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ABSTRACT
Due to the growing popularity of indoor location-based services,
indoor data management has received significant research attention
in the past few years. However, we observe that the existing in-
dexing and query processing techniques for the indoor space do
not fully exploit the properties of the indoor space. Consequently,
they provide below par performance which makes them unsuitable
for large indoor venues with high query workloads. In this paper,
we propose two novel indexes called Indoor Partitioning Tree (IP-
Tree) and Vivid IP-Tree (VIP-Tree) that are carefully designed by
utilizing the properties of indoor venues. The proposed indexes
are lightweight, have small pre-processing cost and provide near-
optimal performance for shortest distance and shortest path queries.
We also present efficient algorithms for other spatial queries such
as k nearest neighbors queries and range queries. Our extensive ex-
perimental study on real and synthetic data sets demonstrates that
our proposed indexes outperform the existing algorithms by several
orders of magnitude.

1. INTRODUCTION

1.1 Motivation
Research shows that human beings spend more than 85% of their

daily lives in indoor spaces [13] such as office buildings, shopping
centers, libraries, and transportation facilities (e.g., metro stations
and airports). Due to this important fact, the recent breakthroughs
in indoor positioning technologies (see [18], and its references),
and the widespread use of smart phones, indoor location-based ser-
vices (LBSs) are expected to boom in the coming years [21, 1, 2]
and some reports suggest that indoor LBSs would have an even
bigger impact than their outdoor counterparts [3].

Indoor LBSs can be very valuable in many different domains
such as emergency services, health care, location-based marketing,
asset management, and in-store navigation, to name a few. In such
indoor LBSs and many others, indoor distances play a critical role
in improving the service quality. For example, in an emergency, an
indoor LBS can guide people to the nearby exit doors. Similarly, a
passenger may want to find the shortest path to the boarding gate
in an airport, a disabled person may issue a query to find accessible
toilets within 100 meters in a shopping mall, or a student may issue
a query to find the nearest photocopier in a university campus.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 4
Copyright 2016 VLDB Endowment 2150-8097/16/12.

Driven by recent advances in indoor location technology and
popularity of indoor LBSs, there is a huge demand for efficient
and scalable spatial query-processing systems for indoor location
data. Unfortunately, as we explain next, the outdoor techniques
provide below par performance for indoor spaces and the existing
indoor techniques fail to fully utilize the unique properties of in-
door venues resulting in poor performance.

1.2 Limitations of Existing Techniques
1.2.1 Outdoor techniques

Techniques for outdoor LBSs cannot be directly applied for in-
door LBSs due to the specific characteristics in indoor settings. Re-
ferring to the aforementioned examples, briefly speaking, we need
to not only represent the spaces (airport, shopping center) in proper
data model but also manage all the indoor features (lifts, escala-
tors, stairs) and locations of interest (boarding gates, exit doors,
and shops) such that search can be conducted efficiently. Indoor
spaces are characterized by indoor entities such as walls, doors,
rooms, hallways, etc. Such entities constrain as well as enable in-
door movements, resulting in unique indoor topologies. Therefore,
outdoor techniques cannot be directly applied on indoor venues.

One possible approach for indoor data management is to first
model the indoor space to a graph using existing indoor data mod-
elling techniques [19, 8] and then applying existing graph algo-
rithms to process spatial queries on the indoor graph. However,
as we demonstrate in our experimental study, this approach lacks
efficiency and scalability – the state-of-the-art outdoor techniques
ROAD [17] and G-tree [28] may take more than one second to an-
swer a single shortest distance query. This is mainly because the
existing outdoor techniques rely on the properties of road networks
and fail to exploit the properties specific to indoor space. For ex-
ample, the indoor graphs have a much higher average out-degree
(up to 400) as compared to the road networks that have average
out-degree of 2 to 4. Consequently, the size of the indoor graphs
is much larger relative to the actual area it covers. For example,
we use the buildings in Clayton campus of Monash University as a
data set in our experiments and the corresponding indoor graph has
around 6.7 million edges and around 41, 000 vertices. Compared
to this, the road network corresponding to California and Nevada
states consists of around 4.6 million edges and 1.9 million ver-
tices [9]. Thus, specialized techniques are required that carefully
exploit the properties of indoor space to provide efficient results.

1.2.2 Indoor techniques
Adopting the idea of mapping the indoor space to a graph and

applying graph algorithms, existing techniques use door-to-door
graph [25] and/or accessibility base graph [19] to process various
indoor spatial queries.
Door-to-door (D2D) graph [25]. In a D2D graph, each door in the
indoor space is represented as a graph vertex. A weighted edge is
created between two doors di and dj if they are connected to the

325



d6

d4

d1
d2

d3

P1

 

d5

d9

d7
d8

d10

d11

d13

d12

d14

d16

d15

d18

d17

d19

d20

P2

P3

P4

P5

P6P6

P7

P8 P11

P9 P10

P12

P13 P16

P14 P15

P17

N1 N2 N3 N4

s

t 

    

Figure 1: An indoor venue containing 17 partitions and 20 doors

same indoor partition (e.g., room, hallway), where the edge weight
is the indoor distance between the two doors. Fig. 1 shows an ex-
ample of an indoor space that contains 17 indoor partitions (P1 to
P17) and 20 doors (d1 to d20). The corresponding D2D graph is
shown in Fig. 2(a) where edge weights are not displayed for sim-
plicity. The doors from d1 to d5 are all connected to each other by
edges because they are associated to the same partition P1.
Accessibility base (AB) graph [19]. In an AB graph, each indoor
partition is mapped to a graph vertex, and each door is represented
as an edge between the two partitions it connects. Fig. 2(b) shows
the AB graph for the indoor space shown in Fig. 1. Since partitions
P1 and P2 are connected by door d4, an edge labeled as d4 is cre-
ated between P1 and P2 in the AB graph. Partitions P1 and P3 are
connected by two doors d2 and d3, and thus two labeled edges are
created between P1 and P3. Although an AB graph captures the
connectivity information, it does not support indoor distances.
Distance matrix (DM) [19]. A distance matrix can also be used
to facilitate shortest distance/path queries. A distance matrix stores
the distances between all pairs of doors in the indoor space. Al-
though this allows optimally retrieving the distance between any
two doors (i.e., in O(1)), it requires huge pre-processing cost and
quadratic storage which makes it unattractive for large indoor venues.
Furthermore, the distance matrix cannot be used to answer k near-
est neighbors (kNN) and range queries without utilizing other struc-
tures such as AB graph and pre-computed door-to-door distances.

The existing techniques apply graph algorithms on a D2D graph
and/or AB graph to answer spatial queries. For instance, the state-
of-the-art indoor spatial query processing technique [19] computes
the shortest distance between a source point s and a target point
t (shown as stars in Fig. 1) using Dijkstra’s like expansion on a
D2D graph or AB-graph. Although several optimizations are em-
ployed in [19], these techniques essentially rely on a Dijsktra’s like
expansion over the entire graph which is computationally quite ex-
pensive. Consequently, the state-of-the-art indoor query processing
takes more than 100 seconds to answer a single shortest path query
on the Clayton campus data set used in our experiments.

1.3 Contributions
In this paper, we propose two novel indoor indexes called Indoor

Partitioning tree (IP-Tree) and Vivid IP-Tree (VIP-Tree) that op-
timize the indexing by exploiting the properties of indoor spaces.
The basic observation is that the shortest path from a point in one
indoor region to a point in another region passes through a small
subset of doors (called access doors). For example, the shortest
path between two points located on different floors of a building
must pass one of the stairs/lifts connecting the two floors. The pro-
posed indexes take into account this observation in their design and
have the following attractive features.
Near-optimal efficiency. Our experimental study on real and syn-
thetic data sets demonstrates that IP-Tree and VIP-Tree outperform
the state-of-the-art techniques for indoor space [19] and road net-
works [28, 17] by several orders of magnitude. In comparison with
the distance matrix, that allows constant time retrieval of distance
between any two doors at the cost of expensive pre-computing and
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Figure 2: Indexing Indoor Space

quadratic storage, our VIP-Tree also achieves comparable, near-
optimal performance for shortest distance and path queries.
Low indexing cost. VIP-Tree and IP-Tree have small construc-
tion cost and low storage requirement. For example, for the largest
data set used in our experiments that consists of around 83, 000
rooms (around 13.4 million edges), VIP-Tree and IP-Tree consume
around 600 MB and can be constructed in less than 2 minutes. In
contrast, it took almost 14 hours to construct the distance matrix for
a much smaller building consisting of around 2, 700 rooms (around
110, 000 edges).
Low theoretical complexities. Our proposed indexes not only
provide practical efficiency but also have low storage and com-
putational complexities. Table 1 compares the storage complexity
and shortest distance/path computation cost of our proposed ap-
proach with the distance matrix which has near-optimal computa-
tional complexity. For the data sets used in our experiments, the
average values of ⇢ and f are less than 4. For our proposed trees,
M is the number of leaf nodes which is bounded by the number of
doors D. Note that VIP-Tree has a significantly low storage cost
compared to the distance matrix but has the same computational
complexity.
Table 1: Comparison of computational complexities. ⇢: average #
of access doors, f : average number of children in a node, M: # of
leaf nodes, D: # of doors, w: # of edges on shortest path

Storage Shortest
Distance Shortest Path

IP-Tree O(⇢2 f 2 M + ⇢D) O(⇢2 log f M) O((⇢2+w) log f M)
VIP-Tree O(⇢2 f 2 M+⇢D log f M) O(⇢2) O(⇢2 + w)
DM O(D2) O(⇢2) O(⇢2 + w)

High adaptability. Similar to popular outdoor indexes (such as
R-tree, Quad-tree, G-tree), our proposed indexes follow a branch-
and-bound structure that can be easily adapted to answer various
other indoor queries not covered in this paper. For example, the
proposed indexes can be used to answer spatial keyword queries in
indoor space by integrating the inverted lists with the nodes of the
tree, e.g., in a way similar to how R-tree is extended to IR-tree [10]
to support spatial keyword queries in outdoor space.

2. INDEXING INDOOR SPACE
First, we define some terminology and the data model used in

this paper. An indoor partition that has only one door is called a no-
through partition (e.g., partitions P2, P9 and P10 in Fig. 1) because
no shortest path can pass through this partition. A partition which
has more than � doors is called a hallway partition. � is a system
parameter and is a small value (e.g., in this paper, we choose � = 4).
In Fig. 1, partitions P1, P5, P12 and P17 are the hallway partitions.
All other partitions are called general partitions. A special indoor
entity such as a staircase or an escalator connecting two floors is
considered as a general partition with two doors at its connecting
floors. Similarly, a lift connecting n floors is divided into n � 1
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general partitions where each partition connects two consecutive
floors.

Similar to existing work, we use a door-to-door graph [25] to
model the indoor space. The distances between the doors can be
set appropriately, e.g., set to zero for a lift/escalator if the distance
corresponds to the walking distance or to a non-zero value if the
distance is the travel time. We remark that such indoor data models
can capture all spatial features of indoor space. If more details of
geometric features are required (e.g., texture, color, shape of indoor
objects), then the CityGML [7] data objects can be embedded in
each partition. The results generated by our spatial query process-
ing algorithms can be passed to other applications (e.g., [11, 12])
to provide visual/landmark-based navigation to the users. Next, we
present the details of our indexes.

2.1 Indoor Partitioning Tree (IP-Tree)
2.1.1 Overview

The basic idea is to combine adjacent indoor partitions (e.g.,
rooms, hallways, stairs) to form leaf nodes and then iteratively
combining adjacent leaf nodes until all nodes are combined into
a single root node. Fig. 3 shows an IP-Tree of the indoor venue
shown in Fig. 1 where the indoor space is first converted into four
leaf nodes (N1 to N4). Each leaf node consists of several indoor
partitions. Specifically, N1 = {P1, · · · , P4}, N2 = {P5, · · · , P7},
N3 = {P8, · · · , P12}, and N4 = {P13, · · · , P17}. The leaf nodes are
iteratively merged until root node is formed, e.g., N1 and N2 are
merged to form N5 whereas N3 and N4 are merged to form N6.

Definition 1. Access door. A door d is called an access door of
a node N if d connects it to the space outside of N (i.e., one can
enter or leave N via d). The set of access doors of a node N are
denoted as AD(N).

In Fig. 1, the access doors of N1 are d1 and d6. IP-Tree stores the
access doors for each node in the tree. Fig. 3 shows the access doors
of each node in the boxes below the nodes, e.g., AD(N1) = {d1, d6}
and AD(N5) = {d1, d7, d10}. Note that the shortest path to/from a
point s in N1 to/from a point t outside of N1 must pass through one
of its access doors d1 and d6.

d10, d15

N3

d15, d20

N4

d10, d20

N6N5

d1, d7, d10

N7

d1, d7, d20

d1, d6
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Distance Matrix for N1

Distance Matrix for N5

  d1  d6  d7  d10 
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d6  9  0  4  6 

d7  13, d6  4  0  7 

d10  15, d6  6  7  0 
 

  d1  d2  d3  d4  d5  d6 
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d10  15  7  0  10 

d20  25, d10  17, d10 10  0 
  Distance Matrix for N7

P1 - P4 P5 - P7

d6, d7, d10

P8 - P12 P13 - P17

Figure 3: Indoor Partitioning Tree
To efficiently compute shortest distance/path between indoor lo-

cations, the IP-Tree stores distance matrices for leaf nodes and non-
leaf nodes. Below, we provide the details.
Distance matrices for leaf nodes. For each leaf node N, the dis-
tance matrix stores distances between every door di 2 N to every
access door dj 2 AD(N). Fig. 3 shows an example of the distance
matrix for the node N1 where the distances between every door
di 2 N1 (i.e., d1 to d6) and every access door dj 2 AD(N1) (i.e., d1
and d6) are stored.

To support the shortest path queries, the distance matrix also
stores some additional information. Specifically, for a leaf node N,
in addition to the shortest distance between di 2 N and dj 2 AD(N),
the distance matrix also stores a door dk on the shortest path from
di to dj. dk is called the next-hop door for the entry correspond-
ing to di and dj. Specifically, if the shortest path from di to dj lies
entirely inside the node N then dk corresponds to the first door on
the shortest path from di to dj. In Fig. 1, the next-hop door on the

shortest path from d1 to d6 is d2. Therefore, in the distance matrix
of N1 (see Fig. 3), d2 is the next-hop door for the entry of d1 in the
row corresponding to d6. Similarly, d3 is the next-hop door for the
entry corresponding to d2 and d6 because d3 is the first door on the
shortest path from d2 to d6.

If the shortest path from di to dj passes outside of N then dk cor-
responds to the first door on the shortest path that is an access door
of at least one leaf node in the tree. Although this scenario is not
common (and Fig. 1 does not have an example of it), this is criti-
cal to efficiently retrieve the shortest path between two points. We
give a detailed example and reasoning of this later in Section 3.2.
Finally, if the shortest path between di and dj does not involve any
other door (e.g., d5 to d6), the next-hop door is set as NULL. For
better readability, the matrices in Fig. 3 show only non-null values.
Distance matrices for non-leaf nodes. Consider a non-leaf node
N that has f children N1,N2, · · · ,Nf . The distance matrix of N
stores distances between every access door of its children, i.e., it
stores distances between all doors in [ f

i=1AD(Ni). For example,
in Fig. 3, the distance matrix of the node N7 stores the distances
between AD(N5) and AD(N6), i.e., d1, d7, d10 and d20. Furthermore,
for each entry di and dj in the distance matrix of N, we also store
the first door dk 2 [ f

i=1AD(Ni) on the shortest path from di to dj
(called next-hop door as stated earlier). Note that dk in this case is
an access door of the children of N and is not any arbitrary door.

In Fig. 3, the entry in the distance matrix of N7 corresponding to
d1 and d20 stores d10. Note that the first door on the shortest path
from d1 to d20 (d1 ! d2 ! d3 ! d5 ! d6 ! d10 ! d15 ! d20) is
d2 but we maintain d10 in the distance matrix because it is the first
door among the access doors of the children of N7 that is on the
shortest path from d1 to d20. The entry corresponding to d1 and d7
has NULL because the shortest path from d1 to d7 does not contain
any access door of the children of N7.

2.1.2 Constructing IP-Tree
The IP-tree is constructed in a bottom-up manner in four steps:

1) the indoor partitions are combined to create leaf nodes (also
called level 1 nodes); 2) the nodes at each level l are merged to form
the nodes at level l + 1. This is iteratively repeated until we only
have one node at the next level; 3) the distance matrices for leaf
nodes are constructed; 4) the distance matrices of non-leaf nodes
are created. Next, we describe the details of each step.
1. Creating leaf nodes. Two partitions are called adjacent parti-
tions if they have at least one common door (e.g., P1 and P2). We
iteratively merge adjacent partitions and construct the leaf nodes by
considering the following two simple rules.

i. If a general partition has more than one adjacent hallways, it
is merged with the hallway with greater number of common doors
with the general partition. Ties are broken by preferring the hallway
that is on the same floor. If the general partition occupies more than
one floors (e.g., it is a staircase) or if both hallways are on the same
floor, the tie is broken arbitrarily.

ii. Merging of a partition with a leaf node is not allowed if the
merging will result in a leaf node having more than one hallways.
This is because the shortest distance/path queries between points
in different hallways are more expensive. This rule ensures that
all hallways are in different leaf nodes, which allows us to fully
leverage the tree structure to efficiently process the queries. The al-
gorithm terminates when no further merging is possible, i.e., every
possible merging will result in the violation of this rule.

EXAMPLE 1 : In Fig. 1, the partitions P2 and P3 are combined
with the hallway partition P1. The partition P4 could be combined
with either P5 or P1 because both P1 and P5 have exactly 1 com-
mon door with P4 and are on the same floor. We assume that it is
combined with P1. Thus, P1 to P4 are combined to form the leaf
node N1. Note that the hallway P5 cannot be included in the leaf
node N1 because doing so would violate the rule ii. The partitions
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P6 and P7 are combined with P5 to form a leaf node N2. Similarly,
P8 to P12 are combined to form the node N3 and P13 to P17 are com-
bined to construct the leaf node N4. The algorithm stops because
no further merging is possible without violating rule ii. ⌅

2. Merging nodes of the IP-Tree. Let t be the minimum degree
of the IP-Tree denoting the minimum number of children in each
non-root node. Algorithm 1 shows the details of merging the nodes
at level l (denoted as Nl) to create the nodes at level l + 1 (denoted
as Nl+1) such that each node has at least t children. Alorithm 1 is
iteratively called until Nl+1 contains at most t nodes in which case
all these nodes are merged to form the root node. Below, are the
details of the algorithm.

We define degree of a node Ni at level l + 1 to be the number
of level l nodes contained in Ni. A min-heap H is initialized by
inserting all nodes in Nl and the key for each node is set to its
degree initialized to one because no level l nodes are merged yet
(line 1). If two nodes have the same degree, the heap prefers the
node which has smaller number of adjacent nodes. This is because
some nodes can only be merged with exactly one other node and
such nodes should be given preferences in merging, e.g., in Fig. 1
and Fig. 3, N1 is merged with N2 and N4 is merged with N3 because
both N1 and N4 can only be merged with exactly one other node.

Algorithm 1: createNextLevel(Nl, t)
Input : Nl: nodes at the current level l, t: minimum degree
Output : Nl+1: nodes at the next level l + 1

1 insert each Ni 2 Nl in a min-heap H with key set to Ni.degree = 1;
2 while H.top().degree < t do
3 deheap a node Ni from H;
4 N j  node with highest number of common access doors with Ni;
5 remove N j from H and merge Ni and N j into a new node Nk;
6 insert Nk in H with key Ni.degree + N j.degree;
7 move nodes from H to Nl+1;

The nodes are iteratively de-heaped from the heap and merged
with one of the adjacent nodes with a goal to minimize the to-
tal number of access doors of the nodes at the parent level. Let
|AD(Ni)| denote the number of access doors of a node Ni and |AD(Ni)\
AD(Nj)| denote the number of common access doors in nodes Ni
and Nj. If the two nodes Ni and Nj are merged into a parent node
N, the number of access doors in the parent node N is |AD(Ni)| +
|AD(Nj)| � 2 ⇥ |AD(Ni) \ AD(Nj)|. Thus, the nodes that have a
greater number of common access doors are given higher priority
to be merged together (line 4). After a node Ni and Nj are merged
to form a node Nk, the node Nk is inserted in the heap (line 6). The
algorithm stops when the top node in the heap has a degree of at
least t (line 2). This implies that every node in the heap contains at
least t level l nodes, i.e., at least t children.
3. Constructing distance matrices for leaf nodes. Recall that the
distance matrix for a leaf node N stores the distance and the next-
hop door on the shortest path between every door di 2 N to every
access door dj 2 AD(N). We compute these distances and the next-
hop doors using Dijkstra’s search on the D2D graph. Specifically,
for each access door dj of a leaf node N, we issue a Dijkstra’s
search until all doors in the node N are reached. Since the doors of
the leaf nodes are close to each other, this Dijkstra’s search is quite
cheap as only the nearby nodes in the D2D graph are visited.

EXAMPLE 2 : To create the distance matrix of leaf node N1 that
contains doors d1 to d6, we first issue a Dijkstra’s search starting at
d1 on the graph shown in Fig. 2(a) and expand the search until all
doors d1 to d6 are reached. The distances and next-hop doors are
populated in the distance matrix row corresponding to the door d1.
The same process is repeated for the other access door d6. ⌅

4. Constructing distance matrices for non-leaf nodes. Let leaf
nodes be on level 1 of the tree (the lowest level) and root node be at
the highest level of the tree. We construct the distance matrices of

the nodes in a bottom-up fashion, i.e., the distance matrices of all
the nodes at level l are created before the distance matrices of the
nodes at level m > l. We construct the distance matrices of nodes at
level l > 1 of the IP-Tree using a graph called level-l graph denoted
as Gl.

Level-l graph (Gl). The vertices of Gl correspond to the access
doors of the nodes at (l � 1)-th level of the tree. An edge between
two doors di and dj is created in Gl if both di and dj are the access
doors of the same node at (l � 1)-th level. The weight of the edge
is dist(di, dj) which has already been computed when the distance
matrices of (l�1)-th level are computed. Note thatGl is a connected
graph because, at every level l, all nodes in the indoor space are
connected through common access doors.

d1 d6

d7

d10 d15 d20

d1

d7

d10 d20

(a)

(b)

Figure 4: (a) G2: level-2 graph; (b) G3: level-3 graph
Fig. 4 shows level-2 and level-3 graphs for our running exam-

ple. To construct the distance matrices of level 2 nodes of the tree
shown in Fig. 3, we use the graph in Fig. 4(a) where the vertices
correspond to the access doors of the nodes at level 1 (i.e., leaf
nodes) of the tree (e.g., d1, d6, d7, d10, d15, d20). In G2 shown in
Fig. 4(a), edges are created between d6, d7 and d10 because these
are the access doors in the same leaf node (see Fig. 3). Similarly, to
construct the distance matrices of level 3 nodes, we use the graph
shown in Fig. 4(b) where the vertices of the graph are the access
doors of level 2 nodes.

The distance matrix of a node N at level l of the tree is then
computed using a Dijkstra’s like expansion on Gl for each door di
until all other doors dj in N have been reached. This operation is
quite efficient because i) the graph is significantly smaller than the
original D2D graph and ii) the Dijkstra’s expansion is not expensive
because the relevant doors are close to each other in Gl.

EXAMPLE 3 : To construct the distance matrix of node N5, the
graph shown in Fig. 4(a) is used. The distance matrix for N5 con-
tains the entries for doors d1, d5, d7 and d10. To populate the column
corresponding to d1, a Dijkstra’s like expansion is conducted at d1
on the graph shown in Fig. 4(a) until all other doors (i.e., d5, d7 and
d10) are reached. The entries for other doors are populated in the
same way. ⌅

2.1.3 Storage Complexity
In addition to IP-tree, our algorithms also require the D2D graph

to compute the shortest distance/path between two points located
in the same leaf node of the IP-tree. In this section, we analyse the
storage complexity of IP-Tree.

Let D and P denote the total number of doors and partitions in
the indoor space, respectively. Let M be the number of leaf nodes
where M  P. Let ⇢ be the average number of access doors in a
node. The total size of all leaf node matrices is O(⇢D). This is
because the distance matrix for a leaf node N stores the distance
between each door in N to every access door of the node. Note that
each door can belong to at most two leaf nodes because each door
is connected to at most two indoor partitions. Since the average
number of access doors is O(⇢), the total storage cost for all leaf
node distance matrices is O(⇢D).

Let f be the average number of children for a non-leaf node.
Then, the average size of a non-leaf distance matrix is O(⇢2 f 2).
Since each node is merged with at least one other node at the same
level, the total number of nodes at a level l are at most half of the
total number of nodes at level l � 1. Hence, the total number of
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non-leaf nodes in IP-tree is O(M) (bounded by the total number of
leaf nodes). Hence, the total size of all distance matrices of non-
leaf nodes is O(⇢2 f 2 M). Therefore, the total storage complexity1

of IP-Tree is O(⇢2 f 2 M+⇢D). Note that IP-Tree also needs to store,
for each partition Pi, the leaf nodes that contain Pi and the doors
connected to it. The total cost of this is O(D + P). Since P  D
(each indoor partition has at least one door), the total complexity of
IP-Tree is O(⇢2 f 2 M + ⇢D).

2.2 Vivid IP-Tree (VIP-Tree)
Vivid IP-Tree (VIP-Tree) is very similar to IP-tree except that it

stores, for each door di in the indoor space, the following additional
information. Let N be the leaf node that contains the door di. For
every door dj that is an access door in one of the ancestor nodes
of N, VIP-tree stores dist(di, dj) as well the next-hop door dk on
the shortest path from di to dj. This information can be efficiently
computed by our efficient shortest distance/path algorithms using
IP-tree.

As stated earlier, each door di can belong to at most two leaf
nodes. Since the height of the tree is O(log f M) and the average
number of access doors in a node is ⇢, VIP-Tree takes an additional
O(⇢ log f M) space for each door di. Hence, the total additional
cost for all doors is O(⇢D log f M). Therefore, the total storage
complexity of VIP-Tree is O(⇢2 f 2 M + ⇢D log f M) as compared to
O(⇢2 f 2 M + ⇢D) cost of IP-Tree.

3. INDOOR QUERY PROCESSING
In this section, we propose our query processing algorithms for

shortest distance queries, shortest path queries, kNN queries and
range queries.

3.1 Shortest Distance Queries
3.1.1 Shortest Distance Using IP-Tree

In this section, we present algorithms to compute the indoor
shortest distance dist(s, t) between a source point s and a target
point t. When both s and t are located in the same leaf node,
dist(s, t) can be computed using D2D graph (similar to existing
approaches). Since s are t are close to each in D2D graph, the
distance computation is not expensive. Next, we show how to com-
pute dist(s, t) when both s and t are in different leaf nodes.

Given a point p in the indoor space, we use Partition(p)
and Leaf(p) to denote the partition and the leaf node that con-
tains the point p, respectively. First, we describe how to compute
the shortest distance between s and an access door d of the leaf
node that contains s, i.e., d 2 AD(Leaf(s)). Although dist(s, d)
in this case can be computed using D2D graph, we may improve
the performance by utilizing the distance matrices stored in the leaf
nodes. Below, we describe the details.
Shortest distance between s and an access door d 2AD(Leaf(s)).
In this paper, an access door d of Leaf(s) that is also a door of
Partition(s) is called a local access door of Partition(s).
If the access door d is not a door of Partition(s), it is called a
global access door for Partition(s). Fig. 5(a) shows the leaf
node N1 which has two access doors d1 and d6. d1 is a local access
door of P1 and d6 is a global access door of P1.

If d is a local access door of Partition(s) then dist(s, d) can
be trivially computed. If d is a global access door, dist(s, d) can be
computed as follows.

dist(s, d) = min8di2Partition(s)dist(s, di) + dist(di, d) (1)

Since d is an access door of Leaf(s), dist(di, d) can be retrieved
from its distance matrix in O(1). However, the total cost may still
1Our experiments on three real data sets demonstrate that f and ⇢
are small in practice (less than 4 for all real data sets).

be high if the number of doors in Partition(s) is large. We
address this issue by using the concepts of inferior and superior
doors of a partition.

Definition 2. Superior door: Let P be a partition and Leaf(P)
be the leaf node containing the partition P. A door di 2 P is called
a superior door of P if either i) di is a local access door of P or ii)
there exists a global access door dj such that the shortest path from
di to dj does not pass through any other door of the partition P.

The doors that are not superior are called inferior doors. Con-
sider the example of Fig. 5(a) that shows a leaf node containing
partitions P1 to P4. The access doors of the node are d1 and d6
where d1 is the local access door of P1 and d6 is its global access
door. The superior doors of the partition P1 are d1 and d5. d1 is the
superior door because it is a local access door of the partition. d5
is a superior door because the shortest path from d5 to the global
access door d6 does not pass through any other door. The doors d2,
d3 and d4 are the inferior doors for partition P1. For example, the
door d2 is an inferior door because the shortest path from d2 to the
global access door d6 passes through at least one other door of the
partition P1.

Intuitively, the shortest path from any point s 2 P to any global
access door dj must pass through one of the superior doors of P.
Therefore, we only consider the superior doors in Eq. 1. In the
example of Fig. 5(a), the shortest path from s 2 P to d6 must pass
through one of its superior doors (d1 or d5). Hence, dist(s, d6) =
min(dist(s, d1) + dist(d1, d6), dist(s, d5) + dist(d5, d6)).

This significantly improves the cost of computing dist(s, d) be-
cause the number of superior doors is significantly smaller than the
total number of doors especially for hallways that contain many
doors. Our experiments demonstrate that the maximum number of
superior doors is 4 for all data sets even for the hallways that con-
tain more than a hundred doors.
Shortest distance between s and all access doors of an ancestor
of Leaf(s). Let N be an ancestor node of Leaf(s). We present
an algorithm to compute the distances between s and all access
doors of N. This is a key algorithm used in computing dist(s, t) for
two arbitrary points s and t located in different leaf nodes.

Algorithm 2 shows the details of computing dist(s, d) for every
d 2 AD(N) where N is an ancestor node of Leaf(s). The basic
idea is to first compute the distances from s to all access doors
in Leaf(s) using the superior doors as described above. Then,
the algorithm iteratively retrieves the parent node and computes
distances to the access doors of the parent node until the ancestor
node N is reached. Next lemma shows that dist(s, d) for an access
door d in N can be computed using the distances from s to the
access doors of its child node.

Lemma 1. Let Nparent be the current node being processed and
Nchild be its child node. Let d be an access door of Nparent. The
shortest path for a point s 2 Nchild to d must pass through at least
one access door of Nchild.

PROOF. Note that an access door d of a parent node Nparent must
be an access door of at least one of its children nodes. If d is the
access door of Nchild then the shortest path from s to d must end at
d (which proves the lemma). If d is not an access door of Nchild,
then d must be a door outside of Nchild. Hence, the shortest path
from s (which is inside Nchild) to d (which is outside Nchild) must
pass through at least one access door of Nchild.

If dist(s, di) for every di 2 AD(Nchild) is known, then dist(s, d)
for a door d 2 AD(Nparent) can be computed as follows.

dist(s, d) = min8di2AD(Nchild )dist(s, di) + dist(di, d) (2)
Note that dist(di, d) is stored in the distance matrix of the node
Nparent because both di and d are the access doors of the children of
Nparent. Hence, dist(di, dj) can be retrieved in O(1).
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Algorithm 2: getDistances (s,N)
Input : s: source, N: an ancestor node of Lea f (s)
Output : Distances: shortest distance between s and every d 2 AD(N)

1 Initialize Nparent to be the parent node of Lea f (s);
2 Initialize Nchild to Lea f (s);
3 while Nchild is not the same as N do
4 for each unmarked d 2 AD(Nparent) do
5 dist(s, d) = min8di2AD(Nchild )dist(s, di) + dist(di, d);
6 mark d and then insert dist(s, d) in Distances if d 2 AD(N);
7 Nchild  Nparent;
8 Nparent  parent node of Nparent;
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(b) Illustration of Algorithm 2

Figure 5: Shortest distance computation

Although Algorithm 2 is self explanatory, we elaborate it with
an example.

EXAMPLE 4 : Consider the example of Fig. 1 and Fig. 3 and as-
sume that we want to compute the shortest distances between d2
and every access door of the root node N7 (i.e., d1, d7 and d20).
Leaf(d2) is the node N1. The algorithm assumes that dist(s, d)
for every access door d of Leaf(s) has been computed as de-
scribed above. For example, dist(d2, d1) = 2 and dist(d2, d6) = 7
have been computed (see Fig. 5(b)).

Nparent is initialized to be the parent node of N1 (i.e., Nparent is
N5). The shortest distance to each access door in N5 (e.g., d1, d7
and d10) is then computed based on the distances from d2 to the
access doors in N1. For instance, dist(d2, d7) = min(dist(d2, d1) +
dist(d1, d7), dist(d2, d6) + dist(d6, d7)) = min(2 + 13, 7 + 4) = 11.
Fig. 5(b) illustrates the processing of the algorithm where the in-
coming edges (thick arrows and broken lines) to a door demon-
strate a possible path to the door and the thick arrows show the
path that lead to minimum distance, e.g., d7 has two incoming
edges: one from d1 and the other from d6. The shortest distance
is dist(d2, d6) + dist(d6, d7) = 7 + 4 = 11 and the edge between
d6 and d7 is shown using a solid arrow. Similarly, dist(d2, d10) =
min(dist(d2, d1) + dist(d1, d10), dist(d2, d6) + dist(d6, d10)) = 13.

After dist(s, d) is computed for every access door d of Nparent, the
algorithm iteratively retrieves the parent node of Nparent to compute
distances from s to its access doors (see lines 7 and 8). In Fig. 5(b),
N7 becomes Nparent and N5 becomes Nchild and the distances to the
access doors of N7 are computed using the previously computed
distances to the access doors of N5. For example, dist(d2, d20) is the
the minimum of dist(d2, d1)+dist(d1, d20), dist(d2, d7)+dist(d7, d20)
and dist(d2, d10)+dist(d10, d20). The thick arrows show the shortest
path from d2 to each access door.

If dist(s, d) for a door d in Nparent is already known because d
is also an access door for Nchild, its distance is not needed to be
recomputed. Fig. 5(b) shows such doors in a rectangle drawn in
broken lines, e.g., dist(d2, d1) is computed at node N1 and it does
not need to be recomputed when nodes N5 and N7 are accessed. In
Algorithm 2, we mark each door d for which dist(s, d) has been
computed (line 6) and only compute the distances from s to the
doors that are not marked (line 4). ⌅

Shortest distance between two arbitrary points s and t. Now,
we are ready to describe how to compute dist(s, t) for two arbi-
trary points s and t located in different leaf nodes Leaf(s) and
Leaf(t).

Lemma 2. Let LCA(s, t) be the lowest common ancestor node
of Leaf(s) and Leaf(t). Let Ns (resp. Nt) be the child of
LCA(s, t) which is an ancestor of Leaf(s) (resp. Leaf(t)).
The shortest path from s to t must path through at least one access
door of Ns and at least one access door of Nt.

PROOF. We first show that t lies outside Ns. We prove this by
contradiction. Assume that t is inside Ns. If t is inside Ns then
Ns must be a common ancestor of the leaf nodes containing s and
t. However, Ns is the child of the lowest common ancestor of
Leaf(s) and Leaf(t). Hence, Ns cannot be a common an-
cestor which contradicts the assumption that t lies inside Ns.

Since t lies outside Ns and s lies inside Ns, the shortest path
from s to t must pass through an access door of Ns (by definition
of access doors). Following the same reasoning, the shortest path
from s to t must also pass through an access door of Nt.

Consider the example of Fig. 1 and Fig. 3 where s is in N1 and
t is in N4, LCA(s, t) is the node N7, Ns is N5 and Nt is N6. The
shortest path between s to t must pass through an access door of
N5 and an access door of N6, e.g., the shortest path in Fig. 1 passes
through d10 which is an access door for both N5 and N6.

By using the above lemma, dist(s, t) can be computed as follows.

dist(s, t) = min8di2AD(Ns),8d j2AD(Nt)dist(s, di)+dist(di, dj)+dist(dj, t)
(3)

Note that dist(di, dj) is stored in the distance matrix of LCA(s, t)
because Ns and Nt are the child nodes of LCA(s, t) and di and dj
are the access doors of Ns and Nt, respectively. dist(s, di) for every
di 2 AD(Ns) and dist(dj, t) for every dj 2 AD(Nt) can be computed
using Algorithm 2. Algorithm 3 shows the details of computing
dist(s, t) when s and t are in different leaf nodes.

Algorithm 3: dist(s, t) when s and t are in different leaf nodes
1 Ns  ancestor of Leaf(s) and a child of LCA(Leaf(s), Leaf(t));
2 Nt  ancestor of Leaf(t) and a child of LCA(Leaf(s), Leaf(t));
3 getDistances(s,Ns); /

*

Algorithm 2

*

/;
4 getDistances(t,Nt); /

*

Algorithm 2

*

/;
5 return min8di2Ns ,8d j2Nt dist(s, di) + dist(di, d j) + dist(d j, t)

Complexity Analysis. First, we evaluate the cost of Algorithm 2.
Let ⇢ be the average number of access doors in a node. To compute
the distance from s to a door d in a node Nparent, the algorithm
considers paths through all access door in the child node Nchild (see
Eq. (2)). Hence, the cost to compute the distance of one door at
node Nparent is O(⇢) assuming that distances to every access door in
Nchild are known. Hence, the total cost to compute distances from s
to all doors in a node Nparent is O(⇢2). Let h be the number of nodes
between Leaf(s) and the node N. The total cost for computing
distances from s to every d 2 AD(N) is O(h⇢2).

Recall that Algorithm 2 also requires computing distances be-
tween s and every access door of Leaf(s). Let ↵ be the average
number of superior doors in a partition. The cost to compute dis-
tances from s to every access door in Leaf(s) is O(↵⇢). Hence,
the total cost of Algorithm 2 is O(h⇢2 + ↵⇢).

Now, we evaluate the total cost of Algorithm 3. The cost of
line 5 of the algorithm is O(⇢2) because each of Ns and Nt has O(⇢)
access doors. Also, the algorithm makes two calls to Algorithm 2.
Therefore, the total cost of the algorithm is the same as that of
Algorithm 2, i.e., O(h⇢2 + ↵⇢). Since ↵ and ⇢ both are very small
values and ↵ ⇡ ⇢, we simplify the complexity to O(h⇢2). Note that
h is bounded by the height of the tree which is O(log f M) where M
is the number of leaf nodes in the tree.
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3.1.2 Shortest Distance Using VIP-Tree
The shortest distance computation using VIP-tree is similar ex-

cept that we modify Algorithm 2 that computes the distances from s
to all access doors of an ancestor node N. Let SUP denote the set of
superior doors of Partition(s). Then, dist(s, d) for an access
door d of an ancestor node N is dist(s, d) = min8di2SUPdist(s, di) +
dist(di, d). Recall that VIP-Tree stores distances between di to all
access doors of its ancestor nodes. Hence, dist(di, d) can be re-
trieved in O(1).

Let ↵ be the average number of superior doors. The total cost
of the modified Algorithm 2 is O(↵⇢) as compared to O(h⇢2 + ↵⇢)
cost of the original Algorithm 2 used by IP-tree. For VIP-Tree,
Algorithm 3 uses the modified Algorithm 2 and this reduces the
overall cost for VIP-tree to O(⇢2 + ↵⇢) from O(h⇢2 + ↵⇢). This can
be simplified to O(⇢2) considering that ↵ ⇡ ⇢.

3.2 Shortest Path Queries

3.2.1 Shortest Path Using IP-Tree
As described earlier, if both s and t are in the same leaf node we

use an expansion similar to Dijkstra’s algorithm on the D2D graph
to compute dist(s, t). Thus, the actual shortest path can be easily
maintained during the computation of dist(s, t). Next, we describe
how to recover shortest path when s and t are in different leaf nodes.

During the shortest distance computation (Algorithm 3), we main-
tain the intermediate doors on the path accessed by the algorithm.
This gives a partial shortest path. For example, in the example of
Fig. 5(b), the partial shortest path from d2 to d20 is d2 ! d6 !
d10 ! d20 (see thick arrows). Next, we describe how to decompose
these edges to recover the complete shortest path.

An edge di ! dj is called a final edge if the shortest path from di
to dj does not contain any other door. Otherwise, the edge di ! dj
is called a partial edge. We recursively decompose each partial
edge di ! dj on the partial shortest path until each decomposed
edge is a final edge. In this section, when we say a door di is an
access door without referring to any specific node, it means that
di is an access door of at least one node in the tree. Algorithm 4
describes how to decompose an edge di ! dj.

Algorithm 4: Decompose(di ! dj)
1 if di and d j both are non-access doors then
2 di ! d j is a final edge; /

*

Lemmas 4 and 6

*

/;
3 else
4 if di and d j both are access doors then
5 N  the lowest common ancestor of di and d j;
6 else // only one of di and d j is access door

7 N  leaf node containing di & d j; /

*

Lemmas 4 and 7

*

/;
8 Let dk be the next-hop door of di and d j in the distance matrix of N;
9 if dk is NULL then

10 di ! d j is a final edge; /

*

Lemma 3

*

/;
11 else
12 Return di ! dk ! d j;

If both di and dj are non-access doors then it can be proved that
di ! dj is a final edge (Lemmas 4 and 6 in Section 3.2.2). Note
that di ! dj is either an edge returned by Algorithm 3 or an edge
resulting from decomposition of another edge by Algorithm 4. The
proof is non-trivial and is given in the next section.

If both di and dj are the access doors (line 4 of Algorithm 4), we
will use the distance matrix of the lowest common ancestor node N
of Leaf(di) and Leaf(dj). Otherwise, if only one of di and dj
is an access door, we will use the distance matrix of the leaf node
N that contains both di and dj. Lemmas 4 and 7 in the next section
prove that, for each such edge di ! dj considered by Algorithm 4,
we can always find both di and dj in the same leaf node N.

Let N be the node as described above. We look up the distance
matrix of N and retrieve the next-hop door dk for the entry corre-
sponding to di and dj. The shortest path di ! dj is then decom-
posed to di ! dk ! dj. If dk is NULL then di ! dj is a final
edge and does not need to be decomposed (as we prove later in
Lemma 3).

EXAMPLE 5 : Suppose we want to decompose d10 ! d20. The
lowest common ancestor of d10 and d20 is N6 (see Fig. 3). The
next-hop door for d10 and d20 in the distance matrix of N6 is d15.
Therefore, d10 ! d20 is decomposed into d10 ! d15 ! d20. The
algorithm then tries to decompose d10 ! d15 using the lowest com-
mon ancestor N3 of d10 and d15. The next-hop door of d10 and d15 in
the distance matrix of N3 is NULL. Therefore, d10 ! d15 is a final
edge. Similarly, d15 ! d20 is also a final edge.

Now, assume we want to decompose d2 ! d6. Since only d6 is
an access door, we find the leaf node N1 that contains both d2 and
d6. The next-hop door from d2 to d6 in the distance matrix of N1
is d3. Hence, d2 ! d6 is decomposed to d2 ! d3 ! d6. d2 ! d3
is a final edge because both d2 and d3 are non-access doors. We
decompose d3 ! d6 to d3 ! d5 ! d6 in a similar way using the
distance matrix of N1. d3 ! d5 is a final edge because both d3
and d5 are non-access doors. d5 ! d6 is a final edge because the
next-hop door for d5 and d6 in the distance matrix of N1 is NULL.
Hence, d2 ! d6 is decomposed to d2 ! d3 ! d5 ! d6. ⌅

A key property of Algorithm 4 is that if only one of di and dj is an
access door (see line 6) then there always exists a leaf node N that
contains both di and dj. We prove this later in Section 3.2.2. This
property is made possible due to the special way we store next-hop
door dk for leaf nodes. Specifically, recall that if the shortest path
from di to dj passes outside of the leaf node N then next-hop door
dk is not any ordinary first door on the shortest path from di to dj
but dk is the first access door on the shortest path from di to dj. As
shown in the next example, the above property cannot be ensured
if dk is not selected this way.

d6
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d2

d3

N1

 

d5

N2 N3

 

Figure 6: Choosing next-hop door for leaf nodes

EXAMPLE 6 : Consider the example of Fig. 6 that shows three
leaf nodes N1, N2 and N3. Suppose that we are creating the distance
matrix of leaf node N2 that contains two access doors d2 and d5.
Assume that the shortest path from d2 to d5 is d2 ! d3 ! d4 ! d5
due to some obstacles inside N2. Note that d3 is the first door on
the shortest path. If we choose d3 as the next-hop door, the edge
d2 ! d5 will be decomposed into d2 ! d3 ! d5. Now, if we try to
decompose d3 ! d5, there does not exist any leaf node that contains
both d3 and d5 (d3 is a non-access door and d5 is an access door).
Hence, Algorithm 4 will fail to decompose it. To address this, we
choose d4 as the next-hop door which is the first access door on the
shortest path. Hence, d2 ! d5 is decomposed to d2 ! d4 ! d5.
Note that d2, d4 and d5 all are access doors and each edge can be
further decomposed using the distance matrix of the least common
ancestor node (at line 4). ⌅
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3.2.2 Proof of correctness
In this section, we prove the correctness of Algorithm 4. First

we show that di ! dj is a final edge if dk is NULL (line 10).

Lemma 3. The next-hop door dk for di and dj in the distance
matrix of N can only be NULL if di ! dj is a final edge.

PROOF. If N is a leaf level node and dk is NULL then there does
not exist any other door on the shortest path from di to dj because
the distance matrices for the leaf nodes are computed using the
original D2D graph. Hence, di ! dj is a final edge. Next, we
show that dk cannot be NULL if N is a non-leaf node.

We prove this by contradiction. Let the lowest common ancestor
node N be a non-leaf node at level l > 1 of the tree. Recall that the
distance matrix of a node N at level l is computed using the level-l
graph Gl. The vertices in Gl are the access doors of the level l � 1
nodes and an edge is created between two doors di and dj if both
doors are the access doors of the same node at level l� 1. Note that
dk can only be NULL if there exists an edge between di and dj in
Gl. This implies that both di and dj are the access doors of the same
node N0 at level l� 1 of the tree. However, if this is the case then N
cannot be a lowest common ancestor because N0 is also a common
ancestor at a lower level.

Next, we need to show that, for each edge di ! dj considered
by Algorithm 4, the following two conditions hold: (1) di ! dj is
a final edge if both di and dj are non-access doors (line 2); (2) di
and dj can both be found in the same leaf node N if only one of
di and dj is an access door (line 7). Note that the edges consid-
ered by Algorithm 4 are either the edges on the partial shortest path
maintained during the execution of Algorithm 3 or the edges de-
composed earlier by Algorithm 4 itself. First, we prove the above
two conditions for each edge on the partial shortest path maintained
by Algorithm 3.

Lemma 4. Let di ! dj be an edge returned by Algorithm 3. (1)
di ! dj is a final edge if both di and dj are non-access doors; (2) di
and dj can both be found in the same leaf node N if only one of the
di and dj is an access door.

PROOF. Each of di and dj at line 5 of Algorithm 3 is an access
door, e.g., di 2 AD(Ns) and dj 2 AD(Nt). Similarly, Algorithm 2
(which is called by Algorithm 3) also considers only the access
doors along the path except when the distance from s (resp. t)
to the access doors of Leaf(s) (resp. Leaf(t)) is to be com-
puted. Hence, the lemma is only applicable for the case when the
distances from s (resp. t) to every access door dj of Leaf(s)
(resp. Leaf(t)) are computed. This is because both doors are
access doors for each other edge. We prove the lemma for the case
when distance from s to dj 2 AD(Leaf(s)) is computed. The
proof for the distance from dj to t is similar.

Note that the shortest path from s to dj is s ! di ! dj where
di is a door in Partition(s) (see Eq. (1)). The edge di ! dj
contains one access door (dj) and it is easy to see that both di and
dj are in the same leaf node Leaf(s) - this proves (2). Now, we
prove (1) by showing that every edge on the shortest path from s to
di is a final edge. Recall that we compute the shortest path between
two points in the same leaf node using a Dijkstra’s like expansion
on the original D2D graph. Hence, every edge on the shortest path
from s! di is a final edge.

Next, we prove the two conditions for the edges that are obtained
as a result of decomposing another edge by Algorithm 4. First, we
show that the two conditions are only applicable to an edge if it is
decomposed by Algorithm 4 using a leaf node N at line 8.

Lemma 5. Assume we decompose di ! dj into di ! dk ! dj
as described in Algorithm 4. If N is a non-leaf node then di, dk and
dj all are access doors.

PROOF. Assume that the lowest common ancestor node N of di
and dj is at level l > 1 of the tree. Recall that the distance matrix
of nodes at level l > 1 is created using a graph Gl that contains the
access doors of nodes at level l � 1. Hence, dk is an access door of
a node at level l � 1. Note that N can only be a non-leaf node if
both di and dj are access doors. Hence, di, dj and dk all are access
doors.

Next, we prove the condition (1) for each edge decomposed by
Algorithm 4.

Lemma 6. Assume we decompose di ! dj into di ! dk ! dj
as described in Algorithm 4. Each edge in di ! dk ! dj satisfies
the following: if both doors in the edge are non-access doors then
the edge is a final edge.

PROOF. As stated in Lemma 5, if N is a non-leaf node then di,
dk and dj all are access doors and this lemma is not applicable.
Therefore, this lemma only applies when N is a leaf node.

Since at least one of di and dj is an access door for each partial
edge di ! dj considered by Algorithm 4 (Lemma 4), this lemma
is only applicable to either di ! dk (assuming di is a non-access
door) or dk ! dj ( assuming dj is a non-access door). Without loss
of generality, assume that di is a non-access door. The lemma is not
applicable to dk ! dj because dj is an access door. We prove the
lemma for di ! dk.

Since di is a non-access door and dj is an access door, Algo-
rithm 4 decomposes di ! dj by retrieving the next-hop door dk
from the distance matrix of the leaf node N that contains both di
and dj. If dk is an access door (e.g., shortest path from di to dj
passes outside of N) then the lemma is not applicable on di ! dk
because at least one door is an access door. If dk is not an access
door then it is the next-hop door computed using the original D2D
graph for the leaf node N. Hence, di ! dk is a final edge.

The nex lemma proves the condition (2) for each edge decom-
posed by Algorithm 4.

Lemma 7. Assume we decompose di ! dj into di ! dk ! dj
as described in Algorithm 4. Each edge in di ! dk ! dj satisfies
the following: if only one of the doors is an access door then both
doors can be found in the same leaf node.

PROOF. As stated in Lemma 5, if N is a non-leaf node then di,
dk and dj all are access doors and this lemma is not applicable.
Therefore, this lemma only applies when N is a leaf node.

If the shortest path from di to dj lies entirely inside N then dk is
always inside N. This implies that di, dj and dk all are inside the
same leaf node N. If the shortest path from di to dj passes outside
of N then, as stated earlier, dk is always chosen to be an access door.
Since at least one of di and dj is an access door, the lemma is only
applicable to one of di ! dk and dk ! dj (because both doors in
the other edge are access doors). Without loss of generality, assume
that di is a non-access door. We prove the lemma for di ! dk.
Since di is a non-access door of the leaf node N then dk must be an
access door of N because the shortest path from di which is inside
N cannot go out of N without passing through an access door of N.
Hence, both di and dk can be found in the leaf node N.

3.2.3 Complexity Analysis
Let w be the number of doors on the shortest path from s to t. The

algorithm needs to find the lowest common ancestor for O(w) pairs
of doors. Finding the lowest common ancestor for a single pair of
doors takes at most O(log f M) - the height of the IP-tree. Hence,
the algorithm takes O(w log f M) in addition to the cost of shortest
distance query. Therefore, the total cost of the shortest path query
is O(w log f M + ⇢2 log f M).
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3.3 Shortest Path Using VIP-Tree
Recall that VIP-Tree stores, for each door di in indoor space, its

distance and next-hop door to every access door dj of each of its
ancestor node N. Similar to the leaf node distance matrices, the
next-hop door dk is the first access door on the shortest path from
di to dj if the shortest path from di to dj passes outside of N. In this
case, di ! dj is decomposed to di ! dk ! dj and these edges are
further decomposed in a way similar to IP-Tree.

If the shortest path from di to dj lies entirely inside N then dk is
the first door on the shortest path from di to dj. In this case, di ! dj
is decomposed to di ! dk ! dj where di ! dk is a final edge and
dk ! dj can be further decomposed. Note that dk is inside the node
N and the next-hop door for dk ! dj can be found because dj is an
access door of an ancestor of Leaf(dk).

The worst case cost of the shortest path recovery is O(w log f M)
assuming that for each edge di ! dj, the shortest path passes out-
side of N. This is because in this case the algorithm needs to find
the lowest common ancestor for the decomposed edge dk ! dj.
However, we remark that this worst case scenario is very rare in
practice and, in almost all cases, the shortest path passes within N.
Hence, the expected complexity of shortest path recovery is O(w).
The total expected cost for shortest path algorithm using VIP-Tree
is then O(⇢2 + w).

3.4 Querying Indoor Objects
Indexing Indoor Objects. Given a set of objects O, we embed
it with IP-Tree and VIP-Tree as follows. For each object o 2 O
located in a partition P, we record a pointer to the leaf node of
the tree that contains the partition P. Furthermore, for each access
door di of a leaf node N, we maintain the list of objects located in N
sorted on their distances from di. This allows efficient computation
of distances from a given query point to the objects in a leaf node.
k Nearest Neighbors (kNN) Queries. Algorithm 5 presents the
details of computing kNNs using our proposed index structures.
It is a standard best-first search algorithm widely used on various
branch and bound structures such as R-tree, Quad-tree etc.

Algorithm 5: k Nearest Neighbors
Input : q: query point, k
Output : kNNs

1 dk = 1; /

*

dk
is distance to current kth

NN

*

/;
2 getDistances(q,root); /

*

Algorithm 2

*

/;
3 Initialize a heap H with root of the tree;
4 while H is not empty do
5 de-heap a node N from heap;
6 if mindist(q, e) > dk then
7 return kNN;
8 if N is a non-leaf node then
9 for each child N0 of N do

10 if N0 contains objects then
11 insert N0 in heap with mindist(q,N0);

12 else
13 Use objects in N to update kNN and dk;

The algorithm requires computing mindist(q,N) for different nodes
in the tree. mindist(q,N) is the minimum distance from the query
q to any point in the node N. mindist(q,N) is zero if q is in a parti-
tion contained in the sub-tree of the node N. If N does not contain
q, then mindist(q,N) is the minimum distance from q to an ac-
cess door of the node N, i.e., mindist(q,N) = min8d2AD(N)dist(q, d).
A straightforward way to compute mindist(q,N) is to use Algo-
rithm 3. Next, we show that we could optimize mindist(q,N) for
branch and bound algorithms because these algorithms access the
nodes in a particular order.

Lemma 8. Let N1 and N2 be the two sibling nodes. If N1 con-
tains q then dist(q, di) for any access door di 2 AD(N2) is min8d j2AD(N1)
dist(q, dj) + dist(di, dj).

PROOF. Note that the only common points between two sibling
nodes may be the common access doors. If q is located at a com-
mon access door di then the proof is obvious. If q is not located at
a common access door then it must be located outside N2 (because
q is inside N1). Hence, the shortest path from q to any access door
di of N2 must pass through at least one access door of N1. Hence,
dist(q, di) = min8d j2AD(N1)dist(q, dj) + dist(di, dj).

Note that dist(di, dj) can be retrieved from the distance matrix of
the parent node of N1 and N2.

Lemma 9. If N1 does not contain q and N2 is a child of N1 then
dist(q, di) for any access door di 2 AD(N2) is min8d j2AD(N1)dist(q, dj)+
dist(di, dj).

PROOF. Since q is outside N1 and N2 is inside N1, the shortest
path from q to a door di 2 N2 must pass through at least one ac-
cess door dj of N1. Hence, dist(q, di) = min8d j2AD(N1)dist(q, dj) +
dist(di, dj).

Note that if dist(q, dj) for every access door dj of N1 is already
known, then mindist(q,N2) can be computed in O(⇢2) using Lemma 8
or Lemma 9. Below are the details.

At line 2 of Algorithm 5, we compute distance from q to each ac-
cess door of the root node by calling Algorithm 2. Note that Algo-
rithm 2 computes distances from q to all access doors of each ances-
tor node of Leaf(q) in the process. We maintain these distances
for each ancestor node of Leaf(q). Now, when a child node N0
of a node N is to be inserted in the heap at line 11, mindist(q,N0)
can be computed using either Lemma 8 or Lemma 9.

Specifically, if N contains q then this implies that at least one
sibling Nsib of N0 contains q. Since we already know distances
from q to every access door of Nsib (because it is an ancestor of
Leaf(q)), Lemma 8 can be applied to compute mindist(q,N0).
On the other hand, if N does not contain q then Lemma 9 is applied.
Hence, mindist(q,N0) can be easily computed in O(⇢2) for each
node accessed by the algorithm.
Range Queries Given a range r, a range query returns every object
o 2 O for which dist(q, o)  r. The algorithm to process range
queries is very similar to Algorithm 5 except that dk is set to r and
all objects in a node N are returned if the furthest object in the
node is within the range r. We omit the details due to the space
limitations.

4. EXPERIMENTS
4.1 Experimental Settings

Indoor Space. We use three real data sets: Melbourne Cen-
tral [4], Menzies building [5] and Clayton Campus [6]. Melbourne
Central is a major shopping centre in Melbourne and consists of
297 rooms spread over 7 levels (including ground and lower ground
levels). Menzies building is the tallest building at Clayton campus
of Monash University consisting of 14 levels (including basement
and ground floor) and 1306 rooms. The Clayton data set corre-
sponds to 71 buildings (including multilevel car parks) in Clayton
campus of Monash University. We obtained the floor plans of all
buildings and manually converted them to machine readable indoor
venues. Coordinates of the buildings are obtained by using Open-
StreetMap and the sizes of indoor partitions (e.g., rooms, hallways)
are determined. A three dimensional coordinate system is used
where the first two represent x and y coordinates of indoor enti-
ties (e.g., rooms, doors) and the third represents the floor number.
For Clayton data set, the D2D graph also contains edges between
the entry/exit doors of different buildings where the weight corre-
sponds to the outdoor distance between the doors.

333



To evaluate the algorithms on even larger data sets, we extend
Melbourne Central (denoted as MC), Menzies building (denoted as
Men) and Clayton (denoted as CL) by replication. Table 2 gives
details of the real indoor venues and the larger replicated venues.
For example, MC-2 indicates that a replica of Melbourne Central
is placed on top of the original building. CL-2 denotes that each
building in the Clayton campus has been replicated to increase its
size by two. The replicas are connected with the original buildings
by stairs. The number of edges shown in Table 2 corresponds to
the total number of edges in the D2D graph for each indoor space.
The distance matrix used by the state-of-the-art indoor technique
cannot be built on the venues larger than Men-2.

Table 2: Indoor venues used in experiments

Datasets Description # doors # rooms # edges
MC Melbourne Central 299 297 8,466
MC-2 2 times MC 600 597 16,933
Men Menzies building 1,368 1,306 56,035
Men-2 2 times Men 2,738 2,613 112,114
CL Clayton Campus 41,392 41,100 6,700,272
CL-2 2 times CL 83,138 82,540 13,400,884
Competitors. All algorithms are implemented in C++ on a PC

with 8GB RAM and Intel Core I5 CPU running 64-bit Ubuntu.
We compare our proposed indexes (IP-Tree and VIP-Tree) with the
following competitors.
Distance Matrix (DistMx). As described earlier, the shortest dis-
tance and shortest path queries can be efficiently computed using
a distance matrix that materializes distances between all pairs of
doors in the space.
Distance-aware model (DistAw) [19]. We also compare our algo-
rithm with the state-of-the-art indoor query processing index called
distance-aware model (shown as DistAw). For shortest distance/path
queries, DistAw uses only an extended graph based on the accessi-
bility base graph. For kNN and range queries, DistAw model also
proposes to use DistMx to speed up the query processing. In the ex-
periments, we use DistAw++ to denote the algorithm that exploits
DistMx (requiring an additional O(D2) space). We use DistAw to
denote the algorithm that does not required DistMx.
ROAD [17] and G-tree [28]. We also compare our algorithm with
the state-of-the-art indexes for spatial query processing on road net-
works (G-tree and ROAD). These indices are constructed by pass-
ing the D2D graph as input and the query processing algorithms are
adapted to suit indoor query processing. For each indoor venue, we
experimentally choose the best value for the parameter ⌧ inG-tree.

Queries and Objects. To evaluate the performance for short-
est distance/path queries, 10, 000 pairs of source and target points
are randomly generated in the indoor space. To evaluate kNN and
range queries, 10, 000 query points are randomly generated in the
indoor space. We use washrooms in the buildings as the objects
(e.g., the query is to find the nearest washroom). The number
of washrooms in Men-2 is 50. We also generate synthetic object
sets consisting of 10, 50, 100 and 500 objects - 50 is the default
value. We choose a small set of objects because the kNN queries
are more challenging for smaller object sets (as also reported in ex-
isting work on road networks [9]). This is because a larger area is
to be explored to compute the kNNs when the number of objects
is small. Furthermore, we believe that the real world scenarios for
kNN queries contain a small number of objects, e.g., ATM ma-
chines, washrooms, charging-kiosks etc. k is varied from 1 to 10
and the default value of k is 5. The range is varied from 50 to
1000 meters and the default value is 100 meters. The figures report
average query processing cost for each algorithm.

Choosing t for IP-Tree and VIP-Tree. We evaluated the ef-
fect of the minimum degree t (see Algorithm 1) on our indexes and
found that the best performance is achieved for t = 2. Fig. 7 shows
the index construction cost and query time of VIP-tree on Clayton

 220

 240

 260

 280

 300

 320

2 10 20 60 100
 0

 50

 100

 150

 200

 250

M
em

or
y 

us
ag

e 
(M

B
)

In
de

xi
ng

 ti
m

e 
(s

)

Minimum degree

Memory usage
Indexing time

(a) Construction cost

 0

 5

 10

 15

 20

2 10 20 60 100

Q
ue

ry
 ti

m
e 

(m
s)

Minimum degree

Shortest distance
kNN

(b) Querying cost

Figure 7: Effect of minimum degree t on VIP-Tree

data set. The construction time and construction cost increases as
t increases mainly because the size of distance matrices increases
which requires more storage and more computation time to materi-
alize the distances. The size of t does not affect the query time for
shortest distance queries mainly because the cost is independent of
the height of the tree – recall that VIP-tree computes shortest dis-
tance in O(⇢2) and ⇢ is not affected by t. The cost of kNN query
increases with t mainly because fewer nodes can be pruned when t
is large which requires the algorithm to access a larger number of
nodes. The trend for IP-tree are similar. In the rest of the experi-
ments, we use t = 2 for our indices. Although the results are not
shown due to the space limitations, we also found that the average
number of access doors and superior doors is less than 4 for all data
sets and the maximum number is around 8. This provides an insight
on why our indices perform exceptionally well for indoor spaces.

4.2 Indexing Cost
Construction time. Fig. 8(a) compares the time to construct

each index using the accessibility base graph and D2D graph. Since
DistAw only uses the extended graph based on the accessibility
base graph, its index construction is not shown. Note that Dis-
tAw++ does use DistMx and its construction cost is the same as
DistMx. To construct DistMx, for each door, we use a Dijkstra’s
like expansion until all other doors in the graph have been marked.
This requires O(D) expansions on D2D graph which is quite expen-
sive. Consequently, DistMx has a high construction cost and it took
almost 14 hours to construct DistMx for Men-2 with 2, 738 doors
requiring computing almost 7.5 million shortest distances/paths.

The construction cost for IP-Tree and VIP-Tree is less than 90
seconds even for the largest data set (CL-2) that consists of more
than 83, 000 doors and around 13.4 Million edges in the D2D graph.
As expected, VIP-Tree takes more time than IP-Tree because it
needs to compute and store the distances between each door di to
every access door in the ancestor nodes of di. G-tree and ROAD
take around one hour to build the index for CL-2 data set.

Index size. Fig. 8(b) compares the size of different indexes.
As expected, DistMx is the largest index. DistAw has the small-
est index size because it only needs the extended graph based on
the accessibility base graph. IP-Tree, VIP-Tree and G-tree have
sizes comparable to DistAw index. The storage cost of VIP-Tree is
slightly higher than IP-Tree, which demonstrates that materializing
the distances to the access doors of all ancestors nodes does not in-
crease the storage cost dramatically but significantly improves the
query processing cost as we show later. G-tree and ROAD con-
sume more space than IP-Tree and VIP-Tree mainly because these
are designed for road networks having a small average outdegree
(2 to 4) as compared to the D2D graph which has a much higher
out-degree (up to 400). This results in a larger number of border
nodes and hence consuming more space.

4.3 Query Performance
4.3.1 Shortest distance queries

In Fig. 9 we evaluate the algorithms for shortest distance queries
on different indoor data sets. First, we present a simple optimiza-
tion to improve the performance of DistMx. A straightforward ap-
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Figure 8: Indexing Cost

proach to compute the distance from s to t is to use DistMx to cal-
culate distances between every door di in Partition(s) and ev-
ery door dj in Partition(t) and picking the pair di and dj that
minimizes dist(s, di)+dist(di, dj)+dist(dj, t). Let Ds and Dt be the
number of doors in Partition(s) and Partition(t), re-
spectively. This requires checking Ds⇥Dt pairs of doors to retrieve
the shortest distance and the cost may be high if Ds ⇥Dt is large. A
simple optimization is to ignore the doors in Partition(s) and
Partition(t) that lead to no-through partitions.

The above optimization significantly reduces the pairs of doors
that need to be considered. Fig. 9(a) shows the effect of this opti-
mization where DistMx uses this optimization and DistMx- - does
not use this optimization. The numbers on top of bars correspond
to the number of pairs needed to be considered by each algorithm.
As can be seen, this simple optimization significantly reduces the
number of pairs and improves the performance of DistMx by up
to several times. In the rest of the experiments, we use this opti-
mization for DistMx. The numbers for VIP-Tree correspond to the
pair of superior doors to be considered. This number is slightly
smaller than the number of pairs considered by DistMx but the cost
is slightly higher because VIP-Tree needs to first compute distances
from s and t to the access doors of the children of lowest common
ancestor which requires more computation.
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Figure 9: Shortest Distance Queries

Fig. 9(b) compares the performance of all techniques for shortest
distance queries. Since DistMx returns distance between any two
doors in the graph in O(1), it gives the best performance. However,
VIP-Tree provides a comparable performance. Note that DistMx
has quadratic storage cost and huge construction cost. Recall that
we were not able to construct DistMx for indoor venues larger than
Men-2. VIP-Tree significantly outperforms IP-Tree at the expense
of a slightly higher storage cost. Both VIP-Tree and IP-Tree out-
perform the other three techniques by several order of magnitude,
e.g., for CL-2 data set, VIP-Tree processes a shortest distance query
in around 10 microseconds as compared to ROAD and G-tree that
take almost one second to answer a single shortest path query.

4.3.2 Shortest path queries
Fig. 10 compares the techniques for shortest path queries. We

note that the overhead of recovering shortest paths is negligible, i.e.,
for each algorithm, the cost of shortest distance queries is similar to
the cost of shortest path queries (compare Fig. 9(b) and Fig. 10(a)).

Next, we evaluate the effect of the distance between s and t on the
performance of different algorithms for the shortest path queries.

We use Men-2 to demonstrate the results because this is the largest
data set for which DistMx works. Let dmax be the maximum dis-
tance between any two points in Men-2 building. We divide the dis-
tance range [0, dmax] into five intervals (Q1 to Q5) of equal length
l = dmax/5, e.g., Q1 = [0, l], Q2 = [l, 2l], . . . ,Q5 = [4l, 5l]. We
then randomly generate source and target points and allocate them
to relevant Qi based on the distances between them. Hence, the
pairs of source and target points corresponding to Q1 have the
smallest distances (within range [0, l]) and the pairs in Q5 have
largest distances [4l, 5l].
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Figure 10: Shortest Path Queries
Fig. 10(b) shows the effect of distances on the performance of

different algorithms. The cost of DistAw increases by almost two
orders of magnitude as the distance increases. The cost for IP-Tree
slightly increases from Q1 to Q3 because the lowest common an-
cestor is at a higher level when source and target are further from
each other. This requires visiting more levels of the tree resulting
in an increased cost. However, the cost does not increase further
for Q4 and Q5 because, in most of the cases for Q3, the lowest
common ancestor is already the root node. A similar behavior can
be observed for G-tree and ROAD. The effect of distance is neg-
ligible on DistMx and VIP-Tree because these algorithms require
retrieving relevant entries from the distance matrices which is in-
dependent on the distances between the source and target points. A
similar trend was observed for shortest distance queries.

4.3.3 Querying Indoor Objects
kNN Queries. Fig. 11(a), Fig. 11(b) and Fig. 11(c) evaluate dif-
ferent algorithms by varying k, the number of objects, and the in-
door buildings, respectively. VIP-Tree and IP-Tree perform equally
well. This is because IP-tree computes mindist(q,N) for a node N
with the same complexity as that of VIP-Tree due to the optimiza-
tions presented in Section 3.4. Both VIP-Tree and IP-Tree outper-
form the other algorithms by several orders of magnitude. Note
that DistAw++ is the existing method that utilizes DistMx to speed
up the query processing. Nevertheless, it is outperformed by our
proposed techniques.

Fig. 11(b) shows that the cost of all algorithms decreases as the
number of objects increases. This is because kNNs can be found
closer to the query point as the number of objects increases. Hence,
the algorithms require exploring a smaller area. On the other hand,
the query processing cost increases for all algorithms as the value
of k or the data set size increases.

335



102

103

104

105

106

107

1 5 10

Q
ue

ry
 ti

m
e 

(µ
s)

G-Tree
ROAD
IP-Tree

VIP-Tree
DistAw

DistAw++

(a) Effect of k (kNN query)

102

103

104

105

106

107

10 50 100 500

Q
ue

ry
 ti

m
e 

(µ
s)

G-Tree
ROAD
IP-Tree

VIP-Tree
DistAw

DistAw++

(b) # of objects (kNN query)

100
101
102
103
104
105
106
107

MC MC-2 Men Men-2 CL CL-2

Q
ue

ry
 ti

m
e 

(µ
s)

G-Tree
ROAD
IP-Tree

VIP-Tree
DistAw

DistAw++

(c) Indoor venues (kNN query)

101

102

103

104

105

106

107

MC MC-2 Men Men-2 CL CL-2

Q
ue

ry
 ti

m
e 

(µ
s)

G-Tree
ROAD
IP-Tree

VIP-Tree
DistAw

DistAw++

(d) Indoor venues (range query)

Figure 11: kNN and Range Queries

Range Queries. Fig. 11(d) evaluates the performance of different
techniques for range queries. The cost of all algorithms increases
with for larger venues mainly because the sizes of the indexes in-
crease. VIP-Tree and IP-Tree both perform equally well and out-
perform the other competitors by several orders of magnitude.

5. RELATED WORK
Data modelling for indoor space is fundamental for querying in-

door space. In [16], a 3D model is proposed for indoor space but
it fails to support indoor distance computations. CityGML [7] and
IndoorGML [8] are XML based methods to model and exchange
the indoor space data. As stated in Section 1, the distance-aware
model [19] introduces an extended graph based on an accessibility
base graph and D2D graph that enables indoor distance computa-
tions between two indoor positions.

RTR-tree and TP2R-tree [14] are two indoor structures extended
from R-tree which index trajectories of indoor moving objects. In
terms of indoor partitions like rooms and hallways, indR-tree [22]
constructs a composite index that indexes indoor entities into dif-
ferent layers with indoor moving objects stored in the leaf level.
For querying indoor data, shortest distance/path, kNN and range
queries are studied under various settings [20, 23, 24, 26]. The
most notable techniques [19, 25] have already been discussed in
Section 1 (e.g., D2D graph, AB graph and distance matrix).

Since an indoor space can be converted into a D2D graph, tech-
niques in spatial road networks can also be applied. G-tree [28, 27]
is the state-of-the-art technique for outdoor query processing. Al-
though our proposed indexes are inspired by G-tree, there are some
fundamental differences as our indexes carefully exploit the prop-
erties specific to indoor space. Specifically, G-tree uses an existing
multilevel graph partitioning algorithm [15] for graph decomposi-
tion whereas we design a new algorithm that carefully exploits the
properties of the indoor space to minimize the total number of ac-
cess doors. Also, the smaller number of access doors in our nodes
allows us to use materialization in the VIP-tree which proves to be a
much more efficient strategy but is not feasible for G-tree. Further-
more, our algorithms to process shortest path queries, range queries
and kNN queries are also entirely different.

6. CONCLUSION
In this paper, we propose two novel indexes, IP-Tree and VIP-

Tree, for efficiently processing indoor spatial queries. We also
present efficient algorithms to answer shortest path queries, short-
est distance queries, k nearest neighbors queries and range queries.

IP-Tree and VIP-Tree have low storage requirement, small pre-
processing cost and are highly efficient. Our extensive experimen-
tal study on real and synthetic data sets demonstrates that the pro-
posed indexes outperform the existing techniques by several orders
of magnitude.
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