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Abstract

The increase in competition in the Portuguese Motor insurance market has lead insu-

rers to consider a more demand-based approach to ratemaking, as a complement to

the usual risk-based approach. Insurance companies now want to have a better un-

derstanding of who their clients are, how they behave, and what actions can insurers

take, during the policy renewal period, in order to prevent their clients from leaving

while maintaining profitability.

This report is the result of a curricular internship that took place at Ocidental

Seguros, with the main goals of modelling the company’s Motor insurance lapse rate

during the renewal period and studying how different covariates influence renewals. We

considered logistic regression, a special case of Generalized Linear Models, to model

the binary response variable renewal/lapse.

By modelling the response as a function of premium change and other covariates,

the lapse probability for each client per amount of premium variation can then be

estimated. As premium change is the only covariate the company has direct control

over, obtaining such knowledge on each client’s price elasticity will allow the insurer

to make better decisions, so that a finer balance between customer satisfaction and

profitability can be achieved.

The model’s capacity to predict which clients will cancel their policy was also analy-

sed. In order to transform the output probabilities into binary classifications, several

threshold optimisation criteria were compared, to find the threshold generating the

best overall discriminatory performance.

Keywords: Motor insurance; Lapse rate; Renewal price elasticity; Logistic regression;

Binary classification
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Resumo

O aumento da competitividade no mercado segurador automóvel em Portugal tem

levado as seguradoras a considerar uma abordagem de tarifação mais assente na pro-

cura, como um complemento à tradicional abordagem baseada no risco. As companhias

de seguros querem actualmente saber mais sobre quem são os seus clientes, como es-

tes se comportam e que medidas podem as seguradoras tomar, durante o peŕıodo de

renovação de apólice, de modo a evitar a sáıda dos seus clientes sem prejudicar a

rentabilidade.

Este relatório é o resultado de um estágio curricular que teve lugar junto da Ociden-

tal Seguros, tendo como principais objectivos modelar a taxa de anulação na renovação

do seguro automóvel da companhia e analisar como diversas variáveis influenciam as

renovações. Considerámos a regressão loǵıstica, um caso particular dos Modelos Line-

ares Generalizados, para modelar a variável de resposta binária renovação/anulação.

Modelando a variável de resposta como uma função da variação do prémio e de

outras variáveis explicativas, é posśıvel estimar a probabilidade de anulação por valor

da alteração do prémio para cada cliente. Como a variação do prémio é a única variável

que a companhia pode controlar directamente, obter tal informação sobre a elasticidade

preço de cada cliente permitirá à seguradora tomar melhores decisões, com o objectivo

de aperfeiçoar o equiĺıbrio entre o grau de satisfação dos clientes e a rentabilidade.

A capacidade do modelo em prever que clientes irão anular as suas apólices foi

também examinada. Para converter as probabilidades obtidas pelo modelo em classi-

ficações binárias, foram comparados vários critérios de optimização de ponto de corte,

de modo a encontrar o valor que resulta na melhor capacidade discriminatória global.

Palavras-chave: Seguro automóvel; Taxa de anulação; Elasticidade preço nas reno-

vações; Regressão loǵıstica; Classificação binária
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Chapter 1

Introduction

This Masters Final Work is the result of a curricular internship, which took place

between February and June 2016 at Ocidental Seguros.

When non-life insurance companies develop their pricing strategy, two crucial mo-

ments in their relationship with their clients are taken into account. The first one is

the moment of risk acquisition and signing the contract (conversion). The second one,

which is the focus of this work, is the moment to renew that contract (renewal).

As in most countries, Motor Third-Party Liability insurance is mandatory in Por-

tugal, which has lead to a very competitive Motor insurance market where the average

premium per vehicle systematically decreased over 10 years up to 2014 (Associação

Portuguesa de Seguradores, 2015). Consequently, very different sets of prices are avail-

able to customers, meaning that, besides the usual risk-based approach to ratemaking,

insurers also need to be very careful with the premium variations presented to policy-

holders, when the time comes to renew their contract. In other words, the increasing

level of competition has compelled insurance companies to start looking into a more

demand-based approach to pricing, by trying to understand who their clients are, how

they behave, and what actions can insurers take, during the policy renewal period, in

order to prevent their clients from leaving while maintaining profitability.

It was under this setting that this work emerged, having as its two main goals

the modelling of the company’s Motor insurance lapse rate and studying how different

covariates influence renewals. By modelling the binary response variable renewal/lapse

as a function of premium change and other covariates, the lapse probability for each

client per amount of premium variation can then be estimated.

1



1. Introduction

As premium change is the only covariate the company has direct control over,

such a model can help the company understand how price elasticity varies from client

to client and what amount of premium change is most adequate for its customers.

Obtaining this knowledge would allow the insurer to make better decisions in order to

achieve a finer balance between customer satisfaction and profitability.

Furthermore, the model can also be adapted to provide predictions of which clients

will cancel their policy. Using these predictions the company could, for instance, pro-

mote proactive retention measures for the customers whose policies were predicted to

be cancelled.

Different approaches to the subject have been studied. Yeo et al. (2001) used clus-

tering and neural networks to model price sensitivities, while more recently Guelman

and Guillén (2014) have proposed using a causal inference framework, where the re-

sponse isn’t modelled directly. In this work however we followed the more conventional

methodology of using Generalized Linear Models, particularly the special case of logis-

tic regression, to model the response (Bland et al., 1997; Murphy et al., 2000; Guven

and McPhail, 2013).

Although some of the previous works also dealt with the application of the models

in pricing optimisation, our work focused only on the model building and testing

process and on the insights gained from it.

After creating the model, a secondary goal was to evaluate the model’s predictive

capacity and transform its output probabilities into binary predictions. Consequently,

we followed the work of Freeman and Moisen (2008a) by comparing several threshold

optimisation criteria, in order to assess which threshold (above which all policies are

predicted to be cancelled) results in the best overall predictive performance.

The logistic regression approach has also been recently applied by Garraio (2015),

but our work mainly differs in the tests done on the model, the analysis of the model’s

predictive capacity and optimal thresholds, the data (coming from a company operat-

ing in different distribution channels) and the software used.

Regarding the software employed in our work, SAS Enterprise Guide was used for

dataset building and making simple bivariate analyses prior to modelling; Emblem was

used for building the logistic regression model and R was used for testing the model,

evaluating the model’s predictive capacity and optimising thresholds. Use was made of

the R packages ‘PresenceAbsence’ (Freeman and Moisen, 2008b), ‘ResourceSelection’

2



1. Introduction

and ‘ggplot2’.

This report is organised as follows. In chapter 2 we discuss the variables used in our

work, describing the response variable and presenting the various covariates analysed.

Chapter 3 begins with an overview of Generalized Linear Models, followed by an expo-

sition of logistic regression and a description of several measures of binary classification

performance. Our modelling strategy and goodness of fit assessment of the model are

presented in chapter 4, followed by a discussion of the more important covariates in

the model. We evaluate the model’s predictive capacity and analyse different thresh-

old optimisation criteria in chapter 5. Our results and suggestions for future work are

discussed in chapter 6.

3



Chapter 2

The data

For the purpose of this work, a training set containing 86 344 policies that went through

the renewal process was built and prepared for modelling, using SAS Enterprise Guide

(Slaughter and Delwiche, 2006). It contains 12 months of data and includes policies

that were up for renewal between March 2015 and February 2016. In addition, a test

set containing 9 714 policies that went through the renewal process in March 2016

was also created, considering the same assumptions and procedures that went into the

creation of the training set. Only individual clients owning passenger cars, commercial

cars or vans were under the scope of this work. For details on the data preparation

stage (the most time consuming part of this work) see section A.1.

In this chapter we start by discussing the response variable in section 2.1. We

present the various covariates in section 2.2, explaining our motivations and expecta-

tions behind them.

2.1 Response variable

For a policy to go through the renewal process, it needs to be in force 45 days before the

expiry date of the current term, when the company sends the client a letter indicating

the new premium for the next policy term, in case the client decides to renew. The

policy’s status is then checked 50 days after the expiry date; if it’s still in force it’s

considered to be a renewal, otherwise it’s a cancellation.1

1This implies that, for a policy with monthly payments, if the client pays the 1st instalment and

then cancels it before the 2nd instalment, it’s considered a cancellation.

4



2.2. Covariates

In this work we code the response as 0 if a policy is renewed and as 1 if a policy is

cancelled, meaning that we shall model the lapse or cancellation rate.

Note that, under special circumstances, a policy may be cancelled outside of the

time frame mentioned above. However, as these cancellations aren’t caused by premium

variations they were obviously not considered in our analysis. Keeping the same idea

in mind, policies that were cancelled during that time frame but were motivated by

something certainly not related to premium variations were also discarded from both

datasets.2 This includes motives such as total vehicle losses and errors in the company’s

database.

On the other hand, if a policy was cancelled so that the client could purchase a

new one in the company (policy cannibalisation), it was still kept under analysis as a

cancellation, even though the client hasn’t left the company. This is because this sort

of policy lapse is almost always due to the newer policy having a lower premium for

that customer, so we consider it to be an effect of overpricing on renewals.

2.2 Covariates

In this section we present the different covariates that were included in our datasets,

along with some of our expectations regarding them. Amounting to almost 50 covari-

ates, most were suggested in meetings with several key areas in the company dealing

with Motor renewals, such as Actuarial, Underwriting and Marketing. By reviewing

the literature and considering our own intuition, additional ones were added to the list

of variables to analyse. The covariates in our final datasets are marked in bold. For

further details see section A.2.

2.2.1 Premium-related covariates

The most important covariate is the premium change, since it’s the only one the

company has direct control over. Thus, we collected for each policy the absolute

premium change and the percentage premium change. Since these two covariates

are obviously correlated, it was decided at start that, when creating the model, testing

would be done to understand which has more explanatory power.

2These disregarded policies amounted to about 10% of all cancellations.

5



2.2. Covariates

It was discussed whether the full amount of premium being paid should be included

in the list of covariates to analyse since, for example, an increase of AC20 will have

a different impact depending on whether the current premium is AC100 or AC1000.

However, since it’s a function of several rating factors that were also under the scope

of our analysis, the model’s interpretability could be compromised. It was then decided

not to include the current premium in our datasets and, in order to still capture some

of its effect, analyse additional rating factors which weren’t initially considered.

Due to the increasing market competitiveness, it makes sense to account not only

for the company’s own prices but also for the competitors’ prices or, in more general

terms, to how competitive the company’s prices are for different clients. Obviously,

it’s not possible to obtain such information, so it was important to look for a different

way to measure the competitiveness of Ocidental. We followed one of the propositions

given by Murphy et al. (2000) which is to do a conversion analysis, where we estimated

the conversion rate per time of year and customer profile. The motivation behind

this idea is that if for a type of client the conversion rates are currently low, then the

company’s price isn’t competitive for those customers and they can find better prices

elsewhere.

It should be noted that using the expected conversion rate as a competitive index

isn’t perfect, as conversion rates reflect how competitive the company is at acquiring

new business, and prices for new customers can be very different from prices for re-

newing clients of the same type (recall that policy cannibalisations weren’t removed

from our analysis). For further details on our conversion analysis see subsection A.2.1.

2.2.2 Customer satisfaction and service levels

In most cases, the customer’s only contact with the company occurs when a policy term

ends and a new one begins. The main exception for this is of course when the client

reports a claim, which is the scenario where the company’s true value presents itself

to the client. It was therefore important to analyse whether the client reported a claim

in the previous term and how satisfied they were with the service, as claimants may

focus more on service quality than on premium (Bond and Stone, 2004). Associated

with claims is the level of bonus-malus discount, which depends on the client’s claim

history.

6



2.2. Covariates

To analyse how the company’s service level has an impact on its customers, the

average time to accept a claim and the average time to close a claim were

collected, considering only data on Motor claims. To understand how the perception

of service quality by the customers impacts their decision, two Net Promoter Scores

(NPS) (Reichheld, 2003) were used, the claims handling NPS and the call centre

NPS (as most clients aren’t claimants but may still contact the company for other

reasons).

Still on the topic of customer satisfaction, we observed whether the client had a

rejected claim in the previous term and whether the client made a complaint in the

previous term. Complaints were analysed on a policyholder level and not on a policy

level, as the client’s dissatisfaction with, for example, their Household insurance may

have an impact on their decision to renew the Motor policy.

2.2.3 Client/policy characteristics

Other measures of the relationship between the clients and the company were inves-

tigated. It’s expected that clients that have been with the company for a longer time

are less inclined to cancel their policies, so we collected the policy age and the pol-

icyholder’s tenure with the company. Another way to assess customer loyalty is by

analysing the number of other policies in force or the number of other lines

of business in the company where the clients have policies in force. On the negative

side, we collected the number of other policies cancelled in the previous term, as

we expect that if a client has recently cancelled some other policy then the probability

of cancelling the Motor policy is higher.

Several policy characteristics were also taken into account. An obvious one is the

tariff associated with the policy, as different pricing approaches and retention mea-

sures should have a large impact on renewal rates. When analysing Motor policies,

another important factor is whether the policyholder has any own damage cover,

since they lead to higher premiums and clients that request them tend to be more

interested in what their insurance provides and more sensitive to claims handling. Be-

sides the previous covariate, we considered the number of covers, the sum insured

and whether the client has collision coverage (the main own damage cover). The

7



2.2. Covariates

number of objects3 in the policy and the amount of third-party liability capital

also made their way into our final datasets.

Another interesting covariate is whether the client made any mid-term changes

to the policy. One example of this may be a policyholder that added own damage

coverage to the policy half way through the term. This policy’s premium has then

increased during the mid-term and the client may only become fully aware of the

amount of this increase during the renewal period, when informed of the new premium

for the full year. The client’s willingness to renew could then decrease.

As for the distribution channel, two levels were considered in this study: “Ban-

cassurance” (the company’s main channel) and “Other”. We also looked at the number

of days between the policy issue and start dates, as customers that buy their

policy some time before it comes into force may pay more attention to what they’re

buying.

When it comes to the clients themselves, covariates such as their gender and

marital status were analysed. With respect to the former, regulatory constraints

prohibit gender-based pricing discrimination, so extra care was taken when dealing

with this covariate.

Regarding ages, besides the client age we also kept the driver age in our datasets.

Intuitively, older clients have lower premiums and are financially better off, thus should

be less likely to cancel their policy. The driving licence age, which is usually a

rating factor, was analysed as a way to measure the client’s experience in dealing with

insurers.

Covariates related to payments were deemed very important. With respect to the

payment frequency, we anticipate that clients making more payments are less sen-

sitive to premium changes, as they don’t feel the variation all at once. Also, clients

paying annually usually only cancel their policy at the end of a policy term (since

they’ve already paid for all of it), so lapse rates for these customers tend to be higher

during the renewal period than for others. As for the payment method, we expect

clients paying by direct debit to have a lower cancellation probability, as less effort

goes into making the payments.

Besides the two previous covariates, we looked at whether the client had already

3Additional objects on a Motor policy include, for instance, trailers.
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2.2. Covariates

missed payments during the previous term. We considered payments previous to the

sending of the letter with the new premium, since failing to make payments is one of

the motives for policy cancellation. Only payments that were missed because the client

couldn’t or didn’t want to pay were taken into account in our work. Still on this topic,

the company has developed a model for classifying customers according to a financial

risk score.

The geographical area where the policyholders live may also offer some explana-

tion for their behaviour during the renewal period. Besides the district, we obtained

data from the company’s database on the characteristics of the different postal codes4,

including covariates such as income deciles, education level deciles, unemploy-

ment level and urban-rural classification. A demographic score, using informa-

tion from the previous factors and others not considered here, was available per postal

code. The Portuguese unemployment rate (Instituto Nacional de Estat́ıstica, 2016)

was also collected and added to the datasets.

Vehicle characteristics were also considered, such as the type of vehicle, the

power-to-weight ratio, the weight, the engine displacement and the fuel. These

rating factors were used mostly as a replacement for the full amount of premium, which

as explained previously wasn’t considered in our work. We also analysed the vehicle

age, as we expect clients with older vehicles to no longer feel the need for own damage

coverage and therefore being more concerned with the price, compelling them to shop

around for different premiums.

4Portuguese 7-digit postal codes.
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Chapter 3

Methodology

In this chapter we start by presenting the Generalized Linear Models (GLM) in sec-

tion 3.1. The special case of logistic regression, appropriate for modelling binary data,

is described in section 3.2, including some considerations on suitable goodness of fit

tests. Section 3.3 contains an exposition of the most commonly used metrics of binary

discriminatory performance.

3.1 Generalized Linear Models

Generalized Linear Models (Nelder and Wedderburn, 1972) are, as the name suggests,

a generalisation of the classical linear model and have been used extensively in actu-

arial work. Just like the classical model, GLM are used to analyse the effect that the

different covariates (or factors for categorical covariates) have on the response variable

of interest, with the additional benefit that non-normal data can now be considered.

For more detailed expositions on GLM see McCullagh and Nelder (1989) or De Jong

and Heller (2008).

A Generalized Linear Model is composed of three components:

• The distribution of the response variable Y , belonging to the exponential family

of distributions.

• The linear predictor η =

p∑
j=1

xjβj, a linear combination of the p covariates, where

xj are the covariates and βj are the parameters.

10



3.1. Generalized Linear Models

• The link function g(µ) = η, where g(.) is a monotonic differentiable function and

µ = E[Y ].

The covariates are incorporated into the model through the linear predictor, while the

link function connects the linear predictor with the mean of the response. The link

function must then be chosen so that the fitted values fall inside the interval of possible

values of µ.

3.1.1 Exponential family

Definition 3.1. A random variable Y belongs to the exponential family if its proba-

bility function may be written as

fY (y; θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
, (3.1)

for some specific functions a(.), b(.) and c(.).

θ is called the natural parameter and φ is the dispersion parameter. The expected

value of a distribution belonging to this family is given by

E[Y ] = µ = b′(θ), (3.2)

and its variance by

V ar(Y ) = b′′(θ)a(φ). (3.3)

For a proof of these results see, for example, Nelder and Wedderburn (1972).

The exponential family includes several well known distributions, including the

Normal, the Poisson and the Binomial, which can therefore be considered when de-

signing a GLM. For some distribution belonging to this family, the link function where

g(µ) = θ is called the canonical link.

3.1.2 Parameter estimation

Maximum likelihood estimation is used to estimate the parameters of a GLM. Consid-

ering a distribution from the exponential family, the log-likelihood of a random sample

(y1, . . . , yn) is given by

`(θ, φ; y1, . . . , yn) =
n∑
i=1

ln f(yi; θi, φ) =
n∑
i=1

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
.

11



3.1. Generalized Linear Models

The maximum likelihood estimates of the coefficients in the linear predictor can

then be estimated, by solving the system of equations

∂`(β)

∂βj
= 0⇔

n∑
i=1

∂`(βj, yi)

∂βj
= 0⇔

n∑
i=1

[
yi − b′(θi)
a(φ)

]
∂θi
∂βj

= 0, j = 1, . . . , p,

where β is the parameter vector.

Since there is usually no closed-form solution, numerical methods such as the

Newton-Raphson or the Fisher scoring methods are used, which are identical when

the canonical link is selected (McCullagh and Nelder, 1989).

3.1.3 Deviance

Consider the so-called saturated model, where the number of parameters equals the

number of observations and therefore the fitted values equal the observed ones. Such

a model will perform poorly when applied to new data, but it can be compared with

a currently fitted model to assess how far this second model is from a perfect fit.

The current model’s deviance is computed as

D = 2φ(ˇ̀− ˆ̀), (3.4)

where ˇ̀ is the log-likelihood of the saturated model and ˆ̀ is the log-likelihood of the

current model.

For large samples, the distribution of the deviance approximates a χ2(n − p) dis-

tribution (under certain conditions), with this result being usually used to assess the

goodness of fit of the model.

3.1.4 Hypothesis testing

To test restrictions on the parameters, including significance testing, the likelihood

ratio test can be used, where the null hypothesis (H0) is that the restrictions hold.

The corresponding test statistic is

LR = −2(`0 − `1), (3.5)

where `0 and `1 are the log-likelihoods of the models with and without the restrictions,

respectively.

12



3.2. Logistic regression

This test statistic asymptotically follows a χ2(q) distribution, where q is the number

of restricted parameters. We remark that it’s identical to the difference in the deviance

of both models when φ = 1.

The Wald test is an alternative that doesn’t require an additional model to be

fitted. The Wald test statistic follows a standard normal distribution for large samples

and, in the simplest case of testing the significance of a parameter, is given by

Z =
β̂

se(β̂)
,

where se(β̂) is the standard error estimate of β̂.

3.1.5 Non-nested model selection

While the previous tests present a useful way to chose between two nested models, when

comparing non-nested models other means must be contemplated. One commonly used

criterion for model selection is the Akaike information criterion (AIC) (Akaike, 1974),

defined as

AIC = −2`+ 2p.

It balances the model’s goodness of fit (measured by the log-likelihood) with a penalty

for the number of parameters. When comparing a set of different models, all based on

the same observations, the one with the lowest AIC is selected.

3.2 Logistic regression

Consider a binary random variable Y , with the two outcomes denoted by 0 and 1, and

define µ = P [Y = 1] as the probability of success. Then, Y ∼ Bernoulli(µ) and

fY (y; θ, φ) = µy(1− µ)1−y (3.6)

is its probability function.

It can be easily shown that the Bernoulli distribution belongs to the exponential

family, by writing (3.6) as in (3.1):

fY (y; θ, φ) = µy(1− µ)1−y

= (1− µ)

[
µ

1− µ

]y
= exp

{
y ln

(
µ

1− µ

)
+ ln(1− µ)

}
.
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3.2. Logistic regression

The natural parameter is then θ = ln
(

µ
1−µ

)
, resulting in µ = eθ

1+eθ
. We also have

φ = 1, a(φ) = φ, b(θ) = − ln(1− µ) = ln(1 + eθ) and c(y, φ) = 0.

Consequently, by (3.2) and (3.3), we have E[Y ] = eθ

1+eθ
= µ and V ar(Y ) = eθ

(1+eθ)2
=

µ(1− µ), respectively.

A binary response can then by modelled through a GLM by considering the Bernoulli

distribution. Regarding the choice of the link function, any appropriate link must

bound the probability µ between 0 and 1. Such is the case of the canonical link

g(µ) = θ = ln
(

µ
1−µ

)
, known as the logit.

A GLM with the Bernoulli distribution and the logit link defines logistic regression,

which we’ll use in this work. Still, other possibilities for the link include the probit and

the complementary log-log functions. For more on logistic regression, refer to Hosmer

and Lemeshow (2000) or Kleinbaum and Klein (2010).

3.2.1 Goodness of fit testing

Since it falls under the scope of GLM, the results on parameter estimation and model

selection presented in section 3.1 also apply to logistic regression. However, care must

be taken when deciding how to test the fit of the model, as the deviance statistic

presented in (3.4) may not be an appropriate measure to assess the fit of logistic

regression.

We denote by covariate pattern the combination of the covariates in the model for a

particular observation. For instance, if the model only included two binary covariates,

we would have four possible covariate patterns in the data.1

When the number of distinct covariate patterns in the data (J) is close to the

number of observations (n), the deviance can no longer be assumed to asymptotically

follow a χ2 distribution (McCullagh and Nelder, 1989). We remark that comparing the

deviances for hypothesis testing as in (3.5) is however still applicable in this scenario

(De Jong and Heller, 2008).

A possible alternative in this case is the Hosmer-Lemeshow (HL) test (Hosmer and

Lemeshow, 2000). Rather than considering each distinct covariate pattern, the HL test

groups the observations based on the quantiles of the estimated probabilities. Usually

the deciles of risk are considered, meaning that the observations are divided into 10

1For each observation, we could only observe the patterns (0,0), (1,0), (0,1) or (1,1).
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3.3. Binary classification measures

groups of equal size, with the first group containing the 10% of observations with the

smallest estimated probabilities and so on.

The number of observed responses in group k is given by

ok =

n′
k∑

j=1

yj,

where we consider just the n′k observations in group k.

The average estimated probability in group k is computed as

µ̄k =

n′
k∑

j=1

µ̂j
n′k
,

where µ̂j is the fitted probability for observation j.

The HL statistic is then defined as

HL =

g∑
k=1

(ok − n′kµ̄k)2

n′kµ̄k(1− µ̄k)
,

where g is the number of groups considered.

Under the null hypothesis of good fit, the distribution of the statistic is well approx-

imated by a χ2(g − 2) distribution, being more appropriate when J ≈ n (Kleinbaum

and Klein, 2010).

Although residual checking is a crucial point when assessing the appropriateness

of a GLM, the usually considered residual plots are uninformative when using logistic

regression and J ≈ n, as for almost all distinct covariate patterns the number of

observed responses is either 0 or 1 (Agresti, 2002).

3.3 Binary classification measures

In this section we discuss binary classification and how to evaluate a model’s discrimi-

natory performance (how good are its class predictions for the different observations).

For an introduction on the topic, refer to Metz (1978).

A classification model will, in the case of binary outcomes, classify each observa-

tion as either positive or negative (1 or 0), leading to some very simple definitions.

A true positive (TP) indicates an observation that was correctly predicted as being

positive, while a true negative (TN) indicates a correctly predicted negative instance.

Conversely, a false positive (FP) denotes an observation that was wrongly predicted
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3.3. Binary classification measures

as positive, while a false negative (FN) denotes an observation that was incorrectly

predicted as negative. We shall denote the total number of observed positive instances

by P and the total number of observed negative instances by N.

The observed and predicted outcomes can be summarised in a confusion matrix,

as shown in Table 3.1.

Observed Positive Observed Negative Total

Predicted

Positive
True Positive False Positive TP+FP

Predicted

Negative
False Negative True Negative TN+FN

Total P N P+N

Table 3.1: Confusion matrix

We observe that summing over the main diagonal gives us the number of cases

where the model was right. The fraction of correctly predicted cases is known as

accuracy :

Accuracy =
TP + TN

P +N
.

While it might seem that this is the main index of classification performance, it

isn’t appropriate when in the presence of class imbalance (Chawla, 2005), where one of

the classes is much more prevalent in the data. For instance, if 99% of the cases were

positive, a model could predict every observation to be positive and yield an accuracy

of 99%. Obviously this model would have no practical use, so other measures besides

accuracy should be taken into account.

The sensitivity is given by the proportion of true positives among all positive cases:

Sensitivity =
TP

P
.

The specificity on the other hand is the proportion of true negatives among all

negatives cases:

Specificity =
TN

N
.

Increasing one of these last two measures usually results in decreasing the value of

the other, with this trade-off being one of the main concerns when building classifi-

16



3.3. Binary classification measures

cation models. In other words, to obtain more true positives the model will generate

fewer true negatives, and vice-versa.

The proportion of true positives among all predicted positive cases is denoted by

precision:

Precision =
TP

TP + FP
.

Assuming that the positive cases are the class of interest, the main goal would be

to have both a high sensitivity (capture most of the positives) and a high precision

(avoid many false positives). However, these two statistics also tend to have opposite

behaviours, as trying to capture more positives usually leads to an increase in the

number of false positives.

One way to represent this second trade-off is using the F-measure, which is simply

the harmonic mean of sensitivity and precision:

F -measure =
2

1
Sensitivity

+ 1
Precision

.

Another way to measure the overall quality of the predictions is using the kappa

statistic, which compares the model’s accuracy with the expected accuracy in case

predictions were done by chance. The expected accuracy is computed based on the

marginal totals of the confusion matrix as

Expected Accuracy =
P × (TP + FP ) +N × (TN + FN)

(P +N)2
.

Kappa is then computed as

Kappa =
Accuracy − Expected Accuracy

1− Expected Accuracy
.

A higher value of kappa indicates a better model, with 1 indicating perfect agree-

ment between predictions and observations and 0 indicating a model performing no

better than chance. It’s possible for a model with very high accuracy to have a very

low kappa, if the expected accuracy is also high. This means that the model has poor

predictive capacity despite the accuracy pointing to the contrary, demonstrating the

importance of kappa as a classification measure. For more details on kappa see, for

example, Agresti (2002).
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3.3. Binary classification measures

3.3.1 ROC analysis

While the statistics discussed thus far are computed from actual class predictions,

probabilistic models such as logistic regression yield a probability rather than a class

prediction. In these cases it’s then necessary to define a threshold or cut-off point

c, so that an instance is classified as positive if its associated probability is higher

than c and classified as negative otherwise. Nevertheless, it’s still possible to evaluate

a probabilistic model’s discriminatory ability without choosing a threshold, with the

most common approach being ROC analysis (Fawcett, 2006).

Receiver Operating Characteristics (ROC) graphs display the sensitivity on the

vertical axis and 1-specificity on the horizontal axis, representing the trade-off between

true and false positives. Consequently, the point (0,1) represents perfect discrimination

while points (0,0) and (1,1) represent the performance associated with thresholds of 1

and 0, respectively.

For probabilistic models, an ROC curve can then be constructed by evaluating the

sensitivity and 1-specificity for the whole range of thresholds and plotting these points

on an ROC graph. An example of an ROC curve is presented in Figure 3.1.
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Figure 3.1: Example of an ROC curve

ROC curves can be used to compare different models for the same data. If one

model’s curve is always above the other, then the first model has higher sensitivity

and specificity for all possible thresholds, indicating superior performance.

Alternatively, the area under the ROC curve (AUC) can be computed, with a
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3.3. Binary classification measures

higher value indicating better performance. The AUC takes values between 0 and 1

and can be used to assess the discriminatory capacity of an individual model, with most

realistic models having an AUC greater than 0.5. It’s equivalent to the probability that

a randomly selected positive instance has a higher associated probability (given by the

model) than a randomly selected negative instance (Hanley and McNeil, 1982).
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Chapter 4

Modelling the lapse rate

In this chapter we apply the GLM/logistic regression methodology described in chap-

ter 3 to build and test a model for the lapse rate. The model building process and the

decisions that were made during it are presented in section 4.1 and the adequacy of

the model in terms of fit is discussed in section 4.2. The main covariates included in

the model are then examined in section 4.3.

A simple bivariate analysis was performed prior to modelling. See section B.1 for

more details.

4.1 Building the model

We shall now describe the main guidelines followed in our modelling process, where

we made use of the variables and the training set described in chapter 2. Emblem,

a software designed specifically for GLM modelling, was used to build the logistic

regression model.

The backward elimination procedure was chosen, where we start with an initial

model including every covariate and no interactions. However, in order to prevent

collinearity and making sure that this initial model ran without any problem, pairs of

highly correlated covariates had to be initially identified and only one covariate out of

each pair was selected.

We used Cramér’s V to identify these pairs, considering a threshold of 0.5. Most of

the high correlations were already anticipated, such as the correlation between client

age and driver age (V = 0.913). In this particular case the client age was chosen, as
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4.1. Building the model

it makes more sense (the client is the one paying the premiums) and had better data

quality.

Nevertheless, there were cases of more than two covariates being correlated between

them, which could lead to multicollinearity in the model. The demographic covariates

were all correlated with each other, as areas with higher income tend to have lower

unemployment, for instance. We decided in this case to keep only the district in the

initial model.

The decision was made to revisit these removed covariates further down the road,

for instance if the initial chosen covariate was deemed not significant, had less explana-

tory power or, for factors, ended up with so few levels that the initial correlations no

longer had an impact on the model.

Having our initial list of covariates to input in the model, we ran the logistic

regression in Emblem, using the binary variable lapse(1)/renew(0) as our response

variable, with fixed φ = 1. Due to the large number of covariates, in order to test

joint significance of a covariate’s parameters we used the Wald test, which unlike

the likelihood ratio test doesn’t require additional models to be fitted. The different

covariates were ordered by their associated p-values, the one with the largest p-value

was removed and a new model was fitted. This process continued until finding the

model where all covariates were significant at a 5% significance level.

Covariates that didn’t exhibit sensible trends were also removed, as was the case of

the NPS and the unemployment rate. We believe that even if they presented sensible

trends, having only one year of data prevents us from reaching any meaningful con-

clusions for these covariates. We thus recommend a future analysis of these covariates

when more years of data are made available.

We emphasise that, for a factor, testing H0 : βj = 0 only tells us whether level

j is statistically different from the level in the intercept. Therefore we needed to test

H0 : βj = βk for all pairs (j, k), j 6= k of levels of a factor. Emblem provides a matrix

with the result of the corresponding Wald test for each pair of levels. The two levels

that were most statistically similar were then aggregated and a new model was fitted.

This procedure went on until all levels of a factor were statistically different from the

rest, at a 5% significance level.

Regarding the quantitative covariates, we introduced polynomials of degree 4 to
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4.1. Building the model

capture non-linear effects in the data.1 The polynomial terms would then be removed

according to the significance tests as well as by visually inspecting the curve fitting.

Due to the characteristics of the software, some quantitative covariates had to be

categorised and converted into a score, with this replacement score taking the place of

the original covariate in the model. Additionally, we used the default setting in Emblem

and used orthogonal polynomials to prevent collinearity. Section B.2 has more details

on both of these topics.

Our next step was testing for interactions, with several pairs of covariates being

considered. Due to the nature of our work, there was a larger focus on interactions

between the premium change and other covariates. To prevent the coding of a factor

from impacting tests for interactions terms, the main effects were kept in the model,

even if these weren’t significant after including the interaction (Kleinbaum and Klein,

2010).

As a final step, and as mentioned previously, we revisited the covariates that were

initially discarded due to large correlations. Our strategy here was to introduce each

covariate one by one and test its significance, using the likelihood ratio test. When

the correlations were still an issue, the AIC was used to asses which of the correlated

covariates had more explanatory power, by comparing models including just one of

them (along with the non-correlated ones).

Regarding the absolute and percentage premium change, we observed that the

percentage change was highly correlated with factors such as tariff or bonus-malus.

This lead to difficulties in obtaining sensible fits when percentage rather than absolute

change was in the model, since we were obtaining decreases in lapse probability for

higher positive premium variations. As the model with the absolute change no longer

presented such nonsensical results, this was obviously the one we selected.

As mentioned in subsection 2.2.3, gender-based pricing discrimination isn’t allowed.

So, even though this factor was significant, it couldn’t stay in the final model and was

removed.

As for the financial risk score, for scores greater than 10 there was a ”jump” in

lapse rates. Instead of using a second degree polynomial, a better fit was obtained by

considering just a linear effect with a jump at the score of 11. Emblem makes this by

1Notice that the linear predictor is linear in the parameters, not in the covariates.
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4.2. Goodness of fit assessment

simply introducing a binary variable indicating whether the score is greater than 10,

which we kept in our final model.

For the final model summary, see section B.3.

4.2 Goodness of fit assessment

After completing the previous steps, the final stage in the model building process was

assessing the goodness of fit of the model. Since the training set contains 86 306 distinct

covariate patterns out of 86 344 observations, the Hosmer-Lemeshow test is preferable,

as stated in subsection 3.2.1. We stress that these covariate patterns take into account

only the covariates in the final model and respective final level groupings.

The R package ‘ResourceSelection’ was used for this purpose, for the R output

see section C.1. The value of the resulting HL statistic is 5.2389, corresponding to a

p-value of 0.7318 for a χ2(8) distribution.

While the null hypothesis of good fit isn’t rejected, we also want the model to

perform well in an out-of-time sample, so we applied the HL test on the test set (with

9 710 distinct covariate patterns out of 9 714). We remark that when applying the test

on validation data the number of degrees of freedom of the χ2 distribution increases to

10 (Hosmer and Lemeshow, 2000). The value of the resulting test statistic is 10.271,

corresponding to a p-value of 0.4170 for a χ2(10) distribution, indicating once again

no evidence of poor fit.

Figure 4.1 shows two calibration plots, one for the training set and another for

the test set, with the observed and average estimated lapse rates plotted against each

other. While the HL test inspects the deciles of risk, each dot in the plots represents

a percentile of risk.

As expected, the fit is much better on the training set, as it contains the obser-

vations used in creating the model. Nevertheless, the graphical analysis doesn’t point

to the model consistently over or underestimating the lapse rates and, in conjunction

with the results of the HL test, we conclude that the model provides an adequate fit

on both datasets.

Furthermore, to check if the model is well calibrated for specific subpopulations

of the portfolio, we estimated the lapse rate for 10 clusters of clients defined by the

company, using the policies in the test set. The results in Table 4.1 show that the
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Figure 4.1: Calibration plots (both datasets)

estimated rate was close to the observed one on most clusters, with our main concern

being cluster 7, where the rate was almost 3pp off and we have a large number of

observations. After further inspection, we discovered that a modification on the tariff

associated with cluster 7 had occurred, during the month where the test data originates

from, prompting the previously remarked difference. This constitutes an obvious ex-

ample that, as business conditions change, so must this sort of models be recalibrated

over time.

Clusters

1 2 3 4 5 6 7 8 9 10

Difference in rates 1.40 0.58 2.05 2.48 1.70 0.65 2.79 0.99 1.02 0.90

No. of policies 794 689 200 268 446 1740 2086 382 313 2796

Table 4.1: Difference between observed and estimated lapse rates per cluster (in pp)

4.3 Empirical results

We shall now comment the results obtained regarding the most remarkable covariates

in the model. The probabilities shown here were computed with all other covariates

set to their base level. To preserve the confidentiality of the data, probabilities/rates

are presented as a percentage of the highest probability/rate in each axis.

Figure 4.2 shows the lapse probability per interval of absolute premium change.
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Figure 4.2: Effect of premium change on cancellations

Higher increases in premium lead to higher cancellation probabilities, as expected.

However, the lapse probability flattens off where premium decreases are around AC15

and then increases slightly. Similar effects were observed by Bland et al. (1997) and by

Garraio (2015), with Murphy et al. (2000) stating that this effect is typical of elasticity

curves. Since large decreases are often already anticipated by the customers that receive

them (e.g. by moving to another bonus-malus level), one possible justification for this

effect is that those clients feel that the decrease isn’t large enough (Garraio, 2015).

Another possibility is that clients may not understand why they paid so much in the

previous term, compared to what the new premium is, triggering them to look for

alternative prices elsewhere (Murphy et al., 2000; Guven and McPhail, 2013).

Since our final model has interaction terms between the absolute premium change

and three other factors, each client’s estimated price elasticity curve won’t necessarily

have the same shape as the one shown in Figure 4.2. This way, more insights are

gained regarding how the sensitivity to premium variations varies between different

subpopulations of the portfolio.

Figure 4.3 shows the same as the previous figure, only this time distinguishing

between clients with and without own damage coverage.

The first interaction effect with the premium change is clear, as policyholders with

additional covers pay higher premiums and are therefore less sensitive to large absolute

variations. Additionally, clients with this coverage tend to care more about the product

characteristics than clients with only the basic third-party liability coverage, which may
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Figure 4.3: Effect of own damage on cancellations

also help explain this effect.

Similarly, claimants are less sensitive to large increases in premium, as can be seen

in Figure 4.4. This effect is in agreement with the results of Guelman and Guillén

(2014) and occurs since those customers already expect some premium increase. We

remark that the number of clients with claims and who had premium decreases larger

than AC15 is very small (approximately 2% of the dataset), making it harder to retrieve

any conclusion from the estimated increase in price sensitivity for these clients.
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Figure 4.4: Effect of claims on cancellations

Regarding the payment frequency, Figure 4.5 confirms our expectations that the

price sensitivity of clients making annual payments rises as the premium increases,
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Figure 4.5: Effect of payment frequency on cancellations

since they receive the full price increase at once.

We emphasise that the bonus-malus discount and the number of other cancella-

tions, besides exhibiting their expected effects, have a noticeable impact on the lapse

probability. Also, customers with several policies in the company have lower cancel-

lation probabilities, showing that clients care about keeping their different insurance

products in one company (Barone and Bella, 2004).

The effects of the different tariffs on the response reinforce the notion that, when

designing new tariffs or products, the long term impact on retention should be taken

into account, and not just the short term impact on new business.

We recall that we estimated the conversion rate per time of year and customer

profile, with Figure 4.6 showing the lapse probability per conversion rate. Since higher

conversion rates are associated with competitive premiums, we expected the lapse

probability to decrease as the estimated conversion rate increased. While this effect

can be observed at first, we see the opposite effect occurring for very high conversion

rates.

As mentioned in subsection 2.2.1, conversion rates are a measure of competitive-

ness on new business, not of renewal competitiveness. We thus believe that policy

cannibalisations (clients cancelling their old policy to make a new one) and clients

that tend to shift companies very often are what’s causing lapse rates to increase for

high conversion profiles.

Also of note is the effect of mid-term changes that lead to premium increases,
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Figure 4.6: Lapse probability per conversion rate

as clients who change their policy and consequently see their premium rise are more

prone to cancelling it during the renewal period. As mentioned in subsection 2.2.3, one

possible reason for this may be that clients only become fully aware of the impact on

the premium when the new policy term begins.

As for the district where the customer lives, the final aggregation resulted in groups

with districts which are, in several cases, very far apart from each other. We believe

that this result may be linked to how the level of competition in Motor insurance

differs from one to district to another.

Overall, the effects of the remaining covariates matched our expectations and the

results of the previous works mentioned in this section.
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Chapter 5

Obtaining binary predictions

Our two main objectives for this work were creating a model for the probability of

policy cancellation and, at the same time, gaining insights on how different factors

influence renewals. As a consequence, if a covariate wasn’t significant and/or didn’t

make sense it was promptly removed from the model, even if keeping it would have

increased the model’s predictive ability (as measured by AUC).

Still, it’s clear that obtaining predictions on which clients will cancel their policies

would be advantageous for the insurer, as it could, for instance, help the company

select which clients should be the target of retention measures during the renewal

period.

In this chapter we analyse the model’s predictive ability and study different thresh-

old optimisation criteria, to obtain the best threshold based on overall performance,

using the binary classification measures discussed in section 3.3.

5.1 Evaluating predictive ability

The ROC curves resulting from the application of the model on the training and

test sets are shown in Figure 5.1. The value of the AUC on the training set is 0.702,

indicating fair discriminatory capacity (Kleinbaum and Klein, 2010). As expected,

when applying the model on the test set the AUC decreases, to 0.678. It’s a small

decrease nevertheless, indicating no strong sign of overfitting and leading us to conclude

that model’s predictive ability translates well into unseen data.

More insights on the topic are given by Figure 5.2. For a model with excellent
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Figure 5.1: ROC curves (both datasets)

discrimination, this histogram would have almost all renewals on the left side, with

low probability, and almost all lapses on the right side with high probability, showing

clear separation between classes. In that case it would be possible to find a threshold

that could easily discriminate between both classes. However, what we observe is that

while renewals are gathered on the left side of the graph, lapses are spread out over

a large range of probabilities. This is a consequence of the severe class imbalance in

our dataset (the lapse rate is lower than 15%). As most clients renew, the model can

easily achieve high specificity, but predicting cancellations (our event of interest) is

much harder.
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Figure 5.2: Histogram plot (training set)
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5.2. Threshold optimisation

Figure 5.3 shows sensitivity, specificity and kappa on the training set as functions of

threshold. As expected, specificity has a sharp increase, due to the renewals having been

assigned mostly small probabilities. On the other hand, sensitivity decreases quickly

- to capture most of the lapses the model yields a large number of false positives.

Kappa, which evaluates the model’s discriminatory ability overall, is consequently low

for most of the threshold range, barely going above 0.2 at its maximum.
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Figure 5.3: Sensitivity, specificity and kappa (training set)

5.2 Threshold optimisation

Since the model displays a reasonable predictive capacity, we now need to define a

threshold to obtain actual lapse predictions from the model. Several threshold optimi-

sation criteria exist, and in our work we consider 7 of such criteria which have been

previously analysed by Freeman and Moisen (2008a).1 Besides the evaluation mea-

sures discussed in section 3.3, we also look at the difference between the observed and

predicted prevalence (lapse rate) given by each threshold. The different criteria are

presented below in bold.

Usually, the thresholds should be determined using a set other than the training

or test sets, especially when dealing with small samples. This is to avoid an overly

1Freeman and Moisen (2008a) studied additional criteria, such as criteria where the sensitivity or

specificity are user defined, which weren’t considered in our work.
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5.2. Threshold optimisation

optimistic assessment of the model’s quality and to keep the test set completely in-

dependent from the model building process (Kuhn and Johnson, 2013). In this work

however, the training set was chosen to examine the criteria (since we have a large

enough sample), making use of the R package ‘PresenceAbsence’ (Freeman and Moisen,

2008b). The results are shown in Table 5.1 (see section C.2 for the R output).

Criterion
Cut-off

point

Difference in

prevalence
Accuracy Sensitivity Specificity Precision Kappa F-measure

PredPrev=Obs 0.212 0.0452 0.8265 0.3050 0.9011 0.3061 0.2064 0.3055

MaxKappa 0.184 4.9534 0.7972 0.3877 0.8558 0.2778 0.2082 0.3237

MaxPCC 0.479 11.6210 0.8758 0.0394 0.9954 0.5511 0.0578 0.0736

Default 0.500 11.8040 0.8757 0.0317 0.9964 0.5577 0.0472 0.0601

MaxSens+Spec 0.132 21.9911 0.6802 0.6011 0.6916 0.2180 0.1670 0.3200

Sens=Spec 0.123 26.3203 0.6476 0.6438 0.6482 0.2075 0.1536 0.3138

MinROCdist 0.120 27.9220 0.6358 0.6603 0.6322 0.2044 0.1496 0.3121

Table 5.1: Threshold optimisation results (training set)

The Default criterion, simply consisting of a cut-off point of 0.5, and the Max-

PCC criterion, maximising accuracy2, give similar results. While accuracy is very high

in both cases, due to the class imbalance this is done by “focusing” on renewals, as

they’re much more prevalent, resulting in exceptionally high specificity and extremely

low sensitivity. Precision is higher than for other criteria, due to only the policies

with very high probabilities actually being predicted as lapses. This “unbalance” in

the statistics is reflected by very low values of kappa and F-measure, indicating poor

discriminatory performance.

Sens=Spec finds the threshold where sensitivity equals specificity, while Max-

Sens+Spec maximises the sum of the two. As mentioned in subsection 3.3.1, the

point (0,1) in ROC space implies perfect discrimination. The MinROCdist criterion

therefore finds the threshold minimising the Euclidian distance to that point. While

precision is now lower for these three criteria, sensitivity is much higher than be-

fore, which is reflected by the increase in F-measure. Still, the predicted and observed

prevalence are too far apart and while kappa is higher than before it’s still possible to

improve it.

2Percent Correctly Classified (PCC) is the denomination given by Freeman and Moisen (2008a)

to accuracy.
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5.2. Threshold optimisation

PredPrev=Obs finds the threshold where the predicted prevalence equals the

observed one and MaxKappa maximises kappa. They result in the two highest values

of kappa and the two lowest differences between observed and predicted prevalence,

with Freeman and Moisen (2008a) observing similar results in their work. MaxKappa

however resulted in a better balance between sensitivity and precision, as given by F-

measure.

If the company wishes to use this model for prediction, we therefore recommend

applying a threshold of 0.184 (MaxKappa), based on overall performance.

The test set has an even lower prevalence than the training set (by 1.88 pp). Besides

the expected decrease in performance when moving to new data, this higher proportion

of renewals means that all the previously computed thresholds lead to lower sensitivity,

precision, kappa and F-measure (when compared with the training set). Once again,

see section C.2 for the R output.

Regarding our chosen threshold of 0.184, the results from the test set are presented

in Table 5.2. Despite the predicted and observed prevalence now being much closer

than when we used it on the training set, there is an obvious decrease in overall

performance, as seen by the low values of kappa and F-measure.

Criterion
Cut-off

point

Difference in

prevalence
Accuracy Sensitivity Specificity Precision Kappa F-measure

MaxKappa 0.184 0.0515 0.8393 0.2469 0.9098 0.2457 0.1563 0.2463

Table 5.2: Application of the chosen threshold (test set)

We stress that prediction wasn’t our main goal and that class imbalance in the

data notably leads to worse model performance. We believe however that using sim-

ply remedies for class imbalance, such as basic resample methods to construct more

balanced datasets, could lead to significant improvements in model performance, if

prediction is the ultimate goal. For more on dealing with the class imbalance problem

in lapse prediction, including different resampling methods and other models more

flexible than logistic regression, see Burez and Van den Poel (2009).
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Chapter 6

Conclusions

In this work we used logistic regression to model the Motor lapse probability (during

the renewal period) as a function of premium change and other covariates. In addition,

the model’s ability to correctly predict which policies will be cancelled was studied and

several threshold optimisation criteria were compared, to obtain the best overall binary

predictions.

Our model allows the lapse probability to be estimated for each client per interval

of premium change. This way, an understanding of which customers are more elastic

was obtained and, in the context of the whole portfolio, better pricing decisions can be

made so that the company may improve its renewal rate and/or renewal profitability.

Preparing the data was notably the most time-consuming stage, with almost 50

covariates being initially considered to help explain the behaviour of the response

variable. Owning to the nature of our work, a greater focus was given to premium-

related covariates, with the conversion rate being estimated to measure the company’s

competitiveness.

Our model was built in Emblem, using the GLM/logistic regression methodology

described in chapter 3. Logistic regression was chosen as it allows a binary response to

be modelled and provides interpretable results, regarding the effects of the covariates

on the response. Because of the large number of correlated covariates, extra care was

taken to prevent multicollinearity.

Due to the large number of distinct covariate patterns in the data, the Hosmer-

Lemeshow test was used to assess the model’s goodness of fit and, considering the

purpose of the model, a test set was used to evaluate its performance on new data.
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6. Conclusions

The HL test, along with additional graphical analysis, lead us to conclude that the

model provides an adequate fit to the data.

The covariates included in the final model provided some insights on how different

clients react during the renewal period, with the results matching most of our expec-

tations. Main covariates besides the premium change include the payment frequency,

the bonus-malus level or the number of other cancellations and, in addition, some in-

teractions with the premium change were left in the final model, allowing the shape of

price elasticity curves to differ from client to client.

We also concluded that the model presents a fair overall predictive ability (as

measured by AUC) and, if the company wants to use this model for prediction, we

recommend using a threshold of 0.184, resulting from the maximization of the kappa

statistic. The class imbalance in our data however caused difficulties on predicting

cancellations and further developments on this matter can be undertaken, if prediction

is the ultimate goal.

In the end, we have achieved our main goal of creating an adequate model to

estimate renewal price elasticity. Still, as business conditions change, old clients leave

and new ones arrive, we expect the quality of the model to worsen over time, with

one such example already being reported in section 4.2. We therefore advise that a

periodic model recalibration must be done, as more data becomes available.

One limitation of our work was that our training set only included one year of data,

preventing us from gathering meaningful conclusions from covariates such as the NPS

or the unemployment rate. Another limitation was that no rigorous method was used

when categorising quantitative covariates. We thus suggest that proper methods for

minimising information loss, when banding quantitative covariates, be considered in

future analyses.

While we estimated renewal price elasticity, one recommendation for future work

is to consider the other aspect of demand modelling, by analysing the moment of

risk acquisition and estimating conversion price elasticity. By having at its disposal a

model for each of the two sides of demand modelling, a company can use them along

with the usual cost models to improve future tariff design.

Also, while most of the previous works (including ours) focused on individual Motor

clients, the same approach we used can be applied to corporate clients and to other

competitive lines of business, such as Household insurance.
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Appendix A

Additional notes on the data

A.1 Data preparation

Although the initial strategy was to use 3 years of data (from late 2012 to late 2015),

the lack of historical information on premiums led to a change of plans. More precisely,

before March 2015, the proposed premiums for the new policy term were not recorded

in the system for policies that were cancelled before the renewal date. This meant

that, in order to obtain a good representative sample of the portfolio and be able to

compute the past premium variations for all policies under analysis, our time horizon

became shorter and we used more recent observations, with data from March 2015 to

February 2016 on the training set and from March 2016 on the test set.

Creating the datasets was the most time consuming part of this work (taking

about half of the project’s duration), as the amount of data sources, the idiosyncrasies

of the company’s database and the occasional errors or nonsensical values demanded

a lot of care and attention to detail. A thorough univariate analysis was done on

each covariate, in order to detect and consequently handle these flaws, which included

making histograms and box plots for quantitative covariates and bar plots for factors.

The more relevant issues found in the data and the decisions that were taken follow:

• Several policies had missing premiums, usually caused by changes in those poli-

cies that were wrongly processed by the system and as such no premiums were

loaded into the database. These policies were removed from the analysis.
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A.1. Data preparation

• Other policies had premiums of AC0, which was once again the result of errors

and as such we also didn’t consider these policies in our datasets.

• Although under some older tariffs it’s possible for a policy to maintain its pre-

mium from one term to the next, more than 80% of the policies with no premium

change in our dataset were classified as such due to the database not saving the

new premium and instead keeping the old one. After careful consideration, it was

decided to remove policies without any premium change from the analysis.

• Some policies didn’t have an associated driver, and in this case the driver’s date

of birth and postal code are given default values. However, these default values

change from tariff to tariff and, consequently, to identify policies in this situation

it was necessary to obtain for each tariff the corresponding pair (date of birth,

postal code) of default values.

• For policies with more than one object, the information associated with the main

object was the one selected (in most cases the main object was a car and the

second object was something like a trailer).

• In order to cross data related to the client and not just the one policy under

analysis (such as complaints made or number of other policies cancelled), a code

identifying each customer was used. A small number of policies were missing it

and were thus ruled out from the analysis.

• Requests done by the clients to the company are sometimes classified as com-

plaints, in order to accelerate their process. Since these “complaints” don’t rep-

resent any dissatisfaction that the client may have with the company, these false

complaints were identified and discarded from our analysis.

• For the remaining covariates, when the number of errors/missing values was

small and could be corrected manually then that was our course of action; if

they could not be corrected then those problematic observations were removed

from the dataset. On the other hand, when a covariate had a considerable amount

of missing values or errors we decided to create a new level for that covariate,

“Unknown” or “NA”, and aggregate the faulty data under it.
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A.2. Further details on the covariates

• Examples of problems in the data include negative vehicle ages, policies associ-

ated with tariffs that didn’t even exist at the time or policyholders younger than

18 years old.

• Regarding missing values, while the “Unknown” level was created for several

covariates such as the driver age, the marital status or the vehicle fuel, due to

missing postal codes all demographic factors had the same policies with missing

values. This issue would then be dealt with during the modelling stage of the

project.

We emphasise that, even after dealing with the previous issues and consequently

removing various policies, the lapse rates in our final datasets were similar to the lapse

rates that were recorded by the company (in each respective time frame).

A.2 Further details on the covariates

This section presents some more details on how we defined each covariate and which

values they can take. Whenever the missing value percentage for a covariate is pre-

sented, it is the percentage of missing values on the training set.

Regarding the absolute and percentage premium change, they were both com-

puted using the last premium paid before the end of the term and then either the first

premium paid in the next term (for renewed policies), or the proposed premium which

was rejected by clients who cancelled their policy.

As for the bonus-malus, the possible levels were “Malus”, “0% ”, “1% - 10%”,

“11% - 30%”, “31% - 49%” and “50%”.

The average times (to accept or close a claim) and the Net Promoter Scores

were computed on a rolling 12 months basis for each month of information in the

dataset. The NPS is a measure that tries to assess how loyal clients are to a company,

being computed as the difference between the percentage of promoters (clients con-

sidered likely to recommend the company) and the percentage of detractors (clients

considered unlikely to recommend the company to others). Clients are classified ac-

cording to their answer (on a scale of 0 to 10) to the question “How likely is it that

you would recommend [company X] to a friend or colleague?”. See Reichheld (2003)

for more details.
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Rejected claims were defined as closed claims (during the previous policy term)

with zero cost after removing administrative costs.

The client’s tenure with the company was defined as the age of the client’s oldest

policy and each policy in our dataset was associated with one out of 6 different tariffs.

In this work we have denoted them with the letters A through F, where A is the oldest

tariff and F is the most recent one.

The factor mid-term changes was computed by comparing the premiums on the

second month after the start of the term and on the second to last month of the policy

term. It contains three levels: “Same Premium”, “Reduced Premium” and “Increased

Premium”. In the example given in subsection 2.2.3 the client added some covers to the

policy during the mid-term. Its premium would then increase and this policy would

fall under “Increased Premium”. A threshold of AC5 was used to disregard possible

premium variations due to small changes or system errors.

As for the marital status, we consider the categories “Divorced”, “Married”,

“Single”, “Widowed” and “Unknown”(1.34% of observations). Due to some policies

not having an associated driver, the covariates driver age and driving licence age

had some missing values in our final dataset (1.54% of observations). These policies

were kept since the missing values weren’t the result of system errors.

Regarding the payment frequency, four options are available to clients: “An-

nual”, “Semi-annual”, “Quarterly” or “Monthly”. The payment method has two

classes, “Direct Debit” and “Other”, and the company’s financial risk score model

takes values from 1 to 15, with a higher value indicating a higher risk.

District includes the 18 districts and 2 autonomous regions of Portugal as well

as the level “Unknown”, with this last one existing due to policies missing the cor-

responding postal code (1.34% of observations). The covariate unemployment rate

(quarterly data, per NUTS II region) also had the same policies under the “NA” level.

The remaining demographic factors had additional policies under “NA” (5.89% of ob-

servations), as their data source was also missing some new postal codes. Income and

education level deciles take values from 1 to 10 and “NA”, with higher values in-

dicating areas with lower average income and more inhabitants with higher education

levels, respectively. The unemployment level has the levels “Very High”, “High”,

“Above Average”, “Average”, “Below Average”, “Low” and “NA”, while the urban-

rural classification is either “Urban”, “Mixed”, “Rural” or “NA”. The demographic
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score takes values from 1 to 9 and “NA”, with a lower value indicating areas with

higher income, further education, lower unemployment, etc.

We only considered clients owning commercial cars, passenger cars or vans, with

these being the levels of the factor type of vehicle. The factor fuel includes the

levels “Gasoline”, “Diesel”, “Electricity”, “Mixed”, “Gas” and “Unknown” (1.86% of

observations).

A.2.1 Conversion analysis

Estimating the conversion rate, per customer profile and time of year, was our way

of trying to assess the effect of the company’s competitiveness on the lapse rate. The

conversion rate is the proportion of quotations that were successfully converted into

policies. Naturally, a higher rate for some client profile indicates that the company’s

premium for that profile is very competitive, and therefore clients are responding well

to it.

Quotation data from the same time frame as our training set was collected and a

Poisson model with a log link, a particular case of the GLM described in section 3.1, was

used to model the conversion rate, using the number of quotations made as an offset.

Since we were mostly interested in identifying conversion profiles and not so much in

conversion price elasticity, the premium was not included as a covariate (Murphy et

al., 2000).

Following the same modelling techniques described in section 4.1, a final model

with 8 covariates was obtained. The covariates were the quarter of the year, the driver

age, the district, the type of discount on entry, the type of vehicle, the fuel, the engine

displacement and the power of the vehicle. The effects of these covariates on the

conversion rate, as given by this final model, matched our expectations and the business

experience.

Using this very simple model the conversion rates were then estimated per cus-

tomer profile and time of year, for all policies in our dataset. For more on conversion

modelling, refer to Murphy et al. (2000).
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Appendix B

Bivariate analysis and modelling

results

B.1 Bivariate analysis

A bivariate analysis involving our variable of interest, the lapse rate, and each indi-

vidual covariate was done prior to modelling. This simple analysis was meant as a

way to create some expectations for the modelling process, to identify possible flaws

in variable design and mostly to ensure that we were on the right track.

A 2×k contingency table was created for each pair (dependent variable Y , covariate

X), where 2 is the number of possible outcomes (lapse/renew) and k is the number

of levels of covariate X. For the purposes of this analysis quantitative covariates were

categorised at their quintiles.

The Pearson chi-squared test was then used to test the null hypothesis that the

variables were independent. For an exposition on the Pearson chi-squared test and

further analysis of contingency tables see Agresti (2002).

The results of the tests were encouraging, with the hypothesis of independence

being rejected in almost all cases. Notable exceptions were the unemployment level

and the Net Promoter Scores.

Still, the chi-squared test only tests for independence and doesn’t give any details

on the strength or form of the association between the two variables. A simple graphical

analysis was then done with that purpose in mind. A graph was produced for each

pair showing the lapse rate for each level of the covariate.
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B.2. Handling quantitative covariates in Emblem

Most of our expectations were strengthened by this graphical analysis. The main

exceptions were the covariates “number of other policies in force” and “number of other

lines of business”, where it appeared that the lapse rate increased with the number of

policies/lines of business, contrary to what we expected. We later discovered that this

was due to a system error that was rectified prior to modelling. Also, after a careful

look at how those covariates were designed, we decided to count the number of policies

in force 45 days before the expiry date rather than on the expiry date, as was initially

done. This prevents policy cannibalisations from being accounted for in the number

of policies, which explained in part what we were observing. After the dataset update

and the change in design the results finally began making sense.

The analysis described in this section was done using SAS Enterprise Guide. For

more on statistical and graphical analysis using this software see Slaughter and Del-

wiche (2006).

B.2 Handling quantitative covariates in Emblem

Since Emblem has an upper limit of 255 values that a covariate can take, covariates

such as the premium change or the power-to-weight ratio had to be categorised before

the model building process. The intervals considered for each covariate were designed

in order to balance exposure and interval size. Previous categorisations done by the

company were also taken into account while preparing these covariates.

Emblem takes this now categorical covariate and transforms it into a numerical

score, allocating a different value for each interval (with their natural ordering being

taken into consideration). This score is what is then used to model the effect of the

original covariate.

It is very simple to obtain the corresponding effect on the response per interval of

the initial categorical covariate, as Emblem exports the additive effect on the linear

predictor per interval, rather than per numerical score.

Additionally, the default setting in Emblem is to use orthogonal polynomials for

quantitative covariates. As higher order terms of a covariate may be highly correlated,

considering orthogonal polynomials prevents collinearity and consequently numerical

instability (De Jong and Heller, 2008).

We remark that, as a first step to compute orthogonal polynomials, Emblem nor-
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B.3. Model summary

malises the values of the covariate x as follows:

x∗ =
2x− (xmax + xmin)

xmax − xmin
,

where xmax is the maximum value and xmin is the minimum value in the data. The

new covariate x∗ takes values between −1 and 1.

B.3 Model summary

Coefficients Estimate Std. Error z value p-value

(Intercept) ———— ———— −66.300887 <2E-16

Absolute premium change 0.385359 0.016896 22.807436 <2E-16

Absolute premium changeˆ2 0.192023 0.012275 15.643333 <2E-16

Absolute premium changeˆ3 0.067463 0.008780 7.683895 1.55E-14

Absolute premium changeˆ4 0.064217 0.008371 7.670969 1.70E-14

Claim (Yes) 0.056454 0.038314 1.473475 0.140623

Claim (Y)*Abs. prem. change −0.128166 0.026635 −4.811921 1.49E-06

Claim (Y)*Abs. prem. changeˆ2 −0.070124 0.023988 −2.923303 0.003463

Claim (Y)*Abs. prem. changeˆ3 −0.088253 0.022243 −3.967576 7.26E-05

Own damage (Yes) 0.021476 0.031462 0.682601 0.494859

Own damage (Y)*Abs. prem. change −0.097772 0.019000 −5.145844 2.66E-07

Own damage (Y)*Abs. prem. changeˆ2 −0.088248 0.018262 −4.832316 1.35E-06

Payment frequency (Semi-annual) −0.428927 0.032655 −13.135159 <2E-16

Payment frequency (Quarterly) −0.745058 0.057108 −13.046356 <2E-16

Payment frequency (Monthly) −0.998959 0.034948 −28.584267 <2E-16

Payment freq. (S-a)*Abs. prem. change −0.135869 0.023410 −5.803770 6.48E-09

Payment freq. (Q)*Abs. prem. change −0.148201 0.039055 −3.794675 0.000148

Payment freq. (M)*Abs. prem. change −0.158984 0.022673 −7.012122 2.35E-12

Conversion rateˆ2 0.023140 0.009680 2.390548 0.016823

Bonus-Malus (Malus) 1.386526 0.111136 12.475914 <2E-16

Bonus-Malus (0% - 10%) 0.694658 0.075105 9.249213 <2E-16

Bonus-Malus (11% - 30%) 0.513874 0.052447 9.797966 <2E-16

Bonus-Malus (31% - 49%) 0.135926 0.036741 3.699543 0.000216

No. other policies in force −0.076374 0.007882 −9.689171 <2E-16

No. other policies in forceˆ2 0.016159 0.006523 2.477362 0.013236
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B.3. Model summary

Coefficients Estimate Std. Error z value p-value

No. other cancellations (1) 0.591512 0.029096 20.329617 <2E-16

No. other cancellations (2) 0.891541 0.049779 17.909941 <2E-16

No. other cancellations (≥3) 1.076756 0.066526 16.185408 <2E-16

Tariff (D) 0.139827 0.047141 2.966127 0.003016

Tariff (F) −0.325368 0.039211 −8.297792 <2E-16

Payment method (Other) 0.337066 0.068427 4.925934 8.40E-07

Missed payments (Yes) 0.348300 0.059657 5.838379 5.27E-09

Financial risk score 0.072401 0.013002 5.568538 2.57E-08

Financial risk score (>10) 0.448815 0.047941 9.361860 <2E-16

Distribution channel (Other) −0.173712 0.041664 −4.169324 3.06E-05

Client age −0.193834 0.014241 −13.611405 <2E-16

Client ageˆ2 0.033875 0.014999 2.258522 0.023913

Client ageˆ3 0.054079 0.014704 3.677817 0.000235

Client ageˆ4 0.040958 0.014635 2.798564 0.005133

Complaint (Yes) 0.814899 0.112363 7.252406 4.10E-13

Rejected claim (Yes) 0.311017 0.101016 3.078878 0.002078

Mid-term changes (Increased prem.) 0.501087 0.079264 6.321747 2.59E-10

District (Group 1) 0.181511 0.033888 5.356153 8.50E-08

District (Group 2) 0.312692 0.046483 6.727041 1.73E-11

District (Group 3) 0.564115 0.060679 9.296703 <2E-16

District (Group 4) 0.082149 0.029195 2.813790 0.004896

Income decile (Bottom 70%, NA) 0.096043 0.028981 3.314034 0.000920

No. of objects (≥2) −0.518593 0.100408 −5.164841 2.41E-07

Type of vehicle (Commercial car) 0.122082 0.044557 2.739883 0.006146

Vehicle age 0.147008 0.015592 9.428656 <2E-16

Fuel (Diesel, Gas, Mixed) 0.087820 0.024725 3.551836 0.000383

Engine displacementˆ2 −0.032770 0.008526 −3.843359 0.000121

Engine displacementˆ3 −0.018911 0.006779 −2.789652 0.005277

Vehicle weightˆ2 −0.022241 0.008147 −2.729840 0.006337

Table B.1: Model summary

• Dispersion parameter φ fixed at 1

• Deviance: 59 836.34524
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B.3. Model summary

• Degrees of freedom: 86 290

• AIC: 59 944.34524

• AUC: 0.7017718

• Orthogonal polynomials were used for quantitative covariates

• Coefficients in italic were kept in the model as explained in section 4.1

• To preserve the confidentiality of the data, the estimate and standard error of

the intercept are omitted

Levels included in the intercept: Claim (No); Own damage (No); Payment fre-

quency (Annual); Bonus-Malus (50%); No. other cancellations (0); Tariff (A, B, C, E);

Payment method (Direct debit); Missed payments (No); Financial risk score (≤10);

Distribution channel (Bancassurance); Complaint (No); Rejected claim (No); Mid-term

changes (Same prem., Reduced prem.); District (Group 5); Income decile (Top 30%);

Type of vehicle (Passenger car, Van); No. of objects (1); Fuel (Gasoline, Electricity,

Unknown).

District groups (group 5 is included in the intercept):

1. Aveiro, Braga, Castelo Branco, Évora, Leiria, Santarém, Viana do Castelo

2. Açores, Beja, Bragança, Portalegre, Viseu

3. Coimbra

4. Guarda, Porto, Setúbal, Vila Real, Unknown

5. Faro, Lisboa, Madeira

45



Appendix C

R output

C.1 Hosmer-Lemeshow test

> library(ResourceSelection)

>

> # Applying the HL test on the training set

> hl.train = hoslem.test(Training_set$Lapsed, Training_set$Prob_Lapse)

> hl.train

Hosmer and Lemeshow goodness of fit (GOF) test

data: Training_set$Lapsed, Training_set$Prob_Lapse

X-squared = 5.2389, df = 8, p-value = 0.7318

>

> # Applying the HL test on the test set

> hl.test = hoslem.test(Test_set$Lapsed, Test_set$Prob_Lapse)

> hl.test

Hosmer and Lemeshow goodness of fit (GOF) test

data: Test_set$Lapsed, Test_set$Prob_Lapse

X-squared = 10.271, df = 8, p-value = 0.2465

> # Since we are using the test set, the statistic follows instead a
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C.2. Threshold optimisation

> # chi-square distribution with 10 d.f. The corresponding p-value is then:

> p.value = pchisq(10.271, 10, lower.tail = FALSE)

> p.value

[1] 0.417048

C.2 Threshold optimisation

> library(PresenceAbsence)

>

> # Computing the optimal thresholds

> opt = optimal.thresholds(Training_set, which.model = 1,

+ opt.methods = c(1:6,9), threshold = 1001)

> opt

Method Prob_Lapse

1 Default 0.500

2 Sens=Spec 0.123

3 MaxSens+Spec 0.132

4 MaxKappa 0.184

5 MaxPCC 0.479

6 PredPrev=Obs 0.212

7 MinROCdist 0.120

>

> # Computing the difference between the observed and predicted prevalence

> pred.train = predicted.prevalence(Training_set, threshold = opt$Prob_Lapse,

+ which.model = 1)

> diff.train = abs(pred.train$Obs.Prevalence - pred.train$Prob_Lapse)

> data.frame(opt$Method, pred.train$threshold, diff.train)

opt.Method pred.train.threshold diff.train

1 Default 0.500 0.1180394700

2 Sens=Spec 0.123 0.2632030019

3 MaxSens+Spec 0.132 0.2199110535

4 MaxKappa 0.184 0.0495344205

5 MaxPCC 0.479 0.1162095803

6 PredPrev=Obs 0.212 0.0004516816

7 MinROCdist 0.120 0.2792203280
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C.2. Threshold optimisation

>

> # PCC (Percent Correctly Classified) is what we’ve denoted by Accuracy

> paa.train = presence.absence.accuracy(Training_set,

+ threshold = opt$Prob_Lapse, which.model = 1, st.dev = FALSE)

> paa.train

model threshold PCC sensitivity specificity Kappa AUC

1 Prob_Lapse 0.500 0.8756602 0.03173869 0.9963991 0.04721762 0.7017718

2 Prob_Lapse 0.123 0.6476188 0.64374942 0.6481724 0.15356075 0.7017718

3 Prob_Lapse 0.132 0.6802326 0.60109188 0.6915551 0.16695802 0.7017718

4 Prob_Lapse 0.184 0.7971949 0.38771167 0.8557793 0.20818837 0.7017718

5 Prob_Lapse 0.479 0.8757528 0.03941890 0.9954062 0.05783159 0.7017718

6 Prob_Lapse 0.212 0.8264732 0.30498751 0.9010816 0.20638822 0.7017718

7 Prob_Lapse 0.120 0.6357477 0.66031276 0.6322332 0.14957482 0.7017718

>

> # Computing the precision (pre) and the F-measure (fme)

> pre.train = pred.train$Obs.Prevalence*paa.train$sensitivity/

+ (pred.train$Obs.Prevalence*paa.train$sensitivity+

+ (1-pred.train$Obs.Prevalence)*(1-paa.train$specificity))

> fme.train = 2/(1/paa.train$sensitivity+1/pre.train)

> data.frame(opt$Method, pre.train, fme.train)

opt.Method pre.train fme.train

1 Default 0.5577236 0.06005953

2 Sens=Spec 0.2074673 0.31380244

3 MaxSens+Spec 0.2180232 0.31998424

4 MaxKappa 0.2777778 0.32366459

5 MaxPCC 0.5510996 0.07357513

6 PredPrev=Obs 0.3060921 0.30553882

7 MinROCdist 0.2043762 0.31214050

>

> # Applying the thresholds on the test set

> pred.test = predicted.prevalence(Test_set, threshold = opt$Prob_Lapse,

+ which.model = 1)

> diff.test = abs(pred.test$Obs.Prevalence - pred.test$Prob_Lapse)

> data.frame(opt$Method, pred.test$threshold, diff.test)

opt.Method pred.test.threshold diff.test
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C.2. Threshold optimisation

1 Default 0.500 0.102120651

2 Sens=Spec 0.123 0.169857937

3 MaxSens+Spec 0.132 0.133312744

4 MaxKappa 0.184 0.000514721

5 MaxPCC 0.479 0.101091209

6 PredPrev=Obs 0.212 0.033045090

7 MinROCdist 0.120 0.183137739

>

> # PCC (Percent Correctly Classified) is what we’ve denoted by Accuracy

> paa.test = presence.absence.accuracy(Test_set, threshold = opt$Prob_Lapse,

+ which.model = 1, st.dev = FALSE)

> paa.test

model threshold PCC sensitivity specificity Kappa AUC

1 Prob_Lapse 0.500 0.8935557 0.01936108 0.9975809 0.02936318 0.6775735

2 Prob_Lapse 0.123 0.7218448 0.49080348 0.7493376 0.14096018 0.6775735

3 Prob_Lapse 0.132 0.7513897 0.45788964 0.7863149 0.15732531 0.6775735

4 Prob_Lapse 0.184 0.8393041 0.24685382 0.9098030 0.15632354 0.6775735

5 Prob_Lapse 0.479 0.8935557 0.02420136 0.9970050 0.03648424 0.6775735

6 Prob_Lapse 0.212 0.8611283 0.19167473 0.9407902 0.15347297 0.6775735

7 Prob_Lapse 0.120 0.7108297 0.50145208 0.7357447 0.13487674 0.6775735

>

> # Computing the precision (pre) and the F-measure (fme)

> pre.test = pred.test$Obs.Prevalence*paa.test$sensitivity/

+ (pred.test$Obs.Prevalence*paa.test$sensitivity+

+ (1-pred.test$Obs.Prevalence)*(1-paa.test$specificity))

> fme.test = 2/(1/paa.test$sensitivity+1/pre.test)

> data.frame(opt$Method, pre.test, fme.test)

opt.Method pre.test fme.test

1 Default 0.4878049 0.03724395

2 Sens=Spec 0.1889676 0.27287406

3 MaxSens+Spec 0.2031787 0.28146385

4 MaxKappa 0.2456647 0.24625785

5 MaxPCC 0.4901961 0.04612546

6 PredPrev=Obs 0.2780899 0.22693410

7 MinROCdist 0.1842105 0.26944083

49



Bibliography

[1] Agresti, A. (2002). Categorical Data Analysis, 2nd ed. Hoboken, NJ: Wiley.

[2] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans-

actions on Automatic Control 19 (6), 716–723.

[3] Associação Portuguesa de Seguradores (2015). Insurance Market Overview 14/15.

Available at: https://www.apseguradores.pt/Portal/Content_Show.aspx?

ContentId=2248&PageId=8&MicrositeId=1&CategoryId=70 [Accessed: 21 May

2016].

[4] Barone, G. and Bella, M. (2004). Price-elasticity based customer segmentation

in the Italian auto insurance market. Journal of Targeting, Measurement and

Analysis for Marketing 13 (1), 21–31.

[5] Bland, R., Carter, T., Coughlan, D., Kelsey, R., Anderson, D., Cooper, S. and

Jones, S. (1997). Customer selection and retention. Institute of Actuaries General

Insurance Convention 1997, 493–514.

[6] Bond, A. and Stone, M. (2004). How the automotive insurance claims experience

affects customer retention. Journal of Financial Services Marketing 9 (2), 160–

171.

[7] Burez, J. and Van den Poel, D. (2009). Handling class imbalance in customer

churn prediction. Expert Systems with Applications 36 (3), 4626–4636.

[8] Chawla, N. V. (2005). Data Mining for Imbalanced Datasets: An Overview. In:

Maimon, O. and Rokach, L., (Eds.) Data Mining and Knowledge Discovery Hand-

book, Boston, MA: Springer, 853–867.

50

https://www.apseguradores.pt/Portal/Content_Show.aspx?ContentId=2248&PageId=8&MicrositeId=1&CategoryId=70
https://www.apseguradores.pt/Portal/Content_Show.aspx?ContentId=2248&PageId=8&MicrositeId=1&CategoryId=70


Bibliography

[9] De Jong, P. and Heller, G. Z. (2009). Generalized Linear Models for Insurance

Data, 1st ed. Cambridge: Cambridge University Press.

[10] Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters

27 (8), 861–874.

[11] Freeman, E. A. and Moisen, G. G. (2008a). A comparison of the performance of

threshold criteria for binary classification in terms of predicted prevalence and

kappa. Ecological Modelling 217 (1-2), 48–58.

[12] Freeman, E. A. and Moisen, G. G. (2008b). PresenceAbsence: An R Package for

Presence Absence Analysis. Journal of Statistical Software 23 (11), 1–31.

[13] Garraio, J. (2015). Modelação da Taxa de Anulação no Seguro Automóvel. Master
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