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Abstract 
The importance of consumer phase models in quantitative microbiological 

risk assessment 
In quantitative microbiological risk assessment (QMRA), the consumer phase model (CPM) 

describes the part of the food chain from purchase of the food product at retail to the moment 

of consumption. The large variation in consumer food handling practices and scarce 

availability of data imply that several simplifying assumptions are made when a CPM is 

constructed. In the development of a CPM, it is relevant to understand to what extent these 

models need to include a detailed description of the processes that may result in exposure. 

The study from Nauta et al. (2009), suggests that “There is no alternative but for a 

probabilistic approach to risk assessment models of the consumer phase”. The purpose of this 

study is to compare the results given by seven published stochastic CPMs found in the 

literature for Campylobacter, Salmonella and Listeria monocytogenes, with two simpler 

modelling techniques: a constant value “a-factor” (Duarte, Nauta, & Aabo, 2016) and 

deterministic CPMs, which don’t include variation. The modelling techniques are compared 

by means of absolute risk estimates and relative risk estimates. It was found that the “a-

factor” estimates similar absolute risks to the stochastic CPMs, but different relative risks 

from all the stochastic CPMs. Results also showed that deterministic CPMs estimate different 

absolute risks from all the stochastic CPMs. Regarding relative risks, it was observed that 

four in a total of seven deterministic CPMs showed similar results in all the intervention 

scenarios simulated to the corresponding stochastic CPM. In these four scenarios, 

deterministic CPMs could be used to assess the effect on the risk of intervention scenarios in 

the food production chain. It is not clear which situations and assumptions interfere with the 

results obtained when a deterministic CPM estimates similar or different relative risks from a 

stochastic CPM. Answering these questions would require more in depth studies about the 

role and performance of deterministic CPMs in QMRA. 

 

 

Keywords: Campylobacter, consumer phase model, deterministic, food microbiology, 

Listeria monocytogenes, Risk assessment, Salmonella, stochastic. 
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Resumo 
A importância de modelos da fase do consumidor em avaliação quantitativa 

de risco microbiológico 
Em avaliação quantitativa de risco microbiológico (AQRM), um modelo da fase do 

consumidor (MFC), descreve a etapa da cadeia de produção de alimentos desde a compra do 

produto alimentício até ao momento do seu consumo. Devido à variação considerável 

existente nas práticas de preparação de alimentos e de escassa disponibilidade de dados nesta 

fase, na construção de um modelo da fase do consumidor é necessário incluir várias 

suposições subjectivas no âmbito de simplificar este processo. Na construção de um MFC, é 

necessário compreender em que medida é que este necessita de incluir descrições detalhadas 

dos processos que resultam em exposição. O estudo realizado por Nauta et al. (2009) sugere 

que devem ser sempre usados modelos estocásticos em AQRM para caracterizar a fase do 

consumidor. O objectivo deste estudo é comparar resultados obtidos por sete modelos 

estocásticos da fase do consumidor publicados para os microorganismos Campylobacter, 

Salmonella e Listeria monocytogenes, com duas técnicas simplificadas (“a-factor” presente no 

estudo de Duarte, Nauta, & Aabo, (2016) e MFC determinísticos), cujos modelos não incluem 

variação. As diferentes técnicas são comparadas em termos de risco absoluto e risco relativo. 

Verificou-se que a constante “a-factor” estima riscos absolutos semelhantes aos estimados por 

um modelo estocástico, mas diferentes riscos relativos em todos cenários simulados. Os 

resultados obtidos também demonstram que os MFC determinísticos estimam riscos absolutos 

diferentes de todos os modelos estocásticos. Relativamente aos riscos relativos,  observou-se 

que quatro num total de sete MFC determinísticos calcularam resultados semelhantes aos 

modelos estocásticos correspondentes. Nestes quatro cenários, seria aceitável utilizar MFC 

determinísticos para estimar o efeito de intervenções na cadeia de produção de alimentos no 

risco final. Não foi possível esclarecer  quais as situações ou suposições  que interferem com 

os resultados obtidos quando um MFC determinístico estima riscos relativos semelhantes ou 

distintos do modelo estocástico. Dar resposta a estas questões implica a realização de estudos 

mais aprofundados sobre o papel e desempenho de MFC determinísticos em AQRM.  

 

 

Palavras-chave: Avaliação de risco, Campylobacter, determinístico, estocástico, 

microbiologia alimentar, modelo da fase do consumidor, Listeria monocytogenes, Salmonella. 
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Internship Report 
 
As part of the Integrated Master’s Degree in Veterinary Medicine from the Faculty of 

Veterinary Medicine, University of Lisbon, I completed two internships with a total duration 

of six months.  

The first internship took place in the Faculty of Veterinary Medicine in the University of 

Lisbon, from October to January. I was supervised by my co-supervisor, Telmo Nunes, and 

performed tasks in the areas of epidemiology and food safety risk assessment. During these 

months, I acquired valuable skills that were essential to prepare for my second internship in 

Denmark. I performed statistical data analysis in the software “R” and did literature review in 

food safety risk assessment and in specific consumer phase models, to have more in depth 

knowledge on the subject before heading to Denmark.  

The second internship took place at the National Food Institute, Technical University of 

Denmark, for three and a half months (from January and April). In this institute work 

researchers from all over the world, who perform studies in the areas of food safety, 

toxicology, food microbiology, microbiological risk assessments, risk benefits assessment and 

nutrition. I had the opportunity to experience a new working environment and interact with 

highly dedicated scientists on a daily basis. The atmosphere was friendly and people were 

welcoming, which contributed to make my experience a memorable one. 

During my internship, I was supervised by Dr. Maarten Nauta for my Master’s dissertation 

about “the Importance of consumer phase models in Quantitative Microbiological Risk 

Assessment”. With the support from Maarten and due to our weekly meetings, I was able to 

gain a broad range of skills in a short period of time. I performed literature review and critical 

analysis on the subject of Quantitative Microbiological Risk Assessment and specifically 

analysed different consumer phase models in the literature to include in my project. I also 

learnt advanced risk assessment and modelling techniques by implementing some of the 

models in Excel spread sheets using Monte Carlo software @risk 5.5 (Palisade). I gained 

valuable knowledge on interpreting the results obtained from risk assessment modelling 

techniques accurately, in order to improve food safety. 

At the end of my internship in Denmark, I had the opportunity share in more detail the type of 

work performed during the internship and the results obtained in an oral presentation. This 

presentation allowed me to practice my oral presentation skills, as well as to think critically 

and answering questions related to the study conducted.  

All these internships, challenges and opportunities contributed for the successful conclusion 

of this dissertation. 
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I. Review on microbiological risk assessment 

1. Introduction 
Zoonotic diseases may be transferred from animals to humans through the production, 

handling and consumption of contaminated foods, and are considered a significant and 

widespread global public health threat. In the European Union (EU), over 320,000 human 

cases are reported each year, but it is likely that the real number is in fact much higher. 

Campylobacter spp., Sealmonella spp., and Listeria monocytogenes are important pathogenic 

microorganisms that cause foodborne diseases in humans. In  2014, Campylobacter was the 

most commonly reported gastrointestinal bacterial pathogen in humans in the European Union 

(EU), and has been so since 2005. The number of reported confirmed cases of human 

campylobacteriosis in the EU in 2014 was 236.851. In the same year, Salmonella was the 

second most commonly reported gastrointestinal bacterial pathogen in humans in the EU, 

with a total of 88.715 confirmed salmonellosis cases reported. Listeriosis has had a 

statistically significant increase over 2008-2014, with 2.161 confirmed human cases of 

listeriosis in the EU in 2014 (EFSA-ECDC, 2015). 

Assessing risks in the food chain and assuring food safety is a challenging task in the current 

highly globalized world (Quested et al., 2010). Global changes such as international trade of 

food and animal feed, international travel and migration, population growth, poverty, aging 

population and newly emerging pathogens, are important factors that influence incidence and 

profile of food borne illnesses (Miyagishima & Ka ̈ferstein, 2003). International bodies such 

as World Trade Organization, World Health Organization, Food and Agricultural 

Organization of the United Nations and the Codex Alimentarius, promote the of use scientific-

based approaches to prevent food borne illness. This implies an increasing use of risk 

assessment, a systematic tool used to develop consistent and science-based standards for 

international trade (Codex Alimentarius Commission, 1999; World Health Organization, 

1995). 

2. Purposes of microbiological risk assessment 
As the production, processing, distribution, marketing, preparation, and consumption of food 

is a complex and interdependent activity, it is important to stress that food safety is assured 

through a pragmatic management of a broad array of potential risks. Food safety risks can be 

controlled by implementation of good hygienic practices (GHPs) and through the hazard 

analysis of critical control point (HACCP) system. HACCP is a “risk management system 

based on an evaluation of hazards that are reasonably likely to occur, followed by the 
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implementation of mitigations to control those hazards to an acceptable level” (Heredia et al., 

2008). There are several steps in the food production chain at which control can be applied to 

prevent or eliminate a food safety hazard or reduce it to an acceptable level. These are called 

critical control points (CCP), and can only be identified through a deep understanding of the 

dynamics of microbial composition in food during processing. (CAC, 1997; Heredia et al., 

2008; Kilsby and Pugh, 1981).  

Microbiological risk assessment (MRA) tools allow to measure the risk of foodborne 

infection associated to the consumption of contaminated food, by providing a framework to 

model microbial changes along the food chain. It is stated by (Buchanan & Whiting, 1998), 

that if MRA is associated with HACCP, has an enormous potential to relate operations in 

food manufacturing to public health demands. 

The information obtained in a MRA is used to support risk-based management decisions, to 

establish standards for food in international trade, for evaluation of proposed management and 

intervention strategies, by measuring the risk reduction potential of various risk control 

options, highlighting data and information gaps and identifying research needs. (Havelaar et 

al., 2008; Heredia et al., 2008; Lammerding & Paoli, 1997) 

2.1 Risk definition and how to measure it 
Risk is defined as “a function of the probability of an adverse health effect and the severity of 

that effect, consequential to a hazard(s) in food” (CAC, 2011). In 1995, the Codex 

Alimentarius defined risk assessment as “the estimation of the severity and likelihood of harm 

or damage, resulting from exposure to hazardous agents or substances” (Food and Agriculture 

Organization of the United Nations/WHO, 1995).  

In MRA, these hazardous agents and substances represent microorganisms and/or their toxins. 

The final output of a risk assessment, i.e., the risk, is obtained by combining data and 

analytical models, that measure the probability of human exposure to pathogenic 

microorganisms and the degree of human response to that exposure (Heredia et al.,2008). 

3. History of microbiological risk assessment  
It is known that for long, efforts have been made to assess and measure risks attributed to 

hazards in the food production chain. As early as in 1983, the use of risk assessment was 

promoted by the National Research Council (NRC), United States, to support the scientific 

basis of risk-based decision making. A report entitled “Risk Assessment in the Federal 

Government: Managing the Process”, formalized for the first time the basic concepts of risk 

assessment (NRC, 1996). In 1995, risk assessment was promoted by the Sanitary and 

Phytosanitary Agreement and by the Technical Barriers to Trade Agreement to solve 
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international trade disputes, due to the increasing growth of the global food trade verified in 

the mid 1990s (WHO, 1995). MRA was one of the strategies used to evaluate food borne 

illnesses and manage food safety risks. In 1996, a document on principles and guidelines for 

risk assessment was published by FAO/WHO Joint Expert Consultation for the Codex 

Committee on Food Hygiene (CCFH) (CCFH, 1996). In the same year, a framework for 

conducting microbiological risk assessments was also published by the International Life 

Sciences Institute (ILSI).  

The first quantitative microbiological risk assessment (QMRA) of a food chain was published 

in 1997. It concerned E. coli O157:H7 in hamburgers (Cassin et al., 1998). Since that, several 

QMRAs have been conducted by international organizations, industry groups and national 

governments, and nowadays, this tool is consistently used to support free trade and ensure 

public health. (Schroeder et al., 2007). 

4. Risk assessment framework 
MRA is one of the three components of the risk analysis paradigm, along with risk 

management and risk communication (Voysey & Brown, 2000). Fig.1 describes the risk 

analysis framework and the interactions between the three components. 

Risk management consists in the analysis of policy alternatives based on the results of risk 

assessments, and selecting and implementing appropriate control measures (including 

regulatory measures), if required.  

Risk assessment is the scientific evaluation of actual or potential adverse health effects in 

humans, following exposure to hazards.  

Risk communication involves an exchange of information between risk assessors, risk 

managers, consumers, industry and other interested parties, for subjects regarding risk and 

risk management processes (CAC, 1999). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Risk analysis framework (From: Lammerding (1996)) 
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5. Components of microbiological risk assessment: 
The four cornerstones of MRA, defined as hazard identification, exposure assessment, hazard 

characterization (dose–response), and risk characterization (FAO/WHO, 1999) are described 

in Figure 2. 

 

Figure 2: Steps of microbial food safety risk assessment (From: Lammerding & Fazil (2000)). 
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5.1 Statement of purpose 
Prior to starting a risk assessment, the purpose of the study should be clearly defined. The 

output form of a risk assessment and possible output alternatives should also be defined. 

Examples of output forms include: estimate of the prevalence of illness, estimate of annual 

rate (incidence of human illness per 100,000) or estimate of the rate of human illness and 

severity per eating occurrence (CAC, 1999). 

5.2 Hazard identification 
The first step in a formal risk assessment is hazard identification. In a MRA, this activity aims 

to identify the microorganisms or the microbial toxins that may be present in a specific food 

and the adverse health effects that can possibly occur due to its presence. (CAC,1999; Center 

for Disease Control and Prevention, 2005).  

The process of hazard identification is predominantly qualitative. To identify hazards, search 

is conducted on relevant data sources. To obtain information on these hazards, search is 

conducted in the scientific literature, in databases from the food industry, government 

agencies or relevant international organizations, and through elicitation of expert opinion. 

(CAC, 1999). 

5.3 Exposure assessment 
According to the Codex Alimentarius Comission (1999), this step includes an assessment of 

the magnitude of actual or anticipated human exposure. In MRA, the exposure assessment 

might consider the potential extent contamination of food by microorganisms or its toxins, as 

well as the dietary information. The unit of food that is of interest, i.e., the portion size in 

most/all cases of acute illness should be specified in this step. 

Several factors should be considered when conducting an exposure assessment. The 

frequency of contamination of foods by the pathogenic agent, its level in foods over time are 

greatly influenced by intrinsic characteristics of the pathogen, microbiological interactions in 

the food environment, the initial contamination of the pathogen in the raw material, the type 

and extent of sanitation and process controls, the methods of processing, packaging, 

distribution and storage of the foods, and food preparation steps (i.e, cooking and storage). 

Patterns of food consumption should also be considered in this step. They are determined by 

the consumers’ socio-economic and cultural background, their ethnicity, age (population 

demographics), regional location, preferences and behaviour. Specific groups, such as infants, 

children, pregnant women, elderly or immunocompromised individuals, who can be more 

susceptible to infection or illness than the rest of the population, should also be included in an 

exposure assessment whenever possible (Gerba et al., 1996). The possibility of food handlers 
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to act as a source of contamination should also be taken into account, as well as the extent of 

contact between their hands and the product, and the potential impact of abusive 

environmental factors like time and temperature (CAC, 1999). 

It is important to realize the existing dynamics of the levels of microbial pathogens in food. 

While levels might be low during food processing due to proper time and temperature 

controls, they can increase considerably in the following processes of the food chain if these 

conditions are not controlled (Heredia et al., 2008). Therefore, in the exposure assessment, the 

transmission of the hazard is often modeled through the food pathway, which includes a series 

of processes from the source of the raw ingredients (e.g., the farm) to the moment of 

consumption (Nauta, 2000). Modelling hazard transmission usually involves separating the 

food pathway into unit operations. These describe the treatments applied to the ingredients 

during their conversion into food and what is their impact in the hazard. Data is found through 

direct observation (e.g., surveillance studies measuring the changes in hazards in a production 

environment), laboratory experimentation (eg. simulation in the laboratory of the processes 

occurring during manufacturing), or mathematical modelling based on established 

physicochemical principles (e.g., thermodynamic relationship associated with a heat process) 

to allow an identification of an input–output relationship for each operation unit (Notermans 

et al., 1998). 

In the exposure assessment, scenarios simulating intervention measures in the food pathway 

can predict a range of possible exposures. Interventions measures can include the effects of 

processing (i.e, hygienic design, cleaning and disinfection) but also time/temperature and 

other conditions of the food history. Food handling, consumption patterns, regulatory 

controls, and surveillance systems can also be modeled in this step (CAC, 1999). 

5.3.1 Predictive microbiology 
It is known that numbers of bacteria in food can change at all stages of the food pathway, 

depending on several factors. The presence, growth, survival, or death of microorganisms in 

food, can be influenced by the type of food and the way it is handled, stored, and processed. 

Predictive microbiology tools allow to estimate changes in bacterial numbers (Heredia et al., 

2008). The study from McMeekin et al. (1993) describes predictive microbiology as a 

scientific discipline where microbial behaviour (e.g., growth, survival, inactivation) is 

predicted as a function of environmental factors. In predictive microbiology, mathematical 

models are used to predict in a quantitative estimate the increase or decrease in concentrations 

of microorganisms in food products (Bott, 2014). 
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Predictive models can be classified as primary or secondary level models, depending on the 

degree of precision and sensitivity to environmental factors (Whiting & Buchanan, 1994).  

Primary models are usually developed in first place to determine the impact of the responses 

of interest, like the maximum specific growth rate, lag phase duration, or death rate. 

Afterwards, a secondary model is constructed, which shows the dependence of these factors 

on environmental conditions. Primary and secondary models can be combined to obtain 

tertiary models with the use of advanced software packages and expert systems (Buchanan & 

Whiting, 1998: Ross et al., 2000).  

Predictive microbial models allow an estimation of changes in the concentration of the 

microorganism in the different step of the food pathway, like production, processing and 

preparation. This information is used by food manufacturers and food safety authorities for 

developing and evaluating production processes, determining shelf life and setting food safety 

standards (Bott, 2014; Foegeding, 1997). 

 

5.4 Hazard characterization (dose-response) 
Hazard characterization describes the severity and duration of adverse effects that may result 

from the ingestion of a microorganism or its toxin in food, either qualitatively or 

quantitatively. The severity and duration of adverse health effects can vary a lot within the 

population after exposure to food borne pathogens, due to several factors. Factors that should 

be considered in a hazard characterization are the virulence characteristics of the pathogen, 

the numbers of cells ingested, the general health and immune status of the hosts, and the 

attributes of the food that alter microbial or host status. In addition, the likelihood that an 

individual becomes ill due to an exposure to a foodborne pathogen depends on the integration 

of host, pathogen, and food matrix effects (Buchanan et al., 2000). 

Mathematical models have been used to describe dose-response relationships. (Buchanan et 

al., 2000) The exponential (Table 1, Eq. (1)) and beta-Poisson (Table 1, Eq. (2)), are two of 

the most used models to describe dose-response relationships. They were initially introduced 

by (Haas, 1983), and have been used over the years, for different classes of biological agents 

(Buchanan et al., 1997; Coleman & Marks, 1998; Crockett et al., 1996; Haas, 1983; Medema 

et al., 1996; Rose & Gerba, 1991). 

In the exponential model it is assumed that the probability of a cell causing infection is 

independent of dose, whereas in the beta-Poisson it is assumed that infectivity is dose 

dependent.(Haas, 1983). 
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Expert elicitation could be included in a hazard characterization when a dose-response 

relationship is not known. These can give insight in considering factors like infectivity and to 

devise ranking systems that describe severity and/or duration of disease.(CAC, 1999). 

 

 

5.5 Risk characterization 
In this step, qualitative or quantitative information obtained from the hazard identification, 

hazard characterization, and exposure assessment are combined to obtain a risk estimate. This 

results in a qualitative or quantitative estimate of the probability and severity of adverse 

health effects in a given population, taking uncertainties in to account and describing them 

accordingly. Information can be obtained through suitable data or expert judgements. 

Estimates can be assessed through further comparison with independent epidemiological data 

that relates hazards to disease prevalence. It is important to stress that the final assessment of 

the risk will be influenced by all the assumptions made in the previous steps, as well as 

variability and uncertainty. (CAC, 1999) 

 

Figure 3: Mathematical models (Exponential and Beta-Poisson) that have been used to 
empirically describe dose-response data for foodborne pathogenic bacteria. (From: Buchanan et al., 
(2000)). 
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5.5.1 Variability and uncertainty 
Variability represents the true heterogeneity of the population of subjects considered, and it 

can be observed and quantified. As it is a consequence of the physical system, it can not be 

reduced by adding further measurements. Stochasticity and inter-individual variability are two 

types of variability. Stochasticity occurs when heterogeneity is a consequence of randomness 

(eg. the result of throwing a dice). Inter-individual variability describes the differences 

between individuals of a population (eg. the variability of children’s heights in school class), 

which is influenced by genetics, nutrition, other environmental conditions, but also some 

randomness. Uncertainty is described as a lack of perfect knowledge, meaning that increasing 

knowledge by implementing further measurements, for example, can help to reduce it 

(Anderson & Hattis, 1999; Bott, 2014; Murphy, 1998); 

In addition to accounting for variability and uncertainty, it is important to assess the influence 

of the estimates and assumptions used in a risk assessment. In a quantitative risk assessment 

this is achieved by conducting sensitivity and uncertainty analyses (CAC, 1999). 

 

6. Quantitative risk assessment 
Risk assessment can be qualitative or quantitative (CAC, 1999). Qualitative risk assessments 

are descriptive or categorical treatments of information. Quantitative assessments are 

mathematical expressions or models that describe the probability of occurrence of an adverse 

effect.  Models are simplified representations of a part of reality (Coleman & Marks, 1998; 

Alban et al., 2002; Haas et al., 2014; Havelaar et al., 2008). Considering the objectives of the 

risk assessment and the data available, two types of mathematical models are combined: 

exposure assessment models and dose-response models (Heredia et al., 2008). 

If quantitative information and resources are available, it is preferable to conduct a 

quantitative risk assessment. If, however, there are limitations regarding data, time and / or 

other resources, conducting a qualitative risk assessment may be the only option. Qualitative 

assessments may be used for an initial evaluation of a food safety issue, to evaluate if a 

specific risk is significant enough and requires more detailed analysis. In a quantitative risk 

assessment, by combining the likelihood and magnitude of each harm, one is able to quantify 

the risk of each individual getting ill (Alban et al., 2002; Haas et al., 2014; Nauta & Havelaar, 

2008). 

Quantitative Microbiological Risk Assessment (QMRA) is used to support several risk 

management purposes (Nauta et al., 2009). Although it can be used to assess the human health 

risk associated with the ingestion of microorganisms in food in terms of estimated human 
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incidence, it is generally not the best tool to use for this purpose. This is explained due to the 

uncertainty present in the exposure assessment and the dose-response relation. For this 

purpose, epidemiological data may offer better tools to assess the baseline risk estimate. 

(Havelaar et al., 2007).  

QMRA is also used to assess the effects of intervention measures in the food pathway that 

aim to reduce risk.  If QMRA covers all the food chain, it allows risk managers to compare 

the evaluation of control measures implemented in all the food chain (Nauta et al., 2009). 

Intervention measures are assessed considering absolute risks and relative risk reduction. 

Absolute risk is the risk estimate itself, which will be a lower risk after implementation of an 

intervention measure. Relative risk is the ratio of the lower incidence estimate and the 

incidence estimate without intervention. The lower the relative risk, the higher the risk 

reduction is in an intervention scenario compared to the baseline. As relative risk is associated 

with less uncertainty than absolute risk, it is considered a more valuable statistic than absolute 

risk estimates (Nauta et al., 2005b; Duarte et al., 2016). 

The efficiency of intervention measures implemented in the food production chain can also be 

assessed when conducting a QMRA. By incorporating costs of intervention measures, the risk 

assessor is able to compare the effectiveness of different intervention in reducing human 

health risks. A balance between costs and benefits of intervention measures can be achieved 

when costs are incorporated in a QMRA. (Havelaar et al., 2007; Nauta & Havelaar, 2008).  

6.1 Stochastic versus deterministic risk assessment 
Risk assessment models can be deterministic/‘point estimate’ or stochastic/‘probabilistic’. 

Deterministic models use single values to describe the inputs that impact the final outcome. 

Therefore, the risk estimate that they produce is a single value, which can be the average or a 

worst-case scenario, for example. Probabilistic models use probability distributions to 

describe the inputs that influence the final outcome.  For that reason, the risk estimate 

produced is a distribution describing a range of values of the risks that an individual or a 

population might experience. (Heredia et al., 2008;  Lammerding & Fazil, 2000). Probability 

distributions can be attributed based on empirical data, understanding the basic biological 

phenomena, or on expert opinion elicitation, when there are no other sources of information 

(Vose, 1998).  

Despite the fact that probabilistic models are more complex than deterministic models, they 

are the preferred method of choice for quantitative risk assessments. This is because 

variability and uncertainty, described previously in this study, are ignored in a deterministic 

risk assessment by using a single value to describe the risk (Lammerding & Fazil, 2000). The 
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necessity of including variability and uncertainty is based on the fact that it is unlikely that 

microbial risks that affect human health are uniformly distributed and that ‘average’ episodes 

or events are likely to cause significant problems (Potter, 1994). Risk management decisions 

should take into account the extremes of the distributions, the likelihood of occurrence of 

such events and who might be affected. Figure 4 illustrates the difference between a point-

estimate and a probability distribution to describe an input. In this hypothetical example, the 

graph describes the concentration of a pathogen in a unit of food. The deterministic approach 

specifies a single value that a parameter could take, while the stochastic approach specifies a 

range of values that a parameter can take, and how frequently these different values can 

occur. When a single point value is used to describe a complete data set, it is observed that a 

considerable amount of information is lost. (Lammerding & Fazil, 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4: Comparison between a point-estimate and a probability distribution to 

characterize a data set (From: Lammerding & Fazil (2000)). 
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6.1.1 Monte Carlo simulation 

Monte Carlo Simulation is an alternative to using analytical techniques to evaluate a risk 

assessment, as this can be a tedious task, even for a single model. Is it described as a 

numerical technique, specifically suited for computer applications, which randomly selects a 

single ‘point-estimate’ value from each of the probability distributions applied for each input 

parameter. The selected single values are used to calculate a mathematical solution, which is 

specified in the risk assessment model. Each result is stored, and the sequence is repeated for 

a several number of times (iterations). In each iteration a different value is selected, according 

to the defined probability for each one. Values associated with higher probabilities are more 

likely to occur, and therefore are selected more frequently. The result of a Monte Carlo 

analysis is an output described by a frequency distribution of values, which combine the 

ranges and the frequencies of each input parameters (Lammerding & Fazil, 2000). 

Fig. 5 describes a simplified illustration of a Monte Carlo simulation for a hypothetical 

exposure assessment.  
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Figure 5: Illustration of Monte Carlo simulation performed to determine the concentration of a 

pathogen in a food product. There are three inputs: (A) is the concentration of a pathogen in the 

raw food product, log CFU/g; (B) is the log growth that can occur during transport and storage; and 

(C) is the log reductions that occur when the product is cooked to various degrees of doneness. 

(From: Lammerding & Fazil (2000)). 
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II. The importance of consumer phase models in quantitative 
microbiological risk assessment 
 

1. Introduction 
Risk assessments that consider the influence of various factors in the food pathway, from food 

production until food consumption and the effect on human health, provide valuable 

information for risk managers. These have been described as farm-to-fork risk assessments, 

and have been conducted for different food-pathogen combination (Buchanan et al., 2000; 

Lammerding & Fazil, 2000; Nauta & Christensen, 2011). 

Figure 6 shows the elements of a farm-to-fork risk assessment. The changes in prevalence and 

concentration of a pathogen are assessed from the farm level through processing and retail to 

final consumption by the consumer (Lammerding & Fazil, 2000). 

 

Some risk assessments start at primary production, while others may start at a later stage of 

the food chain (Buchanan et al., 2000; Nauta & Christensen, 2011). As described before in 

this study, according to the Codex Alimentarius, all risk assessments should include an 

exposure assessment. As this step describes the probability of intake of pathogens by 

consumers (CAC, 1999), it is necessary that risk assessments include models or assumptions 

that account for the consumer phase. By considering this phase, an essential link between 

previous phases in the food chain and the dose-response relation is established. 

 

Figure 6: Elements of a ‘farm-to-fork’ risk assessment. Factors that influence or alter the 
prevalence and/or concentration at the farm (PF and CF), during food processing (PP, CP), retail 
storage and handling (PR, CR) and in the home (PH, CH) are described in the exposure assessment 
(From: Lammerding & Fazil (2000)). 
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The consumer phase is the part of the food chain following the production and retail, when 

the consumer transports, stores, prepares and consumes produced food (Nauta & Christensen, 

2011). This step is different from all the other steps of the food chain, because it is associated 

with high variability aspects of human behaviour (Nauta et al., 2009).  

Food safety managers have lower interest in this step than in the other stages of the food 

chain, because in this phase, food can no longer be controlled by food authorities and there is 

no possibility of enforcing controls by legislation. In this step, proper and safe food handling 

is the consumer’s responsibility, and the only form of control at this point is through 

education of the population and provision of other types of information (Fischer et al., 2005; 

Hill et al., 2011). 

Representative quantitative data on consumer food handling practices to use in a risk 

assessment remains scarce. This is due to the difficulty of obtaining unbiased, representative 

data on human behaviour in the domestic setting in general (Redmond & Griffith, 2003), 

which restrains research in the consumer phase. Also, because there is high variability in food 

handling practices, and cultural and social differences between the considered population 

groups in relation to food preparation practices need to be accounted for (Nauta et al., 2009). 

Despite these challenges, a consumer phase model (CPM) needs to be included in a risk 

assessment, to allow an evaluation of the effectiveness of intervention measures in food 

production and processing, in terms of human health risk. 

To this day, several CPMs have been developed. These may differ substantially in terms of 

complexity depending on the purpose of the QMRA and the availability of data. Some may 

only include a few simplifying assumptions, while others may describe in detail the food 

handling practices, their frequencies of occurrence and use plenty of data sources (Zwietering, 

2009). 

With the current rapid progress of science and technology, rapid risk management measures 

of acute public health events are indispensable. These can reduce or prevent disease in 

affected populations, reduce negative social and economic consequences, and enable 

implementation of appropriate and timely control measures (WHO, 2012). 

This implies that in an acute public health event, it is desired that risk assessment models are 

built in short period of time, in order to provide a fast scientific ground for further 

implementation of control measures and more efficient risk management.  
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An important question to answer in the development of CPMs is to what extent these models 

need to include a detailed description of the processes that may result in exposure (Nauta & 

Christensen, 2011).  The study from Nauta et al., (2009), suggests that “There is no alternative 

but for a probabilistic approach to risk assessment models of the consumer phase.”. This 

implies that there is no possibility other than using stochastic CPMs to obtain accurate risk 

estimates when modelling the consumer phase.  

 

2. Purpose of the project 
The purpose of this study is to compare the results given by seven published stochastic 

consumer phase models found in the literature for Campylobacter, Salmonella and Listeria 

monocytogenes, with two simpler modelling techniques, which don’t include variation. The 

modelling techniques are compared by means of absolute risk estimates and relative risk 

estimates, by simulating the effect on the risk of six hypothetical intervention scenarios in the 

food production chain.  

This project aims to identify particular scenarios in which simpler surrogates that don’t 

include variation estimate similar results to stochastic CPMs. If so, modelling the consumer 

phase of the exposure assessment stage of a risk assessment would become a faster and 

simpler process, ideal for use in acute public health disease outbreaks (WHO, 2012; 

Zwietering, 2009). 

 

The objectives of the study are summarised in the following order below: 

• To assess absolute risk estimates and relative risk estimates (by simulation of 

intervention measures) for different stochastic consumer phase models found in the 

literature for three pathogens: Campylobacter, Salmonella and L. monocytogenes. 

• To assess absolute risk estimates and relative risk estimates (by considering 

intervention scenarios) of two simpler approaches that don’t include variation: “a-

factor” model (Duarte et al., 2016) and deterministic consumer phase models. 

• To compare the results in terms of absolute risk estimates and relative risk estimates of 

the modelling approach using a stochastic CPM, with the approach using an “a-factor” 

model and a deterministic consumer phase model. 

 
 
 
 



19 

3. Materials and methods 
Literature research on Quantitative Microbiological Risk Assessment was conducted in order 

to obtain published Consumer Phase Models for three microorganisms responsible for food 

borne zoonoses: Campylobacter in broiler chicken (Calistri & Giovannini, 2008; Christensen 

et al., 2001; Nauta et al., 2008), Salmonella in pork (Hill et al., 2011; Messens et al., 2009; 

Mürmann et al., 2011) and Listeria monocytogenes in cold-smoked-salmon (Berjia, 2013; 

Pouillot & Lubran, 2011). The information was obtained through searching in websites 

containing large databases of scientific articles and journals, such as Science Direct, Pub-med, 

Dtu-Find it and Research Gate. 

Seven models in total were chosen after the literature research. The simpler models were 

implemented in Monte Carlo software @Risk 5.5 (Palisade), while the more complex models 

were provided by my supervisor, Maarten Nauta. These models had already been 

implemented in the software in a project performed by Mungai, (2015). Dose-Response 

models specific for each pathogen were also found in the literature.  

 

3.1 Modelling approach using stochastic CPMs 
The modelling approach used for all the stochastic CPMs in this study can be divided in two 

main parts. The first part describes the transport of the food by the consumer, its storage, 

preparation and consumption. Not all the models describe all these stages. Some models only 

include the preparation and consumption, while others also include the transport and storage. 

Each model is described in detail further in this study. The second part includes the dose-

response relationship.  

- Overview of the modelling approach:  

3.1.1.1 Input distributions 

The inputs applied for each CPM are described in this step. The relevant parameters are 

specified, as well as their corresponding notation and distribution. 

3.1.1.2 Consumer phase model description 

In this step, the consumer phase model is briefly described and its formulas and diagrams are 

provided. 

3.1.1.3. Dose-response model 

The dose-response model applied for each pathogen is described and the corresponding 

formula provided. 

The final output after implementation of the Dose-Response Model is the probability of 

illness of each individual after exposure to a certain dose of contaminated food with different 

pathogens. 
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3.1.1 Campylobacter CPMs 

Three CPMs for Campylobacter in chicken meat were selected from a study performed by 

Nauta and Christensen (2011): Nauta CPM (Nauta et al., 2008), Christensen CPM 

(Christensen et al., 2001) and Calistri CPM (Calistri & Giovannini, 2008). A recent review of 

the performance of these models is given in a study by Chapman et al., (2016). The models 

describe the transfer and survival of Campylobacter in raw chicken meat, from retail purchase 

to meal consumption, with Campylobacter originating from that meat.  

Human exposure to Campylobacter can occur as a result of undercooking or cross-

contamination during meal preparation. It is largely accepted that all Campylobacter are 

inactivated through heating of the meat and that proper hygiene measures can prevent cross-

contamination. An episode of undercooking is assumed to be unlikely and may be especially 

important when whole carcasses are considered (FAO/WHO, 2009). 

In all Campylobacter CPMs described, cross-contamination is considered to be the dominant 

route of exposure, which does not necessarily occur via the meat itself but via a ready-to-eat 

(RTE) food item (e.g. salad)  

For this reason, at the point of exposure, Campylobacter may be in the prepared meat itself, 

but more likely in a RTE food at side dish, like a salad prepared on the same cutting board as 

the raw chicken meat (Nauta et al., 2009). 

 

3.1.1.1- Input distribution 
According to the approach used by (Nauta & Christensen, 2011), the input distributions 

(initial concentration, prevalence and portion size) are assumed to be the same for all the 

considered Campylobacter CPMs. The same dose-response model was also applied for the 

three CPMs. By using this approach, the difference of the risk estimates is expected to be only 

attributable to differences inherent to the models, which allows further comparison of the 

results. 

The input distributions are described as: 

• Concentration of Campylobacter at retail, Cret (in cfu/g), is defined by a normal 

distribution of the logs (mean= 1.5, standard deviation= 1.2). 

• With prevalence pprev of 0.25, log Cret is sampled from a normal distribution with 

mean= 1.5 and standard deviation= 1.2, otherwise Cret is 0 cfu/g.  

• Portion sizes, wc, are sampled from a lognormal distribution with mean= 189 g, 

standard deviation=127,

 

and maximum portion size of 1 kg. 
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The number of Campylobacter in cfus on one portion of consumed meat, Nportion, is defined by 

the Poisson distribution described below: 

 

 𝑁!"#$%"& ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝐶!"#×𝑊!) (1) 

 

where ∼ represents “is a sample from,” so Nportion
 

varies with different portions. 

 

3.1.1.2- Consumer phase models 
The purpose of each CPM is to describe the probability distribution of ingested doses 

consequential to the distribution of Nportion
 

for a large set of meat portions. Empirical 

distributions to model uncertainty and variability are used to characterize the parameters in all 

the CPMs related to Campylobater described below. All the parameters of the CPMs are 

described in more detail in Annex II. 

 

 

- Nauta CPM 
The study from Nauta et al  (2008)  relied on other studies (De Jong et al., 2008; Van Asselt et 

al., 2008) to use Lactobaccili as a tracer for Campylobacter in an observational study. The 

study considered bacterial transfer from inoculated chicken breast fillets to salads in ready-to-

eat chicken salad prepared at home by consumer volunteers. From this study, a data set 

describing the variability of transfer rates from raw meat to salad was obtained, and an 

empirical distribution was used for the transfer rates ptr  (described in Appendix in Nauta & 

Christensen (2011)). If ptr is variable and sampled from this distribution, this allows: 

 

 𝑑 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑁!"#$%"&,𝑝!" . (2) 

 

where ∼ represents “is a sample from,” so Nportion
 

varies with different portions, and ptr 

represents the probability of a single cfu from the portion ending up in the dose. 
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- Christensen CPM 
This model is a simplified version of the CPM by (Christensen et al., 2001), which still gives 

very similar results to the original version. It describes the transfer of bacteria from raw 

chicken to equipment (board or knife), and from equipment to cooked chicken or 

accompanying salad. 

 

 𝑑~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 [𝑁!"#$%"&, 𝑡𝐶𝐸, 𝑡𝐸𝐶 × 𝑓𝐶𝐶 + 1− 𝑡𝐸𝐶 × 𝑓𝐶𝐶 ×𝑡𝐸𝑆 ×𝑓𝐶𝑆 ] (3) 

 

where, 

• The transfer rate chicken to equipment tCE, is defined by ten to the power of minus 

Pert distribution, with minimum value=1; most likely value= 2 and maximum value= 

6.  ~10^−Pert(1,2,6) 

• The transfer rate equipment to chicken, tEC is defined by ten to the power of minus 

Pert distribution, with minimum value=1; most likely value= 2 and maximum value= 

6.  ~10^−Pert(1,2,6) 

• The frequency of chicken to chicken contamination, fCC is considered to be =1. 

• The transfer rate equipment to salad, tES is defined by defined by ten to the power of 

minus Pert distribution, with minimum value=1; most likely value= 2 and maximum 

value= 6.  ~10^−Pert(1,2,6) 

• The frequency of chicken to salad contamination, fCS  is considered to be =1. 

 

 

 

 

- Calistri CPM 
For this model, Calistri and Giovaninni (2008) use the same transfer rate data as the 

Brynestad CPM (Luber et al., 2006), but derived different empirical distributions. It describes 

the transfer of bacteria from raw chicken to equipment (board or knife) and to hands, and 

from hands and equipment to cooked chicken or accompanying salad: 

 

𝑑 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑁!"#$%"& , 𝑡𝐶𝐸 × 𝑡𝐸𝑅 × 𝑓𝐶𝐸 + 1− 𝑡𝐶𝐸 × 𝑡𝐸𝑅 × 𝑓𝐶𝐸  𝑡𝐶𝐻 ×𝑡𝐻𝑅 × 𝑓𝐶𝐻 , (4) 
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where: 

• The transfer rates tCE, tER, tCH and tHR are defined by empirical distributions. 

Variables are summarized in Table 4 in Calistri and Giovaninni (2008). 

• Chicken to environment contamination fCE, is defined by a Bernoulli distribution that 

returns =1 with probability pCE
 
= 0.124, otherwise  returns = 0. 

• Chicken to hand contamination fCH, is defined by a Bernoulli distribution that returns 

=1 with probability pCH= 0.259, otherwise  returns = 0. 

 

The output from Nauta, Christensen and Calistri CPMs return the probability distribution of 

the number of cfu’s ingested (i.e. the dose) consequential to the distribution of Nportion over a 

large set of meat portions.  

 

3.1.1.3- Dose-response model 
For Campylobacter, a Beta-Poisson model was used to describe the probability of infection 

from an ingested dose d (WHO/FAO, 2009): 

 

 
𝑝 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛|𝑑𝑜𝑠𝑒 = 1− 1+

𝑑
𝛽

!!

 
(5) 

 

where α = 0.145 and β= 7.59.                                                                                  

 

As the classic Beta-Poisson model describes the response in terms of probability of infection, 

and the desired output is the probability of illness Qill , a standard multiplier of 0.33 is used, 

based in studies from Black et al. (1988) and from WHO/FAO (2009). Subsequently, the 

mean of the probability of illness was considered for comparison of the results. 

After implementation of each CPM and the dose-response model, the final outputs obtained 

are the probabilities of illness for each individual after exposure to a certain dose d, the 

number of cfus of Campylobacter in contaminated salad. 
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3.1.2- Salmonella CPMs 
 

3.1.2.1- Input Distribution 
Following a similar approach used for Campylobacter CPMs, the same inputs (initial 

concentration, prevalence) and dose-response model were applied to all Salmonella models, 

to assure that the risk estimates are only attributable to differences in the models. The inputs 

applied to all the models were obtained from Messens et al. (2009), while the dose-response 

model used was obtained from FAO/WHO Risk assessments of Salmonella in eggs and 

broiler chickens (WHO/FAO, 2002).  

 

The input distributions are described as: 

• Concentration of Salmonella at retail (log cfu/g), is defined by a Normal distribution 

(mean= 1.4; standard deviation= 0.7) 

• Prevalence, p is = 0.12 

• Weight of portion, is defined by a Normal distribution with mean= 93 and SD=14.83 

 

 

3.1.2.2- Consumer phase models 

- Bollaerts CPM: 
Bollaerts CPM is part of a QMRA conducted to evaluate the risk of human salmonellosis 

through household consumption of fresh minced pork meat in Belgium (Messens et al., 2009).  

It is included in module 6 of the exposure assessment, where the process of preparing meat in 

households is simulated, considering that the meal partially consists of a portion of minced 

pork meat and another food item. It is assumed that pork meat is cooked in all situations, 

while the other food item is sometimes consumed raw.  

To account for variability and uncertainty, empirical distributions are used to describe the 

growth of Salmonella during transport and storage at home, cross contamination during meal 

preparation of a ready to eat meal (from meat to the other food product via cook’s hands or 

carving board), and microbial inactivation during cooking. 

It is assumed that cross-contamination to another food item occurs via the cook’s hands (step 

7 on Fig. 7) or via the carving board used to manipulate the minced meat (step 8 on Fig. 7).  

Cross-contamination via the carving board is firstly modelled as transfer of Salmonella from 

the meat after manipulation by hands to the board, and from the board to another food item 
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(step 9 on Fig. 7). After food handling, the number of Salmonella present on the minced meat 

is described in step 5 of the diagram in Figure 7. 

The effect of undercooking is modelled in this CPM, and it is assumed that only a proportion 

of Salmonella cells in the protected area will survive to the cooking process (step 6 in Fig. 7). 

The final output of the model is the number of Salmonella ingested at the moment of 

consumption, which includes the sum of the number of Salmonella in the minced meat that 

survived cooking and the number transferred to another food item consumed raw (step 10 in 

Fig. 7).  

Bollaert’s CPM output gives the number of Salmonella on the minced pork meat which 

survived the cooking process, as well as the number transferred to another food item that is 

consumed raw.  

All the parameters of the CPM are described in more detail in Annex II. 
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Figure 7: Schematic representation of Bollaerts CPM. See details in Table 10 in Annex II.  
(Adapted from: Messens et al., (2009) and Mungai (2015)). 

1. Numbers on portion at retail 
(Nportion in CFU) 

2. Numbers on portion after 
transport to home 

Ntr= 10(log
10

 N
portion

 + Δtr
) 

3. Numbers on portion after storage 
at home (Nstor) 

Ntr= 10(log
10

 N
trans

 + Δst
) 

with Δst = µ× Timest 

4. Numbers remaining on portion 
after cross-contamination via hands 

Nmeat1= Nstor(1-Tm,h) 

5. Numbers remaining on portion 
after food handling 

Nmeat2= Nmeat1(1-Tm,b) 

6. Numbers on portion after cooking 
Ncook= 10(log

10
N

protect
-Δprotect

) ×	Su	with	
Nprotect=	Pprotect	×	Nmeat2	and	Δprotect	=	

Timecook/D	
With	D=	10-0.14Tempcook+8.58 

7. Cross contamination via hands 
 

Nx-hand = Nstor ×	Tm,h × Phand×	Th,o	×	Sother 

8. Cross contamination via board 
 

Nx-board = Nmeat1 ×	Tb,o × Sother
 

9. Total numbers transferred to other food 
 

Nx = Nx-hand ×	Nx-board × Sraw
 

10. Numbers ingested with meal 
 

Ndose = Nx ×	Ncook
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- EFSA CPM 
EFSA CPM is part of a full risk assessment model for Salmonella in the pork production 

chain in selected European Union member states (Hill et al., 2011). This CPM can also be 

found in a more recent study by Swart et al., (2016). In this risk assessment three types of 

pork meat are considered: minced pork, pork cuts and fermented sausages. For the purpose of 

this study, the only model considered was for pork cuts. 

Empirical distributions are used to model variability and uncertainty related to the processes 

of transport, storage and meal preparation of 10,000 portions of pork cuts.  

The growth of Salmonella in transport and storage (at home) is modeled by using time and 

temperature parameters (Baranyi’s dynamic growth model).  

The preparation of pork cuts is modelled in the most part as a cross-contamination process, 

from pork products to ready-to-eat food (eg. salads or bread). Transmission of Salmonella can 

occur within the household from raw meat juice present in surfaces, equipment or personnel 

carrying the bacteria. 

 The parameters below are considered to describe cross-contamination:  

• Transfer between pork cuts, knife, cutting board and hands through cutting. 

• Cross-contamination between hands and tap, through washing of the board.  

• Cross-contamination between hands and tap , through washing the knife 

• Cross-contamination between hands and tap, through washing hands.  

• Cutting the salad  

Inadequate cooking is not considered in this CPM due the assumption that the heating will 

destroy all Salmonella cells, since they are present exclusively on the outside of the product 

(step 5 in Fig. 8). 

EFSA’s CPM output is the number of cfus of Salmonella in each portion of pork cuts at the 

point of consumption (step 7 in Fig. 8). 

All the parameters of the CPMs are described in more detail in Annex II. 
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1. Initial contamination- 
N1 

2. Numbers after 
transport to home- N2 

3. Numbers after home 
storage NM3/NP3 

4. Numbers after cross-
contamination 

NP4= N3(1-qPB-qPH-qPK) 
 

5. Numbers on meat after 
cooking 
NP5=0 

Dynamic Baranyi model 

Dynamic Baranyi model 

6. Numbers on lettuce after cross contamination 
 

Nsalad= N3Xs{qPBqBS[YB(1-
qBB)+qBB]+qPKqKS[YK(1-qKK)]+qPHqHS[YH(1-

G)+(YH-1)(1-qHT)(1-qTH)G-1)qHH]} 

7. Numbers ingested 
(dose) 

 
Dose= Nsalad 

 

Figure 8: Schematic representation of EFSA CPM. See details in Table 11 in Annex II. 
(Adapted from: Hill et al., (2011) and Mungai (2015)). 
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- Murmann CPM 
This CPM is part of a quantitative microbiological risk assessment to estimate the risk of 

Salmonella infection through the consumption of fresh pork sausages prepared at barbecues in 

Porto alegre, Brazil (Mürmann et al., 2011). In this study, the thermal effect of cooking during 

meal preparation is modelled by using time-temperature profiles measured during the project. 

Empirical distributions are used to account for variability and uncertainty related to the 

cooking time (min), internal temperature (ºC), and Log cycle reduction, except for the D-

values, which were calculated deterministically. 

Murmann’s CPM output is the ingested number of Salmonella cells in one contaminated 

cooked pork sausage (i.e the dose). 

All the parameters of the CPMs are described in more detail in Annex II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2.3. Dose-response model 
The Beta-Poisson dose response model used for the three Salmonella CPMs (Equation 5) was 

the dose-response model used for the FAO/WHO (2002) risk assessments of Salmonella in 

eggs and broiler chickens, with α = 0.1324 and β= 51.45. These parameters were estimated 

from outbreaks with several serovars and were considered to be more appropriate than 

parameters from feeding trials with single serovars. As it is obtained from outbreak data, the 

resulting Beta Poisson model can be interpreted to describe the probability of illness from a 

certain dose. (WHO/FAO, 2002). Subsequently, the mean of the probability of illness was 

considered for comparison results. 

1. Contamination at retail: 
Prevalence (P%) 

Concentration (Ci CFU/g) 

2. Number in contaminated sausage 
after cooking = dose(d) 

 
d ~Poisson (Cc x Wt. Sausage) with 
Cc= Ci/10log R with log R= t/D-values 

 

Figure 9: Schematic representation of Murmann CPM. See details in Table 12 in Annex II 
(Adapted from: Mürmann et al., (2011) and Mungai (2015). 
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The outputs of the Beta Poisson dose-response model are the mean probabilities of illness 

after consumption of a certain dose of fresh minced pork meat in Belgium for Bollaerts CPM, 

pork cuts for EFSA CPM and fresh pork sausages for Murmann CPM. 

3.1.3- Listeria monocytogenes CPM 

A consumer phase model was obtained from the exposure assessment of a study performed by 

Berjia (2013), a risk-benefit assessment of cold-smoked salmon (CSS). In this project, the risk 

of Listeria monocytogenes is evaluated against the benefits of the intake of omega-3 fatty 

acids in Denmark. The model described is deterministic, including parameters described by 

fixed values, which don’t account for variability and uncertainty. As the purpose of this 

project is to use stochastic models that act as a basis for comparison with simpler alternatives 

-“a-factor” and deterministic CPMs- the original version of the model will only be described 

later in this study. In this step, changes were made to the model with the purpose of adding 

variability to it, in order to obtain a stochastic model. Stochastic growth models, primary and 

secondary, were obtained from Pouillot & Lubran (2011) and combined with Berjia CPM. In 

addition, the inputs storage temperature, storage time and growth rate were substituted to 

variable values through implementation of distributions. 

 

3.1.3.1- Input distribution 
The inputs for Berjia  CPM are described below: 

• In the study of (Berjia, 2013), the initial concentrations of L. monocytogenes in cold 

smoked salmon are {0.5: 1.5: 2.5: 3.5} and their prevalences {0.28: 0.05: 0.01: 0}  

(Jørgensen and Huss 1998). As stated previously, the input of the initial concentration 

was modified in order to add variability to the model. It is now defined by a Normal 

distribution with mean=1,2189 log cfu/g and standard deviation= 0.8 (ILSI 2010). The 

parameters used to define the Normal Distribution (i.e. the mean and standard 

deviation) were obtained using different methods. The mean was calculated by adding 

the products of the initial concentrations and their respective prevalences, stated in 

(Jørgensen and Huss 1998). The value of standard deviation (SD) (log10)= 0,8 was 

chosen in this situation based on ILSI (2010), as it is usually used as a default value to 

describe the standard deviation of a batch, when no better data or more specific 

information on a batch is available. 

• The portion size ingested is a fixed value of 23 grams. 
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3.1.3.2 Consumer phase models 
 

- Berjia CPM (adapted) 
Storage time, storage temperature, growth rate and lag-time are modeled in this CPM. Storage 

temperature (Ti) was obtained from Table A5.3 in p. 260 (WHO, 2004). Duration of the 

storage is described by a normal distribution with mean=14 days (Berjia, 2013) and a standard 

deviation of 3,5 (Expert opinion). Growth rate (µ) was obtained from (Pouillot & Lubran, 

2011), consisting of a primary and secondary models. 

The primary growth model is the model #4 in the study by Pouillot and Lubran (2011), with 

alternative point estimates for µref
 
= 6.19 (d-1) and Tmin

 
= -1.18 

 

C: 

 

 

 𝑋!"#,! = 𝑚𝑖𝑛 (𝑋!,! +
𝜇!

𝑙𝑜𝑔! 10
×max (𝑡! i− 𝜆! , 0),𝑀𝑃𝐷! (6) 

 

The inputs for this three-phase linear model (Buchanan et al., 1997) are described below: 

• X0;i (log10 cfu/g) is the concentration of L. monocytogenes in the CSS at the beginning 

of the storage; µi is the specific growth rate of L. monocytogenes per day (d-1); ti the 

duration of the storage; λi=

 

0 is the lag time (d); MPDi the maximum population 

density (log10
 
cfu/g).  

• The model number 4 (FDA/FSIS, 2003) used no lag=0 days, a constant MPDi= 7.27 

log10
 
cfu/g) (Delignette-Muller et al., 2006), and a square root model (Ratkowsky et 

al., 1982) as a secondary model for µ,  

 

 

 
𝜇! = 𝜇!"#×

𝑇! − 𝑇!"#
𝑇!"# − 𝑇!"#

!

 
(7) 

 

 

with a constant mref
 
=6.19 d^-1(FDA/FSIS, 2003) for Tref =

 
25 C (Delignette-Muller et al., 

2006) and a constant Tmin= -1.18
 
C (FDA/FSIS, 2003). 

All the parameters of the CPMs are described in more detail in Annex II. 
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3.1.3.3- Dose response model 
An exponential dose-response model is used to estimate the probability of infection by L. 

monocytogenes (FAO/WHO 2004): 

 

 𝑃𝑖𝑛𝑓 = 1− 𝑒!!" (8) 

 

where, 

• Pinf is the probability of severe illness, D is the number of L. monocytogenes 

consumed, and 

r is the parameter that defines the dose–response relation for the population being 

considered. 

• For healthy population, r is 2.37 × 10-14

 

(FAO/WHO 2004). 

• For susceptible population, r is 1.06×10-12 (FAO/WHO 2004). 

 

The susceptible group is, on average, ~40 times more susceptible than the ‘healthy’ 

population. The result is not the probability of infection, but the probability of severe illness. 

The final output is the probability of severe illness caused by L. monocytogenes after 

consumption of cold smoked salmon (CSS). 

 

3.2 Modelling approach using a surrogate “a-factor” 
 
A surrogate for a CPM used in a study about the effect of carcass decontamination on the risk 

for consumers was found in the literature (Duarte et al., 2016). In this study, during 

processing after slaughter (i.e. particularly during cooking), the number of Salmonella is 

assumed to decrease according to a reducing factor a. The “a-factor” summarises the effect of 

transfer, growth, cross contamination and survival of Salmonella in pork meat in a constant 

value.  

Taking into account that the process of building a stochastic model for the consumer phase 

can be complex and time consuming, using a fixed value as a surrogate would allow simpler 

and faster results, but one doesn’t know how valid it is. Although this approach has only been 

used for Salmonella in the literature, it was possible to implement it to the other pathogen’s 

consumer phase models as well. 
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3.2.1 Modelling approach 
The modelling approach using the “a factor” in this study can be divided in two main parts.  

The first part describes the transfer, growth, cross contamination and survival, summarised in 

a constant value. The second part includes the dose-response relationship.  

- Overview of the modelling approach:  

3.2.1.1 Input distributions 

The inputs applied for each “a-factor” remain the same as the ones used for the stochastic 

models, including variation. 

3.2.1.2 “a-factor” 

In this step, the “a-factor” summarises the effect of transfer, growth, cross contamination and 

survival in a constant value. One “a-factor” correspondent to each stochastic CPM is 

calculated. 

3.2.1.3 Dose-response model 

The dose-response modesl applied for each pathogen remain the same as the ones used for the 

stochastic models. 

The final output after implementation of the dose-response model is the probability of illness 

of each individual after exposure to a certain dose of contaminated food with different 

pathogens. 

 

3.2.2 Calculating the reducing “a-factor” 
In the study by Duarte et al. (2016), the number of Salmonella is assumed to decrease during 

the processing after slaughter (i.e. particularly during cooking) by a reducing factor a. The 

ingested dose (D) per serving is a product of the multiplication of the “a-factor” (a) and the 

concentration at retail (Cretail) of each pathogen. 

For Campylobacter, obtaining an “a-factor” surrogate for each CPM is calculated by solving 

Equations (9) and (10): 

 
𝑅𝑖𝑠𝑘 = 1− 1+

𝐷 
𝛽

!!

𝑓 𝐷 𝑑(𝐷) 

 

(9) 

 

 
𝑅𝑖𝑠𝑘 = 1− 1+

𝑎 × 𝐶!"#$%&  
𝛽

!!

𝑓 𝐶!"#$%& 𝑑(𝐶!"#$%&) 
   (10) 
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Equation (9) includes the Beta Poisson dose-response model for the probability of illness 

(Risk) from the distribution of the doses ingested D, with α = 0.145 and β= 7.59 (WHO/FAO, 

2009). Equation (9) is used to calculate the variable Risk, based on the distribution of doses D 

obtained from the stochastic CPM.  

By assuming that the distribution of doses D is defined by the multiplication of the “a-factor” 

by the distribution of concentrations at retail, D = a x Cretail , it follows that Equation (10) 

must be true. 

In Equation (10), the values of the distribution of concentrations at retail f(Cretail), alpha α and 

beta β, and Risk are known. In the study performed by Duarte et al. (2016) for Salmonella, the 

Risk was obtained from epidemiological data. In this particular study, the Risk is the value of 

the absolute risk estimate obtained from the risk assessments conducted with the stochastic 

CPMs for Campylobacter, in Equation (9) (values are described in Table 2). 

Then the “a-factor” is the only unknown value, which can be found by using the Excel Solver 

add-in (values described in Table 1). 

 

 

 

Inputs Nauta CPM Christensen CPM Calistri CPM 

Risk 0.0039 
 

0.0040 
 

0.0022 
 

Cretail – Normal 

distribution ( µ,  σ) 

µ=1.5; σ=1.2 cfu/g µ=1.5; σ=1.2 cfu/g µ=1.5; σ=1.2 cfu/g 

β 7.59 7.59 7.59 

α 0.145 0.145 0.145 

 Nauta CPM Christensen CPM Calistri CPM 

“a-factor” value 0.00213 0.00222 0.00085 

Table 1: Details of the inputs used to estimate the “a-factor” for Nauta, Christensen and Calistri 

CPMs. 

Table 2: Description of the values of each “a-factor” obtained for Nauta, Christensen and Calistri 

CPMs.  
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After a is obtained, the absolute risk estimate, Risk, for a baseline scenario is calculated 

through the Equation (11), where p represents the prevalence of Campylobacter (0.25) 

described in the stochastic CPMs (Nauta & Christensen, 2011).  Alternative risks for identical 

intervention scenarios used for stochastic CPMs were also calculated, as well as the relative 

risk of each intervention scenario. 

 

 
𝑅𝑖𝑠𝑘 = 1− 1+

𝑎 × 𝐶𝑟𝑒𝑡𝑎𝑖𝑙 
𝛽

!!

𝑓 𝐶𝑟𝑒𝑡𝑎𝑖𝑙 𝑑 𝐶𝑟𝑒𝑡𝑎𝑖𝑙 ×𝑝 

 

(11) 

 

For Salmonella, obtaining an “a factor” surrogate for each CPM is calculated by solving the 

Equations (9) and (10).  

Equation (9) includes the Beta Poisson dose-response model for the probability of illness 

(Risk) from the distribution of the doses ingested D, with α = 0.1324 and β= 51.45 

(WHO/FAO, 2002). This equation is used to calculate the variable Risk, based on the 

distribution of doses D, obtained from the stochastic CPM. By assuming that the distribution 

of doses D is defined by the multiplication of the “a-factor” by the distribution of 

concentrations at retail, D = a x Cretail , it follows that Equation (10) must be true. 

In Equation (10), the values of the distribution of concentrations at retail f(Cretail), alpha α and 

beta β, and Risk are known. In the study performed by Duarte et al. (2016) for Salmonella, the 

Risk was obtained from epidemiological data. In this particular study, the Risk is the value of 

the absolute risk estimate obtained from the risk assessments conducted with the stochastic 

CPMs for Salmonella, in Equation (9) (values are described in Table 3). 

Then “a-factor” is the only unknown value, which can be found by using the Excel Solver 

add-in (values are described in Table 4). 

Once obtaining a, the absolute risk estimate, Risk, for a baseline scenario was calculated 

through the Equation (11), where p represents the prevalence of Salmonella (0.12) described 

in the CPM by Messens et al., (2009).  Alternative risks for identical intervention scenarios 

used for stochastic CPMs were also calculated, as well as the relative risk of each intervention 

scenario. 
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For L. monocytogenes, obtaining an “a-factor” surrogate for the CPM by Berjia (2013) is 

calculated by solving Equations (12) and (13): 

 

 

 𝑅𝑖𝑠𝑘 =  1− 𝑒(!!×! 𝑓 𝐷 𝑑(𝐷) (12) 

 

 𝑅𝑖𝑠𝑘 =  1− 𝑒(!!×!×!"#$%&' 𝑓 𝐶𝑟𝑒𝑡𝑎𝑖𝑙 𝑑(𝐶𝑟𝑒𝑡𝑎𝑖𝑙) 

 

(13) 

 

 

Inputs Bollaerts CPM EFSA CPM Murmann CPM 

Risk 0.0001 
 

0.0013 
 

0.0003 
 

Cretail – Normal 

distribution ( µ,  σ) 

µ=1.4; σ=0.7 cfu/g µ=1.4; σ=0.7 cfu/g µ=1.4; σ=0.7 cfu/g 

β 51.45 51.45 51.45 

α -0.1324 -0.1324 -0.1324 

 Bollaerts CPM EFSA CPM Murmann CPM 

“a” factor value 0.00474 0.0657 0.0122 

Table 4: Description of the values of each “a-factor” obtained for Bollaerts, EFSA and Murmann 

CPMs.  

Table 3: Details of the inputs used to estimate the “a-factor” for Bollaerts, EFSA and Murmann 

CPMs. 
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Equation (12) includes the exponential dose-response model for the probability of illness 

(Risk) from the distribution of the doses ingested D, with r = 2.37 × 10-14 and r = 1.06 × 10-12  

for healthy and susceptible population, respectively (Ross et al., 2009). 

 

Equation (12) is used to calculate the variable Risk, based on the distribution of doses D, 

obtained from the stochastic CPM. By assuming that the distribution of doses D is defined by 

the multiplication of the “a-factor” by the distribution of concentrations at retail, D = a x 

Cretail , it follows that Equation (13) must be true. 

In Equation (13), the values of the distribution of concentrations at retail f(Cretail), r, and Risk 

are known. In the study performed by Duarte et al. (2016) for Salmonella, the Risk was 

obtained from epidemiological data. In this particular study, the Risk is the value of the 

absolute risk estimate obtained from the risk assessments conducted with the stochastic CPMs 

for L. monocytogenes, in Equation (13) (values described in Table 5). 

Then “a-factor” is the only unknown value, which can be found by using the Excel Solver 

add-in (values described in Table 6). 

 

 

 

Inputs Berjia CPM (adapted) Healthy 

Population 

Berjia CPM (adapted) 

Susceptible Population 

Risk 3.56249-7 1.59303-5 
 

Cretail – Normal distribution ( µ,  

σ) 

µ=16.55; σ=0.8 cfu/g µ=16.55; σ=0.8 cfu/g 

r- Healthy Population r = 2.37 × 10-14   r = 2.37 × 10-14   

r- Susceptible Population r = 1.06 × 10-12 r = 1.06 × 10-12 

 

 

 

 

 

 

 

 Berjia CPM (adapted) 

Healthy Population 

Berjia CPM (adapted) 

Susceptible Population 

“a” factor value 432513 432682 

Table 5: Details of the inputs used to estimate the “a-factor” for  Berjia CPM (adapted). 

Table 6: Description of the values of each “a-factor” obtained for Berjia CPM (adapted). 
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Once obtaining a, the absolute risk estimate, Risk, for a baseline scenario was calculated 

through the Equation (14), where p represents the prevalence of L. monocytogenes (0.385) 

described in the CPM by Berjia (2013).  Alternative risks for identical intervention scenarios 

used for the stochastic CPM were also calculated, as well as the relative risk of each 

intervention scenario. 

 

 

 

 

3.3 Modelling approach using deterministic CPMs 
As the results obtained by using a single fixed value a proved to be significantly different 

from the results of the stochastic CPMs in all the scenarios considered, another approach was 

adopted. This alternative consisted in using a deterministic CPM, and would allow to simplify 

and speed-up the process of building a CPM, when compared to a stochastic CPM. 

The purpose of this second approach is to evaluate the performance of a deterministic CPM in 

estimating absolute risks and relative risks of intervention scenarios compared to stochastic 

CPMs. For Campylobacter and Salmonella, the deterministic CPMs were obtained by 

modifying all the original stochastic CPMs found in the literature by eliminating all the 

existing variation. This was achieved by substituting all the parameters described by 

distributions in the CPMs by fixed values, which would be their means. For Listeria, a 

deterministic CPM was found in the literature by Berjia (2013), and was used for this 

purpose. 

It is important to stress that the parameters used in the deterministic CPMs and the stochastic 

CPMs described previously in this study are the same (except for Berjia CPM). The 

difference between them remains solely in using fixed values for the inputs in the 

deterministic models and distributions for the inputs in the stochastic models. For this reason, 

these models are not described in detail in this step, but can be found in Annex II. 

 

 

 𝑅𝑖𝑠𝑘 =  1− 𝑒(!!×!×!"#$%&' 𝑓 𝐶𝑟𝑒𝑡𝑎𝑖𝑙 𝑑 𝐶𝑟𝑒𝑡𝑎𝑖𝑙 × 𝑝 

 

(14) 
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3.3.1 Modelling approach 
The modelling approach used for all the deterministic CPMs in this study can be divided in 

two main parts. The first part describes the transport of the food by the consumer, its storage, 

preparation and consumption. Not all the models describe all these stages. Some models only 

include the preparation and consumption, while others also include the transport and storage. 

Each model is described in detail further in this study, in Annex II. The second part includes 

the dose-response relationship. 

 

- Overview of the modelling approach:  

- Input distributions 

The inputs applied for each CPM were the same as the ones used for the stochastic CPMs, 

including variation. 

- Consumer phase model description 

The details of the deterministic CPMs are described in Annex II. 

- Dose response model 

The dose-response model applied for each pathogen is the same as the one used for the 

correspondent stochastic model. 

The final output after implementation of the dose-response model is the probability of illness 

of each individual after exposure to a certain dose of contaminated food with different 

pathogens. 
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4. Models performance analysis 
 

4.1 Absolute risk estimates 
 
The absolute risk estimates, or absolute mean probabilities of illness, were obtained for all the 

modelling approaches after running 100,000 iterations in Monte Carlo software @Risk 5.5 

(Palisade). 

4.2 Relative risk estimates 
 
The effect on the risk of six hypothetical intervention scenarios in the food production chain 

was evaluated by means of relative risk, assuming as a baseline a scenario without 

intervention (Duarte et al., 2016).  

Six intervention scenarios simulate changes in the concentration of the pathogen at retail 

(mean and standard deviation) and changes in the pathogens prevalence. It is important to 

stress that the control measures are assumed to be implemented somewhere along the food 

production chain, at primary production or during industrial processing. Therefore, they do 

not affect the CPM itself (Nauta & Christensen, 2011). Some scenarios are more realistic than 

others, however, the purpose of this project is solely to compare the performance of different 

stochastic CPMs with simpler approaches that don’t include variation in a diverse range of 

scenarios. 

 

Each scenario representing the potential effect of one or more control measures is described 

below: 

• Scenario 1: 0,5 log reduction in the mean of the concentration at retail. 

• Scenario 2: 1 log reduction in the mean of the concentration at retail. 

• Scenario 3: 0,5 decrease in the standard deviation of the concentration at retail. 

• Scenario 4: 0,5 increase in the standard deviation of the concentration at retail. 

• Scenario 5: Decreasing the prevalence at retail by 10%. 

• Scenario 6: Increasing the prevalence at retail by 50%. 

 

Scenarios 1 and 2 represent practical control measures that are believed to affect the mean 

concentrations of the pathogen, like for example, decontamination of broiler meat during 

industrial processing to reduce Campylobacter (Gellynck et al., 2008; Havelaar et al., 2007). 

Scenario 3 simulates, for example, implementation of protocols where heavily contaminated 

meat products are diverted from the fresh broiler meat production chain to reduce 
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Campylobacter, which results in a decrease of the standard deviation (Nauta et al., 2009; 

Nauta & Havelaar, 2008). 

Scenario 4 represents, for example, a situation of protocols where less control samples are 

taken, which results in more variation in the concentration of the pathogen in food, and 

increases the standard deviation (Mungai, 2015). 

Scenario 5 simulates, for example, actions such as logistical slaughter and/or processing that 

would reduce cross contamination between contaminated and non-contaminated lots/batches 

with Salmonella. (Mungai, 2015). 

Scenario 6 represents, for example, implementation of protocol with irregular environmental 

testing for L. monocytogenes within the ready-to-eat food industry (Tompkin & Scott, 1999). 

 

 

Absolute risk estimates for risk reduction scenarios were obtained by implementing the 

models in @risk software using 10,000 iterations. For easier comparison of results, the 

relative risk (RR) of each intervention scenario was calculated using Equation (15), by 

dividing the alternative risk by the predefined baseline risk: 

 

 
𝑅𝑅 =

𝑄!""∗

𝑄!""
 

(15) 

 

Where Qill * is the absolute risk estimate of each intervention scenario and Qill is the absolute 

risk estimate. The lower the relative risk, the higher the risk reduction in scenario compared to 

the baseline. 

4.3 A comparison of the absolute risk estimates 
 The performance of the simpler models was first evaluated in terms of absolute risk estimates 

(probability of illness per meal ingested), for further comparison with the ones obtained by 

stochastic CPMs. Even when a stochastic CPM is used, this parameter holds in general large 

uncertainty. This can be cause of the uncertainty about the CPM itself, the uncertainty of the 

dose-response and the uncertainty of the concentration at retail.  Nevertheless, the purpose of 

this project is merely to compare the performance of two simpler models that don’t include 

variation with stochastic CPMs. 
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4.3.1 “a-factor” versus stochastic 
In all seven models, the absolute risk estimates calculated using an “a-factor” were very 

similar to the ones estimated by the corresponding stochastic CPMs. 

 

4.3.2 Deterministic versus stochastic 
Deterministic CPMs give mixed results in the different models from the three pathogens. For 

Campylobacter models, deterministic CPMs estimate higher absolute risks than both the “a-

factor” and the stochastic CPMs (Fig. 10). For Salmonella models, Deterministic CPMs 

estimate very similar absolute risks when compared to the stochastic CPMs and the “a-factor” 

(Fig. 11). On the other hand, in Berjia model the Deterministic CPM estimates lower absolute 

risks than the stochastic CPM and the “a-factor” (Fig. 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Illustration of the absolute risks (probability of illness per meal ingested) obtained 

using three different modelling approaches for Campylobacter: stochastic CPM (eg. Nauta STO), 

“a-factor” surrogate (eg. Nauta “a”), and deterministic CPM (eg. Nauta DET). 
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Figure 11: Illustration of the absolute risks (probability of illness per meal ingested) obtained 

using three different modelling approaches for Salmonella: stochastic CPM (eg. EFSAa STO), “a-

factor” surrogate (eg. EFSA “a”), and deterministic CPM (eg. EFSA DET). 

Figure 12: Illustration of the absolute risks (probability of illness per meal ingested) obtained 

using three different modelling approaches for L. monocytogenes: stochastic CPM (eg. Berjia 

STO), “a-factor” surrogate (eg. Berjia “a”), and deterministic CPM (eg. Berjia DET). 
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4.4 A comparison of the relative risk estimates 
Comparing the performance of the simpler models with the stochastic CPMs in terms of 

relative risks is very useful to estimate the impact of control measures in the food production 

chain. There is also lower level of uncertainty than the absolute risk estimates because the 

uncertainties will be cancelled out when the absolute risk estimates are divided in Equation 

(15). 

  

4.4.1 Campylobacter CPMs 
Figures 13, 14, 15 and 16, show the relative risks estimated by all Campylobacter stochastic 

CPM´s, surrogates “a factor” and deterministic CPMs, after simulating the implementation of 

an intervention scenario of 0.5 and 1 log reduction in the mean of the initial concentration and 

0,5 reduction and increase in the standards deviation of the initial concentration.  

 

4.4.1.1 “a-factor” versus stochastic CPMs 
For Nauta, Christensen and Calistri CPMs:  

Figures 13 and 14 show the relative risk estimated by all Campylobacter stochastic CPM´s, 

surrogates “a factor” and deterministic CPMs, after simulating the implementation of an 

intervention scenario of 0.5 and 1 log reduction in the mean of the initial concentration.  

In a scenario of a 0.5 log reduction in the mean of the initial concentration, we observe (in 

Fig. 13) that using surrogates “a factor” results in a lower relative risk estimates (or higher 

risk reduction) compared to using stochastic CPMs. The results show that if a surrogate “a 

factor” is used to calculate the risk of this intervention scenario, the risk will be 

underestimated when compared to using a stochastic CPM. Similar results for an intervention 

scenario of 1 mean log reduction are illustrated in Fig. (14). It was found that using surrogates 

“a factor” will result in lower RR estimates (higher risk reduction) when compared to using 

stochastic CPMs, meaning the risk will be underestimated if an “a factor” is used. 
To investigate the effect of changes in the variation, a 0.5 reduction and a 0.5 increase in the 

standard deviation of the initial concentration scenarios were considered. 

The results illustrated in Fig. (15) show that for a 0.5 reduction in the SD, “a factor” 

surrogates estimate lower relative risks (or a higher risk reduction) when compared to a 

stochastic CPMs. On the other hand, if we increase the variation by increasing the standard 

deviation by 0.5, using surrogates “a factor” will estimate higher relative risks (Fig.16). 
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4.4.1.2 Deterministic CPMs versus stochastic CPMs 
For Nauta, Christensen and Calistri CPMs: 

When Deterministic CPMs are used, in a scenario of a 0.5 log reduction in the mean of the 

initial concentration we obtain very similar relative risk estimates as the ones given by 

stochastic CPM (Fig. 13). For a 1 mean log reduction in the initial concentration scenario the 

relative risk estimates are still very similar between the deterministic and stochastic CPMs 

(Fig. 14). 
Whenever a Deterministic CPM is used either in a scenario of 0.5 increase or 0.5 decrease in 

the SD, we obtain very similar relative risks to the stochastic CPMs (Figs. 15 and 16). 
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Figure 13: Illustration of the relative risks obtained by simulation of an intervention scenario of 

0.5 log reduction in the mean of the concentration at retail of Campylobacter. Results were 

calculated using three different modelling approaches: Stochastic CPM (eg. Nauta STO), “a-factor” 

surrogate (eg. Nauta “a”), and Deterministic CPM (eg. Nauta DET). 



46 

 

Figure 14: Illustration of the relative risks obtained by simulation of an intervention scenario of 1 

log reduction in the mean of the concentration at retail of Campylobacter. Results were calculated 

using three different modelling approaches: Stochastic CPM (eg. Nauta STO), “a-factor” surrogate 

(eg. Nauta “a”), and Deterministic CPM (eg. Nauta DET). 

Figure 15: Illustration of the relative risks obtained by simulation of an intervention scenario of 

0.5 reduction in the standard deviation of the concentration at retail of Campylobacter. Results 

were calculated using three different modelling approaches: Stochastic CPM (eg. Nauta STO), “a-

factor” surrogate (eg. Nauta “a”), and Deterministic CPM (eg. Nauta DET). 
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Figure 16: Illustration of the relative risks obtained by simulation of an intervention scenario of 

increasing by 0.5 the standard deviation of the concentration at retail of Campylobacter. Results 

were calculated using three different modelling approaches: Stochastic CPM (eg. Nauta STO), “a-

factor” surrogate (eg. Nauta “a”), and Deterministic CPM (eg. Nauta DET). 
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4.4.2 Salmonella CPMs 
In Figures 17, 18, 19, 20 we observe the relative risk estimated by all Salmonella stochastic 

CPM´s, surrogates “a-factor”, and deterministic CPMs, after simulating the implementation 

intervention scenarios of 0.5 and 1 log reduction in the mean of the initial concentration, and 

0,5 reduction and increase in the standard deviation of the initial concentration. 

 

4.4.2.1 “a-factor” versus stochastic CPMs 
Considering Bollaerts, EFSA and Murmann CPMs: 

For a scenario of 0.5 log reduction in the mean of the initial concentration, our results show 

that “a factor” surrogates estimate lower relative risks (or higher risk reduction) compared to 

stochastic CPMs (Fig. 17). For an intervention scenario of 1 mean log reduction (Fig. 18 ) a 

similar scenario as the 0.5 log reduction is found: using a surrogate “a-factor” will result in 

lower RR estimates (higher risk reduction) when compared to using stochastic CPMs. 
In addition, intervention scenarios that change the variation were simulated: 0.5 reduction and 

0.5 increase in the standard deviation of the initial concentration. 

For a 0.5 decrease in the SD, “a factor” surrogates estimate lower relative risks (higher risk 

reduction) when compared to a stochastic CPMs (Fig. 19). However, when increasing the 

standard deviation by 0.5, “a factor” surrogates estimates higher relative risks (Fig. 20). 
 

4.4.2.2 Deterministic CPMs versus stochastic CPMs 
In a 0.5 log reduction in the mean of the initial concentration scenario, Bollaerts deterministic 

CPMs estimates lower relative risks (close to the “a-factor” results) than Bollaerts stochastic 

CPMs. EFSA deterministic CPM, however, in this intervention scenario estimates very 

similar relative risks to EFSA stochastic CPM (Fig.17). When a 1 log reduction in the mean 

of the initial concentration is performed: Bollaerts deterministic CPM gives lower relative risk 

estimates than the corresponding stochastic CPM, whereas EFSA’s deterministic CPM results 

are very similar to the original EFSA’s stochastic CPM (Fig.18). 
When changes in the variation are performed, for a 0.5 reduction in the standard deviation, 

Bollaerts deterministic CPM estimates lower relative risks than Bollaerts stochastic CPM. 

EFSA’s deterministic CPM, on the other hand, estimates very similar relative risk estimates to 

EFSA’s stochastic CPM (Fig. 19). When increasing the standard deviation of the initial 

concentration by 0.5, Bollaerts deterministic CPM will estimate higher relative risks than 

Bollaerts stochastic CPM, while EFSA’s deterministic CPM will estimate very similar 

relative risks to EFSA’s stochastic CPM (Fig. 20). 
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Figure 17: Illustration of the relative risks obtained by simulation of an intervention scenario of 0.5 

log reduction in the mean of the concentration at retail of Salmonella. Results were calculated using 

three different modelling approaches: stochastic CPM (eg. EFSA STO), “a-factor” surrogate (eg. 

EFSA “a”), and deterministic CPM (eg. EFSA DET). 

Figure 18: Illustration of the relative risks obtained by simulation of an intervention scenario of 1 

log reduction in the mean of the concentration at retail of Salmonella. Results were calculated 

using three different modelling approaches: stochastic CPM (eg. EFSA STO), “a-factor” surrogate 

(eg. EFSA “a”), and deterministic CPM (eg. EFSA DET). 
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Figure 19: Illustration of the relative risks obtained by simulation of an intervention scenario of 

0.5 reduction in the standard deviation (SD) of the concentration at retail of Salmonella. Results 

were calculated using three different modelling approaches: stochastic CPM (eg. EFSA STO), “a-

factor” surrogate (eg. EFSA “a”), and deterministic CPM (eg. EFSA DET). 

Figure 20: Illustration of the relative risks obtained by simulation of an intervention scenario of an 

increase by 0.5 of the standard deviation (SD) of the concentration at retail of Salmonella. Results 

were calculated using three different modelling approaches: stochastic CPM (eg. EFSA STO), “a-

factor” surrogate (eg. EFSA “a”), and deterministic CPM (eg. EFSA DET). 
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4.4.3 Listeria monocytogenes CPMs 
Figs 21, 22, 23 and 24 show the relative risks estimated by L. monocytogenes stochastic 

CPM´s and surrogates “a-factor”, after simulating the implementation of intervention 

scenarios of 0.5 and 1 log reduction in the mean of the initial concentration, as well as a 0.5 

reduction and increase in the standard deviation. 

 

4.4.3.1 “a-factor” and deterministic CPMs versus stochastic CPMs 
In Fig. 21, we verify that for the healthy population, as well as susceptible population, “a-

factors” and deterministic CPMs estimate lower relative risks (or higher risk reduction) 

compared to using stochastic CPMs in a scenario of a 0.5 mean log reduction in the initial 

concentration. As for a 1 mean log reduction intervention scenario (Fig. 22), similar results as 

0.5 log reduction are found: using surrogates “a factor” and deterministic CPMs (considering 

both healthy and susceptible population) will estimate lower relative risks (higher risk 

reduction) compared with using stochastic CPMs. 
For changes in the variation, intervention scenarios such as 0.5 reduction and 0.5 increase in 

the standard deviation of the initial concentration were performed. It is found that for a 0.5 

reduction in the SD, “a factor” surrogates and deterministic CPMs (for healthy and 

susceptible population) will give lower relative risk estimates (higher risk reduction) when 

compared to a stochastic CPMs (Fig. 22), while when increasing the standard deviation by 

0.5, both “a factor” surrogates and deterministic CPMs will estimate higher relative risk 

estimates (Fig. 23). 
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Figure 21: Illustration of the relative risks obtained by simulation of an intervention scenario of a 

0.5 log reduction in the mean of the concentration at retail of L. monocytogenes. Results were 

calculated using three different modelling approaches: stochastic CPM (eg. Berjia STO HP), “a-

factor” surrogate (eg. Berjia “a” HP), and deterministic CPM (Berjia DET HP). HP- healthy 

population; SP- susceptible population. 

Figure 22: Illustration of the relative risks obtained by simulation of an intervention scenario of a 1 

log reduction in the mean of the concentration at retail of L. monocytogenes. Results were 

calculated using three different modelling approaches: stochastic CPM (eg. Berjia STO HP), “a-

factor” surrogate (eg. Berjia “a” HP), and deterministic CPM (Berjia DET HP). HP- healthy 

population; SP- susceptible population. 
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Figure 23: Illustration of the relative risks obtained by simulation of an intervention scenario of a 

0.5 reduction in the standard deviation (SD) of the concentration at retail of L. monocytogenes. 

Results were calculated using three different modelling approaches: stochastic CPM (eg. Berjia 

STO HP), “a-factor” surrogate (eg. Berjia “a” HP), and deterministic CPM (Berjia DET HP). HP- 

healthy population; SP- susceptible population. 
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Figure 24: Illustration of the relative risks obtained by simulation of an intervention scenario of an 

increase of the standard deviation (SD) by 0.5 in the concentration at retail of L. monocytogenes. 

Results were calculated using three different modelling approaches: stochastic CPM (eg. Berjia 

STO HP), “a-factor” surrogate (eg. Berjia “a” HP), and deterministic CPM (Berjia DET HP). 

HP- healthy population; SP- susceptible population. 
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4.4.4 Changes in the prevalence 
As illustrated in Figs. 25 to 30 in Annex IV, it is observed that in intervention scenarios where 

changes in the prevalence occur (10% decrease or 50% increase), a stochastic CPM, a 

surrogate “a factor” or a deterministic CPM, will estimate very similar relative risks. These 

results show that intervention scenarios that change the prevalence of Campylobacter, 

Salmonella and Listeria don’t interfere with the relative risk estimates given by a stochastic 

CPM, a surrogate or a deterministic given that the prevalence is not calculated inside the 

consumer phase, but only further in the process of risk assessment. If the prevalence of 

pathogens in contaminated food is changed, the change in the probability of illness is 

proportional to the changes in the prevalence for all CPMs, assuming that there was no 

interaction between foods with different prevalences in the consumer phase. Using a CPM to 

evaluate the effect of control measure that affect exclusively the prevalence becomes 

irrelevant (Nauta & Christensen, 2011). 

 

4.5 Overview of the results 
Tables 7 and 8 provide a general overview of the results obtained by comparing the 

performance of the “a-factor” and deterministic CPM with the stochastic CPM in term of of 

(almost) equal (=), increased (+) or decreased absolute risk. 

 

 

 

 “a-factor” Deterministic CPM 

Nauta CPM (=) (+) 

Christensen CPM (=) (+) 

Calistri CPM (=) (+) 

Bollaerts CPM (=) (=) 

EFSA CPM (=) (=) 

Murmann CPM (=) --- 

Berjia CPM HP (=) (-) 

Berjia CPM SP (=) (-) 

Table 7: Overview of the results: comparison of the performance of the results obtained by using 

an “a-factor” and deterministic CPM with a stochastic CPM in terms of (almost) equal (=), 

increased (+) or decreased absolute risk. 
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Intervention 

Measures 

CPMs “a-factor” Deterministic CPM 

0.5 mean log 

reduction in the 

concentration at retail 

Nauta CPM (-) (=) 

Christensen CPM (-) (=) 

Calistri CPM (-) (=) 

Bollaerts CPM (-) (-) 

EFSA CPM (-) (=) 

Murmann CPM (-) --- 

Berjia CPM HP (-) (-) 

Berjia CPM SP (-) (-) 

1 mean log reduction 

in the concentration at 

retail 

Nauta CPM (-) (=) 

Christensen CPM (-) (=) 

Calistri CPM (-) (=) 

Bollaerts CPM (-) (-) 

EFSA CPM (-) (=) 

Murmann CPM (-) --- 

Berjia CPM HP (-) (-) 

Berjia CPM SP (-) (-) 

0.5 reduction of the 

standard deviation in 

the concentration at 

retail 

Nauta CPM (-) (=) 

Christensen CPM (-) (=) 

Calistri CPM (-) (=) 

Bollaerts CPM (-) (-) 

EFSA CPM (-) (=) 

Murmann CPM (-) --- 

Berjia CPM HP (-) (-) 

Berjia CPM SP (-) (-) 

0.5 increase of the 

standard deviation in 

the concentration at 

retail 

Nauta CPM (+) (=) 

Christensen CPM (+) (=) 

Calistri CPM (+) (=) 

Bollaerts CPM (+) (-) 

EFSA CPM (+) (=) 

Murmann CPM (+) --- 

Berjia CPM HP (-) (+) 

Berjia CPM SP (-) (+) 

Table 8: Overview of the results: comparison of the performance of the results obtained by using 

an “a-factor” and deterministic CPM with a stochastic CPM in terms of (almost) equal (=), 

increased (+) or decreased relative risk of four intervention scenarios. 
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III. Discussion 

1. Purpose of the study 
In quantitative microbiological risk assessment (QMRA), the consumer phase model (CPM) 

describes the part of the food chain from retail purchase of the food product to the moment of 

consumption. The large variation in consumer food handling practices and scarce availability 

of data imply that several subjective and simplifying assumptions are made when a CPM is 

constructed.  

In the development of a CPM, it is relevant to understand to what extent these models need to 

include a detailed description of the processes that may result in exposure. It has been stated 

that “There is no alternative but for a probabilistic approach to risk assessment models of the 

consumer phase.” (Nauta et al., 2009). The purpose of this project was to obtain stochastic 

CPMs from the literature to act as a baseline model with which two simpler modelling 

approaches will be compared to. The simpler approaches chosen are a surrogate “a-factor” 

found in a study from (Duarte et al., 2016) and deterministic CPMs. These don’t include 

variation and would be ideal to use in acute public health food borne disease outbreaks, when 

fast responses and actions are needed. Stochastic CPMs, on the other hand, frequently involve 

complex and lengthy building processes (WHO, 2012; Zwietering, 2009). 

It was decided to choose stochastic CPMs from different pathogens (Campylobacter, 

Salmonella and Listeria) and foods, with different levels of complexity, in favour of obtaining 

an independent and broad range of results. Campylobacter models are for broiler chicken, 

Salmonella models are for pork meat and L. monocytogenes model is for a ready-to-eat food 

(cold smoked salmon).  

The performance of the CPMs was evaluated in terms of absolute risk estimates and relative 

risk estimates of various intervention scenarios. 

2. “a-factor” versus stochastic CPMs 
A surrogate for a CPM used in a study about the effect of carcass decontamination on the risk 

for consumers was found in the literature, a constant value expressed by the factor a. This 

constant assumes that the survival of Salmonella in pork meat, from the carcass to the 

consumed serving, is identical between servings.  

By using this surrogate, it is not necessary to make additional assumptions on the survival of 

the pathogen. However, it is stated in the study that this assumption is unlikely to be correct 

(Duarte et al., 2016). This is based on the fact that studies for Campylobacter on broiler meat 

have shown that there is variation present in transfer and survival during the consumer phase, 

and therefore it is essential to consider it in a risk assessment (Duarte et al., 2016; Nauta & 
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Christensen, 2011;  Nauta et al., 2009). Besides these statements, the performance of the “a-

factor” had never been evaluated and compared to the performance of stochastic consumer 

phase model.  

In this project, the “a-factor” was implemented in the software @Risk and absolute risk 

estimates and relative risks were calculated. It is important to stress that the relative risks were 

calculated considering the same intervention scenarios as the stochastic CPMs, in order to 

accurately compare the results. The same dose-response model was also applied. Besides the 

fact that the “a-factor” had only been used for Salmonella in the literature, it was easy to also 

use it for consumer phase models of the other pathogens considered in this study. 

2.1 A comparison of the absolute risk estimates 
In section 4 (Models performance analysis), one is able to compare the absolute risk estimates 

of each “a-factor” with the correspondent stochastic consumer phase model in all the models 

for the three pathogens.  

We observe that in all the seven models considered, the “a-factor” estimates absolute risks 

very similar to the stochastic CPM in the literature. Since the inputs used for solving the 

integral to obtain the “a-factor” were the absolute risk estimates given by each stochastic 

CPM, the concentration at retail of the pathogen, the specific values of the parameters for the 

dose-response model and the distribution of the doses (number of CFUs of the pathogen) 

ingested, it was expected that the absolute risk estimates obtained by using the “a-factor” 

would be the same as the results obtained by using stochastic CPMs. In this case, they are not 

identical due to the Monte Carlo Simulation performed in Monte Carlo software @Risk 5.5 

(Palisade).  

Besides obtaining very similar results, it is known that the uncertainty in absolute risk 

estimates is in both cases large: there is intrinsic uncertainty in the CPM and in the “a-factor”, 

as well as uncertainty in the distribution of each pathogen concentration at retail, and dose-

response model, which is still varying. 

2.2 A comparison of the relative risk estimates 
To estimate the effect of intervention scenarios in the food production chain, the relative risks 

of six different intervention scenarios were calculated.  Relative risks are often used to assess 

the effects of interventions or control measures in the food production chain. These become 

more relevant when evaluating the performance of CPMs and “a-factor”, because they hold a 

smaller level of uncertainty than absolute risk estimates because the uncertainties are partly 

cancelled out when there is division of the absolute risk estimates. (Duarte et al., 2016). 
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The results of the relative risks show that in intervention scenarios of 0.5 and 1 log reduction 

on the mean of the initial concentration, the “a-factor” estimates lower relative risks than all 

seven stochastic CPMs considered. This means that the risk of an intervention scenario is 

underestimated, and consequently the effect of the control measure in terms of risk reduction 

is overestimated: the control measure seems to work better than it actually does. This goes in 

agreement with what has been stated before in studies for Campylobacter in broiler meat: 

there is variation in transfer and survival in the consumer phase, and it needs to be taken into 

account. (Duarte et al., 2016; Nauta & Christensen, 2011; Nauta et al., 2009). 

For an intervention scenario that aimed to simulate a decrease in the variation, a reduction of 

the standard deviation of the initial concentration by 0.5 was performed. The “a-factor” 

estimates lower relative risks than the stochastic correspondent CPM in all the models for the 

three pathogens. In the seven models considered, if a surrogate “a-factor” is used in place of a 

stochastic CPM to calculate the risk of an intervention scenario of a 0.5 reduction in the 

standard deviation, the risk will be underestimated. On the other hand, if an “a-factor” is used 

to assess the effect of an intervention scenario which simulates an increase in variation (by 

raising the standard deviation of the initial concentration by 0.5), it will estimate higher 

relative risks than the original stochastic CPM (i.e. overestimates the risk of an intervention 

scenario). It was also found that when increasing the variation, the difference between the 

results estimated by the “a-factor” and the corresponding consumer phase model is higher 

than when the variation is reduced, which leads us to believe that in this scenario one should 

consider to use a stochastic CPM. 

3. Deterministic CPMs versus stochastic CPMs 
Since the relative risk estimates obtained with an “a-factor” were very consistent, and were 

found to be significantly different from all the relative risks given by a stochastic CPMs in all 

intervention scenarios considered, it was decided to take a second approach and observe how 

it performed. This approach consisted in modifying the original version of stochastic CPMs, 

in order to make them deterministic CPMs. This was achieved by changing all the parameters 

that were described by probabilistic distributions in stochastic CPMs to fixed values, obtained 

by calculating the mean of each distribution inside a parameter. Annex II contains tables 

including the seven CPMs considered in this project, showing side by side the stochastic and 

deterministic version of the models, and the differences in the variables using distributions (in 

the stochastic CPM) or fixed values (in the deterministic CPM). This approach could still 

simplify the process of building a stochastic CPM. 
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The performance of each deterministic CPM was evaluated in the same terms as the “a-

factor”, through calculation of the absolute risk estimates and the relative risks of each 

intervention scenario. It is important to stress that, as with the “a-factor”, the input 

concentration of the model is still variable, and the dose-response models used are the same as 

the stochastic CPMs. 

3.1 A comparison of the absolute risk estimates 
Table 7 provides an overview of the results of the absolute risk estimates and compares 

performance of the results obtained by using an “a-factor” and deterministic CPM with a 

stochastic CPM in terms of (almost) equal (=), increased (+) or decreased absolute risk.  

The absolute risk estimates obtained by using a deterministic CPM were different from the 

stochastic CPMs for Campylobacter, Salmonella and L. monocytogenes. Campylobacter 

deterministic CPMs all estimated higher absolute risks than each corresponding deterministic 

version. For Salmonella CPMs (EFSA and Bollaerts), the deterministic version estimated very 

similar absolute risk estimates with the stochastic CPM. For L. monocytogenes models (Bejia 

STO and Berjia DET for healthy and susceptible population), the deterministic version gave 

lower absolute risk estimates than the stochastic. As these were quite mixed results, no 

conclusions were taken on the performance of deterministic CPMs to estimate absolute risks. 

Occasionally, they estimate similar results, but one doesn’t know in which situations that 

occurs and what are the parameters that influence these results. 

3.2 A comparison of the relative risk estimates 
Relative risk estimates were also calculated in order to assess the effect of intervention 

scenarios in the food production chain. Table 8 provides an overview of the results of the 

relative risk estimates and compares the performance of the results obtained by using an “a-

factor” and deterministic CPM with a stochastic CPM in terms of (almost) equal (=), 

increased (+) or decreased relative risk of four intervention scenarios. 

Campylobacter deterministic CPMs estimate very similar relative risks to the stochastic 

CPMs in all the considered intervention scenarios (0.5 and 1 log reduction of the mean of the 

initial concentration, 0.5 increase and decrease of the standard deviation, 10% decrease and 

50% increase of the prevalence).  

Salmonella deterministic CPMs however, didn't perform similarly to the Campylobacter 

CPMs. EFSA deterministic CPM estimates very similar relative risks to stochastic CPM in all 

intervention scenarios. Bollaerts deterministic CPM, on the other hand, estimates lower 

relative risks than Bollaerts stochastic CPM in intervention scenarios of 0.5 and 1 log 

reduction in the mean of the initial concentration and reduction of the standard deviation of 
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the initial concentration by 0.5. When there is an increase of the standard deviation by 0.5, 

Bollaerts deterministic CPM estimates higher relative risks than the stochastic CPM. This 

might be due to the fact that Bollaerts CPM was the most complex model used in this project, 

contained more variables and variability was included in most steps by including 

distributions. As in all these steps distributions were substituted by a fixed value (their mean), 

there might have been an excessive simplification to the point were the deterministic CPM 

gives similar results as when using a single constant value like the “a-factor”. Murmann 

stochastic CPM was not possible to convert in to a deterministic CPM. The step “cooking 

time (min)” (see. Annex II) was defined by a Pert distribution with values 15, 20, 30 being the 

minimum, most likely and maximum, respectively. If one used the mean of this distribution as 

a fixed value to describe the cooking time, the final absolute risk estimates would be zero. For 

this reason, this deterministic CPM was not evaluated in this part of the project because to 

obtain a positive value for absolute risk estimates one would have to use a higher value than 

the mean to obtain a positive absolute risk, which wouldn’t be consistent with the approach 

taken to all the other CPMs.  

Regarding L. monocytogenes, Berjia deterministic CPMs (for healthy and susceptible 

population) estimate relative risks with the same pattern observed in Bollaerts models. In 

intervention scenarios of 0.5 and 1 log reduction in the mean of the initial concentration and 

reduction of the standard deviation of the initial concentration by 0.5, deterministic CPMs 

estimate lower relative risks than the stochastic CPMs. When there is an increase in the 

standard deviation deterministic CPMs estimate higher relative risks than the stochastic CPM. 

As the deterministic CPM estimates similar results as the “a factor”, the same explanation 

used in Bollaerts models can apply to this situation: Berjia deterministic CPM was simplified 

to the point where considering a model with various steps that are fixed values and using a 

single constant value makes almost no difference at all. 

For intervention scenarios considering changes in the prevalence, all the modelling 

approaches estimated similar relative risks. These results go accordingly with what has 

already been said in the literature: If there is a change in the prevalence of pathogens in 

contaminated food, the change in the probability of illness is proportional to the change in 

prevalence for all CPMs, if we assume that there was no interaction between foods with 

different prevalences in the consumer phase. It becomes thus irrelevant to use a CPM when 

assessing the effect of control measures in the food production chain that affect exclusively 

the prevalence (Nauta & Christensen, 2011). 

In a general overview, four in a total of seven deterministic CPMs showed similar relative 

risks in all the intervention scenarios considered to the corresponding stochastic CPM. In 
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these four situations, deterministic CPMs could be used to assess the effect of intervention 

scenarios in the food production chain.  

4. Modelling limitations 
One should always keep in mind that models are always a simplification of reality, and they 

usually contain a large amount of assumptions, simplifications and abstractions (Nauta, 2009). 

The assumptions considered and made when building a CPM, whether it is stochastic or 

deterministic, will have great impact on the outcome of the risk assessment. In situations 

when one needs to decide which CPM to use to achieve specific objectives, it is of great 

interest to understand what is the effect of the assumptions made when building a 

deterministic or stochastic CPM (Nauta, 2009). 
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IV. Conclusion 
 

This project was developed with the purpose of assessing how simpler modelling techniques 

that don’t include variation compare to stochastic modelling techniques, to account for the 

consumer phase of a QMRA. These different techniques were compared in terms of absolute 

risk estimates and relative risk estimates.  

Seven consumer phase models were found in the literature for the pathogens Campylobacter, 

Salmonella and Listeria monocytogenes, for the food products broiler chicken, pork meat and 

cold smoked salmon, respectively. These models are in general more complicated to build, as 

they include variation and are therefore stochastic.  

The simpler modelling approaches consist of a constant value designated by “a-factor”, 

presented in a study about the effect of carcass decontamination on the risk for consumers 

(Duarte, Nauta, & Aabo, 2016), and six deterministic consumer phase models.  

Results showed that the constant “a-factor” approach provides similar absolute risk estimates 

as the stochastic CPMs, but different relative risks in all the intervention scenarios performed. 

These results demonstrate that the results of (Duarte, Nauta, & Aabo, 2016) may have been 

influenced by using an “a-factor” instead of a stochastic CPM to account for the consumer 

phase. 

It was also found that all deterministic CPMs provide different absolute risk estimates, but 

when relative risks were calculated, some estimate similar results to stochastic CPMs while 

others do not. It is not clear which situations and assumptions interfere with the results 

obtained when a deterministic CPM estimates similar or different relative risks from a 

stochastic CPM. 

By undertaking this project, we were able to assess the performance of the “a-factor” in terms 

of absolute and relative risks, as the results obtained were very consistent. On the other hand, 

the results of the performance of deterministic CPMs were not as consistent. Due to the fact 

that this project was only developed during three and a half months, there was not enough 

time to understand what criteria should be considered when choosing a fixed value instead of 

a distribution in a deterministic CPM in order to obtain similar relative risks than stochastic 

CPMs.  

At the end of this study, some questions arose: Why do deterministic CPMs estimate similar 

relative risks to stochastic CPMs in some situations and others don’t? What are the best 

criteria to use when choosing a fixed value to replace a distribution in a deterministic CPM in 

order to obtain accurate relative risks? What are the factors that influence the results when 

deterministic CPMs give similar relative risks to “a factor” constant or to stochastic CPMs?  
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Answering these questions would require more in depth studies about the role and 

performance of deterministic CPMs in QMRA. 

Regarding CPMs in general, efforts should be put in more attention and studies, besides the 

lack of interest given to these by risk managers. There are still a lot of limitations regarding 

the consumer phase that deserve more concern: the lack of available data for research studies, 

the high variability in consumer practices between different cultures and individually, and the 

lack of control of this phase by professionals. As well as increasing research studies in these 

subjects, education of the population about food borne illnesses, safe transportation, storage, 

preparation and cooking practices is also vital for reducing food borne illnesses (Fischer et al., 

2005; Redmond & Griffith, 2003). 
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V. Annexes 
 

Annex I 
 

List of the distributions used and their meanings (Adapted from: Vose (2008)) 

 

1. Bernoulli- The Bernoulli distribution is a Binomial distribution with n = 1. It returns a 

1 with probability p and a zero otherwise. It is very useful to model a risk event that 

may or may not occur. 

2. Binomial- The Binomial distribution models the number of successes from n 

independent trials where there is a probability p of success in each trial. This 

distribution assumes that the probability p does not change the more trials are 

performed. 

3. Beta- The Beta distribution is often used to describe the uncertainty about a 

probability in a binomial process, given a number of trials n have been made with a 

number of recorded successes s. In this situations, α is set to the value (s + x) and β is 

set to (n - s + y), where Beta(x, y) is the prior.  

4. Cumulative- The Cumulative distribution includes a minimum, maximum, {xi},{Pi} 

values, where {xi} is an array of x-values with cumulative probabilities {Pi} and 

where the distribution falls between the minimum and maximum. 

5. Discrete- The Discrete distribution is a general type of function used to describe a 

variable that can take one of several explicit discrete values {xi} and where a 

probability weight {pi} is assigned to each value.  

6. Lognormal- The Lognormal distribution is useful for modelling naturally occurring 

variables that are the product of a number of other naturally occurring variables. 

Central Limit Theorem shows that the product of a large number of independent 

random variables is Lognormally distributed.  

7. Normal- The normal distribution is a probability distribution that associates the 

normal random variable X with a cumulative probability . The graph of the normal 

distribution depends on the mean and the standard deviation. It is used to model a 

naturally occurring variable (for example, the height of adult European males), for the 

distribution of errors in statistical theory and for approximation of uncertainty 

distribution. 
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8. PERT- The PERT (or BetaPERT) distribution is a version of the Beta distribution and 

requires the same three parameters as the Triangular distribution, namely minimum 

(a), most likely (b) and maximum (c). It is used exclusively for modelling expert 

estimates, where one is given the expert's minimum, most likely and maximum 

guesses. It is a direct alternative to a Triangular distribution. 

9. Poisson- The Poisson (λ) distribution models the number of occurrences of an event in 

a given time with an expected rate of λ events when the time between successive 

events follows a Poisson process. 

10. Uniform- A Uniform distribution assigns equal probability to all values between its 

minimum and maximum. 

 

Annex II 
 

Step Relevant parameter(s) description Notation Value/distribution

- Stochastic 

Value/distribution- 

Deterministic 

Contamination at 

retail 

Concentration of Campylobacter at 

retail (cfu/g) 

Cret IF(pprev=1; 

10^~Normal(1.5,

1.2)),0)) 

IF(pprev=1; 

10^~Normal(1.5,1.2))

,0) 

Prevalence at retail pprev
 ~Bernoulli(pprev)

) 

with pprev= 0.25 

0.25 

Portion sizes wC ~LogNormal(189, 

127) 

~LogNormal(189, 

127) 

Number of Campylobacter on one 

portion of consumed chicken meat 

(cfus) 

Nportion ∼ Poisson(Cret × 

wC ) 

∼ Poisson(Cret × wC ) 

Cross-

contamination 

Variability of transfer rates from raw 

meat to salad 

ptr
 See Appendix in 

Nauta & 

Christensen 

(2011) 

0.000514 

Table 9: Description of the values and distributions used in Nauta stochastic CPM and Nauta 

deterministic CPM 
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Step Relevant parameter(s) description Notation Value/distributio

n- Stochastic 

Value/distributi

on- 

Deterministic 

Contamination at 

retail 

Concentration of Campylobacter at 

retail (cfu/g) 

Cret IF(pprev=1; 

10^~Normal(1.5,1.

2)),0) 

IF(pprev=1; 

10^~Normal(1.5,

1.2)),0) 

Prevalence at retail pprev
 ~Bernoulli (pprev) 

with pprev= 0.25 

0.25 

Portion sizes wC ~LogNormal(189, 

127) 

~LogNormal(189

, 127) 

Number of Campylobacter on one 

portion of consumed chicken meat 

(cfus) 

Nportion ∼ Poisson(Cret × 

wC ) 

∼ Poisson(Cret × 

wC ) 

Cross-contamination Transfer rate chicken to equipment tCE 

∼10 -Pert(1,2,6)

 

0.0117

 

Transfer rate equipment to chicken tEC 

∼10 -Pert(1,2,6)

 

0.0117

 

Frequency of chicken to chicken 

contamination 

fCC 

 = 1

 

 = 1

 

Transfer rate equipment to salad tES 

∼10 -Pert(1,2,6)

 

0.0017

 

Frequency of chicken to salad 

contamination 

fCS 

 = 1

 

 = 1

 

 

 

 

Table 10: Description of the values and distributions used in Christensen stochastic CPM and 

Christensen deterministic CPM 
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Step Relevant parameter(s) description Notation Value/distribution- 

Stochastic 

Value/distributio

n- Deterministic 

Contamination at 

retail 

Concentration of Campylobacter at 

retail (cfu/g) 

Cret IF(pprev=1; 

10^~Normal(1.5,1.2)),0

) 

IF(pprev=1; 

10^~Normal(1.5,

1.2)),0) 

Prevalence at retail pprev
 ~Bernoulli (pprev) 

with pprev= 0.25 

0.25 

Portion sizes wC ~LogNormal(189, 127) ~LogNormal(189

, 127) 

Number of Campylobacter on one 

portion of consumed chicken meat 

(cfus) 

Nportion ∼ Poisson(Cret × wC ) ∼ Poisson(Cret × 

wC ) 

Cross-

contamination 

Transfer from meat to kitchenware tCE See Table 4 in Calistri 

& Giovannini (2008) 

0,0096 

Transfer from kitchenware to meat tER See Table 4 in Calistri 

& Giovannini (2008) 

0.0871 

Transfer from meat to hands tCH See Table 4 in Calistri 

& Giovannini (2008) 

0.0167 

Transfer from hands to meat or 

ready-to-eat food 

tHR See Table 4 in Calistri 

& Giovannini (2008) 

0.0192 

Chicken to environment 

contamination 

fCE ~Bernoulli pCE with 

probability pCE = 0.124  

 

0.124 

Chicken to hand contamination fCH ~Bernoulli (pCH) 

with probability pCH = 

0.259   

 

0.259 

Table 11: Description of the values and distributions used in Calistri stochastic CPM and Calistri 

deterministic CPM 
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Step Relevant parameter(s) description Notation Value/distribution- 

Stochastic 

Value/distributio

n- Deterministic 

 Probability of chicken to 

environment contamination 

pCE 0.124 0.124 

 Probability of chicken to hand 

contamination 

pCH 0.259 0.259 
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Step Relevant Parameter(s) 

description 

Notation Value/distribution- 

Stochastic 

Value/distribution- 

Deterministic 

Contamination at 

retail 

Concentration of Salmonella at 

retail (log CFU/g) 

Nmeat
 

Normal(1.4,0.7) Normal(1.4,0.7) 

Prevalence at retail 

 

p 0.12 0.12 

Weight of a portion minced pork 

meat (g) 

W portion  Normal(93, 14, 832) Normal(93, 14, 832) 

Numbers in portion (CFU) Nportion  10 Wportion x Nmeat 10 Wportion x Nmeat 

Numbers on 

portion after 

transport 

Temperature of portion at retail 

(°C) 

Tempmeat
 

Normal(3.14, 

7.78)|(−2, 15) 

5.3753 

External temperature (°C) Tempex

 
~f = πf1+(1−π)f2  

with π =0.64,  

f1 ~Normal(6.7,17.9) 

and f2 ~Normal(20.1, 

33.0) 

11.5271 

Maximal possible change in 

temperature (°C) 

∆max =Tempex−Tempmeat  =Tempex−Tempmeat 

Maximal change larger than 0 

(no =0, yes=1) 

S
 

I(∆max >0) I(∆max>0) 

Change in temperature (°C) ∆

 

=Normal(3.72,2.82)|(0

, ∆maxk) × S 

2.3512 

Temperature of portion at end of 

transport (°C) 
Tempend Tempmeat + ∆ Tempmeat + ∆ 

Transport time (in 15 minutes) Timetr

 
∼ Discrete(v;w) with  
v = [1, 2, 3, 4, 5, 6, 7, 
8, 16]  

w = [0.005, 0.05, 0.18, 
0.25, . . . 0.22, 0.16, 
0.07, 0.03, 0.035] 

 

4.995 

Salt concentration of minced NaCl ~Uniform(1.12, 1.75) 1.4350 

Table 12: Description of the values and distributions used in Bollaerts stochastic CPM and Bollaerts 

deterministic CPM. 
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meat (%) 

Temperature (◦C) of portion 
after transport time l,  l ∈ [0, 
Timetr ] 

 

Templ 

 

= Tempmeat  + 

!"#$!
!"#$!"

 (Tempend − 
Tempmeat) 

 

= Tempmeat  + 

!"#$!
!"#$!"

 (Tempend − 
Tempmeat) 

 

Total log growth during 

transport integrated out over 

transport time 

∆tr
 

=∫∆(µl,Timel)dTime
l 

with µl= f(NaCl, 

Templ) 

 

=∫∆(µl,Timel)dTime
kl 

with µ=f(NaCl, Templ) 

 

 Numbers on portion after 

transport to home (CFU) 

Ntrans
 

=10(log
10

N
portion

+∆ 
tr) =10(log

10
N

portion
+∆ 

tr) 

Numbers on 

portion after 

storage 

Temperature (ºC) of portion 

during storage at home 
Tempst

 
~Normal(7, 2.972) 6.9982 

Time (hours) of storage at home Timest

 
~Betapert(0, 2, 5) 2.1667 

Total log growth during storage ∆st

 
= µ × Timest = µ × Timest 

Growth rate during storage µ
 

 = f (NaCl, Tempst) = f (NaCl, Tempst) 

 Numbers on portion (CFU) after 

storage at home 

Nstor
 

=10(log10 (N
trans

+ ∆
st

) =10(log10 (N
trans

+ ∆
st

) 

Cross 

contamination by 

hand 

Number on other food due to 

cross-contamination via hands  

NX-hand
 

=Nstor×Tm,h×Phand 

Th,o×Sother 

=Nstor×Tm,h×Phand 

Th,o×Sother 

Proportion transferred from meat 
to hand 

Tm,h
 

~Beta(1.78, 41.10) 0.415 

Proportion persisting on hands 

after (not) washing 

 

Phand
 

~Discrete(1, K; πh, 1-

πh) with K~Beta(0.24, 

6.67) 

0.1699 

Proportion transferred from hand 

to other food 

Th,o
 

~Beta(0.6, 2.3) 0.2069 

Handling meat before other food 

(no=0, yes=1) 

Sother
 

~Bernoulli(π) with π ~ 

Uniform [0.5 − 0.1, 

0.5 + 0.1] 

0.5 
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Numbers remaining on portion 

after cross-contamination via 

hands 

Nmeat1
 

=(1-Tm,h) ×Nstor =(1-Tm,h) ×Nstor 

Probability that 

other board is used 

Probability that other board is 

used 

NX-board
 

=Nboard2×Tb,o×Sother =Nboard2×Tb,o×Sother 

Probability that other board is 

used 

Sb ~Bernoulli(π) with π ~ 

Uniform [0.1 − 0.05, 

0.1 + 0.05] 

~Bernoulli(π) with π ~ 

Uniform [0.1 − 0.05, 

0.1 + 0.05] 

Probability that other board is 

used 

Tm,b
 

!
!""

10κ with κ 
 ~N(0.171,0.162) 

0.01485 

Probability that other board is 

used 

π

b1
 

~Beta(2820, 159) 0.6191 

Probability that same board is 

used and washed 

π

b2
 

~Beta(2913, 66) 0.3809 

Probability that same board is 

used and not washed 

π

b3
 

 =1 − πb0 − πb1 0.0316 

Numbers remaining on board 

after board manipulation: (1) 

other board, (2) same board 

washed, (3) same board not 

washed 

Nboard2
 

~Discrete(0,κ,Nboard1
 ;πb0, πb1, πb2

 
with 

κ=10(log10Nboard1−∆) with 

∆∼Beta(1, 4.5, 7) 

6.4072 

Proportion transferred from 

board to other food 

Tb,o
 

!
!""

10κ with κ 
 ~N(1.46,0.32) 

0.2946 



80 

 

 

 

 

 

 

 

 

 

 

 

Numbers remaining on portion 

after food handling 

Nmeat2
 

= Nmeat1 × (1 – Tm,b) = Nmeat1 × (1 – Tm,b) 

Cooking Proportion protected area Pprotect

 
 ~Uniform(0, 0.1) 0.0499 

 Numbers in the protected area 

(CFU) 

Nprotect
 

=Pprotect × Nmeat2  =Pprotect × Nmeat2 

 Probability of undercooking πu ~Betapert(0.05, 0.10, 

0.2) 

0.1008 

 Undercooking (no=0, yes=1) Su ~Bern(πu) 0.111 

 Exposure temperature (ºC) of 

protected area in case of 

undercooking 

Tempcook
 

~Betapert(60, 65, 70) 64.9999 

 Exposure time (minutes) of 

protected area in case of 

undercooking 

Timecook
 

~Betapert(0.5, 1, 1.5) 1.0000 

 Numbers of portion after 

cooking 

Ncook
 

10(log
10

N
protect

-∆
protect

)
 × 

Su with ∆protect = 

Timecook/D with D = 

10-0.14Temp
cook

+8.58 

10(log
10

N
protect

-∆
protect

)
 × Su 

with ∆protect = 

Timecook/D with D = 

10-0.14Temp
cook

+8.58 

Numbers ingested 

when consuming 

meal (CFU) 

 Ndose
 

= NX+Ncook
 

= NX+Ncook
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Step Relevant Parameter(s) 

description 

Notation Value/distribution- 

Stochastic 

Value/distribution- 

Deterministic 

Contamin

ation at 

retail 

Concentration of 

Salmonella at retail (log 

CFU/g) 

Nmeat

 

Normal(1.4,0.7) Normal(1.4,0.7) 

 Prevalence at retail 

 

p
 

0.12 0.12 

 Transport time from 

retail to home (min) 
ttr

 
G([0,30,50,120],[096,.

02,.02]) 

29.9867 

Temperature during 

transport (ºC) 
Ttr

 
G([- 

2,0,2,4,6,8,10],[0.003,

0.023,0.135,0.242,0. 

253,0.344]) 

5.5142 

 Storage time (h) tst

 
G([16,72,104,29,13,3,

0,11,0,0,0,0,3,0],[0.2 

5,0.5,1,2,3,4,5,6,7,8,9,

10,11,12,14]) 

22.0676 

 Refrigerator 

temperature (ºC) 
Tst

 
G([0,1,2,3,4,5,6,7,8,9,

10,11,12],[0.01,0.02, 

0.05,0.09,0.11,0.17,0.

22,0.15,0.12,0.04,0.0 

1,0.01]) 

3.4344 

Probability of not 

washing hands 

pH 0.14 0.14 

Probability of not 

washing  knife 

pK 0.038 0.038 

 Probability of not 

washing board 

PB 0.27 0.27 

 Probability of preparing 

salad 

Ps 0.3 0.3 

 Survival rate on the 

knife 
tKK

 
0.0 0.0 

Table 13: Description of the values and distributions used in EFSA stochastic CPM and EFSA 

deterministic CPM. 
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 Survival rate on the 

board 
tBB

 
0.02 0.02 

 Transfer from pork cuts 

to board 
tPB

 
0.03 0.03 

 Transfer from board to 

salad 
tBS

 
0.26 0.26 

 Transfer form pork cuts 

to knife 
tPK

 
0.05 0.05 

 Transfer from knife to 

salad 
tKS

 
0.58 0.58 

 Transfer from pork cuts 

to hands 
tPH

 
0.08 0.08 

 Transfer from hands to 

salad 
tHS

 
0.02 0.02 

 Transfer from tap to 

hands 
tTH

 
0.023 0.023 

 Survival on hands tHH
 

0.006 0.006 

 Transfer from hands to 

tap 
tHT

 
0.002 0.002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

 

Step Relevant Parameter(s) description Notation Value/distribution 

Contamination at retail Concentration of Salmonella at retail (log 

CFU/g) 

Nmeat
 

Normal(1.4,0.7)

 

 Prevalence at retail 

 

p 0.12

 
Concentration in sausage 

after cooking 

Per gram concentration (cfu g-1) Cc Ci/10log R
 

 D- value (min) D 10(10.122-0.151T) 

Internal temp (ºC) T 10.51+Normal(3.43, 

0.19) × t 

Cooking time (min) t Betapert (15, 20, 30) 

Numbers at consumption Weight of one sausage (g) Wt. 

sausage 

63.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14: Description of the values distributions used in Murmann stochastic CPM. 
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Step  Relevant Parameter(s) description Notation Value/distribution 

Contamination at retail  Prevalence of Listeria monocytogenes 

in cold smoked salmon 

P 38.50% 

Growth rate (logNt) Primary 

Growth 

Model 

Concentration of L. monocytogenes in 

CSS at the beginning of the storage 

(log
10 

cfu/g)  

X0;i

 
~Normal (1,219; 

0.8) 

specific growth rate of L. 

monocytogenes (d-1) 

µi Equation (7) 

Duration of the storage (d), ti ~Normal(14; 3,5) 

Lag time (d) λi 0 

Maximum population density (log10 cfu/ 

g) 

MPD 7.27 

Secondary 

Growth 

Model 

Constant Mref(d-1) 6.19 

 Constant Tref 25ºC 

Constant Tmin -1.18 ºC
 

Storage temperature Ti Annex 

(Cumulative 

distribution) 

Table 15: Description of the values and distributions used in the adapted stochastic CPM from 

Berjia. 
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Dose of Listeria 

ingested (cfu/g) 

 Portion size (Fish intake) Fintake
 

23g 

Dose of Listeria ingested (cfu/g) DListeria
  

Fintake × Nt
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step Relevant Parameter(s) description Notation Value/distribution 

Contamination at retail Prevalence of Listeria monocytogenes in 

cold smoked salmon 

P 38.50% 

 Concentration of L. monocytogenes in 

CSS at the beginning of the storage 

(cfu/g)  

N0 10^(~Normal (1,219; 0.8)) 

Storage, preparation and 

consumption 

Growth rate of L. monocytogenes (log 

cfu/d) 

µ 0.113 

Duration of the storage (days), t 14 

Lag time (d) (WHO/FAO, 2004) λ 0.167 

Storage temperature Ti 5ºC 

Concentration of Listeria after storage logNt N0+  0.113 *(t-λ) 

Portion size (Fish intake) Fintake
 

23g 

Dose of Listeria ingested (cfu/g) DListeria
  

F
intake 

* N
t 

Table 16: Description of the values and distributions used in Berjia deterministic  CPM. 
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Annex III 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative Risk 

Estimates 

Nauta 

STO 

Nauta 

“a” 

Nauta 

DET 

Christens

en STO 

Christensen   

“a ” 

Christensen 

DET 

Calistri 

STO 

Calistr

i “a” 

Calistri 

DET 

0,5 mean log 

reduction 

(Cretail) 

0.609 0.462 0.5980 0.564 0.464 0.5730 0.584 0.435 0.561 

1 mean log 

reduction 

(Cretail) 

0.348 0.197 0.331 0.311 0.199 0.304 0.346 0.175 0.288 

0,5 reduction 

SD (Cretail) 

0.664 0.269 0.672 0.600 0.272 0.597 0.689 0.211

1 

0.550 

0,5 increase 

SD (Cretail) 

1.424 2.367 1.329 1.454 2.345 1.430 1.380 2.870 1.506 

Table 17: Results of the relative risks obtained after simulation of six hypothetical intervention 

scenarios in the food production chain, for Campylobacter CPMs.  

“STO” refers to stochastic CPM, “a” refers to using a surrogate “a-factor” (Duarte et al., 2016), 

DET refers to using a deterministic CPM. “SD” refers to standard deviation. “(Cretail)” refers to the 

concentration of Campylobacter at retail. 
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Relative Risk Estimates Bollaerts 

STO 

Bollaerts 

“a” 

Bollaerts DET EFSA 

STO 

EFS

A 

“a” 

EFSA 

DET 

Murmann 

STO 

Murmann 

“a” 

0,5 mean log reduction 

(Cretail) 

0.493 0.326 0.334 0.554 0.396 0.506 0.850 0.335 

1 mean log reduction 

(Cretail) 

0.180 0.103 0.117 0.250 0.126 0.221 0.180 0.108 

0,5 decrease in SD 

(Cretail) 

0.654 0.317 0.327 0.720 0.398 0.662 0.68 0.332 

0,5 increase in SD 

(Cretail) 

2.00 5.300 5.211 1.361 2.635 1.360 1.43 4.161 

Table 18: Results of the relative risks obtained after simulation of six hypothetical intervention 

scenarios in the food production chain, for Salmonella CPMs. “STO” refers to stochastic CPM, “a” 

refers to using a surrogate “a-factor” (Duarte et al., 2016), DET refers to using a deterministic 

CPM. “SD” refers to standard deviation. “(Cretail)” refers to the concentration of Salmonella at 

retail. 
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Relative Risk 

Estimates 

Berjia HP 

STO 

Berjia HP “a” Berjia HP 

DET 

Berjia SP STO Berjia SP  “a ” Berjia SP DET 

0,5 mean log 

reduction 

(Cretail) 

0.80 0.3171 0.3165 0.80 0.3172 0.3165 

1 mean log 

reduction 

(Cretail) 

0.66 0.1002 0.1001 0.66 0.1002 0.1001 

0,5 decrease in 

SD (Cretail) 

0.950 0.236 0.235 0.950 0.236 0.235 

0,5 increase in 

SD (Cretail) 

1.052 18.670 15.406 1.053 14.245 15.402 

Table 19: Results of the relative risks obtained after simulation of six hypothetical intervention 

scenarios in the food production chain, for L. monocytogenes CPMs. “STO” refers to stochastic 

CPM, “a” refers to using a surrogate “a-factor” (Duarte et al., 2016), DET refers to using a 

deterministic CPM. 

“HP” refers to healthy population, and “SP” refers to susceptible population. “SD” refers to 

standard deviation. “(Cretail)” refers to the concentration of L. monocytogenes at retail. 
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Annex IV 
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Prevalence increase by 50% 

Figure 25: Illustration of the relative risks obtained by simulation of an intervention scenario of a 

reduction of the prevalence Campylobacter at retail by 10%. Results were calculated using three 

different modelling approaches: stochastic CPM (eg. Nauta STO), “a-factor” surrogate (eg. Nauta 

“a”), and deterministic CPM (Nauta DET). 

 

Figure 26: Illustration of the relative risks obtained by simulation of an intervention scenario of an 

increase of the prevalence of Campylobacter at retail by 50%. Results were calculated using three 

different modelling approaches: Stochastic CPM (eg. Nauta STO), “a-factor” surrogate (eg. Nauta 

“a”), and Deterministic CPM (Nauta DET). 
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Prevalence increase by 50% 

Figure 28: Illustration of the relative risks obtained by simulation of an intervention scenario of an 

increase of the prevalence of Salmonella at retail by 50%. Results were calculated using three 

different modelling approaches: stochastic CPM (eg. EFSA STO), “a-factor” surrogate (eg. Nauta 

“a”), and deterministic CPM (EFSA DET). 

 

Figure 27: Illustration of the relative risks obtained by simulation of an intervention scenario of a 

reduction of the prevalence of Salmonella at retail by 10%. Results were calculated using three 

different modelling approaches: stochastic CPM (eg. EFSA STO), “a-factor” surrogate (eg. Nauta 

“a”), and deterministic CPM (EFSA DET). 
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Figure 29: Illustration of the relative risks obtained by simulation of an intervention scenario of a 

reduction of the prevalence of Listeria monocytogenes at retail of by 10%. Results were calculated using 

three different modelling approaches: stochastic CPM (eg. Berjia STO HP), “a-factor” surrogate (eg. 

Berjia “a” HP), and deterministic CPM (Berjia DET HP). “HP” refers to healthy population; “SP” refers to 

susceptible population. 

 

Figure 30: Illustration of the relative risks obtained by simulation of an intervention scenario of an 

increase of the prevalence of Listeria monocytogenes at retail by 50%. Results were calculated using 

three different modelling approaches: stochastic CPM (eg. Berjia STO HP), “a-factor” surrogate (eg. 

Berjia “a” HP), and deterministic CPM (Berjia DET HP). “HP” refers to healthy population; “SP” refers 

to susceptible population. 

 


