReg tool predicts differential binding of BRCA1, FAC1 and Egr-1 to

the two variant alleles [40]. Thus, it might be that differences in transcription factor binding

decrease transcriptional activity of the risk allele and lead to increased methylation however

direct experimental data to support this is lacking.

In the developing human fetal brain, BRD1 is expressed more at early embryonic stages

than in the later stages [4]. Interestingly, the two BRD1 promoter regions exhibiting moder-

ately increased DNA methylation in adipose tissue and blood from carriers of the rs138880

risk allele co-localize with CpG sites undergoing DNA methylation changes during fetal brain

development and being differently methylated and associated with changes in BRD1 expres-

sion in fetal and adult frontal cortex. Based on the inverse methylation changes—with increas-

ing methylation at the promoter region upstream of exon 1C and decreasing methylation at
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the promoter region upstream of exon 1B it could be speculated that expression of the exon 1C

containing transcript variant is higher in early fetal brain and then gradually decreases whereas

for exon 1B it is the opposite. It is currently unknown whether the rs138880 risk allele influ-

ences DNA methylation in fetal brains but importantly, if the same phenomenon (that is

hypermethylation in region 2 and 3 of the risk allele) occur in fetal brains it would suggest that

expression of the exon 1C containing transcript variant is repressed during early fetal develop-

ment in risk allele carriers and exon 1B expression is repressed later in fetal development and

persisting into adulthood. Such dysregulation of BRD1 could adversely influence expression of

several genes being important for normal brain development since BRD1 has been found to

bind to the promoter regions and potentially regulate the transcription of a number of schizo-

phrenia risk genes [4].

In conclusion, our studies have provided new knowledge regarding the transcriptional reg-

ulation of the BRD1 gene. This is particularly interesting in relation to neurodevelopment and

mental disorders since BRD1 has been implicated in both. Not only is it possible that dysregu-

lation of BRD1 leads to neurodevelopmental disturbances but it may be equally important in

the adult brain as increased DNA methylation may prevent stress induced BRD1 upregulation

and stress adaptions. Future studies may reveal whether modulation of BRD1 expression is rel-

evant as a therapeutic target.
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