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ABSTRACT 

In this thesis, we work with prominence to a key area in actuarial science, namely ruin 

theory. The Cramér-Lundberg model of collective risk theory is adapted for the perturbed 

model, by adding a Lévy (𝛼-stabled) process to the compound Poisson process, which 

allows us to consider uncertainty to the premium income, fluctuations of the interest rates, 

changes to the number of policyholders, without neglecting all other assumptions.  

On the way, we present new approximation techniques, built for the perturbed 

model in infinite time, and recall a remarkable family of well-known approximations by 

DE VYLDER (1996), DUFRESNE AND GERBER (1989), POLLACZEK-KHINCHINE and PADÉ 

(see AVRAM ET. AL (2001) and JOHNSON AND TAAFFE (1989)), obtained by fitting one, 

two, three or four (we also attempt five) ordinary moments of the claim amount 

distribution, and thus significantly generalising these approximations. Finding such 

approximation which fit the Laplace transform of the ruin probability would also be quite 

valuable, see FURRER (1998).  

We test the accuracy of the approximations using a mixture of light and heavy 

tailed distributions for the individual claim amount. We evaluate the ultimate ruin 

probability and illustrate in detail some numerical results. 

KEYWORDS 

Lévy process, 𝛼-stable process, Pollaczek-Khinchine, Ruin theory, (Collective) risk 

theory, perturbed model, Padé approximation, De Vylder approximation, ruin probability 

approximations.  
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RESUMO 

Esta dissertação aborda especificamente problemas da área da teoria da ruína, sub-área 

da teoria do risco para a atividade seguradora. Em particular, estudamos a probabilidade 

de ruína eventual. Adaptamos o modelo de risco coletivo de Cramér-Lundberg, 

estendendo para o modelo perturbado. Adicionamos ao modelo de Poisson composto uma 

componente representativa de um processo de Lévy (alfa estável). Esta componente 

adicional permite-nos incorporar incertezas decorrentes de, por exemplo, flutuações de 

taxas de juro, alterações no número de apólices na carteira, em quaisquer dos casos 

mantendo as hipóteses tradicionais. 

Com o objetivo de cálculo da probabilidade de ruína no modelo perturbado, 

apresentamos novas técnicas, recuperando e generalizando modelos de aproximação bem 

conhecidos, tais como os de DE VYLDER (1996), DUFRESNE AND GERBER (1989), 

POLLACZEK-KHINCHINE, PADÉ (ver AVRAM ET AL. (2001) e JOHNSON AND TAAFFE 

(1989)), obtidas ajustando um, dois, três ou quatro momentos ordinários da distribuição 

dos montantes das indemnizações. Para além disso, considerámos também importante 

que as aproximações ajustassem a transformada de Laplace (para a probabilidade de 

ruína), veja-se FURRER (1998).  

Avaliamos a qualidade das aproximações estudadas exemplificando para um 

conjunto de distribuições de cauda leve e de cauda pesada. Ilustramos com detalhe com 

alguns resultados numéricos. 

PALAVRAS-CHAVE 

Processo de Lévy, processo de alfa estável, Pollaczek-Khinchine, a teoria da ruína, Teoria 

do Risco, modelo perturbado, Padé, De Vylder, aproximações ruína de probabilidade.  
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LIST OF MATHEMATICAL NOTATIONS AND ABBREVIATIONS 

r.v.  random variable. 

𝑈(𝑡)   Cramér-Lundberg model, surplus at time 𝑡. 

𝑢  initial surplus or initial reserve. 

𝑐  premium rate. 

𝑆(𝑡)  aggregate claim amounts occurred in (0, 𝑡] 

𝑁(𝑡)  number of claims up to time 𝑡. 

𝑋𝑖  individual claim amount 𝑖. 

𝜆  Poisson parameter: intensity rate. 

i.i.d.  independent and identically distributed. 

pdf  probability density function. 

CDF  cumulative distribution function. 

𝐹𝑋( . )  CDF of 𝑋. 

𝜇𝑘  𝑘-th raw moment of 𝑋. 

𝜃  safety positive loading coefficient. 

𝑉(𝑡)  Extension of 𝑈(𝑡), inclusion of a diffusion component. 

𝜎  drift parameter. 

𝑍𝛼(𝑡)  𝛼-stable Lévy process. 

𝑊(𝑡)  standard Brownian motion (special case when 𝛼 = 2). 

Ψ(𝑢)  ultimate ruin probability at initial surplus. 

𝜙(𝑢)  ultimate survival probability at initial surplus. 

𝑅  adjustment coefficient. 

MGF  moment generating function. 

CGF  cumulants generating function. 

LT  Laplace transform. 

PK  Pollaczek-Khinchine. 

𝐿  aggregate loss distribution. 

𝐿𝑖
(𝑗)

  record highs due to 𝑗 = 1 (oscillation) or 𝑗 = 2 (claims) and part of 𝐿. 

𝐹𝐿
∗𝑛( . )  𝑛-fold transform distribution of 𝐿. 

𝑀  number of records distribution. 

𝑞  geometric parameter representing the number of failures under 𝑀. 

𝜌  profit rate. 

𝜂𝑘  Lévy moments. 

𝜇𝑘  Factorial reduced moments of 𝐿. 

IDD  infinitely divisible distribution. 

4MGDV 4-moment gamma De Vylder. 

5MGDV 5-moment gamma De Vylder. 
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1  INTRODUCTION 

Ruin theory (collective risk theory) is a field of 

mathematics that is an important part of actuarial 

education, as it uses mathematical models to explain 

an insurer’s level on vulnerability to ruin. Risk theory, on the other hand, has its origins 

in the early 20th century, when FILIP LUNDBERG (1903) published his initial ideas on the 

classical surplus process. SPARRE ANDERSEN (1957) adapted Lundberg’s process to allow 

for other claim inter-arrival times. As such, key quantities of interest are the ruin 

probabilities, distribution of surplus immediately prior to ruin, and the deficit at the time 

of ruin.  

The Cramér-Lundberg model of collective risk theory is adapted for the perturbed 

model, by adding a Lévy (𝛼-stabled) process to the compound Poisson process, which 

allows us to consider uncertainty to the premium income, fluctuations of the interest rates, 

changes to the number of policyholders, without neglecting all other assumptions. 

The aim of this project is to obtain approximations for the probability of the 

process falling into ruin (i.e., becoming negative) in infinite time. The idea of 

approximating empirical data in the form of ordinary moments is like bread and butter of 

classical statistics & probability. 

Some well-known approximations used in modern risk theory is discussed here, 

such as an explicit Pollaczek formula for the Laplace transform, as well as approximations 

in the form of Renyi (generalisation of Beekman-Bowers) [see GRANDELL (2000)], DE 

VYLDER (1996), DUFRENSE AND GERBER (1989) and PADÉ [see AVRAM ET AL. (2001)], 

which all fit a high number of ordinary moments of the claim amount distribution. Of 

course, since input data are usually linked to uncertainty, it is interesting to develop 

approximations based on finitely many ordinary moments, i.e. formed by the Laplace 

transform power series expansion around zero.  

Luckily, there exists an extensive literature for further reading, with many 

contributions in this field, especially with recent developments to: (i) the Compound-

Poisson risk models with constant/stochastic interest, (ii) the Brownian motion, (iii) the 

𝛼-stabled process and (iv) the general diffusion risk processes; for instance, see THORIN 

(1974). 

If I were again beginning my 

studies, I would follow the advice 

of Plato and start with mathematics. 

Galileo Galilei 
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Outlining this thesis, we proceed as follows: firstly, SECTION 2 will commence 

with a comprehensive outlook of the perturbed model. SECTION 3 will focus on the 

approximation techniques used for later discussion. Numerical approximations computed 

via MS Excel, Wolfram Alpha and Mathematica are presented under SECTION 4, for 

illustrative purposes, to test our hypothesis on the validity and accuracy of each 

approximation method. We present an alternative method of sorts to the Dufresne and 

Gerber’s upper and lower bounds found in SILVA (2006), by using convolution 

techniques, as well as a new approximation under the classical exponential/gamma De 

Vylder case (see SECTION 4.1 and 4.2). In the latter half of this Section, we also 

incorporate first order Padé approximation of the Pollaczek-Khinchine transform under 

Renyi and De Vylder here [see AVRAM ET AL. (2001)], and an “update” to a second order 

Padé approximation (to ensure it works for claims having several moments). Finally, 

some conclusions and recommendations are present in SECTION 5. 

The reader must be familiar with works on ruin theory and risk theory. As such, 

key fields of interest are stochastic calculus, statistics, renewal theory and probability 

theory. Excellent first references are KLUGMAN ET AL. (2012). 
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2 THE INSURANCE MODEL 

2.1 Introduction 

In this Section, we introduce a different model with 

another source of randomness attached, i.e. the Lévy process, named after the French 

mathematician Paul Lévy, see in APPLEBAUM (2014b). This is a stochastic process and is 

the continuous-time equivalent of a random walk. We consider this Section as a spiritual 

sequel to the work presented by SEIXAS AND EGÍDIO DOS REIS (2013), where 𝑊(𝑡) is a 

standard Brownian motion with drift (a well-known example of Lévy processes).  

Lévy processes are becoming much more relevant, since they can describe the 

observed reality of financial markets with greater accuracy than a model based on 

Brownian motion. After a thorough review of the literature, it seems that Lévy processes 

has been restricted to a Brownian motion & 𝛼-stable process. In practice, there seems to 

be two approaches when it comes to applying Lévy processes, that is by: 

i. replacing the aggregate claim process, or 

ii. using Lévy process as perturbation to the classical model. 

Of course, we are interested in the second approach. Other general perturbation 

processes considered in the past were in GERBER (1970). 

2.2 Cramér-Lundberg Risk Process 

We start this thesis by defining some basic assumptions, explaining how ruin theory is 

applied, and thus giving an overview over the results collected in this thesis. We present 

the standard model given by BOWERS ET AL. (1986), as the Cramér-Lundberg (classical) 

model in many actuarial journals and textbooks:  

𝑈(𝑡) = 𝑢 + 𝑐𝑡 − 𝑆(𝑡),         𝑡 ≥ 0, 

where, 𝑈(𝑡) is the surplus at time 𝑡, 𝑢 = 𝑈(0) ≥ 0 is the initial surplus or initial reserve, 

𝑐 is the rate at which premiums are received, 𝑆(𝑡) = ∑ 𝑋𝑖
𝑁𝑡
𝑖=0  is the aggregate claim 

amounts occurred in (0, 𝑡], 𝑁(𝑡) is the number of claims up to time 𝑡 and 𝑋𝑖 is the 

individual claim amount 𝑖. 

We denote the counting process {𝑁(𝑡); 𝑡 ≥ 0} as a Poisson process with intensity 

rate 𝜆 > 0. The sequence {𝑋𝑖}𝑖≥1 are independent and identically distributed (i.i.d.) 

Mathematics is the most 

beautiful and most powerful 

creation of the human spirit. 

Stefan Benach 
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random variables, with cumulative distribution function (CDF), 𝐹𝑋( . ), such that 𝐹𝑋(0) =

0 and the 𝑘-th ordinary moment 𝜇𝑘 = 𝐸[𝑋𝑘], which we assume to exist if we set 𝑋0 ≡ 0. 

The model assumes that {𝑋𝑖}𝑖≥1 and {𝑁(𝑡); 𝑡 ≥ 0} are independent, and, we can 

assume there exists some positive safety loading, such that 𝜃 = 𝑐(𝜆𝜇1)−1 − 1 > 0 is the 

strictly positive loading coefficient. This is positive, otherwise 𝑐 < 𝜆𝜇1 and so this risk 

business would be negative with a probability of one in infinite time. 

For mathematical purposes, we conclude that the aggregate claim amounts 

process {𝑆(𝑡); 𝑡 ≥ 0} is a compound Poisson process. 

2.3 Perturbed Risk Process 

We present the perturbed risk model, {𝑉(𝑡)}𝑡≥0, where it is assumed that the process is 

independent of 𝑈(𝑡) and a Lévy process, and so, the model at time 𝑡 is given by: 

       𝑉(𝑡) = 𝑈(𝑡) + 𝜎𝑍𝛼(𝑡),         𝑡 ≥ 0,    (2.3.1) 

where, 𝑉(𝑡) is an extension to the Cramér-Lundberg model with the inclusion of a drift 

parameter 𝜎 > 0 (infinitesimal variance 𝜎/2) and perturbed by an 𝛼-stable Lévy process 

𝑍𝛼(𝑡) such that 𝛼 ∈ (0,2]. In this thesis, we will consider cases when 𝛼 = 2, then 𝑍2(𝑡) =

𝑊(𝑡), where 𝑊(𝑡) is a standard Brownian motion [see APPENDIX B for properties]. The 

diffusion term 𝜎𝑍𝛼(𝑡) in (2.3.1) expressing an additional uncertainty to the aggregate 

claims, allows us to consider uncertainty to the premium income, fluctuations of the 

interest rates, changes to the number of policyholders, without neglecting all other 

assumptions.  

2.4 Ruin Probability 

In this section, we introduce common elements and definitions for the model presented 

in equation (2.3.1), namely, the ultimate ruin and survival probabilities, the Lundberg’s 

inequality, the adjustment coefficient, a simple upper bound, maximal aggregate loss and 

some asymptotic results. From here on, all stochastic quantities are defined on a complete 

probability space (Ω, ℱ, ℙ).  

2.4.1 Common Ruin Terminology 

For simplicity, consider the standard Brownian case, where 𝑍2(𝑡) = 𝑊(𝑡). Now consider 

ruin probability in infinite time; we use definitions found in CENTENO (2015): 
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DEFINITION 1.  Let 𝑇𝑢 be the random variable representing the time when ruin occurs, 

from initial surplus 𝑢, and so: 

  𝑇𝑢 = inf {𝑡 ≥ 0 𝑎𝑛𝑑 𝑉(𝑡) < 0} ,     𝑢 ≥ 0,      (2.4.1) 

otherwise, 𝑇𝑢 = ∞ if ruin doesn’t occur when 𝑉(𝑡) ≥ 0 for all 𝑡. 

DEFINITION 2.  Suppose we let 𝐺(𝑢, 𝑦) = 𝑃(𝑉(𝑇) ∈ (−𝑦, 0) 𝑎𝑛𝑑 𝑇𝑢 < ∞ | 𝑉(0) = 𝑢) 

be the probability that ruin occurs with initial surplus 𝑢 and the deficit immediately after 

ruin occurs is at most 𝑦, then as 𝑦 → ∞, we obtain: 

lim
 𝑦→∞

𝐺(𝑢, 𝑦) = 𝛹(𝑢) = 𝑃(𝑇𝑢 < ∞ | 𝑉(0) = 𝑢),     𝑢 ≥ 0,   (2.4.2) 

where, Ψ(𝑢) is the ultimate ruin probability in continuous time and infinite time horizon. 

Using equations (2.4.1) and (2.4.2), we define 𝜙(𝑢) = 1 − 𝛹(𝑢) as the survival or non-

ruin probability, i.e. the probability that ruin never occurs from initial surplus 𝑢. Now to 

guarantee that 𝜙(𝑢) ≠ 0 for all 𝑢 ≥ 0, we must assume the net profit condition  

𝑐 − 𝜇1𝜆 > 0,     (2.4.3) 

which means that for each unit of time, the premium income exceeds the expected 

aggregate claim amount. If this condition fails, then 𝜙(𝑢) = 0 ⟹ 𝛹(𝑢) = 1 for all 𝑢 ≥

0. Condition (2.4.3) brings economic sense to the classical model, and therefore it is 

convenient to write 𝑐 = (1 + 𝜃)𝜇1𝜆 for 𝜃 > 0. In the next Section, we consider finding 

an explicit formula for 𝛹(𝑢) for the event described in (2.4.2) for 𝐺(𝑢, 𝑦), by using an 

integro-differential equation, see APPENDIX F and SECTION 3.4 for properties.  

2.4.2 A Defective Renewal Approach for a Brownian Motion 

In the model in (2.3.1) with 𝛼 = 2, DUFRESNE AND GERBER (1991) introduced important 

ruin probabilities caused by oscillation, 𝛹𝑑(𝑢) and caused by claim occurrence, 𝛹𝑐(𝑢) 

and thus, led to the derivation of defective renewal equations for 𝛹(𝑢), 𝛹𝑑(𝑢) and 𝛹𝑐(𝑢). 

DEFINITION 3.   Let the ultimate ruin probability from initial surplus 𝑢 be given by the 

total ruin caused due to oscillation and claim occurrence, thus: 

𝛹(𝑢) = 𝑃(𝑇𝑢 < ∞ | 𝑉(0) = 𝑢) = 𝛹𝑑(𝑢) + 𝛹𝑐(𝑢),            (2.4.4) 

where,  
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𝛹𝑑(𝑢) = 𝑃(𝑇𝑢 < ∞ 𝑎𝑛𝑑 𝑉(𝑇) < 0 |  𝑉(0) = 𝑢), 

𝛹𝑐(𝑢) = 𝑃(𝑇𝑢 < ∞ 𝑎𝑛𝑑 𝑉(𝑇) = 0 | 𝑉(0) = 𝑢). 

 

FIGURE 1 – TWO TYPES OF RUIN WITH ONE DUE TO A CLAIM AND ANOTHER DUE TO OSCILLATION 

Due to the diffusive nature of the process, we deduce that 𝛹𝑐(0) = 0 and 𝛹𝑑(0) =

𝛹(0) = 1. Applying standard renewal theory techniques, DUFRESNE AND GERBER (1991) 

arrived to a generalization that for 𝑢 ≥ 0: 

𝛹(𝑢) = 𝑞(1 − 𝐻1(𝑢)) + (1 − 𝑞)(𝐻1(𝑢) − [𝐻1 ∗ 𝐻2](𝑢))

+ (1 − 𝑞) ∫  𝛹(𝑢 − 𝑥)[ℎ1 ∗ ℎ2](𝑥)
𝑢

0

𝑑𝑥, 

where, [ℎ1 ∗ ℎ2](𝑧) = ∫ ℎ1(𝑥)ℎ2(𝑧 − 𝑥)
𝑧

0
𝑑𝑥 is the convolution concentrated over a 

finite range (0, 𝑧), with density functions ℎ1( . ) and ℎ2( . ) defined by: 

ℎ1(𝑥) = 𝜏𝑒−𝜏𝑥 ~ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝜏 =
2𝑐

𝜎2),   (2.4.5) 

ℎ2(𝑥) = 𝜇1
−1[1 − 𝐹𝑋(𝑥)], 𝑥 > 0.    (2.4.6) 

Thus, 

𝛹𝑑(𝑢) = 1 − 𝐻1(𝑢) + (1 − 𝑞) ∫  𝛹𝑑(𝑢 − 𝑥)[ℎ1 ∗ ℎ2](𝑥)
𝑢

0

𝑑𝑥, 

𝛹𝑐(𝑢) = (1 − 𝑞)(𝐻1(𝑢) − [𝐻1 ∗ 𝐻2](𝑢)) + (1 − 𝑞) ∫  𝛹𝑐(𝑢 − 𝑥)[ℎ1 ∗ ℎ2](𝑥)
𝑢

0

𝑑𝑥. 

These renewal applications have provided insight into the theory, and it has been shown 

in DUFRESNE AND GERBER (1991) that numerical solutions can be obtained for the integral 

equation encompassing 1 − 𝛹(𝑢) above.  
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2.5 Lundberg’s equation 

The adjustment coefficient is the strictly positive coefficient, denoted by 𝑅, which gives 

a measure of risk for a surplus process. Assuming (2.4.3) is satisfied, then 𝑟 = 𝑅 is the 

only solution to [see ROLSKI ET AL. (2008)]: 

𝑐𝑟 −
1

2
𝜎2𝑟2 − 𝜆(𝑀𝑋(𝑟) − 1) = 0,        𝑟 < 𝜂,  (2.5.1) 

where, 𝜂 = sup{ 𝑟 ∶  𝑀𝑋(𝑟) < ∞} and 𝑀𝑋(𝑟) = 𝐸[𝑒𝑟𝑋] is the moment generating 

function of the claim amount distribution, if it exists, 𝑀𝑋(0) = 1, 𝜂 > 0 and 𝑀𝑋(𝑟) → ∞ 

when 𝑟 → 𝜂. The process 𝑒−𝑅{𝑉(𝑡)−𝑢} is a martingale with mean one.  

`  

FIGURE 2 – ADJUSTMENT COEFFICIENT. 

We can see that equation (2.5.1) has only one positive root, that is, if we let (2.5.1) equal 

to ℎ(𝑟) with ℎ(0) = 0. Now taking derivatives, we conclude that 

ℎ′(𝑟) = 𝑐 − 𝜎2𝑟 − 𝜆𝑀𝑋
′ (𝑟) ⟹ ℎ′(0) = 𝑐 − 𝜆𝜇1 > 0, 

ℎ′′(𝑟) = −𝜎2 − 𝜆𝑀𝑋
′′(𝑟) < 0,   

the function is a maximum and concave down. The concavity implies that the lim
𝑟→𝜂

 ℎ(𝑟) →

−∞, hence, (2.5.1) has two roots, 𝑅 > 0 and a trivial solution. In numerical analysis (see 

Section 4), we could use the Newton-Raphson method to find successively better 

approximations, such that 𝑟 = 𝑅 to the real-valued function, ℎ(𝑟). Note that 𝑅 < 𝑟0 =

2𝜃𝜇1

𝐸(𝑋2)
 is a good “guess” to start with to calculate the adjustment coefficient, see CENTENO 

(2015). Thus, using the iterative process (assuming functions ℎ and ℎ′ are defined over 

the real numbers 𝑟), we can obtain a sufficiently accurate value, given by: 
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𝑟𝑛+1 = 𝑟𝑛 −
ℎ(𝑟𝑛)

ℎ′(𝑟𝑛)
, 𝑛 = 0,1,2, … 

Thus, we can derive a simple upper bound using Lundberg’s inequality, which is: 

       𝛹(𝑢) = 𝛹𝑑(𝑢) + 𝛹𝑐(𝑢) < 𝑒−𝑅𝑢,      𝑢 > 0.   (2.5.2) 

We develop interesting results in for sections 2.6 and 3.3 for a mixture of discrete 𝛹(𝑠), 

where we apply the LT to decompose a PK formula for the ultimate ruin. See APPENDIX 

C and D for convolution and LT properties, respectively. 

2.6 Maximal Aggregate Loss 

We present the maximal aggregate loss variable. Let us first define some key components 

for the later sections of this thesis: 

DEFINITION 4.   Let 𝐿 be the random variable representing the maximal aggregate loss, 

such that the process {𝐿(𝑡); 𝑡 ≥ 0} with 𝐿(𝑡) = 𝑢 − 𝑉(𝑡) with probability distribution 

function: 

𝐹𝐿(𝑢) = 𝑃(𝐿 ≤ 𝑢) = 𝑃(𝐿(𝑡) ≤ 𝑢, ∀𝑡 ≥ 0) = 𝑃(𝑉(𝑡) ≥ 0, ∀𝑡 ≥ 0) = 𝜙(𝑢).    (2.6.1) 

The decomposition of 𝐿(𝑡) can be found in DUFRESNE AND GERBER (1991) and updated 

in SEIXAS AND EGÍDIO DOS REIS (2013), and contrary to the Cramer-Lungberg model, the 

survival probability 𝜙(𝑢) at the point 𝑢 = 0 is equal to 𝜙(0) = 𝐹𝐿(0) = 𝑞 = 𝜃/(1 + 𝜃).  

Working with the perturbed Brownian process in (2.3.1) and setting 𝜎 = 1 for 

simplicity sakes, the decomposition yields: 

𝐿 = max{𝑢 − 𝑉(𝑡)} = max{𝑆(𝑡) − 𝑐𝑡 − 𝑊(𝑡)} = 𝐿0
(1)

+ ∑ (𝐿𝑖
(1)

+ 𝐿𝑖
(2)

),
𝑀

𝑖=1
    (2.6.2) 

where, 𝐿𝑖
(1)

 and 𝐿𝑖
(2)

 are record highs due to oscillation and claim occurrences and are part 

of the maximal aggregate loss distribution, and 𝑀 is the number of records of 𝐿𝑡 that are 

due to a claim and follows a geometric distribution, with parameter 𝑞 and probability 

function 𝑚𝑘 = 𝑃(𝑀 = 𝑘) = 𝑞(1 − 𝑞)𝑘, 𝑘 = 0,1,2, …  

THEOREM 1.  The sequences, {𝐿𝑖
(1)

}
𝑖≥1

 and {𝐿𝑖
(2)

}
𝑖≥1

 are 𝑖. 𝑖. 𝑑. random variable, with 

common distribution functions 𝐻1( . ) and 𝐻2( . ), respectively, and defined by: 
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𝐿𝑖
(1)

= max(𝐿𝑡, 𝑡 < 𝑡𝑖+1) − 𝐿𝑡𝑖
,   𝑖 = 0,1, … , 𝑀,   (2.6.4) 

𝐿𝑖
(2)

= (𝐿𝑡𝑖
− 𝐿𝑡𝑖−1

) − 𝐿𝑖−1
(1)

,   𝑖 = 0,1, … , 𝑀.    (2.6.5) 

Density functions for 𝐿𝑖
(1)

 and 𝐿𝑖
(2)

 are given by ℎ1( . ) and ℎ2( . ), respectively. 

PROOF. See SEIXAS AND EGÍDIO DOS REIS (2013). 

 

FIGURE 3 – DECOMPOSITION OF THE MAXIMAL AGGREGATE LOSS 

REMARK 1.  Obviously, the maximal aggregate loss random variable, 𝐿 is a compound 

geometric distribution, with CDF  

𝐹𝐿(𝑢) = 𝜙(𝑢) = ∑ 𝑞(1 − 𝑞)𝑘𝐻1
∗(𝑘+1)

∗ 𝐻2
∗𝑘(𝑢)∞

𝑘=0 .   (2.6.6) 

THEOREM 2.  Let the moment generation function of L be given by 

𝑀𝐿(𝑟) =
𝑟𝜏(𝑐−𝜆𝜇1)

𝑐𝜏(𝑟(𝜏−𝑟)−𝜆𝑀𝑋(𝑟)−1)
, 𝜎 > 0.    (2.6.7) 

PROOF.  See APPENDIX E.              ∎ 

The central moments of 𝐿 can be deduced (if they exist) from the special properties of 

compound distributions and can be seen in APPENDIX B, also for instance, see SEIXAS 

AND EGÍDIO DOS REIS (2013) or JACINTO (2008).  

We extend this in another way, that is, by using the PK formula, i.e. the same 

formula in (2.6.6), to compute the ultimate ruin, where 𝐹𝐿
∗𝑛(𝑢) is the 𝑛-fold transform of 

the aggregate loss distribution (see SECTION 3.3). 



10 

2.6.1 A standard 𝜶-stable Lévy Process 

The biggest drawback in the original perturbed model by DUFRESNE AND GERBER (1991) 

was that the Brownian motion (𝛼 = 2) was not adequate to model large fluctuations and 

variations, hence a further generalization was proposed by FURRER (1998), refer to 

(2.3.1). By modifying the process and adding a new parameter 𝛼, one can then change 

the variability of the process. Hence the smaller the 𝛼, the greater the changes in 

fluctuations, and so, the nicer it behaves. For the process in (2.3.1), the subsequent 

formula was proved in FURRER (1998) for 𝜙(𝑢), that is: 

THEOREM 3.  Let the risk process in (2.3.1) and CDF of 𝐿 in (2.6.6) have parameters 

𝛼 ∈ (0,2) and 𝛽 = −1 (allows for negative jumps), then the ultimate non-ruin probability 

satisfies: 

𝜙(𝑢) = ∑ 𝑞(1 − 𝑞)𝑘𝐹𝐿
∗𝑛 ∗ 𝐻1

∗(𝑛+1)(𝑢)∞
𝑘=0 ,     𝑢 ≥ 0    (2.6.9) 

where, 𝛽 is the jump parameter and 𝐹𝐿
∗𝑛 is 𝑛-fold transform of the aggregate loss 

distribution and belongs to a class of sub-exponential distributions with CDF, 𝐹𝐿
∗𝑛(𝑢) =

𝐻2(𝑢) = 𝜇1
−1 ∫ [1 − 𝐹𝑋(𝑡)]

𝑢

0
𝑑𝑡. 

The choice of 𝛽 guarantees that the process avoids positive jumps, and this, makes the 

perturbed process (2.3.1) a negative Lévy process for which “passage times have nicer 

expressions”.  

THEOREM 4.  By taking LT on the ultimate survival probability in (2.6.9), and applying 

the defective renewal technique in (2.4.4), FURRER (1998) deduced that: 

𝐻1(𝑢) = 1 − ∑ [𝑢(𝛼−1)𝑛 (−
𝑐

𝜂𝛼
)

𝑛

∙ [Γ(1 + (𝛼 − 1)𝑛)]−1 ]∞
𝑛=0 , 𝑢 ≥ 0,      (2.6.10) 

𝐻2(𝑢) =
∫ [1−𝐹𝑋(𝑡)]

𝑢
0 𝑑𝑡

∫ [1−𝐹𝑋(𝑡)]
∞

0
𝑑𝑡

= 𝜇1
−1(∫ [1 − 𝐹𝑋(𝑡)]

𝑢

0
𝑑𝑡),    𝑢 ≥ 0.   (2.6.11) 

where, 𝛤( . ) is the gamma function.  

Note, when 𝛼 = 2 and 𝑛 → ∞, then (2.6.10) and (2.6.11) reduce to the Brownian 

definition. Moreover, results above agree with ZOLOTAREV (1964) in the following 

theorem: 
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THEOREM 5.  Let 𝑌 be an 𝛼-stable process with no jumps in the positive direction, 𝛾 =

𝐸[𝑌(1)] ≥ 0 and 𝛹(𝑢) = 𝑃(inf {𝑌(𝑡) < −𝑢}), then: 

𝛹∗(𝑠) = ∫ 𝑒−𝑠𝑡𝛹(𝑡)
∞

0
𝑑𝑡 =

1

𝑠
(1 −

𝛾

𝛹(𝑠)
) ,      𝑠, 𝑡 ≥ 0. (2.6.12) 

The integral part of the equation encompassing 𝛹(𝑢) in (2.6.12) is nothing other than a 

Laplace transform [see APPENDIX D] and can be manipulated to obtain (2.6.9). In a ruin 

context, (2.6.9) represents the perturbed aggregate claim minus the premium components, 

in mathematical language: 

  𝑌(𝑡) = 𝑆(𝑡) − 𝜂𝑍𝛼(𝑡) − 𝑐𝑡,      𝑡 ≥ 0.   (2.6.13) 

Moreover, SCHMIDLI (2001) noted that the perturbed process for an 𝛼-stabled Lévy 

process from the work in FURRER (1998) follows the same decomposition as (2.6.2), 

(2.6.4) and (2.6.5). He then showed that part of the ladder height due to the perturbation 

(𝐿(1)) becomes an exponential distribution when 𝛼 = 2, and part of the ladder height due 

to a claim (𝐿(2)) has the same distribution 𝐹𝐿(𝑥) = 𝜙(𝑥) irrespective of the perturbation 

method applied. This fully agrees with the deductions made in DUFRESNE AND GERBER 

(1991). 

2.7 Cramer’s Asymptotic Result for Ruin Probabilities 

FURRER ET. AL (1997) spent considerable periods of time concerning finite ruin 

probabilities results for 𝛼-stable processes. In the end, they could present the following 

theorem: 

THEOREM 6. Let 𝑍𝛼 be an 𝛼-stable process with parameter |𝛽| < 1, and as 𝑢 → ∞, 

then the real-world probability measure  

ℙ[𝑢 + 𝑐𝑠 − 𝜎−𝛼𝑍𝛼(𝑠) ≤ 𝑡] ~ 
𝜆𝑡

2
𝐶𝛼(1 + 𝛽)(𝑢 + 𝑐𝑡 )−𝛼, 

where, 𝐶𝛼 = (1 − 𝛼) [Γ(2 − 𝛼) cos (
1

2
𝜋𝛼)]

−1

 is a constant. 

THEOREM 6 leads us to upper bounds for the ruin probability under an 𝛼-stable process.  

THEOREM 7. Let 𝛼 = 2 (a Gaussian), we can obtain an asymptotic expression by 

renewal reasoning from (2.5.2), such that 
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𝜓𝑑(𝑢)  ~ 𝐶𝑑𝑒−𝑅𝑢,               𝜓𝑐(𝑢)  ~ 𝐶𝑐𝑒−𝑅𝑢, 𝑢 → ∞, 

where, 𝐶𝑑 and 𝐶𝑐 are constants, with 𝐶 = 𝐶𝑑 + 𝐶𝑐 ≤ 1. The notation 𝑓1(𝑥) ~ 𝑓2(𝑥), 𝑥 →

∞, means 𝑙𝑖𝑚
𝑥→∞

𝑓1(𝑥)/ 𝑓2(𝑥) = 1. For significantly large values of initial surplus, 𝑢, we 

obtain:  

𝐶𝑑 = [∫ 𝑒𝑅𝑥[1 − 𝐻1(𝑥)]
∞

0

𝑑𝑥] × [(1 − 𝑞) ∫ 𝑥𝑒𝑅𝑥ℎ1 ∗ ℎ2

∞

0

𝑑𝑥]

−1

, 

𝐶𝑐 = [∫ 𝑒𝑅𝑥(1 − 𝑞)[𝐻1(𝑥) − 𝐻1 ∗ 𝐻2(𝑥)]
∞

0

𝑑𝑥] × [(1 − 𝑞) ∫ 𝑥𝑒𝑅𝑥ℎ1 ∗ ℎ2

∞

0

𝑑𝑥]

−1

. 

PROOF.  This is fully developed in CAI AND GARRIDO (2002) and utilises the key renewal 

theorem with defective equations for 𝜓(𝑢), 𝜓𝑑(𝑢) and 𝜓𝑐(𝑢).         ∎ 

2.8 Infinitely Divisible Distributions & Lévy Characterization 

This final section will be purely conceptual, and will provide some further answers and 

developments to the 𝛼-stabled process introduced in (2.3.1). Definitions and concepts 

here will be discussed and applied in SECTIONS 3 and 4. 

 Consider two well-known distributions that are infinitely divisible (ID): The 

Poisson and the Gaussian (see APPENDIX B). We can verify this using the following 

definition: 

DEFINITION 5.  Let the law 𝜌 be called ID, such that for any positive integer 𝑛, there 

exists a probability measure 𝜌𝑛 such that 

𝜑𝜌(𝑢) = [𝜑𝜌𝑛
(𝑢)]

𝑛
      (2.8.1) 

where, 𝜌 is the 𝑛-th convolution power of 𝜌𝑛. 

We present the following theorem thanks to Lévy which fully characterises the family of 

ID distributions. 

THEOREM 8. For every ID distribution 𝜌, then ITO (1969) deduces that equation (2.8.1) 

can be expressed by 

𝜑𝜌(𝑢) = exp{−�̃�𝜌(𝑢)},   𝑢 ∈ ℝ,     (2.8.2) 
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where, �̃�𝜌(𝑢) = 𝑖𝑎𝑢 +
𝑏2

2
𝑢2 + ∫ [1 − 𝑒𝑖𝑢𝑠 + 𝑖𝑢𝑠 ∙ 𝐼(𝑢)]

 

ℝ
𝜈(𝑑𝑠), 𝑎 ∈ ℝ, 𝑏2 > 0, 𝜈 is a 

measure on ℝ0 = ℝ − {0}, i is the imaginary number √−1 and 𝐼 is the indicator function. 

The component 𝜈 is defined as the Lévy measure. 

ZOLOTAREV (1986) discussed that these ID 𝛼-stabled distributions are achieved as limits 

of normalized sums of 𝑖. 𝑖. 𝑑. random variables. As defined in APPENDIX A, 𝛼-stabled 

distributions do not have a closed form density function (unless 𝛼 takes values 0.5, 1 or 

2), but it’s �̃� is found to be: 

�̃�(𝑢) = c|𝑢|𝛼[1 − 𝑖𝛽sgn(𝑢) tan(𝛼𝜋/2)] + 𝑖𝑚𝑢, 𝛼 ∈ (0,1) ∪ (1,2),  (2.8.3) 

with (2.8.3) satisfying (2.8.2), where sgn(𝑢) ≔ {−1 if 𝑢 < 0; 0 if 𝑢 = 0; 1 if 𝑢 > 0}. As 

the initial reserve 𝑢 > 0, then we can conclude that sgn(𝑢) = 1. See APPENDIX B for full 

characterisation when 𝛼 = 1 or 𝛼 = 2.   
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3  APPROXIMATION TECHNIQUES 

3.1 Constructing Bounds 

SILVA (2006) and SEIXAS AND EGÍDIO DOS REIS (2013) 

defines key random variables from the maximal aggregate loss random variables using 

(2.6.2), such that: 

𝐿𝑗 = 𝐿0
𝑗,(1)

+ ∑ (𝐿𝑖
𝑗,(1)

+ 𝐿𝑖
𝑗,(2)

) ,

𝑀

𝑖=1

 

with 𝐿0
𝑗,(1)

≡ 𝐿𝑗  if 𝑀 = 0, and 𝑗 = {−, +}. 𝐿𝑖
𝑗,(𝑘)

 must be concentrated on a lattice 𝜗ℕ0 =

{0, 𝜗, 2𝜗, 3𝜗, … }, where the lattice width 𝜗 > 0. In this application, 𝐿𝑖
−,(𝑘)

= 𝜗[𝐿𝑖
(𝑘)

/𝜗],

𝐿𝑖
+,(𝑘)

= 𝜗 [(𝐿𝑖
(𝑘)

+ 𝜗)/𝜗] for {𝑘 = 1, 𝑖 = 0, … , 𝑀} and {𝑘 = 2, 𝑖 = 0, … , 𝑀}. Hence, 

each summand of 𝐿 approximates the lower and upper multiples of 𝜗, such that 𝐿− < 𝐿 <

𝐿+. This leads to  

𝛹−(𝑣) ≤ 𝛹(𝑣) ≤ 𝛹+(𝑣), 𝑣 = 0,1,2, …, 

where 𝛹𝑗(𝑣) = 1 − 𝑃(𝐿𝑗 ≤ 𝑣) for 𝑗 = {−, +}.   

3.1.1 Constructing an Arithmetic Distribution 

We need to derive the density functions of the random variable 𝐿𝑖
𝑗,(1)

+ 𝐿𝑖
𝑗,(2)

, denoted by 

𝑝𝑛
𝑗 ( . ), with 𝑗 = {−, +}. In actuarial practice, discretization of claims (i.e. lower and 

upper) are useful, and hence, denoting 𝐿𝑖
𝑗,(3)

= 𝐿𝑖
𝑗,(1)

+ 𝐿𝑖
𝑗,(2)

 the lower and upper 

difference, with a suitably small 𝜗, are given by 

𝑝𝑛
− = 𝑃(𝐿𝑖

−,(3)
= 𝜗𝑛) = {

[𝐻1 ∗ 𝐻2](𝜗), 𝑛 = 0,

[𝐻1 ∗ 𝐻2](𝜗(𝑛 + 1)) − [𝐻1 ∗ 𝐻2](𝜗𝑛),   𝑛 = 1,2, … ,
 

𝑝𝑛
+ = 𝑃(𝐿𝑖

+,(3)
= 𝜗𝑛) = {

0, 𝑛 = 0,

[𝐻1 ∗ 𝐻2](𝜗𝑛) − [𝐻1 ∗ 𝐻2](𝜗(𝑛 − 1)),   𝑛 = 1,2, … ,
 

where, the convolution [𝐻1 ∗ 𝐻2](𝑥) = ∫ 𝐻1(𝑥 − 𝑡)ℎ2(𝑡)
𝑥

0
𝑑𝑡 = ∫ ℎ1(𝑡)𝐻2(𝑥 − 𝑡)

𝑥

0
𝑑𝑡 is 

concentrated on positive numbers, i.e. from (0, +∞), see APPENDIX C (since taking limits 

Mathematics, rightly viewed, 

possesses not only truth, but 

supreme beauty. 

Bertrand Russell 
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from (−∞, +∞) will result in divergence). Note that the CDF of 𝐿𝑖
𝑗,(3)

 is suitably 

arithmetic. The pdf for 𝐿− and 𝐿+, can be deduced by using Panjer’s recursion formula, 

for a compound geometric distribution, such that 𝑔𝑛
𝑗 (𝜗𝑛) = 𝑃(𝐿𝑗 = 𝜗𝑛) for 𝑛 = 0,1,2, … 

and 𝑗 = {−, +}, see for instance: HESS AND SCHMIDT (2002).  

3.1.2 The Recursion Formula 

DEFINITION 6 (Panjer’s recursion). Since the frequency distribution 𝑀 is a member of 

the (𝑎, 𝑏, 0) class of distributions, i.e. a Geometric with parameter 𝑞, and 𝐿𝑖
𝑗,(3)

takes 

values on the non-negative integers, then the pdf of 𝐿𝑗  satisfies  

𝑔𝑛
𝑗

=
1 − 𝑞

1 − (1 − 𝑞)𝑝0
𝑗

∑ 𝑝𝑖
𝑗
𝑔𝑛−𝑖

𝑗

𝑛

𝑖=1

, 𝑛 = 1,2, … 

𝑔0
𝑗

= 𝑃𝑀(𝑝0
𝑗
) =

𝑞𝑝0
𝑗

1 − (1 − 𝑞)𝑝0
𝑗
, 

where, 𝑃𝑀(𝑝0
𝑗
) is the probability generating function of 𝑀 at the point 𝑝0

𝑗
=

𝑃 (𝐿𝑖
𝑗,(3)

= 0), for more details see PANJER (1981).  

Recall from (2.6.6) that 𝐿 has cdf ∑ 𝑔𝑘
∞
𝑘=0 , by applying Panjer’s recursion for 𝑛 ≥ 0 (see 

SILVA (2006) and KLUGMAN ET. AL (2012)), we obtain the following compound 

probabilities: 

LOWER BOUND. 

𝑔0
− =

𝑞𝑝0
−

1 − (1 − 𝑞)𝑝0
− , 𝑔𝑛

− =
1 − 𝑞

1 − (1 − 𝑞)𝑝0
− ∑ 𝑝𝑖

−𝑔𝑛−𝑖
−

𝑛

𝑖=1

, 𝑛 = 1,2, … 

UPPER BOUND. 

𝑔0
+ = 0, 𝑔𝑛

+ = (1 − 𝑞) ∑ 𝑝𝑖
+𝑔𝑛−𝑖

+

𝑛

𝑖=1

, 𝑛 = 1,2, … 

Evaluating at these bounds prove to be useful when testing the accuracy of other 

approximations for the cases where we do not have exact results for 𝜓(𝑢). Regarding key 
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formulae and assumptions from KLUGMAN ET AL. (2012), we conclude with the following 

representation 𝛹𝐷&𝐺
− (𝜗𝑚) ≤ 𝛹(𝜗𝑚) ≤ 𝛹𝐷&𝐺

+ (𝜗𝑚) for 𝑚 = 0,1,2, … 

3.2  A classical De Vylder approximation 

3.2.1 Four-moment exponential approximation 

The main idea behind De Vylder’s approximation technique was to replace the classical 

risk process (characterized as 𝑈(𝑡)) with a new process (and new parameters) by using a 

three-moment exponential approximation (say, 𝑈3𝐸(𝑡)), with mean 1/𝛽. See more in DE 

VYLDER (1978). Now consider a new perturbed process, characterized by replacing 𝑉(𝑡) 

with a four-moment approximation, 𝑉4𝐸(𝑡). For convenience sake, it may be better to 

work with an aggregate loss process, {𝑆4𝐸(𝑡): 𝑡 ≥ 0}, where 𝑆4𝐸(𝑡) is a new compound 

Poisson process with parameter 𝜆∗ and the claim amount distribution 𝑋4𝐸(𝑡), follows an 

exponential with mean 1/𝛽. The central moments of 𝑉(𝑡), given by 𝜈𝑘, are found in 

Appendix B and the ordinary moments of an exponential are found by:  

𝐸[𝑋4𝐸
𝑘 (𝑡)] =

Γ(1 + 𝑘)

𝛽𝑘
, for 𝑘 = 1,2, … , 𝑛, 

where, Γ( . ) is the gamma function. Matching the central moments by the relationship 

𝜈𝑘 = 𝑣𝑘,4𝐸 , for 𝑘 = 1,2,3,4; simplifying expressions, we have a system of equations that 

must satisfy: 

𝑐𝑡 − 𝜆𝑡𝜇1 = 𝑐∗𝑡 −
𝜆∗𝑡

𝛽
, 𝜎2𝑡 + 𝜆𝑡𝜇2 = 𝜎∗

2𝑡 +
2𝜆∗𝑡

𝛽2
, −𝜆𝑡𝜇3 =

−6𝜆∗𝑡

𝛽3
,   

6𝑡𝜎4 + 6𝑡𝜆𝜎2𝜇2 + 3𝑡𝜆2𝜇2
2 + 𝜆𝜇4 = 6𝑡𝜎∗

4 +
12𝑡𝜆∗𝜎∗

2

𝛽2
+

12𝑡𝜆∗
2

𝛽4
+

24𝜆∗

𝛽4
. 

We find that the solutions here match those from SEIXAS AND EGÍDIO DOS REIS (2013):  

𝜆∗ =
32

3
𝜆 ∙

𝜇3
4

𝜇4
3 , 𝑐∗ = 𝜆 (

8

3
∙

𝜇3
3

𝜇4
2 + 𝜃𝜇1),   

𝛽 = 4 ∙
𝜇3

𝜇4
, 𝜎∗ = √𝜆 (𝜇2 −

4𝜇3
2

3𝜇4
) + 𝜎2. 
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Now, we will apply the theorem presented by DUFRESNE AND GERBER (1991) on 

calculating ultimate ruin probability formula: 

THEOREM 9. If the claim amount distribution is from a combination of a family of 

exponentials with pdf 𝑓(𝑥) = ∑ 𝐴𝑘𝑓𝑋(𝑥)𝑛
𝑘=1 , with parameters 𝛽𝑘, where ∑ 𝐴𝑘

𝑛
𝑘=1 = 1, 

then the exact ruin probability in infinite time is given by 

𝛹4𝐸(𝑢) = ∑ 𝐶𝑘𝑒−𝑟𝑘𝑢𝑛+1
𝑘=1 , 𝑢 ≥ 0,   (3.2.1) 

where,  

𝐶𝑘 = ∏(𝑟𝑘 − 𝛽𝑗)/𝛽𝑗
 

𝑛

𝑗=1

∙ ∏ 𝑟𝑗/(𝑟𝑘 − 𝑟𝑗)
 

𝑛+1

𝑗=1
𝑗≠𝑘

, 

 for 𝑘 = 1, … , 𝑛 + 1 with ∑ 𝐶𝑘
𝑛
𝑘=1 = 1 and 𝑟1, 𝑟2, … , 𝑟𝑛 being the solutions of  

𝐴1

𝛽1 − 𝑟
+

𝐴2

𝛽2 − 𝑟
+ ⋯ +

𝐴𝑛

𝛽𝑛 − 𝑟
=

2𝑐∗ − 𝜎∗
2𝑟

2𝜆∗
. 

PROOF.  See DUFRESNE AND GERBER (1991).    

REMARK 2.  Setting 𝑛 = 1 implies that the claim size is an exponential with parameter 𝛽 

and 𝐴 = 1. Hence, for a mixture of exponentials, our approximation (also the exact) is 

given by 𝛹4𝐸(𝑢) = 𝐶1𝑒−𝑟1𝑢 + 𝐶2𝑒−𝑟2𝑢,  where,  

𝐶1 =
𝑟1 − 𝛽

𝛽

𝑟2

𝑟1 − 𝑟2
, 𝐶2 =

𝑟2 − 𝛽

𝛽

𝑟1

𝑟2 − 𝑟1
 ,

𝜆∗

𝛽 − 𝑟
= 𝑐∗ −

1

2
𝜎∗

2𝑟, 

leading to: 

𝑟1,2 =
2𝑐∗ + 𝛽𝜎∗

2 ± √4(𝑐∗
2 − 𝛽𝑐∗𝜎∗

2 + 2𝜆∗𝜎∗
2) + 𝛽2𝜎∗

4

2𝜎∗
2

. 

REMARK 3.  Setting 𝑛 = 3 satisfies the claim distribution presented in SECTION 4.3 by 

CRAMÉR (1955) to explain a distribution for a Swedish non-industry fire insurance, where 

we a mixture of exponentials with parameters 𝛽𝑖 and ∑ 𝐴𝑖 = 1 for 𝑖 = 1,2,3. Hence, our 

ruin probability approximation is given by:  
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𝛹4𝐸′(𝑢) = 𝐶1𝑒−𝑟1𝑢 + 𝐶2𝑒−𝑟2𝑢 + 𝐶3𝑒−𝑟3𝑢 + 𝐶4𝑒−𝑟4𝑢,   (3.2.2) 

where, 

𝐶𝑘 =
(𝑟𝑘 − 𝛽1)(𝑟𝑘 − 𝛽2)(𝑟𝑘 − 𝛽3)

𝛽1𝛽2𝛽3
× ∏

𝑟𝑗

𝑟𝑘 − 𝑟𝑗

4

𝑗=1
𝑗≠𝑘

,
𝐴1

𝛽1 − 𝑟
+

𝐴2

𝛽2 − 𝑟
+

𝐴3

𝛽3 − 𝑟
=

2𝑐∗ − 𝜎∗
2𝑟

2𝜆∗
 . 

Solutions for 𝑟 cannot be deduced analytically hence we will solve these numerically. 

THEOREM 10.  If the claim amount distribution is of the same form as the pdf 𝑓(𝑥) =

∑ 𝐴𝑘𝑓𝑋(𝑥)𝑛
𝑘=1 , with paramenters 𝛾𝑘 and 𝛽𝑘 where ∑ 𝐴𝑘

𝑛
𝑘=1 = 1, then the exact ruin 

probability due to oscillation must clearly be 

𝛹4𝐸,𝑑(𝑢) = ∑ 𝐶𝑘
𝑑𝑒−𝑟𝑘𝑢𝑛

𝑘=1 , 𝑢 ≥ 0,   (3.2.3) 

where 𝐶𝑗
𝑑 =

2(1+�̅�)𝜇1𝜆

�̅�(1+�̅�)�̅�2 ∙ 𝐶𝑗𝑟𝑗  for 𝑗 = 1, … , 𝑛 + 1. Then the exact ruin probability due to a 

claim can be computed by subtracting (3.2.3) from (3.2.1). 

PROOF.  Again, see DUFRESNE AND GERBER (1991).  

3.2.2 Gamma approximation 

Now we present a five-moment gamma, where we replace the risk process with another 

one for which the ultimate ruin probability is explicit. Like the exponential case, our 

process is characterized by replacing 𝑉(𝑡) (standard Brownian motion case 𝛼 = 2) with 

𝑉5𝐺(𝑡). Other new processes include, 𝑆5𝐺(𝑡) with parameter 𝜆∗ and the claim amount 

distribution 𝑋5𝐺(𝑡), follows a gamma with shape and scale parameters, 𝛾 and 𝛽, 

respectively. The central moments of 𝑉(𝑡), given by 𝜈𝑘, are found in APPENDIX B and 

the ordinary moments of a gamma can be found by:  

𝐸[𝑋5𝐺
𝑘 (𝑡)] =

𝛾(1 + 𝛾)(2 + 𝛾) … (𝑘 − 1 + 𝛾)

𝛽𝑘
, for 𝑘 = 1,2, … , 𝑛. 

Matching the moments by the relationship 𝜈𝑘 = 𝑣𝑘,5𝐺 , for 𝑘 = 1,2, … ,5; simplifying 

expressions, we have a system of equations, see TABLE 1. 

  



19 

𝑘 𝑣𝑘 𝑣𝑘,5𝐺  

1 𝜃𝜆𝑡𝜇1 𝜃∗𝜆∗𝑡𝛽−1𝛾 

2 𝜆𝑡𝜇2 + 𝜎2𝑡 𝜆∗𝑡𝛽−2𝛾(1 + 𝛾) + 𝜎∗
2𝑡 

3 −𝜆𝑡𝜇3 −𝜆∗𝑡𝛽−3𝛾(1 + 𝛾)(2 + 𝛾) 

4 𝜆𝑡𝜇4 + 3𝜎4𝑡2 + 3(𝜆𝑡𝜇2 + 𝜎∗
2𝑡)2 

𝜆∗𝑡𝛽−4𝛾(1 + 𝛾)(2 + 𝛾)(3 + 𝛾) + 3𝜎∗
4𝑡2

+ 3(𝜆∗𝑡𝛽−2𝛾(1 + 𝛾) + 𝜎∗
2𝑡)2 

5 −𝜆𝑡𝜇5 − 10𝜆𝑡𝜇3(𝜆𝑡𝜇2 + 𝜎2𝑡) 
−𝜆∗𝑡𝛽−5𝛾(1 + 𝛾)× …×(4 + 𝛾)

− 10𝜆∗𝑡𝛽−3𝛾(1 + 𝛾)(2
+ 𝛾)(𝜆∗𝑡𝛽−2𝛾(1 + 𝛾) + 𝜎∗

2𝑡) 

TABLE 1 – MOMENTS FOR 5MGDV APPROXIMATION. 

As the solution is very hard to obtain analytically, we must modify some parameters. Note 

that estimating 𝜎∗ required a fifth moment and equation. Nevertheless, we will still 

evaluate the ruin probability for a 5-moment gamma numerically, for instance, SECTION 

3.2 for techniques used to obtain the ruin probability approximation. In the sequel, we 

now match the first four moments and assume 𝜎 is fixed, hence our system of equations 

now satisfies 𝜈𝑘 = 𝑣𝑘,4𝐺, see TABLE 2. 

𝑘 𝑣𝑘 𝑣𝑘,4𝐺  

1 𝜃𝜆𝑡𝜇1 𝜃∗𝜆∗𝑡𝛽−1𝛾 

2 𝜆𝑡𝜇2 𝜆∗𝑡𝛽−2𝛾(1 + 𝛾) 

3 −𝜆𝑡𝜇3 −𝜆∗𝑡𝛽−3𝛾(1 + 𝛾)(2 + 𝛾) 

4 𝜆𝑡𝜇4 + 3(𝜆𝑡𝜇2 + 𝜎2𝑡)2 
𝜆∗𝑡𝛽−4𝛾(1 + 𝛾)(2 + 𝛾)(3 + 𝛾)

+ 3(𝜆∗𝑡𝛽−2𝛾(1 + 𝛾) + 𝜎2𝑡)2 

TABLE 2 – MOMENTS FOR 4MGDV APPROXIMATION. 

Solving this system analytically yields (Case 1): 

𝜃∗ = ±
𝜃𝜇1(2𝜇3

2 − 𝜇2𝜇4)

𝜇2
2𝜇3

,   𝜆∗ =
𝜆𝜇2

3𝜇3
2

6𝜇3
4 − 7𝜇2𝜇3

2𝜇4 + 2𝜇2
2𝜇4

2, 

 𝛾 =
2𝜇2𝜇4 − 3𝜇3

2

𝜇3
2 − 𝜇2𝜇4

,   𝛽 =
𝜇2𝜇3

𝜇2𝜇4 − 𝜇3
2, 

with the assumptions 𝜇3
2 > 𝜇2𝜇4, 2𝜇2𝜇4 > 3𝜇3

2 and 𝜇2𝜇3 < 0 to ensure that 𝛾, 𝛽 > 0. If 

this condition cannot be fulfilled, then simply we do not calculate 𝜇4 and solve up to the 

the third moment. This leads to 𝜆∗ = 𝜆, and (Case I1): 
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𝜃∗ =
𝜃𝜇1(𝜇3 ± √8𝜇2

3 + 𝜇3
2)

4𝜇2
2 ,    𝛾 =

−4𝜇2
3 + 𝜇3(𝜇3 ∓ √8𝜇2

3 + 𝜇3
2)

2(𝜇2
3 − 𝜇3

2)
,

𝛽 =
𝜇2(−3𝜇3 ∓ √8𝜇2

3 + 𝜇3
2)

2(𝜇2
3 − 𝜇3

2)
, 

with the strict assumption that 𝜇2
3 > 𝜇3

2. 

    

(a)      (b)  

FIGURE 4 – CASE I. REGION OF ACCEPTABLE VALUES FOR 4MGDV PARAMETERS.  

THEOREM 11.  If the claim amount distribution is from an exponential or gamma 

distribution, then the 4-moment gamma De Vylder approximation is given by: 

𝛹4𝐺(𝑢) =
𝜃∗ (1 −

𝑅
𝛾) exp {−

𝛽
𝛾 𝑅𝑢}

1 + (1 + 𝜃∗)𝑅 − (1 + 𝜃∗) (1 −
𝑅
𝛾)

+
𝛾𝜃∗ sin(𝛾𝜋)

𝜋
∙ 𝐼, 

where 𝐼 = ∫
𝑥𝛾 exp{−(𝑥+1)𝛽𝑢}

[𝑥𝛾{1+𝛾(1+𝜃∗)(𝑥+1)}−cos(𝛾𝜋)]2+sin2(𝛾𝜋)

∞

0
𝑑𝑥 and 𝑅 is the adjustment coefficient 

defined in Section 2. 

PROOF.  See an extensive proof in GRANDELL AND SEGERDAHL (1971). 

GRANDELL (2000) demonstrated that the method above is said to give the exact ruin 

probability for exponential or gamma claims, and very good approximations for other 

distributions with the first four moments being finite. Furthermore, BURNECKI ET. AL 

(2003) used numerical illustrations to prove that this method gives a slight improvement 
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to the ruin probability proposed by De Vylder, famous for being the “best” among usual 

approximation techniques. In many cases, it may be difficult to numerically solve 𝐼 for 

certain distributions, so it is usually best to use (3.2.1). Under the same conditions, we 

could also obtain the ruin probability due to oscillation. 

3.3 Pollaczek-Khinchine approximations 

The PK formula was first published in POLLACZEK (1930), where a major study on 

queueing theory was conducted; this formula explains the relationship between the queue 

length and a time distribution, by taking Laplace transforms for an M/G/1 queue (i.e. 

where jobs follow a Poisson process). In ruin theory, this formula is sought to calculate 

the ultimate ruin probability, and so, one can use this formula to derive explicit solutions 

for 𝑋(𝑡), see PANJER AND WILLMOT (1993). In this section, we consider a new derivation 

of De Vylder by considering the first two moments (obtained from a Padé approximation) 

and a Renyi approximation (based of Beekman-Bower’s approximation), see AVRAM ET. 

AL (2011). 

3.3.1 Preliminaries 

We begin with some preliminaries. First, consider taking the LT of our perturbed model 

in equation (2.3.1). This yields: 

𝑉∗(𝑠) = 𝑠 (𝑐 − 𝜆(1 − 𝐹∗(𝑠)) +
𝜎2

2
)    (3.3.1) 

where, the LT of 𝑍2(𝑡) = 𝑊(𝑡) (in the standard Brownian motion case) is 𝑠
𝜎2

2
 and 𝐹∗(𝑠) 

is the LT of the claims distribution. Recall that the superscript (∗) denotes the LT. Hence, 

the PK formula can be deduced by taking the LT of the Kolmogorov equation for 𝜓(𝑢) 

for perturbed model, and thus yields: 

𝛹 
∗(𝑠) =

1

𝑠
−

𝑉∗′(0)

𝑉∗(𝑠)
=

(1−𝑞)(1−𝑓𝑒
∗(𝑠))+

𝑠𝜎2

2𝑐

𝑠(1−(1−𝑞)𝑓𝑒
∗(𝑠)+

𝑠𝜎2

2𝑐
)

=
1

𝑠
(1 − 𝜓∗(𝑠)),   (3.3.2) 

where, 1 − 𝐹𝐿(𝑠) = 𝛹(𝑠) is the survival function of the aggregate loss 𝐿, 𝑓𝑒(𝑥) =

ℎ2(𝑥) = 𝜇1
−1(1 − 𝐹(𝑥)) is the equilibrium density for 𝑋 and �̆�( . ) is the ruin density 

function. The survival LT function 1 − 𝐹∗(𝑠) emphasizes that the result in the perturbed 
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case depends only on 𝑓𝑒(𝑥) for 𝑋. A slight modification of result from (2.6.8) that replaces 

𝑟 with −𝑠 to form a LT coinciding with the following PK formula for the transformed 

density 𝜓∗(𝑠): 

𝜓∗(𝑠) = 𝐸[𝑒−𝑠𝐿] = 𝐸 [exp {−𝑠 (𝐿0
(1)

+ ∑(𝐿𝑖
(1)

+ 𝐿𝑖
(2)

)

𝑀

𝑖=1

)}] = 1 − 𝑠𝛹∗(𝑠) 

⟺ 𝜓∗(𝑠) = 𝑠
ℒ′(0)

ℒ(𝑠)
=

𝑞

1−(1−𝑞)𝑓𝑒
∗(𝑠)+

𝑠𝜎2

2𝑐

.     (3.3.3) 

Letting 𝜎 = 0 gives a beautiful rendition of the non-perturbed PK where (3.3.3) can be 

expanded into a geometric series, yielding: 

𝜓∗(𝑠) =
𝑞

1−(1−𝑞)𝑓𝑒
∗(𝑠)

= 𝑞 ∑ [(1 − 𝑞)𝑓𝑒
∗(𝑠)]𝑘∞

𝑘=0 .     (3.3.4) 

The rationalization behind this is that 𝜓∗(𝑠) is revealed to be the LT of a geometric sum 

on convolutions of the equilibrium distribution (see APPENDICES C and E), which agrees 

with the theory in SECTION 2.6. Similarly, we get an identical result to (2.6.2) for the 

“ladder decomposition” 𝐿 and 𝑀 is the number of records of 𝐿, which follows a geometric 

random variable, 𝑚𝑘 = 𝑃(𝑀 = 𝑘) = 𝑞(1 − 𝑞)𝑘 , 𝑘 = 0,1,2, … (see APPENDIX E). 

REMARK 4. Using results from SECTION 2.6 (maximal aggregate loss as a mixture of a 

discrete mass of Ψ(0) = 𝜓∗(∞) = 𝑞) and the LT of 𝜓(𝑢) in (3.1.3), we can conclude the 

following decomposition: 

𝜓∗(𝑠) = 𝑞 + (1 − 𝑞)�̆�∗(𝑠) ⟺ 𝜓(𝑠) = 𝑞𝜎0(𝑠) + (1 − 𝑞)�̆�(𝑠) 

⟺
𝜓∗(𝑠)−𝜓∗(∞)

𝜓∗(𝑠)−𝜓∗(0)
=

𝑞𝑓𝑒
∗(𝑠)

1−(1−𝑞)𝑓𝑒
∗(𝑠)

= 𝜓∗(𝑠)𝑓𝑒
∗(𝑠),    (3.3.5) 

where 𝜎0(𝑠) represents the drift function in terms of LTs and �̆�∗(𝑠) is the LT of the density 

ruin function defined in (3.3.2). The behavior of plus infinity differentiates between the 

perturbed (σ > 0) and non-perturbed (σ = 0) case: 

lim
𝑠→∞

𝜓∗(𝑠) = lim
𝑠→∞

[1 − 𝑠𝛹∗(𝑠)] = {
𝑞, 𝜎 = 0
0, 𝜎 > 0
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Hence, considering ruin theory, the LT of 𝜓, i.e. 𝜓∗, is a fundamental quantity in the 

theory of Lévy processes. 

Henceforth, we will assume a standard Brownian perturbation (𝛼 = 2), and we will 

directly approximate the aggregate loss distribution 𝐿. As the moments for 𝐿 are already 

defined in APPENDIX E, we will go one step further and obtain factorial reduced moments, 

which are found by normalizing with respect to the exponential moments of 𝐿. Please see 

APPENDIX E again for deduction of these new moments.  

In the next sub-sections, we move on to the approximation techniques under 

Renyi, and De Vylder, where we make some observations that (3.3.1) is a case of Padé 

approximant of Laplace transforms.  

DEFINITION 7 (Padé Approximant). Let the Padé approximant be given by 

(𝜓∗)(𝑛)(𝑠) = ℘(𝑚,𝑛)(𝜓∗)(𝑠) = ℘(𝑚,𝑛)([𝑓(𝑠)]𝑁),    (3.3.6) 

where ℘(𝑚,𝑛) denotes the classical Padé approximation based on the Taylor series 

around zero, with integers 𝑚 ≥ 0 and 𝑛 ≥ 1, and [𝑓(𝑠)]𝑁 is the truncated formal power 

series where, Padé approximants can be applied to divergent summated series, with 𝑁 =

𝑚 + 𝑛, see more in APPENDIX E and AVRAM ET. AL (2011). 

The purpose behind this approximant is that the Renyi and De Vylder approximations, 

are assumed to be the one point Padé approximation of Ψ∗(𝑠) around the “zero-th” Taylor 

point, of orders (𝑛 − 1, 𝑛) at 𝑛 = 1. We move on to simple cases for our perturbed model. 

3.3.2 Renyi approximation 

Consider a one-moment Renyi exponential approximation, which is from the family of 

Ramsay-type approximations of ℎ2(𝑥) = 𝑓𝑒(𝑥). Since we can consider this as a ℘(𝑛−1,𝑛) 

approximation of the aggregate loss pdf at 𝑛 = 1, as defined in (3.3.6), which also 

satisfies the limiting behavior from REMARK 4, then we can obtain an approximation for 

the Laplace ruin transform: 

𝛹∗(𝑠) ≈
1 − 𝑞

𝑠 + 𝑐0
⟺ 𝑓𝑒

∗(𝑠) ≈
𝑐0/𝑞

𝑠 + 𝑐0/𝑞
, 
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where, 𝑓𝑒
∗(𝑠) is the LT of the equilibrium density function of the claims distribution (see 

3.3.1) and 𝑐0 is a constant. By matching the first factorial moment where, �̆�𝑘 =
𝜇𝑘+1

(𝑘+1)𝜇1
 are 

factorial reduced equilibrium moments, (these factorial moments are fully defined in 

APPENDIX E), this yields �̆�1 =
𝜇2

2𝜇1
=

𝑞

𝑐0
⟺ 𝑐0 = 𝑞/�̆�1, and so 𝛹∗(𝑠) ≈

1−𝑞

𝑠+𝑞/�̆�1

⟺

𝛹𝑅(𝑢) ≈ (1 − 𝑞)𝑒−𝑢𝑞/�̆�1 . 

This can also be regarded as a simplified version of the Beekman-Bowers 

approximation, again see GRANDELL (2000). Hence, this leads us to believe that this 

method is probably not as good as De Vylder’s approximation in SECTION 3.1 since there 

we matched four moments and here we only matched two. 

3.3.3 A new De Vylder approximation to the exponential case 

In previous section, De Vylder’s approximation was acquired by matching moments the 

first few moments of the classical risk process (𝜎 = 0 and 𝜎 > 0) with a new process 

whose claims distribution followed (i) an exponential, and (ii) a gamma. Now for this 

case, using the factorial moments of the aggregate loss density (see APPENDIX E), we can 

show that this approximation coincides with the expansion series given by the ℘(𝑛−1,𝑛) 

approximation at 𝑛 = 1, as defined in (3.3.6) of the LT, 𝛹∗(𝑠). We start by expanding 

the PK formula deduced in (3.3.1) in power series: 

𝛹∗(𝑠) =

𝜂2,𝜎

2! − 𝑠
𝜂3

3! + 𝑠2 𝜂4

4! − ⋯

𝜌 + 𝑠
𝜂2,𝜎

2! − 𝑠2 𝜂3

3! + 𝑠3 𝜂4

4! − ⋯ 
≈

𝐴0

𝑠 + 𝛽 
⟺ 𝛹𝑃𝐾𝐷𝑉(𝑢) = 𝐴0𝑒−𝛽𝑢, 

where 𝜂𝑘 = 𝜆𝜇𝑘, 𝑘 = 1,2, … represent moments of a Lévy measure (with 𝜂2,𝜎 = 𝜆𝜇2 +

𝜎2), 𝐴0 is a constant and 𝛽 is exponential parameter. Manipulating the equation above 

then yields: 

𝐴0𝑠 (𝜌 + 𝑠
𝜂2,𝜎

2!
− 𝑠2

𝜂3

3!
+ 𝑠3

𝜂4

4!
− ⋯ ) ≈ (𝑠 + 𝛽) (𝑠

𝜂2,𝜎

2!
− 𝑠2

𝜂3

3!
+ 𝑠3

𝜂4

4!
− ⋯ ). 

Solving this consists of matching coefficients of order 𝑠𝑘, 𝑘 = 1,2, then: 

𝑂(𝑠) ∶  𝐴0𝜌 = 𝛽
𝜂2,𝜎

2!
, 𝑂(𝑠2) ∶ 𝐴0

𝜂2,𝜎

2!
=

𝜂2,𝜎

2!
− 𝛽

𝜂3

3!
. 

Hence, 𝐴0 and 𝛽 as a 𝑓(𝜇𝑘, 𝜆, 𝜎), 𝑘 = 1,2,3 yields 
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𝐴0
∗ =

3(𝜆𝜇2 + 𝜎2)2

3𝜆2𝜇2
2 + 6𝜆𝜇2𝜎2 + 2𝜆𝜌𝜇3 + 3𝜎4

, 𝛽∗ =
6𝜌(𝜆𝜇2 + 𝜎2)

3𝜆2𝜇2
2 + 6𝜆𝜇2𝜎2 + 2𝜆𝜌𝜇3 + 3𝜎4

.   

Thus, substituting terms back into 𝛹∗(𝑠); using the Inverse LT yields the ultimate ruin 

probability.  

REMARK 5. Setting 𝜂2,𝜎 ≈  𝜂2 , where 𝜎 = 0, reduces the above results to 

𝐴0
∗ =

3𝜆𝜇2
2

3𝜆𝜇2
2 + 2𝜌𝜇3

, 𝛽∗ =
6𝜌𝜇2

3𝜆𝜇2
2 + 2𝜌𝜇3

.   

3.4 Two-point Padé approximation 

In this scenario, we consider further information beyond aggregate moments from 

SECTION 3.3 using the two-point Padé approximations (with special attention brought to 

Lévy processes) and an integro-differential equation that was briefly touched up in 

SECTION 2.4. By keeping our notation consistent (from the previous sub-section), we now 

expand our LT to infinity: 

𝛹∗(𝑠) = ∫ 𝑒𝑠𝑡 ∑ 𝛹(𝑘)(0)
𝑡𝑘

𝑘!

∞
𝑘=0

∞

0
,     (3.4.1) 

simplifying the RHS gives 𝛹∗(𝑠) = ∑ 𝛹(𝑘)(0)𝑠−(𝑘+1)∞
𝑘=0  where 

𝛹(0) = {
1, 𝜎 > 0

𝜇1𝜆/𝑐, 𝜎 = 0
 

is well defined. Now we consider finding an explicit formula for 𝛹(𝑢). 

3.4.1 Deriving 𝜳(𝒖) from integro-differential equations 

Consider the following theorems: 

THEOREM 12.  The function from (2.4.2), for  𝑢 ≥ 0, satisfies the equation 

𝜕

𝜕𝑢
𝐺(𝑢, 𝑦) =

𝜆

𝑐
[𝐺(𝑢, 𝑦) − ∫ 𝐺(𝑢 − 𝑥, 𝑦)𝑑𝐹(𝑥)

𝑢

0
− {𝐹(𝑢 + 𝑦) − 𝐹(𝑢)}].   (3.4.2) 

THEOREM 13.  An explicit formula for 𝐺(0, 𝑦) is given by 

𝐺(0, 𝑦) =
𝜆

𝑐
∫ [1 − 𝐹(𝑥)]

𝑦

0
𝑑𝑥, 𝑦 ≥ 0.    (3.4.3) 

PROOF.  Both theorems have been proven in the literature by many authors. See 

KLUGMAN ET AL. (2012) for a beautiful rendition of these proofs.                       ∎ 
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THEOREM 14.  The probability of ultimate survival, defined in (2.4.4), satisfies 

𝜙′(𝑢) =
𝜆

𝑐
[𝜙(𝑢) − ∫ 𝜙(𝑢 − 𝑥)𝑑𝐹(𝑥)

𝑢

0
],   𝑢 ≥ 0.   (3.4.4) 

PROOF.  Again, see KLUGMAN ET AL. (2012)                                      ∎ 

The explicit solution is easy to derive by taking the second derivative of 𝜙(𝑢) and thus 

obtaining an equation in terms of 𝜙′(𝑢), which can be reformulated algebraically to 

remove the integrals in 𝜙(𝑢). The easiest case would be to let the severity distribution 

follow an exponential. See APPENDIX F for properties and derivatives of 𝛹(𝑥) about 𝑥 =

0 which are needed for the final act. 

3.4.2 A two-point Padé-Ramsay approximation 

THEOREM 15. Let us consider a two-point Padé-Ramsay approximation, where we 

impose some formal limiting behavior as found in a similar fashion to (3.3.4), that is 

lim
𝑠→∞

𝑠𝛹∗(𝑠) = 1 − 𝑞 with first derivative 𝛹′(0) = −𝑞(1 − 𝑞)/𝜇1 (see APPENDIX F). This 

leads to a two-point ℘(𝑛−1,𝑛) Laplace ruin transform approximation at 𝑛 = 2, 

𝑓𝑒
∗(𝑠) ≈

𝛽0 + 𝛾1𝑠

𝛽0 + 𝛽1𝑠 + 𝛽2𝑠2
⟺ 𝛹∗(𝑠) ≈

(1 − 𝑞)(𝛽2𝑠 + 𝛽1 − 𝛾1)

𝑞𝛽0 + (𝛽1 − (1 − 𝑞)𝛾1)𝑠 + 𝛽2𝑠2
,  

where 𝛾1 = 𝛽2/𝜇1 and coefficients 𝛽𝑖, 𝑖 = 0,1,2 found by fitting (and matching) the first 

few aggregate loss moments (see APPENDIX E). Approximating each coefficient yields: 

𝛽0 = 𝜇2 − 2𝜇1
2, 𝛽1 =

𝜇3

3
− 𝜇1𝜇2, 𝛽2 =

𝜇1𝜇3

3
−

𝜇2
2

2
. 

PROOF. Recall equation (3.3.2) and assume that the drift 𝜎 ≈ 0,  then 

𝛹∗(𝑠) ≈
(1 − 𝑞)(1 − 𝑓𝑒

∗(𝑠))

𝑠(1 − (1 − 𝑞)𝑓𝑒
∗(𝑠))

. 

This satisfies the approximation of the form: 

𝑠𝛹∗(𝑠) ≈
(1 − 𝑞)(𝛽2𝑠2 + (𝛽1 − 𝛾1)𝑠)

𝛽2𝑠2 + (𝛽1 − 𝑝(1 − 𝑞))𝑠 + 𝑞𝛽0

, 

which surely satisfies the limiting behavior lim
𝑠→∞

𝑠𝛹∗(𝑠) = 1 − 𝑞 (can be shown by 

dividing the numerator and denominator by 𝑠2).                  ∎ 
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We can solve the problem above by letting 

𝛹∗(𝑠) ≈
(1 − 𝑞)(𝛽2𝑠 + 𝛽1 − 𝛾1)

𝑞𝛽0 + (𝛽1 − (1 − 𝑞)𝛾1)𝑠 + 𝛽2𝑠2
=

𝐴𝑠 + 𝐵

𝐶𝑠2 + 𝐷𝑠 + 𝐸
, 

where 𝐴 = (1 − 𝑞)𝛽2, 𝐵 = (1 − 𝑞)(𝛽1 − 𝛾1), 𝐶 = 𝛽2, 𝐷 = 𝛽1 − (1 − 𝑞)𝛾1 and 𝐸 =

𝑞𝛽0. The inverse LT can then be deduced in Mathematica, and thus an analytical solution 

for the above is found to be: 

𝛹2𝑃𝑃(𝑢) = 𝑘1𝑒−𝜛1𝑢 + 𝑘2𝑒−𝜛2𝑢, 

where, 𝑘1,2 =
𝐴(Δ±𝐷)∓2𝐵𝐶

2𝐶Δ
, 𝜛1,2 =

𝐷±Δ

2𝐶
 and Δ = √𝐷2 − 4𝐶𝐸, with real roots iff Δ > 0. 

THEOREM 16. Let us consider another two-point Padé approximation, where we impose 

the same limiting behavior as found in (3.3.4), that is lim
𝑠→∞

𝑠𝛹∗(𝑠) = 1 − 𝑞 with first 

derivative 𝛹′(0) = −𝑞(1 − 𝑞)/𝜇1 (see APPENDIX F). This leads to a two-point ℘(𝑛−1,𝑛) 

Laplace ruin transform approximation at 𝑛 = 2, 

𝑓𝑒
∗(𝑠) ≈

𝛽0 + 𝛾1𝑠

𝛽0 + 𝛽1𝑠 + 𝛽2𝑠2
⟺ 𝛹∗(𝑠) ≈

(1 − 𝑞)(𝛽2𝑠 + 𝛽1 − 𝛾1)

𝛽2𝑠2 + (𝛽1 − (1 − 𝑞)𝛾1)𝑠 + 𝑞𝛽0 
, 

where, 𝛾1 = 𝛽1 − �̆�
1

𝛽
0
 and coefficients 𝛽𝑖, 𝑖 = 0,1,2 are found by fitting (and matching) 

the first few moments of 𝐿 (see APPENDIX E). Approximating each coefficient yields: 

𝛽0 = �̆�
2

− �̆�
1
2 > 0, 𝛽1 = �̆�

3
− �̆�

1
�̆�

2
, 𝛽2 = �̆�

1
�̆�

3
− �̆�

2
2 > 0, 

where, �̆�𝑘 =
𝜇𝑘+1

(𝑘+1)𝜇1
 are factorial reduced equilibrium moments.  
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4 NUMERICAL ILLUSTRATION 

We present numerous illustrations for four cases with 

perturbation. For SECTION 4.1 to 4.3, we assume that the 

claim amount distribution 𝑋 has expectation 𝜇1 = 1 and 

our upper and lower bounds has lattice width 𝜗 = 0.1. Under the perturbed case, we set 

the diffusion component as 𝜎 = 1. This leads to 𝑐 = 𝜆(1 + 𝜃) > 0 and 𝑞 = 𝜃/(1 + 𝜃). 

With this, we modify our perturbed risk model from (2.3.1) and denote this updated one 

by �̃�(𝑡), hence the model at time 𝑡 is given by: 

       �̃�(𝑡) = 𝑢 + 𝜆(1 + 𝜃)𝑡 − 𝑆(𝑡) + 𝑍𝛼(𝑡),         𝑡 ≥ 0.   (4.0.1) 

This lead to 𝐻1(𝑥) = 1 − 𝑒−2𝑐𝑥 and ℎ2(𝑥) = 𝑓𝑒(𝑥) = 1 − 𝐹𝑋(𝑥), where the equilibrium 

density ℎ2(𝑥) is the survival function for the claim distribution. The convolution CDF, if 

and only if the properties of a distribution is satisfied, is given by  

[𝐻1 ∗ 𝐻2](𝑥) = ∫ 𝐻1(𝑥 − 𝑡)ℎ2(𝑡)
𝑥

0
𝑑𝑡 = ∫ (1 − 𝑒−2𝑐(𝑥−𝑡))(1 − 𝐹𝑋(𝑡))

𝑥

0
𝑑𝑡,     (4.0.2) 

and is under the assumption that their respective random variables are concentrated on 

(0, 𝑥), see SEIXAS AND EGÍDIO DOS REIS (2013) and APPENDIX C. Approximations 

considered were De Vylder’s exponential, Dufresne and Gerber’s bounds, Pollaczek-

Khinchine’s One-Point (Renyi and new DV) and Two-Point Padé. All figures and 

illustrations were computed in MS Excel, Wolfram Alpha and Mathematica. Relative 

errors are useful here to determine the precision of these approximations. The formula is 

given by: 

Ψ𝐸𝑟𝑟𝑜𝑟 = |
𝛹𝐴𝑝𝑝𝑟𝑜𝑥(𝑢)−𝛹𝐸𝑥𝑎𝑐𝑡(𝑢)

𝛹𝐸𝑥𝑎𝑐𝑡(𝑢)
|.      (4.0.3) 

4.1 Exponential claim distribution 

Suppose that the claim distribution followed an 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝛽) with Poisson parameter 

𝜆 = 1, safety positive loading coefficient 𝜃 = 1% and probability density function given 

by 𝑓𝑋(𝑥) = 𝛽𝑒−𝛽𝑥 = ℎ2(𝑥), 𝑥 > 0, where 𝛽 = 1 is the scale parameter and the mean. 

Thus, the convolution CDF equation defined in (4.02) approximates to  

[𝐻1 ∗ 𝐻2](𝑥) ≈ 0.980392(𝑒−2.02𝑥 − 𝑒−𝑥) + sinh(𝑥) − cosh(𝑥) + 1. 

Riches are not from an 

abundance of worldly goods 

but from a contented mind. 

Prophet Muhammad (PBUH) 
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The rate of ruin under this distribution is proportional to its power or time, i.e. the ruin 

rate is constant over time. Notice that this distribution is light-tailed, and thus, the 

contribution of claims to ruin is expected to be less important than heavier-tailed 

distributions. Raw moments are easy to compute: 𝜇𝑘 = 𝑘!/𝛽𝑘.  

Initial,  
u 

Exact, 
𝚿(𝒖) 

Lower  
Bound 

DV 4 Moment 
Exponential 

PK 
Renyi 

PK 
De Vylder 

Upper 
Bound 

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.5 0.99324 0.98790 0.99324 0.99506 0.99228 0.98901 

1.0 0.98919 0.98406 0.98919 0.99015 0.98899 0.98577 

1.5 0.98574 0.98132 0.98574 0.98526 0.98571 0.98337 

2.0 0.98244 0.97717 0.98244 0.98039 0.98245 0.97972 

2.5 0.97918 0.97439 0.97918 0.97555 0.97919 0.97729 

3.0 0.97593 0.97025 0.97593 0.97073 0.97595 0.97365 

3.5 0.97270 0.96749 0.97270 0.96594 0.97271 0.97123 

4.0 0.96947 0.96337 0.96947 0.96117 0.96949 0.96761 

4.5 0.96626 0.96064 0.96626 0.95642 0.96628 0.96520 

5.0 0.96306 0.95655 0.96306 0.95170 0.96308 0.96160 

5.5 0.95987 0.95383 0.95987 0.94700 0.95989 0.95921 

6.0 0.95669 0.94977 0.95669 0.94232 0.95671 0.95564 

6.5 0.95352 0.94707 0.95352 0.93767 0.95354 0.95326 

7.0 0.95036 0.94304 0.95036 0.93304 0.95038 0.94971 

7.5 0.94721 0.94036 0.94721 0.92843 0.94723 0.94735 

TABLE 3 – RUIN PROBABILITIES, EXPONENTIAL CLAIMS (𝛽 = 1), 𝜆 = 1, 𝜃 = 1%. 

Initial,  
u 

𝚿𝐄𝐫𝐫𝐨𝐫 

Lower Bound 

𝚿𝐄𝐫𝐫𝐨𝐫 

PK-R 

𝚿𝐄𝐫𝐫𝐨𝐫 

PK-DV 

𝚿𝐄𝐫𝐫𝐨𝐫 

Upper Bound 

0.5 0.005378185 0.001831717 0.000972172 0.004256357 

1.0 0.005183530 0.000970080 0.000201145 0.003457658 

1.5 0.004484530 0.000490563 0.000029547 0.002406271 

2.0 0.005367598 0.002082280 0.000008596 0.002765299 

2.5 0.004883695 0.003701039 0.000017053 0.001927372 

3.0 0.005822822 0.005323739 0.000018908 0.002339192 

3.5 0.005350241 0.006945254 0.000019296 0.001510937 

4.0 0.006291899 0.008564449 0.000019356 0.001925351 

4.5 0.005820118 0.010181076 0.000019345 0.001097227 

5.0 0.006761489 0.011795082 0.000019317 0.001511926 

5.5 0.006289960 0.013406461 0.000019285 0.000683481 

6.0 0.007230895 0.015015212 0.000019253 0.001098357 

6.5 0.006759591 0.016621341 0.000019220 0.000269571 

7.0 0.007700082 0.018224851 0.000019188 0.000684618 

7.5 0.007229000 0.019825746 0.000019155 0.000144511 

TABLE 4 – RELATIVE ERROR, EXPONENTIAL CLAIMS (𝛽 = 1), 𝜆 = 1, 𝜃 = 1%. 
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TABLES 3 and 4 show the exact, approximate ruin probabilities and relative errors. We 

see that all ruin approximations appear to be excellent for low levels of 𝑢. Relative errors 

for De Vylder’s four moment exponential is not needed here since it is the exact ruin 

probability, hence we need not to worry for bounds. Excluding bounds, we see that Renyi 

performs worse than Pollaczek-Khinchine approximations of the first Padé order for DV, 

most likely since we only match a single moment.  

The error for PK-DV converges slowly towards 0.0019% for larger values of 𝑢, 

and for most values of 𝑢, this leads to a better approximation for Ψ(𝑢). Conversely, 

Renyi’s relative error increases as 𝑢 increases, despite this, it’s a better approximation for 

extremely low levels of capital, say 𝑢 < 1. 

4.2 Gamma claim distribution  

4.2.1 Gamma with 𝜸 = 𝟎. 𝟏 and 𝜷 = 𝟏𝟎 

We consider conservative claims which has often appeared in actuarial literature, see 

RAMSAY (1992) and GRANDELL (2000), with intensity parameter 𝜆 = 1, safety positive 

loading coefficient 𝜃 = 10% following a 𝐺𝑎𝑚𝑚𝑎(0.1, 10) with CDF and CGF equal to   

𝐹𝑋(𝑥) = ∫
100.1𝑒−10𝑡

Γ(0.1)𝑡0.9

𝑥

0

𝑑𝑡 ≈ 0.1051137[Γ(0.1) − Γ(0.1,10𝑥)],

𝜑𝑋(𝑧) = −0.1 ln(1 − 10𝑧), 

respectively. Obtaining an analytical expression for [𝐻1 ∗ 𝐻2](𝑥) is difficult due to the 

presence of an incomplete gamma function, Γ(0.1,10𝑥). Likewise, calculating the area 

under a convolution by using the products of areas under factors (see APPENDIX C) is also 

difficult since the expression does not converge, hence for this reason, we will not 

consider bounds. TABLE 5 shows the results and relative errors for Pollaczek-Khinchine 

approximations of the first Padé order (Renyi & DV) and the Two-Point Padé 

approximation (2PP), with initial reserve increasing in increments of five. We see that all 

ruin approximations under Renyi appears to be extremely accurate with relative less than 

2% for 𝑢 ≤ 25. The 2PP approximation is an odd case as the relative error tends to zero 

as 𝑢 → 30, then slowly worsens as the initial reserve increases beyond 30. Lastly, the 

error for PK-DV converges slowly towards 0.02% as 𝑢 increass, and for most values of 

𝑢, this leads to a better approximation for Ψ(𝑢).   



31 

Initial 
u 

Exact, 
𝚿(𝒖) 

PK-R PK-DV 2PP 
𝚿𝐄𝐫𝐫𝐨𝐫 

PK-R 

𝚿𝐄𝐫𝐫𝐨𝐫 

PK-DV 

𝚿𝐄𝐫𝐫𝐨𝐫 

2PP 

0 1.00000 1.00000 1.00000 1.00000 - - - 

5 0.83623 0.83698 0.83788 0.89440 0.000892562 0.001963121 0.069557004 

10 0.77428 0.77059 0.77711 0.81835 0.004765369 0.003661279 0.056922458 

15 0.71821 0.70947 0.72076 0.74877 0.012181643 0.003543488 0.042547645 

20 0.66623 0.65319 0.66849 0.68511 0.019572574 0.003395088 0.028336954 

25 0.61801 0.60138 0.62001 0.62686 0.026908706 0.003246194 0.014319444 

30 0.57327 0.55367 0.57505 0.57356 0.034189953 0.003097313 0.000493002 

35 0.53178 0.50976 0.53335 0.52479 0.041416718 0.002948455 0.013144969 

40 0.49329 0.46932 0.49467 0.48017 0.048589408 0.002799618 0.026597037 

45 0.45759 0.43209 0.45880 0.43934 0.055708427 0.002650804 0.039865737 

50 0.42447 0.39782 0.42553 0.40199 0.062774178 0.002502012 0.052953568    

TABLE 5 – RUIN PROBABILITIES, RELATIVE ERROR, GAMMA CLAIMS (𝛾 = 0.1, 𝛽 = 10).  

4.2.2 Gamma with 𝜸 = 𝟓/𝟐 and 𝜷 = 𝟐/𝟓 

Now we consider Padé-based Gamma (
5

2
,

2

5
) claims with higher intensity parameter (𝜆 =

10), safety positive loading coefficient 𝜃 = 10%. This is an interesting case, since not 

only is the parameters reciprocals of each other, but AVRAM ET. AL (2011) deduced using 

a similar example that moment-based Padé approximation of 𝑋 should not result in valid 

distributions. This is elaborated further in AVRAM ET. AL (2011). However, we present 

approximations which indeed, lead to valid ultimate ruin probabilities, see TABLE 6. 

Initial 
u 

Exact, 
𝚿(𝒖) 

PK-R PK-DV 2PP 
𝚿𝐄𝐫𝐫𝐨𝐫 

PK-R 

𝚿𝐄𝐫𝐫𝐨𝐫 

PK-DV 

𝚿𝐄𝐫𝐫𝐨𝐫 

2PP 

0 1.00000 1.00000 1.00000 1.00000 - - - 

0.5 0.95917 0.90161 0.89661 0.96886 0.060010237 0.065219325 0.010103361    

1 0.92999 0.89419 0.88989 0.96029 0.038496671 0.043120754 0.032586227    

1.5 0.90851 0.88683 0.88321 0.95180 0.023869893 0.027848854 0.047643110    

2 0.89214 0.87953 0.87659 0.94338 0.014134047 0.017429560 0.057434897    

2.5 0.87914 0.87229 0.87002 0.93503 0.007795707 0.010384089 0.063572231    

3 0.86840 0.86511 0.86349 0.92676 0.003782536 0.005649584 0.067210663    

3.5 0.85915 0.85799 0.85701 0.91856 0.001344789 0.002482272 0.069157519    

4 0.85090 0.85093 0.85059 0.91044 0.000032688 0.000370675 0.069967128    

4.5 0.84334 0.84393 0.84421 0.90238 0.000699833 0.001032922 0.070015784    

5 0.83623 0.83698 0.83788 0.89440 0.000892562 0.001963121 0.069557004    

TABLE 6 – RUIN PROBABILITIES, RELATIVE ERROR, GAMMA CLAIMS (𝛾 = 5/2, 𝛽 = 2/5).  

From TABLE 6, relative errors for ruin approximations under Renyi and PK-DV for initial 

reserve, 𝑢 ≤ 5 (with increments of 0.5) are in line with the exact, compared to 2PP which 

converges to an error of 7% by 𝑢 = 5. 
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4.3 Mixed exponential claim distribution 

The calculation of ruin probabilities when claims follow a mixture of exponentials has 

been heavily touched upon in actuarial and statistical literature by THORIN AND WIKSTAD 

(1977), and many others over recent years. Here we present the claim distribution 

presented here by CRAMÉR (1955), is an attempt by WIKSTAD (1971) to explain a 

distribution for a Swedish non-industry fire insurance, given by 𝑓𝑋(𝑥) = 𝐴1𝑒−5.514588𝑥 +

𝐴2𝑒−0.190206𝑥 + 𝐴3𝑒−0.014631𝑥, where, 𝐴1 = 0.8881815, 𝐴2 = 0.1078392 and 𝐴3 =

0.0039793, and thus satisfies the constraints from (3.2.3), i.e. ∑ 𝐴𝑖 = 1 for 𝑖 = 1,2,3. 

We set conservative parameters 𝜆 = 1 and 𝜃 = 10%. We find that the convolution 

distribution, i.e., 

[𝐻1 ∗ 𝐻2](𝑥) ≈ 0.0193851𝑒−5.51459 𝑥 − 3.26287𝑒−0.190206 𝑥 − 18.7136𝑒−0.014631 𝑥

+ 0.357962𝑒−2.2 𝑥 + 0.00000230391𝑥 + 21.5991,   

does not satisfy all properties of a distribution function, i.e. that [𝐻1 ∗ 𝐻2](−∞) ≠ 0 and 

[𝐻1 ∗ 𝐻2](∞) ≠ 1 but instead diverges off towards negative and positive infinity, 

respectively, hence bounds will once again not be considered. By using methods detailed 

in REMARK 3, our exact ruin probability is found to be:  

𝛹(𝑢) = 0.77979𝑒−0.0035558𝑢 + 0.1273167𝑒−0.0779348𝑢 + 0.0891495𝑒−1.8496200𝑢

+ 0.0037434𝑒−5.98831𝑢, 𝑢 ≥ 0, 𝛹(0) = 1. 

Raw moments of a mixed exponential distribution, for 𝑘 = 1,2, … ,5, can be evaluated by 

𝜇𝑘 ≈
𝑑(𝑘)

𝑑𝑡
{4.3897955(5.514588 − 𝑡)−1 + 0.020512(0.190206 − 𝑡)−1

+ 0.000058(0.014631 − 𝑡)−1}|𝑡=0. 

Initial 
u 

Exact, 
𝚿(𝒖) 

PK-R PK-DV 2PP 
𝚿𝐄𝐫𝐫𝐨𝐫 

PK-R 

𝚿𝐄𝐫𝐫𝐨𝐫 

PK-DV 

𝚿𝐄𝐫𝐫𝐨𝐫 

2PP 

0 1.00000 1.00000 1.00000 1.00000 0.00000000 0.00000000 0.00000000 

60 0.63116 0.70618 0.63842 0.75062 0.11885874 0.01149464 0.18926736 

120 0.50895 0.54856 0.51495 0.57052 0.07781775 0.01177715 0.12096135 

240 0.33217 0.33101 0.33503 0.32958 0.00349365 0.00860710 0.00778105 

TABLE 7 – RUIN PROBABILITIES, RELATIVE ERROR, MIXED EXPONENTIAL, Λ = 1, Θ = 10%. 
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FIGURE 5 – RUIN PROBABILITIES, MIXED EXPONENTIAL, Λ = 1, Θ = 10%. 

  

FIGURE 6 –  RELATIVE ERROR, MIXED EXPONENTIAL, 𝜆 = 1,𝜃 = 10%. 

We recall that this distribution is highly skewed with variance ≈ 42 and skewness ≈ 28, 

with fourth and fifth raw moments floating in the millions. TABLE 7 shows the results and 

relative errors for De Vylder’s classical four moment exponential (exact ruin), Pollaczek-

Khinchine approximations of the first Padé order (Renyi & DV) and the Two-Point Padé 

approximation (2PP). For extremely high levels of initial 𝑢, all approximations reveal a 

good fit to this distribution with the majority having errors that reach a significant figure 

after 3 decimal points. Terrible results are expected for low levels of 𝑢 due to the nature 

of heavily skewed data. FIGURES 5 and 6 supports this by illustrating unimpressive figures 

for small 𝑢, especially for Renyi and 2PP. Hence, we conclude that, for a large enough 𝑢 

these approximations would surely return great results due to the asymptotic nature of the 

curves (FIGURE 5).  

  

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 24 48 72 96 120 144 168 192 216 240

D
is

tr
ib

u
ti

o
n

 o
f 

R
u

in
, 𝛹

(𝑢
)

Initial level of capital, u

Exact = 4 Moment DV

PK Renyi

PK DV

Two Point Padé

0

0.05

0.1

0.15

0.2

0.25

0 24 48 72 96 120 144 168 192 216 240

R
el

at
iv

e 
Er

ro
r

Initial level of capital, u

Error DV-4E

Error PK-R

Error PK-DV

Error 2PP



34 

5 CONCLUSION 

Solving problems is a significant part of 

mathematics and many other sciences. 

Using a blend of statistics, business 

knowledge & mathematics, actuaries forecast possibilities and develop plans to manage 

financial risks, and thus serve as trusted financial and business advisors. Actuaries inform 

and make decisions that lead to profits, savings, stability and success. So, a question to 

consider, what makes these text book figures that are only known by certain formulae and 

theorems so pleasing to learn about? Well simply, behind those countless memorisations 

whose purpose only serves well for exams, there is potential for students of mathematics 

to carry these actuaries’ work to something perhaps more satisfying. This project also 

provided the opportunity to tackle uncharted territories of insurance. 

To summarize, we adapted the perturbed model to the Cramér-Lundberg model, 

by adding a Lévy (𝛼-stabled) process to the compound Poisson process, which allows us 

to consider uncertainty to the premium income, fluctuations of the interest rates, changes 

to the number of policyholders, without neglecting all other assumptions. The results 

obtained seem to give us an indication that the diffusion parameter (𝜎) can have a 

significant effect in calculating the exact ruin probability, this is especially true for light 

tailed distributions (exponential,). The illustrations for different 𝜎 is not covered here, but 

once can find that the error is smaller for larger values of 𝜎 (at least for the mixed 

exponential claim distribution) and for most values of 𝑢, a far better approximation to 

Ψ(𝑢), see for instance AVRAM, ET. AL (2011). 

The approximations and relative errors for De Vylder’s classical four moment 

exponential, Pollaczek-Khinchine’s One-Padé (Renyi & DV) and Two-Point Padé all 

appear capable of producing excellent results if the claim distribution is well 

parameterized. In other cases, Dufresne & Gerber’s upper and lower bounds returned 

good approximations when the claim distribution was exponential. However, we can all 

agree that the Renyi approximation usually produces the poorest fit, regardless of the 

claim distribution used. Similar conclusions can be found in SEIXAS AND EGÍDIO DOS REIS 

(2013), with the Beekman-Bowers. Note: Renyi is a simplified version of the Beekman-

Bowers approximations, see GRANDELL (2000).  

Overall, this investigation went quite well. However, some problem was found to 

be notorious. For example, estimating bounds when the claim amount distribution is a 

The task of the modern educator is not to cut 

down jungles, but to irrigate deserts. 

C.S. Lewis 
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gamma or mixture of exponentials proved to be difficult since obtaining an analytical 

expression for the convolution distribution, i.e. [𝐻1 ∗ 𝐻2](𝑥), was not feasible, or even 

the fact that it does not satisfy all properties of a distribution function. Likewise, 

calculating the area under a convolution by using the products of areas under factors was 

also difficult since these do not converge. 

Nonetheless, other areas were touched upon briefly but not fully developed, or 

even conceived in this project at all. In future, I would aim to write a thesis that expands 

this current work and possibly, the work set out in BURNECKI ET. AL (2003) on a new De 

Vylder type (gamma) approximation of the ruin probability in infinite time (of course, by 

adapting a perturbed model), where they find that using a lognormal (heavy-tailed) and 

mixture of two exponentials (light-tailed) proves to provide much better results than the 

classical De Vylder case. In other words, the gamma approximation will always be 

significantly less than the error of the classical method. 
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APPENDIX 

A Properties of the Perturbed Risk Process 

A1 Lévy Process  

DEFINITION 8 (Lévy Process).  A stochastic process, {𝑍(𝑡) ∶ 𝑡 ≥ 0} is said to be a Lévy 

process, defined on a complete probability space (𝛺, ℱ, ℙ), if the following properties 

are satisfied: 

i. 𝑍(0) = 0, almost surely. 

ii. {𝑍(𝑡) ∶ 𝑡 ≥ 0} has independent increments for 0 ≤ 𝑡1 < 𝑡2 < ⋯ < ∞. 

iii. {𝑍(𝑡) ∶ 𝑡 ≥ 0} has stationary increments for 𝑠 < 𝑡, then 𝑋𝑡 − 𝑋𝑠 is equal 

to 𝑋𝑡−𝑠. 

iv. {𝑍(𝑡) ∶ 𝑡 ≥ 0} has right continuous sample paths. 

v. {𝑍(𝑡) ∶ 𝑡 ≥ 0} has infinite divisibility for any positive 𝜖 and 𝑡 ≥ 0. For a 

very small increment ℎ, it holds that lim
ℎ→0

𝑃(|𝑋𝑡+ℎ − 𝑋𝑡| > 𝜖 ) is equal to 

zero. 

We shall always use the measure ℙ (i.e. the real-world measure) when talking 

about a Lévy process, unless stated otherwise. 

REMARK 6.  Properties (ii) and (iii) implies that, {𝑍(𝑡) ∶ 𝑡 ≥ 0} is a Markov process. 

There are many well-known examples of Lévy processes the Brownian motion & the 

Poisson process. 

THEOREM 17.  A Lévy process is said to be-: 

i. A standard Brownian motion, 𝑊(𝑡), if the probability distribution of 

 𝑍(𝑡) − 𝑍(𝑠) is normally distributed with mean zero and variance 𝑡 − 𝑠. 

ii. A Poisson process, 𝑁(𝑡), if the probability distribution of 𝑍(𝑡) − 𝑍(𝑠) is 

Poisson distributed with mean and variance equal 𝜆(𝑡 − 𝑠), where 𝜆 > 0 

is the intensity rate. 

A2 Alpha-Stabled Process 

DEFINITION 9 (Standard 𝜶-stable Process). A process, {𝑍𝛼(𝑡) ∶ 𝑡 ≥ 0} is said to be a 

standard 𝛼-stable process, defined on a complete probability space (𝛺, ℱ, ℙ), if: 
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i. 𝑍𝛼(0) = 0, almost surely 

ii. {𝑍𝛼(𝑡) ∶ 𝑡 ≥ 0} has independent increments for 0 ≤ 𝑡1 < 𝑡2 < ⋯ < ∞. 

iii. 𝑍𝛼(𝑡) − 𝑍𝛼(𝑠) ~ 𝑆𝛼(0, (𝑡 − 𝑠)−𝛼, 𝛽) for 𝑠 < 𝑡 and for 𝛼 ∈ (0,2] "is the 

rate of decay" , where 𝑆𝑛 = 𝑆(𝑛) = ∑ 𝑋𝑖
𝑛
𝑖=1  (defined in Section 2.2), |𝛽| ≤

1 is the jump parameter, and so we say that 𝑋 ∈ domain of an 𝛼-stable 

random variable 𝑆𝛼, if there exist some constants 𝑎𝑛 ∈ ℝ, 𝑏𝑛 > 0, s.t.: 

𝑆𝑛 − 𝑎𝑛

𝑏𝑛
→ 𝑆𝛼, 

in distribution, as 𝑛 → ∞; this is the central limit theorem, see Iglehart 

(1969) and Furrer et. al (1997). 

iv. 𝑍2(𝑡) = 𝑊(𝑡) follows a Normal distribution. 

v. 𝑍1(𝑡) follows a Cauchy distribution. 

vi. 𝑍0.5(𝑡) follows a one-sided stable distribution. 

For {𝑍𝛼(𝑡) ∶ 𝑡 ≥ 0}, there are usually four parameters, i.e. 𝑆𝛼(𝑚, 𝑣, 𝛽), where 𝑚 and 𝑣 

are usually set to 0 and 1 representing location & scale, respectively. The density function 

does not exist for this type of distribution, except for cases when 𝛼 takes values 0.5, 1 or 

2, see more in APPENDIX B. 

A3 Poisson Process 

DEFINITION 10 (Poisson Process).  A process, {𝑁(𝑡) ∶ 𝑡 ≥ 0} is said to be a Poisson 

process, defined on a complete probability space (𝛺, ℱ, ℙ), with intensity 𝜆 > 0, if the 

following properties are satisfied: 

i. 𝑁(0) = 0. 

ii. {𝑁(𝑡) ∶ 𝑡 ≥ 0} has independent increments for 0 ≤ 𝑡1 < 𝑡2 < ⋯ < ∞. 

iii. {𝑁(𝑡) ∶ 𝑡 ≥ 0} has stationary increments for 𝑠 < 𝑡, then 𝑁(𝑡) − 𝑁(𝑠) is 

equal to 𝑁(𝑡 − 𝑠) with Poisson parameter 𝜆(𝑡 − 𝑠). 

iv. ℙ(𝑁(ℎ) = 1) = 𝜆ℎ + 𝑜(ℎ). 

v. ℙ(𝑁(ℎ) ≥ 2) = 𝑜(ℎ). 

REMARK 7.  The function 𝑜(ℎ) means lim
ℎ→0

𝑓(ℎ)

ℎ
= 𝑜(ℎ). Properties (iii) to (v) is useful 

to determine where, {𝑁(𝑡) ∶ 𝑡 ≥ 0} is a Poisson process. 
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FIGURE 7 – POISSON PROCESS AS “DISCRETE ARRIVALS”. 

A4 Moments of 𝑽(𝒕) 

The moments of 𝑆(𝑡), the aggregate claims up to time 𝑡, are well defined from actuarial 

literature, the deduction of it can be seen in SIMAR (1976), and others, for instance 

APPLEBAUM (2004a), and so, the 𝑘-th central moments of 𝑆(𝑡) are computed by taking 

the 𝑘-th derivative of the CGF, 𝜑𝑆(𝑡)(𝑠) = 𝜆𝑡(𝑒𝑠 − 1) at 𝑠 = 0; hence, these yield 

𝐸[(𝑆(𝑡) − 𝐸[𝑆(𝑡)])𝑘] = 𝜆𝑡𝜇𝑘, for all 𝑘. Similarly, the first five moments of 𝑊(𝑡) are: 

𝐸[𝑊(𝑡)] = 0, 𝐸[𝑊2(𝑡)] = 𝑡, 𝐸[𝑊3(𝑡)] = 0, 𝐸[𝑊4(𝑡)] = 3𝑡2 and  𝐸[𝑊5(𝑡)] = 0. 

By using generating functions and setting 𝛼 = 2 (for simplification), then for 𝑉(𝑡): 

𝜑𝑉(𝑡)(𝑠) = ln 𝐸[𝑒𝑠𝑉(𝑡)] = ln 𝐸[𝑒𝑠(𝑢+𝑐𝑡−𝑆(𝑡)+𝜎𝑊(𝑡))] 

= 𝑠(𝑢 + 𝑐𝑡) + 𝜑𝑆(𝑡)(−𝑠) + 𝜑𝑊(𝑡)(𝜎𝑠), 

where, 𝜑𝑉(𝑡)(𝑠) is the CGF of 𝑉(𝑡) at the point 𝑠. Note that 𝜑𝑆(𝑡)(−𝑠) is a LT (see 

APPENDIX C). Hence, taking derivatives with respect to 𝑠 and setting 𝑠 = 0 yields 

corresponding central moments 𝜈𝑘 = 𝜑𝑉(𝑡)
(𝑘) (0) = 𝐸[(𝑉(𝑡) − 𝐸[𝑉(𝑡)])𝑘] for 𝑘 = 1,2,3 : 

𝜈1 = 𝑢 + 𝑐𝑡 − 𝜆𝑡𝜇1, 𝜈2 = 𝜆𝑡𝜇2 + 𝜎2𝑡 and  𝜈3 = −𝜆𝑡𝜇3, where, 𝜇𝑘 = 𝐸[𝑋𝑘] are raw 

moments from the claim distribution. Note that higher-order cumulants from 𝑘 ≥ 4 are 

not the same as moments about the mean. Instead we need to use: 

𝑘 = 4 ∶ 𝜈4 = 𝜑𝑉(𝑡)
(4) (0) + 3𝜈2

2, ⟺ 𝜈4 = 𝜆𝑡𝜇4 + 3𝜎4𝑡2 + 3(𝜆𝑡𝜇2 + 𝜎2𝑡)2, 

𝑘 = 5 ∶ 𝜈5 = 𝜑𝑉(𝑡)
(5) (0) + 10𝜈3𝜈2, ⟺ 𝜈5 = −𝜆𝑡𝜇5 − 10𝜆𝑡𝜇3(𝜆𝑡𝜇2 + 𝜎2𝑡). 

If the diffusion component 𝜎 is zero, then 𝐸[𝑍(𝑡)] = 𝐸[𝑈(𝑡)], ∀𝑘.  
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B Alpha Stable Distribution 

We present here a basic review on the theory of Lévy process, specifically, infinitely 

divisible distributions, see ITO (1969) or the modern interpretation SATO (1999). For 

historical purposes, see Lévy (1954). Note that the characteristics exponent completely 

defines the 𝑍𝛼 spectrum of distributions between values 0 and 2. From (2.8.1), we could 

write the characteristic function by 𝜑𝑋(𝑢) = 𝑀𝑋(𝑖𝑢) = 𝐸[𝑒𝑖𝑢𝑋] where 𝑋 is a random 

variable. Let us consider changes made to (2.8.3) when we choose values for 𝛼. 

B1 Case 𝜶 = 𝟏 (Cauchy Distribution) 

When 𝛼 = 1, we have a Cauchy distribution (defined by the claim amount random 

variable 𝑋), where the density function of the standard Cauchy distribution is a solution 

to the following first order ODE: 

(1 + 𝑥2)𝑓′(𝑥) + 2𝑥𝑓(𝑥) = 0, 𝑓(1) =
1

2𝜋
. 

The characteristic function is simply a Fourier transform of the pdf, see for instance 

PAPOULIS (1984). The original pdf can be expressed by using the inverse Fourier 

transform, i.e. 

𝜑𝑋(𝑢) = 𝐸[𝑒𝑖𝑢𝑋] = ∫ 𝑓(𝑠)𝑒𝑖𝑢𝑠
∞

−∞

𝑑𝑠 =
1

2𝜋
∫ 𝜑𝑋(𝑠)𝑒−𝑖𝑢𝑠

∞

−∞

𝑑𝑠. 

Note that moments can be obtained by 𝐸[𝑋𝑛] =
𝑑𝑛

𝑑𝑠𝑛 𝜑𝑋(0). But, 𝜑𝑋(𝑠) is not 

differentiable at zero, hence this implies that the Cauchy distribution is not well-defined 

for moments higher than zero. Then this distribution cannot be used when matching the 

moments in SECTION 3 since we require some moments to exist up to a certain order.  

B2 Case 𝜶 = 𝟐 (Gaussian Distribution) 

When 𝛼 = 2, the distribution follows a Gaussian, and hence, 𝑍2(𝑡) = 𝑊(𝑡) is a standard 

Brownian motion. 

 

To conclude, the charm of these distributions lie within 𝛼. It controls the level of decay 

of the tail, as it decreases its value from a normal distribution (light-tailed) to a Cauchy 

distribution (heavy-tailed). Its Poisson component allows for haphazard changes in the 
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development of the system. Hence these features make this model more flexible to work 

with. 

C Convolution  

DEFINITION 11 (Convolution). This is an integral that is defined as an overlap of one 

function 𝑓( . ) as it is shifted towards another function 𝑔( . ), and is defined by over a 

finite range (0, 𝑡), such that: 

[𝑓 ∗ 𝑔](𝑡) = ∫ 𝑓(𝑥)𝑔(𝑡 − 𝑥)
𝑡

0

𝑑𝑥, 

where, the notation [𝑓 ∗ 𝑔](𝑡) is the convolution of 𝑓 and 𝑔 at the point 𝑡. 

Theoretically speaking, a convolution is simply the product of two functions that are 

within the algebra of Schwartz functions in ℝ𝑛. Usually, we apply the convolution over 

an infinite range, i.e. (−∞. +∞), see more in BRACEWELL (2000). 

DEFINITION 12 (Area Under Convolution). Taking integrals under a convolution has a 

unique property, as it is defined by the product of areas under factors: 

∫ [𝑓 ∗ 𝑔](𝑡)
+∞

−∞

𝑑𝑡 = ∫ (∫ 𝑓(𝑥)𝑔(𝑡 − 𝑥)
+∞

−∞

𝑑𝑥)
+∞

−∞

𝑑𝑡 

= (∫ 𝑓(𝑥)
+∞

−∞

𝑑𝑥) (∫ 𝑔(𝑡)
+∞

−∞

𝑑𝑡). 

THEOREM 18 (Stieltjes Integral). Let 𝑋 and 𝑌 be two independent, continuous random 

variables, with 𝐶𝐷𝐹s 𝐹𝑋( . ) and 𝐹𝑌( . ) and, 𝑝𝑑𝑓s 𝑓𝑋( . ) and 𝑓𝑌( . ), respectively. Then 

the 𝐶𝐷𝐹 and 𝑝𝑑𝑓 of a convolution, i.e. [𝐹𝑋 ∗ 𝐹𝑌](𝑡) and [𝑓𝑋 ∗ 𝑓𝑌](𝑡), are given by, 

respectively: 

[𝐹𝑋 ∗ 𝐹𝑌](𝑡) = ∫ 𝐹𝑋(𝑥)𝑓𝑌(𝑡 − 𝑥)
𝑡

0

𝑑𝑥, [𝑓𝑋 ∗ 𝑓𝑌](𝑡) = ∫ 𝑓𝑋(𝑥)𝑓𝑌(𝑡 − 𝑥)
𝑡

0

𝑑𝑥. 

  



41 

PROOF. Consider a new random variable 𝑍 = 𝑋 + 𝑌, such that: 

𝐹𝑍(𝑡) = ∬ 𝑓𝑋(𝑥)𝑓𝑌(𝑦)

 

𝑥+𝑦≤𝑡

𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑓𝑋(𝑥)𝑓𝑌(𝑦)
𝑡−𝑦

−∞

+∞

−∞

𝑑𝑥𝑑𝑦

= ∫ 𝐹𝑋(𝑥)𝑓𝑌(𝑡 − 𝑥)
𝑡

0

𝑑𝑥. 

By differentiating 𝐹𝑍(𝑡) w.r.t 𝑡, we get: 

𝑓𝑍(𝑡) =
𝑑

𝑑𝑡
[∫ 𝐹𝑋(𝑥)𝑓𝑌(𝑡 − 𝑥)

𝑡

0

𝑑𝑥] = ∫ 𝑓𝑋(𝑥)𝑓𝑌(𝑡 − 𝑥)
𝑡

0

𝑑𝑥. 

∎ 

For a list of the many properties of the Stieltjes Integral, see DRESHER (1981). 

REMARK 8.  As noted in BRACEWELL (2000), taking the first derivative of a convolution 

yields [𝑓 ∗ 𝑔]′(𝑡) = [𝑓′ ∗ 𝑔](𝑡) = [𝑓 ∗ 𝑔′](𝑡). These leads to the following pairs  

[𝐹𝑋 ∗ 𝐹𝑌]′(𝑡) = [𝑓𝑋 ∗ 𝐹𝑦](𝑡) = ∫ 𝑓𝑋(𝑥)𝐹𝑌(𝑡 − 𝑥)
𝑡

0

𝑑𝑥, 

[𝐹𝑋 ∗ 𝐹𝑌]′(𝑡) = [𝐹𝑋 ∗ 𝑓𝑌](𝑡) = ∫ 𝐹𝑋(𝑥)𝑓𝑌(𝑡 − 𝑥)
𝑡

0

𝑑𝑥. 

D Laplace Transform  

DEFINITION 13 (Laplace Transform). If 𝑓𝑋(𝑡) is a continuous function defined for 𝑡 ∈

[0, +∞), then the Laplace transform (LT) of 𝑓, denoted as 𝑓𝑋
∗(𝑠), which is a unilateral 

transform, is given by 

𝑓𝑋
∗(𝑠) = ∫ 𝑒−𝑠𝑡𝑓𝑋(𝑡)

+∞

0

𝑑𝑡 = 𝐸[𝑒−𝑠𝑡], 𝑡 ≥ 0, 

where, 𝑠 is a complex number frequency parameter such that 𝑠 = 𝑎 + 𝑖𝑏, with imaginary 

number 𝑖 = √−1 and real numbers 𝑎, 𝑏. Similar results can be expected for a discrete 

case. 

THEOREM 19.  If 𝑓𝑋
∗(𝑠) = 𝑓𝑌

∗(𝑠) exist for all 𝑠, then 𝑓𝑋(𝑡) = 𝑓𝑌(𝑡) for all 𝑡 where 

both are continuous. 
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THEOREM 20.  Let 𝑓𝑋
∗(𝑠) and 𝑓𝑌

∗(𝑠) exist for all 𝑠, then assigning constants 𝑎 and 

𝑏 to 𝑓𝑋(𝑡) and 𝑓𝑌(𝑡), respectively, then its LT is 

∫ 𝑒−𝑠𝑡(𝑎𝑓𝑋(𝑡) + 𝑏 𝑓𝑌(𝑡))
+∞

0

𝑑𝑡 = 𝑎𝑓𝑋
∗(𝑠) + 𝑏𝑓𝑌

∗(𝑠). 

THEOREM 21.  If the cumulative distribution function is 𝐹𝑋(𝑡) = ∫ 𝑓𝑋(𝑦)
𝑡

0
𝑑𝑦, then 

its LT is given by 

𝐹𝑋
∗(𝑠) = ∫ 𝑒−𝑠𝑡 (∫ 𝑓𝑋(𝑦)

𝑡

0

𝑑𝑦)
+∞

0

𝑑𝑡 =
1

𝑠
𝑓𝑋

∗(𝑠). 

PROOF. Everything have been proven and discussed extensively in many textbooks: 

BRACEWELL (2000), FELLER (1971) and WILLIAMS (1973).         ∎ 

E Aggregate Loss Distribution 

E1 Moment Generating Function Proof 

THEOREM 22. Let the moment generation function of L be given by 

𝑀𝐿(𝑟) =
𝑟𝜏(𝑐 − 𝜆𝜇1)

𝑐𝜏(𝑟(𝜏 − 𝑟) − 𝜆𝑀𝑋(𝑟) − 1)
, 𝜎 > 0. 

PROOF.  By the expected value definition of a MGF, we find that 

𝑀𝐿(𝑟) = 𝐸[𝑒𝑟𝐿] = 𝐸 [exp 𝑟 (𝐿0
(1)

+ ∑(𝐿𝑖
(1)

+ 𝐿𝑖
(2)

)

𝑀

𝑖=1

)] 

= 𝑀
𝐿0

(1)(𝑟) ∙ 𝑀𝑀 [ln 𝑀
(𝐿𝑖

(1)
+𝐿𝑖

(2)
)

(𝑟)] 

= (
𝜏

𝜏 − 𝑟
) ∙ 𝑞 [1 − (1 − 𝑞) exp (ln 𝑀

(𝐿𝑖
(1)

+𝐿𝑖
(2)

)
(𝑟))]

−1

 

which is compound geometric distribution. Recall that the convolution [ℎ1 ∗ ℎ2]( . ) is the 

pdf of 𝐿𝑖
(1)

+ 𝐿𝑖
(2)

, and so using the properties of convolutions, we have: 

𝑀
(𝐿𝑖

(1)
+𝐿𝑖

(2)
)
(𝑟) = ∫ 𝑒𝑟𝑡[ℎ1 ∗ ℎ2](𝑡)

∞

0

𝑑𝑡 = ∫ ∫ 𝑒𝑟𝑡ℎ1(𝑡 − 𝑠)ℎ2(𝑠)
𝑡

0

∞

0

𝑑𝑠𝑑𝑡 

=
𝜏

𝜇1
∫ 𝑒(𝑟+𝜏)𝑡 ∫  

𝑡

𝑠=0

𝑒−𝜏𝑠
∞

𝑡=0

[1 − 𝐹𝑋(𝑠)]𝑑𝑠𝑑𝑡. 
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Using integration by parts twice and setting 𝑢 = 1 − 𝐹𝑋(𝑠) and 𝑑𝑣/𝑑𝑠 = 𝑒−𝜏𝑠, the 

integral encompassing 𝑒−𝜏𝑠[1 − 𝐹𝑋(𝑠)] results to 

∫  
𝑡

𝑠=0

𝑒−𝜏𝑠[1 − 𝐹𝑋(𝑠)] 𝑑𝑠𝑑𝑡 =
(𝐹𝑋(𝑡) + 𝜏 − 1) + 𝜏(𝑒−𝑡𝜏𝐹𝑋(𝑡) − 1)(1 − 𝑒−𝑡𝜏)

𝜏(𝜏 − 1)(1 − 𝑒−𝑡𝜏)
. 

Hence, 𝑀
(𝐿𝑖

(1)
+𝐿𝑖

(2)
)
(𝑟) is equal to 

1

𝜇1(𝜏 − 1)
[∫

𝑒(𝑟+𝜏)𝑡(𝐹𝑋(𝑡) + 𝜏 − 1)

(1 − 𝑒−𝑡𝜏)

∞

𝑡=0

𝑑𝑡 + ∫ 𝜏𝑒(𝑟+𝜏)𝑡(𝑒−𝑡𝜏𝐹𝑋(𝑡) − 1)
∞

𝑡=0

𝑑𝑡], 

which results to  𝑀
(𝐿𝑖

(1)
+𝐿𝑖

(2)
)
(𝑟) = (

𝜏

𝜏−𝑟
) (𝜏𝜇1)−1[𝑀𝑋(𝑟) − 1] [see SEIXAS AND EGÍDIO 

DOS REIS (2013)], where, ℎ1( . ) and ℎ2( . ) are defined in (2.4.5) and (2.4.6), respectively, 

so: 

                                      𝑀𝐿(𝑟) =
𝑟𝜏(𝑐 − 𝜆𝜇1)

𝑐𝑟(𝜏 − 𝑟) − 𝜆𝜏(𝑀𝑋(𝑟) − 1)
.                                                ∎ 

E2 Moments of the Geometric Compound Distribution 

Let 𝐿 = 𝐿0
(1)

+ 𝐿𝑀
(∗)

 be a compound geometric distribution, with MGFs given by: 

 𝑀
𝐿0

(1)(𝑧) =
𝜏

𝜏 − 𝑧
,   𝑀

𝐿𝑖
(3)(𝑧) = (

𝜏

𝜏 − 𝑟
) (𝜏𝜇1)−1[𝑀𝑋(𝑟) − 1],   𝑀𝑀(𝑧) =

𝑞𝑒𝑧

1 − (1 − 𝑞)𝑒𝑧
, 

where, 𝐿𝑀
(∗)

= ∑ (𝐿𝑖
(1)

+ 𝐿𝑖
(2)

)
𝑀

𝑖=1
 and 𝐿𝑖

(3)
= 𝐿𝑖

(1)
+ 𝐿𝑖

(2)
. From this, we obtain moments:  

𝐸[𝑀] =
1 − 𝑞

𝑞
, 𝑉𝑎𝑟[𝑀] =

1 − 𝑞

𝑞2
, 𝐸[𝐿0

(1)
] =

1

𝜏
, 𝑉𝑎𝑟[𝐿0

(1)
] =

1

𝜏2
. 

Thus, we can then obtain the first two central moments in the form: 

𝐸[𝐿] = 𝐸[𝐿0
(1)

+ 𝐿𝑀
(∗)

] = 𝐸[𝐿0
(1)

] + 𝐸[𝑀] ∙ 𝐸[𝐿𝑖
(3)

], 

𝑉𝑎𝑟[𝐿] = 𝑉𝑎𝑟[𝐿0
(1)

+ 𝐿𝑀
(∗)

] = 𝑉𝑎𝑟[𝐿0
(1)

] + 𝐸[𝑀] ∙ 𝑉𝑎𝑟[𝐿𝑖
(3)

] + 𝑉𝑎𝑟[𝑀] ∙ 𝐸[𝐿𝑖
(3)

]
2

, 

which leads to: 

𝐸[𝐿] =
1

𝜏𝑞2
(𝑞2 + 𝜏(1 − 𝑞) (

𝜇1

2𝜇2
+

1

𝜏
)) , 
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𝑉𝑎𝑟[𝐿] =
1

𝜏2𝑞3
(𝑞3 + 𝜏2(1 − 𝑞) ((

𝜇1

2𝜇2
+

1

𝜏
)

2

−
𝜇2

2

4𝜇1
2 

+
𝜇3

3𝜇1
+

1

𝜏2
)) . 

Higher moments can be obtained by methods defined in APPENDIX A. See more details 

in SEIXAS AND EGÍDIO DOS REIS (2013). 

E3 Factorial Moments (Power Series Expansion) 

We start by expanding (and simplifying) the Pollaczek-Khinchine formula in (3.3.1) and 

(3.3.3), and using LT geometric expansion, we obtain the following series: 

𝛹∗(𝑠) =
(1 − 𝑞)(1 − 𝑓𝑒

∗(𝑠)) +
𝑠𝜎2

2𝑐

𝑠 (1 − (1 − 𝑞)𝑓𝑒
∗(𝑠) +

𝑠𝜎2

2𝑐 )
=

𝜂2,𝜎

2! − 𝑠
𝜂3

3! + 𝑠2 𝜂4

4! − ⋯

𝜌 + 𝑠
𝜂2,𝜎

2! − 𝑠2 𝜂3

3! + 𝑠3 𝜂4

4! − ⋯ 
⟺ 

𝜓∗(𝑠) =
𝜌

𝜌 + 𝑠
𝜂2,𝜎

2! − 𝑠2 𝜂3

3! + 𝑠3 𝜂4

4! − ⋯ 
 

=
𝑞

1 − (1 − 𝑞) [1 − (
𝜇2

𝜇1
+

𝜎2

2𝜆𝜇1
)

𝑠
2!

− (
𝜇3

𝜇1
)

𝑠2

3!
+ (

𝜇4

𝜇1
)

𝑠3

4!
+ ⋯ ] 

 

where, 𝜌 = 𝑐𝑞 > 0 is the profit rate, 𝜂𝑘 = 𝜆𝜇𝑘 , for 𝑘 = 1,2, … represent moments of a 

Lévy measure (with 𝜂2,𝜎 = 𝜆𝜇2 + 𝜎2). Letting 𝜎 = 0 gives another beautiful rendition of 

the expansion: 

𝑓𝑒
∗(𝑠)|𝜎=0 = 1 − (

𝜇2

𝜇1
)

𝑠

2!
− (

𝜇3

𝜇1
)

𝑠2

3!
+ (

𝜇4

𝜇1
)

𝑠3

4!
+ ⋯ = ∑ (

𝜇𝑘

𝜇1
)

𝑠𝑘−1

𝑘!

∞

𝑘=1

= 𝐸[𝑒−𝑠𝐿𝑖  | {𝐿𝑖 > 0}], 

where 𝐿𝑖 is identified as a well-known equilibrium variable given by 𝑋𝑖, with density 

𝑓𝑒(𝑥) = ℎ2(𝑥) = 𝜇1
−1(1 − 𝐹(𝑥)), and excess (factorial) moments 𝜇𝑘 =

𝜇𝑘+1

(𝑘+1)𝜇1
.  

REMARK 9.  Let 𝜁𝑘 =
1

𝑘!
𝐸[𝐿𝑘(𝑡)], 𝑘 = 0,1,2, … denote factorial reduced moments, which 

are found by normalizing with respect to the exponential moments of 𝐿. Hence, expanding 

equation above in power series, with 𝜁𝑘 up to order 4 (from zero): 

𝜁
0

= 𝑃(𝐿 > 0) =
1

1 + 𝜃
, 𝜁

1
=

�̆�1

𝜃
+

𝜎2

𝑝
, 𝜁

2
=

�̆�2

2! 𝜃
+ 𝜁

1
2

, 
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𝜁
3

=
�̆�3

3! 𝜃
+

�̆�1�̆�2

𝜃2
+ (

�̆�1

𝜃
)

3

, 𝜁
4

=
�̆�4

4! 𝜃
+

(1/3)�̆�1�̆�3 + (�̆�2/2)2

𝜃2
+

(3/2)�̆�1
2�̆�2

𝜃3
+ (

�̆�1

𝜃
)

4

. 

REMARK 10. We can also obtain factorial reduced moments for the conditional random 

variable, 𝐿 | 𝐿 > 0 by dividing by 1 − 𝑞 = (1 + 𝜃)−1 from L. 

F Integro-differential equations 

F1 Definition and example 

DEFINITION 14 (Integro-differential equation). Let 𝑓(𝑥) be a continuous function, such 

that 𝑓(𝑥0) = 𝑓0 with 𝑥0 ≥ 0, then a general first-order, linear integro-differential 

equation takes the form 

𝑑

𝑑𝑥
𝑓(𝑥) + ∫ 𝑔(𝑡, 𝑓(𝑡))

𝑥

𝑥0

𝑑𝑡 = ℎ(𝑥, 𝑓(𝑥)), 

where, a general solution can be derived by applying the inverse Laplace transform to 

the solution of this integro-differential equation. 

EXAMPLE. Consider a first-order, linear integro-differential equation in the form 

𝑓′(𝑡) + 𝑓(𝑡) + 2 ∫ 𝑓(𝑦)
𝑡

0

𝑑𝑦 = 1, 𝑓(0) = 0. 

By taking the Laplace transform (see APPENDIX D) for each term, the integro-differential 

equation transforms into 

(𝑠𝑓∗(𝑠) − 𝑓(0)) + (𝑓∗(𝑠)) + (
2

𝑠
𝑓∗(𝑠)) =

1

𝑠
. 

Thus, 𝑓∗(𝑠) =
1

𝑠2+𝑠+2
, which can be inverted using contour integral methods (or 

Mathematica), to give 𝑓(𝑡) =
2

√7
𝑒−𝑡/2 sin (

√7

2
𝑡). 

F2 Derivatives for 𝜳(𝒙).  

Differentiating the integro-differential equation recursively for 𝛹(0) (with 𝛹(0) = 𝑞) 

yields: 

𝛹′(0) = −
𝜆

𝑐
(1 −

𝜇1𝜆

𝑐
) =

𝑞(𝑞 − 1)

𝜇1
, 
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𝛹′′(0) =
𝜆

𝑐
(1 −

𝜇1𝜆

𝑐
) (𝑓𝑋(0) −

𝜆

𝑐
) , 

𝛹′′′(0) =
𝜆

𝑐
(1 −

𝜇1𝜆

𝑐
) (𝑓𝑋

′(0) + 2
𝜆

𝑐
𝑓𝑋(0) − (

𝜆

𝑐
)

2

) , 

𝛹(4)(0) =
𝜆

𝑐
(1 −

𝜇1𝜆

𝑐
) (𝑓𝑋

′′(0) + 2
𝜆

𝑐
𝑓𝑋

′(0) −
𝜆

𝑐
[𝑓𝑋(0)]2 + 3 (

𝜆

𝑐
)

2

𝑓𝑋(0) − (
𝜆

𝑐
)

3

). 
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