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Abstract— In the low frequency range, there are some 

couplings between the positive- and negative-sequence small-

signal impedances of the power converter due to the nonlinear 

and low bandwidth control loops such as the synchronization 

loop. In this paper, a new numerical method which also 

considers these couplings will be presented. The numerical 

data are advantageous to the parametric differential 

equations, because analysing the high order and complex 

transfer functions is very difficult, and finally one uses the 

numerical evaluation methods. This paper proposes a 

numerical matrix-based method, which is not only able to deal 

with those mentioned numerical data, but also it is able to 

consider all couplings between the positive and negative 

sequences. 

Keywords-Harmonic propagation; Harmonic stability; 

Resonance; Wind power plant; Wind Turbine Generator. 

I.  INTRODUCTION  

Harmonic emission is inherent to power electronic 
devices in modern wind power plants [1]–[3]. Even though 
the power electronic converters offer more efficiency and 
controllability, they may trigger the parallel and series 
resonances in the power system [4]. They may also interact 
with each other or with passive network elements and this 
might lead to instability [5], [6]. Therefore, the stable and 
proper operation of the windfarm must be verified for 
different situations in the design phase using the harmonic 
analysis methods. 

The effects of the outer control loops such as the 
synchronization and power control loop cannot be neglected 
in the low frequency range (i.e. around the fundamental 
frequency). It has been shown that due to the PLL effect 
there are some couplings between the frequency components 
[7], [8]. This phenomenon is very important in grids 
connected via long cables, where the resonances are located 
at lower frequencies, and if it is neglected it may result in 
wrong evaluation of system stability. The situation is even 
worse when the grid and the high voltage grid connection 
system assets are unbalanced, for instance due to the 
asymmetrical displacement of the conductors in flat 
formation underground transmission cables, where there will 
be more couplings between the frequency components and 

consequently finding an analytic solution is very difficult 
[9], [10]. 

In this paper a new numerical matrix-based method will 
be presented that can easily consider all couplings in the 
impedance model of a power converter. The other advantage 
is that it uses numerical data instead of very complicated 
analytic expressions. For instance, the authors in [9] did not 
show the final expression of the impedance of an 
unbalanced current controller due to its length. Moreover, 
the parameters, structure and control of power converters are 
sometimes confidential, and therefore, the frequency 
response is only available as a numerical lookup table based 
on some measurements. Also for some passive elements the 
numerical representation is less complicated e.g. the grid 
impedance or the impedance of a long cable [11]. In 
addition to all above mentioned reasons, finally the 
numerical evaluation methods such as the Nyquist plot are 
used for stability assessment. Thus, using numerical data is 
advantageous. 

II. THE PROPOSED METHOD 

This method introduces the matrix frequency response 
definition for all components (active and passive), which 
can be filled in using the theoretical equations (for the 
components whose transfer functions are known), the 
simulation or the experimental data as written in (1). Each 
column is the frequency spectrum of the response to a 
sinusoidal excitation. 

𝐻 = 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝜔1
𝜔2
⋮
𝜔𝑛

{[

𝐻11(𝑗𝜔) 𝐻12(𝑗𝜔) ⋯ 𝐻1𝑛(𝑗𝜔)

𝐻21(𝑗𝜔) 𝐻22(𝑗𝜔) ⋯ 𝐻2𝑛(𝑗𝜔)
⋮ ⋮ ⋱ ⋮

𝐻𝑛1(𝑗𝜔) 𝐻𝑛2(𝑗𝜔) ⋯ 𝐻𝑛𝑛(𝑗𝜔)

]

⏟                        

   𝜔1  𝜔2 ⋯     𝜔𝑛
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛

 

(1) 

where Hij is the frequency component of the response at 
ω=ωi to a sinusoidal excitation with a frequency at ω=ωj. 
For a Linear-Time-Invariant (LTI) system there is only one 
response at the same frequency of the excitation, therefore, 
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the matrix frequency response can be written as (2), in 
which off-diagonal elements are zero. 

𝐻𝐿𝑇𝐼 = 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝜔1
𝜔2
⋮
𝜔𝑛

{[

𝐻(𝑗𝜔1) 0 ⋯ 0

0 𝐻(𝑗𝜔2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐻(𝑗𝜔𝑛)

]

⏟                      

    𝜔1 𝜔2 ⋯ 𝜔𝑛
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛

 

(2) 

Fig. 1 (a) shows a balanced current controlled converter, 
which is considered in this paper. Fig. 1 (b) shows the 
current control strategy in the dq domain and Fig. 1 (c) is a 
simple Synchronous Reference Frame PLL (SRF-PLL), 
which is used in this paper. The admittance matrix of this 
converter in the sequence domain has been obtained in [7], 
and as it has been mentioned in [9] that the negative 
sequence component is in fact the complex conjugate of a 
positive sequence quantity with the negated frequency. 
Therefore, the new small-signal admittance matrix is (4). 

𝑍𝑛𝑒𝑔(𝑗𝜔) = (𝑍𝑝𝑜𝑠(−𝑗𝜔))
∗
 (3) 

𝑌𝑃𝑁 = [
𝑌𝑝(𝑠) (𝐽𝑝(−𝑠 − 2𝑗𝜔1))

∗

𝐽𝑃(𝑠) (𝑌𝑝(−𝑠 − 2𝑗𝜔1))
∗] (4) 

𝑌𝑝(𝑠)

=
1 − 𝑉𝑑𝑐𝑇𝐹𝑃𝐿𝐿(𝑠 − 𝑗𝜔1) (𝐶𝑑𝑞 + 𝐼𝑑𝑞𝐻𝑖(𝑠 − 𝑗𝜔1))

𝐿𝑠 + 𝑉𝑑𝑐𝐻𝑖(𝑠 − 𝑗𝜔1)
 

(5) 

𝐽𝑝(𝑠) =
𝑉𝑑𝑐𝑇𝐹𝑃𝐿𝐿(𝑠 − 𝑗𝜔1) (𝐶𝑑𝑞

∗ + 𝐼𝑑𝑞
∗ 𝐻𝑖(𝑠 − 𝑗𝜔1))

𝐿(𝑠 − 2𝑗𝜔1) + 𝑉𝑑𝑐𝐻𝑖(𝑠 − 𝑗𝜔1)
 (6) 

where Hi(s)=Kp+Ki/s is a Proportional-Integral (PI) 
regulator transfer function for both d and q current 
components, TFPLL(s) is the PLL transfer function, Cdq are 
the steady state values of the duty ratios in the dq domain, 
and Idq are the current setpoints in the dq domain. 

Fig. 2 shows the self-admittance term (YP(s)) and the 
coupling admittance term (JP(s)) as a function of frequency 
for a converter with the parameters listed in Table I. It can 
be seen that in the low frequency range, the coupling term, 
which is caused by the PLL, is not negligible. 

Fig. 3 shows the small-signal admittance matrix for a 
balanced converter as shown in Fig. 1, which is linearized 
around the operating point listed in Table I. The horizontal 
axis is the excitation frequency, the vertical axis is the 
response frequency and the color intensity shows the 
response magnitude. The negative frequency is to model the 
negative sequence component. It must be noted that the 
admittance matrix is a complex matrix, however for the sake 
of simplicity; only the magnitude is shown here. It can 
clearly be seen that there are some couplings between the 
positive- and negative-sequence admittances. For instance in 
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(b) (c) 
Fig. 1. A current controlled three-phase converter. (a) Connection to the grid. 

(b) Current controllers in the dq frame. (c) A SRF-PLL block. 

 

TABLE I.  THE PARAMETERS OF THE CONSIDERED CONVERTER 

Symbol Description Value 

Vg Grid line-ground peak voltage  90 V 

f1 Grid frequency 50 Hz 

Lg Grid inductance 3 mH 

Rg Grid equivalent resistance 0.5 Ω 

Vdc Inverter dc voltage 300 V 

Idr d channel current reference 7 A 

Iqr q channel current reference 0 A 

Kp Proportional gain of the current controller 0.01 

Ki Integrator gain of current controller 3 

BWPLL Bandwidth of PLL (Stable) 50 Hz 

                               (Unstable) 70 Hz 

fs Sampling frequency 5 kHz 

fsw Switching frequency 5 kHz 

 

 
Fig.2. Self- and coupling-admittances of the converter as a function of 

frequency. 

 
Fig. 3. Admittance matrix of the converter. 

 



response to a 350-Hz-positive-sequence voltage 
perturbation, the converter current also has a 250-Hz-
negative-sequence current. 

A. How to Fill in the Admittance Matrix 

In the previous section, it is shown that if the analytic 
expressions for the elements are available then the matrix 
can be simply filled in by calculating the expression at 
different frequencies; however, the analytic equations are 
not always available. Then, for each frequency excitation the 
frequency spectrum of the measured response must be 
extracted and be put in the corresponding location in the 
admittance matrix. The measurements can be obtained using 
by either simulating the element in a circuit simulator or 
experiments. Fig. 4 shows the current response of a power 
converter to a positive-sequence perturbation at 450 Hz, 
which is obtained by experiments on a low power prototype 
of current controlled inverter. By doing the Fourier analysis 
it can be seen that there is a positive-sequence current at 450 
Hz and a negative-sequence current at 350 Hz.  

B. Dependency on the operating point 

One may ask that if the considered system is nonlinear 
and if small signal linearization technique is used it is only 
valid around the operating point. In other words, if the 
operating point (i.e. the output power of the converter) is 
changed then these models are not valid any longer. 
Fortunately, the small-signal admittance of the power 
converter changes linearly when there is a change in the 
operating point. From (5) and (6) it can be seen that the 
small-signal admittance is a linear function of the output 
current Idq and the converter duty ratio Cdq, which has a 
linear relationship with the PCC voltage. Fig. 5 verifies the 
linear behavior for the considered current controller. By 
knowing that dependency on the operating point is linear, 
the admittance of the converter at different operating points 
can be derived by 

𝑌(𝑉𝑑𝑞 + ∆𝑉𝑑𝑞 ,  𝐼𝑑𝑞 + ∆𝐼𝑑𝑞)

= 𝑌(𝑉𝑑𝑞 ,  𝐼𝑑𝑞)    +
𝜕𝑌

𝜕𝑉𝑑𝑞
∆𝑉𝑑𝑞

+
𝜕𝑌

𝜕𝐼𝑑𝑞
∆𝐼𝑑𝑞  

(7) 

The partial derivatives in (7) can easily be found by the 
procedure illustrated in Fig. 6. For instance, by repeating the 
simulation for another current set point while all other 
quantities (PCC voltage, current control parameters and etc.) 
are kept constant, the rate of the change in the admittance to 

a change in the current 
𝜕𝑌

𝜕𝐼𝑑𝑞
 can be found.  

III. SIMULATION RESULTS 

This section shows how the admittance matrix can be 
utilized for the harmonic studies including the harmonic 
emission and stability studies. 

A. Harmonic emission studies 

The admittance/impedance matrices can simply be used 
like normal admittances/impedances to find the harmonics at 
the PCC voltage or the injected current (see Fig. 7). The 
PCC voltage can be found by calculating the voltage 

 
(a) 

 
(b) 

Fig. 4. Experimental results of the Current response to a voltage 
perturbation at 450 Hz. (a) Current waveform in time domain. (b) 

Frequency components of the output current in a phasor diagram.  

 

(a) 

 

(b) 

Fig. 5. The linear relationship between the small-signal admittances and 
the operating point. (a) The admittance changes linearly by a change in 
the current set point. (b) The admittance changes linearly by a change in 
the PCC voltage. 

Run without 
perturbation

Set fp=fpiStart
Run at the 

operating point
Change rated 

current 

Change PCC voltagei=i+1Finished?end

Yes

Fig.6. A flowchart showing how to fill in the admittance matrix. 

GridZg(s)=sLg+RgsL

Vdc

PCC

Background 

Harmonic

Fig. 7. Harmonic emission studies. 



division between the grid impedance and converter 
admittance as 

𝑉𝑃𝐶𝐶 =
𝑍𝐶

𝑍𝑔 + 𝑍𝑐
𝑉𝑔 (8) 

The same can be done using matrix impedances 

[𝑉𝑃𝐶𝐶] = [𝑍𝑐][𝑍𝑔 + 𝑍𝑐]
−1
[𝑉𝑔] (9) 

In this matrix-based method based on the frequency 
resolution of the matrices, in addition to harmonics of the 
fundamental frequency the effects of the inter-harmonics 
can also be studied. To show the effectiveness of the 
proposed method, it is assumed that the grid has an inter-
harmonic component at 110 Hz. The results from the matrix 
based method (theory) and the time domain simulations are 
listed in Table II, in where it can be seen that the results are 
in good agreement. 

B. Harmonic stability studies 

For stability studies the traditional methods such as the 
Impedance Based Stability Criterion (IBSC) [5] can be used 
in the matrix form. 

[𝐿] = [𝑍𝑔][𝑌𝑐] (10) 

The grid impedance matrix and the matrix minor loop 
gain ([L]) are shown in Fig. 8 and Fig. 9. Since the grid 
impedance is a balanced inductive branch, therefore, there is 
no coupling between the positive and negative sequence 
impedances. It can be seen that at higher frequencies the 
impedance is higher because of the inductance and the 
symmetry at positive and negative frequencies is due to the 
fact that the positive and negative sequences are equal in this 
case. 

TABLE II.  COMPARISON BETWEEN THE THEORY AND THE 

SIMULATION RESULTS 

Frequency Simulation Theory 

110 Hz 0.2041-1.398  0.2000-1.413 

10 Hz 0.0108 2.468 0.0107 2.503 

 

Fig. 8. The grid impedance matrix. 

 
Fig. 9. The matrix minor loop gain. 

 
(a) 

 
(b) 

Fig. 10. Time domain results of the output current of the system in Fig. 1 
for (a) BWPLL=50 Hz (c) BWPLL=70 Hz. 

 

Fig. 11. The GNC plot using the proposed matrix-based method. 

 
Fig. 12. The GNC plot using the method proposed in [7]. 



The minor loop gain in this case is a matrix; therefore 
the Generalized Nyquist Criterion (GNC) should be used 
[12], which is indeed the plot of the eigenvalues of [L]. Fig. 
11 shows the GNC plot of the matrix minor loop gain for a 
PLL bandwidth of 70 Hz. It can be seen that it encircles the 
critical point and the time domain simulations as shown in 
Fig. 10 also verify that for this PLL bandwidth the system is 
unstable. The interesting point is that this figure is almost 
the same as the results obtained in [7], in which the matrix 
method has not been used (see Fig. 12). 

IV. CONCLUSION 

In this paper, a numerical matrix-based method for 
harmonic studies is proposed. The method is able to deal 
with the couplings between the positive and negative 
sequence impedances. This happens when the low frequency 
outer loop dynamics such as the PLL and dc link control are 
considered and/or the transmission network is unbalanced. 
This method can be used in both harmonic propagation and 
stability studies. Because this method uses matrix notation 
with a desired frequency resolution, even the effects of the 
inter-harmonics can be considered. The results of the 
stability evaluation is almost the same as the results obtained 
in the previous works [7], but if the imbalance is considered 
the previous methods cannot find the solution due to the 
increased number of couplings but this method is able to 
find the solution since it uses matrix notations. The 
application of this method for the unbalanced systems is the 
future work of the authors. 
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