Aalborg Universitet

Self-Averaging Expectation Propagation

Cakmak, Burak; Opper, Manfred ; Fleury, Bernard Henri; Winther, Ole

Publication date: 2016

Link to publication from Aalborg University

Citation for published version (APA): Cakmak, B., Opper, M., Fleury, B. H., & Winther, O. (2016). *Self-Averaging Expectation Propagation*. Poster presented at Advances in Approximate Bayesian Inference, http://approximateinference.org/accepted/CakmakEtAl2016.pdf

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Problem and Objective Recover signal \boldsymbol{x} from the observation \boldsymbol{y} where x ightarrow Ax ightarrow yFor example: • y = Ax + n• $y = \operatorname{sign}(Ax)$ Assume that • A is drawn from a known ensemble • The dimensions of **A** are LARGE! Obtain iterative estimation algorithms with • Low computational complexity Good accuracy

Expectation Propagation (EP)

The two pdfs

$$q_i(s_i) \propto p_i(s_i) m_{A \to s_i}(s_i)$$
$$\tilde{q}_i(s_i) \propto m_{s_i \to A}(s_i) m_{A \to s_i}(s_i)$$

are consistent in the first- and second-moment:

$$\langle (s_i, s_i^2) \rangle_{q_i(s_i)} = \langle (s_i, s_i^2) \rangle_{\tilde{q}_i(s_i)}.$$

This work was partially supported by the research project VIRTU-OSO (funded by Intel Mobile Communications, Anite, Telenor, Aalborg University, and the Danish National Advanced Technology Foundation).

Self-Averaging Expectation Propagation

Burak Çakmak, Manfred Opper, Bernard H. Fleury, and Ole Winther

Joint work of Aalborg Universitet, Technische Universität Berlin and Tekniske Universitet Denmark

The Essence of the Issue: "Cavity Variances"

The update of the so-called cavity variances require matrix inversions.

- The exact posterior pdf of $oldsymbol{s} = (oldsymbol{x}, oldsymbol{z})$ is given by $p(oldsymbol{s}|oldsymbol{y},oldsymbol{A}) \propto p(oldsymbol{s})\delta(oldsymbol{z}-oldsymbol{A}oldsymbol{x})$ wi
- EP approximates the exact posterior pdf in the form of

 $q(\mathbf{s}) \propto p(\mathbf{s}) \exp\left(-\frac{1}{2}\mathbf{s}^{\dagger}\mathbf{V}\mathbf{s} + \boldsymbol{\rho}^{\dagger}\mathbf{s}\right)$

where $\{V_{ii}\}$ are called cavity variances.

• The equations of $\boldsymbol{\rho} = (\boldsymbol{\rho}_{\mathrm{x}}, \boldsymbol{\rho}_{\mathrm{z}})$ can be expressed by

$$oldsymbol{
ho}_{\mathrm{X}} = oldsymbol{A}(\mathbf{V}_{\mathrm{Z}}oldsymbol{\eta}_{\mathrm{Z}} - oldsymbol{
ho}_{\mathrm{Z}}) + \mathbf{V}_{\mathrm{X}}oldsymbol{\eta}_{\mathrm{X}} \quad ext{with} \quad (oldsymbol{\eta}_{\mathrm{X}}, oldsymbol{\eta}_{\mathrm{Z}}) = \langle (oldsymbol{x}, oldsymbol{z})
angle_{q(oldsymbol{x}, oldsymbol{z})} = (oldsymbol{\eta}_{\mathrm{X}}, oldsymbol{A}oldsymbol{\eta}_{\mathrm{X}}).$$

• The equations of cavity variances $\{V_{ii}\}$ are

$$\chi_{i} = \frac{1}{\Lambda_{ii} + \mathbf{V}_{ii}} = \begin{cases} [(\mathbf{\Lambda}_{\mathbf{x}} + \mathbf{A}^{\dagger} \mathbf{\Lambda}_{\mathbf{z}} \mathbf{A})^{-1}]_{ii} & \Lambda_{ii} = [\mathbf{\Lambda}_{\mathbf{x}}]_{ii} \\ [\mathbf{A}(\mathbf{\Lambda}_{\mathbf{x}} + \mathbf{A}^{\dagger} \mathbf{\Lambda}_{\mathbf{z}} \mathbf{A})^{-1} \mathbf{A}^{\dagger}]_{jj} & \Lambda_{ii} = [\mathbf{\Lambda}_{\mathbf{z}}]_{jj} \end{cases}$$

where $\boldsymbol{\chi} \triangleq (\boldsymbol{\chi}_{\mathrm{x}}, \boldsymbol{\chi}_{\mathrm{z}})$ is the variance of $q(\boldsymbol{x}, \boldsymbol{z})$.

• EP is accurate but has $O(K^3)$ computational complexity (per iteration) due to the update of cavity variances.

Self-Averaging Cavity Variances

Asymptotic freeness transforms the large-system challenges into opportunities.

- We use the concept of asymptotic freeness from random matrix theory to show that EP cavity variances are self-averaging.
- Specifically, $V_x \simeq v_x I$ and $V_z \simeq v_z I$ where

$$p_{\mathbf{x}} = \frac{\alpha(1 - v_z \langle \boldsymbol{\chi}_z \rangle)}{\langle \boldsymbol{\chi}_x \rangle} \quad \& \quad v_z = \lambda_x S_{\boldsymbol{A}}(-\lambda_z \langle \boldsymbol{\chi}_z \rangle) \quad \text{with} \quad \lambda_a = \frac{1}{\langle \boldsymbol{\chi}_a \rangle} - v_a, \quad a \in \{x, z\}$$

the S-transform (in free probability) of the limiting spectrum of Gramian $\boldsymbol{A}\boldsymbol{A}^{\dagger}$.
raging property reduces the complexity of EP from $O(K^3)$ to $O(K^2)$.
 $p_{\mathbf{x}}$ be iid with zero mean and variance $1/K$, then $S_{\boldsymbol{A}}(z) = 1/(1 + \alpha z)$ with $\alpha = \dim(\boldsymbol{y})/\dim(\boldsymbol{x})$.

 $S_{\mathcal{A}}$ denotes t

- This self-aver • E.g. let $\{A_{ij}\}$

Illustrations via 1-bit Compressed Sensing

Signal Model: $y = \operatorname{sign}(Ax)$ with

- Signals are typically sparse in the discrete cosine transform (DCT) domain.
- Hence, we can consider that the rows of A are pseudo-randomly drawn from the $K \times K$ DCT matrix.
- In this case, we have $S_A(z) = 1$, i.e. $v_z = \frac{1}{\langle \mathbf{v} \rangle} v_x$.

ith
$$p(\boldsymbol{s}) \triangleq p(\boldsymbol{x})p(\boldsymbol{y}|\boldsymbol{z}).$$

with
$$\mathbf{V} = \begin{pmatrix} \mathbf{V}_{\mathrm{X}} & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_{\mathrm{Z}} \end{pmatrix}$$

$$\boldsymbol{x} \sim (1 - \rho)\delta(\boldsymbol{x}) + \rho N(\boldsymbol{x}|\boldsymbol{0}, \tau \mathbf{I}).$$

 $\tau = 1$

Figure 1: Empirical cumulative distribution function of the cavity variances. The dimensions of A are $K/3 \times K$, $\rho = 0.1$ and Blue curves are for K = 1200 and red curves are for K = 9600. The quantities $v_{\rm x}$ and $v_{\rm z}$ are obtained from the stable solutions of self-averaging EP.

Figure 2: Mean-square-error of EP and self-averaging EP (SAEP) versus number of iterations: $\eta_{\rm x}(t)$ denotes the estimate of \boldsymbol{x} computed by an algorithm at iteration number t, the size of A is $\alpha 1200 \times 1200$, $\rho = 0.1$ and $\tau = 1$. The reported figures are empirical averages over 100 and 1000 trials for $\alpha \in \{1/3, 1/2\}$ and $\alpha = 2/3$, respectively. C.I. denotes the confidence interval in dB.