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Abstract This paper deals with topological design optimiza-
tion of elastic, continuum structures without damping that are
subjected to time-harmonic, design-independent external dy-
namic loading with prescribed excitation frequency, ampli-
tude and spatial distribution. The admissible design domain,
the boundary conditions, and the available amount(s) of ma-
terial(s) for single- or bi-material structures are given. An im-
portant objective of such a design problem is often to drive the
resonance frequencies of the structure as far away as possible
from the given excitation frequency in order to avoid reso-
nance and to reduce the vibration level of the structure. In
the present paper, the excitation frequency is defined to be
‘low’ for positive values up to and including the fundamental
resonance frequency of the structure, and to be ‘high’ for
values beyond that. Our paper shows that it may be very
important to consider different design paths in problems of
minimum dynamic compliance in order to obtain desirable
solutions for prescribed excitation frequencies, and a so-
called ‘incremental frequency technique’ (IF technique) is

applied for this. Subsequently, the IF technique is integrated
into an extended, systematic method named as the ‘general-
ized incremental frequency method’ (GIF method) that is de-
veloped for gradient based dynamic compliance minimization
for not only ‘low’, but also ‘high’ excitation frequencies of the
structure. The GIF method performs search for and determi-
nation of the solution to the minimum dynamic compliance
design problem, but this is subject to the complexity that
problems with prescribed high excitation frequencies exhibit
disjointed design sub-spaces. Each of these sub-spaces is as-
sociated with a local minimum value of the dynamic compli-
ance, so in general the ‘global optimum solution’ will have to
be selected as the ‘best’ solution from among a number of
local candidate solutions. Illustrative examples of application
of the IF technique and the GIF method are presented in the
paper.
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1 Introduction

Since the original papers (Bendsøe and Kikuchi 1988; Bendsøe
1989), topology optimization of continuum structures has mani-
fested itself as an extremely active area of research as reflected in
the more recent publications like the review and survey papers
(Eschenauer and Olhoff 2001; Kang et al. 2006; Deaton and
Grandhi 2014), the textbook (Bendsøe and Sigmund 2003), and
the proceedings (Bendsøe et al. 2006; Rozvany and Lewinski
2013), where new areas of application of topology optimization
are discussed, and an abundance of references are available.
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Thus, among several other sub-areas, during the latest de-
cades, topology optimization of continuum structures has
been developed and applied in the following sub-areas of dy-
namic and vibro-acoustic topological design,

& dynamic compliance and response (Ma et al. 1995; Min
et al. 1999; Shu et al. 2011; Kang et al. 2012; Yang and Li
2013; Zhang and Kang 2014; Zhao and Wang 2015; Xu
et al. 2015; Jung et al. 2015; Liu et al. 2015; Olhoff and
Niu 2015),

& vibro-acoustic response (Jog 2002a, b, Olhoff and Du
2006; Jensen 2007; Calvel and Mongeau 2007; Du and
Olhoff 2007a; Niu et al. 2010; Yoon 2010; Nandy and Jog
2011; Du et al. 2011; Yang and Du 2012; Du and Yang
2015), and

& eigenfrequencies, eigenfrequency gaps, and band-gaps
(Sigmund 2001; Sigmund and Jensen 2003; Jensen
2003; Halkjær et al. 2006; Du and Olhoff 2007a, b, c,
Olhoff et al. 2012).

To the knowledge of the authors, it seems that in previous
works on dynamic compliance and vibro-acoustic topology
design optimization, only little attention has been paid to the
difficulty that for a prescribed ‘high’ excitation frequency of
forced vibration, a gradient-based optimization algorithm (like
e.g., the MMA method, Svanberg 1987) will normally only
furnish a local optimum solution. This is due to the multiple
non-convexity of the response curve for the dynamic compli-
ance depicted in Fig. 4, and is briefly explained below.
According to our experiences and studies, it is necessary to
overcome this difficulty because a local optimum may often
be located far away from the ‘global’ optimum and be useless
in engineering practice, so it is important to address this
problem.

It is important to emphasize that in the context of this paper,
the ‘fundamental (first) resonance frequency’ denotes the low-
est eigenfrequency of vibration whose eigenmode is not or-
thogonal to the amplitude mode of the prescribed excitation.

Moreover, the term ‘low’ excitation frequencies covers giv-
en excitation (i.e. loading) frequencies with positive values up
to and including the fundamental resonance frequency (or
lowest / first eigenfrequency of vibration) of the structure.
All other positive excitation frequencies are labelled as ‘high’
excitation frequencies. This implies that the upper limit for the
‘low’ excitation frequencies is independent of the level of the
external excitation frequency, and hence constitutes a more
objective limit for minimum dynamic compliance design.

An important incremental technique called the ‘incremen-
tal frequency technique’ (IF technique) was used very success-
fully for the handling of the optimum design problems, be-
cause, both for low and high excitation frequencies, this tech-
nique can be applied to sequentially increase (or decrease) a
variable excitation frequency from a suitably chosen initial

value up to (or down to) a prescribed, fixed value of the exci-
tation frequency. At the same time, the IF technique enables
the variable excitation frequency to ‘push’ a resonance fre-
quency of given order up (or down) in the frequency response
diagram.

Subsequently, the IF technique was integrated into a sys-
tematic, generalized method termed the ‘generalized incre-
mental frequency method’ (GIF method) which we developed
for search and determination of the topological design that
minimizes the dynamic compliance for a fixed, prescribed
low or high value of the excitation frequency.

With the GIF method and its governing equations for opti-
mality at hand, a prescribed ‘low’ excitation frequency rela-
tive to the initial design will be also low in the optimized
design (i.e, less than or equal to the fundamental resonance
frequency of the optimized structure). This means that a
unique, possibly global optimum solution can be determined
subject to a prescribed low excitation frequency.

The situation is more complex in cases where a fixed, pre-
scribed high excitation frequency is specified for the optimi-
zation. The reason is that the prescribed high excitation fre-
quency implies that the optimization problem is characterized
by having a number of disjointed design sub-intervals, see
Fig. 4, such that it is necessary to consider the possibility that
there may exist a set of different local optimum designs for
which the prescribed excitation frequency is placed between
different pairs of consecutive resonance frequencies. These
resonance frequencies are high, and their orders are different
from those of the initial design. Using the IF technique, we
finally identify the local optimum design that is associated
with the smallest value of dynamic compliance obtained,
and hereby determine the design that may be considered as
the global optimum solution to the problem with a high exci-
tation frequency.

It is believed that in addition to specific minimum dynamic
compliance design problems for macro-structures, the GIF
method may also be applied to general vibro-acoustic design
problems with both macro-level and micro-level.

The current paper is organized as follows. Section 2 first
presents the conventional mathematical formulation of a
single- or bi-material topology optimization problem subject
to a prescribed excitation frequency. This is followed in
Section 2.1 by brief descriptions of the SIMP interpolation
models for design of continuum structures with single- and
bi-materials, and Section 2.2 discusses simple modifications
of these models that may hinder occurrence of spurious local-
ized vibration modes. Section 2.3 then presents the adjoint
sensitivity analysis of the objective function of the optimiza-
tion problem, covering both the cases of design-independent
and design-dependent loads. In Section 2.4, the very useful
‘incremental frequency technique’ (IF technique) that is appli-
cable for both problems with low and high prescribed excita-
tion frequencies, is defined. Section 2.5 discusses the basic
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features of the IF technique based topology design of single-
material structures for minimum dynamic compliance subject
to a ‘high’ and a ‘low’ excitation frequency, respectively.

Section 3 presents some numerical examples of the IF tech-
nique based topology optimization of single-material struc-
tures. Two different design paths are investigated for the de-
sign of a plate-like, single-material structure in two sub-
examples with a prescribed ‘low’ excitation frequency. Here,
the first path leads to a ‘degenerate’ design with a very large
value of the static compliance, while the second path furnishes
a very desirable design with very low dynamic compliance
and a much improved static compliance.

Section 4 presents in detail the development of the GIF
method that is based on the IF technique described in
Section 2.4, and a procedure and a flow chart of the GIF
method are developed and discussed in Sections 4.1, 4.1.1
and 4.1.2. The procedure is a single, unified algorithm for
handling of both ‘low’ and ‘high’ excitation frequencies, as
well as single- and bi-material structures. In Section 4.1.1, this
algorithm is extended to be able to solve design problems with
a static compliance constraint as well.

In Section 5, two numerical examples demonstrate the use-
fulness of the GIF method for obtaining the ‘global optimum’
for a minimum dynamic compliance design problem associ-
ated with a prescribed ‘high’ value of the external excitation
frequency.

Finally, Section 6 provides a summary of the paper.

2 Formulation of topology design problem
for minimization of dynamic compliance

A ‘conventional formulation’ of the problem of optimizing the
topology of a continuum structure without damping for min-
imum value of the integral dynamic compliance of a single- or
bi-material structure can be written as follows in a finite ele-
ment setting:

min
ρe

F ¼ C2
d

� �
að Þ

Subject to :

Cd ¼
���PTU

��� ; bð Þ
K−ω2M
� �

U ¼ P ; cð Þ
X
e¼1

NE

ρeVe−V*≤0 ; V* ¼ αV0

� �
; dð Þ

0 < ρ≤ρe≤1 ; e ¼ 1 ;⋯; NEð Þ : eð Þ

ð1Þ

In (1a,b), the symbolCd stands for the dynamic compliance
defined as Cd= |P

TU|. Here, P denotes the vector of ampli-
tudes of a given external time-harmonic mechanical surface
loading vector p(t) =Peiωt, where ω denotes an external exci-
tation frequency that may be assigned the prescribed fixed

value ωp, and the symbol U in (1b,c) represents the vector of
magnitudes of the corresponding structural displacement re-
sponse vector a(t) =Ueiω t. Thus, U and P satisfy the dynamic
equilibrium equation (1c) for the steady-state harmonic vibra-
tion at the external frequency ω, with K and M representing
the N dimensional global structural stiffness and mass matri-
ces of the structure, where N is the number of DOFs. We note
that the above expression for the dynamic compliance Cd rep-
resents the numerical mean value of the magnitudes of the
surface displacements weighted by the values of the ampli-
tudes of the corresponding time-harmonic surface loading.
For the case of static loading (ω = 0), the expression directly
reduces to the traditional definition of static compliance, i.e.,
the work done by the external forces against corresponding
displacements at equilibrium.

In (1d), NE denotes the total number of finite elements in
the admissible design domain for the topology optimization
problem. The symbols ρe, e=1,…,NE, play the role as design
variables of the problem and represent the volumetric material
densities of the finite elements, with lower and upper limits ρ

and 1 specified for ρe in (1e). To avoid singularity of the
stiffness matrix, ρ is not zero, but taken to be a small positive

value like ρ = 10-3. In the volume constraint (1d), the symbol

α defines the volume fraction V*/V0, where V0 is the volume
of the admissible design domain, and V * is the given available
volume, respectively, of the solid material for a single-material
design problem and of the stiffer material 1* for a bi-material
problem.

It is noted from (1c) that the global dynamic stiffness ma-
trix Kd defined as Kd=K−ωp

2M may be negative definite
when the prescribed external excitation frequency ωp has a
high value, i.e., higher than the fundamental eigenfrequency
of free vibrations of the structure. In this case, we may have
PTU<0, and in order to include this possibility in our problem
formulation, we apply the absolute value of this scalar product
as the dynamic compliance Cd, see (1b). Moreover, to render
the problem differentiable, we choose the objective function F
as the square of the dynamic compliance. As indicated by 1,
the optimization problem is written in a ‘nested’ formulation,
and it is solved by successive iterations. In each iteration, the
dynamic equilibrium equation (1c) is solved in a direct way by
Gauss elimination in this paper.

2.1 SIMP interpolation models for topology optimization

2.1.1 SIMP model for single-material structures

The SIMP (Solid Isotropic Microstructure with Penalty) inter-
polation model for single-material topology design (see, e.g.,
Bendsøe 1989; Rozvany et al. 1992; Rozvany and Zhou 1991;
Bendsøe and Sigmund 1999) is used together with a density
filtering technique, see (Sigmund 1997; Sigmund and
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Petersson 1998), or (Bourdin 2001; Bruns and Tortorelli 2001;
Sigmund 2007), in order to avoid checkerboard formation
and dependency of topology solutions on finite element
mesh-refinement. Thus, the finite element elasticity ma-
trix Ee is expressed in terms of the elemental volumetric
material density ρe, 0≤ ρe≤ 1, and the penalization pow-
er p, p≥ 1, as

Ee ρeð Þ ¼ ρpeE
*
e ð2Þ

where Ee
* is the elasticity matrix of a corresponding

element with the fully solid elastic material the structure
is to be made of. By analogy with (2), for a vibrating
structure the finite element mass matrix may be
expressed as

Me ρeð Þ ¼ ρqeM
*
e ð3Þ

where Me
* represents the elemental mass matrix corre-

sponding to fully solid material, and the power q≥ 1.
Apart from exceptions briefly discussed in Section 2.2,
normally q= 1 is chosen. The global stiffness matrix K
and mass matrix M for the finite element based struc-
tural response analyses behind the optimization can now
be calculated by

K ¼
X
e¼1

NE

ρpeK
*
e ; M ¼

X
e¼1

NE

ρqeM
*
e ð4Þ

where Ke
* is the stiffness matrix of a finite element with

fully solid material, and NE denotes the total number of
finite elements in the admissible design domain.

2.1.2 Extended SIMP model for bi-material structures

The SIMP model for single-material design discussed in
Section 2.1.1 can be easily extended to bi-material design by
using the rule of mixtures (Bendsøe and Sigmund 1999; Du
and Olhoff 2007a,b). The finite element elasticity matrix for
the bi-material problem may be expressed as

Ee ρeð Þ ¼ ρreE
*1
e þ 1−ρre

� �
E*2
e ð5Þ

where Ee
* 1 and Ee

* 2 denote the element elasticity matrices
corresponding to two different, given solid elastic materials
*1 and *2. Here, material *1 is assumed to be the stiffer ma-
terial, and material *2 the softer one. It follows from (5) that
for a given element, ρe=1 implies that the element fully con-
sists of the solid material *1, while ρe=0 means that the ele-
ment fully consists of the solid material *2. The symbol r is
the penalization power to penalize the intermediate values of
the material volume density, and normally assigned the values
3 or 4.

The element mass matrix of the bi-material model may be
stated in a similar way as

Me ρeð Þ ¼ ρqeM
*1
e þ 1−ρqe

� �
M*2

e ð6Þ

where Me
* 1 and Me

* 2 are the element mass matrices corre-
sponding to the two given solid materials as in (5). It is known
that a pertinent value of the power q is 1 in design for maxi-
mization of eigenfrequencies because penalization of the ratio
between stiffness and mass (representing the squared
eigenfrequency) is the important aspect in such a topology
design problem (Pedersen 2000; Jensen and Pedersen 2006).
In the present paper, the design objective of minimizing the
dynamic compliance depends mainly on the dynamic stiffness
Kd (defined as Kd=K−ω2M) of the structure, especially in
the case of high excitation frequencies. Thus, the same penal-
ization is applied simultaneously to the stiffness and mass (i.e.
to the dynamic stiffness Kd) which leads to the following
interpolation formula,

Kde ρeð Þ ¼ ρreK
*1
de þ 1−ρre

� �
K*2

de ð7Þ

Here, Kde
*1 and Kde

*2 are the elemental dynamic stiffness ma-
trices corresponding to the two different, given solid elastic ma-
terials *1 and *2, and the penalization power r was assigned the
value 3 for both stiffness andmass in this paper, which resulted in
distinctive optimum topology designs in the examples of bi-
material problems presented in Sections 5.1 and 5.2 of this paper.
In these examples, the same density filtering technique (Sigmund
2007) as mentioned in Section 2.1.1, was applied in order to
avoid checkerboard formation and dependency of topology so-
lutions on finite element mesh-refinement.

Actually, the similar penalization model (i.e. penalizing the
stiffness and the mass simultaneously) has been used in another
joint work by the authors concerning vibro-acoustic design (see
e.g. Du and Olhoff 2010). Besides this, introduction of the addi-
tional regularization term to the design objective (see. e.g. Allaire
and Francfort 1993; Du and Olhoff 2010; Sigmund and Maute
2013) may also be helpful for improvement of obtaining a clear
0-1 result in the dynamic design, and this is also implemented in
our computer program.

Note that when bi-material design is treated via the prob-

lem formulation (1), then V* denotes the total volume ∑
e¼1

NE

ρeVe

of the stiffer material *1 available for the structure, while
the total volume of the softer material *2 is given by V0 -
V*. Thus, in the topology optimization of bi-material struc-
tures, the entire admissible design domain will be filled-out
by the two kinds of prescribed materials, and in figures
presenting optimized topologies of bi-material structures,
material *1 is shown in black and material *2 in grey.
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It should be noted that when the density filter is employed,
the elemental volumetric material density ρe in the formula-
tions of Section 2 should be replaced by its filtered value

~ρe ¼
∑
i∈Ne

wiViρi

∑
i∈Ne

Viρi
. Here Vi is the volume of the element i and

Ne is the neighborhoods of the element e defined by Ne ¼
ij xi−xek kf ≤Rg, where ‖xi−xe‖ represents the distance be-

tween the centers of the element i and element e, and R is the
filter radius. The weighting coefficient wi is defined by
wi=R− ‖xi− xe‖. Correspondingly, the material density in
the volume constraint 1(d) should also be replaced by the
filtered density to guarantee the volume preservation of the
design (Bruns and Tortorelli 2001; Sigmund 2007).

2.2 Localized vibration modes

Application of the SIMP model for problems of single-
material topology optimization with respect to dynamic struc-
tural response for prescribed excitation frequencies may lead
to the occurrence of spurious, localized vibration modes. The
reader is referred to slightly different methods of elimination
of such spurious modes in vibrating, single-material structures
in the papers Pedersen (2000), Tcherniak (2002) or Du and
Olhoff (2007b). On the other hand, the problem of localized
vibrationmodes very seldommanifests itself in bi-material design
problems, since the localized vibration modes would be due to
large differences in the specific stiffnesses in the different sub-
domains of the structure. In comparison with the single-material
model, in the bi-material model the softer material *2 normally
has sufficient specific stiffness relative to the stiffer material *1 to
prevent occurrence of localized vibrationmodes. For example, in
thenumerical examples inSections5.1and5.2, the twoprescribed

materials employedhave the same specific stiffness, i.e. E
*2

γ*2m
¼ E*1

γ*1m
,

whereE* 1 and γm
*1 are the Young’smodulus and specific mass of

the stiffer material *1, and E* 2 and γm
*2 are the Young’s modulus

and specific mass of the softer material *2. Thus, the problem of
localized vibration modes may be avoided in these examples.

2.3 Sensitivity analysis

The sensitivity of the objective function F in problem (1a-e)
with respect to the design variables ρe is given by

F
0 ¼ C2

d

� �0 ¼ 2 PTU
� �

P
0T
Uþ PTU

0
� �

ð8Þ

where prime denotes partial derivative with respect to ρe
(or ~ρe when the filtered density is introduced). The sensi-
tivity P′ of the load vector will be zero if P is design-
independent, otherwise it can be handled using the
methods described by Hammer and Olhoff (1999, 2000)

and Du and Olhoff (2004a,b). The sensitivity U′ of the
displacement vector is given by

K−ω2M
� �

U
0 ¼ f≡P

0
− K

0
−ω2M

0
� �

U ð9Þ

where the sensitivities of theglobal stiffness andmassmatrices (or
the global dynamic stiffnessmatrix) can be directly obtained from
the SIMP material models. The vector f is known as the pseudo
load and is defined by the term on the right-hand side of (9).
Instead of solving (9), the adjoint method (see e.g. Tortorelli and
Michaleris (1994)) may be applied to calculate the sensitivity of
the objective function in a more efficient manner, which gives
the following result

F
0 ¼ 2 PTU

� �
2UTP

0
−UT K

0
−ω2M

0
� �

U
h i

: ð10Þ

Accordingly, the optimality condition for problem (1) can
be expressed in the following form by means of the method of
Lagrange multipliers,

2 PTU
� �

2UTP
0
−UT K

0
−ω2M

0
� �

U
h i

þ ΛVe ¼ 0 ; ð11Þ

where Λ is the Lagrange multiplier corresponding to the ma-
terial volume constraint, and the side constraints for ρe have
been ignored. The optimization problem (1a-e) can be solved
by using the well-known MMA method (Svanberg 1987) or
an optimality criterion method, e.g. the fixed point method, as
devised by Cheng and Olhoff (1982).

When filtered density ~ρe is introduced, the final sensitivity
results may be derived using the chain rule as

∂F
∂ρe

¼ ∑
i∈Ne

∂F
∂~ρi

∂~ρi
∂ρe
, where ∂~ρi

∂ρe
¼ weVe

∑
j∈Ni

w jV j
.

2.4 Incremental frequency technique (IF technique)

The IF technique is applicable for both problems with ‘low’
and ‘high’ excitation frequencies. The IF technique can not
only be used to determine the dependence of the minimized
dynamic compliance on the excitation frequency over a range
of such frequencies, but in the present paper, the IF technique
provides an important means to drive a resonance frequency
Ωm of any order m up or down by incremental changes of the
variable excitation frequency ω. The ‘incremental frequency
technique’ is defined as follows:

IF technique: For given P solve sequentially the design
problem in (1a-e) for minimum dynamic compliance Cd

subject to increasing (or decreasing) the variable

Generalized incremental frequency method for topological design 1117



excitation frequency ω in small incremental steps from a
given initial value ω=ωinit to a prescribed, final value
ω = ωfinal = ωp by using as input for each step the
incremented value of ω together with the topology design
and the displacements obtained in the preceding step.

Following a discussion of the IF technique in the subse-
quent Section 2.5, it will be exemplified in Section 3 that the
IF technique enables us to perform topology design for min-
imum dynamic compliance in a more dynamic and flexible
manner in comparison with the conventional method where
the excitation frequency is normally fixed at its prescribed
value during the design process. This is not only true for a
prescribed ‘low’, but also for a prescribed ‘high’ excitation
frequency ωp . In Section 4, we shall then generalize and
extend the IF technique to a systematic method termed the
‘generalized incremental frequency method’ (the GIFmethod)
that can be applied to problems of topology optimization (as
well as sizing and shape optimization) for minimum dynamic
compliance (or e.g., minimum sound emission) in a more
global manner by taking into account the multiple disjointed
design sub-spaces of the problem irrespective of the value of
the prescribed excitation frequency ωp.

2.5 Discussion of IF technique based topology design
of single-material structures

The initial design for the topology optimization problem for
minimum dynamic compliance without damping defined in
(1a-e), is normally chosen to have a uniform distribution of
material with intermediate density over the admissible design
domain. This initial designmay have a fundamental resonance
frequency Ω1 which is either lower or larger than a prescribed
initial excitation frequency ω=ωinit , cf. the sketches of the
dynamic complianceCd for the initial design D1 in Fig. 1a and
b. Here, ωinit is a ‘high’ excitation frequency in Fig. 1a and a
‘low’ excitation frequency in Fig. 1b.

2.5.1 Case of Ω1 <ωinit

Referring to Fig. 1xa, in the case of Ω1 <ωinit , the decrease of
the dynamic compliance Cd at ω=ωinit normally implies an
increase of the static compliance (that corresponds to the same
loading amplitude but zero frequency ω =0), due to the de-
crease of the fundamental resonance frequencyΩ1 to the value
Ω2 of the intermediate design D2, see Fig. 1a. As a result, in
particular for single-material design, the structure may be-
come very weak in terms of large static compliance. In order
to prevent this, one may introduce an upper bound constraint
on the static compliance Cs2 .

Assuming that such an upper bound is not consid-
ered, we may study the limiting case of ω= 0 by using
the ‘incremental frequency technique’ (IF technique)

defined in Section 2.4, to decrease the excitation fre-
quency ω in small steps from an initial value ω=ωinit

that is slightly larger than the value ω=Ω1 of the fun-
damental resonance frequency of the initial design D1,
to a final value ω=ωfinal that is slightly larger than zero,
cf. Fig. 1a. Please note that application of the IF tech-
nique includes solution of the minimization problem for
the dynamic compliance Cd in (1a-e) in each step, and
that the input for a new step comprises the new,
incremented value of ω together with the topology and

a

b

Fig. 1 Principle sketches indicating the dependence of the dynamic
compliance Cd on the excitation frequency ω for cases where the
prescribed initial excitation frequency ωinit is high’ in Fig. 1a and ‘low’
in Fig. 1b. relative to the fundamental resonance frequency Ω1 of the
initial design D1. Symbols Ω2 and Ω3 represent the fundamental
resonance frequencies of the designs D2 and D3, where the latter is
associated with the maximum obtainable value for a ‘low’ excitation
frequency. (a) If the fundamental resonance frequency Ω1 of the initial
design D1 is less than the prescribed excitation frequency ωinit , i.e.,
Ω1 <ωinit , then the design will proceed along path 1 (see Fig. 1a) to
decrease the dynamic compliance. As a result, while the dynamic
compliance corresponding to ωinit decreases, i.e. Cd2 <Cd1, the static
compliance Cs2 (corresponding to ω =0) increases, Cs2 >Cs1, and the
design ‘degenerates’ in the limit of ω =0. (b) If Ω1 >ωinit , then the
design will proceed along path 2 (see Fig. 1b), and as a result, both the
dynamic compliance (corresponding to ωinit) and the static compliance
(corresponding to ω =0) decrease, i.e. Cd3 <Cd1 and Cs3 <Cs1. Clearly,
the latter case is preferable

1118 N. Olhoff and J. Du



displacements obtained in the preceding step. As indi-
cated in Fig. 1a, the result is that the minimization of
the dynamic compliance drives the fundamental reso-
nance frequency of the design towards zero, and, at
the same time, the static displacements of the structure
become very large, which means that the static compli-
ance tends to infinity. The physical interpretation of this
behaviour is that in the limit of ω= 0, a disintegration is
created in the structure. In this limit, the zero value of
the fundamental resonance frequency is associated with
a rigid body vibration mode of the structure, and the
static displacements of the disintegrated part of the
structure become infinite, as the structure cannot sustain
the static load. A straight-forward way of avoiding this
type of ‘degenerate’ structural design is to include an
upper bound constraint on the static compliance in the
mathematical formulation (1a-e) of the problem of min-
imizing the dynamic compliance. Our tests have shown
that such a constraint is extremely effective and well-
chosen for the case discussed above.

2.5.2 Case of Ω1 >ωinit

We now consider the case depicted in Fig. 1b, where
the fundamental resonance frequency Ω1 of the initial
design D1 is larger than a prescribed initial excitation
frequency ω=ωinit . In this case we follow path 2, and
as indicated in Fig. 1b, not only the dynamic compli-
ance Cd (corresponding to ω=ωinit), but also the static
compliance Cs (corresponding to ω= 0) are decreased.

In this case, we may apply the IF technique (see
Section 2.4) to increase the excitation frequency ω in
small steps from an initial value ωinit that is smaller
than the fundamental resonance frequency Ω1 of the
initial design D1, to a final value ω=ωfinal that is slight-
ly less than the shown optimized fundamental resonance
frequency Ω3 =Ωopt of the optimized design D3. Please
recall that the fundamental resonance frequency
Ω3 =Ωopt and its associated optimized topological design
can be computed as the solution to the physically slight-
ly different problem of maximizing the fundamental
(first) eigenfrequency of free vibrations (Du and Olhoff
2007b, c).

The above IF technique has the desirable effect of gen-
erating a series of topologies with increasing values of
both the fundamental resonance frequency and the static
and dynamic stiffness for the sequence of structures pro-
duced. The technique automatically avoids resonance, and
works very well as long as the prescribed final excitation
frequency ωfinal is lower than the maximum obtainable
value Ωopt of the fundamental resonance frequency, i.e.
ωfinal<Ωopt . Moreover, it can be easily proved that the
dynamic stiffness matrix Kd =K −ω2M , see (1c), will

remain positive definite if the fundamental resonance fre-
quency (equaling the fundamental eigenfrequency of free
vibrations) of the structure maintains a value that is higher
than the excitation frequency during the design process
(i.e. Case of Fig. 1b). This implies a very good feature
embedded in the dynamics design, i.e., the structural re-
sponse will approach zero if the dynamic compliance of
the structure approaches zero. In addition, according to
our experiences, the iterative numerical process in the
dynamics design will be more stable for a positive definite
dynamic stiffness matrix Kd.

3 Numerical examples - minimum dynamic
compliance design of a plate-like structure

This section presents two numerical sub-examples of design
of the plate-like, single-material structure shown in Fig. 2a. A
main objective is to investigate two different design paths for
the optimization and to achieve a physical interpretation of the
results.

A time-harmonic, concentrated transverse external load
p(t) =Pcosωt is applied to the center of the plate. The design
objective is to minimize the dynamic compliance of the plate
for a prescribed ‘low’ external excitation frequency
ω=ωp=80 and a volume fraction of 50 % for the given solid
material, which has Young’s modulus E=1011, Poisson’s ratio
υ=0.3 and the specific mass γm=7800. A time-harmonic,
concentrated transverse external load p(t) =Pcosωt is applied
to the center of the plate. The design objective is to minimize
the dynamic compliance of the plate for a prescribed excita-
tion frequency ω=ωp=80 and a volume fraction of 50 % for
the given solid material, which has Young’s modulus E=1011,
Poisson’s ratio υ=0.3 and the specific mass γm=7800. SI
units are used throughout this paper.

The finite element model of the plate-like structure
consists of 600 (30 × 20 × 1) 8-node 3D brick elements
with Wilson incompatible displacement models (Wilson
et al. 1973) to improve precision.

3.1 Sub-example 1 – ‘degenerate’ design

With reference to Fig. 1a and Section 2.5.1, the funda-
mental resonance frequency of the plate in its initial de-
sign (see Fig. 2a) is found to be Ω1 = 61.6, i.e., less than
the prescribed excitation frequency ωp= 80. Adopting the
IF technique (Section 2.4) and the design path 1, we find
that the minimization of the dynamic compliance leads to
increasing distance between ωp and Ω1 as shown in the
iteration history in Fig. 2b. At the same time, the dynamic
compliance tends to zero, and the static compliance of the
structure increases very quickly (Fig. 2c). Figure 2d
shows that at iteration step 30, the plate has become very
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weak at the two fixed supports. This indicates creation of
a rigid body vibration mode in association with vanishing
of the fundamental resonance frequency, and that the
structure cannot effectively sustain the static load associ-
ated with ω= 0.

A straight-forward way of avoiding this kind of ’de-
generacy’ of the structure is to include an upper bound
constraint on the static compliance in the mathematical
formulation (1a-e) of the problem of minimizing the dy-
namic compliance. This has an increasing effect on the
dynamic compliance (and computational time), but our
performed numerical tests have shown that such a con-
straint is otherwise very effective and well-chosen for
the purpose.

3.2 Sub-example 2 – desirable design

Referring to Fig. 1b and Section 2.5.2, we may adopt
the much more expedient design path 2 that avoids the
‘degeneracy’ of the design. Thus, let us again apply the
IF technique, but now start out the design problem with
a value ω=ωinit of the excitation frequency that is less

than the first eigenfrequency Ω1 of the initial design,
and then sequentially increase ω up to its originally
prescribed value ω =ωp= 80 (Fig. 3a). The converged
design, which is shown in Fig. 3c, is a much more
desirable structure with minimized dynamic compliance
and improved static stiffness, see Fig. 3a, b.

It is worth noting a special case that may occur if the
prescribed value of the excitation frequency is just slightly
lower than the maximum fundamental resonance frequency.
Then the IF technique might fail to reach the prescribed
value of the excitation from the left-hand side of the maxi-
mum fundamental resonance frequency (i.e. the design per-
formed along path 2, cf. e.g. Fig. 1b). If this happens, we
have to perform the design along another path 1 (cf. e.g.
Fig. 1a). For single material designs, the design path 1, as
discussed earlier, may lead to the ‘degenerated design’ that
is statically too weak to be applied in engineering practice.
Thus, for this special case, it is suggested to use the common
and straightforward way, i.e. to introduce an additional prop-
er upper bound constraint on the static compliance in order
to avoid the ‘degeneracy’ of the design. Actually, such an
additional constraint is also useful for single-material design

a

b

c

d

Fig. 2 (a) Admissible design domain (a = 3, b = 2 and c = 0.1) with
loading and support conditions. (b) Iteration history for the first
resonance frequency Ω1 of the plate (Ω1 < ωp = 80). (c) Iteration
histories for the dynamic and static structural compliance (the latter

corresponds to the same loading amplitude, but excitation frequency
ω = 0). (d) Material distribution with very weak sub-domains near the
two fixed supports at iteration step 30
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subjected to a high excitation frequency as mentioned in the
last part of Section 4.1.1.

4 Development of generalized incremental frequency
method (GIF method)

Let us first present an outline of the background for the GIF
method with reference to Fig. 4 that depicts the dependence of

the dynamic compliance Cd= |P
TU| of a given design on the

loading frequency ω of an external time-harmonic mechanical
surface loading with the given vector P of amplitudes acting
on the surface, resulting in a vector U of amplitudes of the
displacement response.

In Fig. 4, Ωi , i=1, …, m-1, m, m+1, denote resonance
frequencies of the given design, andωp is a prescribed external
excitation frequency that is indicated to be ‘high’ in the figure.
Regarding the resonance frequencies, it is important to remind
that while a resonance frequency of a forced time-harmonic
vibration problem is at the same time an eigenfrequency of the
corresponding problem of free vibrations (and can be comput-
ed as such), an eigenfrequency may not necessarily be a res-
onance frequency. Thus, if the eigenvectorφi associated with
an eigenfrequency is orthogonal to the vector of load ampli-
tudes P of the forced vibration problem, i.e., if

PTφi ¼ 0 ð12Þ

then the eigenmode cannot be excited. In such cases, the
eigenfrequency will not constitute a resonance frequency of
the forced vibration problem, and it will not affect the behav-
iour of the dynamic compliance Cd , cf. Fig. 4.

As illustrated in Fig. 4, which is depicted for a given topo-
logical design, the dynamic compliance Cd= |P

TU| is a non-
negative function of the excitation frequency ω . Thus, Cd

vanishes at each of the anti-resonance points between the ad-
jacent resonance frequencies located at the left- and right-
hand sides of the anti-resonance point, and Cd increases uni-
formly towards infinity at the resonance frequencies as mate-
rial damping is not considered in this study. These character-
istics imply that a solution to the ‘conventional’ dynamic com-
pliance minimization problem (1a-e) subject to a fixed, pre-
scribed excitation frequency ωp will furnish a local optimized
solution where the given excitation frequency ωp always will
be located between two consecutive resonance frequencies
that have different values, but the same orders as those of
the initial design chosen for the computational procedure.

a

b

c

Fig. 3 (a), (b) Iteration histories for the first resonance frequency of the
plate, the excitation frequency, and the dynamic and static compliances.
(c) Optimized topology (50 % volume fraction) for ωp= 80

Fig. 4 Principle sketch of the dependence of the dynamic compliance
Cd = |P

TU| on the loading frequency ω for a given initial topological
design and a given vector P of amplitudes of the external forces. The
resonance frequencies Ω1 , Ωm-1 , Ωm and Ωm+1 of the design are
shown together with a prescribed, ‘high’ external excitation frequency ωp
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However, as indicated in Fig. 4, the current frequency re-
sponse problem is non-convex and complicated by having
disjointed design sub-spaces (i.e. sub-intervals) between the
resonance frequenciesΩi , i=1,…,m-1,m,m+1, . . . , and we
must consider the possibility that there may very well exist
one or more ‘better’ local optimized designs (associated with
lower values of Cd), for which the prescribed excitation fre-
quency ωp is located between a pair of consecutive resonance
frequencies of other orders than those of the aforementioned
local optimized design obtained by just solving (1a-e) subject
to the given value ωp . Not surprisingly, it turns out that by
simple application of the IF technique defined in Section 2.4,
one may obtain a number of different local optimized topolo-
gy designs with a given excitation frequency ωp located in
sub-intervals between pairs of consecutive resonance frequen-
cies of different orders than those of the initial design.

As there are limits to how much resonance frequencies
(like eigenfrequencies of the corresponding free vibration
problem) can be increased or decreased due to the constraints
considered (see Du and Olhoff 2007b), the number of the
different local optimized topology designs of the forced vibra-
tion problem will generally be rather small. Thus, by simply
identifying the topology design associated with the smallest
value of Cd from among this small number of local optimized
designs, we can determine the design that may be considered
the global optimum solution to the problem.

Finally, it is important to mention that the non-convexity of
the design problem normally implies that the optimized topol-
ogy exhibits dependence on the choice of the initial design. A
conventional way of searching for the global solution for such
kind of problem is to start the design with some different (e.g.
randomly generated) initial designs. However, for the dynam-
ic problem considered in the present paper, if the excitation
frequency is fixed at its prescribed value, our numerical tests
have shown that, although the optimized topologies obtained
from randomly generated different initial designs are different
from each other in some details, they normally show some
kind of similarity in topological concept relative to that ob-
tained by using a uniform initial design. The more serious
problem of the conventional design method is that the results
obtained using the fixed excitation frequency cannot reflect
well in a systematic manner the effects of different resonance
frequency intervals of the frequency response curve, which
the authors believe should play a more important role in
searching for the global solution of the dynamic design prob-
lem and should be addressed carefully.

4.1 Computational procedure of the GIF method

The remainder of this paper will continue the preceding lines
of analyses and disregard the abovementioned dependency of
the design results on randomly generated initial designs, and
thereby yield consistent results.

A computational procedure for the GIF method for deter-
mining the optimum topological design associated with min-
imum dynamic compliance subject to any prescribed positive
value of the excitation frequency ωp may be stated as below.
The procedure is a single, unified algorithm for handling of
both ‘low’ (m=1) and ‘high’ ( m>1) excitation frequencies
ωp by the GIF method, cf. Fig. 4.

Step 1 Choose a convenient initial design with, e.g., a uni-
form distribution of the given amount(s) of mate-
rial(s) over the admissible design domain, and sub-
jected to the given boundary conditions.

Step 2 Compute the eigenfrequencies of free vibrations of
the initial design from zero and up to a value well
above the prescribed value ωp of the excitation fre-
quency of the forced vibration problem.

Step 3 Discard those eigenfrequencies of the initial design
whose eigenvectors φi are orthogonal (cf. (12)) to the
amplitude vector function P of the external dynamic
loading.

Step 4 Denote the remaining eigenfrequencies as resonance
frequencies. Count these without possible multiplici-
ties, and order them according to magnitude as

Ω0 ¼ 0 < Ω1 < Ω2 < ⋯ ð13Þ
where, for convenience, Ω0 denotes zero.
Assume that none of the positive resonance fre-
quencies of the initial design are strictly equal to
the prescribed value ωp of the excitation fre-
quency, cf. Fig. 4. Denote by Ωm (with m> 1)
the nearest resonance frequency of the initial de-
sign that is larger than ωp. Referring to Fig. 4,
please bear in mind that for the initial design the
excitation frequency ω is defined to be ‘low’ for
positive values up to and including the funda-
mental (first) resonance frequency of the design,
and to be ‘high’ for values of ω beyond that.

Step 5 For the initial design chosen, and the given amplitude
and spatial distribution of the external dynamic load-
ing, solve iteratively the design problem (1a-e) for
minimum dynamic compliance Cd of the initial de-
sign subject to keeping the prescribed value ωp ,

Ωm-1 <ωp<Ωm , of the excitation frequency fixed
during the iterations.

Set the counter N of local optimum solutions to
N=1, save the topological design and the correspond-
ing minimized value of the dynamic compliance Cd ,
and continue.

Step 6 If m=1 (i.e., if ωp is smaller than the fundamental
resonance frequencyΩ1, cf. Fig. 4), then go to Step 8.

Step 7 Starting with i=m – 1, apply the IF technique (see
Section 2.4) to the initial design with an initial value
ωinit of the excitation frequency ω that is slightly
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smaller than the resonance frequencyΩi of the initial
design, and increase ω in small steps towards its orig-
inally prescribed value ω=ωfinal=ωp.

Set Y=0. If it is possible to increase ω to the value
ω=ωp by the IF technique, then set Y=1 and the
counter of local optimum solutions N=N+1, save
the topological design and the corresponding mini-
mized value of the dynamic compliance Cd obtained
at ωp .

If Y=1 and i>1 then repeat Step 7 with i= i – 1
until Y=0 has been obtained.

Step 8 Set i=m and continue.
Step 9 Starting with i=m , apply the IF technique (see

Section 2.4) to the initial design with an initial value
ωinit of the excitation frequency ω that is slightly
larger than the resonance frequency Ωi of the initial
design, and decrease ω in small steps towards its
originally prescribed value ω=ωfinal=ωp.

Set Y=0. If it is possible to decrease ω to the
value ω=ωp by the IF technique, then set Y=1 and
the counter of local optimum solutions N=N+1, sa-
ve the topological design and the corresponding min-
imized value of the dynamic complianceCd obtained
at ωp .

If Y=1 then repeat Step 9 with i= i+1 until Y=0
has been obtained.

Step 10 From among the total number N of different local
optimized topology designs obtained in Steps 5, 7
and 9 (only in Steps 5 and 9 if m=1), we finally
identify the topology design that is associated with
the smallest value of Cd , which we may consider as
the global optimized topological design for the
problem.

4.1.1 Comments on the computational procedure of the GIF
method

The following comments should be made regarding the com-
putational procedure presented above for the GIF method.

It is interesting to note that the algorithm for the GIF meth-
od in Section 4.1 is directly applicable for problems with
prescribed ‘high’ excitation frequencies ωp ( m>1), and that
the case of ‘low’ excitation frequencies ωp ( m=1) is very
simply integrated in the procedure. The only difference is that
Step 7 shall be skipped if m=1.

In Steps 2-4 an appropriate number of resonance frequen-
cies of forced vibration of the initial design is determined by
computing eigenfrequencies of free vibration of this design,
and discarding those with eigenmodesU that are orthogonal to
the given load amplitudes P of the forced vibration problem.
This procedure is usually preferable from the point of view of
computation time. An alternative approach is to generate, in

similarity with Fig. 4, a pointwise representation of the dy-
namic compliance Cd= |P

TU| of the initial design by increas-
ing the excitation frequency ω in small steps within a suffi-
ciently large interval of interest for treatment of a problem
with a prescribed ‘high’ value of the excitation frequency
ωp. Generally, however, this is more costly because the steps
in ω need to be chosen quite small, in particular in the vicin-
ities of the resonance frequencies, such that these frequencies
can be captured and be determined with reasonable accuracy.

In Step 5 the ‘conventional’ optimization problem (1a-e) is
simply solved for the initial design subject to the fixed, pre-
scribed value of ω=ωp , i.e., no IF technique is performed for
ω , and the prescribed excitation frequency ωp will be located
between Ωm-1 and Ωm if m>1, and between Ω0 and Ω1 if
m=1.

The aim is now to sequentially identify intervals between
consecutive resonance frequencies of the initial design that in
the nearest lower and upper neighbourhoods of the interval
[Ωm-1 , Ωm] embracing ωp , can contribute locally optimized
designs and the corresponding minimized values of Cd by
optimizing the positions (values) of the resonance frequencies.

From Step 6,we skip Step 7 ifm=1, but continue with Step
7 ifm>1. Step 7, which is started with the initial value i=m –
1, investigates sequentially for i =m – 1,m – 2, etc., whether it
is possible by usage of the IF technique (Section 2.4) to
‘push’, one by one, the nearest resonance frequencies Ωi ,
i =m – 1, m – 2, etc., up to the prescribed value of the excita-
tion frequency ωp . The resonance frequencies Ωi , for which
this may be possible, will be the end points for a generally
quite small number of neighbouring intervals [Ωm-2 , Ωm-1],
[Ωm-3 , Ωm-2], … below ωp . Each of such two frequency
intervals will be the locus of a local optimized solution that
furnishes the local optimized topological design and the cor-
responding minimized value of the dynamic compliances Cd

associated with the prescribed value ofωp . Notice that if , e.g.,
the resonance frequency Ωm-2 cannot be ‘pushed’ up to the
value of ωp , then the local optimization has failed in the
frequency interval [Ωm-3 , Ωm-2], and the design and value of
Cd obtained will not be considered among the local candidates
for the global optimum solution.

The next Steps 8 and 9 are valid for both m=1 and m>1,
and Step 9 is quite analogous to Step 7. Thus, Step 8 delivers
the initial value i=m for sequential investigations with i =m,
m+1,m+2, etc. in Step 9, with a view to find out whether it is
possible by usage of the IF technique (Section 2.4) to ‘push’
sequentially the nearest resonance frequencies, e.g.,Ωi , i =m ,
m+1, etc. down to the prescribed value of the excitation fre-
quency ωp . If this is possible, then the two resonance frequen-
cy intervals [Ωm , Ωm+1] and [Ωm+1 , Ωm+2] will be the loci of
two local optimized solutions, each with a local optimized
topological design, the corresponding minimized value of
the dynamic compliances Cd , and the value of ωp considered.
On the other hand, if , e.g., the resonance frequency Ωm+1
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cannot be ‘pushed’ down to the value of ωp , then the frequen-
cy interval [Ωm+1 , Ωm+2] will not be the locus of a local
optimized solution.

In Step 10we collect the different local optimized topology
designs and corresponding minimized values of Cd associated
with the prescribed excitation frequency ωp . It is our experi-
ence that in general this number of local candidate designs will
be rather small. Thus, by simply identifying the topology de-
sign associated with the smallest dynamic compliance from
among the different local optimized solutions corresponding
to ωp , it is straight-forward to select the topological design
that may be considered as the ‘global’ optimized solution to
the problem.

Finally, it is worth noting that for problems of topology
optimization of bi-material structures (that are dealt with in
the numerical examples in Section 5), the extended SIMP
model in Section 2.1.2 implies that the entire design domain
will be fully covered by the stiffer and the softer material,
please refer to the last paragraph of Section 2.1.2. Thus, a
disintegration of the structure and formation of a rigid-body
mode associated with the fundamental frequency will not oc-
cur, so the static compliance will always be finite, and it will
not be imperative to consider an upper bound constraint on the
static compliance when minimizing the dynamic compliance
of a bi-material structure. This type of problem is directly
solvable by the algorithm in Section 4.1 for both m=1 and
m>1.

For problems of topology optimization of single-mate-
rial structures, of which numerical examples are presented
in Section 3, a proper upper bound constraint on the static
compliance may be included in the mathematical formula-
tion (1a-e) of the problem of minimizing the dynamic
compliance with a view to avoid possible static ‘degener-
acy’ of the design.

Since a static compliance constraint may be very useful for
both single- and bi-material structures, we introduce into (1a-
e) the additional equations

Cs ¼ PTU*≤Cs ð1b�Þ

KU* ¼ P ð1c�Þ

Here, (1b*) expresses the constraint for the static compli-
anceCswith Cs as a given upper bound, and (1c*) is the static
equilibrium equation, where P denotes the static loading, and
the corresponding static displacement vector U* is defined as
U*=U(ω =0) . Based on (1b*) and (1c*), the sensitivity Cs

′ of
the static compliance is obtained as

C
0
s ¼ P

0T
U* þ PTU

0* ¼ 2U*TP
0
−U*TK

0
U* ð14Þ

where prime denotes partial derivative with respect to the
design variable ρe , and the sensitivity P′ of the load vector

vanishes if P is design-independent. Note that the gradient Cs
′

in (14) is reduced analogously to the gradient of the objective
function F’ for the squared dynamic compliance in (10) to
facilitate treatment by adjoint sensitivity analysis.

With the inclusion of the upper bound on the static com-
pliance of a structure, the dynamic and static equilibrium (1c)
and (1c*) are solved by Gauss elimination, and the
constrained topology design problem (1a-e, b*,c*) is solved
iteratively to convergence by means of the gradients

Cd
′ and Cs

′ of the dynamic and static compliances, by usage
of the MMA optimizer (Svanberg 1987).

To develop a single unified procedure that addresses the
low and the high frequency cases along with single- and bi-
material structures for problems of minimizing the dynamic
compliance subject to an upper bound constraint on the static
compliance, we first change slightly the definition of the IF
technique in Section 2.4 to the following definition of a so-
called ‘constrained IF technique’:

‘Constrained IF technique’ with an upper bound
specified for the static compliance: For given P solve
sequentially the constrained design problem in (1a-
e,b*,c*) for minimum dynamic compliance Cd subject
to increasing (or decreasing) the variable excitation fre-
quency ω in small incremental steps from a given initial
value ω=ωinit to a prescribed, final value ω=ωfinal=ωp

by using as input for each step the incremented value of ω
together with the topology design and the displacements
obtained in the preceding step.

Now, if we in the Steps 5, 7 and 9 of the algorithm of the
GIF method in Section 4.1 replace the text strings ‘design
problem (1a-e)’ by ‘constrained design problem (1a-e,
b*,c*)’ and ‘IF technique (see Section 2.4)’ by ‘constrained
IF technique (see above)’, then the algorithm in Section 4.1 is
easily transferred to the desired single, unified algorithm
aimed at. For reasons of brevity, we have omitted to write
the algorithm in full here.

Please note that with the extension of (1a-e) by (1b*,c*),
use of the constrained IF technique and replacement of the
above text strings, then the static compliance Cs appears very
clearly in the new, extended algorithm and makes it very sim-
ple to avoid occurrence of ‘degenerate’ designs.

4.1.2 Flow chart of the GIF method

For the convenience of programming, a flow chart of the GIF
method is designed and shown in Fig. 5. The flow chart con-
sists of three cycles, i.e. the inner MMA cycle, the inner
‘Constrained IF technique’ cycle, and the global cycle of the
GIF method. From consideration of computational efficiency,
the MMA cycle will be performed only one time in each cycle
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of the ‘Constrained IF technique’ before the excitation fre-
quency ω reaches the prescribed value ωp.

In the flow chart, the symbol N is a counter of the number
of obtained local optimized designs, and k counts the number
of the IF technique cycles. Moreover, the index m represents
the order of the upper resonance frequency Ωm of the reso-
nance frequency interval of the initial design (RFII), that
brackets the prescribed, external excitation frequency ωp , cf.
Fig. 5.

In accordance with the computational procedure of the GIF
method outlined in Section 4.1, in the present flow chart, the
order of searching for local optima is designated as starting
search (with j=0) from the resonance frequency interval of the
initial design (RFII), and then searching for local optima in the
sequential resonance frequency intervals (with decreasing
negative integer values -1, -2, … of j) at the left-hand side of
the RFII. This searching is stopped the first time when no
solution is found in one of the sequential resonance frequency

Fig. 5 Flow chart of the ‘generalized incremental frequency method’ (GIF method)
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intervals at the left-hand side of the RFII, or the searching in
the interval [Ω0, Ω1] is completed.

Next, searching for local optima in the sequential reso-
nance frequency intervals (with increasing positive integer
values 1, 2,… of j) at the right-hand side of the RFII is carried
out, and the global cycles of the GIF method will be terminat-
ed the first time when no solution is found in one of the
sequential resonance frequency intervals at the right-hand side
of the RFII.

In order to fit the notion of flow chart, the computational
procedure of the GIF method in Section 4.1 is restated using
12 sub-steps denoted from (*a) to (*i3) as shown in Fig. 5.
Here, the sub-steps (*a), (*b) and (*c) correspond to Steps 1, 2
and 3 of Section 4.1 by performing initialization of the struc-
ture and identification of the resonance frequencies and the
resonance frequency interval of the initial design (RFII)
bracketing the prescribed excitation frequency ωp. Sub-step
(*d) sets the initial value of the excitation frequency ω for
the IF technique cycle according to the current resonance fre-
quency interval selected for searching for the local optimum,
which corresponds to the first parts of Steps 5, 7 and 9 of
Section 4.1. Sub-steps (*e), (*f), (*g) and (*h1) or (*h2) cor-
respond to parts of Steps 5, 7, and 9 of Section 4.1 by
performing the dynamic and static analysis and the sensitivity
analysis, and by finding in (*h1) the Nth local optimum, or by
finding no solution in (*h2), for the current resonance frequen-
cy interval using the IF technique.

Sub-step (*i1) starts a new cycle of the GIF method to
search for the local optimum in the next one of the sequential
resonance frequency intervals, which corresponds to parts of
Steps 6, 7, 8 and 9 of Section 4.1. Sub-step (*i2) corresponds
to the last part of Step 7 of Section 4.1, i.e. to start the cycle of
the GIF method in the first one (j=1) of the sequential reso-
nance frequency intervals at the right-hand side of the refer-
ence resonance frequency interval (RFII), when no solution is
found in one of the sequential resonance frequency intervals at
the left-hand side of the RFII, or the searching in the interval
[Ω0, Ω1] is completed.

Finally, sub-step (*i3) corresponds to Step 10 of
Section 4.1. Here, the ‘best’ local optimized solution (with
the lowest value of the complianceCd from among the obtain-
ed N candidate solutions), is coined as the ‘global’ optimum
solution to the problem.

5 Examples of topology optimization for minimum
dynamic compliance subject to a ‘high’ excitation
frequency using the GIF method

In this Section, two different numerical examples concerning
minimum dynamic compliance design of bi-material plate-
like structures subject to high excitation frequencies will be
validated and illustrated with a view to show in detail how the

GIF method works and to demonstrate the effectiveness and
advantages of the method. The upper bound constraint on the
static compliance is not considered in this section. As
discussed in Section 4.1.1, such a constraint is not imperative
here, because the design domain of bi-material plates is fully
covered by the stiffer and the softer material, and no risk of
‘degeneration’ exists.

5.1 Example 1 – Bi-material square plate-like structure
excited by uniformly distributed pressure loading

This section illustrates the application of the GIF method to
the problem of optimizing the topological design of a bi-ma-
terial, square plate-like structure with clamped edges, see
Fig. 6a. A time-harmonic, uniformly distributed transverse
external load p(t) =Pcos(ωpt) with unit amplitude (i.e. P=1,
SI units are used throughout this paper) is applied to the upper
surface of the plate. The design objective is to minimize the
dynamic compliance of the plate for a prescribed ‘high’ value
ωp=500 of the excitation frequency ωp and a volume fraction
of 50 % for the stiffer material *1, and hence for the softer
material *2 as well. (For the bi-material model for topology
optimization, the reader may refer to Section 2.1.2 and the
papers by Bendsøe and Sigmund (1999), Olhoff and Du
(2005), and Du and Olhoff (2007a,b)). The stiffer material
*1 has the Young’s modulus E* 1 = 1011, Poisson’s ratio
υ=0.3 and the specific mass γm

* 1 = 7800, and the softer ma-
terial *2 has the properties E* 2 =0.1E* 1, γm

* 2 = 0.1 γm
* 1, and

υ=0.3. The plate is modeled by 8-node 3D isoparametric
elements in a 40 × 40 × 1 mesh, and Wilson incompatible
terms (Wilson et al. 1973) are applied to ensure that bending
effects are simulated well. Our numerical tests show that the
FEM model used in the present paper has very satisfactory
element precision and very good convergence for the problem
considered in comparison with other models using higher or-
der elements (e.g. 20-node element) and/or a finer mesh (e.g.
mesh from 40×40×2 to 100×100×3).

Initial design 

 = 0.5 

a

b

Fig. 6 Square, bi-material plate-
like structure (a = 20, b = 20, t = 1)
subjected to uniformly distributed
harmonic pressure loading on its
upper surface. All edges of the
plate are clamped. (b) Uniform
initial design with the volumetric
density ρe= 0.5 of the stiffer
material. The two materials are
evenly mixed in all the elements
of the design
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5.1.1 Definition, eigenfrequency analysis, and orthogonality
tests of the initial design

Following the computational procedure in Section 4.1 for the
GIF method, we in Step 1 choose a uniform bi-material plate as
the initial design, cf. Fig. 6b, and take the materials *1 and *2 to
be uniformly mixed in all the elements of the initial design.

In Step 2, we calculate the first 30 eigenfrequencies of free
vibrations of the initial design with the fundamental
eigenfrequency ω1 = 95.3 and the 30th eigenfrequency
ω30=1069.0 which is anticipated to be well above the pre-
scribed value ωp=500 of the excitation frequency. The orders
i and the values of these eigenfrequencies ωi are shown in the
first and second columns of Table 3 in the Appendix.

In Step 3 and Step 4 in Section 4.1, an orthogonality index
|PTφi| of the initial design is calculated first, and the results are
shown in the fourth column of Table 3 in the Appendix. An
empirical error limit ε =10-6 is chosen for the orthogonality
tests, i.e. if |PTφi| < ε, the eigenmode φi is regarded to be
orthogonal to the loading mode P, and the corresponding
eigenfrequency ωi is identified as a non-resonance frequency;
Otherwise, if |PTφi|≥ ε, the eigenmode φi is regarded to be
non-orthogonal to the loading mode P, and the corresponding
eigenfrequency ωi is defined as a resonance frequency. Both
the vectors P and φi are normalized to unity before the or-
thogonality tests. Five resonance frequencies Ωj, (j=1,⋯, 5)
have been identified successfully within the first 30
eigenfrequencies of the initial design after the orthogonality
tests (see the third column of Table 3 in the Appendix). It is
found that the prescribed value ωp=500 of the excitation fre-
quency is located between the second and the third resonance
frequencies of the initial design, which implies that m=3 ac-
cording to Step 4. The value of the dynamic compliance Cd of
the initial design at ω=ωp=500 is easily obtained by solution
of (1b,c), and found to be Cd=6.842E-7.

In order to verify further the results of the orthogonality
tests, a series of frequency response analyses of the dynam-
ic compliance of the initial design is performed for unit
spacing of the excitation frequencies in the interval [0,
1000]. Figure 7 shows the frequency response curve using
natural logarithmic coordinates by which the first five res-
onance frequencies may be identified clearly at about
Ω1 = 95, Ω2 = 338, Ω3 = 542, Ω4 = 750 and Ω5 = 927.
Comparing Fig. 7 with Table 3 in the Appendix, it is ver-
ified that the identification of the resonance frequencies by
orthogonality tests are accurate and thus may be used as a
basis for the following steps. It should be noted that, al-
though the resonance frequencies may be identified in two
different ways according to the above discussion, in prac-
tice we recommend orthogonality tests as the standard step
of identifying the resonance frequencies, since the frequen-
cy response analysis over a wide frequency range is nor-
mally much more time-consuming.

5.1.2 Cases of searching local optimized designs in different
resonance frequency intervals embracing the prescribed
excitation frequency

It is now possible to start the design process in some pertinent
ways by locating the initial value ωinit of the excitation frequen-
cy ω in different intervals between adjacent resonance frequen-
cies of the initial design (cf. the preceding section and Table 3 in
the Appendix), and in cases apply the IF technique (Section 2.4)
to change the values and orders of the resonance frequencies
embracing the prescribed excitation frequency ωp .

In the following, we will use Case A, B, C and D to desig-
nate four different design cases corresponding to four different
ways of starting the design process and the corresponding
sequential solution strategies. As references, the results of
the eigenfrequency analysis and the orthogonality tests of
the initial design are given in Table 3 in the Appendix, and
the results corresponding to each of the four design cases are
given in Tables 4, 5, 6, and 7 in the Appendix.

Case A. ωinit=500→ωfinal=ωp=500
Following Step 5 in Section 4.1, we first consider the case

of starting the design process with the initial value ω=500 of
the excitation frequency, which is found to be located between
the second and the third resonance frequencies (i.e. ω∈[Ω2,
Ω3]) of the initial design, cf. Table 3 in the Appendix . Since
the initial value of the excitation frequency is the same as the
prescribed value ωp = 500 for the optimized design, no
incrementation of the excitation frequency ω is applied in this
case. Hereby the ‘conventional’ topology optimization based
on iterative solution of (1a-e) for minimization of the dynamic
compliance of the forced vibrating bi-material plate is per-
formed for the given amplitude and spatial distribution of
the external dynamic loading subject to the fixed, prescribed
value ω=ωp=500 of the excitation frequency. The iterations
are started out from the initial design chosen in Step 1 and its
frequency response curve is depicted in Fig. 7.

init

p

Fig. 7 Dynamic compliance (log. scale) of the initial design (see. Fig. 6b)
vs. excitation frequency ω over the interval [0, 1000]. Five resonance
frequencies may be identified clearly (Ω1 = 95, Ω2 = 338, Ω3 = 542,
Ω4 = 750, and Ω5 = 927). The prescribed value ωp = 500 of the
excitation frequency is seen to be located between the second and the
third resonance frequencies
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The optimized topology obtained in Case A is illustrated in
Fig. 8a. Comparison of the frequency response curves of the
dynamic compliance of the initial design (see Fig. 6b) and the
optimized design (Fig. 8a) is shown in Fig. 8b and c. Here, it is
seen that for the optimized design, the excitation frequency is
located in the interval between the second resonance frequency
Ω2
opt=300 and the third resonance frequency Ω3

opt=533, and

the value of the minimized dynamic complianceCd of the local
optimized design for ωp=500 is found to beCd=5.013E-8 (see
also Table 4 in the Appendix). This implies that the prescribed
excitation frequency for the optimized design is located in an
interval with the same orders of the limiting resonance frequen-
cies (i.e. ωp∈[Ω2

opt, Ω3
opt]) as those of the initial design (i.e.

ωinit∈[Ω2
ID, Ω3

ID]).
The reader is referred to the third paragraph of Section 4

where the physical background for this result is explained.
Case B. ωinit=337.00→ωfinal=480.5<ωp=500
Following Step 6 in Section 4.1, we set i=m – 1=2, and

then perform Step 7, i.e. an IF technique for the initial design
in Fig. 6b with an initial value ω=337 of the excitation fre-
quency that is slightly smaller than the resonance frequency
Ω2 =338 of the initial design (see Fig. 9 and Table 3 in the
Appendix). According to the IF technique described in
Section 2.4, Case B consists in solving incrementally the to-
pology design problem (1a-e) for minimum dynamic compli-
ance subject to increasing ω in small increments towards its
originally prescribed value ωp , using as input for each new
increment the topology design and displacement amplitudes
obtained in the preceding increment.

Please bear in mind that in order to increase the excitation
frequency ω (and hence the second resonance frequency Ω2),
thenω should in each increment be assigned a value at the near
left-hand side of the resonance frequency Ω2 of the current
design with a view to ‘push’ the second resonance frequency
Ω2 to move in the right-hand direction of the frequency axis
(cf. Fig. 9). Thus, it is necessary to identify the second reso-
nance frequency for each step of the incremented frequency,
which is enabled by performing the eigenfrequency analysis
and orthogonality tests in Table 5 in the Appendix.

It is alsoworthmentioning that in the early stage of the design
procedure, the resonance frequency nearest to the excitation
frequency ω will normally move away from ω in comparatively
large increments, and thereby quickly decrease the dynamic
compliance to be minimized. Thus, if we carefully control the

a

b

c

Fig. 8 Case A: (a) Optimized topology of the forced vibrating bi-
material plate, where the prescribed value ωp = 500 of the excitation
frequency is located between the second and the third resonance
frequencies of the optimized design (i.e. ωp∈[Ω2

opt, Ω3
opt]). (b)

Comparison of the frequency response curves of the dynamic
compliance of the initial design (see Fig. 6b) and the optimized design
(see Fig. 8a). It can be seen that the prescribed value ωp= 500 of the
excitation frequency is located between the second and the third
resonance frequencies, for both the initial and the optimized design (cf.
also Tables 3 and 4 in the Appendix). (c) A resonance frequency at about
Ω5 = 849 of the optimized design may be identified by a close look on the
frequency response curve in addition to the five resonance frequencies
identified directly from the frequency response curve of the optimized
design in Fig. 8b, i.e. Ω1 = 58, Ω2 = 300, Ω3 = 533, Ω4 = 816, and
Ω6 = 958 (refer also to Table 4 in the Appendix)

Fig. 9 Case B: Dynamic compliance (log. scale) of the initial design (see
Fig. 6b) vs. excitation frequency ω over the interval [0, 1000]. The design
process is started using the initial value ω = 337 of the excitation
frequency that is slightly smaller than the second resonance frequency
Ω2 = 338 of the initial design
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change of the excitation frequency ω and initially use a smaller
value of the increment of ω, then there is normally no risk that
the excitation frequency will ‘jump over’ the adjacent resonance
frequency, and the eigenfrequency analysis and the orthogonal-
ity tests may be skipped in the early stage of the incremental
design procedure in order to save computation time.

The process of increasing the excitation frequency ω in the
above incremental design procedure will be stopped when any
of the following two conditions is satisfied: (1) the excitation
frequency ω reaches the prescribed value ωp=500; (2) the sec-
ond resonance frequency Ω2 reaches its maximum value that is
less than the prescribed value ωp=500 of the excitation frequen-
cy for the prescribed loading mode (uniform pressure loading).
If condition (1) is satisfied firstly, then a valid local optimized
solution has been found for the case that the excitation frequency
is located in the interval between the first and the second reso-
nance frequencies, and the solution may be considered as a
candidate for the ‘global optimized solution’ of the current prob-
lem. If condition (2) is satisfied firstly, it implies that no valid
solution can be found for the case that the excitation frequency is
located in the interval between the resonance frequencies with
the orders considered.

In our computations on Case B of the current example, it is
found that when the second resonance frequency Ω2 is
‘pushed’ to the value about 481.5 (see also Table 5 in the
Appendix), it cannot be increased further towards the pre-
scribed value ωp=500 by the IF technique, and this implies
that the solution set of the design Case B is a null set.

Although there is no valid solution obtained in Case B, as a
reference, the final topology obtained in Case B corresponding
to the value ωfinal =480.5 of the excitation frequency is shown
in Fig. 10a. The frequency response curve for the dynamic
compliance of the final reference design in Fig. 10a is shown
in Fig. 10b, and the second resonance frequency reaches its
maximum value 481.5 for the prescribed loading mode of the
current example (see also Table 5 in the Appendix).

As the next step, since the excitation frequencyω cannot reach
the prescribed value ωp=500 from the left-hand side, when ωp is
located in the interval [Ω1, Ω2] between the first and second
resonance frequencies, we will jump to Step 8 and 9 according
to Step 7 in Section 4.1, and move the excitation frequency ω
from the right-hand side of the prescribed valueωp=500, and see
if we can find local optimized solutions of problem (1a-e) located
in intervals between resonance frequencies of higher orders than
those considered above. The details will be discussed in Cases C
and D.

Case C. ωinit=545→ωfinal =ωp=500
Following Step 8 in Section 4.1, we set i=m=3, and then

perform Step 9, i.e. the IF technique (Section 2.4) with the
initial design shown in Fig. 6b and an initial value ω=545
of the excitation frequency that is slightly larger than the res-
onance frequency Ω3=542.5 of the initial design (see Fig. 11
and Table 3 in the Appendix). The operation in Step 9 is quite

similar to that in Step 7 except for that now the excitation
frequency ω is moved towards its prescribed value ωp=500
from the right-hand side of the frequency axis, and in each
incremental step of the IF technique, the value of ω should be
set slightly larger than the third resonance frequency, until ω
successfully reaches the prescribed value ωp=500.

b

a

Fig. 10 Case B: (a) Final reference topology of the forced vibrating bi-
material plate, where the excitation frequency has the value ωfinal= 480.5
and cannot reach the prescribed value ωp= 500 when it is located in the
interval between the first and the second resonance frequencies of the
initial design (i.e. ω∈[Ω1, Ω2]). (b) Frequency response curve of the
dynamic compliance of the final reference design (see Fig. 10a). The
excitation frequency ω cannot reach the prescribed value ωp = 500,
which implies that the solution set of the Case B is a null set (see also
Table 5 in the Appendix)

Fig. 11 Case C: Dynamic compliance (log. scale) of the initial design in
Fig. 6b vs. excitation frequency ω over the interval [0, 1000]. The design
procedure is started using the initial value ω = 545 of the excitation
frequency that is slightly larger than the third resonance frequency
Ω3 = 542.5 of the initial design
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The optimized topology obtained in Case C is shown in
Fig. 12a, and a comparison of the dynamic compliance curves
for the initial design in Fig. 6b and the optimized design in
Fig. 12a is made in Fig. 12b and c. As is shown for the local
optimized design in Table 6 in the Appendix, the prescribed
excitation frequency ωp=500 is located in the interval be-
tween the third resonance frequency Ω3

opt = 462.0 and the
fourth resonance frequency Ω4

opt = 712.45, (i.e. ωp∈[Ω3
opt,

Ω4
opt]), and the value of the minimized dynamic compliance

Cd of the local optimized design is found to beCd=6.424e-10.
The fact that the excitation frequency ω reaches its prescribed

value ωp=500 by means of the IF technique implies that a valid
local optimized solution has been found in the present casewhere
the excitation frequency is located in the interval between the
third and fourth resonance frequencies, and the solutionmay thus
be considered as another candidate for the ‘global optimized
solution’.

As the final part of Step 9, we set the counter of local opti-
mized solutions N=N+1, repeat Step 9 with i= i+1, and try to
search yet another local optimized solution in the subsequent
interval between resonance frequencies of higher orders. This
will be discussed in Case D.

Case D. ωinit=752→ωfinal=ωp=500
Following a very similar approach as in Step 9 for Case C,

another valid local optimized solution is obtained by IF tech-
nique for ωp=500 located in the interval between the fourth
and fifth resonance frequencies, i.e. ωp∈[Ω4

opt, Ω5
opt], and the

solution is associated with the minimized dynamic compliance
Cd=3.216e-7, see Table 7 in the Appendix). The corresponding
results are shown in Fig. 13.

a

b

c

Fig. 12 Case C: (a) Optimized topology of the forced vibrating bi-
material plate, where the value ωp = 500 of the prescribed excitation
frequency is located between the third and the fourth resonance
frequencies of the local optimized design (i.e. ωp∈[Ω3

opt, Ω4
opt]). (b)

Comparison of the dynamic compliance curves of the initial design in
Fig. 6b and the optimized design in Fig. 12a. It is seen that the prescribed
value ωp = 500 of the excitation frequency is located in the interval
between the third and the fourth resonance frequencies of the local
optimized design (cf. also Table 6 in the Appendix). (c) A resonance
frequency at about Ω4 = 712.45 of the optimized design may be
identified by a close look on the frequency response curve in addition
to the five resonance frequencies identified directly from the frequency
response curve of the optimum design in Fig. 12b, cf. Table 6 in the
Appendix

b

a

Fig. 13 Case D: (a) Optimized topology of the forced vibrating bi-
material plate, where the value ωp= 500 of the excitation frequency is
located between the fourth and the fifth resonance frequencies of the
optimized design (i.e. ωp∈[Ω4

opt, Ω5
opt]). (b) Comparison of the

frequency response curves of the dynamic compliance of the initial
design (see Fig. 6b) and the optimized topology (see Fig. 13a). It is
seen that the prescribed value ωp = 500 of the excitation frequency is
located in the intervals between the 2th and 3rd resonance frequencies
of the initial design, and the 4th and 5th resonance frequencies of the
optimized design (cf. Tables 3 and 7, respectively, in the Appendix)
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Since the excitation frequency reaches the prescribed value
ωp=500successfully,we repeat theoperation in the lastparagraph
of Case C, i.e. we set the counter of local optimum solutions
N=N+1, and repeat Step 9 with i= i+1 to search for a local
optimized solution in the next interval between the consecutive
fifth and sixth resonance frequencies. However, we find by our
sequential computation that the excitation frequency ω cannot
reach the prescribed value Cd successfully from its initial value
that was taken to be slightly higher than that of the fifth resonance
frequency Ω5=926.83 of the initial design, cf. Table 3 in the
Appendix.

5.1.3 Results of example 1

We finally move to Step 10 of the GIF method developed in
Section 4 and outlined in Section 4.1 to complete the overall
design optimization problem by selecting the ‘global opti-
mized solution’ from among the valid candidate solutions ob-
tained in Cases A, C and D. The minimized values of the
dynamic compliances Cd obtained by the three valid local
topology optimizations performed in Cases A, C and D are
listed in Table 1. Here, the topology design obtained in Case C
and shown in the fourth column of Table 1 is associated with
the smallest value Cd=6.424E-10 of the minimized dynamic
compliances listed in the third column. Thus, the results of
Case C may be regarded as the ‘global optimized solution’
of the problem in Example 1.

The results of the optimizations in the Cases A, C and D are
summarized in the third to fifth columns of Table 1, and are all
based on the same initial design defined and studied in
Section 5.1.1. For the initial design, the excitation frequency
ωp=500 is located in the interval between the 2nd and the 3rd

resonance frequencies, i.e.ωp∈[Ω2
ID,Ω3

ID], and the correspond-
ing dynamic compliance of the initial design is calculated to
beCd=6.842E-7. This value may be considered as a reference

for the minimized compliance values listed for the Cases A, C
and D in the third column of Table 1.

The local design problem in Case A corresponds precisely
to Step 5 in the computational procedure of the GIF method in
Section 4.1, and consists in iterative solution of the ‘conven-
tional formulation’ in (1a-e) of the topology optimization
problem subject to the given, constant value ω=ωp=500,
while the local design problems in Cases C and D are solved
using the IF technique defined in Section 2.4. The fact that the
dynamic compliance of the optimized design is much smaller
in Case C than in Case A confirms that for prescribed ‘high’
excitation frequencies, the ‘conventional formulation’ for op-
timum design in 1(a-e) may not lead to the appropriate
solution.

Table 1 Comparison of the three valid local optimized solutions obtained for the excitation frequency ωp= 500 by the ‘generalized incremental
frequency method’ (GIF method)

Case

Dynamic compliance 

of the initial design 

( p = 500)

Dynamic compliance 

of the optimized 

design ( p = 500)

Optimized 

topology

Interval of 

resonance 

frequencies for p

A 6.842E-7 5.013E-8 p [
2

opt , 
3

opt ]

C 6.842E-7 6.424E-10 p [
3

opt , 
4

opt ]

D 6.842E-7 3.216E-7 p [
4

opt , 
5

opt ]

a

b

Fig. 14 (a) Bi-material rectangular plate-like structure (a = 2, b = 1,
t = 0.025) subjected to a concentrated harmonic transverse force at the
center of its upper surface. The plate is simply supported at its four
corners. (b) Uniform initial design with the volumetric density ρe= 0.5
of the stiffer material
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5.2 Example 2 – Bi-material rectangular plate-like
structure excited by concentrated transverse force
at the center

This example concerns topological design of a rectangular, cor-
ner-supported, bi-material plate-like structure (see Fig. 14),
using the ‘generalized incremental frequency method’ (GIF
method). A time-harmonic, concentrated transverse external
load p(t) =Pcos(ωpt) with P=1 (SI units are used throughout),
is applied to the center of the upper surface of the plate. The
design objective is to minimize the dynamic compliance of the

plate for a prescribed ‘high’ value of the excitation frequency
ωp and a volume fraction of 50 % for the given stiffer material
*1, which has the Young’s modulus E* 1=1011, Poisson’s ratio
υ=0.3 and the specific mass γm

*1 = 7800. The soft material *2
has the properties E* 2=0.1E* 1, γm

*2 = 0.1 γm
*1, and υ=0.3. The

admissible design domain of the plate is divided into a
80×40×1 mesh with 3D 8-node isoparametric elements, and
Wilson incompatible terms (Wilson et al. 1973) are applied to
ensure that bending effects are simulated well. A geometry
symmetry constraint is introduced during the design process
for manufacturing convenience. Additional penalization terms
are applied to the design objective function in order to obtain
clear 0-1 topology results (Du and Olhoff 2010). The (high)
value of the excitation frequency considered in this example is
ωp=1000.

Figure 15 shows the frequency response curve of the uniform
initial design in Fig. 14b over the interval [0, 2000] of the excita-
tion frequency ω , from which six resonance frequencies may be
identified, i.e. Ω1=74, Ω2=381, Ω3=683, Ω4=852, Ω5=1463,
and Ω6=1924. These resonance frequencies correspond to the
eigenfrequencies ω1, ω4, ω7, ω9, ω15, and ω19 of the initial design.
The prescribed valueωp=1000 of the excitation frequency is seen
to be located in the interval between the 4th and 5th resonance
frequencies, i.e. ωp ∈ [Ω4, Ω5].

Following the computational scheme of the GIF method in
Section 4.1, we performed six design cases starting from six
different initial values ωinit of excitation frequencies located in
different intervals between the resonance frequencies, i.e.

Case A: ωinit=1000 ∈ [Ω4, Ω5];
Case B1: ωinit=850.9 ∈ [Ω3, Ω4];
Case B2: ωinit=682.3 ∈ [Ω2, Ω3];
Case B3: ωinit=380.4 ∈ [Ω1, Ω2];
Case C1: ωinit=1464.2 ∈ [Ω5, Ω6];
Case C2: ωinit=1925.1 ∈ [Ω6, Ω7].

Fig. 16 Case A: (a) Optimized topology of the forced vibrating bi-
material plate, where the prescribed value ωp = 1000 of the excitation
frequency is located between the 4th and 5th resonance frequencies of
the optimized design (i.e. ωp∈[Ω4

opt, Ω5
opt]). (b) Comparison of the

dynamic compliance curves for the initial design (Fig. 14b) and the

optimized design (Fig. 16a). It is seen that the prescribed value
ωp= 1000 of the excitation frequency is located in intervals between the
4th and the 5th resonance frequencies for both the initial and the
optimized designs. Note that this finding is supported by the more
general result developed in the third paragraph of Section 4

Fig. 15 Case A: Dynamic compliance (log. scale) of the initial design
(Fig. 14b) vs. excitation frequency ω over the interval [0, 2000]. Six
resonance frequencies may be identified clearly (Ω1 = 74, Ω2 = 381,
Ω3 = 683, Ω4 = 852, Ω5 = 1463, and Ω6 = 1924). The prescribed value
ωp= 1000 of the excitation frequency is located between the 4th and 5th
resonance frequencies, i.e. ωp ∈ [Ω4, Ω5]. The design process in Case A
corresponds to Step 5 of the GIF method, and is started using the value
ωinit = 1000 of the excitation frequency ω, and keeping ω fixed at
ω =ωp = 1000 during iterative solution of the ‘conventional’ (1a-e) to
convergence
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The design results are shown in Fig. 16 for Case A; Fig. 17
for Case B1; Fig. 18 for Case B2; Fig. 19 for Case B3; Fig. 20
for Case C1; and in Fig. 21 for Case C2. Here, four valid
locally optimized solutions were identified in the Cases A,
B1, B2 and C1 by using the GIF method. A summary of these
design results and the selection of the global optimized solu-
tion of the present problem are presented in Table 2.

5.2.1 Results of example 2

Four valid local optimized solutions were identified in the
Cases A, B1, B2 and C1 of Example 2 by using the GIF
method. A summary of the design results and the selection of
the ‘global optimized solution’ of the current example are pre-
sented in Table 2. Here, it can be seen that the design obtained

in Case B1 has the smallest value of the minimized dynamic
compliance, i.e. Cd=1.970E-9. It is therefore reasonable to
consider the local optimized design obtained in Case B1 to
be the ‘global optimized solution’ of the present problem.

All in all, the results summarized in Table 2 exhibit char-
acteristics that are analogous to those in Table 1 (cf.
Section 5.1.3), and analogous remarks can be made.

6 Summary

Problems of structural topology optimization with the objec-
tive of minimizing the dynamic compliance (maximizing the
integral dynamic stiffness) of single- and bi-material continu-
um structures subjected to forced, time-harmonic vibration

Fig. 18 Case B2: (a) Optimized topology of the forced vibrating bi-
material plate, where the prescribed value ωp = 1000 of the excitation
frequency is located between the 2nd and 3rd resonance frequencies of
the optimized design. (b) Comparison of the dynamic compliance curves
of the initial design (Fig. 14b) and the optimized design (Fig. 18a). It is

seen that the prescribed value ωp= 1000 of the excitation frequency is
located in intervals with different orders of the resonance frequencies for
the initial design and the optimized design (i.e. ωp∈[Ω4

ID, Ω5
ID] and

ωp∈[Ω2
opt, Ω3

opt])

Fig. 17 Case B1: (a) Optimized topology of the forced vibrating bi-
material plate, where the prescribed value ωp = 1000 of the excitation
frequency is located between the 3th and the 4th resonance frequencies
of the optimized design (i.e. ωp∈[Ω3

opt, Ω4
opt]). (b) Comparison of the

dynamic compliance curves for the initial design (Fig. 14b) and the

optimized design (Fig. 17a). It is seen that the prescribed value
ωp = 1000 of the excitation frequency is located in intervals with
different orders of the resonance frequencies for the initial design and
the optimized design, i.e. ωp∈[Ω5

ID,Ω5
ID] and ωp∈[Ω3

opt,Ω4
opt], respectively
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with prescribed external excitation frequency, amplitude and
spatial distribution of the dynamic loading, are studied in this
paper. Excitation frequencies with any prescribed positive val-
ue are considered.

It is shown in the paper that the design objective of the
forced vibration problem may be implemented along different
design paths according to different levels of the external exci-
tation frequency ω. In cases where the harmonic loading is
associated with an initial value ω=ωinit of the excitation fre-
quency that is less than the fundamental resonance frequency
of an initial design, the minimum dynamic compliance design
process may be driven by the so-called ‘incremental frequency
technique’ (IF technique) presented in this paper, whereby the
excitation frequency ω, and, at the same time, the fundamental
resonance frequencyΩ1 may be increased sequentially up to a
prescribed final value, ωfinal. This procedure delivers the

desirable result that the optimized structure is associated with
minimum dynamic compliance subject to the prescribed final
excitation frequency, and also implies an effective improve-
ment (decrease) of the static compliance of the structure.

Based on the IF technique we have in the present paper
developed the so-called ‘generalized incremental frequency
method’ (GIF method) with applicability for any prescribed
high or low value of the external excitation frequency. The
GIF method provides a way of searching for different local
optimized solutions in a systematic manner in different disjoint-
ed resonance frequency sub-intervals, and hereby the ‘global’
optimum solution of the problemmay be identified from among
a small number of obtained candidate local optimum solutions.

In the paper, a computational procedure for the GIFmethod
is developed for determining the ‘global’ optimum topological
design associated with minimum dynamic compliance. This

(a) (b)

Fig. 20 Case C1: (a) Optimized topology of the forced vibrating bi-
material plate, where the prescribed value ωp = 1000 of the excitation
frequency is located between the 5th and the 6th resonance frequencies
of the final optimized design. (b) Comparison of the dynamic compliance
curves for the initial design (Fig. 14b) and the optimized design

(Fig. 20a). It is seen that the prescribed value ωp = 1000 of the
excitation frequency is located in intervals with different orders of the
resonance frequencies for the initial design and the optimized design (i.e.
ωp∈[Ω4

ID, Ω5
ID] and ωp∈[Ω5

opt, Ω6
opt])

(a) (b)

Fig. 19 Case B3 (failed case): (a) Final reference topology of the forced
vibrating bi-material plate, where the excitation frequency has the value
ωfinal= 562.2 and cannot reach the prescribed value ωp= 1000 when it is
located in the interval between the 1st and the 2nd resonance frequencies,

i.e. ω ∈ [Ω1, Ω2]. (b) Comparison of the dynamic compliance curves for
the initial design (Fig. 14b) and the final reference design (Fig. 19a). The
excitation frequency ω cannot reach the prescribed value ωp = 1000,
which implies that the solution set of the design Case B3 is a null set
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procedure is a single, unified algorithm for handling of both
‘low’ and ‘high’ excitation frequencies, as well as single- and
bi-material structures.

Examples of a single-material structure with a ‘low’ exci-
tation frequency, and two bi-material structures with ‘high’
excitation frequencies have been successfully solved, and
have validated the algorithm.

With a view to study numerically the limiting behaviour of a
design in the vicinity of vanishing excitation frequencyω=0, the
IF technique was applied for minimization of the dynamic com-
pliance along a path of decreasing sequentially the excitation
frequency ω, and, at the same time, the fundamental resonance
frequency Ω1 to a final value ω=ωfinal that was chosen to be

slightly larger than zero. The result was that forω tending to zero,
both the fundamental resonance frequency and the dynamic
compliance of the design tend to zero, while the static compli-
ance and hence the static displacements of the design, increase
very drastically at ω=0 . The physical interpretation of this be-
haviour clearly indicates that a disintegration is created in the
structure in the limit of ω=0, and that the vanishing of the fun-
damental resonance frequency must be associated with a rigid
body vibration mode with infinite displacements of the design.

A common way of avoiding this kind of ‘degeneracy’ of the
design is to include an upper bound constraint on the static
compliance in the mathematical formulation (1) of the problem
of minimizing the dynamic compliance, and take the sensitivity

(a) (b)

Fig. 21 Case C2 (failed case): (a) Final reference topology of the forced
vibrating bi-material plate, where the excitation frequency has the value
ωfinal= 1331.4 and cannot reach the prescribed value ωp= 1000 when it is
located in the interval between the 6th and the 7th resonance frequencies,

i.e. ω ∈ [Ω6, Ω7]. (b) Comparison of the dynamic compliance curves for
the initial design (Fig. 14b) and the final reference design (Fig. 21a). The
excitation frequency cannot reach the prescribed value ωp= 1000, which
implies that the solution set of the design Case C2 is a null set

Table 2 Comparison of the four valid local optimized solutions obtained for the excitation frequency ωp = 1000 by the ‘generalized incremental
frequency method’ (GIF method)
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of the static compliance into account in the sensitivity analysis.
Based on the algorithm mentioned above, it is then a simple
task to set-up a single, unified algorithm for handling of not
only ‘low’ and ‘high’ excitation frequencies, but also single-
and bi-material structures, and an upper bound constraint on the
static compliance. A flow chart of this version of the GIF meth-
od is designed and shown in Fig. 4.

The IF technique and the GIF method may be applied to not
only the dynamic compliance minimization problem consid-
ered in the present paper, but also to similar vibro-acoustic
design problems with multiple disjointed design sub-spaces.
The method may be even extended further for design optimi-
zation problems concerning multiple external excitation fre-
quencies or excitation frequency bands.
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Appendix

Table 3 Identification of the resonance frequencies of the initial design by orthogonality tests

Initial design ω = 500, Cd= 6.842E-7

Order i of Eigenfrequency Eigenfrequency ωi Resonance frequency Orthogonality index |PTφi|

1 95.31 = Ω1 4.99E-01
2 191.35 2.77E-15
3 191.35 3.48E-15
4 277.65 1.20E-15
5 335.95 1.09E-13
6 338.00 = Ω2 3.03E-01
7 415.04 1.01E-15
8 415.04 1.98E-15

ω = 500 By solution of Eqs. (1b,c): Cd = 6.842E-7
9 524.97 1.10E-15
10 524.97 1.78E-15
11 542.49 = Ω3 7.12E-02
12 594.60 5.07E-17
13 598.23 7.73E-16
14 668.69 9.28E-16
15 668.69 1.50E-15
16 714.16 2.30E-16
17 714.16 6.76E-16
18 749.32 7.93E-15
19 750.36 = Ω4 1.96E-01
20 795.73 1.38E-16
21 815.67 2.24E-16
22 815.67 3.20E-16
23 874.97 3.40E-16
24 922.24 3.86E-15
25 926.83 = Ω5 6.39E-02
26 975.53 2.52E-16
27 1006.88 3.75E-11
28 1006.88 2.06E-08
29 1066.38 2.17E-17
30 1068.95 1.39E-16
… … …

(Case 0. ωinit = 500→ωfinal =ωp= 500)
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Table 4 Identification of the resonance frequencies of local optimized design by orthogonality tests

Local optimized design ω=ωp= 500, Cd= 5.013E-8

Order i of Eigenfrequency Eigenfrequency ωi Resonance frequency Orthogonality index |PTφi|

1 58.39= Ω1 2.11E-01

2 127.28 1.94E-15

3 127.28 1.76E-16

4 192.68 5.75E-16

5 226.67 2.51E-15

6 299.75 = Ω2 1.31E-01

7 326.49 1.02E-15

8 326.49 2.12E-15

9 327.50 4.36E-15

10 327.50 5.19E-15

11 389.06 2.50E-16

12 426.99 3.53E-16

13 426.99 7.48E-17

14 451.60 3.64E-17

ω=ωp= 500 By solution of Problem (1a-e): Cd= 5.013E-8

15 530.05 7.15E-16

16 532.59 = Ω3 4.16E-02

17 560.35 1.91E-16

18 591.67 1.86E-17

19 622.51 4.85E-16

20 653.30 4.22E-16

21 653.30 2.52E-16

22 816.22 = Ω4 2.98E-01

23 816.45 4.53E-14

24 830.25 4.47E-15

25 830.25 5.22E-15

26 848.99 = Ω5 2.78E-04

27 875.13 8.61E-16

28 875.13 1.41E-16

29 940.27 7.19E-16

30 944.51 1.05E-15

… … …

… 957.72 = Ω6 1.44E-01

(Case A. ωinit = 500→ωfinal =ωp= 500)

Table 5 Identification of the resonance frequencies of failed local optimized design by orthogonality tests

Failed local optimized design ω = 480.53<ωp= 500 , Cd= 5.525E-5

Order i of Eigenfrequency Eigenfrequency ωi Resonance frequency Orthogonality index |PTφi|

1 93.69= Ω1 2.40E-01

2 185.53 3.63E-15

3 185.53 3.18E-14

4 303.09 8.56E-16
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Table 5 (continued)

Failed local optimized design ω = 480.53<ωp= 500 , Cd= 5.525E-5

Order i of Eigenfrequency Eigenfrequency ωi Resonance frequency Orthogonality index |PTφi|

5 326.61 2.21E-15

ω= 480.53<ωp= 500, Computed by IF technique: Cd= 5.525E-5

6 481.53 = Ω2 2.30E-01

7 500.52 7.26E-13

8 500.52 5.41E-08

9 516.53 2.60E-13

10 516.53 6.53E-13

11 576.93 1.98E-16

12 615.73 7.52E-16

13 615.73 6.99E-16

14 672.57 9.71E-15

15 681.98 = Ω3 2.19E-01

16 708.63 1.82E-16

17 757.36 5.61E-16

18 762.56 4.95E-16

19 805.82 1.62E-15

20 805.82 4.82E-15

21 806.73 4.13E-15

22 831.38 = Ω4 1.83E-01

23 903.57 1.52E-15

24 903.57 9.72E-16

25 980.44 = Ω5 1.30E-01

26 995.01 5.43E-13

27 1009.18 2.48E-12

28 1028.23 1.08E-11

29 1039.03 1.18E-10

30 1039.03 1.44E-10

… … …

(Case B. ωinit = 337.00→ωfinal = 480.53<ωp= 500)

Table 6 Identification of the resonance frequencies of local optimized design by orthogonality tests

Local optimized design ω=ωp= 500, Cd= 6.424E-10

Order i of Eigenfrequency Eigenfrequency ωi Resonance frequency Orthogonality index |PTφi|

1 55.45= Ω1 2.06E-01

2 129.23 1.63E-14

3 129.23 3.45E-14

4 181.99 3.52E-15

5 234.46 = Ω2 1.26E-01

6 260.60 2.53E-15

7 292.99 1.37E-14
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Table 6 (continued)

Local optimized design ω=ωp= 500, Cd= 6.424E-10

Order i of Eigenfrequency Eigenfrequency ωi Resonance frequency Orthogonality index |PTφi|

8 292.99 4.93E-09

9 328.13 4.64E-15

10 328.13 3.85E-15

11 412.32 2.22E-12

12 412.32 4.24E-07

13 419.02 1.06E-16

14 422.83 2.95E-16

15 433.71 1.51E-16

16 461.99 = Ω3 1.57E-03

ω=ωp= 500, Solution by IF technique: Cd= 6.424E-10

17 538.39 5.33E-17

18 596.14 7.70E-17

19 596.14 4.59E-16

20 598.64 6.04E-16

21 598.64 4.18E-16

22 622.79 2.16E-16

23 630.12 1.19E-15

24 706.94 4.09E-17

25 706.94 4.82E-16

26 712.45 = Ω4 1.95E-04

27 760.04 4.12E-15

28 771.12 = Ω5 2.61E-01

29 802.50 1.08E-16

30 806.04 3.33E-16

… … …

(Case C. ωinit = 545.00→ωfinal =ωp= 500)

Table 7 Identification of the resonance frequencies of local optimized design by orthogonality tests

Local optimized design ω=ωp= 500, Cd= 3.216E-7

Order i of Eigenfrequency Eigenfrequency ωi Resonance frequency Orthogonality index |PTφi|

1 66.37= Ω1 5.28E-01

2 130.05 5.73E-14

3 130.05 5.71E-14

4 208.88 4.29E-15

5 219.38 = Ω2 2.72E-01

6 225.70 1.69E-15

7 294.46 1.01E-12

8 294.46 1.50E-08

9 351.67 1.63E-12

10 351.67 9.96E-12

11 379.68 = Ω3 1.03E-01
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