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Informed Sound Source Localization Using Relative
Transfer Functions for Hearing Aid Applications

Mojtaba Farmani, Michael Syskind Pedersen, Zheng-Hua Tan, and Jesper Jensen,

Abstract—Recent hearing aid systems (HASs) can connect to a
wireless microphone worn by the talker of interest. This feature
gives the HASs access to a noise-free version of the target signal.
In this paper, we address the problem of estimating the target
sound direction of arrival (DoA) for a binaural HAS given access
to the noise-free content of the target signal. To estimate the DoA,
we present a maximum likelihood framework which takes the
shadowing effect of the user’s head on the received signals into ac-
count by modeling the relative transfer functions (RTFs) between
the HAS’s microphones. We propose three different RTF models
which have different degrees of accuracy and individualization.
Further, we show that the proposed DoA estimators can be for-
mulated in terms of inverse discrete Fourier transforms (IDFTs)
to evaluate the likelihood function computationally efficiently.
We extensively assess the performance of the proposed DoA
estimators for various DoAs, signal to noise ratios (SNRs), and
in different noisy and reverberant situations. The results show
that the proposed estimators improve the performance markedly
over other recently proposed “informed” DoA estimator.

Index Terms—Sound Source Localization, Direction of Arrival
Estimation, Hearing Aid, Maximum Likelihood, Relative Trans-
fer Function.

I. INTRODUCTION

IN realistic acoustic scenes, where several sound sources are
present simultaneously, the auditory scene analysis (ASA)

ability in humans allows them to focus deliberately on a sound
source while suppressing the other irrelevant sound sources
[1]. Sensorineural hearing loss degrades this ability [2], and
hearing impaired listeners face difficulties in interacting with
the environment. Hearing aid systems (HASs) may take some
of these ASA responsibilities to restore the normal interactions
of the hearing impaired users with the environment.

Sound source localization (SSL) is one of the main tasks
in ASA, and different SSL approaches have been proposed
for various applications, such as robotics [3], [4], video
conferencing [5], surveillance [6], and hearing aids [7].

SSL strategies using microphone arrays can be generally
categorized as1:
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1This is an extended version of the categorization proposed in [8, ch. 8].
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Fig. 1: An “informed” SSL scenario for a binaural hearing
aid system using a wireless microphone. rm(n) is the noisy
received sound at microphone m, s(n) is the noise-free target
sound emitted at the target location, and hm(n, θ) is the
acoustic channel impulse response between the target talker
and microphone m. s(n) is available at the HAS via the
wireless connection, and the hearing aids are also connected
to each other wirelessly. The goal is to estimate θ.

• Steered-beamformer-based (also called steered response
power methods): the main idea of these methods is to
steer a beamformer towards potential locations and look
for a maximum in the output power [8, ch. 8],[9].

• High-resolution-spectral-estimation-based: these methods
are based on the spatiospectral correlation matrix
obtained from the microphones signals. Under certain
assumptions, the sound source locations can be estimated
from a lower-dimensional vector subspace embedded
within the signal space spanned by the columns of the
correlation matrix [10], [11].

• Time-difference-of-arrival (TDoA)-based: these methods
first estimate a set of TDoAs of the signals reaching each
pair of the microphones in the microphone array, then
map the estimated TDoAs to an estimate of the sound
source location using a mapping function [12], [13].

• Head-related-transfer-function (HRTF)-based: when the
microphone array is mounted at the head and torso of
humans or humanoid robots, the filtering effects of the
head and torso on the incoming sounds can be used for
SSL [4], [14]–[17].

Most existing SSL algorithms have been proposed for appli-
cations which are “uninformed” about the noise-free content
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of the target sound, e.g. [3]–[7], [9]–[16]. However, recent
HASs can employ a wireless microphone worn by the target
talker to access an essentially noise-free version of the target
signal emitted at the target talker’s position [17]–[20]. Using
a wireless microphone worn by the target talker introduces
the “informed” SSL problem considered in this paper.

Fig. 1 depicts the situation considered in this paper. The
HAS consists of two hearing aids (HAs) connected wirelessly
and mounted on each ear of the user, and a wireless micro-
phone worn by the target talker. The target signal s(n) is emit-
ted at the target location, propagates through the acoustic chan-
nel hm(n, θ), and reaches microphone m ∈ {left, right} of the
binaural HAS. Due to additive environmental noise, the signal
captured by microphone m, denoted by rm(n), is a noisy
version of the target signal impinging on the microphone. The
problem considered in this paper is to estimate the target signal
Direction of Arrival (DoA) θ based on the wirelessly available
target signal s(n) and the noisy microphone signals rm(n).
Estimating the target sound DoA in this system allows the
HAS to enhance the spatial correctness of the acoustic scene
presented to the HAS user, e.g. by imposing the corresponding
binaural cues on the wirelessly received target sound [21].

The “informed” SSL problem for hearing aid applications
was first investigated via a TDoA-based approach in [18]. The
method proposed in [18] uses a cross-correlation technique to
estimate the TDoA, then uses a sine law to map the estimated
TDoA to a DoA estimate. The approach proposed in [18] has
relatively low computational load, because it does not take
the shadowing effect of the user’s head and the ambient noise
characteristics into account. Disregarding the head shadowing
effect inevitably degrades the DoA estimation performance,
especially when the target sound is located at the sides of the
user’s head, where the head shadowing has the highest impact
on the received signals. Moreover, neglecting the ambient
noise characteristics causes the estimator performance to be
sensitive to the noise type.

In this paper, we present a maximum likelihood (ML)
framework for “informed” SSL relying on the noise-free
target signal and the ambient noise characteristics. Moreover,
to improve the estimation accuracy, we consider the effects
of the user’s head on the received signals by modeling
the direction-dependent relative transfer functions (RTFs)
between the left and right microphones of the HAS. More
precisely, we present three different RTF models: i) the
free-field-far-field model, ii) the spherical-head model, and
iii) the measured-RTF model. These models have different
degrees of accuracy and individualization. Using the proposed
ML framework and based on each of the RTF models, we
propose an ML estimator for the target sound DoA. Moreover,
besides the DoA, as a by-product, the proposed methods
provide an ML estimate of the target signal propagation time
between the target talker and the user. The propagation time
can be easily converted to a distance estimate, which is an
important information about the target location.

The free-field-far-field model and the spherical-head model
have been proposed and used for informed DoA estimation
in [19] and [20], respectively. In this paper, we introduce
the measured-RTF model and its corresponding ML DoA

estimator. Moreover, we provide a new unified presentation of
all the models and investigate their performances extensively.

The idea of using measured RTFs for “uninformed” DoA es-
timation was already presented in [22]. The method proposed
in [22] considers a narrow-band “uniformed” DoA estimation
problem and solves it using a minimum mean square error
approach. In contrast, our proposed estimator based on the
measured-RTF model solves a wide-band “informed” DoA
estimation problem using a ML approach. We show that
formulating the “informed” DoA estimation problem as wide-
band allows us to evaluate the proposed likelihood function
in all frequency bins at once using inverse discrete Fourier
transforms (IDFTs), which can be computed efficiently.

The general ML framework presented in this paper was
first proposed in [17] for the informed SSL, using a database
of measured HRTFs. The HRTF database was used to model
the acoustic channel and the shadowing effect of a particular
user’s head. To estimate the DoA, the proposed method
in [17], called MLSSL (maximum likelihood sound source
localization), looks for the HRTF entry in the database which
maximizes the likelihood of the observed microphone signals.
MLSSL is markedly effective under severely noisy conditions
when the detailed information of the user-specific HRTFs for
different directions and different distances is available.

Compared with MLSSL, which is based on HRTFs, the
proposed estimators in this paper are based on RTFs. In
contrast to HRTFs, which are distance-dependent, RTFs
are almost independent of the distance between the target
talker and the user, especially in far-field situations [23].
The distance independency decreases the required memory
and the computational overhead of the proposed estimators.
This is because to estimate the DoA, the proposed estimators
must search in a RTF database, which is only a function of
DoA, while MLSSL searches in an HRTF database which is
a function of both DoA and distance. Further, the proposed
estimators in this paper can all be formulated in terms of
IDFTs which can be computed efficiently.

The structure of this paper is as follows. In Sections II and
III, the signal model and the ML framework are presented,
respectively. Afterwards, in Section IV, different RTF models
used for modeling the presence of the head are introduced. The
proposed DoA estimators using the proposed RTF models and
the ML framework are derived in Section V. In Section VI,
the performance of the proposed estimators is evaluated and
compared using experimental simulations. Lastly, we conclude
the paper in Section VII.

II. SIGNAL MODEL

Regarding Fig. 1, the noisy signal received at microphone
m ∈ {left, right} of the HAS is given by:

rm(n) = s(n) ∗ hm(n, θ) + vm(n), (1)

where s(n), hm(n, θ) and vm(n) are the noise-free target sig-
nal emitted at the target talker’s position, the acoustic channel
impulse response between the target talker and microphone m,
and an additive noise component, respectively. Further, n is the
discrete time index, and ∗ denotes the convolution operator.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. , NO. , 3

Most state-of-the-art HASs operate in the short time Fourier
transform (STFT) domain because it allows frequency de-
pendent processing, computational efficiency and low latency
algorithm implementations. Therefore, Let

Rm(l, k) =
∑
n

rm(n)w(n− lA)e−
j2πk
N (n−lA),

denote the STFT of rm(n), where l and k are frame and
frequency bin indexes, respectively, N is the discrete Fourier
transform (DFT) order, A is the decimation factor, w(n) is
the windowing function, and j =

√
−1 is the imaginary unit.

Similarly, let us denote the STFT of s(n) and vm(n) by S(l, k)
and Vm(l, k), respectively, which are defined analogously to
Rm(l, k). Moreover, let

Hm(k, θ) =
∑
n

hm(n, θ)e−
j2πkn
N

= αm(k, θ)e−
j2πk
N Dm(k,θ), (2)

denote the discrete Fourier transform (DFT) of hm(n, θ),
where αm(k, θ) is a real positive number and denotes the
frequency-dependent attenuation factor due to propagation
effects, and Dm(k, θ) is the frequency-dependent propagation
time measured in samples, from the target sound source to
microphone m. Eq. (1) can be approximated in the STFT
domain as:

Rm(l, k) = S(l, k)Hm(k, θ) + Vm(l, k). (3)

This approximation is known as the multiplicative transfer
function (MTF) approximation [24], and its accuracy depends
on the length and smoothness of the windowing function
w(n): the longer and the smoother the analysis window w(n),
the more accurate the approximation [24].

III. MAXIMUM LIKELIHOOD FRAMEWORK

To define the likelihood function, let us assume that the
additive noise observed at the microphones follows a zero-
mean circularly-symmetric complex Gaussian distribution:

V (l, k) =

[
Vleft(l, k)
Vright(l, k)

]
∼ N (0,Cv(l, k)), (4)

where Cv(l, k) is the noise cross power spectral density
(CPSD) matrix defined as Cv(l, k) = E{V (l, k)V H(l, k)},
where E{.} and superscript H represent the expectation and
Hermitian transpose operators, respectively. Further, let us
assume that the noisy observations are independent across
frequencies (strictly speaking, this assumption holds when
the correlation time of the signal is short compared with the
frame length [25], [26]). Therefore, the likelihood function
for frame l is defined by:

p(R(l); H(θ)) =

N−1∏
k=0

1

πMdet [Cv(l, k)]
e{−(Z(l,k))HC−1

v (l,k)(Z(l,k))}, (5)

where det[.] denotes the matrix determinant, and

R(l) = [ R(l, 0), R(l, 1), · · · , R(l, N − 1) ],

R(l, k) = [ Rleft(l, k), Rright(l, k) ]T, 0 ≤ k ≤ N − 1,

H(θ) = [ H(0, θ), H(1, θ), · · · , H(N − 1, θ) ],

H(k, θ) = [ Hleft(k, θ), Hright(k, θ) ]T

=

[
αleft(k, θ)e

−j2π k
NDleft(k,θ)

αright(k, θ)e
−j2π k

NDright(k,θ)

]
,

Z(l, k) = R(l, k)− S(l, k)H(k).

To reduce the computational overhead, we consider the
log-likelihood function and omit the terms independent of θ.
Therefore, the reduced log-likelihood function is given by:

L(R(l); H(θ)) =

N−1∑
k=0

{−(Z(l, k))HC−1
v (l, k)(Z(l, k))}. (6)

The ML estimate of θ is found by maximizing L. However, to
maximize L with respect to θ, we need to model and find the
ML estimate of the parameters (αleft, Dleft, αright and Dright)
in H(θ). Instead of estimating all the parameters separately, in
the following, we present three different RTF models, which
model and define the relations between the parameters in H(θ)
considering the influence of the user’s head, and with different
degrees of accuracy and individualization. These RTF models
allow us to formulate L depending on the parameters of the
transfer function between the target and only one, not both,
of the microphones, while it also considers the head presence.

IV. RELATIVE TRANSFER FUNCTION (RTF) MODELS

The RTF between the left and the right microphones
represents the filtering effect of the user’s head. Moreover,
this RTF defines the relation between the acoustic channels’
parameters (the attenuations and the delays) corresponding
to the left and the right microphones. An RTF is usually
defined with respect to a reference microphone. Without
loss of generality, let us consider the left microphone as the
reference microphone; therefore, considering Eq. (2), the RTF
at frequency bin k is defined by

Ψ(k, θ) =
Hright(k, θ)

Hleft(k, θ)

= Γ(k, θ)e−j2π
k
N ∆D(k,θ),

where

Γ(k, θ) =
αright(k, θ)

αleft(k, θ)
,

∆D(k, θ) = Dright(k, θ)−Dleft(k, θ).

We refer to Γ(k, θ) in dB as the inter-microphone level
difference (IMLD), and to ∆D(k, θ) in discrete time samples
as the inter-microphone time difference (IMTD). In the
following, three different models are presented for the RTF
with different degrees of accuracy.
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A. The free-field-far-field model

The free-field-far-field model Ψff(θ) is the simplest and
the most straightforward model, which simply ignores the
shadowing effect of the user’s head and relies on a minimal
number of user-related prior assumptions. In a free-field and
far-field situation, the delay and the attenuation of an acoustic
channel are frequency-independent. Therefore, using basic
geometry rules, the IMTD can be formulated as [19]

∆Dff(θ) = Dright(θ)−Dleft(θ)

= −a
c

sin(θ), (7)

where a is the head diameter (or more precisely, the distance
between the microphones) and c is the sound speed. It should
be noted that θ = 0◦ is exactly at the front of the user, and
DoAs are defined clockwise with respect to 0◦. Moreover, in
a free-field and far-field situation, αleft(θ) = αright(θ), i.e.

Γff(θ) =
αright(θ)

αleft(θ)
= 1. (8)

Accordingly, the RTF in a free-field and far-field situation is
given by:

Ψff(θ) = [Ψff(0, θ),Ψff(1, θ), · · · ,Ψff(N − 1, θ)]
T

where

Ψff(k, θ) = ej2π
k
N ( ac sin(θ)), 0 ≤ k ≤ N − 1.

B. The spherical-head model

For the spherical-head model Ψsp(θ), we model the user’s
head as a rigid sphere. Even though the IMTD and the IMLD
for a spherical head are generally frequency-dependent, here
we assume that the IMTD and the IMLD, or more precisely
the delays and the attenuations of the acoustic channels, are
frequency-independent. The frequency-independency assump-
tion keeps the model simple and decreases the computational
load [20]. Moreover, our preliminary simulation results re-
veal that a frequency-dependent spherical-head model, which
is a more accurate model with more parameters, does not
necessarily provide more accurate DoA estimation. This is
partly because the frequency-dependent model is over-fitted
to the spherical head, while there is a mismatch between the
spherical head and an actual head.

For a spherical head, the IMTD can be approximated by the
Woodworth model [27, pp. 520-523]:

∆Dsp(θ) = − a

2c
(θ + sin(θ)) . (9)

Moreover, to model the IMLD, we use the following expres-
sion inspired by the work in [28]:

20 log10 Γsp(θ) = γ sin(θ), (10)

where γ is a frequency-independent scaling factor. In [20],
to find the best γ for the DoA estimation, we ran simulation
using the theoretical HRTF of the spherical-head model
proposed in [23]. The results showed that γ = 6.5 provides

the best DoA estimation performance [20]. Therefore, the
RTF for the spherical-head model is given by

Ψsp(θ) = [Ψsp(0, θ),Ψsp(1, θ), · · · ,Ψsp(N − 1, θ)]
T
,

where

Ψsp(k, θ) = 10
6.5 sin(θ)

20 ej2π
k
N ( a2c (θ+sin(θ))), 0 ≤ k ≤ N − 1.

C. The measured-RTF model

The measured-RTF model Ψms(θ) is the most detailed and
individualized model. This model uses a database of RTFs for
different directions obtained from the corresponding HRTFs
measured for the specific user. The measured RTF model is
defined as

Ψms(θ) = [Ψms(0, θ),Ψms(1, θ), · · · ,Ψms(N − 1, θ)]
T
,

where

Ψms(k, θ) = Γms(k, θ)ejΦms(k,θ), 0 ≤ k ≤ N − 1,

where

Γms(k, θ) =
|H̃right(k, θ)|
|H̃left(k, θ)|

, (11)

Φms(k, θ) = ∠
H̃right(k, θ)

H̃left(k, θ)
, (12)

where H̃left(k, θ) and H̃right(k, θ) are the measured HRTFs2

for the left and right microphones, respectively, and |.| and
∠ denote the magnitude and the phase angle of a complex
number, respectively.

V. PROPOSED DOA ESTIMATORS

In this section, we derive DoA estimators based on each
of the proposed RTF models (Section IV) using the ML
framework (Section III). In the derivations, we denote the
inverse of the noise CPSD matrix as

C−1
v (l, k) ≡

[
C11(l, k) C12(l, k)
C21(l, k) C22(l, k)

]
. (13)

To derive the DoA estimators, we expand the reduced log-
likelihood function L presented in Eq. (6). Let

αleft(θ) = [αleft(0, θ), αleft(1, θ), · · · , αleft(N − 1, θ)]T,

Dleft(θ) = [Dleft(0, θ), Dleft(1, θ), · · · , Dleft(N − 1, θ)]T,

αright(θ) = [αright(0, θ), αright(1, θ), · · · , αright(N − 1, θ)]T,

and

Dright(θ) = [Dright(0, θ), Dright(1, θ), · · · , Dright(N − 1, θ)]T.

2Formally, an HRTF is defined as “a specific individuals left or right ear
far-field frequency response, as measured from a specific point in the free field
to a specific point in the ear canal” [29]. However, in this paper we relax this
definition and use the term HRTF to describe the frequency response from a
target source to the microphone of a hearing aid system.
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The expansion of L is

L
(
R(l);αleft(θ),Dleft(θ),αright(θ),Dright(θ)

)
=

N∑
k=1

2αleft(k, θ)C11(l, k)Rleft(l, k)S∗(l, k)e
j2πkDleft(k,θ)

N +

2αleft(k, θ)C12(l, k)Rright(l, k)S∗(l, k)e
j2πkDleft(k,θ)

N +

2αright(k, θ)C21(l, k)Rleft(l, k)S∗(l, k)e
j2πkDright(k,θ)

N +

2αright(k, θ)C22(l, k)Rright(l, k)S∗(l, k)e
j2πkDright(k,θ)

N +(
α2

left(k, θ)C11(l, k) + α2
right(k, θ)C22(l, k)

)
|S(l, k)|2+

2αleft(k, θ)αright(k, θ)C21(l, k)|S(l, k)|2×

e
j2πk
N (Dright(k,θ)−Dleft(k,θ)). (14)

In the following, we aim to make L independent of all other
parameters except θ, using the proposed RTF models.

A. The free-field-far-field model DoA estimator

As mentioned, in a free-field and far-field situation,
the delays and the attenuations of acoustic channels are
frequency independent. Based on Eqs. (7) and (8), Dright(θ)
and αright(θ) can be written as functions of Dleft(θ) and
αleft(θ), respectively:

Dright(θ) = ∆Dff(θ) +Dleft(θ)

= −a
c

sin(θ) +Dleft(θ),

αright(θ) = Γff(θ)αleft(θ)

= αleft(θ).

Inserting these relations in Eq. (14), we arrive at the reduced
log-likelihood function L(R(l); Ψff(θ), αleft(θ), Dleft(θ))
which is independent of Hright parameters (i.e. Dright(θ) and
αright(θ)). To eliminate the dependency of L on αleft(θ), we
find the maximum likelihood estimate (MLE) of αleft(θ) in
terms of other parameters, and replace the result into L. To
do so, we solve ∂L

∂αleft(θ)
= 0, which leads to

α̂left(θ) =
fff(Ψff(θ), Dleft(θ))

gff(Ψff(θ))
, (15)

where

fff(Ψff(θ), Dleft(θ)) =

N∑
k=1

(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k) +
(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k)
)
Ψ∗ff(k, θ)

)
×

S∗(l, k)e
j2πkDleft(θ)

N , (16)

and

gff(Ψff(θ)) =

N∑
k=1

(
C11(l, k) + 2C21(l, k)Ψ∗ff(k, θ) +

C22(l, k)
)
|S(l, k)|2. (17)

Inserting α̂left into L gives us:

Lff(R(l); Ψff(θ), Dleft(θ)) =
f2

ff
(Ψff(θ), Dleft(θ))

gff(Ψff(θ))
. (18)

From Eq. (16) it can be seen that for a given θ,
fff(Ψff(θ), Dleft(θ)) is an IDFT, which can be evaluated
efficiently, with respect to Dleft(θ), while gff(Ψff(θ)) is a sim-
ple summation. Therefore, computing Lff for a given θ results
in a discrete-time sequence corresponding to different values
of Dleft(θ). Since θ is unknown, we consider a discrete set Θ
of different θs, and compute L for each θ ∈ Θ using an IDFT.
Evaluating L for all θ ∈ Θ results in a 2-dimensional discrete
grid as a function of different values of θ and Dleft. The MLEs
of θ and Dleft are then found from the global maximum:[

θ̂ff , D̂left

]
= arg max
θ∈Θ,Dleft

Lff(R(l); Ψff(θ), Dleft(θ)). (19)

B. The spherical-head model DoA estimator

The derivation of the DoA estimator based on the
spherical-head model is analogous to the free-field-far-field
DoA estimator. We assume, as in the free-field-far-field
model, that the delay and the attenuation of acoustic channels
are frequency-independent, and we replace Dright(θ) and
αright(θ) with functions of Dleft(θ) and αleft(θ), respectively,
using Eqs. (9) and (10):

Dright(θ) = ∆Dsp(θ) +Dleft(θ)

= − a

2c
(sin(θ) + θ) +Dleft(θ), (20)

αright(θ) = Γsp(θ)αleft(θ)

= 10
6.5 sin(θ)

20 αleft(θ). (21)

Inserting Eqs. (20) and (21) into Eq. (14) makes L
independent of Dright(θ) and αright(θ), i.e. we have
L(R(l); Ψsp(θ), αleft(θ), Dleft(θ)). As for the free-field-
far-field model, to find the MLE of αleft(θ) as a function of
the other parameters, we solve ∂L

∂αleft(θ)
= 0. The resulting

MLE of αleft(θ) can be expressed as

α̂left(θ) =
fsp(Ψsp(θ), Dleft(θ))

gsp(Ψsp(θ))
, (22)

where

fsp(Ψsp(θ), Dleft(θ)) =

N∑
k=1

(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k) +
(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k)
)
Ψ∗sp(k, θ)

)
×

S∗(l, k)e
j2πkDleft(θ)

N , (23)

and

gsp(Ψsp(θ)) =

N∑
k=1

(
C11(l, k) + 2C21(l, k)Ψ∗sp(k, θ) +

Γ2
sp(θ)C22(l, k)

)
|S(l, k)|2. (24)

Inserting Eq. (22) into L(R(l); Ψsp(θ), αleft(θ), Dleft(θ))
gives us:

Lsp(R(l); Ψsp(θ), Dleft(θ)) =
f2

sp
(Ψsp(θ), Dleft(θ))

gsp(Ψsp(θ))
. (25)
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Again, it can be seen that fsp(Ψsp(θ), Dleft(θ)) in Eq. (23) is
an IDFT with respect to Dleft(θ), and gsp(Ψsp(θ)) is a simple
summation for a given θ. As before, for a given θ, evaluating
Lsp results in a discrete-time sequence corresponding to
different discrete values of Dleft(θ). Since θ is unknown, we
consider a discrete set Θ of different θs, and compute L for
each θ ∈ Θ using an IDFT. The MLEs of θ and Dleft are
then found from the global maximum:[

θ̂sp , D̂left

]
= arg max
θ∈Θ,Dleft

Lsp(R(l); Ψsp(θ), Dleft(θ)). (26)

C. The measured-RTF model DoA estimator

In the measured-RTF model, we assume that a database
Θms of measured frequency-dependent RTFs, labeled by their
corresponding directions, for the specific user, is available. The
DoA estimator using this model is based on evaluating L for
the different RTFs in Θms. The DoA label of the RTF, which
gives the highest likelihood is the MLE of the target DoA.

To evaluate L for each Ψms(θ) ∈ Θms, we assume the
parameters of the acoustic transfer function related to the
“sunny” microphone is frequency independent. The “sunny”
microphone is the microphone which is not in the “shadow” of
the head, if we assume the sound is coming from the direction
θ. To be more precise, when we evaluate L for Ψms(θ)
corresponding to the directions on the left side of the head
(θ ∈ [−90◦, 0◦]), the acoustic transfer function parameters
related to the left microphone, i.e. αleft(θ) and Dleft(θ), are
assumed to be frequency independent. Similarly, when we
evaluate L for Ψms(θ) corresponding to the directions on the
right side of the head (θ ∈ (0◦,+90◦]), the acoustic transfer
function parameters related to the right microphone, i.e.
αright(θ) and Dright(θ), are assumed to be frequency indepen-
dent. Note that this evaluation strategy can be carried out in
practice; it requires no prior knowledge about the true DoA.

This assumption about the “sunny” microphone is
reasonable, because if the sound is really coming from
direction θ, the signal received by the “sunny” microphone
is almost unaltered by the head and torso of the user, i.e.
this resembles a free-field situation. As shown below, this
assumption allows us to use an IDFT for evaluation of L.
Note that this frequency-independency assumption is only
related to the acoustic channel parameters from the target to
one of the microphones. The RTFs between microphones are
allowed to be frequency-dependent.

To evaluate L for Ψms(θ) where θ ∈ [−90◦, 0◦], let us
replace αright(k, θ) and Dright(k, θ) in L with functions of
Dleft(θ) and αleft(θ), respectively:

αright(k, θ) = Γms(k, θ)αleft(θ), (27)
Dright(k, θ) = ∆Dms(k, θ) +Dleft(θ)

=
−N
2πk

(Φms(k, θ) + 2πρ) +Dleft(θ), (28)

where ρ is a phase unwrapping factor. This makes L inde-
pendent of Hright parameters. Afterwards, as before, to make
L independent of αleft(θ), we find the MLE of αleft(θ) as

functions of other parameters in L by solving ∂L
∂αleft(θ)

= 0.
The obtained MLE of αleft(θ) is:

α̂left(θ) =
fms,left(Ψms(θ), Dleft(θ))

gms,left(Ψms(θ))
, (29)

where

fms,left(Ψms(θ), Dleft(θ)) =

N∑
k=1

(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k) +
(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k)
)
Ψ∗ms(k, θ)

)
×

S∗(l, k)e
j2πkDleft(θ)

N , (30)

and

gms,left(Ψms(θ)) =

N∑
k=1

(
C11(l, k) + 2C21(l, k)Ψ∗ms(k, θ) +

Γ2
ms(θ)C22(l, k)

)
|S(l, k)|2. (31)

Substituting α̂left(θ) in L leads to

Lms,left(R(l); Ψms(θ), Dleft(θ)) =
f2

ms,left
(Ψms(θ), Dleft(θ))

gms,left(Ψms(θ))
.

Analogously, to evaluate L for Ψms(θ) where θ ∈ (0◦,+90◦],
if we replace αleft(k, θ) and Dleft(k, θ) in L with functions of
αright(θ) and Dright(θ), respectively, and go through the similar
process, we end up with

Lms,right(R(l); Ψms(θ), Dright(θ)) =
f2

ms,right
(Ψms(θ), Dright(θ))

gms,right(Ψms(θ))
,

where

fms,right(Ψms(θ), Dright(θ)) =

N∑
k=1

(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k) +
(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k)
)
(Ψ∗ms)

−1(k, θ)
)
×

S∗(l, k)e
j2πkDright(θ)

N , (32)

and

gms,right(Ψms(θ)) =

N∑
k=1

(
C22(l, k) + 2C12(l, k)(Ψ∗ms(k, θ))

−1+

Γ−2
ms (θ)C11(l, k)

)
|S(l, k)|2. (33)

Regarding Eqs. (30) and (32), fms,left(Ψms(θ), Dleft(θ)) and
fms,right(Ψms(θ), Dright(θ)) can be seen to be IDFTs with re-
spect to Dleft(θ) and Dright(θ), respectively. Therefore, for a
given θ, evaluating Lms,left or Lms,right results in a discrete-time
sequence corresponding to different discrete values of Dleft(θ)
or Dright(θ). Therefore, evaluating L for all Ψms(θ) ∈ Θms
results in a 2-dimensional discrete grid. The MLEs of θ and
Dleft or Dright are then found from the global maximum:[

θ̂ms , D̂
]

= arg max
Ψms(θ)∈Θms,D

Lms(R(l); Ψms(θ), D(θ)), (34)
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where

Lms(R(l); Ψms(θ), D(θ)) ={
Lms,left(R(l); Ψms(θ), Dleft(θ)) , θ ∈ [−90◦, 0◦]

Lms,right(R(l); Ψms(θ), Dright(θ)) , θ ∈ (0◦,+90◦]
.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the esti-
mators in simulation experiments. Specifically, we study the
effects of the target sound DoA θ, the signal-to-noise ratio
(SNR), the frame length, the noise type and the reverberation.

A. Implementation

The simulation parameters are generally as follows: the sam-
pling frequency is 16 kHz, the DFT order N = 512, w(n) is a
Hamming window, the length of the window w(n) is the same
as the DFT order N , A = N

2 , and the microphone distance
a = 16.4 cm. Moreover, to evaluate the likelihood functions,
the noise CPSD matrix Cv(l, k) must be known. In the
following, the procedure for estimating Cv(l, k) is outlined.

1) Estimating the noise CPSD matrix: to estimate Cv(l, k)
in practice, we use S(l, k), which is available at the HAS, as a
voice activity detector. Specifically, access to S(l, k) allows us
to determine the time-frequency regions in R(l, k), where the
target speech is essentially absent, and to adaptively estimate
Cv(l, k) via recursive averaging [17], [30].

Alg. 1 shows the procedure for estimating Cv(l, k). If
the difference between the maximum energy Smax(k) in
frequency bin k of the target signal observed so far and the
energy of S(l, k) in dB is larger than a certain threshold
δth, we assume the target signal to be absent in frame l and
frequency bin k. Hence, R(l, k) is noise dominated in this
time-frequency region. Therefore, the estimate of Cv(l, k) is
updated via exponential smoothing with a smoothing factor
0 < η < 1. On the other hand, if the difference is smaller than
the threshold δth, the target signal is assumed to be present
in R(l, k). Therefore, the estimate of Cv is not updated, i.e.
Cv(l, k) = Cv(l−1, k). Finally, we update Smax(k) if needed,
or use a forgetting factor 0 < β < 1 to adapt Smax(k) with the
possible changes in the target signal over time, e.g. if the target
talker has changed, or if the target talker stops speaking. We
use δth = 25 dB, η = 0.9 and β = 0.95 in the implementation.

B. Acoustic setup

To simulate real world scenarios, we use the database
of head related impulse responses (HRIRs) and binaural
room impulse responses, provided by [31]. We use a
subset of the database for the frontal-horizontal plane
θ ∈ Θ = {−85◦,−80◦, · · · ,+85◦} measured with behind-
the-ear (BTE) hearing aids mounted behind the ears of a head-
and-torso simulator (HATS). We consider only the frontal-
horizontal plane because in practice, the target talker is usually
located at the front of the user. Moreover, because of the head
symmetry and the microphone locations, the estimators suffer
from front-back confusions, as humans do [32]. Therefore,
considering only the frontal plane allows to avoid the influence

Algorithm 1: Estimation of Cv(l, k)

Input : R(l, k), S(l, k)
Output: Cv(l, k)

1 if Smax(k)− 20 log10 |S(l, k)| > δth then
/* Target signal is almost absent */

2 Cv(l, k) = ηR(l, k) ∗R(l, k)H + (1− η)Cv(l− 1, k);
3 else
4 Cv(l, k) = Cv(l − 1, k);
5 end
6 if Smax(k) < 20 log10 |S(l, k)| then
7 Smax(k) = 20 log10 |S(l, k)|
8 else
9 Smax(k) = Smax(k) + 10 log10(β)

10 end

of the front-back confusions on the estimators performance.
To simulate a signal from a particular position, we convolve
the signal with the corresponding impulse response.

As a target signal, we consider a four-minute speech
signal composed of two male and two female voices from
the TSP database [33]. To evaluate the performance of the
estimators in different noisy situations, we consider four
different noise types: car-interior noise, speech-shaped noise,
large-crowd noise, and bottling-factory-hall noise. These noise
types cover noise signals with low-frequency content (the car-
interior noise), high-frequency content (the bottling-factory-
hall noise), stationary noises (the speech-shaped noise) and
non-stationary noises (the large-crowd noise). The long-term
power spectrum of the target signal emitted at the target
position and the noise signals received at the left microphone
are depicted in Fig. 2. To simulate a large-crowd noise field, we
play back simultaneously 72 different speech signals from 72
different positions, which are uniformly distributed on a circle
in the horizontal plane centered at the HATS. Similarly, for
the speech-shaped noise and the bottling-factory-hall noise, we
play back different realizations of the considered noise signal
from all 72 considered positions simultaneously. The car-
interior noise field, however, is a binaural recording measured
by BTE hearing aids mounted behind the ears of a HATS
placed on the passenger seat of a car driving in a city. The
wide-band SNR, to be reported for each simulation experi-
ment, is expressed relative to the left-ear microphone signals.

C. Performance metric
As a performance metric, we use the mean absolute error

(MAE) of the DoA estimation, given by:

MAE =
1

L

L∑
j=1

|θ − θ̂j |, (35)

where θ̂j is the estimated DoA for the jth frame of the signal,
and L is the number of target-active frames (the target-inactive
frames are disregarded).

D. Competing methods
We compare the proposed estimators with the methods

proposed in [18] and [17]. As outlined in Section I, the method
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(a) Target signal emitted at the target position.
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(b) Car-interior noise at the left microphone.
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(c) Speech-shaped noise at the left microphone.
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(d) Large-crowd noise at the left microphone.
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(e) Bottling-factory-hall noise at the left microphone.

Fig. 2: Long-term power spectrum of the signals.

proposed in [18], which we refer to as the cross-correlation-
based method, is simple because it does not take the
ambient noise characteristics and the head shadowing effect
into account. However, to model the curved path between
the microphones, the distance between the microphones
is assumed to be 25.2 cm, which is larger than the actual
microphones distance. This particular distance is used because
it leads to the best performance [18]. On the other hand,
the method proposed in [17], called MLSSL, is a complex
method. It takes the ambient noise characteristics into account
by a maximum likelihood approach, and it exploits the details
of the head shadowing effect via a database of HRTFs. In the
MLSSL implementation, we use the same measured HRTF
database, which is used to build the measured-RTF model.
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(a) Speech-shaped noise.
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(b) Large-crowd noise.
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(c) Car-interior noise.
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(d) Bottling-factory-hall noise.

Fig. 3: Performance as a function of θ in an anechoic
situation at SNR of 0 dB for different noise fields. The
distance between the user and the target source is 300 cm.
The HRTF database used for generation of the target signal
is identical to the HRTF database used by MLSSL and the
HRTFs used to build the measured-RTF model.

E. Results and discussions

1) Influence of the target DoA: Fig. 3 compares the perfor-
mance of the DoA estimators as a function of θ in an anechoic
situation at SNR of 0 dB in different noise fields. As can be
seen, the performance of all the estimators proposed in this
paper are markedly more accurate than the performance of
the cross-correlation-based method proposed in [18].

The poor performance of the cross-correlation-based
method can be partly explained by the fact that the con-
ventional cross-correlation technique is a maximum-likelihood
optimal TDoA estimator for the situation, where the noise is
white and Gaussian [34]. However, the frequency characteris-
tics of the considered noise fields, shown in Fig. 2, are different
from a white noise. This difference degrades considerably the
performance of the cross-correlation-based method.
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Fig. 4: Performance as a function of θ in an anechoic
situation at SNR 0 dB in the large-crowd noise field. The
HRTF database used by MLSSL and the measured-RTF
database do not have any entries for every other considered
θs for simulation.

Among the estimators proposed in this paper, the estimator
based on the free-field-far-field model has the worst perfor-
mance because it does not consider the shadowing effect of the
user’s head. In contrast, the spherical-head-model-based esti-
mator models the head shadowing effect and improves the per-
formance of the DoA estimation significantly, especially when
the target is located at the sides of the HATS (θ ≈ ±85◦),
because this is where the shadowing effect of the head has the
highest impact. When the user-specific, measured RTFs are
available, even better performance can be achieved, because
the influence of the head and torso is modeled more accurately.

Finally, as can be seen in Fig. 3, the performance of MLSSL
is better than the performance of the measured-RTF-based es-
timator. This is because the exact HRTFs corresponding to the
target locations are in the database searched by MLSSL, i.e.
a highly idealized situation. Frequency-dependent HRTFs, as
used in MLSSL, represent the acoustic transfer functions more
accurately than the signal model used in the measured-RTF-
based method, where the parameters of the acoustic channel
between the target source and the microphone which is not in
the head “shadow” are assumed to be frequency independent.

Another point to be made from Fig. 3 is that, similar to
the sound source localization performance of humans [32],
the general performance of the estimators when the target
is at the sides (i.e. θ ≈ ±90) is worse than when the target
is at the front (θ ≈ 0◦). This is because the HRTFs (RTFs)
corresponding to the front vary stronger within a certain
angular range than the HRTFs (RTFs) corresponding to
the sides [35]. In other words, when θ ∈ [−90◦,−75◦] or
θ ∈ [75◦, 90◦], it is more probable to confuse the true HRTF
(RTF) with the nearby HRTFs (RTFs).

2) Influence of the resolution of the databases: In practice,
none of the entries in the HRTF database used by MLSSL
or none of the entries in the RTF database used by the
measured-RTF-based method can be expected to represent the
actual DoA or distance of the target. Here, we investigate the
performance of the estimators in these situations.

First, let us consider situations where the exact θ are
not represented in the databases. To assess the performance
of MLSSL and the measured-RTF-based estimator in these
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Fig. 5: Performance as a function of θ in an anechoic situation
at SNR 0 dB in the large-crowd noise field. The distance
between the user and the target source is 300 cm. The HRTF
database used by MLSSL and the HRTF database used to
build the measured-RTF model are for the case where the
target is 80 cm away from the user.

situations, we constructed reduced databases by eliminating
every other entry from the MLSSL HRTF database and from
the measured-RTF-model database. In other words, there is
no entry in the databases for half of the considered target
θs. Fig. 4 shows the performance of the estimators in this
case. Comparing Fig. 4 with Fig. 3b shows that when the
exact θ is not in the databases, the performance of MLSSL
and the measured-RTF-based estimator degrade, as expected.
However, most often, they succeed in finding the database
entry closest to the target θ.

Next, we consider situations where the HRTFs correspond-
ing to the actual distance between the target and the user
are not in the database searched by MLSSL or in the HRTF
database used to build the measured-RTF model. Fig. 5 shows
the performance in such a situation, where the actual distance
between the user and the target is 300 cm, but the employed
HRTF database is for the case where the target is 80 cm
away from the user (the database contains HRTFs for all the
considered directions). It can be seen that the performance of
MLSSL degrades dramatically in this situation: MLSSL is ex-
tremely sensitive to these HRTF mismatches. However, when
the same HRTF database is used to build the measured-RTF
model, the performance of the measured-RTF-based method
degrades only slightly compared with Fig. 3. This robustness
to the distance mismatches is because the measured RTFs are
relatively distance independent. Therefore, the database used
by the measured-RTF-based method can be just a function of
the DoA, leading to a significant reduction of both memory
and search complexity over the MLSSL method.

3) Influence of SNR: The SNR is another factor which gen-
erally influences the estimation performance. Fig. 6 shows the
performance for different SNRs in terms of the MAE averaged
over all considered θs in an anechoic situation in a large-crowd
noise field. As expected, the higher the SNR, the better the per-
formance. Moreover, as can be seen, the general performance
order of Fig. 3 remains at different SNRs; however, the perfor-
mance of the proposed measured-RTF-based method is almost
the same as the performance of the MLSSL at high SNRs.
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Fig. 6: Performance as a function of SNR in the same situation
as in Fig. 3. The MAE is averaged over all considered θs.
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Fig. 7: Performance as a function of θ in a reverberant office
with a reverberation time T60 of around 500 ms at SNR of 0
dB. The target is one meter away from the user. The HRTF
database used by MLSSL, and the HRTFs used to build the
measured-RTF model are “dry” and “clean” HRTFs for the
case where the target is 80 cm away.

4) Influence of reverberation: Many speech communication
situations occur indoor, where reverberation exists. Therefore,
it is important to study the impact of reverberation on the
performance of the estimators. Fig. 7 shows the performance
of the DoA estimators as a function of θ in a reverberant
office (T60 ≈ 500 ms) at SNR of 0 dB in a large-crowd
noise field. In contrast to Fig. 3, performance of all the
estimators is reduced because none of them directly considers
and models the reverberation. Even though, on average, the
general performance order of Fig. 3 remains, the performance
of the spherical-head-model-based method, the measured-RTF
method and the MLSSL method approach each other. This is
partly because the available “clean” HRTF database used by
MLSSL and used to build the measured-RTF model are for the
case where the target is 80 cm away while the actual distance
of the target is 100 cm in the simulations.

5) Influence of the window length: Another factor which
influences the performance of the estimators is the window
(frame) length. Generally, at the cost of higher computational
overhead and longer algorithmic delay, longer window lengths
must lead to better performance because: 1) greater window
lengths provide more observations, which reduces the variance
of the estimates in a noisy situation, 2) the MTF approximation
(Eq. 3) depends on the window length: the greater the window
length, the better the approximation [24], and 3) greater win-
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Fig. 8: Performance as a function of N in the same condition
as in Fig. 3. The MAE is averaged over all considered θs.

dow lengths strengthen the assumption that DFT coefficients
are independent across frequencies (this assumption was used
to write the simplified likelihood function in Eq. (5)). On
the other hand, increasing the window length may violate
the assumption implicitly made in Eq. (5) that signals are
stationarity within a window duration.

Fig. 8 shows the performance of the DoA estimators as a
function of window length. The results are consistent with
the expectations: greater window lengths lead to better perfor-
mance. Interestingly, even though MLSSL has better perfor-
mance at longer window lengths, its performance is apparently
very sensitive to smaller window lengths and deteriorates dra-
matically compared with the proposed estimators performance.

6) Influence of non-individualized HRTF databases:
MLSSL and the measured-RTF-based method rely on HRTF
databases measured for a specific user, and so far, we have
presented their performance when user-specific databases are
available. In some situations, measuring HRTFs for each
user is impractical; however, it is possible to measure the
HRTFs for a HATS beforehand. Therefore, in this part, we
would like to compare the performance of the estimators
in two different cases: 1) individualized: user-specific HRTF
databases are available. 2) non-individualized: user-specific
HRTF databases are not available; however, the corresponding
databases measured for a HATS is available.

For the simulation, we use the HRTFs measured for binaural
BTE hearing aids for five different persons (three males and
two females) and a HATS. The HRTFs are measured in an
anechoic situation for the frontal-horizontal plane.

Fig. 9 shows the performance of the estimators for the
considered cases at an SNR of 0 dB in the large-crowd
noise field. As can be seen, MLSSL is very sensitive to
the mismatches in user-specific HRTF database. It has the
best performance for all the users (subjects) when the user-
specific HRTFs are available (the individualized case), but its
performance degrades significantly when the HATS database
is used for the DoA estimation (the non-individualized
case). On the other hand, the measured-RTF-based method
is much less sensitive. Overall, the measured-RTF-based
method performs markedly better than MLSSL in the
non-individualized case (when only the HATS database is
available for the DoA estimation). The performance of the
measured-RTF-based method in the non-individualized case
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Fig. 9: Influence of non-individualized HRTF databases on the
DoA estimators. The SNR is 0 dB in the large-crowd noise
field. The MAE is averaged over all considered θs.

is also better than the spherical-head-model-based method,
which does not depend on any user-specific databases.

7) Informed estimator vs. uninformed estimator: To
demonstrate the benefits of access to the noise-free target
signal, here we compare the performance of the proposed
“informed” DoA estimators with the performance of a recently
developed “uninformed” DoA estimator [22], which we refer
to as Braun’s method. As mentioned in Section I, Braun’s
method is a narrow-band estimator based on the measured-
RTF model for the “uninformed” DoA estimation problem,
i.e. where the clean target signal is not available. Regarding
Eq. (3), it has been shown in [22] that the minimum mean
square error (MMSE) estimator of the RTF between the two
microphones at a particular frequency bin is given by:

Ψ̂i,j(k, θ) =
φRi,j − φVi,j
φRj,j − φVj,j

, (36)

where i and j are microphone indexes, φRi,j =
E{Ri(l, k)R∗j (l, k)} and φVi,j = E{Vi(l, k)V ∗j (l, k)}. To
make the estimate more robust, Braun’s method averages the
RTF estimate over the microphone index permutations, i.e.

Ψ̄i,j(k, θ) =
1

2

{
Ψ̂i,j(k, θ) + Ψ̂−1

j,i (k, θ)
}
. (37)

Regarding the measured-RTF model Θms, Braun’s method
estimates the DoA θ of the target signal at a particular
frequency bin by

θ̂Braun = arg min
Ψms(k,θ)∈Θms

∑
i,j∈M

Wi,j |Ψ̄i,j(k, θ)−Ψms(k, θ)|, (38)

where the set M contains all microphone pair combinations,
and Wi,j is a weighting factor for the {i, j}-th pair. In our
setup, because we only have one microphone pair, we drop
Wi,j and consider i = right and j = left. Moreover, because
the target in our problem is at the same position in all
frequency bins, we modify the cost function as follows, to
integrate the information of all frequency bins:

θ̂Braun = arg min
Ψms(θ)∈Θms

N−1∑
k=0

|Ψ̄i,j(k, θ)−Ψms(k, θ)|. (39)
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Fig. 10: Comparison of the “informed” DoA estimators with
an “uninformed” DoA estimator proposed in [22], in different
noise fields. The simulation was done in the same conditions
as in Fig. 3. The MAE is averaged over all considered θs.

To implement Braun’s method, we used the same measured-
RTF model as used by the proposed “informed” measured-
RTF-based estimator. Moreover, as proposed in [22], to
estimate φRi,j , a recursive averaging technique with a time
constant of 50 ms was used. Finally, to estimate φVi,j used
in Braun’s method, we use the estimation of Cv outlined in
Section VI-A.

Fig. 10 shows the performance of the proposed “informed”
DoA estimators vs. Braun’s method. Clearly, the proposed
DoA estimators, which have access to the noise-free target sig-
nal, perform markedly better than Braun’s method, which does
not have access to the noise-free signal. Moreover, in large-
crowd noise, speech-shaped noise and bottling-factory-hall
noise fields, the cross-correlation-based estimator, which is an
“informed” estimator with low computational complexity, per-
forms slightly better than Braun’s method, which has relatively
higher computational overhead. However, the estimation error
of Braun’s method significantly decreases in the car-interior
noise, which is relatively stationary low frequency noise (c.f.
Fig. 2b). At the cost of higher computational complexity, the
performance of Braun’s method could be improved to some
extent by measuring the positive definiteness of Q(l, k) =

E
{
R(l, k)RH(l, k)

}
−Cv(l, k), before subtracting the corre-

lations in Eq. (36). In cases where Q(l, k) is not positive defi-
nite, the nearest positive definite matrix [36] of Q(l, k) could
be used to modify the estimate of Cv(l, k) used in Eq. (36).

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed three maximum-likelihood-based
DoA estimators for a hearing aid system (HAS) which has ac-
cess to the noise-free target signal via a wireless microphone.
The proposed DoA estimators are based on three different
models of the direction-dependent relative transfer functions
(RTFs) between the HAS’ microphones. These RTF models,
which we call i) the free-field-far-field model, ii) the spherical-
head model, and iii) the measured-RTF model, represent, with
increasing accuracy and complexity, the head shadowing effect
of the user’s head on impinging signals. We showed that the
considered signal model and the RTF models allowed the
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likelihood function to be calculated efficiently via inverse dis-
crete Fourier transform techniques. In simulation experiments,
we analyzed the influences of the true DoA, SNR, window
length and reverberation on the performance of the proposed
estimators. Moreover, we compared the performance of the
estimators with the methods proposed in [18] and [17], which
we refer to as the cross-correlation-based method and MLSSL,
respectively. The cross-correlation-based method does not take
ambient noise characteristics and head shadowing effects into
account while MLSSL does take noise characteristics and
detailed head shadowing effects into account via a user-
specific HRTF database. Simulation results showed that all the
DoA estimators proposed in this paper markedly outperform
the cross-correlation-based method, while MLSSL outperform
the proposed DoA estimators, when the user-specific HRTFs
corresponding to the actual location of the target is in the
HRTF database used by MLSSL; this is obviously a highly
ideal case. We showed that MLSSL is very sensitive to
mismatches between the HRTF database and the actual target
source distance and the particular user. These mismatches
deteriorate the MLSSL performance dramatically while the
proposed estimators generally perform well.

Among the DoA estimators proposed in this paper, the
measured-RTF-based method provides the lowest DoA estima-
tion error robustly across different noise fields, DoAs, SNRs,
and window lengths. In situations where the user-specific mea-
sured RTFs or the measured RTFs for a head-and-torso simula-
tor (HATS) are not available, the spherical-head-model-based
estimator provides a good performance and is robust against
changing physical characteristics and, hence, HRTFs of users.

The proposed estimators rely on spatio-spectral signal char-
acteristics, which are assumed fixed across a short (in the range
of milliseconds) duration. It is a topic of future research to
extend the estimators to take temporal characteristics of the
acoustic scene into accounts, e.g. by modeling the relative
movement of the user’s head and the target source.
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