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Abstract: Mathematical physiological models can be 
applied in medical decision support systems. To do so 
requires consideration of the necessary model complexity. 
Models that simulate changes in the individual patient are 
required, meaning that models should have a complexity 
where parameters can be uniquely identified at the bedside 
from clinical data and where the models adequately repre-
sent the individual patient’s (patho)physiology. This paper 
describes the models included in a system for providing 
decision support for mechanical ventilation. Models of pul-
monary gas exchange, respiratory mechanics, acid-base, 
and respiratory control are described. The parameters of 
these models are presented along with the necessary clini-
cal data required for their estimation and the parameter 
estimation process. In doing so, the paper highlights the 
need for simple, minimal models for application at the bed-
side, directed toward well-defined clinical problems.

Keywords: mathematical modeling; mechanical ventila-
tion; parameter estimation.

Introduction
Mathematical physiological models have been applied in 
medicine to address problems in quite different domains. 
These include, but are not limited to, education, clinical, 
and experimental research, and bedside clinical decision 
support. These different application domains can be seen 
in the fields of anesthesia and intensive care medicine. 
Mathematical models are the core of many anesthesia 
education systems [11, 29], where models are used with 
a graphical user interface and/or manikins to simulate 
patient response to critical events. The use of these models 

typically requires that parameter values be set to describe 
a scenario and changes made in parameter values and 
inputs to simulate clinical events. There is no need for 
these parameters to be estimated from clinical data and, 
as such, the models are not constrained by the need for 
unique identifiability of model parameters. The appropri-
ateness of the models lies in their potential to simulate 
many complex scenarios rather than in understanding the 
(patho)physiology of an individual patient.

For clinical and experimental research, physiological 
models are often used to describe a physiological response 
to an intervention. The models are usually required to be 
of a level of complexity such that parameter values can be 
uniquely estimated from measured data, providing insight 
into the underlying physiology. Often, experiments will 
include measurements in addition to those available in 
routine clinical care, allowing for unique identification of 
a greater number of parameters and providing a deeper 
physiological understanding. Such studies have been the 
basis for the core of physiological knowledge that exists to 
describe systems relevant in anesthesia and intensive care, 
including gas-exchange [17] and pulmonary mechanics [3].

The use of physiological modeling in clinical decision 
support presents different problems. Models that simulate 
changes in the individual patient in the clinical setting 
are required. The complexity of the models is, therefore, 
constrained by the need for unique identifiability of 
parameter values estimated for the individual patient, 
which is further dictated by the data available in the clini-
cal setting. Selected models, therefore, need to be either 
“minimal” in the sense that they have uniquely identifi-
able parameters, adequately describe clinical data, and 
still reflect patient (patho)physiology. Alternatively, more 
complex models need to be constrained by fixing some of 
the parameter values to constant values reflecting a popu-
lation of patients. In this way, a subset of parameters are 
uniquely identifiable, effectively making these models 
“minimal” in terms of the parameters. The development 
and appropriate use of minimal models is constrained not 
only by the availability of measurements, but often also 
by the frequency of measurements. In the application of 
glucose models in the ICU, the willingness to measure 
glucose concentration frequently determines how often 
parameters can be re-estimated and affects the predic-
tive capability of the models [33]. The addition of extra 
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measurements or procedures may be attractive to provide 
a deeper understanding of the patient, but this should be 
done with caution if the decision support system is to be 
applied in departments low on expertise and resources, 
exactly those where the use of clinical decision support 
might have the most benefit.

The complexity of the models is further constrained 
by the time frame of the decision to be supported. Systems 
applying closed-loop algorithms in rapid response to 
patient changes may require modeling of system dynam-
ics. Decision support systems used as open-loop systems, 
i.e. those interacting with the clinician such that decisions 
are only required periodically may only require modeling 
of steady-state conditions.

In designing physiological model-based decision 
support systems, it is, therefore, important that the clini-
cal problem and constraints are fully understood. What are 
the decisions to be supported and when? What is the timing 
of the decision-making process? What data are routinely 
available? When answering these questions, the problem 
becomes one of finding the appropriate minimal model 
complexity, a task where it is often more difficult to decide 
what to leave out of the model than what to include.

This paper describes the mathematical models 
included in the decision support system for mechanical 
ventilation, known in its research version as the INVENT 
system [36, 43] and in its commercial version as Beacon 
Caresystem [38] (Mermaid Care, Nørresundby, Denmark). 
In describing these models, the paper focuses on parame-
ter identification rather than a description of the system as 
a whole. To do so, the clinical problem of mechanical ven-
tilation is first summarized and conclusions are drawn as 
to the necessary physiological systems requiring models to 
address this problem and the nature of those models. These 
models are then addressed in turn, including discussion of 
the necessary measurements required to identify param-
eters and the clinical availability of these measurements. 
For each model, a description of the parameter estimation 
process in presented along with typical values of model 
parameters. The integration of the models into the whole 
system is then described, again with focus on the param-
eterization of the system, with a final section describing 
how the models are used as part of the system.

The clinical problem – selecting  
the appropriate ventilator settings
Selecting the appropriate settings for mechanical venti-
lation can be seen as a process of optimizing competing 

goals for the individual patient. Selecting the correct level 
of inspired oxygen can be seen as a balance between the 
risks of over-oxygenation, including absorption atelecta-
sis and oxygen toxicity, and under-oxygenation, includ-
ing hypoxemia. Selecting appropriate volumes, pressures, 
and frequencies can be seen as a balance between the 
risks of over-ventilation by applying excessive pressure(s), 
volume, and/or frequency, resulting in ventilator-induced 
lung injury (VILI), and acidosis due to under-ventilation. 
For patients with spontaneous breathing activity in support 
modes of ventilation, selecting the appropriate support 
can be seen as a balance between the risk of respira-
tory muscle atrophy due to over-support and the risk of 
respiratory muscle fatigue or respiratory stress due to 
under-support.

The correct balance points for these competing goals 
depend upon the individual patient’s physiology, and 
consideration of the balances, therefore, determines 
which models of physiological systems are required by 
a system for suggesting ventilator settings. The correct 
balance between over- and under-oxygenation depends 
upon oxygen delivery and utilization, with oxygen deliv-
ery depending upon pulmonary gas exchange, circula-
tion, and blood hemoglobin and acid-base status. The 
correct balance between the risks of VILI and acidosis 
depends on the mechanical properties and gas exchange 
of the patient’s lungs, the patient’s circulation and acid-
base status, as well as the carbon dioxide production. 
The correct balance between over- and under-support of 
the patient depends upon the patient’s respiratory drive 
and the consequent changes in respiratory pattern that 
occur with changes in ventilator support or with changes 
in metabolism. To provide an adequate description of the 
patient so as to provide advice on appropriate mechani-
cal ventilator settings, therefore, requires mathematical 
models describing, or the direct measurement of pulmo-
nary gas exchange, lung mechanics, circulation, acid-
base status, respiratory drive, and metabolism.

In addition to understanding the necessary systems 
to be considered, it is also important to understand the 
timeframe of decisions and, therefore, the time for which 
a model should be able to predict. Current clinical prac-
tice typically involves modification of ventilator settings 
followed by a period of time to evaluate the patient’s 
response. This time is typically in the order of 30 min to an 
hour, or even longer, a time period where it is typical for the 
above-mentioned physiological systems to have reached 
steady state. The models considered here reflect this, and 
include representation of steady-state conditions.

The following section considers each physiologi-
cal system in turn and the mathematical models used 
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to describe these in the literature and those included in 
the Beacon system. For two of these systems, circulation 
and metabolism, it is assumed that direct measurement 
or reasonable approximation of measurements exists. In 
the case of circulation, cardiac output (CO) is input into 
the system either from direct measurement or through an 
ideal body-weight-adjusted cardiac index. Metabolism is 
directly measured using indirect calorimetry and capnog-
raphy measurement of oxygen consumption (O2) and 
carbon dioxide production/elimination (CO2).

For each model, the data required for unique param-
eter identification is described and placed in the context 
of both the typical data available in the clinical setting 
and other less commonly used measurements. In the case 
of an estimated CO, the results of sensitivity analysis are 
used to comment on this approximation. In consider-
ing these systems and measurements, a set of minimal 
models, their associated measurements, and parameter 
estimation is proposed, one for each physiological system. 
For each of these models, typical values of model param-
eters are provided.

Mathematical models of pulmonary 
gas exchange
Mathematical models of pulmonary gas exchange are 
required to simulate the effects of ventilator changes on 
arterial oxygen and acid-base status. It is well recognized 
that the major abnormality associated with gas exchange 
is the mismatch between ventilation and perfusion in the 
lungs [17]. For patients with pulmonary abnormalities, dif-
ferent regions of the lung can present with different ven-
tilation/perfusion (/) ratios. These range from a / of 
zero, i.e. pulmonary shunt, where blood passes through 
non-ventilated regions of the lung without being involved 
in gas exchange, to a / of infinity, i.e. alveolar dead 
space, where regions of the lung without blood flow are 
ventilated. The reference technique for assessing pulmo-
nary gas exchange is the Multiple Inert Gas Elimination 
Technique (MIGET) [52]. This technique uses a mix of six 
inert gases and measurement at steady-state conditions of 
their retention and excretion, along with parameter esti-
mation and smoothing techniques, to identify parameters 
describing the ventilation and perfusion of a 50-com-
partment model of the lung [52, 53]. In clinical practice, 
description of gas exchange is limited to single lumped 
parameters describing the effects of abnormalities of O2 
and CO2 exchange. For O2, the most common index is PaO2/
FIO2, which primarily lumps oxygenation abnormalities 

due to regions of the lung with pulmonary shunt and low 
/ [21]. This index requires measurement of blood gas, 
although some studies have proposed use of a SpO2/FIO2 
index, which allows for continuous measurement [5, 9]. 
For CO2, the arterial-to-end-expired partial pressure gradi-
ent has been used to approximate the lumped effects of 
high / and alveolar dead space on CO2 elimination, with 
this requiring use of arterial blood gas (ABG) and capnog-
raphy [2]. These clinical indices have a number of limita-
tions. The PaO2/FIO2 index has shown to be very sensitive 
to changes in FIO2, such that changes in FIO2 can result in 
changes in patient classification [21]. In addition, lack of 
mathematical integration of these indices can have con-
sequences for their interpretation. For example, a large 
pulmonary shunt will cause mixed venous blood to mix 
with arterial blood, generating a greater gradient of end-
tidal-to-arterial PaCO2 not due to alveolar dead space or 
high / [14].

Figure 1A illustrates the complexity of the model of 
pulmonary gas exchange included in the Beacon system. 
A subset of the whole model is illustrated so as to high-
light the parameterization of the model. The model 
includes two ventilated and perfused lung compartments 
and pulmonary shunt, and three parameters. These are 
pulmonary shunt, the fraction of alveolar ventilation (A) 
to one of the ventilated compartments (fA2), and the frac-
tion of non-shunted blood flow to the same ventilated 
compartment (f2). As illustrated, two sets of equations are 
included in this model to describe the transport of O2 and 
CO2. These include the relationship between O2, CO2, 
and gas transport in each of the two ventilated compart-
ments (Figure 1, Equations 1–3); expired fraction of gases 
calculated as the mixing of the two ventilated compart-
ments (Figure 1, Equation 4); the partial pressure of gas in 
the blood of each ventilated compartment (Figure 1, Equa-
tions 5 and 6); the mixing of blood from the three lung 
compartments (Figure 1, Equation 7); and mass balance 
and Fick equations describing O2 and CO2 exchange at the 
lungs and tissues (Figure 1, Equations 8 and 9) [23]. In 
addition, the model includes representation of the acid-
base and oxygenation status in each of the blood compart-
ments, with the equations of this model described in the 
next section. Values of shunt, fA2, and f2 can be uniquely 
estimated from the measurement of a single ABG; a meas-
ured or estimated cardiac output; indirect calorimetric 
measurements of inspiratory and end expiratory O2 and 
CO2, O2, and CO2; measurement of respiratory flow and, 
hence, volume; and measurements of SpO2 taken at 3–5 
different FIO2 levels [18, 42].

Figure 1B illustrates measured data and model sim-
ulations describing the relationship between end-tidal 
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Figure 1: (A) The pulmonary component of a model of gas exchange and all equations excluding those describing acid-base status and oxy-
genation of blood; (B) model simulations and fit to data illustrating: no gas exchange abnormality (dotted line Bia, square Biia); severe gas 
exchange abnormality and PEEP = 5 cm H2O [FEO2/SpO2 (crosses “x”, Bic), FEO2/SaO2 (inverted triangle, Bic), FECO2/PaCO2 (inverted triangle, 
Biic), model simulation of best fit (solid line, Bic; circle Biic)]; severe gas exchange abnormality and PEEP = 15 cm H2O [FEO2/SpO2 (crosses 
“+”, Bib), FEO2/SaO2 (triangle, Bib), FECO2/PaCO2 (triangle, Biic) model simulation of best fit (dashed line, Bib; circle Biib)]. (C) Illustration 
of shunt, ∆PO2 and ∆PCO2 for: no gas exchange abnormality (a), severe gas exchange abnormality and PEEP = 5 cm H2O (c); severe gas 
exchange abnormality and PEEP = 15 cm H2O (b).

oxygen (FEO2) and arterial oxygen saturation (SaO2) 
(Figure 1-Bi), and end-tidal carbon dioxide (FECO2) 
and arterial partial pressure of carbon dioxide (PaCO2) 
(Figure  1-Bii), in three situations. Dotted lines (Bia) 
and the square (Biia) describe simulated values in the 
absence of gas exchange abnormality, i.e. the situation 
of zero pulmonary shunt and fA2 and f2 values such that 
both compartments are ventilated with a / ratio = 1. 
In the case of constant O2, Figure 1-Bi could instead be 
plotted with FIO2 on the x-axis, and a similar interpreta-
tion performed. The solid line (c) and dashed line (b) in 
Figure 1-Bi illustrate simulations following model fit to 
data (crosses and triangles) from a single patient with 
acute respiratory distress syndrome (ARDS), ventilated 
with a positive end-expiratory pressure of 5  cm H2O (c: 
solid line, “x” and inverted triangle) and PEEP set to 
15 cm H2O following a recruitment maneuver (b: dashed 

line, “+” and triangle). The relationship between FECO2 
and PaCO2 for this patient at these PEEP levels is shown 
in Figure 1-Bii, with points (a), (b), and (c) describing data 
(triangles) and model simulations (square and circles), in 
the absence of gas exchanges abnormality, at PEEP = 5 cm 
H2O and at PEEP = 15 cm H2O, respectively.

Fitting is performed as follows. A is calculated 
from measured minute ventilation through estimation of 
serial dead space (Vds). CO, O2, CO2, FEO2, and FECO2 
are fixed at measured values. Model fitting then occurs 
by searching for the combination of shunt, fA2, and f2, 
which provides the minimum solution of the error func-
tion describing the weighted residual sum of square 
(WRSS) fit. This error function applies the difference 
between simulated arterial saturation (SsO2) and arterial 
partial pressure (PsCO2) and measured values of SpO2, 
arterial SaO2, and PaCO2, as described previously [18]:
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where the weights 0.02, 0.005, and 0.09 represent the 
standard deviation (SD) for measurement error of SpO2, 
SaO2, and PaCO2, respectively [18].

On estimation of shunt, fA2, and f2, / distribu-
tions can be calculated for each of the two ventilated 
compartments. As f2, fA2, and / ratios are difficult to 
interpret at the bedside, these values are converted into 
a) a drop in the partial pressure from end-tidal to end-
capillary PO2 prior to mixing with shunted venous blood, 
i.e. ∆PO2, and b) a drop in the partial pressure from end-
capillary to end-tidal PCO2, i.e. ∆PCO2. ∆PO2 describes the 
drop in partial pressure of oxygen from alveolar gas to 
capillary blood due to low / regions in the lung, and 
when reported in kPa, this is almost identical to the nec-
essary increase in inspired oxygen fraction above room 
air to counter the effect of low / on O2 exchange. As the 
oxygen level of a pulmonary shunt is, by definition, unre-
sponsive to changes in inspired oxygen, ∆PO2 represents 
the increase in FIO2 or FEO2 which saturates all hemo-
globin passing through ventilated regions. Any further 
increase in FIO2 will result only in increased transport of 
dissolved oxygen. As the solubility of oxygen in blood is 
poor, increase in FIO2 in this range results in little change 
in SaO2. ∆PCO2 represents the drop in CO2 partial pres-
sure due to high / regions in the lung, which can be 
counteracted by an increase in A not reaching high / 
regions of the lungs.

The measurements described above allow for the 
unique identification of shunt, ∆PO2, and ∆PCO2. While no 
formal analysis of the identifiability has been performed, 
Figure 1-Bi illustrates why this is the case. Low / regions 
of the lung result in poor arterial blood oxygenation, 
which is responsive to changes in FIO2 or FEO2. The verti-
cal drop in SaO2 in relation to FEO2 illustrates the portion 
of the curve which provides information on ∆PO2, with 
increased values of ∆PO2 shifting this curve to the right 
as illustrated by the arrow labeled ∆PO2 in Figure 1-Bi. As 
pulmonary shunt is not responsive to changes in FIO2 or 
FEO2, the portion of the curve where arterial SO2 changes 
little with FEO2 provides information on pulmonary shunt, 
resulting in a depression in the shoulder of the curve as 
illustrated by the arrow labeled shunt on Figure  Bi. The 
relationship between end-tidal CO2 and arterial, illustrated 
in Figure  1-Bii, provides information on ∆PCO2, as indi-
cated by the arrow ∆PCO2 on Figure 1-Bii. Values for shunt, 
∆PO2, and ∆PCO2 are illustrated for the three situations in 

Figure  1C. Performing recruitment and increasing PEEP 
to 15 cm H2O reduced shunt, with a negligible increase in 
∆PCO2 and a marginal increase in ∆PO2, perhaps due to 
shunted regions of the lung having low / on recruitment.

This model has been validated in a number of clini-
cal and experimental studies. In the experimental setting, 
the model has been shown to describe MIGET retention 
and excretion data collected from an animal model of lung 
damage, with the resulting model parameters capable of 
describing arterial oxygenation levels [39, 40]. In clinical 
studies, the model has been shown to be a great improve-
ment in describing oxygen data when compared to the 
PaO2/FIO2 ratio [21] to describe changes in gas exchange 
peri-operatively [22, 24, 34, 35] and to describe data from 
ICU patients [20, 23]. Typical values of shunt, ∆PO2, and 
∆PCO2 have been reported for 16 mechanically ventilated 
patients [20] with values of shunt = 25.0 ± 10.6% (mean 
and SD), ∆PO2 = 6.1 (5.0–9.7) kPa (median and IQR), and 
∆PCO2 = 1.8 ± 1.0 (mean and SD).

The use of this model at the bedside, to predict arte-
rial oxygen and CO2 levels, requires a number of meas-
urements be available routinely. CO, O2, and CO2, 
continuous SpO2, ventilation volume, and an ABG are 
required as input. O2 and CO2 are available through 
indirect calorimetry and capnography. The use of capnog-
raphy is relatively widespread, but this is not the case for 
indirect calorimetry. Adoption of this model, therefore, 
requires new instrumentation at the bedside. The Beacon 
Caresystem is equipped with capnography and indirect 
calorimery, as are GE ventilators through the E-COVX 
model. CO is seldom measured; however, it has been 
shown that parameter estimates are reasonably insensi-
tive to error, and an ideal weight-adjusted approxima-
tion is reasonable for robust parameter estimation [20]. A 
single ABG, at strategic time points, and continuous SpO2 
measurement are routine in clinical practice. Measure-
ment of ventilation volume is also routinely performed 
by the ventilator, or can be obtained through flow meas-
urements included in indirect calorimetry. Simulated 
changes in respiratory volume are dependent upon lung 
mechanics and respiratory drive, so effective simulation 
of arterial blood gas levels on modifying ventilator pres-
sures or volumes requires integration of the pulmonary 
gas exchange models with other systems described in this 
paper.

Probably the most demanding change in clinical prac-
tice for introduction of this model is the need for 3–5 dif-
ferent FIO2 levels introducing a 10-min procedure at the 
bedside. Closed-loop control of this procedure would elim-
inate this problem; however, the Beacon system currently 
runs in an open-loop mode providing advice on several 
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different ventilators. To overcome this, the Beacon system 
initially reduces the complexity of model fit, fitting only to 
a single FIO2/SaO2 level. This assumption effectively lumps 
shunt and low / on system startup. Following advice on 
FIO2 level, the system monitors patient SpO2 response. If 
this response deviates from that predicted, then a request 
for an FIO2 variation is presented. The model is, therefore, 
only completely identified if required to provide patient 
advice.

Mathematical models of respiratory 
system mechanics
Mathematical models of respiratory system mechanics 
are required to simulate the effects of ventilator changes 
on patient ventilation, to ensure that volumes, flows, 
and pressures delivered to the patient limit ventilator-
induced lung injury, while ensuring adequate ventilation 
to prevent or limit the accumulation of CO2.

The major problems associated with respiratory 
system mechanics are the increase in resistance to flow 
and reduction in respiratory compliance, associated with 
mechanical ventilation and disease [3]. As in the case 
of gas exchange, the presentation of these abnormali-
ties can be highly heterogeneous across the respiratory 
system, and the modeling problem is that of identifying 
a model that can capture the necessary degree of hetero-
geneity from routinely available clinical measurements. 
Experimental techniques include procedures to obtain 
extra information such as interruption of inspiratory or 
expiratory flow [4] or low flow inflation [31] to separate 
resistance and elastance components. Extra measurement 
technology includes the use of esophageal catheters to 
separate the elastance properties of the lungs and chest 
wall [32]. Mathematical model approaches range from 
one compartmental representation of a single airway and 
single lung unit to multi-compartmental models includ-
ing gas re-distribution or viscoelastic properties [48], and 
complex simulation models of airway structure [16]. At the 
bedside, measurements of flow and pressure taken at the 
airway limit model identification to a single compartment 
lung model, regardless of the use of interruption proce-
dures or esophageal catheters [3]. For patients without 
spontaneous breathing and in volume control modes 
of mechanical ventilation, ventilator pauses are part of 
the inspiratory pattern and provide some separation of 
resistance and compliance components. Current clinical 
practice is, however, such that where possible, patients 
are encouraged to breath spontaneously to preserve 

respiratory muscle function. For these patients, measure-
ment of pulmonary mechanics is complicated further by 
the combination of both ventilator and respiratory muscle 
pressures during inspiration [15]. Without measurement of 
esophageal pressure, separation of these pressures is dif-
ficult, although specialized modes with small periods of 
changes in inspiratory pressure or delayed valve opening 
may provide extra information [58, 59].

These constraints mean that the mathematical com-
plexity describing respiratory system mechanics included 
in Beacon is very limited. A simple one-compartment 
model is applied along with pressure and flow measure-
ments taken at the mouth, without extra measurements or 
maneuvers. In volume control ventilator modes, respira-
tory system compliance and resistance are identified. For 
all other modes, a lumped dynamic respiratory system 
compliance (Cdyn), described here as the volume delivered 
per cm H2O pressure provided by the ventilator, is identi-
fied, with values of this re-estimated at differing ventilator 
settings. As respiratory system compliance is well under-
stood to be non-linear, the system re-estimates parameter 
values in response to changes in ventilation, only provid-
ing advice on small step changes in volume or pressure, 
where the linearity of the model may be appropriate.

For patients in supported modes of mechanical ven-
tilation, values of Cdyn can be much higher than those 
reflecting only the mechanical properties of the respira-
tory system. These values no longer reflect respiratory 
system mechanics alone but also the driving pressure 
(ΔP) of the respiratory muscles (Pmus) [27]. Larraza et al. 
[27] reported calculated values of Cdyn as high as 200 ml/
cm H2O on reducing pressure support (PS) to 3–4 cm H2O. 
Values of Cdyn in excess of 70 ml/cm H2O are unlikely to 
be due to the mechanical properties of the respiratory 
system. These values may, therefore, provide valuable 
information on the patient’s ability to increase Pmus on 
reduction of ventilator support. This simple model of 
respiratory system mechanics can be uniquely identified 
from measurements of pressure and flow taken at the 
mouth or by the ventilator.

Mathematical models of acid-base
Mathematical models of the acid-base chemistry and 
oxygenation status of blood are required to simulate the 
effects of ventilator changes on pH, PCO2, PO2, and SO2, to 
ensure that volumes, flows, and pressures delivered to the 
patient prevent acidosis and that inspired oxygen levels 
ensure adequate oxygen delivery.
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The acid-base chemistry of blood included in Beacon 
includes a large number of chemical reactions as illus-
trated in Figure 2 [37, 41]. This model is used to represent 
steady-state conditions in arterial, venous, and lung capil-
lary blood. The model includes lumped bicarbonate and 
non-bicarbonate buffer reactions (R1r, R2r) describing 
buffering in plasma. In the erythrocyte fraction of blood, 
hemoglobin is written as Hb(RH)bNH3

+ to reflect the side 
chain (RH)b and amino end (NH3

+) buffering sites. Hemo-
globin binding to H+, O2, and CO2 is drawn as three blocks 
of reaction equations A–C. Blocks A and B represent the 
binding of H+ to the amino end of the hemoglobin mole-
cule protein chains and the oxygenated and deoxygenated 
forms of these. Block C represents the binding of H+ to the 
side chains of the amino acids.

The formulation of the model is then as eight mass 
balance equations (1r–5r), one to describe each of the com-
ponents of blood with some redundancy, and nine mass 
action equations (6r–14r), one for each reaction equation, 
with the remaining three reaction equations (R15r–R17r) 
representing the oxygen binding to hemoglobin, includ-
ing a published model of the oxygen dissociation curve 
(ODC) [46, 47] (Equation 15r). The remaining equations 
account for the physico-chemical properties of blood, 
including the solubility of O2 and CO2 in plasma and red 

blood cells (18r–21r), the fractions of plasma and eryth-
rocyte (22r, 23r), and a modified form [45] of the empiri-
cal relationship relating pH in the plasma and red blood 
cells, derived by Funder and Weith [13], to describe the 
link between plasma and red blood cell acid-base status 
without the need to represent electrolyte transport across 
cell membranes. This simplification means that the model 
cannot calculate values of electrolytes in the plasma and 
red blood cells, as can newer models by Wolf [54, 55].

pK values have been estimated for each of the equa-
tions described in detail in Rees and Andreassen [37]. 
These are not patient-specific and were part of model for-
mulation. By fixing pKa values, all variables included in 
the model can then be uniquely identified from one meas-
urement of each of the six components. The six measures 
are 1) one representing CO2 (PaCO2, HCO3

−, tCO2, etc.), 
2) one representing acid or buffer base (pH, BE, etc.), 3, 
4) two representing oxygen (SaO2, PaO2); note: two are 
required so as to calibrate the ODC through the estima-
tion of 2,3-diphosphoglycerate (2,3-DPG), 5) one repre-
senting hemoglobin (Hb), and 6) one representing plasma 
protein concentration (albumin, total protein, etc). Aside 
from measurements of plasma protein, PaCO2, pH, SaO2, 
PaO2, and Hb are all measured in an ABG. The model can, 
therefore, be solved uniquely from a single blood gas and 

Figure 2: A mathematical model of the acid-base chemistry in blood [41]. 
(With kind permission from Springer Science + Business Media: Rees SE, Klæstrup E, Handy J, Andreassen S, Kristensen SR. Mathematical 
modeling of the acid-base chemistry and oxygenation of blood – a mass balance, mass action approach including plasma and red blood 
cells. Eur J Appl Physiol 2010; 108: 485, Figure 1B).
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a population value of non-bicarbonate buffering in the 
plasma. As the plasma protein buffer is relatively small 
compared to others, approximating this value has little 
impact on calculations.

This model of the acid-base chemistry of blood has 
been validated and shown to describe the addition or 
removal of CO2 or strong acid to plasma and blood and 
the effects of deoxygenating erythrocyte or blood at a 
wide range of values of pH and PCO2 [37]. In addition, 
the models have been shown to accurately simulate the 
mixing of blood with different PCO2 and PO2 levels, as 
occurs when blood drains from different / regions in 
the lungs, or from different organs [41].

In addition to the model of acid-base in blood, the 
system includes a model of acid-base of interstitial fluid 
and tissue [1]. This model is necessary as bicarbonate 
distributes between blood and interstitial fluid, meaning 
that simulations of changes in arterial acid-base on 
varying ventilation will be dependent upon this distri-
bution of bicarbonate. This model includes reaction 
equations similar to blood, as illustrated in Figure 4, and 
values of the pKs of these reactions and other chemical 
properties are estimated and fixed as described previ-
ously [1]. The volume of interstitial fluid is assumed to 
be 9.5 l [1]. When combined with the model of blood, this 
model has been shown to describe the well-known dis-
tribution of bicarbonate between blood and interstitial 
fluid [1, 6].

The mathematical model of acid-base is applied in 
the system to represent blood under numerous different 
conditions (Figure 4). On measurement and input of the 
arterial acid-base status, values of Hb and 2,3-DPG are 
fixed to arterial values for all applications of this model 
in the system. Other variables (PaCO2, pH, SaO2, PaO2) are 
calculated according to the conditions of the blood at 
that location. Values in pulmonary blood are calculated 
using the gas exchange model via equilibration of blood 
and gas values of PCO2 and PO2. Mixed venous values are 
calculated from measured arterial values and values of 
O2, CO2, and CO. Interstitial values of PCO2 and HCO3 are 
assumed to be equal to those in the mixed venous blood, 
as can be assumed for steady-state conditions. In doing 
so, excess concentration of buffer base is calculated for 
the combination of blood, interstitial fluid, and tissues, 
taking into account the buffer mass in each compartment. 
This system’s base excess (BEs) is the patient-specific 
parameter, such that for changes in ventilation, BEs can 
exchange between the three compartments, but in the 
absence of anaerobic metabolism, total BEs is constant 
[54]. BEs is calculated as

BEit(Vi Vt) BEa Va BEmv VmvBEs
Vi Vt Va Vmv

+ + +=
+ + +

where BEit is BE in the combined interstitial and fluid 
pool, and Vi, Vt, Va, and Vmv are the volumes of the inter-
stitial fluid, tissue, arterial, and mixed venous compart-
ments, respectively, which are assumed constant [1].

Respiratory drive
To prevent respiratory muscle atrophy and expedite 
weaning from mechanical ventilation, it is typical that, 
where possible, sedation is reduced to a level where the 
patient’s respiratory control system initiates the timing 
and, to some degree, the depth of breathing [7]. Mechani-
cal ventilation is normally used in this situation to support 
the patient’s breathing, typically providing a fixed ventila-
tor pressure (PS) when the ventilator identifies an attempt 
to breathe.

When ventilating patients with PS, the clinical chal-
lenge is to determine the level of PS which reduces the 
risk of respiratory muscle atrophy and promotes weaning, 
without stressing or exhausting the patient and causing 
diaphragm fatigue [8], or introducing asynchrony between 
the patient and the ventilator [7]. This patient stress can 
be seen in an increased ratio of the breathing frequency 
to tidal volume (VT), known as the rapid shallow breath-
ing index [56], and as an increased metabolism due to ele-
vated work by the respiratory muscles [8]. To support this 
process, mathematical models are, therefore, required, 
which simulate the individual patient’s response to 
changes in PS, i.e. models of the chemoreceptor regulation 
of breathing. Models that can simulate changes in respira-
tory frequency (fR), VT, and A are required, where simu-
lations using these models are responsive to changes in 
ventilator settings or changes in physiological response, 
such as increase in metabolism.

Chemoreceptor control of breathing occurs via central 
and peripheral chemoreceptors. Peripheral chemorecep-
tors are located in the carotid bodies and are responsive 
to rapid changes in arterial acid-base or PaO2 [44]. Central 
chemoreceptors are located in the medulla oblongata, 
are surrounded by cerebral spinal fluid (CSF), and are, 
therefore, responsive to changes in pH in the CSF. These 
account for the majority of ventilator responses [30]. As 
CO2 passes freely through the blood-brain barrier, PCO2 
values in the CSF follow plasma values closely. pHCSF can, 
however, differ from plasma, with values depending on 
the buffering properties of the CSF. These can be modified 
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in disease states such as chronic obstructive pulmonary 
disease (COPD), where increased plasma bicarbonate will 
result in elevated values in the CSF [30]. An increased CSF 
bicarbonate concentration increases the buffering of CSF, 
meaning that pHCSF changes are less responsive to changes 
in PCO2, and in this situation, central drive is reduced. 
Respiratory drive can also be reduced due to the effects of 
anesthesia and analgesia. In this case, pHCSF may respond 
well to changes in arterial PCO2, but the brain signal 
response to respiratory muscles can be reduced and, as 
such, A may not be sufficient so as to normalize either 
pHCSF, or pHa [44].

Figure  3 illustrates the mathematical models of CSF 
(3A) and respiratory drive (3B) included in the Beacon 
system, as described previously [26–28]. The CSF model 
is a modified version of that of Duffin [12]. This model 
includes mass-action equations describing water, phos-
phate, and albumin dissociation (1–3), formation of bicar-
bonate and carbonate (4–5), electrical neutrality (6), and 
equations describing the relationship between arterial 
and CSF PCO2 (7) and HCO3 (8).

Patient-specific tuning of the model of CSF occurs on 
measurement of a blood gas. In this situation, Equation 8 
is solved to calculate the steady-state bicarbonate con-
centration in the CSF [HCO3

−] from arterial values [26]. 

The solution of Equations 1–7 then allows calculation of 
the CSF strong ion difference (SIDcsf), with this fixed as a 
patient-specific parameter until a new blood gas is input. 
Simulations are then performed using this model through 
the unique solution of Equations 1–7 on changes in arte-
rial PaCO2, with the model simulating values of the hydro-
gen ion concentration ([H+csf]) or pH (pHCSF) in the CSF, 
according to the patient-specific SIDcsf.

Figure 3B illustrates the model of respiratory control 
of Duffin with modifications as described previously [26]. 
This model includes equations describing peripheral 
drive (Dp) as a linear function of the arterial hydrogen ion 
concentration ([Ha+]) above a threshold (Tp) (9), with the 
slope of this function (Sp) dependent on the value of PaO2 
along with a scaling (A) and a threshold (P0) parameter. 
Mechanically ventilated patients are typically ventilated 
with an inspired oxygen fraction so as to prevent hypox-
emia, so values of peripheral drive parameters (A, P0, Tp) 
are set to constants as described previously [26]. Central 
drive (Dc) is a linear function of the difference between the 
[H+csf] and the central threshold (Tc) (10), with the slope 
of this function being the sensitivity of central chemore-
ceptors (Sc). A is then calculated as the sum of Dp and 
Dc and a constant value of wakefulness drive (Dw), as 
described previously [26]. The patient-specific parameters 

Figure 3: Mathematical model of the buffering properties of cerebrospinal fluid (3A) and respiratory drive (3B).
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of this model are Tc and Sc. As shown previously [26], it 
is not possible to estimate both Tc and Sc uniquely from 
measurements of blood gas and ventilation. Sc is, there-
fore, fixed at a population value and Tc uniquely esti-
mated so as to characterize Dc.

Patient-specific tuning of the model of respiratory 
drive (Figure 3B) occurs on measurement of a blood gas. 
In this situation, the value of [H+csf] simulated by the CSF 
model is used as input to the model of respiratory drive 
along with measured PaO2 and [H+]. The model can then be 
used to simulate values of A depending upon patient-spe-
cific values of Tc. The values of Tc are estimated so that the 
simulated A is equivalent to that calculated from meas-
ured minute ventilation and Vds. In this way, Tc describes 
the link between the patient’s A and the current [H+csf]. 
Simulations of changes in A on variation of [H+csf] are 
then performed using this model through the solution of 
Equations 9–12 according to the patient-specific Tc.

This model has been validated in two clinical studies 
[27, 28]. When the values of SIDcsf and Tc were estimated 
from measurements of ventilation and a single ABG at a 
baseline ventilator setting, the model was shown to accu-
rately simulate values of fR, arterial pH, and end-tidal 
CO2 at five different levels of ventilator support. This was 
shown in 12 patients ventilated using volume support ven-
tilation [28] and a further 12 patients in PS ventilation [27]. 
The range of values of parameters seen in these patients 
was for SIDcsf from 26.1 mmol/l to 43.9 mmol/l, and for Tc 
from 34.9 nmol/l to 53.8 nmol/l.

The use of these models requires periodic measure-
ment of ABGs to re-estimate both SIDcsf and Tc, which 
represent the two parameters describing regulation of 
Dc. This is likely following changes in patient treatment 
such as reduction in anesthesia or analgesia where drive 
can be modified [44]. In these situations, simulations of 
A performed using the models are likely to be incorrect, 
resulting in poor simulation of fR and end-tidal CO2. This 
information is valuable as it identifies a possible change 
in respiratory drive following a change in therapy. The 
Beacon system uses this information to direct the clini-
cian to the need for performing a new blood gas, with the 
system using these results to re-estimate parameter values 
describing CSF and respiratory drive.

Combining these models into 
a single predictive model

Figure 4 illustrates the model components and their 
interaction in terms of inputs and outputs. Each model 

component is illustrated within a dashed line block, with 
the exception of the model of blood acid-base. Several ver-
sions of this model are applied to characterize blood in 
different conditions, and a symbol illustrating the blood 
gas model is depicted to show where this model is used. 
In addition, measurement inputs are illustrated within 
solid line blocks. Measurements of VT, ∆P, fR, FIO2, FEO2, 
FECO2, O2, and CO2 are obtained from indirect calorim-
etry; SpO2 from pulse oximetry; and SaO2, PaO2, PaCO2, 
pHa, Hb, and abnormal forms of Hb (COHb, MetHb) from 
an ABG. CO is either measured or estimated by the cli-
nician, and manually entered. Measurements are used 
both in parameter estimation and to evaluate model 
simulations.

Parameter estimation only proceeds when the 
patient’s respiration is considered stable, as indicated by 
stable values of FECO2 and FEO2. Clinical maneuvers such 
as suctioning, physiotherapy, etc. generate great variabil-
ity in these values and, therefore, result in postponement 
of both parameter estimation and calculation of advice. 
Parameter estimation proceeds as follows. A value of Vds 
is obtained from analysis of the CO2 signal and respiratory 
flow. This value, along with fR and VT, is used to calcu-
late the effective A. Values of shunt, ∆PO2, and ∆PCO2 
are estimated from the relationship between arterial and 
end-tidal O2 and CO2 levels, as described in the pulmonary 
gas exchange model section. Cdyn is estimated from VT 
and ∆P. Blood model parameters, i.e. Hb and 2,3-DPG are 
estimated for all the various uses of the model, with Hb 
set to that measured in arterial blood and 2,3-DPG, esti-
mated by fitting the ODC of blood to SaO2 and PaO2. Mixed 
venous, interstitial, and tissue values are then calculated 
as described in the section on modeling of acid-base 
chemistry, and BEs is calculated.

SIDcsf is calculated from the arterial blood measure-
ment as described in the respiratory drive model section, 
and measured PaCO2 is then used with the SIDcsf to cal-
culate pHCSF/H+csf. The relationship between pHCSF/H+csf 
and A is then used to estimate Tc, which character-
izes changes in the patient’s respiratory drive not due to 
changes in CSF buffering.

The complete set of model parameter values (Vds, 
shunt, ∆PO2, ∆PCO2, Cdyn, Hb, 2,3-DPG, BEs, CO, SIDcsf, 
and Tc) are then fixed, and patient-specific simulations 
can be performed. Simulations are performed for two 
purposes. The first is to evaluate whether the models are 
a good description of the patient’s current state. In this 
case, simulations are performed frequently by the system 
(30 s–2 min) and model-simulated values are compared 
with measured values, with these comparisons performed 
for variables that are measured non-invasively and on a 
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Figure 4: Mathematical models (dashed boxes) of and data input (solid boxes) to the integrated model. Arrows and associated variables 
illustrate data flow as input to or between models.

breath-by-breath basis, i.e. fR, FEO2, FECO2, SpO2. If the 
models are a poor fit, advice is not generated, and the 
models are re-tuned. Parameters not requiring a blood 
gas (Vds, Cdyn) are re-estimated first and the simulation 
is repeated. If model simulations remain poor, then the 
system requests a new blood gas from the user and param-
eter estimation is repeated. In this way, the user is directed 
to performing blood gases when the patient state is poorly 
described. This occurs when the patient state changes, 
such as an increase in respiratory drive on reduction of 

sedation, as described in the section describing the res-
piratory drive model.

From model predictions to system 
advice

The second purpose of model simulation is to gener-
ate patient-specific advice. As described previously, 
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mechanical ventilation can be seen as a process optimiz-
ing competing goals, finding the correct balance between: 
over- and under-oxygenation and the consequent risks of 
oxygen toxicity or hypoxemia; over- and under-ventilation 
and the consequent risks of lung injury or acidosis; and, in 
support modes of ventilation, the balance between over- 
and under-support and the consequent risks of respiratory 
muscle atrophy or fatigue and patient stress. To optimize 
these balances, measurements and model-simulated 
variables are considered surrogates for the risks associ-
ated with each of these balances, and penalty functions 
are associated with each of these surrogate variables [19, 
43]. Figure 5A illustrates the screen of the Beacon system 
with advice for a patient ventilated in pressure support 
mode. The hexagon on the right hand side of the screen 
presents visualization of the patient state in terms of these 
balances, with the three vertical axes on the hexagon pre-
senting the three balances. The position of the symbols on 
the hexagon are determined by the penalty value for the 
risk associated for each balance. The blue symbol repre-
sents the current state and the gray the simulated state 
according to the advice. Figure 5B illustrates the same 

Figure 5: Simulation user interface of Beacon following a piece of advice for a single patient, without (5A) and with (5B) surrogate variables 
displayed.

screen, but with the corners of the hexagon activated to 
show the current, simulated, and advised values of sur-
rogate variables, i.e. values of variables from the models. 
Oxygen toxicity is represented as FIO2, hypoxemia as SaO2 
and mixed venous oxygen saturation (SvO2), lung trauma 
as plateau pressure and PEEP allowing calculation of ∆P, 
and respiratory frequency, acidosis as arterial pH, respira-
tory muscle atrophy as respiratory frequency weighted 
according to the degree of spontaneous breathing, and 
patient stress as the ratio between respiratory frequency 
and tidal volume, i.e. the rapid shallow breathing index. 
The left hand side of the screen shows the current, sim-
ulated, and advised settings. The simulated settings are 
scroll wheels which allow the user to simulate changes to 
the ventilator strategy. Simulated changes interactively 
modify the position of the gray symbol on the hexagon 
and the values of the surrogate variables illustrated at the 
corners of the hexagon.

Advice is only generated when the patient is consid-
ered stable and when model simulations are a reasonable 
fit to continuous data, as described above. It is potentially 
a great advantage of model-based systems that consistency 
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between simulations and measurements is required 
before advice is generated. Incorrectly entered or noisy 
measurements are likely to lead to poor model simula-
tions and, therefore, prevent generation of advice in these 
situations. For the system presented here, poor model fit 
results in requests for further information, requiring the 
user to reconsider potentially incorrect data. In addition 
to these requirements, a minimum waiting time of 10 min 
is taken to calculate a new advice following changes in 
ventilator settings, to allow for the full effect of changes to 
be seen. In calculating advice, the system first calculates 
a target, defined as the ventilator settings resulting in the 
minimum combination of penalties. Advice is generated 
as a step toward this target, so as to avoid overly aggressive 
advice. Changes to the ventilator settings are manual and 
controlled by the user. Any change in ventilator settings, 
advised or otherwise, will result in the system checking 
for stable respiration, as indicated by stable values of 
FECO2 and FEO2, followed by evaluation of the model fit 
and re-tuning if necessary, and re-calculation of both the 
target and advice. In addition, the system includes a set 
of learning algorithms, published previously [19], which 
allow the system to adapt to the patient’s response to ven-
tilator settings such as an increased metabolism on lower-
ing pressure support, or changes in dynamic compliance.

Discussion
This paper has presented an example of the selection of 
models for inclusion in a physiological model-based deci-
sion support system for mechanical ventilation, originally 
known in its research version as INVENT, and now in its 
commercial version as the Beacon Caresystem. In doing 
so, the clinical problem has been presented and models 
justified, considering the timing of the decision and, 
hence, the modeling complexity required; the ability of 
the models to represent physiology; the measurements 
routinely available or to be introduced; and the ability 
to uniquely identify model parameters from these meas-
urements. These issues have been highlighted through 
description of the models in the Beacon system, but need 
for their consideration is, we believe, general in the design 
of systems to provide advice generated from the solution 
of mathematical models at the bedside, in a clinical envi-
ronment with limited data.

To provide advice on the correct values of FIO2, VT or 
inspiratory pressure, and fR, we would argue that models 
are required that describe pulmonary gas exchange, lung 
mechanics, acid-base status, CSF, and respiratory drive. 

As clinical decisions selecting ventilator settings typically 
occur at a minimum of every 30–60 min, and these physi-
ological systems typically reach steady state between ther-
apeutic interventions, it has been chosen to implement 
these models representing only steady-state conditions. 
This eliminates the need for representation and numerical 
solution of differential equations. This has computational 
benefits, and it has been shown that where system dynam-
ics are included, care should be taken in system design to 
combine models effectively and minimize computational 
time [25]. It also introduces limitations. These models are 
not intended for analyzing breath-by-breath data and pro-
viding ventilator assistance proportional to patient need 
depending upon the individual breath, such as the case for 
specialized ventilator modes such as proportional assist 
ventilation (PAV) [57] or neurally adjusted ventilator assist 
(NAVA) [49]. Indeed, the approach and models presented 
here might be used in synergy with such approaches to 
optimize both overall strategy and the individual breath. 
In addition, the lack of a dynamic circulatory model pre-
vents analysis of respiratory-circulatory interaction, which 
can provide valuable information on blood volume status 
[10]. This paper has also focused on the version of Beacon 
(Beacon 3) which does not provide advice on PEEP. Models 
of the effects of PEEP on gas exchange, respiratory systems 
mechanics, or diaphragm position have not, therefore, 
been discussed in this paper.

It is necessary when applying these simple “minimal” 
models that their ability to describe physiology is well 
understood and proper experimental evaluation has been 
performed. The majority of models presented here have 
been shown to provide a reasonable description of patient 
physiology. The model of gas exchange has been com-
pared with the reference MIGET technique [39, 40], and 
shown superior to the PaO2/FIO2 ratio [21]. The model of 
acid-base status of blood has been shown to simulate the 
mixing of blood [41], and when combined with the inter-
stitial tissue model, can simulate bicarbonate distribution 
between these compartments [1]. The model of respiratory 
drive has been shown to simulate the patient’s response 
to changes in volume and pressure support [27, 28]. The 
model of respiratory mechanics is probably that which is 
least descriptive of patient state. However, as described, 
only few respiratory mechanics parameters can be identi-
fied at the bedside without either introduction of respira-
tory maneuvers, which can only be applied in the absence 
of respiratory muscle activity, or with the introduction of 
esophageal catheters. Both of these introduce complexity 
into clinical practice, and the approach adopted here is to 
use a simple linear model, re-estimating parameter values 
in response to changes in ventilation and providing advice 
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on small step changes in ventilation, where the assump-
tion of model linearity may be appropriate.

To uniquely identify the models presented here 
requires measurement of respiratory flow, pressure, O2, 
and CO2, consistent with indirect calorimetry; pulse oxi-
metry; estimated or measured values of CO; periodic meas-
urement of ABG; and, for estimation of all gas exchange 
parameters, a 10-min procedure varying FIO2. Use of the 
modeling complexity presented here, therefore, requires 
introduction of indirect calorimetry. This sensor technol-
ogy is part of the Beacon system but requires placement 
of a sensor in the respiratory circuit between the patient 
and the ventilator. All other measurements are part of 
routine clinical practice and the system advises on peri-
odic measurement of ABG when model simulations of 
SpO2 and respiratory measurements differ from measured 
values. The 10-min procedure for varying FIO2 is required 
for the gas exchange model to be fully identified. This is 
only requested by the system when arterial SpO2 cannot 
be simulated accurately. In addition, recent attempts 
have been made to speed this process. Rule-based sug-
gestions of FIO2 control included in Beacon have shown 
that the process can be completed in 7.2 ± 2.4  min [51], 
and further reduction in time has been shown possible 
by fitting gas exchange parameters to data describing the 
dynamic response to FIO2 change [50].

This paper has highlighted the need for simple, 
minimal models for application at the bedside, directed 
toward well-defined clinical problems. The need for 
minimal models having few parameters requiring identi-
fication can be seen as an advantage. Much of the physi-
ology presented here has been well understood for many 
decades and is no longer challenged in the physiologi-
cal literature. While research proceeds into newer, often 
deeper physiological understanding, engineers are faced 
with a wealth of well-founded physiological knowledge 
from which decision support systems can be built. Such 
systems, based on physiological models tuned to the 
individual patient, may be important tools in providing 
individualized patient treatment. In an age of increas-
ing complexity of physiological models and the harvest-
ing of large amounts of “big” data, it is perhaps worth 
reminding ourselves of the power of simple physiological 
understanding combined with routinely available meas-
urements systematically applied at the bedside.
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