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Self-Averaging Expectation Propagation
Burak Çakmak, Manfred Opper, Bernard H. Fleury, and Ole Winther

Joint work of Aalborg Universitet, Technische Universität Berlin and Tekniske Universitet Denmark

Problem and Objective

Recover signal x from the observation y where
x→ Ax→ y

For example:
•y = Ax + n
•y = sign(Ax)
Assume that
•A is drawn from a known ensemble
•The dimensions of A are LARGE!
Obtain iterative estimation algorithms with
•Low computational complexity
•Good accuracy

Expectation Propagation (EP)
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The two pdfs

qi(si) ∝ pi(si)mA→si(si)
q̃i(si) ∝ msi→A(si)mA→si(si)

are consistent in the first- and second-moment:
〈(si, s2

i)〉qi(si) = 〈(si, s2
i)〉q̃i(si).
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The Essence of the Issue: "Cavity Variances"

The update of the so-called cavity variances require matrix inversions.

•The exact posterior pdf of s = (x, z) is given by
p(s|y,A) ∝ p(s)δ(z −Ax) with p(s) , p(x)p(y|z).

•EP approximates the exact posterior pdf in the form of

q(s) ∝ p(s) exp
(
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with Λ=
 Λ

x 0
0 Λ

z


where { Λ

ii} are called cavity variances.
•The equations of ρ = (ρx,ρz) can be expressed by

ρx = A( Λ

zηz − ρz) + Λ

xηx with (ηx,ηz) = 〈(x, z)〉q(x,z) = (ηx,Aηx).
•The equations of cavity variances { Λ

ii} are

χi = 1
Λii + Λ

ii
=


[(Λx +A†ΛzA)−1]ii Λii = [Λx]ii
[A(Λx +A†ΛzA)−1A†]jj Λii = [Λz]jj

where χ , (χx,χz) is the variance of q(x, z).
•EP is accurate but has O(K3) computational complexity (per iteration) due to the update of cavity variances.

Self-Averaging Cavity Variances

Asymptotic freeness transforms the large-system challenges into opportunities.

•We use the concept of asymptotic freeness from random matrix theory to show that EP cavity variances are
self-averaging.

•Specifically, Λ

x ' vxI and Λ

z ' vzI where

vx = α(1− vz〈χz〉)
〈χx〉

& vz = λxSA(−λz〈χz〉) with λa = 1
〈χa〉

− va, a ∈ {x, z}

SA denotes the S-transform (in free probability) of the limiting spectrum of Gramian AA†.
•This self-averaging property reduces the complexity of EP from O(K3) to O(K2).
•E.g. let {Aij} be iid with zero mean and variance 1/K, then SA(z) = 1/(1 + αz) with α = dim(y)/dim(x).

Illustrations via 1-bit Compressed Sensing

Signal Model: y = sign(Ax) with x ∼ (1− ρ)δ(x) + ρN(x|0, τI).

•Signals are typically sparse in the discrete cosine transform (DCT) domain.
•Hence, we can consider that the rows of A are pseudo-randomly drawn from the K ×K DCT matrix.
• In this case, we have SA(z) = 1, i.e. vz = 1

〈χx〉
− vx.
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Figure 1: Empirical cumulative distribution function of the cav-
ity variances. The dimensions of A are K/3×K, ρ = 0.1 and
τ = 1. Blue curves are for K = 1200 and red curves are for
K = 9600. The quantities vx and vz are obtained from the
stable solutions of self-averaging EP.
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Figure 2: Mean-square-error of EP and self-averaging EP
(SAEP) versus number of iterations: ηx(t) denotes the esti-
mate of x computed by an algorithm at iteration number t,
the size of A is α1200× 1200, ρ = 0.1 and τ = 1. The re-
ported figures are empirical averages over 100 and 1000 trials
for α ∈ {1/3, 1/2} and α = 2/3, respectively. C.I. denotes the
confidence interval in dB.


