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Abstract 
Nowadays it is recognized that vineyard yield estimation can bring several benefits to all the vine and 
wine industry and, consequently, there is a strong demand for fast and reliable yield estimation methods. 
Recently a strong effort has been made on developing machine vision tools to automatically estimate 
vineyard yields evolving several research teams worldwide. In this paper we aim to present preliminary 
results obtained in the frame of an European research project (VINBOT: “Autonomous cloud-computing 
vineyard robot to optimise yield management and wine quality”) focus on yield estimation. A ground 
truth evaluation trial was set up in an experimental vineyard with the white variety Viosinho, trained on a 
vertical shoot positioning system and spur pruned. A sample of contiguous vines was labeled and 
submitted to a detailed assessment of vegetative and reproductive data to feed a viticulture data library. 
The vines were scanned during the ripening period of the 2015 season by the VINBOT sensor head 
composed with a set of sensors capable of capturing vineyard images and 3D data. Ground truth data was 
used to relate with images taken by the sensors and to test algorithms of image analysis. In this paper we 
present and discuss the relationships between actual and estimated yield computed using the surface 
occupied by the grape clusters in the images. Our preliminary results showed that, despite of a slight 
underestimation of the ground truth, caused mainly by cluster occlusion, when the canopy density allows 
visualization of most part of the clusters, the yield can be estimated by machine vision with a high 
fidelity. Further research is ongoing to test those devices and methodologies in other varieties and to 
improve the estimation accuracy. 
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1 INTRODUCTION 
Vineyard yield is a variable that can display high variability either temporal, regional and local. 
Furthermore, within the same vineyard plot there is also variability between vines, between clusters of the 
same vine and between berries of the same cluster. The reasons for this variability are several being the 
most important ones the climate, soil, vine age, variety, biotic and abiotic stresses and the cultural 
practices used by the grower. Quantification of this variability is fundamental to the entire grape and wine 
production chain allowing several advantages that are highlighted as follows: planning cluster thinning 
needs (in order to prevent excessive production and consequent poor wine quality); planning and 
organization of the harvest (hand labor, equipment, etc.); planning cellar needs (scheduling grape intake; 
allocating tank space, purchasing tanks, barrels, oenological products, bottles and others); planning 
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purchases and/or grape sales; establishment of grape prices and management of wine stocks; management 
of grape and wine market; programming investments and development of marketing strategies. This 
multiplicity of potential benefits makes the yield estimation one of the major current research topics in 
Viticulture. 
The yield estimation of a vineyard can be obtained using several methods highlighting, among others, i) 
aeropalynological forecast models (Cunha et al. 1999); ii) methods based on the estimation of yield 
components (Clingellefer et al. 2001; Martins 2011; Lima 2014); iii) indirect methods based on remote 
sensing of the vegetation (Hall et al. 2002); iv) measurement of wire tension (Tarara and Bloom 2009) 
and v) image analysis (Dun and Martin 2004; Diago et al. 2012;. Nuske et al. 2014a; Herrero-Huerta et al. 
2015; Ivorra et al. 2015). Among these methods the ones based on the estimation of yield components are 
the most used at a farm level (Clingeleffer et al. 2001). These methods allow the yield estimation at 
various phenological stages, from bud break to harvest, however are very time consuming and sometimes 
the estimation is not very accurate. Recently, several research teams worldwide have been developing 
tools based on various types of sensors installed on vehicles (autonomous or not), for vine phenotyping. 
An example of this research effort is the EU research project VINBOT (Autonomous cloud-computing 
vineyard robot to optimise yield management and wine quality) (http://www.vinbot.eu/) which aims at 
develop an all-terrain autonomous mobile robot with a set of sensors capable of capturing and analyzing 
vineyard images and 3D data by means of cloud computing applications, in order to obtain yield maps 
representing the spatial variability of the vineyard plots. 
Agricultural robots have received significant attention during the past years. According to the 
International Federation of Robotics (2015), economic demands, shortages of skilled farm labor in 
agricultural regions, food and fiber requirements of a growing world population, and stringent standards 
will continue to drive the commercial need for agricultural robots. Some market reports (Agricultural 
Robots 2016) predict that agricultural robots will reach $16.8B by 2021 and $73.9B by 2024. The 
increasing importance of yield forecast has lead to automated solutions for the data acquisition and 
allowed the first service robotics applications in viticulture. 
In this paper we aim to present some preliminary results obtained with the white variety Viosinho in the 
frame of the EU research project VINBOT (“Autonomous cloud-computing vineyard robot to optimise 
yield management and wine quality”) focus on yield estimation. 

2 MATERIALS AND METHODS 
The VINBOT robot platform is based on a commercial off-the-shelf mobile robot Summit XL HL, that is 
able to carry up to 65 kg payload and consists of (Fig. 1):  
-A robotic platform: durable, mobile, with ROS Indigo and Ubuntu 14.04; 
-Color and NIR (Near Infra-Red) cameras to take high-precision images of the vine; 
-3D range finders to navigate the field and to obtain the shape of the canopies; 
-A small computer for basic computational functions and connected to a communication module; 
-An optional RTK-DGPS high accuracy rover, optional base and associated communication devices; 
-A cloud-based web application to process images or create 3D maps; 
-User friendly HMI to define navigation and data acquisition missions. 
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VINBOT robot proposes a novel hybrid reactive/waypoint based navigation architecture, tested 
successfully in vineyard navigation. VINBOT makes use of a laser range finder and RGBD device to 
perform reactive row following and obstacle avoidance, while it can make use of other reactive behaviors 
or GPS waypoint navigation for changing from row to row or field to field, thus supporting different 
levels of automation. 

 
Figure 1. View of the actual version of the Vinbot robot platform  

For ground truth it was used an experimental vineyard of the “Instituto Superior de Agronomia”, Lisbon 
(lat. 38.71 N; long. 9.18 W) planted in 2006 with a North-South oriented rows. The grapevines of the 
white variety Viosinho were grafted to 1103 Paulsen rootstock and spaced 1.0 m within and 2.5 m 
between rows. Vines were trained on a vertical shoot positioning with two pairs of movable wires and 
spur-pruned on a unilateral Royat Cordon system. All vines were uniformly pruned to 10-12 nodes per 
vine (5-6 two bud spurs). A row of 30 contiguous vines was labeled, subjected to a manual assessment of 
cluster number and total weight and simultaneously scanned by the VINBOT platform. Furthermore, all 
the clusters of five contiguous vines (98 clusters) were harvested separately, labeled, and then transported 
to the laboratory for detailed assessments. At the laboratory they were individually photographed with a 
compact camera, weighted and then processed in order to obtain the number, weight and volume of 
berries per bunch (data not shown). These cluster images were processed using an image analysis 
algorithm (ImageJ 1.48V) through which the projected area of each cluster was computed. In order to 
obtain an empirical relationship between the projected area of the clusters and the corresponding weight a 
linear regression analysis was computed. This ground truth database was used to the development and 
testing of image analysis algorithms and ultimately to validate the VINBOT yield estimations. 
During the ripening period of 2015 season several image acquisition sessions were performed with the 
VINBOT platform which scanned both sides of the canopy. Data presented in this paper was obtained 
from the last session (August 24, 1 day before harvest), after a defoliation performed at cluster zone in 
order promote a better cluster detection by VINBOT cameras. 
Regarding the machine vision procedures, in order to retrieve the regions where the clusters are located, 
and finally be able to compute accurate yield maps, we have used the approach for grape detection called 
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“Convolutional Neural Networks inside of Deep Learning Field” which is based on a structure of stacked 
multi-layer neural networks (Krizhevsky and Sutskever 2012). Once the clusters were recognized, the 
total area occupied by the clusters in the image was computed in pixels and then converted into actual 
cm2. Finally, we have applied the formula presented in the plot of Fig. 3 which converts this area into 
kilograms. 

3 RESULTS AND DISCUSSION 
3.1 Yield and yield components variability 
Figure 2 shows the variability among vines on number of clusters, cluster weight and yield along a 
vineyard row. The number of clusters per vine presented an average value of 18.8 with a coefficient of 
variation (CV) of 21.1%, yielding the highest value on the vine # 5 (31 clusters) and the lowest one on 
vine #18 (12 clusters) (Fig. 1A). The yield per vine showed an average of 4.7 kg with a CV of 28.9% 
yielding the highest production in vine # 5 (8.2 kg) and the lowest one on vine #22 (2.4 kg) (Fig. 1B). 
Average weight per cluster showed an average of 251.9 g with a CV of 22.6% yielding the highest value 
on the vine #12 (359 g) and the lowest one on the vine # 22 (126 g) (Fig. 1C). As the average cluster 
weight was obtained per vine (dividing yield by cluster number) it do not reflect the actual variability of 
the individual cluster weight. Indeed, detailed individual cluster weight data obtained on the 5 vines 
sampled for detailed measurements show that the actual cluster weight has a higher variability: CV = 
39.2% with the highest value of 460.6 g and the lowest one of 27.6 g. 

Figure 2. Yield and yield components variability along a vineyard row (30 contiguous vines), 
variety Viosinho, Tapada da Ajuda, Lisbon, 2015. A: Cluster number per vine; B: yield per vine; 

C: average cluster weight per vine. 

3.2 Yield estimation by VINBOT platform 
Using image analysis algorithms the number of pixels relating to the visible clusters was computed. The 
number of pixels was then scaled and converted to kg of grape based on an equation obtained from the 
relationship between cluster area and weight obtained in the laboratory from a sample of 98 clusters; Fig. 
3). As can be seen from the linear regression analysis presented in figure 2, the projected area of the 
clusters was able to explain ca 80% of the cluster weight variability, indicating that it can be used as an 
accurate estimator for the weight of the clusters. 
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Figure 3. Example of image processing using the software ImageJ for estimation of projected 
cluster area (left) and linear regression analysis between the projected cluster area (independent 
variable) and cluster weight (dependent variable), variety Viosinho, 2015; n=98 (right).  
Figure 4 shows the comparison between actual and estimated yield using image analysis algorithms based 
on the projected area of the visible clusters detected by VINBOT cameras. Despite an average 
underestimation of 0.29 kg per vine (ca 5.7%) in general a satisfactory agreement between observed and 
estimated yield was obtained (Fig. 4). The underestimation may be explained by the occlusion of some 
clusters by other clusters. This occlusion, which depends on cluster number per vine and on cluster size, 
constitutes a major problem of this approach, as noted by Nuske et al. (2014b) who proposed several 
alternatives based on modeling and calibration of occlusion ratio to overcome the problem. However, as 
there are still some vines showing big differences between actual and estimated yield, we are now 
analyzing in-depth those discrepancies in order to find other reasons for the differences and improve the 
prediction ability.  

 
Figure 4. Comparison between actual and estimated yield by the Vinbot platform, along a row of 

the vineyard (n=25 vines), variety Viosinho, 2015. Mean Absolute % Error: 27.8; RMSE: 1.8.  
4 CONCLUSIONS 
Preliminary results show that, despite a slight underestimation induced by some cluster occlusion, when 
the canopy density allows visualization of most part of the clusters, the yield can be estimated with a 
small error with the VINBOT platform. Research is ongoing in order to test the platform and machine 
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vision algorithms in other varieties and vineyard plots and to solve the problem of occluded clusters. 
Special attention is being paid to overcome the difficulties related to the hidden clusters by vegetation. 
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