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Resumo

Esta tese teve como objetivo a construção de uma estatı́stica de teste para

a hipótese nula da não existência de quebra na tendência de uma série tempo-

ral unidimensional. A sua principal inovação foi o desenvolvimento de um teste

robusto não só para a presença de erros I(0) e I(1) mas também para erros

I(2). Para isso, construiu-se um modelo quadrático que incluiu uma variável aux-

iliar, com a mesma ordem, e foram propostos dois testes distintos, um para uma

data de quebra conhecida e o outro para uma data de quebra desconhecida. O

primeiro é uma média ponderada pelas estatı́sticas de teste apropriadas para o

caso em que os erros são I(0), I(1) ou I(2). Esta estatı́stica de teste tem uma

distribuição normal padrão. O segundo é uma média ponderada que se obtém

depois de encontrado o supremo sobre todas as possı́veis datas de quebra, su-

jeitas a um parâmetro delimitador da amostra. Neste caso, os valores crı́ticos

foram calculados através de simulação de Monte Carlo. A metodologia de Har-

vey et al. (2009) foi seguida em ambos os cenários. Mais ainda, conceitos sobre

convergência assintótica para processos com duas raı́zes unitárias foram revis-

tos e algumas propriedades assintóticas de regressões, com uma ou duas raı́zes

unitárias, foram derivadas. Os testes desenvolvidos têm aplicação no estudo de

séries económicas e financeiras.

Palavras-chave: Quebra estrutural; processo integrado de ordem

dois; tendência quadrática; teoria assintótica.
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Abstract

The aim of this thesis was the construction of a test statistic for the null hy-

pothesis of no break in trend in an univariate time series. The breakthrough was

to make the test robust not only for the presence of I(0) and I(1) shocks but also

for the I(2) case scenario. For this reason, a quadratic trend break model and a

quadratic dummy variable were designed. The assumption of known or unknown

break date motivated the construction of two separate test statistics. The former

is a weighted average of the appropriate t-statistics for the case of I(0), I(1) and

I(2) shocks and it was shown to have standard normal limiting distribution. The

latter is a weighted average of the statistics formed as the supremum over all pos-

sible break dates, subject to a trimming parameter. In addition, the critical values

for this test statistic were computed through Monte Carlo simulation. The general

framework of Harvey et al. (2009) was adopted to test for the presence of a break

under a known or unknown break date. At the same time, asymptotic theory for

I(2) processes was reviewed and simple asymptotic properties of second and

first order auto-regressions were derived. The tests can be applied to the study

of financial and economic time series.

Keywords: Structural break; double integrated process; quadratic trend;

asymptotic theory.
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Basic Notation

General

1(A)(x) indicator function; it is equal to 1 if x belongs to the set A

and equal to 0, otherwise

bxc integer part of a real number x

σ standard deviation

µ expected value

N(µ, σ2) normal distribution with expected value µ and variance σ2

T dimension of the sample

x′ transpose of x

x := y x is defined by y

≡ identical to

p→ convergence in probability

d→ convergence in distribution

g(n) = o(f(n)) means that g(n)/f(n)→ 0, that is, the function g(n) is negligible

compared to f(n)

g(n) = O(f(n)) means that g(n)/f(n)→ c, where c is a constant; that is,

the functions grow at the same rate

[.]jj denotes the jj′th element of a matrix

[.]j denotes the j′th element of a vector

ξ significance level

L lag operator
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Unit Root Functions

I(d) integrated process of order d

I(0) stationary process apart from the

deterministic components

I(1) unit root process

I(2) two unit roots process

AR(d) autoregressive process of order d

DTQt quadratic dummy variable. D stands for dummy,

T for trend and Q for quadratic

DTLt linear dummy variable. L stands for linear

DTUt step dummy variable

4 first differences

42 second differences

W (r) standard Brownian motion

Acronyms

DGP data generating process

OLS ordinary least squares

LR long run

i.i.d. independent and identically distributed

The symbol � denotes the end of a Proof. Each section is divided into subsec-

tions, with consecutive labelling of Equations, Lemmas, Propositions, Remarks

and Theorems.
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Simple and robust tests of the breaking trend hypothesis for I(0), I(1) and I(2) time series.

1 Introduction

Structural changes have been described as a widespread phenomenon in

economics and finance. They are a consequence of a rare but outstanding his-

torical event that changes permanently the behaviour of a standard economic

time series. With no surprise, the existence of such events affects the statistical

properties of estimators, compromising forecasts and statistical inference from

the data. For that reason, the econometric literature has proposed a number of

statistics to test for the presence of structural breaks in a given time series.

In recent years, with an added relevance to this thesis, there has been an up-

surge of interest on devising tests for the breaking trend hypothesis which can be

used regardless of whether the underlying shocks are I(0) or I(1) processes. The

most relevant papers on the subject include Kwiatkowski et al. (1992), Sayginsoy

and Vogelsang (2004), Harvey et al. (2009), Kejriwal and Perron (2010) and Per-

ron and Yabu (2012). Sobreira and Nunes (2015) provided tests of the presence

of multiple breaks in the trend function which are valid in the presence of station-

ary or unit root time series. Apart from the I(0) and I(1) shocks, some studies

found statistical evidence for the presence of two unit roots in prices, wages, stock

variables, among others (see Haldrup, 1998, for example). Therefore, it is per-

fectly viable that some financial and economic time series are better described by

an I(2) process rather than an I(0) or I(1) process. Hence, creating a statistical

procedure that may be used to test the null hypothesis of no breaks in trend which

accounts for the possibility of the errors being I(2) constitutes an interesting path

1
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of research.

Thus, the purpose of this thesis is to construct a test statistic that can be used

to test the null hypothesis of no break in the trend function against the alternative

hypothesis of one break in the quadratic trend and which is robust as to whether

the underlying shocks are stationary, a random walk or a process with two unit

roots. The first test statistic proposed is valid under the assumption of a known

break date. It is a weighted average of the optimal tests appropriate for the I(0),

I(1) and I(2) shocks. It is proved that the test statistic has standard normal dis-

tribution so that tabulated critical values can be used. The second test statistic is

valid under the assumption of an unknown break date and follows the framework

proposed by Andrews (1993) and Harvey et al. (2009). This hypothesis brings

additional complexity to the testing procedure: the break date must be estimated

through a statistic formed as the over all possible break dates, conditional to a

trimming parameter. The critical values can be calculated through Monte Carlo

simulation.

The outline of this thesis is as follows. Section 2 provides a literature review

on structural changes and unit root hypothesis testing. Sections 3 and 4 establish

the general framework. In section 5, the test statistics for the known and for

the unknown break date are presented. Section 6 illustrates the critical values

computed for the unknown break date test statistic. Section 7 is reserved for

concluding comments and suggestions for future research. Mathematical proofs

are systematized in appendix A and asymptotic theory is summarized in appendix

B. Appendix C contains R source code for the unknown break date case.

2



Simple and robust tests of the breaking trend hypothesis for I(0), I(1) and I(2) time series.

2 Literature Review

This thesis is about simple and robust tests for a structural break in the trend

function that includes the case of double integrated shocks in an univariate time

series. For that reason, this literature review covers the most important concepts

and theories related with structural breaks and shocks with two unit roots.

By robust it is meant that testing for the presence of a changing point does

not require to test in advance if the series is stationary, a unit root or a two unit

roots process. This does not mean, though, that we can disregard any information

related with the nature of the shocks. On the contrary, a robust test is one that can

assess several levels of information simultaneously. This type of test procedure

could only be possible after significant discoveries in asymptotic theory as well as

with the introduction of mathematical concepts from calculus, real analysis and

stochastic processes.

Regarding time series with two unit roots, they have been reported as being

rare within the economic and financial context. But how much confidence can be

given to this result when existing unit root test do not even consider the existence

of those time series? Will it be possible to detect more series that mimic an I(2)

process if a test statistic is taken without testing a priori the nature of the shocks?

If this is somehow feasible, it can be extremely useful since researchers are less

likely to make errors while investigating the deterministic or stochastic properties

of the time series under analysis.

The remainder of this literature review provides the reader with a definition

3



Simple and robust tests of the breaking trend hypothesis for I(0), I(1) and I(2) time series.

of structural break, shows the most import contributors to the field of structural

break and unit roots testing, with special attention to the works of Perron (1989),

Kwiatkowski et al. (1992) and Harvey et al. (2009). It also explains the interest

of extending existing robust tests to the I(2) case. This literature will not discuss

in detail different approaches to estimate the break date nor multiple break tests

since it is out of the scope of this thesis.

2.1 Structural Break Tests

The concept of structural break has not always been clear in the literature.

Although there is no formal definition of structural break, in what follows it will be

adopted the one of Hansen (2001) which says that “a structural break occurs if at

least one of the parameters of a model changes at some date, the break date, in

the sample period”. In this thesis, the attention will be focused on the curvature

of the trend function given by the quadratic term of the proposed model.

The first studies about structural changes that are considered worth mention-

ing, for the purpose of this thesis, are those of Quandt (1958) and Brown et al.

(1975). Both provided rudimentary tests that were based on parameter instability.

The test developed by Quandt (1958), which became known as the Q statistics,

consisted in a maximization of the likelihood function, at a single known break

date. Another feature of the model was that it only considered normally distributed

disturbances. Nevertheless, the author did not question which parameters were

responsible for a possible switching point nor the consequences of a loss in power

of the test as the magnitude of the switch increased. Brown et al. (1975), on their
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turn, introduced the Cumulative Sum (CUSUM) statistics to detect instability in the

level of the model and the Cumulative Sum of Least Squares (CUSQ) for testing

error variance instability. Subsequent works of Ploberger and Krämer (1990) and

Ploberger and Krämer (1992) applied the CUSUM test to ordinary least squares,

instead of recursive residuals, and showed that the limit distribution under the

null hypothesis of parameter stability could be expressed in terms of Brownian

Bridges. Although innovative for the time, all the aforementioned tests had rele-

vant limitations. Vogelsang (1999), while studying the causes of non monotonic

power functions of standard tests, found that the magnitude of trend shift exacer-

bated the estimated variance of the errors. As a consequence, the power of the

underlying test (extended version of Q and CUSUM statistics) dropped near to

zero.

At the same time, another strand of literature came up with a different but

relevant approach to test the null hypothesis of a unit root in the presence of a

structural break. This major breakthrough in unit root testing in the presence of

a structural break is attributed to Perron (1989). In fact, the author proved that

the presence of a structural change could bias unit root tests, such as Dickey and

Fuller (1979), towards the non rejection of the unit root null hypothesis. To over-

come this issue, Perron suggested that before making any statistical inferences,

the break should be “modelled”, that is, the deterministic component of the time

series should be split into two parts, each one containing the observations before

and after the break. The preselected break dates coincided with relevant histor-

ical events. For example, it was assumed that the Great Crash (1929), the Oil

5



Simple and robust tests of the breaking trend hypothesis for I(0), I(1) and I(2) time series.

Price Shocks (1973) and the World Wars were responsible for the occurrence of

breaks in U.S. macroeconomic data.

Surprisingly, with the innovations introduced, the author questioned the promi-

nent idea that most time series had a unit root process. By properly modelling a

break, the author found that important financial and economic time series, such

as those initially studied by Nelson and Plosser (1982) did not have any unit root.

This is an important fact because from this moment on, structural change tests

could not be dissociated from unit root testing.

That paper also highlighted the most prominent ideas about asymptotic the-

ory of the time. Phillips (1986) exploited the concept of spurious regressions by

studying linear regressions with integrated random processes and Phillips (1987)

and Phillips and Perron (1988) proposed new tests for detecting the presence of

a unit root where the models were drawn to discriminate unit root non stationarity

and stationarity about a deterministic trend. Park and Phillips (1989) developed

asymptotic theory of regressions for multivariate linear models that included inte-

grated processes of different orders, nonzero means, drifts, time trends, among

others. All these authors provide mandatory reading for those seeking to under-

stand the mathematics behind unit root testing and asymptotic theory.

Nevertheless, Perron (1989) received a lot of criticism. Christiano (1992) re-

fused to accept the assumption of a known break date. In his opinion, the time of

break should always be estimated in order to obtain a conclusion robust to sub-

jective reasoning and data mining. Another paper that highlighted the importance

of testing under the assumption of an unknown break date is Montañés (1997).
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As an example, the author studied a macroeconomic indicator from Spain. The

country joined the EU in 1986. At that time, it was expected that such event would

have an impact on the exports and that a structural break would be observed in

that year. Instead, what was found was that the structural break took place an

year earlier. This raised the question of how Perron’s test would behave if the

break time date was misspecified. The author found that such a small difference

would not entail a loss of power, at least asymptotically. However, for a finite

sample, a loss of power would be observed.

In fact, a huge effort was made to propose powerful structural break tests

which allowed for a structural change at an unknown date. Andrews (1993) and

Andrews and Ploberger (1994) are among the most cited authors in this field.

In particular, Andrews (1993) proposed the Wald, Lagrange Multiplier and Likeli-

hood Ratio tests. The innovation of that paper was to consider parameter insta-

bility which allowed for a time structural change at an unknown date. Andrews

and Ploberger (1994) studied the distributional properties of the break date es-

timates. Vogelsang (1997) proposed a Wald-Type test based on the mean and

exponential statistics of Andrews and Ploberger (1994) and the supremum statis-

tics of Andrews (1993). Bai and Perron (1998) addressed the problem of testing

multiple structural changes.

2.2 Trend Break Tests Robust to I(0) and I(1) Shocks

Standard unit root tests have a key role in structural hypothesis testing. These

can be classified into two different categories depending on the null hypothesis to
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be tested. On one hand, the unit root null hypothesis can be tested. As an ex-

ample, there are the Dickey-Fuller, Augmented Dickey-Fuller and Phillips-Perron

tests. On the other hand, it can be tested the null hypothesis of stationarity.

Kwiatkowski et al. (1992) provided straightforward tests of the null hypothesis of

stationarity against the alternative of a unit root, while allowing for error autocor-

relation.

Nevertheless, as it has already been seen by the Nelson and Plosser (1982)

data, it is not straightforward to determine if a time series has a unit root or not.

As a consequence, the lack of confidence about the output provided by an unit

root test can bias structural change tests. This has motivated Perron and Yabu

(2012) to propose a robust type of structural change test. Another relevant paper

in the field is given to Harvey et al. (2009). The authors were not only interested

in testing or searching for the existence of a structural break but also in how

to do it without pre-testing the nature of the shocks. The tests are a weighted

average of the optimal tests appropriate for the I(0) and I(1) case scenarios. The

weighting function employed was based on the KPSS stationary statistics applied

to the levels and growth rate date (Kwiatkowski et al., 1992). But once more, their

analysis failed to include the I(2) case. However, the work of Harvey et al. (2009)

proved to be useful for a large set of this investigation. Sobreira et al. (2014)

and Sobreira and Nunes (2015) proposed a test for multiple structural changes

in the trend function which did not require pre-specifying whether the underlying

time series (the per capita GDP) was I(0) or I(1). Sobreira et al. (2014) used the

proposed econometric methodology to classify countries according to the growth

8
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path that best describes the behaviour of their real per capita GDP.

This thesis takes one step further and proposes an econometric methodology

to test for the presence of a break in the curvature of the trend function. Another

innovation is that the proposed test statistic is also robust to the presence of I(2)

shocks in the DGP.

2.3 Shocks with Two Unit Roots

The literature about errors with two unit roots is not extensive. One reason

for that is the belief that most time series are well categorized as stationary or

integrated of order one. Nevertheless, some macroeconomic time series like

prices, wages, stock variables, among others, are potentially integrated of order

two (Haldrup, 1998). Hence, this possibility should be taken into account when

conducting empirical research and it is the reason why this thesis is concerned in

making the testing procedure robust to I(2)-ness.

Time series integrated of order two often look smoother and more slowly

changing than known variables integrated of order one. This can be pointed out

as an argument towards their existence. The reason why researchers care so

much about unit root testing is that the number of unit roots presented in a time

series determines the correct approach to render the series stationary. On one

hand, if the process is a random walk or, equally saying, is a single summation

of shocks, then first differences to the original equation should be taken. On the

other hand, if the time series has two unit roots, equally saying, is a double sum-

mation of shocks, then this process requires to be differenced twice in order to

9



Simple and robust tests of the breaking trend hypothesis for I(0), I(1) and I(2) time series.

become stationary1.

The most important works concerned with univariate testing for I(2) are Dickey

and Pantula (1987), Dickey and Fuller (1979) and Haldrup (1998). Asymptotic

theory related with two unit roots can be found in Park and Phillips (1989). Their

findings were essential to give the proof of Proposition B.3 in appendix B.

Dickey and Pantula (1987) showed that the null distribution of traditional aug-

mented Dickey-Fuller tests was affected in the presence of two unit roots, after

observing substantial size distortions. Furthermore, an interesting paper which

has motivated this thesis is Haldrup and Lildholdt (2002). The authors proposed

themselves to test the behaviour of standard unit root tests for a single unit root

when there was evidence that double integrated processes were present in the

data generating process. They examined the robustness of Dickey-Fuller and

Phillips-Perron tests for a unit root and concluded that when the underlying series

was doubly integrated it was likely to give rise to excessive rejection of the unit

root null hypothesis in favour to the explosive alternative because the test statistic

would have a non-similar distribution, caused by the extra unit root.

A further instance for the existence of time series with two unit roots is given

by the work of Sen and Dickey (1987) who suggested that U.S. population is a

plausible candidate for an I(2) variable. Georgoutsos and Kouretas (2004) made

the same observation for some nominal price indices in the context of the pur-

chasing power parity. Banerjee et al. (2001) made an I(2) analysis of Australian

inflation and found that the levels of prices and costs were best characterized as

integrated processes of order two.

1Please check appendix B.2.
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3 Assumptions and Methodology

This thesis followed the general framework of Harvey et al. (2009) who pro-

posed a test statistic to test for the presence of a break in the slope of a linear

trend without knowing a priori if the errors were I(0) or I(1). In spite of being a

central paper to this thesis, the linear model and the overall assumptions did not

provide a comprehensive tool to deal with the I(2) case scenario.

In this context, the first innovation of this thesis was to introduce a quadratic

trend to the general framework. Along with that, a quadratic dummy variable was

designed to model a structural break in the presence of an integrated process

of order two. This prevents the appearance of an impulse dummy variable after

taking two differences to render the time series stationary. The implication of an

impulse dummy variable is that the null hypothesis of no break in trend would be

tested with the information provided from a single observation - an infeasible test

to carry out. On the contrary, the suggested quadratic dummy variable ensues an

indicator function which equals zero before the time break and one afterwards.

Furthermore, the quadratic DGP was expected to bring more flexibility to the test-

ing procedure. As expressed by Harvey et al. (2011), a quadratic model offers a

reasonable degree of local non-linearity in the deterministic trend function, moti-

vating the choice of a polynomial model.

Furthermore, it was assumed throughout this work that there is only one break

date, which occurs instantly.

11
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4 The Quadratic Trend Break Model

Consider a time-series {yt}Tt=1 given by the following trend break data gener-

ating process:

yt = α + βt+
1

2
ϑt2 + γDTQt(τ

∗) + ut t = 1, . . . , T, (1)

ut = (α1 + α2)ut−1 − α1α2ut−2 + εt u1 = ε1 t = 2, . . . , T. (2)

In equation (1), α is a constant, β is the coefficient of the linear trend and (1/2)ϑ

is the coefficient of the quadratic trend. Furthermore, γ is the coefficient of the

quadratic dummy variable DTQt(τ
∗). The quadratic dummy variable can be de-

fined as follows:

DTQt(τ
∗) := 1(t > T ∗b )

[1

2
(t− T ∗b )2

]
t = 1, . . . , T, (3)

where T ∗b := bτ ∗T c is the trend break date which is the integer part of the product

of the break fraction, τ ∗ ∈]0, 1[, multiplied by the sample’s size, T . Concerning

the existence of a break, only two case scenarios were considered. On the one

hand, there may not exist a break in trend. This is expected to happen whenever

the coefficient γ in equation (1) is zero. This means that the time series is well

described by the equation yt = α + βt + (1/2)ϑt2 + ut for t = 1, . . . , T . In other

words, the coefficients α, β and ϑ are constant throughout the sample period. On

the other hand, if γ in equation (1) is different from zero then a break in trend is

expected to occur. In this case, for the points ranging between [1, T ∗b ] the level is
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simply equal to α, the coefficient of the linear trend is β and the coefficient of the

quadratic trend is (1/2)ϑ. For all points in the time interval [T ∗b + 1, T ], the level

changes from α to α+(1/2)γ(T ∗b )2, the coefficient of the linear trend changes from

β to β − γT ∗b and the quadratic trend changes from (1/2)ϑ to (1/2)(ϑ+ γ).

In equation (2), the disturbance term ut, or shock, is assumed to have an

AR(2) representation. The constants α1 and α2, where α1, α2 ∈ [0, 1], determine

the number of unit roots that the autoregressive polynomial can have. If α1 = 0

and |α2| < 1 or |α1| < 1 and α2 = 0 then ut is stationary. If α1 = 0 and α2 = 1

or α1 = 1 and α2 = 0 then ut is integrated of order one. Finally, if both α1 =

α2 = 1 then ut is integrated of order two2. As a benchmark, we naturally have

that ut is stationary when α1 = α2 = 0. Regarding the process {εt}, two different

approaches can be taken. The most conservative one assumes the stochastic

process to be i.i.d., that is:

Assumption 4.1.a. The process {εt} is i.i.d with mean zero and constant vari-

ance σ2
ε .

Nevertheless, this is an unrealistic assumption since the structural break tests

are typically applied to series which are highly dependent over time (Kwiatkowski

et al., 1992). For that reason, consider Assumption 1 of Sayginsoy and Vogelsang

(2004), which states a weaker assumption about the errors:

Assumption 4.1.b. The process {εt} is such that εt = c(L)ηt, where c(L) =∑∞
i=0 ciL

i, with [c(1)]2 > 0 and
∑∞

i=0 i|ci| < ∞, and where {ηt} is a martingale

difference sequence with unit conditional variance and suptE(η4
t ) <∞.

2Please check Table II, columns one to four in appendix A.
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Remark 4.1. Under the conditions of Assumption 4.1.b, the LR variance of {εt}

is given by ω2
ε := limT→∞T

−1E
(∑T

t=1 εt

)2

= c(1)2. Furthermore, when ut is I(0),

with |α2| < 1, the LR variance of ut is given by ω2
u := limT→∞T

−1E
(∑T

t=1 ut

)2

,

such that ω2
u = ω2

ε/(1− α2)2.

It is the order of integration of the shocks that determines the number of differ-

ences that must be taken to the initial model for it to become stationary. For the

purpose of this thesis, if the time series is stationary then regressions in levels

should be used. If the shocks are a random walk, then the correct approach is to

model the first-differences of equation (1). That is:

∆yt = θ + ϑt+ γDTLt(τ
∗) + ∆ut t = 2, . . . , T, (4)

DTLt(τ
∗) := 1(t > T ∗b )(t− T ∗b − 1/2) t = 2, . . . , T, (5)

where θ = β − (1/2)ϑ is a constant.

In the same fashion, if the shocks have two unit roots then second differences

must be taken to render the series stationary. This is given by the equations:

∆2yt = ϑ+ γDTUt(τ
∗) + ∆2ut t = 3, . . . , T, (6)

DTUt(τ
∗) :=


0 if t < T ∗b + 1,

0.5 if t = T ∗b + 1,

1 if t > T ∗b + 1.

(7)

The first and second differences of the quadratic trend break model along with

the dummy variables DTQt(τ
∗) , DTLt(τ ∗) and DTUt(τ ∗) provide the appropriate

regressors to estimate γ via OLS.
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5 Tests for a Break in Trend

The null hypothesis of interest is H0 : γ = 0 against the two sided alterna-

tive HA : γ 6= 0. In contrast with traditional testing procedures, in this thesis it

is not needed to pretest the nature of the shocks. For that reason, the appropri-

ate statistics to test for the presence of a structural break in the quadratic trend

are made robust for the presence of I(0), I(1) and I(2) shocks. Following the

same line of reasoning from Harvey et al. (2009), two different test statistics are

presented, one for the known break date and the other for the unknown break

date.

5.1 Known Break Fraction

The proposed test statistic for the known break fraction hypothesis is a weighted

average of the optimal tests for I(0), I(1) and I(2) shocks. However, to build such

test statistic it is mandatory to find the right weights that allow only one of the

t-tests t0(τ ∗), t1(τ ∗) or t2(τ ∗), defined immediately above, to be chosen in the

end. For the sake of brevity, in this section, it is only presented the t-test for each

optimal case.

Firstly, consider the case scenario where ut in equation (2) is I(0) and As-

sumption 4.1.a holds. The optimal test of H0 against HA rejects for large values

of the absolute value of the t-ratio appropriated for γ when equation (1) is esti-

mated by OLS. That is |t0(τ ∗)| where:
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t0(τ ∗)
H0
:=

γ̂0(τ ∗)√
σ̂2

0(τ ∗)
[
{
∑T

t=1 xDTQ,t(τ
∗)xDTQ,t(τ ∗)′}−1

]
44

, (8)

γ̂0(τ ∗) :=
[{ T∑

t=1

xDTQ,t(τ
∗)xDTQ,t(τ

∗)′
}−1

T∑
t=1

xDTQ,t(τ
∗)yt

]
4
, (9)

with xDTQ,t(τ
∗) := {1, t, t2, DTQt(τ

∗)}′, σ̂2
0(τ ∗) := T−1

∑T
t=1 ût(τ

∗)2 is the OLS es-

timate of the residual variance and ût(τ ∗) := yt − α̂ − β̂t − ϕ̂t2 − γ̂0(τ ∗)DTQt(τ
∗)

and ϕ = (1/2)ϑ.

Secondly, admit that ut is I(1). The optimal test of H0 against HA rejects for

large values of the absolute value of the t-ratio appropriated for γ when equation

(1) is estimated via OLS in first differenced form. The optimal test is |t1(τ ∗)| and

t1(τ ∗) is given by:

t1(τ ∗)
H0
:=

γ̂1(τ ∗)√
σ̂2

1(τ ∗)
[
{
∑T

t=2 xDTL,t(τ
∗)xDTL,t(τ ∗)′}−1

]
33

, (10)

γ̂1(τ ∗) :=
[{ T∑

t=2

xDTL,t(τ
∗)xDTL,t(τ

∗)′
}−1

T∑
t=2

xDTL,t(τ
∗)∆yt

]
3
, (11)

with xDTL,t(τ ∗) := {1, t, DTLt(τ ∗)}′, σ̂2
1(τ ∗) := (T − 1)−1

∑T
t=2 v̂t(τ

∗)2 and v̂t(τ ∗) :=

∆yt − θ̂ − ϑ̂t− γ̂1(τ ∗)DTLt(τ
∗).

Finally, if ut is assumed to be I(2) then the appropriate inference method

for testing H0 against HA is to consider the t-ratio test associated with γ when

equation (1) is estimated via OLS in second differenced form. That is |t2(τ ∗)|

where:
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t2(τ ∗)
H0
:=

γ̂2(τ ∗)√
σ̂2

2(τ ∗)
[
{
∑T

t=3 xDTU,t(τ
∗)xDTU,t(τ ∗)′}−1

]
22

, (12)

γ̂2(τ ∗) :=
[{ T∑

t=3

xDTU,t(τ
∗)xDTU,t(τ

∗)′
}−1

T∑
t=3

xDTU,t(τ
∗)∆2yt

]
2
, (13)

with xDTU,t(τ
∗) := {1, DTUt(τ ∗)}′, σ̂2

2(τ ∗) := (T − 2)−1
∑T

t=3 k̂t(τ
∗)2 and k̂t(τ

∗) :=

∆2yt − ϑ̂− γ̂2(τ ∗)DTUt(τ
∗).

In order to deal with more general I(0), I(1) and I(2) processes for ut the

OLS estimates of residual variance σ̂2
i (τ
∗), for i = 0, 1, 2, can be replaced by

the corresponding non-parametric long run variance ω̂2
i (τ
∗), for i = 0, 1, 2. As

pointed out by Kwiatkowski et al. (1992), Assumption 4.1.a can bias conclusions

since most economic and financial time series to which the stationary tests can

be applied are usually time dependent. To this end, the LR variance estimators

for the I(0), I(1) and I(2) are defined as follows:

ω̂2
0(τ∗) := σ̂2

0(τ∗) + 2
T−1∑
j=1

h(j/l)γ̂j,0(τ∗); γ̂j,0(τ∗) := T−1
T∑

t=j+1

ût(τ
∗)ût−j(τ

∗), (14)

ω̂2
1(τ∗) := σ̂2

1(τ∗) + 2

T−2∑
j=1

h(j/l)γ̂j,1(τ∗); γ̂j,1(τ∗) := (T − 1)−1
T∑

t=j+2

v̂t(τ
∗)v̂t−j(τ

∗), (15)

ω̂2
2(τ∗) := σ̂2

2(τ∗) + 2
T−3∑
j=1

h(j/l)γ̂j,2(τ∗); γ̂j,2(τ∗) := (T − 2)−1
T∑

t=j+3

k̂t(τ
∗)k̂t−j(τ

∗). (16)

The function h(j/l) is called the Bartlett window and h(j/l) := 1 − j/(l + 1),

where l is the bandwidth parameter and l = O(T 1/4). In this thesis, the same

kernel and bandwidth parameters of Harvey et al. (2009) were used. From now
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on, any reference to t0(τ ∗), t1(τ ∗) or t2(τ ∗) will mean that they are based on the

LR variance estimators presented in equations (14), (15) and (16).

The Theorem bellow summarizes the asymptotic behaviour of the |t0(τ ∗)|,

|t1(τ ∗)| and |t2(τ ∗)| statistics under the presence of I(0), I(1) and I(2) shocks.

Theorem 5.1. Let the time series process {yt} be generated according to equa-

tions (1) and (2) and let Assumption 4.1.b hold.

(i) If ut in (2) is I(0) then: (a) |t0(τ∗)| d→ |L00(r, τ∗)| where

L00(r, τ∗) =

∫ 1
0 RTQ(r, τ∗)dW (r)√∫ 1

0 RTQ(r, τ∗)2dr
,

(b) |t1(τ∗)| = Op(l/T )1/2 and (c) |t2(τ∗)| = Op(l/T )1/2;

(ii) If ut in (2) is I(1) then: (a) |t0(τ∗)| = Op(T/l)
1/2, (b) |t1(τ∗)| d→ |L11(r, τ∗)| where

L11(r, τ∗) =

∫ 1
0 RTL(r, τ∗)dW (r)√∫ 1

0 RTL(r, τ∗)2dr
,

and (c) |t2(τ∗)| = Op(l/T )1/2;

(iii) If ut in (2) is I(2) then: (a) |t0(τ∗)| = Op(T
3/l)1/2, (b) |t1(τ∗)| = Op(T/l)

1/2 and (c)

|t2(τ∗)| d→ |L22(r, τ∗)| where

L22(r, τ∗) =

∫ 1
0 RTU(r, τ∗)dW (r)√∫ 1

0 RTU(r, τ∗)2dr
.

Proof. The proof of items (i.b) and (iii.a) are only valid under a set of conjectures

that require careful examination in the future. The proof of the remaining items

can be found in appendix A.
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Here, W (r) is a standard Brownian motion on [0, 1] and RTQ(r, τ ∗) is the con-

tinuous time residual from the projection of 1(r > τ ∗)(r − τ ∗)2 into the space

spanned by {1, r, r2}, RTL(r, τ ∗) is the residual from a projection of 1(r > τ ∗)(r−

τ ∗) into the space spanned by {1, r} and RTU(r, τ ∗) is the residual from a projec-

tion of 1(r > τ ∗) into the space spanned by {1}.

The results in Theorem 5.1 show that t0(τ ∗)
d→ N(0, 1) if ut is I(0), t1(τ ∗)

d→

N(0, 1) if ut is I(1), while t2(τ ∗)
d→ N(0, 1) if ut is I(2). As a consequence, the

appropriate two-sided test can be implemented using critical values from the stan-

dard normal distribution if the time of break is assumed to be known.

Remark 5.1. From part (i) of Theorem 5.1 it can be seen that if ut is I(0) then

|t0(τ ∗)| attains the Gaussian distribution asymptotically, while |t1(τ ∗)| and |t2(τ ∗)|

converges in probability to zero. Similarly, from part (ii) of the same theorem, if

ut is I(1) then |t0(τ ∗)| diverges, |t1(τ ∗)| attains the Gaussian distribution asymp-

totically while |t2(τ ∗)| converges in probability to zero. Finally, from part (iii), if ut

is I(2) then |t0(τ ∗)| and |t1(τ ∗)| diverge, though at a different rate, while |t2(τ ∗)|

converges to the Gaussian distribution asymptotically.

From the results above and given that the order of integration of ut is not known

a priori three auxiliary functions are proposed to ensure that the statistic |t0(τ ∗)|

of (8) is selected when ut is I(0), |t1(τ ∗)| of (10) is selected when ut is I(1) while

|t2(τ ∗)| of (12) is selected when ut is I(2), thereby ensuring that the asymptotically

optimal test is chosen in the limit, following the same reasoning from Harvey et al.

(2009). To that end, consider this new test statistic for the presence of a break

in the quadratic trend which is based on a weighted average of |t0(τ ∗)|, |t1(τ ∗)|

and |t2(τ ∗)| and is robust as to whether the shocks are an I(0), I(1) or an I(2)
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process:

t∗λ,2 = λ(S0(τ∗), S1(τ∗))× |t0(τ∗)|+ [λ(S1(τ∗), S2(τ∗))− λ(S0(τ∗), S1(τ∗))]× |t1(τ∗)|

+[1− λ(S1(τ∗), S2(τ∗))]× |t2(τ∗)|. (17)

In (17), let λ : R2 → R be a weight function that can either converge to unity

or zero. For the proposed method to work, the function λ(S0(τ ∗), S1(τ ∗)) should

converge to unity when ut is I(0) and to zero when ut is I(1) or I(2). On the other

hand, λ(S1(τ ∗), S2(τ ∗)) should converge to unity when ut is I(0) or I(1) and to zero

when ut is I(2). For that reason it is now necessary to choose the appropriate

auxiliary statistics Si(τ ∗) for i = 0, 1, 2, and the weight functions λ(S0(τ ∗), S1(τ ∗))

and λ(S1(τ ∗), S2(τ ∗)).

The auxiliary statistics were build based on the stationary LM statistics of

Kwiatkowski et al. (1992). They are calculated from the residuals {ût(τ ∗)}Tt=1,

{v̂t(τ ∗)}Tt=2 and {k̂t(τ ∗)}Tt=3, each of each invariant to the values of α, β and γ and

ω̂2
i (τ
∗) for i = 0, 1, 2 is the long run variance estimator.

S0(τ ∗) :=

∑T
t=1(

∑t
i=1 ûi(τ

∗))2

T 2ω̂2
0(τ ∗)

, (18)

S1(τ ∗) :=

∑T
t=2(

∑t
i=2 v̂i(τ

∗))2

(T − 1)2ω̂2
1(τ ∗)

, (19)

S2(τ ∗) :=

∑T
t=3(
∑t

i=3 k̂i(τ
∗))2

(T − 2)2ω̂2
2(τ ∗)

. (20)

The relevant large sample properties of these three statistics are established in

the following Lemma:
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Lemma 5.1. Let the conditions of Theorem 5.1 hold:

(i) If ut is I(0) then: (a) S0(τ∗) = Op(1), (b) S1(τ∗) = Op(l/T ) and (c) S2(τ∗) = Op(l/T );

(ii) If ut is I(1) then: (a) S0(τ∗) = Op(T/l), (b) S1(τ∗) = Op(1) and (c) S2(τ∗) = Op(l/T );

(iii) If ut is I(2) then: (a) S0(τ∗) = Op(T
3/l), (b) S1(τ∗) = Op(T/l) and (c) S2(τ∗) =

Op(1).

Proof. The proof is similar to that of Lemma 1 in Harvey et al. (2009).

The previous Lemma suggests two weight functions λ : R2 → R such that:

λ(S0(τ ∗), S1(τ ∗)) := e[−(g1S0(τ∗)S1(τ∗))g2 ], (21)

λ(S1(τ ∗), S2(τ ∗)) := e[−(g3S1(τ∗)S2(τ∗))g4 ], (22)

where gi for i = 1, 2, 3, 4 are positive constants in order to keep the convergence

in the limit. For both functions, the large sample convergence is achieved at an

exponential rate. From Theorem 5.1 and Lemma 5.1 the following corollary can

be stated:

Corollary 5.1. Let the conditions of Theorem 5.1 hold.

(i) If ut is I(0) then (a) λ(S0(τ ∗), S1(τ ∗))
p→ 1, (b) λ(S1(τ ∗), S2(τ ∗))

p→ 1 and

t∗λ,2 = |t0(τ ∗)|+ op(1)
d→ N(0, 1);

(ii) If ut is I(1) then (a) λ(S0(τ ∗), S1(τ ∗))
p→ 0, (b) λ(S1(τ ∗), S2(τ ∗))

p→ 1 and

t∗λ,2 = |t1(τ ∗)|+ op(1)
d→ N(0, 1);

(iii) If ut is I(2) then (a) λ(S0(τ ∗), S1(τ ∗))
p→ 0, (b) λ(S1(τ ∗), S2(τ ∗))

p→ 0 and

t∗λ,2 = |t2(τ ∗)|+ op(1)
d→ N(0, 1).
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Remark 5.2. The results in Corollary 5.1 show that if ut is I(0) then t∗λ,2 is asymp-

totically equivalent to |t0(τ ∗)|. Equivalently, if ut is I(1) then t∗λ,2 is asymptotically

equivalent to |t1(τ ∗)|. Finally, if ut is I(2) then t∗λ,2 is asymptotically equivalent to

|t2(τ ∗)|. That is, t∗λ,2 achieves the appropriate limit distribution independently of

the nature of the shocks.

When the break fraction, τ ∗, can be arbitrarily chosen it was proved that t∗λ,2
d→

N(0, 1), irrespective of whether the shocks are I(0), I(1) or I(2). To allow that

test to be robust to I(2) shocks, both the auxiliary statistic S2(τ ∗) and the weight

function λ(S1(τ ∗), S2(τ ∗)) had to be created and added to existing robust tests for

the I(0) and I(1) processes, after significant transformations. To move forward for

the unknown break fraction the same methodology was applied though the break

date had to be estimated through a maximization process.

5.2 Unknown Break Fraction

This is the most realistic case scenario. As pointed out by Montañés (1997)

the time of break does not always coincide with the announcement of an eco-

nomic event nor with its realization. It can take place further back in time or

ahead. For that reason, a data dependent algorithm is needed to select the date

after which perceptible changes occur in the quadratic time trend. The same

methodology of Harvey et al. (2009) and Andrews (1993) was followed to esti-

mate the break date for the I(0), I(1) and I(2) shocks.

The appropriate statistics to test for the existence of a break in trend is given

by the maxima of the sequence of statistics {|t0(τ)|, τ ∈ Λ}, {|t1(τ)|, τ ∈ Λ}, and
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{|t2(τ)|, τ ∈ Λ} where Λ = [τL, τU ], and 0 < τL < τU < 1. The quantities τL and τU

will be referred as the lower and upper trimming parameters, respectively. Fur-

thermore, consider the set Λ∗ := {bτLT c, . . . , bτUT c} and the true break fraction

τ ∗ ∈ Λ. The aforementioned statistics are given by the following set of equations:

t∗i := sup
s∈Λ∗

∣∣∣ti( s
T

)∣∣∣ for i = 0, 1, 2 and T > 0, (23)

with associated breakpoint estimators of τ ∗ given by τ̂i := arg sups∈Λ∗

∣∣ti( s
T

)∣∣ for

i = 0, 1, 2 and T > 0, such that t∗0 ≡ |t0(τ̂0)|, t∗1 ≡ |t1(τ̂1)| and t∗2 ≡ |t2(τ̂2)|.

Furthermore, the dummy variables in section 5.1 must be redefined. In the case

of unknown break fraction DTQt(τ̂0) := 1(t > T ∗0 )[(1/2)(t − T ∗0 )2], DTLt(τ̂1) :=

1(t > T ∗1 )(t− T ∗1 − 1/2) and

DTUt(τ̂2) =



0 if t < T ∗2 ,

0.5 if t = T ∗2 ,

1 if t > T ∗2 ,

for all t ∈ Λ∗,

where T ∗0 := bτ̂0T c, T ∗1 := bτ̂1T c and T ∗2 := bτ̂2T c. Similar considerations must be

adopted to the stationary statistics of Kwiatkowski et al. (1992).

For the unknown break date case the proposed test statistic is given by:

tλ,2 = λ(S0(τ̂0), S1(τ̂1))× t∗0 +mξ1 [λ(S1(τ̂1), S2(τ̂2))− λ(S0(τ̂0), S1(τ̂1))]× t∗1

+mξ2 [1− λ(S1(τ̂1), S2(τ̂2))]× t∗2. (24)

with λ(S0(τ̂0), S1(τ̂1)) := e[−(g1S0(τ̂0)S1(τ̂1))g2 ] and λ(S1(τ̂1), S2(τ̂2)) := e[−(g3S1(τ̂1)S2(τ̂2))g4 ].

The associated break point estimator, τ̂ , is going to be τ̂0 if ut is I(0), τ̂1 if ut is
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I(1) or τ̂2 if ut is I(2).

The large sample behaviour of the t∗0, t∗1 and t∗2 statistics must be taken both

under the null hypothesis H0 : γ = 0 and the alternative HA : γ 6= 0, when the

shocks ut are I(0), I(1) or I(2). For the null hypothesis, it can be proved that:

Theorem 5.2. Let the time series process {yt} be generated according to equa-

tions (1) and (2) under H0 : γ = 0 and let the conditions of Theorem 5.1 hold.

(i) If ut in (2) is I(0) then: (a) t∗0
d→ supτ∈Λ |L00(r, τ∗)|, (b) t∗1 = Op(l/T )1/2 and (c)

t∗2 = Op(l/T )1/2;

(ii) If ut in (2) is I(1) then: (a) t∗0 = Op(T/l)
1/2, (b) t∗1

d→ supτ∈Λ |L11(r, τ∗)| and (c)

t∗2 = Op(l/T )1/2;

(iii) If ut in (2) is I(2) then: (a) t∗0 = Op(T
3/l)1/2, (b) t∗1 = Op(T/l)

1/2 and (c) t∗2
d→

supτ∈Λ |L22(r, τ∗)|.

Proof. The sketch of the proof can be found in the appendix A.

Similarly to Lemma 5.1, the large sample behaviour of the S0(τ̂0), S1(τ̂1) and

S2(τ̂2) statistics can also be stated.

Lemma 5.2. Let the conditions of Theorem 5.1 hold:

(i) If ut is I(0) then: (a) S0(τ̂0) = Op(1), (b) S1(τ̂1) = Op(l/T ) and (c) S2(τ̂2) = Op(l/T );

(ii) If ut is I(1) then: (a) S0(τ̂0) = Op(T/l), (b) S1(τ̂1) = Op(1) and (c) S2(τ̂2) = Op(l/T );

(iii) If ut is I(2) then: (a) S0(τ̂0) = Op(T
3/l), (b) S1(τ̂1) = Op(T/l) and (c) S2(τ̂2) = Op(1).

By using the same arguments as Harvey et al. (2009), regardless of whether

H0 or HA holds, it is possible to show that λ(S0(τ̂0), S1(τ̂1)) and λ(S1(τ̂1), S2(τ̂2))
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converge in probability to zero or one, depending on the nature of the shocks.

These results are summarized in Table III.

Although the following Corollary has not been formally proved, it is expected

to describe with some accuracy the asymptotic null distribution of the statistic in

equation (24), under H0 : γ = 0.

Corollary 5.2. Let the conditions of Theorem 5.1 hold. Let H0 : γ = 0 hold. Then:

(i) If ut is I(0): tλ,2 = t∗0 + op(1)
d→ supτ∈Λ |L00(r, τ ∗)|;

(ii) If ut is I(1): tλ,2 = mξ1t
∗
1 + op(1)

d→ mξ1 supτ∈Λ |L11(r, τ ∗)|;

(iii) If ut is I(2): tλ,2 = mξ2t
∗
2 + op(1)

d→ mξ2 supτ∈Λ |L22(r, τ ∗)|.

For a given significance level, ξ, under the null hypothesis H0, the constants

mξ1 and mξ2 can be calculated to ensure that, asymptotically, the critical values

of the mξ1 supτ∈Λ |L11(r, τ ∗)| and mξ2 supτ∈Λ |L22(r, τ ∗)| coincide with the critical

values of supτ∈Λ |L00(r, τ ∗)|, similarly to Vogelsang (1998).

The consistency rates of the statistics t∗i for i = 0, 1, 2 under a fixed alternative

of the form HA : γ 6= 0 are hard to obtain and the proof of those results are

out of the scope of this thesis and are left for future investigation. Nevertheless,

it is possible to obtain the asymptotic critical values of the test through Monte

Carlo techniques by simulating the appropriate limiting distribution. The practical

implementation of the test procedures is explained in section 6.
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6 Practical Implementation of the Test Procedures

The asymptotic critical values of the test statistic tλ,2 are provided in Table I,

for ξ = {0.10, 0.05, 0.01}, along with the corresponding values mξ1 and mξ2. This

figure was obtained under the null hypothesis of no break in trend, H0 : γ = 0,

against the two-sided alternative HA : γ 6= 0. A 10% trimming parameter was

used such that τL = 0.10 and τU = 0.90, similarly to Sayginsoy and Vogelsang

(2004). By doing so, the searching range for the occurrence of a structural break

is set to the restricted interval [bτ ∗LT c, bτ ∗UT c] with length b0.8T + 1c.

The results were obtained by simulation of the appropriate limiting distribution

with discrete approximations for T = 100 and 10000 replications using the rnorm

normal random number generator of R version 0.99.879.

Table I: Asymptotic critical values, mξ1 and mξ2 for the tλ,2 test statistic.

ξ Critical value mξ1 mξ2

0.10 2.300 1.086 1.159
0.05 2.695 1.096 1.187
0.01 3.489 1.113 1.181

Source: R output

To implement the test statistic it was also needed to specify the constants

g1,g2, g3 and g4. Different constants can be assigned to these values, however,

and as a rule of thumb, the ones to be picked are those that deliver the best

overall performance after Monte Carlo simulations of the finite sample size and

power. The same reasoning can be applied to choose the bandwidth parameter.
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Figure 1: Probability density functions of t∗0, t∗1 and t∗2.

In this testing procedure, the recommended values of Harvey et al. (2009) were

used such that g1 = g3 = 500, g2 = g4 = 2 and l = b4(T/100)
1
4 c. Figure 1 plots

the probability density functions of t∗0 , t∗1 and t∗2 and it can be observed that for all

cases the asymptotic distribution is skewed to the right.

The source code to apply the test statistic tλ,2 to real-life data can be found in

appendix C.

7 Conclusions

This thesis proposed new tests for the presence of a one time structural

change in the trend level of a univariate time series which is valid regardless

of the shocks being I(0), I(1) or I(2). The I(2) hypothesis was introduced to the

subject of structural break testing to fulfil a long standing gap in the econometric

literature.

With this idea in mind, two different frameworks were established depending
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on the information available about the trend break date. Under a known break

date, the proposed test is a weighted average of the absolute values of three

regression t-ratios, each one appropriate for the case where the data is gener-

ated by an I(0), I(1) or an I(2) process. These statistics were proved to have

standard normal limiting null distributions. For the opposite case scenario, of un-

known break date, additional complexity was brought to the testing procedure. In

fact, a supremum based approach had to be taken to determine the break point

estimators of the true break date. The asymptotic critical values were computed

through Monte Carlo simulation and provided a completely different picture when

compared to the known break date hypothesis.

In the future, it would be useful to restate Theorem 5.1 to a wider scenario.

The results in section 5.2 should also be given more attention. In particular, the

consistency rates of the appropriate statistics under a fixed alternative HA : γ 6= 0

should be established. Furthermore, size and power tests must be taken for dif-

ferent values of the constants gi for i = 1, 2, 3, 4 to find out which combinations

of values deliver the best overall result. It is also desirable to obtain asymptotic

critical values for 50000 replications and T = 1000, which requires solving an op-

timization problem while implementing the Monte Carlo simulation. Finally, after

overcoming all these technical issues, it would be interesting to provide tests for

multiple breaks and to propose an empirical application to financial and economic

data.
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A Mathematical Appendix

Theorem A.1 (Frisch-Waugh-Lovell Theorem (FWLT)). Consider the model Y =

X1β1 + X2β2 + ε where X = (X1, X2) and β = (β1, β2)′. The OLS estimator of β2

and the OLS residuals ε̂ may be computed by the following algorithm:

1. Regress Y on X1; obtain residuals Ỹ ;

2. Regress X2 on X1; obtain residuals X̃2;

3. Regress Ỹ on X̃2; obtain OLS estimates β̂2 and residuals ε̂.

X2

X1

Ỹ

�̂X

Y

X̃2

✏̂

Figure 2: The Frisch-Waugh-Lovell Theorem with X1 ⊥ X2.

Proof of Theorem (5.1). The proof of this Theorem follows from natural exten-

sion to Theorem 1 of Harvey et al. (2009) and is done in three steps. First, the

FWLT is applied to estimate γ from equation (1). With this procedure, complex

numerical calculations in inverting high order matrices are avoided. Then, results

about weak convergence from asymptotic theory are applied to t0(τ ∗) under the

assumptions that the errors might be either I(0), I(1) or I(2). This procedure is

repeated for equations (4) and (6). Due to the invariance of the statistics, α and
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β can be set to zero. Table II bellow illustrates the disturbance term in equations

(1), (4) and (6) under different assumptions about the stationary properties of the

shocks and provides the error terms that appear in the proof of parts I, II and III

below.

Table II: Error terms after first and second differences.

ut α1 α2 eq. (1) eq. (4) eq. (6)

I(0) 0 0 ut = εt ∆ut = ∆εt ∆2ut = ∆2εt

I(1) 0 1 ut = ut−1 + εt ∆ut = εt ∆2ut = ∆εt

I(2) 1 1 ut = 2ut−1 − ut−2 + εt ∆ut = ∆ut−1 + εt ∆2ut = εt

PART I: The regressor γ can be estimated from equation (1) and Theorem

(A.1). To that end, consider equation (25) below:

Yt = γRTQt(τ
∗) + et t = 1, . . . , T, (25)

where et is an error term, Yt are the OLS residuals from regressing yt into 1, t and

t2 and RTQt(τ
∗) are the OLS residual from regressing DTQt(τ

∗) into 1, t and t2.

It is possible to show that under H0 the test statistic t0(τ ∗) can be determined by

the following equation:

t0(τ ∗) =

∑T
t=1 RTQt(τ

∗)ut√
ω̂2

0

∑T
t=1 RTQt(τ ∗)2

. (26)

(i.a) The shocks are I(0): The proof of the weak convergence result is carried

out by looking through Proposition B.1, items (e) and (g) and Remark 4.1
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which states that ω̂2
0(τ ∗)

p→ ω2
u. That is:

t0(τ ∗) =
T−5/2

∑T
t=1 RTQt(τ

∗)εt√
T−5

∑T
t=1RTQt(τ ∗)2

× 1√
ω̂2

0

d→
∫ 1

0
RTQ(r, τ ∗)dW (r)√∫ 1

0
RTQ(r, τ ∗)2dr

,

where W (r) is a standard Brownian motion on [0, 1] and RTQ(r, τ ∗) is the

continuous time residual from the projection of 1(r > τ ∗)(r − τ ∗)2 into the

space spanned by {1, r, r2}.

(ii.a) The shocks are I(1): Harvey et al. (2009) extended the results in Kwiatkowski

et al. (1992) to establish the result that (lT )−1ω̂2
0

d→ ω2
ε

∫ 1

0
H1(r, τ ∗)2dr,

where H1(r, τ ∗)is a continuous time residual from the projection of W (r)

into the space spanned by {1, r, r2,1(r > τ ∗)(r− τ ∗)2}. By Proposition B.1,

items (e), (f) and (g) it can be seen that:

T−7/2
∑

t2ut = T−7/2
∑

t2ut−1 + T−7/2
∑

t2εt

= T−7/2
∑

t2ut−1 + T−5/2T−1
∑

t2εt

= T−7/2
∑

t2ut−1 +
1

T
T−5/2

∑
t2εt as T →∞

≡ T−7/2
∑

t2ut−1 + op(1).

Finally:

(lT−1)1/2t0(τ ∗) =
T−7/2

∑T
t=1 RTQt(τ

∗)ut−1√
T−5

∑T
t=1RTQt(τ ∗)2

× 1√
(lT )−1ω2

0

= Op(1).

(iii.a) The shocks are I(2): It can be conjectured from Lemma 5 of Haldrup

and Lildholdt (2002) that (lT )−1ω2
0

d→ ω2
ε

∫ 1

0
H2(r, τ ∗)2dr, where H2(r, τ ∗)is
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a continuous time residual from the projection of W (r) into the space

spanned by {1, r, r2,1(r > τ ∗)(r − τ ∗)2}. This comes from the fact that

one more unit root is present in {ut}. By Proposition B.3, items (j) and

Proposition B.1 item (g) the result follows:

(lT−3)1/2t0(τ ∗) =
T−9/2

∑T
t=1RTQt(τ

∗)ut√
T−5

∑T
t=1RTQt(τ ∗)2

× 1√
(lT )−1ω2

0

= Op(1).

PART II: The regressor γ can be estimated from equation (4) and Theorem

(A.1). To that end, consider following equation:

Yt = γRTLt(τ
∗) + et t = 2, . . . , T, (27)

where et is an error term, Yt are the OLS residuals from regressing ∆yt into 1

and t and RTLt(τ ∗) are the OLS residual from regressing DTLt(τ ∗) into 1 and t.

Using the FWLT, it is possible to show that under H0 the test statistic t1(τ ∗) can

be determined by the following equation:

t1(τ ∗) =

∑T
t=2RTLt(τ

∗)∆ut√
ω̂2

1

∑T
t=2RTL

2
t (τ
∗)
. (28)

(i.b) The shocks are I(0): It is conjectured that
∑
RTLt(τ

∗)∆εt ≡ Op(T ) and

that lω̂2
1(τ ∗)

p→ c where c = −2
∑∞

s=1 sγ
′
s and γ′s = E(∆ut∆ut−s) (see Ley-

bourne et al., 2004) which implies that:

(T l−1)1/2t1(τ ∗) =
T−1

∑T
t=2RTLt(τ

∗)∆εt√
T−3

∑T
t=2RTL

2
t (τ
∗)
× 1√

lω̂2
1

= Op(1).
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(ii.b) The shocks are I(1): By Proposition B.1, items (c) and (g) and Remark 4.1

we know that ω̂1(τ ∗)→ ω2
ε . Finally:

t1(τ ∗) =
T−

3
2

∑T
t=2RTLt(τ

∗)εt√
T−3

∑T
t=2RTL

2
t (τ
∗)
× 1√

ω̂2
1(τ ∗)

d→
∫ 1

0
RTL(r, τ ∗)dW (r)√∫ 1

0
RTL(r, τ ∗)2dr

.

(iii.b) The shocks are I(2): (lT )−1ω̂2
1 → ω2

ε

∫ 1

0
H3(r, τ ∗)dr, whereH3(r, τ ∗)is a con-

tinuous time residual from the projection of W (r) into the space spanned

by {1, r,1(r > τ ∗)(r − τ ∗)}. According to Proposition B.3 item (g) and

Proposition B.1 item (g):

(lT−1)1/2t1(τ ∗) =
T−5/2

∑T
t=2RTLt(τ

∗)∆ut√
T−3

∑T
t=2RTL

2
t (τ
∗)
× 1√

(lT )−1ω̂2
1(τ ∗)

= Op(1).

PART III: The regressor γ can be estimated from equation (6) and Theorem

(A.1). To that end, consider following equation:

Yt = γRTUt(τ
∗) + et t = 3, . . . , T,

where et is an error term, Yt are the OLS residuals from regressing ∆2yt into 1 and

RTUt(τ
∗) are the OLS residuals from regressing DTUt(τ ∗) into 1. It is possible to

show that under H0 : γ = 0, equation (12) is equivalent to:

t2(τ ∗) =

∑T
t=3RTUt(τ

∗)∆2ut√
ω̂2

2

∑T
t=3RTU

2
t (τ ∗)

. (29)

(i.c) The shocks are I(0):The goal now is to determine the rate of convergence
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of
∑T

t=3 RTUt(τ
∗)∆2ut. The residuals RTUt(τ ∗) are equal to

RTUt(τ
∗) = DTUt(τ

∗)− θ̂2 =


0−DTU(τ∗) if t < T ∗

b + 1,

0.5−DTU(τ∗) if t = T ∗
b + 1,

1−DTU(τ∗) if t > T ∗
b + 1,

where θ̂2 = DTU(τ ∗). RTUt(τ ∗) is asymptotically equivalent to

RTUt(τ
∗) =


τ∗ − 1 if t < Tb + 1∗,

τ∗ − 0.5 if t = T ∗
b + 1.

τ∗ if t > T ∗
b + 1,

since DTU(τ ∗)→ 1− τ ∗.

Finally, by successive substitutions, the result follows:

T∑
t=3

RTUt(τ
∗)∆2ut =

T∗
b∑

t=3

RTUt(τ
∗)∆2ut + [τ∗ − 0.5]∆2uT∗

b +1 +

T∑
t=T∗

b +2

RTUt(τ
∗)∆2ut

= (τ∗ − 1)

T∗
b∑

t=3

∆2ut + [τ∗ − 0.5]∆2uT∗
b +1 + τ∗

T∑
t=T∗

b +2

∆2ut

= (τ∗ − 1)(∆2u3 + . . .+ ∆2uT∗
b

) + [τ∗ − 0.5]∆2uT∗
b +1 +

+ τ∗(∆2uT∗
b +2 + . . .+ ∆2uT )

= (1− τ∗)∆u2 − 0.5(∆uT∗
b

+ ∆uT∗
b +1) + (τ∗)∆uT ,

which implies that
∑T

t=3RTUt(τ
∗)∆2ut = Op(1), since ut is I(0). Fur-

thermore, it is assumed that lω̂2(τ ∗)
p→ c where c = −2

∑∞
s=1 sγ

′
s and

γ′s = E(∆2ut∆
2ut−s). As a result:

(l−1T )1/2t2(τ ∗) =

∑T
t=3RTUt(τ

∗)∆2ut√
T−1

∑T
t=3RTU

2
t (τ ∗)

× 1√
lω̂2(τ ∗)2

= Op(1).

(ii.c) The shocks are I(1): Similarly to the result established above, it is possible

to show that
∑T

t=3 RTUt∆εt = (1− τ ∗)ε2−0.5(εT ∗
b

+ εT ∗
b +1) + (τ ∗)εT = Op(1)
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since εt is a white noise process. Hence:

(l−1T )1/2t2(τ ∗) =

∑T
t=3RTUt(τ

∗)∆2ut√
T−1

∑T
t=3RTU

2
t (τ ∗)

× 1√
lω̂2(τ ∗)2

= Op(1).

(iii.c) The shocks are I(2): The result follows immediately from Proposition B.1

item (a).

t2(τ∗) =
T−1/2

∑T
t=3RTUt(τ

∗)εt√
T−1

∑T
t=3RTU

2
t (τ∗)

× 1√
ω̂2
2

d→
∫ 1

0
RTU(r, τ∗)dW (r)√∫ 1

0
RTU(r, τ∗)2dr

.

Proof of Theorem (5.2). The proof is similar to that of Theorem 5.1 but requires

the application of the Continuous Mapping Theorem and the fact that the sup

function is continuous in the time interval under study. It is a natural extension of

the proof of Theorem 2 in (Harvey et al., 2009), which is omitted for the interest

of brevity.

Table III: Convergence in probability of λ(S0(τ̂0), S1(τ̂1)) and λ(S1(τ̂1), S2(τ̂2)).

ut ∼ I(0) ut ∼ I(1) ut ∼ I(2)

λ(S0(τ̂0), S1(τ̂1))
p→ 1 λ(S0(τ̂0), S1(τ̂1))

p→ 0 λ(S0(τ̂0), S1(τ̂1))
p→ 0

λ(S1(τ̂1), S2(τ̂2))
p→ 1 λ(S1(τ̂1), S2(τ̂2))

p→ 1 λ(S1(τ̂1), S2(τ̂2))
p→ 0

B Mathematical Appendix

Phillips (1987) was the first to use the Functional Central Limit to study the

asymptotic distribution of statistics constructed from a unit root process. Its main
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findings can be found in Proposition 17.1 of Hamilton (1994). In the case of I(1)

errors and known break date the asymptotic distribution of ti, i = 0, 1, 2 can be

derived by using Proposition B.1 bellow. Park and Phillips (1989) and Haldrup

(1998) gave their contribution to the analysis of the asymptotic properties of sec-

ond order autoregressive functions. Proposition B.2 and B.3 were used to prove

the asymptotic distribution of |ti(τ ∗)| for i = 0, 1, 2 in the case of I(2) errors pre-

sented in Theorem 5.1.

B.1 Asymptotic Properties of a First-Order Autoregression

Proposition B.1. Suppose that {yt} follows a random walk without drift, that is:

yt = yt−1 + ut, (30)

where y0 = 0 and {ut} is an i.i.d.sequence with zero mean and variance σ2. Then:

(a) T−1/2
∑T

t=1 ut
d→ σW (1)

(b) T−1
∑T

t=1 yt−1ut
d→ (1/2)σ2{[W (1)]2 − 1} = σ2

∫ 1

0
W (r)dW (r)

(c) T−3/2
∑T

t=1 tut
d→ σ[W (1)−

∫ 1
0 W (r)dr] = σ

∫ 1
0 rdW (r)

(d) T−5/2
∑T

t=1 tyt−1
d→ σ

∫ 1
0 rW (r)dr

(e) T−5/2
∑T

t=1 t
2ut

d→ σ[rW (1)−
∫ 1

0 rW (r)dr] = σ
∫ 1

0 r
2dW (r)

(f) T−7/2
∑T

t=1 t
2yt−1

d→ σ
∫ 1

0 r
2W (r)dr

(g) T−(v+1)
∑aT

t=1 t
v → a

(v+1) for v = 0, 1, . . .

Proof. The proof of results (a),(b),(c), (d) and (g) can be found in Hamilton (1994)

and the proof of items (e) and (f) are done in what follows. From item (c) and the
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Continuous Mapping Theorem (CMT) it is possible to show that:

T−5/2

T∑
t=1

t2ut = T−1T−3/2

T∑
t=1

t2ut = T−3/2

T∑
t=1

t

T
tut = T−3/2

T∑
t=1

rtut

d→ σ

∫ 1

0

r2dW (r),

where r = t/T is the same defined in (Hamilton, 1994, pag. 486). From item (d)

and the CMT it is possible to prove that:

T−7/2

T∑
t=1

t2yt−1 = T−1T−5/2

T∑
t=1

t2yt−1 = T−5/2

T∑
t=1

rtyt−1
d→ σ

∫ 1

0

r2W (r)dr.

B.2 Asymptotic Properties of a Second-Order

Autoregression

It is a well established result that equation (30), a random walk without drift,

is equal to yt =
∑t

i=1 ui, with initial condition y0 = 0 and where {ut} is an i.i.d

random variable with zero mean and constant variance. This shows that for a

random walk, the shocks to the series occurring in the past will persist and have

a influence on the levels of the series. Interestingly, a process with two unit roots

given by the equation yt = 2yt−1 − yt−2 + ut, with initial conditions y−1 = y0 = 0

and y1 = u1, is equal to a double summation of shocks, that is, yt =
∑t

i=1

∑i
j=1 uj.

The double summation of shocks is one of the main reasons that explains the

smoothness of a graph of an I(2) time series when compared to the graph of
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an I(1) time series. But is there a meaning to a single summation of shocks in

the context of an I(2) process? In this appendix, it is given the answer to this

question and it is shown how it can be useful to derive the asymptotic properties

of a second order process from Proposition B.1.

Proposition B.2. Consider the process with two unit roots yt = 2yt−1 − yt−2 + ut,

for all t = 2, . . . , T , with initial conditions y−1 = y0 = 0 and y1 = u1. Then:

∆yt =
t∑
i=1

ui. (31)

Proof. By Mathematical Induction. For t = 1, ∆y1 is trivially equal to u1. If equa-

tion (31) is true then:

∆yt+1 =
t∑
i=1

ui + ut+1 ⇔ ∆yt+1
eq.(31)

= ∆yt + ut+1

⇔ ∆yt+1 −∆yt = ut+1

⇔ ut+1 = ut+1.

The main purpose of this Proposition is to establish a parallel between the

theory developed for random walks and a process with two unit roots. This ap-

pendix follows the same methodology of (Hamilton, 1994, chap. 17) but details

are omitted in the interest of brevity.

Consider the stochastic function X∗T (r), constructed from the sample mean of

the first rth fraction of observations from a sample of size T , where r ∈ [0, 1], and
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that is defined by3:

X∗T (r) ≡ 1

T

bTrc∗∑
t=1

ut. (32)

For any given realization, X∗T (r) is a step function in r. By equation (31):

X∗T (r) =



0 for 0 ≤ r ≤ 1/T,

u1/T = ∆y1/T for 1/T ≤ r < 2/T,

(u1 + u2)/T = ∆y2/T for 2/T ≤ r < 3/T,
...

(u1 + u2 + · · ·+ uT )/T = ∆yt/T for r = 1.

(33)

Figure 3 plots X∗T (r) as a function of r. The area under the step function is the

sum of T rectangles. The tth rectangle has height ∆yt−1/T , width 1/T and area

∆yt−1/T
2. The steps become increasingly smaller as T → ∞, so that in the limit

X∗T (r) is a continuous function of r.

6
X∗

T (r)

- r

6

?

6

?
1
T

2
T

3
T

4
T

∆y1
T

∆y2
T

∆y3
T

∆y4
T

6

?

6

?

Figure 3: Plot of the stochastic function X∗T (r) as a function of r.

3Please notice the differences between eq. (32) and eq. (17.3.2) from (Hamilton, 1994).
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The sequence of stochastic functions {
√
TX∗T (·)/σ}∞T=1 has an asymptotic

probability law4 that is described by standard Brownian motion W (·):

√
TX∗T (·)/σ d→ W (·). (34)

Proposition B.3. Suppose that {yt} is a random sequence with two unit roots

yt = 2yt−1 − yt−2 + ut t = 2, . . . , T,

with initial conditions y−1 = y0 = 0 and y1 = u1, satisfying the regulatory conditions

of Phillips (1987), (Assumption 2.1), then as T →∞:

(a) T−
3
2ybTrc

d→ σ
∫ r

0
W (s)ds ≡ σW (r)

(b) T−
1
2 ∆ybTrc

d→ σW (r)

(c) T−4
∑T

t=1 y
2
t

d→ σ2
∫ 1

0
W (r)2dr

(d) T−2
∑T

t=1 ∆y2
t

d→ σ2
∫ 1

0
W (r)2dr

(e) T−3
∑T

t=1 yt−1∆yt
d→ σ2

∫ 1

0
W (r)W (r)dr = σ2

2
W (1)2

(f) T−3
∑T

t=1 t∆y
2
t

d→ σ2
∫ 1

0
rW (r)2dr

(g) T−5/2
∑T

t=1 t∆yt
d→ σ

∫ 1

0
rW (r)dr

(h) T−7/2
∑T

t=1 t
2∆yt

d→ σ
∫ 1

0
r2W (r)dr

(i) T−7/2
∑T

t=1 tyt
d→ σ

∫ 1

0
rW (r)dr

(j) T−9/2
∑T

t=1 t
2yt

d→ σ
∫ 1

0
r2W (r)dr

4The proof follows from trivial extensions to the results in Hamilton (1994, chap. 17).
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Proof. The results (a), (b), (c) and (d) can be deduced from Lemma 2.1 of Park

and Phillips (1989). Equation (e) is proven in Lemma 4 of Haldrup and Lildholdt

(2002). Finally, equations (f) until (j) are proven in what follows.

From item (d) and the CMT is is possible to show that:

T−3

T∑
t=1

t∆y2
t = T−1T−2

T∑
t=1

t∆y2
t = T−2

T∑
t=1

t

T
∆y2

t
d→ σ2

∫ 1

0

rW (r)2dr.

The proof of item (h) follows from Lemma 2.1 (a.ii) of Park and Phillips (1989).

Notice that in that papers’ notation x2t ≡ ∆yt. By the CMT and since x2t is a

process with one unit root, the result can be stated:

T−5/2

T∑
t=1

t∆yt = T−1T−3/2

T∑
t=1

t∆yt = T−3/2

T∑
t=1

r∆yt
d→ σ

∫ 1

0

rW (r)dr.

By the aforementioned Lemma and the CMT it is possible to show that:

T−7/2

T∑
t=1

t2∆yt = T−2T−3/2

T∑
t=1

t2∆yt = T−3/2

T∑
t=1

r2∆yt
d→ σ

∫ 1

0

r2W (r)dr.

Finally, the proof of item (j) follows from Lemma 2.1 (b.i) of Park and Phillips

(1989). Notice that in the authors’ notation x3t is a process with two unit roots.

T−9/2

T∑
t=1

t2yt = T−1T−7/2

T∑
t=1

t2yt = T−7/2

T∑
t=1

rtyt
d→ σ

∫ 1

0

r2W (r)dr.
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C Unknown Break Date Source Code

This appendix provides a computational framework to test for the existence of a struc-

tural break in the presence of an unknown break fraction. The software used was R

version 0.99.879. This program requires the package “matrixcalc”.

C.1 Input

1 y

C.2 Auxiliary Constants and Lists

1 n= leng th ( y ) ; trm =0.1 ; tb l = f l o o r ( trm∗n ) ; tb u=n−tb l

2 range= tb u−tb l +1

3 const=rep (1 , n ) ; t l =seq . i n t (1 , n ) ; t s q r = t l ˆ2

4 ba r t lag= f l o o r (4 ∗ ( n / 100) ˆ ( 1 / 4) )

5 m1 10=1.086; m1 05=1.096; m1 01=1.113;

6 m2 10=1.159; m2 05=1.187; m2 01=1.181;

7 g1=500; g2=2; g3=500; g4=2;

8 t0aux=numeric ( range ) ; t1aux=numeric ( range ) ; t2aux=numeric ( range )

9 v0=numeric ( nsim ) ; v1=numeric ( nsim ) ; v2=numeric ( nsim )

C.3 Auxiliary Functions

1 kpss= f u n c t i o n ( residuos , s2 ) { (sum(cumsum( res iduos ) ˆ 2 ) ) / ( s2∗ l eng th (

res iduos ) ˆ 2 ) }

2 l r v a r i a n c e = f u n c t i o n ( residuos , l ) {

3 l t h = leng th ( res iduos ) ; aux1=numeric ( l t h −1) ; h=numeric ( l t h −1)

4 f o r ( j i n 1 : ( l t h −1) ) { h [ j ]<−1− j / ( l +1)
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5 f o r ( t i n ( j +1) : l t h ) { aux1 [ j ]= aux1 [ j ]+ res iduos [ t ] ∗ res iduos [ t− j ]

6 t = t +1} j = j +1}(sum( res iduos ˆ 2 ) + 2∗sum( h∗aux1 ) ) / ( l t h ) }

C.4 Dummy Variables

1 mtx dtq= mat r i x (0 .5 ∗seq . i n t (0 , n , 1 ) ˆ2 , n , tb u )

2 mtx dtq [ upper . t r i ( mtx dtq , diag=TRUE) ]=0

3 mtx dtq=mtx dtq [ ,−c ( 1 : tb l −1) ]

4

5 mtx d t l =mat r i x ( seq . i n t (0 , n , 1 ) −0.5 ,n , tb u )

6 mtx d t l [ upper . t r i ( mtx d t l , d iag=TRUE) ]=0

7 mtx d t l =mtx d t l [ ,−c ( 1 : tb l −1) ]

8

9 mtx dtu=mat r i x ( rep (1 , n ) ,n , tb u )

10 mtx dtu [ upper . t r i ( mtx dtu , diag=TRUE) ]=0

11 mtx dtu=mtx dtu [ ,−c ( 1 : tb l −1) ]

C.5 Time of Break for the I(0), I(1) and I(2) Case Scenarios

1 tb= tb l

2 whi le ( tb<=tb u ) {

3 mtx s t a t i o n a r y =mat r i x ( c ( const , t l , t sq r , mtx dtq [ , tb−tb l +1 ] ) ,n , 4 )

4 t ranspose s t a t i o n a r y = t ( mtx s t a t i o n a r y )

5 i nv s t a t i o n a r y =solve ( t ( mtx s t a t i o n a r y )%∗%mtx s t a t i o n a r y )

6 B s t a t i o n a r y = inv s t a t i o n a r y%∗%transpose s t a t i o n a r y%∗%y

7 res s t a t i o n a r y =y−(mtx s t a t i o n a r y%∗%B s t a t i o n a r y )

8 t0aux [ tb−tb l +1]=abs (B s t a t i o n a r y [ 4 ] / ( s q r t ( s2 ( res s ta t i ona ry , ba r t lag ) ∗

i nv s t a t i o n a r y [ 4 , 4 ] ) ) )

9
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10 mtx oneroot=mat r i x ( c ( const , t l , mtx d t l [ , tb−tb l +1 ] ) ,n , 3 ) [−1 ,]

11 t ranspose oneroot= t ( mtx oneroot )

12 i nv oneroot=solve ( transpose oneroot%∗%mtx oneroot )

13 y1= d i f f ( y , lag =1 , d i f f e r e n c e s = 1)

14 B oneroot= inv oneroot%∗%( transpose oneroot%∗%y1 )

15 res oneroot=y1−mtx oneroot%∗%B oneroot

16 t1aux [ tb−tb l +1]=abs (B oneroot [ 3 ] / ( s q r t ( l r v a r i a n c e ( res oneroot , ba r t lag

) ∗ i nv oneroot [ 3 , 3 ] ) ) )

17

18 mtx tworoot=mat r i x ( c ( const , mtx dtu [ , tb−tb l +1 ] ) ,n , 2 ) [ − (1 :2 ) , ]

19 t ranspose tworoot= t ( mtx tworoot )

20 i nv tworoot=solve ( transpose tworoot%∗%mtx tworoot )

21 y2= d i f f ( y , lag =1 , d i f f e r e n c e s = 2)

22 B tworoot= inv tworoot%∗%( transpose tworoot%∗%y2 )

23 res tworoot=y2−mtx tworoot%∗%B tworoot

24 t2aux [ tb−tb l +1]=abs (B tworoot [ 2 ] / ( s q r t ( l r v a r i a n c e ( res tworoot , ba r t lag

) ∗ i nv tworoot [ 2 , 2 ] ) ) )

25 tb= tb +1}

26 t0=max( t0aux ) ; t1=max( t1aux ) ; t2=max( t2aux )

C.6 Test Statistics for the Estimated Break Dates

1 t ime s t a t i o n a r y =which ( t0==t0aux )

2 mtx s t a t i o n a r y =mat r i x ( c ( const , t l , t sq r , mtx dtq [ , t ime s t a t i o n a r y ] ) ,n , 4 )

3 t ranspose s t a t i o n a r y = t ( mtx s t a t i o n a r y )

4 i nv s t a t i o n a r y =solve ( transpose s t a t i o n a r y%∗%mtx s t a t i o n a r y )

5 B s t a t i o n a r y = inv s t a t i o n a r y%∗%( transpose s t a t i o n a r y%∗%y )

6 res s t a t i o n a r y =y−(mtx s t a t i o n a r y%∗%B s t a t i o n a r y )
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7 l r v s t a t i o n a r y = l r v a r i a n c e ( res s ta t i ona ry , ba r t lag )

8 S0=kpss ( res s ta t i ona ry , l r v s t a t i o n a r y )

9

10 t ime oneroot=which ( t1==t1aux )

11 mtx oneroot=mat r i x ( c ( const , t l , mtx d t l [ , t ime oneroot ] ) ,n , 3 ) [−1 ,]

12 t ranspose oneroot= t ( mtx oneroot )

13 i nv oneroot=solve ( transpose oneroot%∗%mtx oneroot )

14 y1= d i f f ( y , lag =1 , d i f f e r e n c e s = 1)

15 B oneroot= inv oneroot%∗%( transpose oneroot%∗%y1 )

16 res oneroot=y1−(mtx oneroot%∗%B oneroot )

17 l r v oneroot= l r v a r i a n c e ( res oneroot , ba r t lag )

18 S1=kpss ( res oneroot , l r v oneroot )

19

20 t ime tworoot=which ( t2==t2aux )

21 mtx tworoot=mat r i x ( c ( const , mtx dtu [ , t ime tworoot ] ) ,n , 2 ) [ − (1 :2 ) , ]

22 t ranspose tworoot= t ( mtx tworoot )

23 i nv tworoot=solve ( transpose tworoot%∗%mtx tworoot )

24 y2= d i f f ( y , lag =1 , d i f f e r e n c e s = 2)

25 B tworoot= inv tworoot%∗%( transpose tworoot%∗%y2 )

26 res tworoot=y2−(mtx tworoot%∗%B tworoot )

27 l r v tworoot= l r v a r i a n c e ( res tworoot , ba r t lag )

28 S2=kpss ( res tworoot , l r v tworoot )

C.7 Test Statistic

1 lam kpss01=exp(−(g1∗S0∗S1) ˆ g2 ) ; lam kpss12=exp(−(g3∗S1∗S2) ˆ g4 )

2 t e s t kpss=lam kpss01∗ t0+m1 10∗ ( lam kpss12−lam kpss01 ) ∗ t1

3 +m2 10∗(1− lam kpss12 ) ∗ t2 # f o r a 10% s i g n i f i c a n c e l e v e l
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