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Abstract

In many practical wireless systems, the signal-to-interference-and-noise ratio (SINR) that is applicable to a

certain transmission, referred to as channel state information (CSI), can only be learned after the transmission has

taken place and is thereby delayed (outdated). In such systems, hybrid automatic repeat request (HARQ) protocols

are often used to achieve high throughput with low latency. This paper put forth the family of expandable message

space (EMS) protocols that generalize the HARQ protocol and allow for rate adaptation based on delayed CSI

at the transmitter (CSIT). Assuming a block-fading channel, the proposed EMS protocols are analyzed using

dynamic programming. When full CSIT is available and there is a constraint on the average decoding time, it is

shown that the optimal EMS protocol has a particularly simple operational interpretation and that the throughput

is identical to that of the backtrack retransmission request (BRQ) protocol. We also devise EMS protocols for

the case in which CSIT is only available through a finite number of feedback messages. The numerical results

demonstrate that BRQ approaches the ergodic capacity quickly compared to HARQ, while EMS protocols with

only three and four feedback messages achieve throughput that are only slightly worse than the throughput of

BRQ.

Index Terms

Hybrid Automatic Repeat Request (HARQ), delayed channel state information, low latency, backtrack re-

transmission request, dynamic programming

I. INTRODUCTION

Channel state information at the transmitter (CSIT) is essential for achieving high throughput in wireless

systems. Preferably, CSIT is known before a transmission takes place, since in that case, the transmitter is able

to optimize the parameters of the transmission, such as rate of the codebook and power. The transmitter may

acquire an estimate of channel state information (CSI) in advance in various ways; for example, by using the

channel reciprocity or via explicit feedback from the receiver. This is referred to as prior CSIT. However, a

wireless channel is dynamic and, in many cases the channel changes from the time the CSI has been acquired
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to the time at which the channel is actually used for transmission [2, pp. 211–213]. In addition, even if the

channel is static, during the transmission there may be an unpredictable amount of interference at the receiver.

In such cases, prior CSI is different, or even uncorrelated, with the actual conditions at the receiver when data

transmission takes place and thus of limited, if any, use for adapting the transmission parameters. On the other

hand, it is viable to assume that the transmitter gets feedback about the CSI after the data transmission has

been made. We refer to this as delayed CSIT as it carries information to the transmitter about the conditions

at the receiver in the past. The simplest form of delayed CSIT is the 1−bit feedback used in automatic repeat

request (ARQ) protocols: (ACK) the transmission was successful, i.e., the channel could support the chosen

data rate and (NACK) the channel could not support the data rate. In the most elementary form of ARQ, a failed

packet is retransmitted in the subsequent time slots until it is successfully decoded or until a strict decoding

time constraint is violated. In order to increase throughput compared to ARQ, one can use chase combining

(CC) or send incremental redundancy (IR) instead of retransmissions that consist of pure packet repetition. Such

extensions are referred to as HARQ-CC and HARQ-INR, respectively [3]. In this paper, we focus on IR-based

protocols.

The ergodic capacity represents an upper bound on the throughput for any communication protocol and can

be approached by fixed-length coding across many time slots. HARQ-type protocols attempt to get as close

as possible to this upper bound while keeping the average or maximum decoding time as small as possible.

Specifically, as the rate R, which is used in the first transmission opportunity, tends to infinity, the average

decoding time of HARQ-INR also tends to infinity and the throughput of HARQ-INR approaches the ergodic

capacity of the underlying channel provided that there is no strict constraint on the decoding time. If a strict or

average decoding time constraint is present, the achievable throughput is strictly lower than the ergodic capacity.

The purpose of this paper is to put forth and investigate a type of retransmission protocol which is fundamen-

tally different from conventional HARQ protocols and uses rate adaptation based on delayed CSIT to achieve

high throughput subject to an average decoding time constraint. As with most prior work in the area of HARQ-

INR, we assume the channel is modeled by a Gaussian block-fading channel, with each time slot consisting

of n channel uses. The channel gain is kept constant during a single time slot but varies independently from

time slot to time slot. Feedback, such as delayed CSIT or acknowledgements (ACKs), can only be received by

the transmitter at the end of each time slot. The main problem with an HARQ-INR protocol for a block-fading

channel is that resources are wasted when the receiver sends NACK, while it only needs a small amount of

additional information to be able to decode. This results in under-utilization of the last time slot and may

significantly reduce the throughput when the average decoding time is small. Our key idea is to append new

information bits in each time slot such that the last time slot is rarely under-utilized and the throughput

degradation is reduced. We achieve this by using delayed CSIT which allows the transmitter to estimate the

amount of unresolved information at the beginning of each time slot.

A. Prior work

Caire and Tuninetti [3] were among the first who analyzed HARQ from an information-theoretic perspective.

Here, the throughput measure was defined through the renewal-reward theorem (see also [4] and [5]) and

achievability and converse results were proved for the HARQ-INR protocol. Several lines of works has since
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improved the throughput of HARQ-INR by using available side information in combination with either power

adaptation or rate adaptation.

One line of work uses power or rate adaptation to enhance the throughput of HARQ-INR with either prior

or no CSIT. For example, [6] investigates HARQ-INR protocols that maximize the throughput over a block-

fading channel with independent channel gains under both a strict decoding time constraint and a long-term

power constraint. The long-term power constraint allows the use of slot-based power allocation. It is found that

HARQ-INR in combination with slot-based power allocation increases the throughput. The key idea is that the

probability of having to retransmit m times is decreasing in m. This implies that the throughput is increased

by using more power in the first slots. In addition, it is shown that if the single feedback bit is used to convey

a one-bit quantization of the prior CSI rather than an ACK/NACK message, then this can result in significant

throughput gains. The results from [6] are further extended to any number of feedback bits per slot in [7].

Under the same channel conditions, [8] considers rate adaptation for an HARQ-INR protocol without prior nor

delayed CSIT. Dynamic programming is used to maximize the throughput under an outage constraint and it

is found that rate adaptation provides significantly lower outage probabilities. The assumption of independent

channel gains is relaxed in [9], where optimal rate adaptation policies are found for the cases in which the

channel gains are correlated.

Although prior CSIT improves the throughput of HARQ-INR remarkably, CSIT is often delayed when it is

obtained by the transmitter. This has led to another line of work which studies the benefits of delayed CSIT in

context of HARQ-INR protocols. Specifically, [10] and [11] considers a point-to-point channel with independent

block-fading in a setting identical to ours. Apart from the statistics of the channel gain, the transmitter has no

knowledge about the current CSI, but the transmitter is informed about the CSI of the previous slot. In their

protocol, the channel uses of each slot are divided among a large number of parallel HARQ-INR instances

transmitting separate messages in a TDMA fashion. In particular, for a specific HARQ-INR instance, the number

of channel uses used for the kth retransmission is some percentage 0 ≤ `k ≤ 1 of the number of channel uses

spend in the first transmission. This implies that new HARQ-INR instances, with new data, can be initiated

in each slot. The objective is to maximize the throughput under a constraint on the outage probability. It is

found that delayed CSIT significantly decreases the outage probabilities. A similar setting was considered in

[12], where power adaptation was investigated. Here, the authors used a conventional HARQ-INR instance,

but adapted the power in each slot according to the delayed CSIT. In contrast to [10], in which the authors

design composite protocols based on a large number of HARQ-INR instances, the protocol proposed in [12]

only uses a single HARQ-INR instance with power adaptation which is optimized using dynamic programming.

Rate adaptation can also be achieved using superposition coding. A multi-layer broadcast approach to fading

channels without prior CSIT is proposed in [13]. Specifically, a transmission is initiated in large number of

superposition coded layers and the number of decoded layers at the receiver depends on the actual CSI which

is assumed not to be known in advance. This approach provides an alternative to HARQ protocols in the sense

that it provides variable-rate transmission with a fixed transmission length of one slot. The approach, however,

has the disadvantage that the throughput in practical implementations suffer as the number of layers increases.

A more practical approach is taken in [14] which combines the approach in [13] for few layers with HARQ-

INR. Specifically, the proposed protocols initiate an HARQ-INR instance in each layer. In a certain slot, the
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receiver feeds back the number of decoded layers and, in the subsequent slot, the transmitter only conveys IR

for the layers not decoded. For the layers that are decoded, the transmitter initiates new HARQ-INR instances

with new data. Finally, although not directly related to our work, it was shown in [15] that delayed CSIT,

which is possibly completely independent of the current channel state, increases the multiplexing gains in a

multiple-input multiple-output (MIMO) broadcast channel with K transmit antennas and K receivers each with

one receive antenna.

In contrast to previous works, this paper is motivated by the backtrack retransmission request (BRQ) protocol

proposed in [1]. BRQ is suited for systems in which the transmission opportunities come in slots of a predefined

number of channel uses. This prevents conventional HARQ-INR to optimize the throughput, as the number

of channel uses cannot be adapted to the required amount of IR. BRQ overcomes this problem by appending

additional new information bits before the information bits sent in previous slot have been decoded. The number

of new information bits is adapted according to the reported delayed CSIT. Our approach in this paper combines

the idea of appending new data during a transmission for HARQ in [1], [10], and [14] with streaming codes

proposed in [16] and [17]. The streaming codes in [16] and [17] are a family of codes that allow the transmitter

to append new information bits during a transmission in such a way that all information bits can be jointly

decoded as one code. In [16], each message has the same absolute deadline at which all messages need to be

decoded. In [17], each message is required to be decoded within a certain number slots after arrival. Both [16]

and [17] use a transmission scheme that enlarges the message space in each slot. In coding theory, streaming

codes, as those investigated in [16] and [17], are also known as cross-packet codes. Cross-packet codes based

on Turbo codes and LDPC codes have previously been considered in the context of HARQ in [18] and [19],

respectively. The EMS protocols proposed in this paper extend streaming codes to an HARQ-INR setting in

which the amount of new information bits that are appended within a retransmission is adaptive, as it depends

on the delayed CSIT in manner similar to BRQ.

EMS protocols are thus variable-rate protocols in a sense similar to [10] and [14]. However, to the best

of our knowledge, all previously proposed protocols that allow for rate adaptation are essentially based on

a conventional HARQ-INR protocol as building block, while the rate adaptation is achieved by using a large

number of parallel HARQ-INR instances in a TDMA fashion or in superposition coded layers. These approaches

incur rate penalties in practical implementations because each HARQ-INR instance only uses a small fraction of

the available resources (channel uses/power) in each slot [20]. In contrast, EMS protocols differ fundamentally

from HARQ-INR in the way new information bits are appended in each slot. This implies that, in principle,

one can use our scheme instead of HARQ-INR as a building block and devise protocols similar to [10] and

[14]. Consequently, we consider HARQ-INR and HARQ-INR with power adaptation based on delayed CSIT

as relevant baseline protocols for comparison.

B. The backtrack retransmission protocol

Next, we shall introduce BRQ through an example. Suppose the transmitter sends to the receiver in slots,

where each slot is a fixed communication resource that consists of n channel uses. The SNRs from slot to slot

are i.i.d. and available to the transmitter only after transmissions have taken place. Suppose that the transmitter

uses the same rate-R codebook in each slot and let us observe three consecutive slots with SNRs equal to
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H1, H2, and H3. Let

C(Ht) ,
1

2
log2(1 +Ht) (1)

denote the supported information rate during the ith slot when the SNR is equal to Ht, t = 1, 2, 3. Suppose

that the realized SNR values are such that

C(H1) ≤ R, C(H2) ≤ R, C(H3) > R. (2)

Since the transmitter uses a rate-R code in each slot, the receiver is unable to decode in the first two slots and,

eventually, the transmission can be decoded in the third slot. The transmitter sends b , nR new information

bits in the first slot, denoted by d1. For the second slot, the transmitter knows H1 and sends again b , nR

information bits, but the message is prepared in the following way:

• The first r1 , n(R−C(H1)) bits are IR, denoted by r1 and correspond to the “missing information” from

time slot 1. The bits r1, combined with the signal received and buffered in slot 1, allows the receiver to

recover the information bits d1.

• The remaining b− r1 = nC(H1) bits, denoted by d2 are new information bits transmitted in the second

slot.

It must be noted that the IR bits and the new bits are only separable in a digital domain, but not at the physical

layer, i.e., the whole packet, sent at rate R, needs to be decoded correctly and then the receiver extracts the IR

bits and the new bits. The insertion of IR bits creates dependency between two adjacent packet transmissions.

Coming back to the example, outage also occurs in the second slot, such that the message in the third slot

consists of r2 = n(R − C(H2)) redundancy bits r2 and d3 = nC(H2) new bits d3. As C(H3) > R, the

receiver decodes the message in slot 3 and recovers d3 and r2. It then uses r2 as IR to decode the transmission

in slot 2 and recover d2 and r1. Finally, the receiver uses r1 to decode the transmission from slot 1 and recover

d1.

The throughput is given by

R̄ =
nR+ nC(H1) + nC(H2)

3n
=
R+ C(H1) + C(H2)

3
. (3)

The average rate that could have been achieved over the three slots if the CSIT were known a priori is:

R̄prior =
C(H3) + C(H1) + C(H2)

3
. (4)

It is observed that the transmission with delayed CSIT introduces loss due to low R, but besides that, the data

rates that are achieved with prior CSIT can be recovered by BRQ for the case of delayed CSIT. We remark

that not all the parameters that are adaptable to the channel can be recovered with delayed CSIT. For example,

power that has been erroneously allocated to a bad channel cannot be recovered by the delayed CSIT.

The above example considered the case where the conditions in (2) were satisfied. The protocol, which is

referred to as BRQ and put forth in [1], is easily generalized to any realization of {Ht}t∈N. As in the example,

the protocol in general uses a code with blocklength n and a fixed rate R in each slot. In the first slot, the

transmitter sends nR bits of new information. If the realized channel gain H1 satisfies C(H1) > R, the receiver
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decodes the packet, extracts the nR information bits, and the protocol terminates with a decoding time of one

slot. On the other hand, if C(H1) ≤ R, the receiver cannot decode the packet, it feeds back the CSI of the

slot that has terminated, and the protocol continues. Considering the kth slot, with k ≥ 2 and assuming that

C(Ht) ≤ R for all i ∈ {1, · · · , k − 1}, the transmitter forms the packet for the kth slot as follows:

1) The first n(R− C(Hk−1)) bits are IR that allows the decoding of the packet in slot (k − 1).

2) The remaining nC(Hk−1) bits are new information bits.

If C(Hk) ≤ R, the receiver feeds back the CSI of the slot and the protocol continues. If C(Hk) > R, the

receiver can decode the packet in slot k in which case it recovers the nC(Hk−1) information bits. It also

recovers the n(R − C(Hk−1)) bits of IR for the packet in slot (k − 1). At this time, the receiver can decode

the (k − 1)th packet using the side information from the IR bits in slot k. This can be achieved using list

decoding. Next, the decoder sequentially decodes the packets (k − 2), (k − 3), · · · , 1 in a similar fashion,

thereby recovering all the n(R + C(H1) + · · · + C(Hk−1)) bits. The throughput of BRQ, reported in [1], is

restated in Theorem 3.

From the example above, we observe that BRQ relies on appending information bits to the parity bits. The

transmission rate used in BRQ is predefined to be R in each slot. The number of appended information bits

is computed based on delayed CSIT but chosen such that the a priori probability of decoding a certain slot is

kept constant. Hence, a BRQ process ends a transmission as soon as the CSI is above a level that is sufficient

for decoding the predefined rate R.

C. Contribution

In this paper, we generalize the BRQ protocol from [1]. First, we propose a family of EMS protocols that

allow the transmitter to expand the message space in manner similar to BRQ. In contrast to BRQ, however,

the EMS protocols are based on streaming codes and all information bits are decoded jointly. The notion of

an EMS protocol introduced here is sufficiently general to include protocols like ARQ, HARQ-INR, and BRQ.

Next, we prove a strong converse and an achievability result for the EMS protocols, and it is shown that the

throughput of the optimal EMS protocol given a constraint on the average decoding time and full delayed CSIT

is identical to the throughput of BRQ. Then, we address the same problem with only a finite number of feedback

messages in each slot. In this case, we put forth heuristic EMS protocols which have a structure similar to BRQ,

but are designed to work with finite number of feedback messages. Finally, the throughput of BRQ and the

proposed finite feedback EMS protocols are evaluated and compared to relevant baseline protocols. Specifically,

we compute the throughput in terms of SNR and average decoding time. Our numerical results confirm that

the throughput of BRQ converges to the ergodic capacity much faster than the throughput of HARQ-INR.

Moreover, the proposed finite feedback EMS protocol using only three feedback messages per slot achieves

throughput which is only slightly worse than the throughput of BRQ. We remark that EMS protocols have

previously been introduced in [21], where we used finite blocklength analysis to investigate a protocol similar

to BRQ, but for the binary symmetric channel and binary fading. For a similar setting, optimal rate adaptation

policies were optimized using error exponents in [22].

Notation: Upper case, lower case, and calligraphic letters denote random variables, deterministic quantities,

and sets, respectively. A tuple of random variables (Xi, · · · , Xj), j ≥ i, is denoted by Xj
i . We adopt the
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convention that
∑j−1
i=j ai = 0 and likewise we let Xi−1

i denote the empty tuple. Let N be the natural numbers,

R be the reals, R+ be the nonnegative reals, Z be the integers, and Z+ be the nonnegative integers. Moreover,

the range of integers {i, · · · , j}, i ≤ j, is denoted by [i:j]. Vectors are denoted by boldface (e.g., a), while

their entries are denoted by roman letters (e.g., ai). The transpose of a vector a is denoted by aT, the length

of a vector by len(·), and the tuple (ai, · · · , aj), for i ≤ j, is by aji . We also use the standard asymptotic

notation f(n) = O(g(n)) and f(n) = o(g(n)) which means that lim supn→∞ |f(n)/g(n)| < ∞ and that

lim supn→∞ |f(n)/g(n)| = 0, respectively. Finally, let [x]
+ , max{x, 0} and [x]

− , min{x, 0}.

II. SYSTEM MODEL

We consider a single-user block-fading channel with Gaussian noise. The transmitter sends to the receiver

in slots of n channel uses, where n is sufficiently large to offer reliable communication that is optimal in an

information-theoretic sense. The received signal vector in slot t ∈ N is given by

Yt =
√
HtXt + Zt (5)

where Zt ∼ N (0n, In) is a n-dimensional noise vector distributed according to the Gaussian distribution with

zero mean and identity covariance matrix, Xt is the transmitted n-dimensional vector satisfying

1

n
XT
t Xt ≤ 1 (6)

and Ht ≥ 0 denotes the instantaneous SNR, drawn independently from a smooth probability density PH(·).

The cumulative distribution function of Ht is given by FH(·). The instantaneous SNR Ht is unknown at the

transmitter prior to the transmission of Xt but is known at the receiver after observing Yt. Moreover, the

receiver is able to provide feedback based on previously received CSI. Specifically, we assume that feedback

is given by a sequence of feedback functions vt : Rt+ → F that maps Ht
1 to a feedback alphabet F such that

Vt = vt(Ht
1) is observed at the transmitter before transmission in the (t+1)th slot. The feedback cost is defined

as the cardinality of the feedback alphabet |F| and may be finite, countably infinite, or uncountably infinite.

The transmitter is said to have full delayed CSIT if Ht can be recovered from Vt.

If a transmission is to be done over slot t alone, the maximum supported rate is given by C(Ht), whereas

the maximum achievable rate if a transmission is done over many slots approaches the ergodic capacity [23]

Cerg = E[C(H)] (7)

as the number of slots tends to infinity. Here, H denotes a random variable distributed according to PH . If,

however, a transmission is to be done over few slots, high throughput cannot be achieved without either layered

transmissions as in [14] or a HARQ technique. The latter approach is commonly applied in practical systems

due to its relative simplicity compared to the layered transmissions.

A comment on the block-fading assumption is in order. The block-fading channel model is an abstraction of

a practical system model. In particular, if slots are transmitted consecutively in time as this model suggests, the

channel gains cannot be assumed to be independent. In practical systems, however, the delay of ACK/NACK

feedback can often spread over multiple slots in time. Therefore, in wireless systems such as LTE, multiple

HARQ instances are interleaved in time [24, Ch. 12] — while the transmitter waits for feedback from one
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HARQ instance, it transmits to other users. In the uplink in LTE, a synchronous version of HARQ is employed

[24, Ch. 12]. This ensures that the time between each retransmission is fixed and known by both the transmitter

and the receiver. The fact that each transmission opportunity is spaced apart by a certain number of slots

implies that channel gains are close to independent. In addition to these considerations, one cannot expect that

each transmission opportunity occurs in the same frequency slot; this further justifies the use of a block-fading

model.

Next, we define an EMS protocol by the tuple
(
{vt}, {r(n)

t }, {f
(n)
t }, {g

(n)
t }, {τn}

)
described as follows:

• A sequence of feedback functions vt : Rt+ 7→ F that maps Ht
1 to the feedback alphabet F such that

Vt , vt(H
t
1). (8)

Moreover, for ht1 = (h1, · · · , ht) ∈ Rt+, we denote the tuple (vt′(ht
′

1 ), · · · , vt(ht1)) by vtt′ = vtt′(h
t
1) for

t′ ≤ t.

• A sequence of rate selection functions r(n)
t : F 7→ R+ that satisfy R(n)

t , r(n)
t (Vt−1), R(n+1)

t (·) ≥ R
(n)
t

for all t ∈ N, and R
(n)
t ≤ rmax for some positive constant rmax. We also define the cumulative rates

R̄
(n)
t ,

∑t
k=1R

(n)
k .

• A sequence of encoding functions f(n)
t : B 7→ Rn such that

Xt , f(n)
t

(
B
dnR̄(n)

t e
1

)
. (9)

Here, B denotes all binary vectors (of arbitrary length), i.e., B , {[]} ∪
⋃∞
i=1{0, 1}i, where [] denotes

the vector of length 0; and Bi are independent Bernoulli variables with parameter 1/2 and we denote

(Bi, · · · , Bj) by Bji .

• A sequence of decoding functions g(n)
t : Rtn × Rt+ 7→ B.

• A sequence of nonnegative integer-valued random variables {τn}∞n=1, which are stopping times with respect

to the filtration Ft , σ{V t} (see e.g. [25, p. 488]) and satisfy τn+1 ≥ τn and sup E[τn] <∞.

We also define the limiting rate selection functions and the stopping time:

rt , lim
n→∞

r(n)
t (10)

τ , sup
n→∞

τn. (11)

The limit of r(n)
t exists because r(n)

i is non-decreasing and bounded above by rmax. On the other hand, we

define τ as the supremum over τn since the existence of the limit of τn cannot be guarenteed because only

E[τn] is bounded above for increasing n.

Note that one can feedback the rate selection directly and omit defining vt(·). The restriction on the feedback

cost can be induced by restricting the number of distinct rate selections that can be fed back. We have made

this restriction explicit by defining both rt(·) and vt(·).

The random variables B∞ ∈ {0, 1}∞ correspond to the binary sequence of information bits, which size in

bits is unbounded. We assume that all the information bits are available prior to the transmission in the first

slot. This implies that the stopping time τn is also the decoding time and the transmission time in slots. In

remainder of this paper, we shall refer to τn as a decoding time. We note that our definition of decoding time
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deviates from some other works. For example, in [8] and [10], the decoding time is measured as the time from

the information bits are appended to the time at which they are decoded. Such definition of decoding time is

relevant in some real-time applications such as control over network.

As an implication of the definition of an EMS protocol, Xt becomes a function of the block of information

bits BdnR̄
(n)
t e

1 = (B1, · · · , BdnR̄(n)
t e

). This enables the encoder to combine IR and new information bits, i.e.,

in each slot the encoder fetches nR(n)
t information bits and encodes them jointly with the previously encoded

nR̄
(n)
t−1 information bits. This message structure is different from other works on HARQ-INR protocols. In light

of [26], HARQ-INR can be seen as fixed-to-variable coding because the number of transmitted information bits

are prespecified while the number of channel observations at the receiver depends on channel realization. On the

other hand, for an EMS protocol, both the number of information bits and the number of channel observations

depend on the channel realization. This concept has previously been used in [10] and [14]; however, none of

these works alter the conventional HARQ-INR protocol. They rather use it as a building block and initiate a

large number of HARQ-INR instances which run in parallel in a TDMA fashion or in multiple superposition

coded layers.

Following other HARQ works [3], [5], [14], we define the throughput η of an EMS protocol in terms of a

renewal-reward process. A renewal event occurs at time τn and the reward is the sum of all rates appended since

time 1. Likewise, the inter-renewal time corresponds to the decoding time τn. Hence, we define the throughput

of an EMS protocol as limn→∞ E
[
R̄

(n)
τn

]
/E[τn]. This leads us to the definition of a zero outage EMS protocol.

Definition 1: An EMS protocol is called an (η, T )-zero outage EMS protocol if there exists a non-decreasing

integer-valued sequence {τ̄n} such that τn ≤ τ̄n, E[τn] ≤ T , limn→∞ E
[
R̄

(n)
τn

]
/E[τn] ≥ η,

lim
n→∞

P[En] = 0 (12)

and

lim
n→∞

max
t∈[1:τ̄n−1]:
P[τn=t]>0

P[En|τn = t] = 0. (13)

Here, we have defined the error event

En ,
{

g(n)
τn (Yτn

1 , Hτn) 6= B
dnR̄τne
1

}
. (14)

Our focus is on the characterization of optimal zero outage EMS protocols:

ηopt(T ) , sup{η : there exists an (η, T )-zero outage EMS protocol}. (15)

The condition (12) ensures that the outage probability of the EMS protocol is zero while the condition in (13)

ensures that the conditional probability of error given a decoding time vanishes uniformly for all decoding

times except for τ̄n.

We note that most other HARQ works solely consider strict latency constraints which naturally arise in

wireless communication systems having either a strict deadline or a limited buffer size. We consider average

decoding time constraints and zero outage protocols for two reasons:

• A strict latency constraint does not naturally arise in systems without a strict deadline or limited buffer size,
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and hence, in such applications, there is no reason to choose a specific deadline T in the strict decoding

time constraint P[τ ≤ T ] = 1. For example, consider an application that requires a high reliability. In

this case, imposing a strict latency constraint for the HARQ protocol only implies that the receiver will

request a retransmission of the data in outage. This is the case for LTE, which uses HARQ in the medium

access control (MAC) layer, while it implements an ARQ protocol on a higher layer – in the radio link

control (RLC) layer – that requests retransmissions for data in outage [24, Ch. 12]. In that sense, LTE

attempts to achieve an outage probability of zero, and an average decoding time constraint is therefore a

natural constraint which attempts to keep the decoding time low on average but does not give any strict

guarantees. As previously mentioned, LTE employs synchronous HARQ in the uplink which implies that

the decoding time τ is indeed proportional to real decoding time in a system. We also point out that the

customary metric for latency in queuing theory is the average waiting time.

• It turns out that the throughput of the optimal EMS protocol, under an average decoding time constraint,

coincides with the throughput of the BRQ protocol proposed in [1], i.e., the optimization problem in (15)

has a simple form.

III. STRONG CONVERSE AND ACHIEVABILITY

In this section, we state a strong converse and an achievability result that we shall apply in the subsequent

sections. The achievability and converse results state conditions for when the probability of error tends to zero

or one, respectively. In order to state the results, we need to introduce some notation. In particular, given rate

selection functions and feedback functions, let

u(n)
k,t (ht1) ,

t∑
i=k

[
r(n)
i (vi−1(hi−1

1 ))− C(hi)
]

(16)

for k ≤ t and let u(n)
k,t (·) , 0 for t < k. Intuitively, u(n)

1,t (ht1) is the remaining amount of information needed

to decode the information bits up to time t given slot observations up to time t with channel gains ht1 =

(h1, · · · , ht). We also define

uk,t(h
t
1) , lim

n→∞
u(n)
k,t (ht1) =

t∑
i=k

[
ri(vi−1(hi−1

1 ))− C(hi)
]
. (17)

We prove the following results in Appendix I and Appendix II.

Lemma 1 (Strong converse): Given an EMS protocol, we have

lim
n→∞

P
[
En
∣∣∣H∞ = h∞

]
= 1 (18)

for all every h∞ such that supk∈[1:τ ] uk,τ (hτ ) > 0 and such that τ <∞.

Remark 1: The conditions in Lemma 1 are only given in terms of the asymptotic random variables τ and

rt and not τn and r(n)
t . Therefore, Lemma 1 allows us to restrict the search for optimal zero outage EMS

protocols to those EMS protocols for which supk∈[1:τ ] uk,τ (hτ ) ≤ 0 almost surely (see details in the converse

proof of Theorem 3).
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Remark 2: The smallest limiting decoding time which is not ruled out by Lemma 1 is given by

τopt , inf
{
t ≥ 1 : u1,t(H

t
1) ≤ 0

}
. (19)

To show that an EMS protocol with τ = τopt is not ruled out by Lemma 1, note that by the definition of τopt,

we must have

u1,1(H1
1 ) > 0, · · · , u1,τopt−1(H

τopt−1

1 ) > 0 and u1,τopt(H
τopt
1 ) ≤ 0. (20)

Thus, using the fact that uk,τopt(H
τopt
1 ) = u1,τopt(H

τopt
1 )− u1,k−1(Hk−1

1 ) ≤ 0 for every k ∈ [1:τopt], we find that

the conditions in Lemma 1 are not satisfied.

Lemma 2 (Achievability): Let {τn}, rate selection functions {r(n)
t }, and feedback functions {vt} be given.

Suppose that there exist positive sequences cn, gn, and τ̄n such that τn ∈ N, τn ≤ τ̄n, and

τ̄2
n

ngnc2n
→ 0 (21)

as n→∞. Moreover, define the event

H̄n ,

{
max
k∈[1:τn]

u(n)
k,τn

(Hτn) ≤ −cn
}

(22)

and assume for all sufficiently large n that

min
t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P
[
τn = t|H̄n

]
≥ gn. (23)

Then, there exists an EMS protocol satisfying

lim
n→∞

max
t∈[1:τ̄n]:

P[τn=t]>0

P
[
En
∣∣∣H̄n, τn = t

]
= 0. (24)

IV. FULL DELAYED CSIT

In this section, we consider the case in which the feedback alphabet is the positive reals, F = R, and the

feedback functions are given by

vt(h
t
1) , ht. (25)

This provides the transmitter with full delayed CSIT. In the following, we characterize the trade-off between

throughput and the average decoding time for optimal zero outage EMS protocols. First, we specify an EMS

protocol and we shall later show that it is an optimal zero outage EMS protocol. We specify the EMS protocol

as follows

r(n)
t (v) ,

 C(hT )− c1
logn t = 1

min
{
C(v), C(hT )− c1

logn

}
t ≥ 2

(26)
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for t ∈ N, a positive constant hT , and an arbitrary constant c1 > 0. The decoding times are given by

τn , min{τ̄n, τ} (27)

where

τ̄n , −
⌊

log(c2
√
n)

logFH(hT )

⌋
(28)

τ , inf{t ≥ 1 : hT < Ht} (29)

for an arbitrary constant c2 > 0. The particular choice of the rate selection functions has a simple operational

interpretation when neglecting the vanishing term c1/ log n. Consider a transmitter using a fixed-rate codebook

with rate C(hT ) in each slot such that the minimal SNR required to decode a slot is hT . Based on the delayed

CSI, in slot t, the transmitter sends the exact amount of IR that is required to decode the previous packet, i.e.,

n(C(hT ) − C(Ht−1)) bits, along with nC(Ht−1) bits of new information bits. This protocol resembles the

BRQ protocol previously described in Section I-B but formulated as an EMS protocol.

The operation of BRQ is illustrated and compared to HARQ-INR in Fig. 1. Initially, HARQ-INR transmits at

a rate RHARQ. The receiver accumulates information until the amount of unresolved information reaches zero.

BRQ starts the transmission at a rate RBRQ, but in contrast to HARQ-INR, it uses the delayed CSI to append

new information bits in each slot to ensure that the amount of unresolved information, before the receiver

observes Yt and Ht, remains RBRQ. Note that, in order to attain the same average decoding time for BRQ and

HARQ-INR, RBRQ needs to be chosen smaller than RHARQ since no additional information bits are appended

during transmission in the HARQ-INR protocol. This is why we have chosen RHARQ > RBRQ in the figure. For

the particuar realization of channel gains depicted in Fig. 1, it is seen that HARQ-INR does not fully utilize

the supported rate since the unresolved information, before Y4 and H4 are observed, is significantly smaller

than the supported rate in that slot. This phenomenon reduces the throughput at low average decoding times.

The problem is partially circumvented in BRQ by ensuring that the amount of unresolved information, before

Yt and Ht are observed, is kept constant.

In contrast to BRQ, the EMS protocol specified by (25) and (26) uses the coding scheme described in the

achievability part of Appendix I and thereby uses joint decoding over all slots. Since the EMS protocol specified

by (25) and (26) and BRQ are closely related, we shall refer to the proposed EMS protocol as “BRQ-EMS”

to emphasize its relation to BRQ.

The following result analyzes the trade-off between throughput and average decoding time of BRQ-EMS.

Specifically, we find that the throughput is identical to that of BRQ. Furthermore, we apply the strong converse

in Lemma 1 and we demonstrate using dynamic programming that BRQ-EMS is optimal within the class of

EMS protocols.

Theorem 3: For T > 1, we have

ηopt(T ) ≥ ηBRQ(T ) ,
∫ hT

0

PH(h)C(h) dh+
C(hT )

T
(30)
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Information 

Slot #

(a) HARQ-INR.
Delayed CSI

Information

Delayed CSI Delayed CSI Delayed CSI

Supported rate 

New information Incremental redundancy

Slot #

Unresolved information

(b) BRQ.

Fig. 1. Comparison between HARQ-INR and BRQ. In slot t, the left and right striped areas corresponds to the amount of unresolved
information before receiving Yt. The dark grey areas designate the instantaneous supported rate and the light grey areas corresponds to
the unresolved information after observing Yt. Note that for each time slot, the dark grey areas have the same size for both HARQ-INR
and BRQ.

where

hT , F−1
H

(
1− 1

T

)
. (31)

Moreover, ηBRQ(T ) = ηopt(T ) if

PH(h)

1− FH(h)
+

1

(1 + h)
+
P ′H(h)

PH(h)
≥ 0 (32)

for all h ≥ 0.

Remark 3: The throughput of BRQ, which is identical to (30), was first reported in [1].

Remark 4: One can verify that (32) is satisfied for the Rayleigh fading distribution PH(h) = 1
Γe−h/Γ for all

Γ > 0. Indeed, the LHS of (32) yields (1 + h)−1 which is nonnegative for all h ≥ 0.

Remark 5: It follows directly from (30) that ηBRQ(T )→ Cerg as T →∞. This follows because hT →∞ as

T →∞, and thus the first term in (30) tends to Cerg while the second term in (30) tends to zero.

Remark 6: The second term on the RHS of (30) is the throughput of the conventional ARQ protocol with a

rate equal to C(hT ). The first term on the RHS of (30) thereby corresponds to the improvement of BRQ-EMS

over ARQ.

Proof: We shall first use Lemma 2 to show that there exists an (ηBRQ(T ), T )-zero outage EMS protocol

with rate selection and feedback functions given by (25) and (26), respectively. Then, we apply the strong

converse in Lemma 1 to show that ηopt(T ) = ηBRQ(T ) under the condition in (32).

Fix positive constants c1 and c2. We first show that an EMS protocol specified by (25)–(27) has throughput

ηBRQ(T ) and average decoding time upper bounded by T . Since {τn} is a non-decreasing sequence of random

November 15, 2016 DRAFT



14

variables and since E[τn] ≤ E[τ ] <∞, Lebesgue’s monotone convergence theorem [25, Th. 16.2] implies that

lim
n→∞

E[τn] = E[τ ] (33)

=

∞∑
i=1

iFH(hT )
i−1

(1− FH(hT )) (34)

=
1

1− FH(hT )
(35)

= T (36)

Similarly, we also have that

lim
n→∞

E
[
R̄(n)
τn

]
= lim
n→∞

E

[ ∞∑
t=1

1{τn ≥ t} r(n)
t

(
vt−1

(
Ht−1

1

))]
(37)

= E

[ ∞∑
t=1

lim
n→∞

1{τn ≥ t} r(n)
t

(
vt−1

(
Ht−1

1

))]
(38)

= C(hT ) + E

[ ∞∑
t=2

min{C(Ht−1), C(hT )}1{τ ≥ t}

]
(39)

= C(hT ) +

∞∑
t=2

E[min{C(Ht−1), C(hT )}1{τ ≥ t}] (40)

= C(hT ) + E[C(H)|H ≤ hT ]

∞∑
t=2

P[τ ≥ t] (41)

= C(hT ) + E[C(H)|H ≤ hT ] (E[τ ]− 1) (42)

= C(hT ) + T

∫ hT

0

PH(h)C(h)dh (43)

Here, (38) follows from Lebesgue’s monotone convergence theorem [25, Th. 16.2] because τn and r(n)
t are

non-decreasing in n and bounded above by τ̄n and rmax, respectively. Moreover, (40) follows from Tonelli’s

theorem, and the last the equation follows because∫ hT

0

PH(h)C(h)dh = E[C(H)|H ≤ hT ] P[H ≤ hT ] (44)

and because T = E[τ ] = 1/P[H ≥ hT ]. Using (36) and (43), the throughput is given by

lim
n→∞

E
[
R̄

(n)
τn

]
E[τn]

=

∫ hT

0

PH(h)C(h)dh+
C(hT )

T
= ηBRQ(T ). (45)

To show the existence of an (ηBRQ(T ), T )-zero outage EMS protocol, we only need to demonstrate that

BRQ-EMS satisfies (12) and (13). Both of these conditions follow from (24) if the conditions of Lemma 2 can

be verified. We shall first show that τ ≤ τ̄n implies that maxk∈[1:τn] u(n)
k,τn

(Hτn
1 ) ≤ −cn, i.e., that

P
[
H̄n|τn = t

]
= 1 (46)

for t ∈ [1:τ̄n − 1], where H̄n is defined in (22). Because u(n)
1,t (ht) ≤ u1,t(h

t) for every ht ∈ Rt+ and because

u1,τn(Hτn) ≤ 0 when τ ≤ τ̄n, this follows from

u(n)
1,τn

(Hτn
1 ) ≤ u1,τn(Hτn)− cn ≤ −cn (47)
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and from the following chain of inequalities1

max
k∈[2:τn]

u(n)
k,τn

(Hτn
1 )

= max
k∈[2:τn]

τn∑
i=k

[
min

{
C(hT )− cn, C(Hi−1)

}
− C(Hi)

]
(48)

≤ max
k∈[2:τn]

{
C(Hk−1)− C(hT )

+

τn∑
i=k

[
min{C(hT )− cn, C(Hi−1)} − C(Hi−1)

]}
(49)

= max
k∈[2:τn]

{
(C(Hk−1) + cn − C(hT ))− cn

+

τn∑
i=k

[
C(hT )− cn − C(Hi−1)

]−}
(50)

= max
k∈[2:τn]

{[
C(Hk−1) + cn − C(hT )

]−
− cn

+

τn∑
i=k+1

[
C(hT )− cn − C(Hi−1)

]−}
(51)

≤ −cn. (52)

Here, (48) follows from (16) and (26), (49) follows because (29) implies that hT < Hτn when τ ≤ τ̄n, and

(52) follows because [·]− ≤ 0. Next, we show that gn , O(1/
√
n) satisfies (23):

min
t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P
[
τn = t|H̄n

]
≥ min

t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P
[
τn = t, H̄n

]
(53)

= min
t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P[τ = t] (54)

= FH(hT )τ̄n−1(1− FH(hT )) (55)

= O(elog(FH(hT ))τ̄n) (56)

= O
(

1√
n

)
= gn. (57)

It also follows that (21) is satisfied:

τ̄2
n

ngnc2n
= O

(
log2(n) log2(

√
n)√

n

)
= o(1). (58)

As a consequence of (57) and (58), Lemma 2 implies that there exists an EMS protocol satisfying (24). In

addition, the EMS protocol is also an (ηBRQ(T ), T )-zero outage EMS protocol, which follows because the

condition in (13) is implied by (24) and (46)

max
t∈[1:τ̄n−1]:
P[τn=t]>0

P[En|τn = t] = max
t∈[1:τ̄n−1]:
P[τn=t]>0

{
P
[
En|τn = t, H̄n

]
P
[
H̄n|τn = t

]

1We use the convention that
∑j−1

i=j ai = 0 for all ai and for all integers j.
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+ P
[
En|τn = t, H̄{

n

]
P
[
H̄{
n|τn = t

]}
(59)

≤ max
t∈[1:τ̄n−1]:
P[τn=t]>0

P
[
En|τn = t, H̄n

]
(60)

= o(1) (61)

as n→∞, and the condition in (12) follows from (61) and because P[τn = τ̄n]→ 0 as n→∞.

Next, we prove that no EMS protocol can achieve a throughput larger than the RHS of (30), i.e., we establish

that ηopt(T ) = ηBRQ(T ) for T > 1. We do this by applying the strong converse in Lemma 1, which implies that

a zero outage EMS protocol must satisfy supk∈[1:τ ] uk,τ (Hτ ) ≤ 0 almost surely. To see this, note first that we

must have τ < ∞ almost surely. Otherwise, supn E[τn] = ∞. Additionally, suppose that a zero outage EMS

protocol satisfies P
[
supk∈[1:τ ] uk,τ (Hτ ) > 0

]
> 0. Then,

lim inf
n→∞

P[En]

≥ P
[

sup
k∈[1:τ ]

uk,τ (Hτ ) > 0, τ <∞
]

× lim inf
n→∞

E
[
P[En|H∞]

∣∣∣ sup
k∈[1:τ ]

uk,τ (Hτ ) > 0, τ <∞
]

(62)

≥ P
[

sup
k∈[1:τ ]

uk,τ (Hτ ) > 0
]

× E
[

lim inf
n→∞

P[En|H∞]
∣∣∣ sup
k∈[1:τ ]

uk,τ (Hτ ) > 0, τ <∞
]

(63)

= P
[

sup
k∈[1:τ ]

uk,τ (Hτ ) > 0
]

(64)

> 0. (65)

Here, (63) follows from Fatou’s lemma [25, Th. 16.3] and because τ <∞ almost surely, and (64) follows from

Lemma 1. Therefore, we can find the optimal zero outage EMS protocol satisfying the constraint E[τ ] ≤ T by

solving the following optimization problem:

ζ1(T ) , sup
{rt},{vt},τ

TE
[
R̄τ
]
/E[τ ] (66a)

s.t. E[τ ] ≤ T (66b)

P
[

sup
k∈[1:τ ]

uk,τ (Hτ
1 ) ≤ 0

]
= 1. (66c)

Here, R̄τ ,
∑τ
t=1 rt(vt−1(Ht−1)). It turns out that it is convenient to scale the objective function in (66)

by T . We shall prove that the solution to (66) coincides with the BRQ-EMS protocol, i.e., we find that

ζ1(T ) = TηBRQ(T ) under the condition in (32).

Since the transmitter has full delayed CSIT, it is sufficient to maximize over all composite rate selection-

feedback functions rvt : Rt−1
+ 7→ R+ such that rt(vt−1(Ht−1

1 )) = rvt(H
t−1
1 ). Moreover, we also define the

optimization problem

ζ(T ) , sup
{rvt},τ

E
[
R̄τ
]

(67a)

s.t. E[τ ] ≤ T (67b)
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P
[

sup
k∈[1:τ ]

uk,τ (Hτ
1 ) ≤ 0

]
= 1. (67c)

Since we have lower-bounded the objective function to get (67), we have that ζ(T ) ≤ ζ1(T ), but if it can

be shown that ζ(·) is an increasing function, then ζ1(T ) = ζ(T ). Indeed, suppose that ζ(·) is an increasing

function and that there exists T̃ > 1 such that ζ(T̃ ) < ζ1(T̃ ). Let τ∗ be the solution of (66) for T = T̃ . Then,

we must have that ζ(E[τ∗]) = ζ1(E[τ∗]) and that E[τ∗] < T̃ . But since ζ(T ) is an increasing function, we also

have that ζ(T̃ ) > ζ(E[τ∗]) = ζ1(E[τ∗]) = ζ1(T̃ ) which cannot be true since ζ(T ) ≤ ζ1(T ) for all T > 1. We

shall later use this fact to prove equality between ζ1(T ) and ζ(T ) under the condition in (32).

To solve the optimization problem in (67), we first relate ζ(T ) to the decoding time τopt defined in (19) as

follows

ζ(T ) = sup
{rvt}:

E[τopt]≤T

{
E

[ τopt∑
t=1

rvt(H
t−1)

]
+ max
{rvt},τ≥τopt

E

[
τ∑

t=τopt+1

rvt(H
t−1)

]}
. (68)

= sup
{rvt}:

E[τopt]≤T

{
E

[ τopt∑
t=1

rvt(H
t−1)

]
+ max
{rvt},τ≥τopt

E

[
τ∑

t=τopt+1

rvt(H
t−1)

]}
. (69)

As previously, the maximization problems with respect to τ are subject to the constraints E[τ ] ≤ T and

P
[
supk∈[1:τ ] uk,τ (Hτ ) ≤ 0

]
= 1. In (68), we have used that any feasible (in the sense defined by the constraints

in (67)) decoding time τ must satisfy τ ≥ τopt almost surely, and (69) follows because, by the definition of τopt,

the constraints uk,τ (Hτ
1 ) ≤ 0 are automatically satisfied for k ∈ [1:τopt] when maxk∈[τopt+1:τ ] uk,τ (Hτ

1 ) ≤ 0

because

uk,τ (Hτ
1 ) = u1,τopt(H

τopt
1 )− u1,k−1(Hk−1

1 ) + uτopt+1,τ (Hτ
1 ) ≤ 0. (70)

It follows that the inner maximization in (69) is equal to ζ(T − E[τopt]). Thus, we have

ζ(T ) = max
{rvt}:

E[τopt]≤T

{
E

[ τopt∑
t=1

rvt(H
t−1)

]
+ ζ(T − E[τopt])

}
(71)

= max
T1,T2≥0:
T1+T2=T

{ζopt(T1) + ζ(T2)} (72)

where

ζopt(T ) , max
{rvt}:

E[τopt]≤T

E

[ τopt∑
t=1

rvt(H
t−1)

]
. (73)

We can upper bound ζopt(·) using weak duality as follows

ζopt(T ) ≤ min
λ>0

{
λ(T − 1) + max

{rvt}

{
E

[ τopt∑
t=1

rvt(H
t−1)

]
− λ(E[τopt]− 1)

}}
(74)

We solve the inner maximization in (74) using dynamic programming. For given λ > 0, let {rv∗i } be the solution

to the inner maximization problem in (74). Then, observe that rv∗t depends only on Ht−1
1 through ut−1

1 (Ht−1
1 ).

Intuitively, this means that the rate selection depends only on the amount of unresolved information up to time

t. We define functions rvt : R 7→ R+ and let rvt(u1,t−1(ht−1
1 )) , rvt(h

t−1
1 ) for t ∈ N and ht−1

1 ∈ Rt−1
+ .
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Now, define the value function (see e.g. [27])

Vt(u) , max
{rvi}

E

τt(u)∑
i=t

rvi(ūt,i−1(u,Hi−1
t ))− λ(τt(u)− t)

 (75)

where

τt(u) , min
{
t′ ≥ t : ūt,t′(u,H

t′

t ) < 0
}

(76)

for t ∈ N and

ūk,t(u, h
t
k) , u+

t∑
i=k

[rvi(ūk,i−1(u, hi−1
k ))− C(hi)] (77)

for t, k ∈ N. Using these definitions, the inner maximization in (74) can be expressed in terms of Vt(·) in (75):

V1(0) = max
{rvt}

E

[ τopt∑
i=1

rvi(H
i−1
1 )− λ(τopt − 1)

]
(78)

To apply dynamic programming, the value function Vt in (75) is expressed in a recursive form:

Vt(u) = max
{rvi}∞i=t

{
rvt(u) + FC(u+ rvt(u))

(
E

[( τt+1(ūtt(u,Ht))∑
i=t+1

rvi(ūt,i−1(u,Hi−1
t ))

)

− λ
(
τt+1(ūt,t(u,Ht))− t− 1

)∣∣∣∣C(Ht) ≤ u+ rvt(u)

]
− λ

)}
(79)

= max
r≥0

{
r + FC(u+ r)

[
E
[
Vt+1(u+ r − C(Ht))

∣∣∣C(Ht) ≤ u+ r
]
− λ
]}

. (80)

Here, we have defined FC(r) , P[C(H) ≤ r] and let PC(·) be the probability density of C(H). The problem is

thereby formulated as a standard infinite horizon dynamic programming problem [27]. Consequently, the value

function Vt is time-invariant such that Vt(u) = Vt+1(u) for all t ∈ N and u ∈ R. We denote the time-invariant

value function by V (u) , V1(u). As a result, we can write

V (u) = max
r≥0

{
r + FC(u+ r)

[
E
[
V (u+ r − C(H))

∣∣∣C(H) ≤ u+ r
]
− λ
]}

(81)

= max
r≥0

{
r + E[1{C(H) ≤ u+ r} (V (u+ r − C(H))− λ)]

}
. (82)

It remains to guess V (u) satisfying (82). We claim that the value function has the form V (u) = A − u for

u ∈ [0, rA], where

A , max
r≥0

{
r +

C(r)− FC(r)λ

1− FC(r)

}
(83)

and rA is the maximizer in (83). Here, C(r) ,
∫ r

0
xPC(x)dx. Indeed, from (82) and by substituting V (u) =

A− u, we have

V (u) = max
r≥0
{r + E[1{C(H) ≤ u+ r} (A− u− r + C(H)− λ)]} (84)

= max
r′≥u

{
r′(1− FC(r′)) + C(r′) + FC(r′) (A− λ)

}
− u (85)

= A− u (86)
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for every u ∈ [0, rA]. Here, (86) follows from (83) because

0 = max
r≥0

{
r −A+

C(r)− FC(r)λ

1− FC(r)

}
(87)

= max
r≥0

{
(r −A)(1− FC(r)) + C(r)− FC(r)λ

}
(88)

= max
r≥0

{
r(1− FC(r)) + C(r) + FC(r)(A− λ)

}
−A (89)

Since rA is a maximizer of the RHS of (83), it is also a maximizer of (89), and thus also of the optimization

problem in (85). This proves that V (u) = A− u for u ∈ [0, rA].

We shall shortly prove that (32) implies that

TηBRQ(T ) = F−1
C

(
1− 1

T

)
+ TC

(
F−1
C

(
1− 1

T

))
(90)

is concave in T . Consequently, we have shown the following

ζopt(T ) ≤ min
λ>0

{
λ(T − 1) + max

{rvi}

{
E

[ τopt∑
t=1

rvt(H
t−1
1 )

]
− λ(E[τopt]− 1)

}}
(91)

= min
λ>0

{
λ(T − 1) + max

r≥0

{
r +

C(r)− λFC(r)

1− FC(r)

}}
(92)

= min
λ>0

{
λT + max

v≥1

{
F−1
C

(
1− 1

ν

)
+ νC

(
F−1
C

(
1− 1

ν

))
− λν

}}
(93)

= max
ν∈[1,T ]

{
F−1
C

(
1− 1

ν

)
+ νC

(
F−1
C

(
1− 1

ν

))}
(94)

= F−1
C

(
1− 1

T

)
+ TC

(
F−1
C

(
1− 1

T

))
(95)

= TηBRQ(T ). (96)

Here, (92) follows from V (0) = A, (93) follows from the substitution r = F−1
C (1−1/ν), (94) follows because

(90) is concave and by Slater’s condition [28, pp. 226–227], and the final equality holds since the objective

function in (94) is increasing in ν.

Next, we need to show that ζ1(T ) = ζopt(T ). From the concavity of ζopt(·), the simple upper bound ζopt(T ) ≤

TCerg, and limT→∞
∂
∂T ζopt(T ) = Cerg, we have that ζ(T ) = ζopt(T ) ≤ TηBRQ(T ). Moreover, since ηBRQ(·) is

an increasing function, it also follows that ζ1(T ) ≤ TηBRQ(T ) as desired.

It remains to establish the claim that TηBRQ(T ) is concave in T . To do so, we show that the second derivative

of TηBRQ(T ) with respect to T is negative. It turns out that the second derivative of TηBRQ(T ) with respect to

T is given by

log(2)
∂2(TηBRQ)

∂T 2
= − 1

(1 + F−1
H (1− 1/T ))T 3PH(F−1

H (1− 1/T ))

− 1

(1 + F−1
H (1− 1/T ))2T 4PH(F−1

H (1− 1/T ))2

−
P ′H(F−1

H (1− 1/T ))

(1 + F−1
H (1− 1/T ))T 4PH(F−1

H (1− 1/T ))3
. (97)

By multiplying the RHS of (97) by the positive term (1 + F−1
H (1 − 1/T ))2T 4 and by using the substitution

T = 1/(1 − FH(h)), we find that ∂2(TηBRQ)
∂T 2 ≤ 0 is equivalent to the condition in (32), hence establishing the
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desired result.

V. FINITE NUMBER OF FEEDBACK MESSAGES

The requirement of full delayed CSIT feedback is not realistic in many applications. This section therefore

addresses the case where the feedback cost is finite. While HARQ-INR does not allow for rate adaptations,

EMS protocols with three or more feedback messages can be used to signal ACK/NACK, but also to instruct the

transmitter to append additional information bits in the subsequent slot. The key difference from the case with

full delayed CSIT is that the optimal amount of new information to be appended cannot be specified through

feedback. We provide a heuristic choice of the rate selection functions, feedback functions, and decoding times

and demonstrate the existence of a zero outage EMS protocol. In Section VI, it is shown that the throughput

of the finite feedback cost EMS protocol is comparable with BRQ.

In our heuristic EMS protocol, termed EMS-(f + 1), we define the rate selection and feedback functions as

vt(h
t
1) ,


⌊
f − u1,t(h

t
1)

r

⌋
, u1,t(h

t
1) > 0

−1, u1,t(h
t
1) ≤ 0

(98)

r(n)
t (vt−1) ,

 rf − cn, t = 1

min{r(f − 1)− cn, rvt−1}1{vt−1 6= −1} , t ≥ 2
(99)

Here, r > 0 is a predefined constant, F = [−1:f − 1], and cn , c1/ log(n) for an arbitrary positive constant

c1. The decoding time is given by

τn = min{τ̄n, τ}. (100)

where

τ , inf{t ≥ 1 : Vt = −1} (101)

τ̄n , −
⌊

log(c2
√
n)

logFC(r(f − 1))

⌋
(102)

Here, c2 is an arbitrary positive constant and the feedback −1 designates an ACK message. Since v(n)
t can take

at most f + 1 = |F| values, the corresponding EMS protocol has feedback cost f + 1. As for the BRQ-EMS

protocol, we also define the composite rate-feedback function as

rv(u) , r min

{
f − 1,

⌊
f − [u]

+

r

⌋}
. (103)

With this definition, we can write

rt(vt−1(ht−1
1 )) = rv(u1,t−1(ht−1

1 )) (104)

for all t ≥ 2 and ht−1
1 ∈ Rt−1

+ such that u1,t−1(ht−1
1 ) > 0.

The trade-off between throughput and average decoding time achievable by an EMS-(f + 1) protocol is

characterized by the following theorem which provides a way to compute the throughput and average decoding

time by solving a pair of integral equations. Varying the parameter r determines the trade-off between throughput

and average decoding time.
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Theorem 4: Define W : [0, rf ] 7→ R+ and M : [0, rf ] 7→ R+ through the integral equations

W (u) , rv(u) +

∫ u+rv(u)

0

PC(x)W (u+ rv(u)− x)dx (105)

and

M(u) = 1 +

∫ u+rv(u)

0

PC(x)M(u+ rv(u)− x)dx. (106)

Here, PC(·) denotes the probability density function of C(H). Then, there exists an (η, T )-zero outage EMS

protocol with

η =
rf + E

[
1{C(H) ≤ rf}W (rf − C(H))

]
1 + E

[
1{C(H) ≤ rf}M(rf − C(H))

] (107)

and

T = 1 + E
[
1{C(H) ≤ rf}M(rf − C(H))

]
. (108)

Proof: In order to show that (98)–(100) define a zero outage EMS protocol, we need to verify the conditions

of Lemma 2. We shall first show that (23) is satisfied for gn = O(1/
√
n). The remaining conditions can be

verified using same arguments as in the proof of Theorem 3. Given that τ ≤ τ̄n, we have for k ∈ [2:τn]

u(n)
k,τn

(Hτn) =

τn∑
i=k

[
min

{
r(f − 1)− cn, r

⌊
f − u1,i−1(Hi−1

1 )

r

⌋}
− C(Hi)

]
(109)

≤
τn∑
i=k

[
min

{
r(f − 1)− cn, r

⌊
f − u1,i−1(Hi−1

1 )

r

⌋}
− C(Hi)

]
− u1,τn(Hτn) (110)

=

τn∑
i=k

[
r(f − 1)− cn − r

⌊
f −

u(n)
1,i−1(Hi−1

1 )

r

⌋]−
− u1,k−1(Hk−1) (111)

≤
τn∑
i=k

[
−cn + u1,i−1(Hi−1

1 )
]− − u1,k−1(Hk−1

1 ) (112)

≤ min{−cn,−u1,i−1(Hi−1
1 )}+

τn∑
i=k+1

[
−cn + u1,i−1(Hk−1

1 )
]−

(113)

≤ −cn. (114)

Here, (109) follows from (16) and (98)–(99), (110) follows because u1,τn(Hτn) ≤ 0 when τ ≤ τ̄n, (112)

follows from bxc ∈ (x − 1, x], (114) follows because [x]− ≤ 0. Using the same arguments as in (47), it can

also be shown that u(n)
1,τn

(Hτn) ≤ −cn when τ ≤ τ̄n. Hence, we conclude that maxk∈[1:τn] u(n)
k,τn

(Hτn) ≤ −cn
when τ ≤ τ̄n. An immediate implication of this is that

P
[
τn = t

∣∣∣H̄n] =
P
[
τn = t, H̄n

]
P
[
H̄n
] =

P[τ = t]

P
[
H̄n
] ≥ P[τ = t] (115)

for all t ∈ [1:τ̄n]. Note that τ is not necessarily Geometrically distributed as for the case with full CSIT. Instead,
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since bxc ∈ (x− 1, x] for any constant x, we have that

u1,t−1(ht−1) + rt(vt−1(ht−1)) = u1,t−1(ht−1) + r

⌊
f − u1,t−1(ht−1

1 )

r

⌋
∈ (r(f − 1), rf ]. (116)

Therefore, for all t ∈ N, we also have that

P[τ ≥ t+ 1|τ ≥ t] = P

[
u1,t(H

t) > 0

∣∣∣∣τ ≥ t] ∈ [FC(r(f − 1)), FC(rf)] (117)

Thus,

P[τ = t] = P[τ = t|τ ≥ t]
t−1∏
i=1

P[τ ≥ i+ 1|τ ≥ i] ≥ FC(r(f − 1))t−1(1− FC(rf)) (118)

It follows from (115) and (118) that (23) is satisfied for gn = O(1/
√
n). The conditions in (12), (13),

and (21) follows using the same arguments as in the proof of Theorem 3. Similarly, we can also show that

limn→∞ E[τn] = E[τ ] and that limn→∞ E
[
R̄

(n)
τn

]
= E

[
R̄τ
]
. Hence, it only remains to compute the throughput

given by E
[
R̄τ
]
/E[τ ] and the limiting average decoding time E[τ ].

We compute the throughput E
[
R̄τ
]
/E[τ ] via the rate selection and feedback functions in (98)–(99) and the

decoding time in (100). Using the following recursive relation

u1,t(h
t) = u1,t−1(ht−1) + rv(u1,t−1(ht−1))− C(ht) (119)

for t ≥ 2, we observe that, if t ≥ k ≥ 2, then u1,t(h
k−1, Ht

k) only depends on hk−1 through u1,k−1(hk−1).

Therefore, we can define ū(u,Ht
k) such that ū(u1,k−1(hk−1), Ht

k) = u1,t(h
k−1, Ht

k). In order to compute

E
[
R̄τ
]
, define

Wt(u) , E

[
τt(u)∑
i=t

rv(ū(u,Hi−1
t ))

]
(120)

for u ∈ [0, rf ], where

τt(u) , inf
{
t′ ≥ t : ū(u,Ht′

t ) < 0
}
. (121)

Observe that E
[
R̄τ
]

= rf+E[W1(u1,1(H1))1{C(H1) ≤ rf}]. Rewriting the RHS of (120) in terms of Wt+1(·),

we obtain

Wt(u) = rv(u) + E

[
1{u+ rv(u) ≥ C(Ht)}

τt+1(ū(u,Ht))∑
i=t+1

rv(ū(ū(u,Ht), H
i−1
t+1 ))

]
(122)

= rv(u) + EHt

[
1{u+ rv(u) ≥ C(Ht)}EH∞t+1

[
τt+1(ū(u,Ht))∑

i=t+1

rv(ū(ū(u,Ht), H
i−1
t+1 ))

]]
(123)

= rv(u) + E[1{u+ rv(u) ≥ C(Ht)}Wt+1(ū(u,Ht))] (124)

= rv(u) +

∫ u+rv(u)

0

PC(x)Wt+1(u+ rv(u)− x)dx. (125)

By defining W (·) ,W1(·) and by noting that Wt(u) = Wt+1(u) for u ∈ [0, rf ], we have the integral equation
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in (105). The expected reward is thereby given by

E
[
R̄τ
]

= rf + E[1{C(H) ≤ rf}W (rf − C(H))] . (126)

Using derivations similar to (120)–(125), we obtain E[τ ] = 1 + E[1{C(H) ≤ rf}M(rf − C(H))].

We remark that the integral equations in Theorem 4 can be written as Fredholm equations of the second kind.

These are readily solved as a system of linear equations when discretized or by using a quadrature method

specifically for Fredholm equations [29].

VI. NUMERICAL RESULTS

In the following, the throughput of the described protocols are assessed and compared to traditional transmis-

sion strategies. Specifically, we compare our protocols with HARQ-INR and HARQ-INR with power adaptation.

A. Coding strategies

1) HARQ-INR: In HARQ-INR (also known as HARQ-INR), the transmitter initially transmits at a rate R

in the first slot and continues to send additional parity bits in the subsequent slots. By the end of each slot, the

receiver attempts to decode and feeds back an ACK/NACK depending on whether the decoding was successful

or not. The receiver is thereby able to accumulate information until decoding is possible. Then the average

decoding time of HARQ-INR is given by [14]

E[τ ] =

∞∑
m=1

m(pm−1
out (R)− pmout(R)) (127)

= 1 +

∞∑
m=1

pmout(R) (128)

where pmout(·) is the outage probability after the mth retransmission and is given by

pmout(x) = P

[
m∑
k=1

C(Hk) < x

]
. (129)

The achievable throughput is

ηHARQ-INR,R =
R

1 +
∑∞
m=1 p

m
out(R)

. (130)

The optimal throughput of HARQ-INR subject to the average decoding time constraint is given by

ηHARQ-INR(T ) = max
R

R

1 +
∑∞
m=1 p

m
out(R)

(131a)

s.t. 1 +

∞∑
m=1

pmout(R) ≤ T. (131b)

We point out that supT∈(1,∞) ηHARQ-INR(T ) = Cerg.

2) HARQ-INR with power adaptation: A comparison between BRQ and HARQ-INR is not fair in the sense

that HARQ-INR does not use the available delayed CSIT. It has been shown in literature that delayed CSIT can

provide significant throughput benefits if the short-term power constraint in (6) is relaxed. Power adaptation

based on delayed CSIT has previously been proposed in a slightly different setting in [12]. In this section, we
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optimize HARQ-INR with power adaptation under a constraint on the average decoding time. We follow [6]

and redefine the power constraint in (6) such that 1
nXT

t Xt ≤ ρt, where we require that the random variables

ρt depends only on {Ht}t−1
t=1 and that {ρt}∞t=1 satisfies

E[
∑τ
i=1 ρi]

E[τ ]
≤ 1. (132)

The constraint in (132) ensures that the average power per slot over many runs of the protocol does not exceed

one. Under this relaxation, we can design an HARQ-INR-type protocol that benefits from full delayed CSIT

using power adaptation. In particular, full delayed CSIT provides the transmitter with knowledge about the

amount of unresolved information at the receiver and is allowed to use this knowledge to optimize the power

spend in the following slot. The transmitter sends in the first slot at a rate R using power ρ1. At the end of

the slot, the transmitter receives the delayed CSIT which can be used to compute the unresolved information

I1 at the receiver. In the tth slot, the transmitter sends IR with power ρt(It−1), where It−1 is the amount of

unresolved information at the receiver by the end of slot t − 1 and ρt(·) denotes the power adaptation policy

in the tth slot. It follows that the unresolved information in slot t satisfies

It = It−1 − C(Htρt(It−1)) (133)

where I0 , R. We shall solve the following optimization problem using dynamic programming:

min
{ρi(·)}∞i=1

E[τ ] (134a)

s.t. E

[
τ∑
t=1

ρi(It−1)

]
≤ E[τ ] . (134b)

First, we rewrite (134) as an unconstrained optimization problem using duality:

max
λ>0

min
{ρi(·)}∞i=1

{
E[τ ] + λ

(
E

[
τ∑
t=1

ρi(It−1)

]
− E[τ ]

)}

= max
λ>0

min
{ρi(·)}∞i=1

{
E[τ ] (1− λ) + λE

[
τ∑
t=1

ρi(It−1)

]}
. (135)

Then, we rewrite the inner minimization in (135) as an infinite-horizon dynamic programming problem.

Specifically, we have that

min
{ρi(·)}∞i=1

{
E[τ ] (1− λ) + λE

[
τ∑
t=1

ρi(It−1)

]}
= Jλ(R) (136)

where the function Jλ(·) is defined by Jλ(u) = 0 for u ≤ 0 and, for u > 0,

Jλ(u) = min
ρ

{
1 + λρ+

∫ 2u−1
ρ

0

PH(h)Jλ(u− C(hρ))dh

}
. (137)

Consequently, we find that the solution to the optimization problem in (134) is given by maxλ>0 Jλ(R). The

throughput of HARQ-INR with power adaptation under an average decoding time constraint is thereby given
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Fig. 2. Throughput versus average decoding time E[τ ] of various protocols. The throughput of HARQ-INR and HARQ-INR with power
adaptation are computed using (131) and (138), respectively. The throughput of BRQ/BRQ-EMS is computed using (30) and for the EMS
protocols we use (107).

by

ηHARQ-INR-P(T ) = max
R>0

R

maxλ>0 Jλ(R)
(138a)

s.t. max
λ>0

Jλ(R) ≤ T. (138b)

B. Assessment

We evaluate the proposed protocols by assuming Rayleigh block-fading, independent from slot to slot, i.e.,

the probability density of H is given by

PH(h) =
1

Γ
e−h/Γ. (139)

Fig. 2 depicts the throughput of various protocols as a function of average decoding time for average SNR equal

to 10 dB and 30 dB. We remark that the stair-step behavior of the throughput of HARQ-INR at SNR = 30 dB

origins because the probability distribution of C(H) becomes increasingly concentrated around Cerg as the SNR

increases. For high SNR, this implies that the average decoding time, and therefore also the throughput, has

a stair-step behavior when R grows linearly. It is seen that the throughput of all protocols tend to the ergodic

capacity as the allowed average decoding times are increased. We observe that BRQ and the EMS protocols

with finite feedback cost significantly outperforms both HARQ-INR and HARQ-INR with power adaptation in

terms of throughput. A particular interesting observation is that the proposed EMS protocols for finite feedback

cost achieves throughput that are very close to that of BRQ, even for the case f = 2. Our interpretation of this

is that the precise amount of additional information bits appended in each slot does not affect the throughput

significantly.

In Fig. 3, the throughput is plotted in terms of SNR for fixed average decoding time E[τ ]. Observe that the
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Fig. 3. Average throughput versus SNR of various protocols. The throughput of HARQ-INR and HARQ-INR with power adaptation are
computed using (131) and (138), respectively. The throughput of BRQ/BRQ-EMS is computed using (30) and for the EMS protocols we
use (107).

rate penalty of BRQ compared to the ergodic capacity is approximately constant throughout the range of SNR

values while the penalty of the remaining protocols increases for higher SNR.

VII. DISCUSSION AND CONCLUSIONS

The objective of this paper is to generalize and extend the BRQ protocol, proposed in [1], to a broader class

of communication strategies, termed expandable message space (EMS) protocols. EMS protocols are useful

when the CSI is only available after the transmission has taken place. The main novelty of EMS protocols is

the possibility of appending new information bits before previously transmitted data has been resolved. EMS

protocols thereby provides an elegant way to design communication protocols that approach the ergodic capacity

within a low average decoding time. In contrast to BRQ, EMS protocols in general also benefit from limited

feedback. Specifically, it has been shown that even ternary feedback is sufficient to achieve throughput close to

that of BRQ. This suggests that the main reason for the superior throughput of BRQ and EMS protocols is that,

compared to HARQ-type protocols with/without power adaptation, they only terminate a transmission when

the CSI is sufficiently good, whereas HARQ-INR terminates a transmission as soon as a sufficient amount of

information is accumulated. As a result, HARQ-INR protocol often collect a wasteful amount of information

which far surpasses the amount of unresolved information, leading to waste of resources.

Unlike most works in the field of HARQ, we have presented results for systems with an average decoding time

constraint as opposed to a strict decoding time constraint. Strict decoding time constraints lead to protocols with

a maximum transmission length. Such constraints are motivated by applications like streaming of multimedia

data, where data become useless after a certain amount of time. Despite this, there are many applications where

data is retransmitted at a packet level upon outage. In other words, a new transmission is initiated with the

same data – perhaps concatenated with data from new data arrivals. For such applications, a constraint on the

average decoding time is more applicable. Although strict decoding time constraints have not been considered,
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they are not ruled by the definition of EMS protocols. The time-dependent rate selection functions allows for

detailed modeling of the distribution of decoding times. An optimal EMS protocol with full delayed CSIT and a

constraint on outage probability instead of average decoding time can be computed using dynamic programming

in a manner similar to [10]. An interesting extension to this work is thus to consider a queuing-based system

model where data packets arrive at a certain rate λ. In such a system, EMS protocols does not always have

data available for transmission as it is assumed in this work.

We have not treated the impact of the accuracy of the delayed CSI in our throughput comparisons. In the

conventional HARQ-INR protocol that rely on, possibly quantized, prior CSI to perform rate and/or power

adaptation, the accuracy of CSI has a significant impact on the throughput [2, pp. 209–213]. The main reason

for this is that the channel gains change from the time the CSI is estimated to the time the channel is used,

which can take a duration that spans multiple slots. This inaccuracy is largely eliminated by relying only on

delayed CSI. This follows because the receiver can make a much more precise estimate of the CSI after having

observed a time slot. For the EMS protocols, however, inaccurate delayed CSI implies that the transmitter cannot

precisely append the optimal amount of new information in each step. Our results for the EMS protocols with

finite feedback cost show that the precise amount of new information appended in each slot does not significantly

alter the achievable throughput. Therefore, we do not expect that the throughput of EMS protocols to suffer

significantly if the CSI is inaccurate.

Finally, we note that HARQ-INR have led to several composite protocols that use HARQ-INR as building

block. As previously discussed, two examples which are of relevance to this paper are [10] and [14]. One can

design similar composite protocols using the EMS protocols as building blocks. For example, the broadcast

approach to HARQ-INR proposed in [14] provides an approach combine multiple HARQ-INR instances that

run in parallel in multiple superposition coded layers. We can combine multilayered transmission and EMS

protocols similarly. One feasible approach is to divide each transmission into two layers: one with IR for the

previous slots and one with new information bits. One can then optimize over the distribution of power in

the two layers. In this way the decoder does not need to decode both the IR for previous slot and the new

information bits simultaneously. Hence, such protocols might lead to higher throughput than the present paper

report. One can also follow the approach taken in [10] and instantiate several instances of EMS protocols which

run in parallel in a TDMA fashion.
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APPENDIX I

PROOF OF LEMMA 1 (STRONG CONVERSE)

Fix an EMS protocol defined by {τn}, {r(n)
t }, {vt}, {f

(n)
t }, and {g(n)

t }. The EMS protocol induces a

probability distribution on (Xτn ,Yτn , Hτn) given by PYτn ,Xτn ,Hτn . To simplify notation, we condition on

H∞ = h∞ throughout the proof and define the probability distribution P̄ on (Xτn ,Yτn) by

P[·] , P[·|H∞ = h∞] . (140)
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Since the stopping time and rate selection functions depend only on the channel realizations, conditioning

on H∞ = h∞ implies that {τn} and {R(n)
t } are deterministic sequences. The probability distribution of the

channel outputs at the tth slot is

PYt|Xt
(y|x) ,

n∏
i=1

1√
2π

e−
1
2 (yi−

√
htxi)

2

. (141)

Since τ <∞, the limit limn→∞ τn = τ exists and implies that there exist positive integers N and n0 such

that τn ≤ N for all n ≥ n0. Therefore, we have2

lim
n→∞

max
k∈[1:τn+1]

τn∑
i=k

(R
(n)
i − C(hi)) = lim

n→∞
max

k∈[1:N+1]

N∑
i=k

1{i ≤ τn} (R
(n)
i − C(hi)) (142)

= max
k∈[1:N+1]

N∑
i=k

1{i ≤ τ} (Ri − C(hi)) (143)

= max
k∈[1:τ+1]

uk,τ (hτ ) > 0. (144)

The last inequality follows from the condition supk∈[1:τ ] uk,τ (hτ ) > 0. This implies that there exist a positive

integer n1, a positive constant γ, and a sequence of integers {k̄n}∞n=n1
with k̄n ∈ [1:τn] such that

τn∑
i=k̄n

(R
(n)
i − C(hi)) ≥ 2γ (145)

for all n ≥ n1.

To proceed, we prove a straightforward variation of the converse by Verdú and Han [30]. To state the result,

we shall define the information density for t ∈ [1:τn] as follows

i
(
xτnt ; yτnt |xt−1

)
= log2

∏τn
i=t PYi|Xi

(yi|xi)
PYτn

t |Xt−1(yτnt |xt−1)
, xτn ,yτn ∈ Rnτn . (146)

Lemma 5: Under the above definitions, the following holds for every n

P[En] ≥ max
t∈[1:τn]

P

[
1

n
i
(
Xτn
t ; Yτn

t

∣∣∣Xt−1
)
≤

τn∑
k=t

R
(n)
k − γ

]
− 2−nγ (147)

where γ > 0 is an arbitrary constant.

Proof: The proof closely follows those found in [30, Th. 4] or [31, Lemma 3.2.2]. The encoder functions

(f(n)
1 , · · · , f(n)

τn ) generates Mn , 2dnR̄
(n)
τn
e codewords which we denote by {u(i)}Mn

i=1, where u(i) ∈ Rnτn . Note

that PXt(ut(i)) = 2−nR̄
(n)
t for i ∈ [1:Mn] and t ∈ [0:τn] (recall that R̄(n)

0 = 0). The decoder function g(n)
τn (·)

defines disjoint decoding regions {Di}Mn
i=1 such that Di ⊆ Rnτn and

⋃Mn

i=1Di = Rnτn . Set β , 2−nγ and note

that

1

n
i
(
xτnt ; yτnt |xt−1

)
=

1

n
log2

PXτn
t |Y

τn
t ,Xt−1(xτnt |y

τn
t ,x

t−1)

PXτn
t |Xt−1(xτnt |xt−1)

=

τn∑
k=t

R
(n)
k +

1

n
log2 PXτn

t |Y
τn
t ,Xt−1(xτnt |y

τn
t ,x

t−1). (148)

2We use the convention that
∑j−1

i=j ai = 0 for all ai and for all integers j.
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The last equality follows because

log2 PXτn
t |Xt−1(xτnt |xt−1) = log2 PXτn (xτn)− log2 PXt−1(xt−1) (149)

= −nR̄(n)
τn + nR̄

(n)
t−1 (150)

= −n
τn∑
k=t

R
(n)
k . (151)

Consequently, we have

P

[
1

n
i
(
Xτn
t ; Yτn

t

∣∣∣Xt−1
)
≤

τn∑
k=t

R
(n)
k − γ

]
= P

[
PXτn

t |Y
τn
t ,Xt−1(Xτn

t |Y
τn
t ,X

t−1) ≤ β
]
. (152)

Define

Bi =
{

yτn ∈ Rτnn : PXτn
t |Y

τn
t ,Xt−1

(
uτnt (i)|yτnt ,ut−1(i)

)
≤ β

}
. (153)

We obtain a lower bound on P[En] through the following chain of inequalities

P

[
1

n
i
(
Xτn
t ; Yτn

t

∣∣∣Xt−1
)
≤

τn∑
k=t

R
(n)
k − γ

]

=

Mn∑
i=1

PXτn ,Yτn [u(i),Bi] (154)

=

Mn∑
i=1

PXτn ,Yτn

[
u(i),Bi ∩ D{

i

]
+

Mn∑
i=1

PXτn ,Yτn [u(i),Bi ∩ Di] (155)

≤ 1

Mn

Mn∑
i=1

PYτn |Xτn

(
D{
i |u(i)

)

+

Mn∑
i=1

∫
Bi∩Di

PYτn ,Xt−1

(
yτn ,ut−1(i)

)
PXτn

t |Y
τn
t ,Xt−1

(
uτnt (i)|yτnt ,ut−1(i)

)
dyτn (156)

≤ P[En] + β

Mn∑
i=1

PYτn ,Xt−1

(
Bi ∩ Di,ut−1(i)

)
(157)

≤ P[En] + β

Mn∑
i=1

PYτn ,Xt−1

(
Di,ut−1(i)

)
(158)

≤ P[En] + β. (159)

Here, (154) follows from (152) and (153), (156) follows because Bi ∩ D{
i ⊆ D{

i , because PXτn ,Yτn can be

factorized as PYτn ,Xt−1PXτn
t |Y

τn
t ,Xt−1 ; (157) follows from (153); and finally, (159) follows because {Di}Mn

i=1

are disjoint sets. Since (159) holds for t ∈ [1:τn], we have established (147).

By Lemma 5 and (145), we have for all n ≥ n1

P[En] ≥ P

 1

n
i
(
Xτn
k̄n

; Yτ
k̄n

∣∣∣Xk̄n−1
)
≤

τn∑
k=k̄n

R
(n)
k − γ

− 2−nγ (160)

≥ P

 1

n
i
(
Xτn
k̄n

; Yτn
k̄n

∣∣∣Xk̄n−1
)
≤

τn∑
k=k̄n

C(hk) + γ

− 2−nγ . (161)
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Next, by using the techniques in the proof of [31, Th. 3.7.4] to analyze the first term in (161), we find that

lim
n→∞

P

[
1

n
i
(
xτn
k̄n

; Yτn
k̄n

∣∣∣xk̄n−1
)
<

τn∑
k=t

C(hk) + γ

]
= 1. (162)

Using (162) in (161), we find that limn→∞ P[En] = 1 as desired.

APPENDIX II

PROOF OF LEMMA 2 (ACHIEVABILITY)

Define the random variable Un ∈ Un , Rn × Rn × Rn × · · · by the probability distribution

PUn , Pn × Pn × Pn × · · · (163)

where Pn denotes probability density of
√
nX̃/

∣∣∣∣X̃∣∣∣∣, where X̃ ∼ N (0, In), i.e., Pn denotes the uniform

distribution on the n-dimensional sphere with radius
√
n. We use one realization of Un to generate the encoder

and decoder functions. Then, we show that the conditional probability of error averaged over Un, {Zt}∞t=1,

and H∞ given that maxk∈[1:τn] u(n)
k,τn

(H∞) ≤ −cn tends to zero. Invoking the random coding argument then

enables us to show that there must be at least one realization of Un for each n such that the probability of

error tends to zero as n → ∞. Let the ith entry of u ∈ Un be denoted by u(i) ∈ Rn. By countability of N2,

there exists a bijection between N2 and N defined by the mapping ı : N2 7→ N. The encoder functions f(r)
n,t, for

r ∈ R+, are then defined in terms of u ∈ Un as

f(n)
t (u,b) = u

(
ı

(
t, 1 +

len(b)∑
i=1

bi2
i−1

))
(164)

for every b ∈ B, where bi is the ith entry of b and len(·) denotes the length of a vector. The inner sum

in (164) is a binary-to-integer conversion that converts the information bit vector b into an integer-valued

index in the range
[
1:2len(b)

]
. Based on the above construction of the encoder, we have that (recall that

B
dnR̄(n)

t e
1 = (B1, · · · , BdnR̄(n)

t e
))

Xt = f(n)
t

(
Un, B

dnR̄(n)
t e

1

)
. (165)

In order to keep notation simple, we define for b ∈ {0, 1}dnR̄
(n)
j e and j, t ∈ N, j ≤ t

X̄
(n)
j:t (u,b) ,

[
f(n)
j

(
u, b
dnR̄(n)

j e
1

)
, · · · , f(n)

t

(
u, b
dnR̄(n)

t e
1

)]
. (166)

Let ζn , cn/2. For every yt, we define the threshold-based decoding functions as follows:

g
(n)
t (u,yt, Ht)

,

 b if ∃!b ∈ {0, 1}dnR̄
(n)
t e s.t. ∀j ∈ [1:t] : i

(
X̄

(n)
j:t (u,b); yt|Ht

1

)
≥ n

∑t
k=j R

(n)
k + nζn

[], otherwise.
(167)

Here, [] is the vector of length which indicates an error and we have defined the “mismatched” information
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density [32]

i(x; y|h) , nC(h) +
||y||22

2(h+ 1) log(2)
−

∣∣∣∣∣∣y −√hx
∣∣∣∣∣∣2

2

2 log(2)
. (168)

We note that E[i(Xt; Yt|Ht)|Ht = h] = nC(h) and by using the same arguments as in [32], we find that

Vn(h) ,
1

n
Var[i(Xt; Yt|Ht)|H1 = h]

n→∞→ h(h+ 2)

2(h+ 1)2 log2(2)
(169)

≤ 1

2 log2(2)
(170)

, V. (171)

Thus, for sufficiently large n, we have that Vn(h) ≤ 2V for all h ∈ R+.

It remains to analyze the probability of error. To do so, we rely on the technique used to prove Shannon’s

achievability bound in [33, Th. 17.1]. Assume, without loss of generality, that Bi = 0 for i ∈ N. We define the

“outage” events as follows

Aj ,
{
i(X̄

(n)
j:τn(Un,0); Yτn

j |H
τn
j ) < n

τn∑
k=j

R
(n)
k + nζn

}
, j ∈ [1:τn] . (172)

Here, 0 denotes the all-zero vector (we omit specifying the length to keep notation simple). The “confusion”

events are similarly defined by

B(b) ,
⋂

j∈[1:τn]

{
i(X̄

(n)
j:τn(Un,b); Yτn

j |H
τn
j ) ≥ n

τn∑
k=j

R
(n)
k + nζn

}
(173)

where b ∈ {0, 1}dnR̄
(n)
τn
e. Here, Aj is the event that the information density of the correct codeword does not

exceed the threshold while B(·) is the event that the information density of an incorrect codeword does exceed

the threshold. Define the (random) set of information bit vectors for k ∈ [1:τn]

Bk ,
{

b ∈ {0, 1}dnR̄
(n)
τn
e : b

dnR̄(n)
k−1e

1 = 0, b
dnR̄(n)

τn
e

dnR̄(n)
k−1e+1

6= 0
}
. (174)

We also define Bτn+1 , ∅. Here, we let R̄(n)
0 = 0 such that B1 is the set of all binary vectors of length

dnR̄(n)
τn e except the all-zero vector 0. Note that |Bk| = 2dn(Rk+···+Rτn )e − 1 and that X̄

(n)
k:τn(Un,b) and Yτn

k

are conditionally independent for every b ∈ Bk given B∞1 = 0 and H∞. Define the error event

En(Un) ,
{

g(n)
τn (Un,Y

τn
1 , Hτn) 6= B

dnR̄τne
1

}
. (175)

Then, we obtain the following probability of error

P
[
En(Un)

∣∣∣H̄n]
= P

[
En(Un)

∣∣∣B∞1 = 0, H̄n
]

(176)

= P

 τn⋃
k=1

Ak ∪
⋃

b̄∈B1

B(b̄)

∣∣∣∣∣B∞ = 0, H̄n

 (177)

November 15, 2016 DRAFT



32

≤ P

[
τn⋃
k=1

Ak

∣∣∣∣∣B∞ = 0, H̄n

]
+ P

 ⋃
b̄∈B1

B(b̄)

∣∣∣∣∣B∞ = 0, H̄n

 . (178)

Here, (176) follows from the symmetry of the EMS protocol, (177) follows from (167), (172), and (173); and

(178) follows from the union bound. Next, we upper-bound each of the two terms in (178) separately. For the

first term, we use the law of total expectation and the union bound to obtain

P

[
τn⋃
k=1

Ak

∣∣∣∣∣B∞ = 0, H̄n

]
= E

[
P

[
τn⋃
k=1

Ak

∣∣∣∣∣B∞ = 0, H∞

] ∣∣∣∣∣H̄n
]

(179)

= E

 τn∑
k=1

P

 1

n
i(Xτn

k ; Yτn
k ) <

τn∑
j=k

R
(n)
j + ζn

∣∣∣∣∣H∞
 ∣∣∣∣∣H̄n

 . (180)

For all h∞ such that maxk∈[1:τn] u(n)
k,τn

(hτn) ≤ −cn, we upper-bound the inner probability in (180) for

sufficiently large n using Chebyshev’s inequality as follows

P

 1

n
i(Xτn

k ; Yτn
k |H

τn
k ) <

τn∑
j=k

R
(n)
j + ζn

∣∣∣∣∣H∞ = h∞

 ≤ E

[
2V (τn − k + 1)

n(
∑τn
j=k[C(Hj)−R(n)

j ]− ζn)2

∣∣∣∣∣H∞ = h∞

]
(181)

≤ E

[
2V (τn − k + 1)

n(cn − ζn)2

∣∣∣∣∣H∞ = h∞

]
(182)

= E

[
8V (τn − k + 1)

nc2n

∣∣∣∣∣H∞ = h∞

]
(183)

≤ 8V τ̄n
nc2n

. (184)

Here, (181) follows from Chebyshev’s inequality, from E[i(Xt; Yt|Ht)|Ht] = nC(Ht), and from (171); (182)

follows from maxk∈[1:τn] u(n)
k,τn

(hτn) ≤ −cn; and (184) follows from τ ≤ τ̄n. As a result of (180) and (184),

we have

P

[
τn⋃
k=1

Ak

∣∣∣∣∣B∞ = 0, H̄n

]
≤ E

[
τn∑
k=1

8V τ̄n
nc2n

∣∣∣∣∣H̄n
]
≤ 8τ̄2

nV

nc2n
. (185)

Next, the second term in (178) is upper-bounded as follows

P

 ⋃
b̄∈B1

B(b̄)

∣∣∣∣∣B∞ = 0, H̄n


= E

P

 ⋃
b̄∈B1

B(b̄)

∣∣∣∣∣B∞ = 0, H∞

 ∣∣∣∣∣H̄n
 (186)

= E

[
P

[
τn⋃
j=1

⋃
b̄∈Bj\Bj+1

⋂
q∈[1:t]

{
i
(
X̄

(n)
q:τn(U, b̄); Yτn

q

)
≥ n

τn∑
k=q

R
(n)
k + nζn

}∣∣∣∣∣B∞ = 0, H∞

]∣∣∣∣∣H̄n
]

(187)

≤ E

[
P

[
τn⋃
j=1

⋃
b̄∈Bj\Bj+1

{
i
(
X̄

(n)
j:τn(U, b̄); Yτn

j

)
≥ n

τn∑
k=j

R
(n)
k + nζn

}∣∣∣∣∣B∞ = 0, H∞

]∣∣∣∣∣H̄n
]

(188)

≤ E

[
τn∑
j=1

2dn
∑τn
k=j R

(n)
k eP

[
i(X̄

τn
j ; Yτn

j ) ≥ n
τn∑
k=j

R
(n)
k + nζn

∣∣∣∣∣H∞
]∣∣∣∣∣H̄n

]
(189)
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≤ E

[
τn∑
j=1

2dn
∑τn
k=j R

(n)
k e2

−
(
n
∑τn
k=j R

(n)
k +nζn

)]
(190)

≤ E

[
τn∑
j=1

2−nζn+1

]
(191)

= τ̄n2−ncn/2+1. (192)

Here, (186) follows from the law of total expectation; (187) follows from (173) and (174); (188) follows

from the union bound and because |Bj | = (2dn
∑τn
k=j Rke − 1); (189) follows by defining the random variables

{X̄t}∞t=1 independently according to the probability distribution Pn such that they are independent of {Xt}∞t=1

and {Zt}∞t=1; finally, (190) follows from [33, Cor. 17.1]. Consequently, we have shown that

P
[
En(Un)

∣∣∣H̄n] ≤ τ̄n2−ncn/2+1 +
8τ̄2
nV

nc2n
. (193)

Therefore, it follows that there exists a deterministic sequence {u∗n}∞n=1 such that

P
[
En(u∗n)

∣∣∣H̄n] ≤ τ̄n2−ncn/2+1 +
8τ̄2
nV

nc2n
. (194)

Define

pmin,n , min
t∈[1:τ̄n]:

P[τn=t|Hn]>0

P
[
τn = t|H̄n

]
. (195)

The condition in (23) implies that pmin,n ≥ gn for all sufficiently large n and therefore we have

lim
n→∞

max
t∈[1:τn]:

P[τn=t|H̄n]>0

P
[
En(u∗n)

∣∣∣H̄n, τn = t
]

≤ lim
n→∞

1

pmin,n

∑
t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P
[
τn = t|H̄n

]
P
[
En(u∗n)

∣∣∣H̄n, τn = t
]

(196)

≤ lim
n→∞

1

gn
P
[
En(u∗n)

∣∣∣H̄n] (197)

≤ lim
n→∞

1

gn

(
τ̄n2−ncn/2+1 +

8τ̄2
nV

nc2n

)
(198)

= 0. (199)

Here, (197) follows from (23) and the law of total probability. The last equality follows from (21), from the

upper bound ex ≤ 1/(1− x+ x2/2) which holds for x ≤ 0, and because τ̄n is a nondecreasing sequence.
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