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ABSTRACT  
  
 Parkinson’s disease (PD) represents the second most common neurodegenerative brain 

disorder, which is clinically characterized by the progressive degeneration of dopaminergic neurons 

(DAergic neurons), mainly in the nigrostriatal pathway, leading to the appearance of characteristic 

motor and non-motor symptoms. Currently, pharmacological and surgical treatments are the most 

common approaches for the treatment of PD. However, so far, all of these treatments are focused on 

reducing the symptoms. In fact, they do not slow down or reverse the degenerative process, imposing 

the need for innovative therapeutical approaches. The use of adult stem cells cell-based strategy has 

emerged as a potential alternative therapy for PD, in which, among a number of promising stem cell 

sources, human mesenchymal stem cells (hMSCs) and neural progenitors cells (hNPCs) have stand out 

as a valid therapeutic option. Indeed, over the last years, a substantial effort has been performed in 

order to address the impact of hMSCs and hNPCs in central nervous system repair. Recently, and from 

an application point of view, several studies have claimed that the therapeutical effects of stem cells is 

mainly mediated by their trophic action namely, through their capacity of secreting a wide panel of 

neuroregulatory molecules (e.g. neurotrophic factors, cytokines, vesicles), which is defined as 

secretome. Thus, based in all these concepts, in this thesis we aimed to: 1) Characterize the secretome 

of hMSCs and hNPCs through proteomic-based approaches; 2) Determine the role of hMSCs and 

hNPCs secretome as a modulator of neuronal differentiation and 3) Investigate the effects of the hMSCs 

and hNPCs secretome in a rat model of PD, in comparison with cell transplantation. In vitro, 

experiments revealed that the secretome of hMSCs induced a more robust neuronal differentiation 

when compared to the one obtained from hNPCs.  Additionally, it was also possible to observe that the 

injection of the secretome of both hMSCs and hNPCs in a 6-hydroxydopamine (6-OHDA)-rat model of 

PD potentiated the recovery of DAergic neurons (estimated by neuronal densities in substantia nigra 

and striatum) when compared to the untreated group 6-OHDA, and those transplanted with cells 

(hMSCs and hNPCs). Similar outcomes were observed in the motor performance of these animals as 

assessed by the rotarod and staircase tests. Finally, proteomic characterization of hMSCs and hNPCs 

secretome revealed that these cells were able to secrete important molecules with neuroregulatory 

actions such as, Galectin-1, 14-3-3 proteins, PEDF, DJ-1, whereby may support the effects observed 

both in vitro and in vivo. Overall, we concluded that the use of secretome per se was able to partially 

revert the motor phenotype and the neuronal structure of PD animals, indicating that the secretome of 

stem cells could represent a novel therapeutic tool for the treatment of PD. 
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RESUMO 
 
 A doença de Parkinson (DP) é clinicamente caracterizada pela degeneração progressiva dos 

neurónios dopaminérgicos (ND), principalmente na via nigroestriatal, levando ao aparecimento dos 

sintomas motores e não motores da doença. Atualmente, os tratamentos farmacológicos e cirúrgicos 

representam a abordagem mais comum no tratamento da DP. Contudo, estes estão apenas focados na 

redução sintomática da doença, não retardando ou revertendo o processo degenerativo, sendo assim 

necessária a criação de abordagens terapêuticas inovadoras. O uso de células estaminais adultas tem 

emergido como uma potencial terapia alternativa para a DP. Dentro destas, as células humanas 

estaminais mesenquimatosas (hMSCs) e as células progenitoras neurais (hNPCs) têm emergido como 

uma válida opção terapêutica. Do ponto de vista de aplicação destas duas populações de células 

estaminais na DP, diversos estudos demonstraram que o seu efeito terapêutico é essencialmente 

mediado pela sua ação trófica, isto é, através da sua capacidade de segregar um vasto painel de 

moléculas neuroreguladoras (p.ex. fatores neurotróficos, citoquinas e vesículas), definido como 

secretoma. Assim, a presente tese teve como principais objetivos: 1) Caraterizar o secretoma de 

hMSCs e hNPCs através de análises de proteómica; 2) Determinar o efeito do secretoma de hMSCs e 

hNPCs como um modulador da diferenciação neuronal e 3) Investigar os efeitos do secretoma de 

hMSCs e hNPCs num modelo de rato da DP (6-OHDA), em comparação com a transplantação de 

células. In vitro, verificou–se uma maior diferenciação neuronal promovida pelo secretoma de hMSCs 

quando comparado com o das hNPCs. In vivo, observou-se que a injeção do secretoma quer de hMSCs 

quer de hNPCs num modelo de DP em ratos (6-OHDA) potenciou a recuperação dos ND (avaliado por 

densidades neuronais na substância negra e estriado) quando comparado com o grupo não tratado, e 

com os grupos transplantados com células (hMSCs e hNPCs). Resultados semelhantes foram 

observados no desempenho motor destes animais, avaliado pelos testes rotarod e staircase. Por 

último, a caracterização proteómica do secretoma de hMSCs e hNPCs revelou que estas células são 

capazes de segregar moléculas com importantes ações neuroreguladoras tais como, Galactina-1, 

proteínas 14-3-3, PEDF, DJ-1, suportando desta forma os efeitos observados tanto in vitro como in vivo. 

Em suma, podemos concluir que a utilização de secretoma por si só foi capaz de reverter parcialmente 

o fenótipo motor e a estrutura neuronal de animais parkinsonianos, indicando que o secretoma das 

células estaminais pode representar uma nova abordagem terapêutica para o tratamento da DP. 
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1. INTRODUCTION 

 

1.1. Parkinson’s Disease 

 Originally described by James Parkinson in 1817, Parkinson’s disease (PD) represents the 

second worldwide most common neurodegenerative disorder (de Lau and Breteler, 2006). Although an 

exact evaluation of PD epidemiological values is missing, studies have suggested that the prevalence in 

industrialized countries is generally estimated at 0.3% of the entire population, in which about 1% in 

people over 60 and 4% over 80 years of age are the most affected, demonstrating to be an aging-

related disease (de Lau and Breteler, 2006; Dexter and Jenner, 2013; Pringsheim et al., 2014). 

Nowadays, the mean onset of PD has been established between 50-60 years. However, it has also 

been suggested that 10% of cases could occur between 20 and 50 years of age, being in this case 

classified as an young onset, which may represent a distinct disease group (Anisimov, 2009; Dexter 

and Jenner, 2013).  

 Clinically, PD is mainly characterized as a disease that affects the motor system. The diagnosis 

currently available depends on the identification of cardinal features namely, bradykinesia (slowness in 

the execution of voluntary movements), muscular rigidity (stiffness), postural instability (a tendency to 

fall even in the absence of weakness or cerebellar balance disturbance) and tremor at rest, with an 

asymmetric onset, which becomes bilateral with time (Gibb and Lees, 1988; Lees et al., 2009). Other 

motor signs such as akinesia (absence of normal unconscious movements like arm swing in walking), 

hypomimia (reduction of normal facial expression), speech and swallowing difficulties, decrease in size 

(micrographia) and speed of handwriting, as well as reduction of stride length during walking, have also 

been used in PD diagnosis (Dauer and Przedborski, 2003; Jankovic, 2008). Pathologically, these motor 

deficits are the result of the progressive loss of dopaminergic neurons (DAergic neurons) in the 

nigrostriatal pathway, particularly in the substantia nigra pars compacta (SNpc), leading, as 

consequence, to the reduction of dopamine (DA) levels in the striatum (i.e. putamen and caudate 

nucleus) (Figure 1) (Langston, 2006; Lees et al., 2009). In addition to DA, it has also been suggested 

that the content of norepinephrine and serotonin is also low. However, of the three biogenic amines, DA 

is the most drastically reduced (Shannak et al., 1994), being this loss the responsible mechanism that 

triggers the onset of the majority of motor signs (Chung et al., 2010; Kim et al., 2011). Another 

hallmark feature of PD is the presence of Lewy bodies (LBs) (Gibb and Lees, 1988), which are typically 

used as a post-mortem confirmation of PD (Olanow and Brundin, 2013). LBs are distinctive 

intracytoplasmatic inclusions, containing a variety of cellular proteins, being α–synuclein the most 
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abundant one (Benskey et al., 2016). The precise reason why LBs form and its role in pathogenesis of 

PD remains unclear (Dickson et al., 2009). However, in recent years, it has become clear that the initial 

sites displaying LBs are the dorsal motor nucleus of the vagus in the brainstem and the olfactory bulb 

(which is defined as stage I). This staging concept was firstly proposed by Braak and colleagues (Braak 

et al., 2003a), demonstrating that the disease most likely progresses in an upward direction via the 

pons (stage II) to the midbrain (stage III), followed by the basal prosencephalon and mesocortex (stage 

IV), and eventually reaching the temporal cortex and neocortex (stages V and VI) (Braak et al., 2003b). 

Therefore, it is only in stage III, when DAergic neuronal death exceeds a critical threshold (i.e. 70-80% of 

striatal nerve terminals and 50-60% of SNpc perikarya) that motor features of PD become evident, 

which means, that there is a substantive pre-symptomatic period of the disease that is hidden due to 

the existence of possible compensatory mechanisms (Bezard et al., 1999; Navntoft and Dreyer, 2016). 

Indeed, Zigmond and colleagues (Zigmond et al., 1990) proposed a model of compensatory changes, 

showing that the relationship between DAergic neuronal loss and functional impairments results from 

adaptive neurochemical changes that occur within the striatum. Recently, this dogma has been 

challenged, and several reports have shown that the classically accepted dopamine-mediated 

mechanisms are not the primarily involved in the initial compensation of DA depletion in PD, proposing 

a series of functional compensatory changes within and outside of the basal ganglia (Bezard et al., 

2003; Obeso et al., 2004). In fact, it has been shown that the activation of the subthalamic nucleus 

(STN) increases the activity of SNpc DAergic neurons. Thus, the loss of DAergic projections and 

consequent decrease in DA concentration leads to an hyperactivity of the STN before the onset of 

functional changes in the putamen, suggesting that STN is implicated in the compensatory mechanisms 

in the initial phases of PD (Bezard et al., 1999; Hamani et al., 2004; Vila et al., 2000). Nevertheless, 

the precise nature of these compensatory mechanisms, and the reason for their ultimate failure has still 

been elusive.  

 To date, PD motor deficits are the main focus of the therapeutic interventions. However, there 

is a growing literature reporting that nonmotor symptoms (NMS) form an integral part of the clinical 

features of PD, suggesting that they could precede the manifestation of the characteristic motor 

symptoms, which could represent a new approach for its early prognosis (Khoo et al., 2013). Like 

motor signs, the NMS can be equally debilitating to PD patients, and include depression, anxiety, 

sensory abnormalities, autonomic dysfunctions and cognitive decline (Langston, 2006; Pantcheva et al., 

2015). Moreover, although the real cause of NMS still remains poorly understood, the current strategies 

for treating PD are mainly effective against the motor symptoms but widely ineffective at addressing 
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NMS. Therefore, it is important to understand the molecular mechanisms that cause the appearance of 

motor signs, but also NMS, in order to establish the pathophysiology pattern of PD (Chaudhuri and 

Schapira, 2009). 

 

 
Figure 1. Neuropathology of Parkinson's disease. 

A) DAergic network in the normal brain with main representative pathways: mesocortical, mesolimbic and nigrostriatal 

pathway. (B) When the disease occurs, the nigrostriatal pathway is the most affected, and is characterized by the 

progressive loss of DAergic neurons and consequent depigmentation of the SNpc. This neuronal loss leads to a DA 

deficiency in the striatum (i.e. putamen and caudate nucleus), which is responsible for characteristic motor symptoms. 

Adapted from (Dauer and Przedborski, 2003). 

 

1.1.1. Etiology of Parkinson’s disease 

 The majority of the cases of PD appear to be sporadic, and these probably represent an 

interaction between genetic and environmental factors (Warner and Schapira, 2003). Age represents 

the main predisposing factor, however, it remains unknown if it is the chronological age or the aging 

process the responsible for PD susceptibility (Dexter and Jenner, 2013). Familial cases of PD are rare, 

but in recent years the role of genetic factors has been intensely explored, showing significant outcomes 

from the molecular point of view (Bras and Singleton, 2009; Pagano et al., 2016). Recently, Pagano 

and colleagues (Pagano et al., 2016) explored clinical characteristics of PD at different ages in 

diagnosed patients with untreated PD, and found that 25% of the patients had a familiar history of the 

disease, raising the possibility that some of them were carriers of a genetic mutation. In fact, different 

reports on familial PD have revealed at least 17 autosomal dominant and autosomal recessive gene 

mutations namely, α-synuclein duplications and triplications, parkin, leucine-rich repeat kinase 2 

(LRRK2), ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), DJ-1 (PARK7), PTEN-induced putative 

kinase 1 (PINK1), among others (Bras and Singleton, 2009; Dexter and Jenner, 2013). In addition, 
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although it has been suggested that familial forms of PD have distinct clinical and pathological 

phenotypes, many of these neurodegeneration mechanisms overlap with the mechanisms involved in 

sporadic PD such as oxidative stress, mitochondrial dysfunction and abnormal protein aggregation 

(Bras and Singleton, 2009; Dexter and Jenner, 2013).   

 Concerning environmental factors, studies have proposed that farming occupation, rural living 

and the consequent exposure to pesticides such as rotenone and paraquat [structurally similar to 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)] may have an impact in the appearance of the 

disease. Nowadays, all these chemicals are being used to create animal models of PD, exploring its 

effects on the pathophysiology of the disease. However, Noyce and colleagues (Noyce et al., 2016) 

have recently suggested that environmental toxins most likely play a minor role in PD risk. Furthermore, 

there also exists a consistent association between PD and lifestyle factors such as smoking and coffee 

consumption (de Lau and Breteler, 2006; Noyce et al., 2016). Indeed, many epidemiological studies 

have shown a reduced risk of developing PD among cigarette smokers. The most probable explanation 

involves nicotine, as this component may stimulate dopamine release and acts as antioxidant (Quik, 

2004). Some studies also related PD with coffee consumption, showing a significantly decreased PD 

risk for coffee drinkers (de Lau and Breteler, 2006). These observations were based in the effects of 

caffeine, a known inhibitor of the adenosine A2 receptor, which in turn has an important role in the 

regulation of dopamine release (Chen et al., 2001). 

 

1.1.2. Mechanisms of Neurodegeneration 

 Where does PD begins at the cellular level? This is the key question that still remains to be 

answered. Evidences from the literature have suggested that the degeneration of DAergic neurons in PD 

starts in the axonal and synaptic terminals, retrogradely progressing to the cells bodies in SNpc (Burke 

and O'Malley, 2013). In fact, at the time of the onset of motor deficits, more than 70% of DA 

(Bernheimer et al., 1973; Dauer and Przedborski, 2003), and more than 50% of the tyrosine 

hydroxylase (TH) and DA transporter (DAT) have been lost in the striatum (Beach et al., 2008; Dauer 

and Przedborski, 2003; Nandhagopal et al., 2008). On the other hand, the SNpc presents a decrease 

of around 30% of DAergic cells at this time (Cheng et al., 2010; Ross et al., 2004). Little is known about 

the mechanisms underlying the early deterioration of synapses and axons of DAergic neurons in PD, but 

available data indicate that the retrograde degeneration implicates a decline of the axonal trafficking of 

proteins and mitochondrias, followed by the aggregation of α-synuclein and the formation of axonal 

spheroids (Chu et al., 2012; Chung et al., 2009; Coleman, 2005; Kim-Han et al., 2011). Surrounding 
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astrocytes and microglial cells have also been described as potential modulators of these axonal 

impairments (Privat, 2003; Shokouhi et al., 2010). However, the real influence of these cells on the 

degeneration and deterioration progress of nigral or striatal DAergic pathways is still poorly understood 

(Halliday and Stevens, 2011). Despite these issues, nowadays, it is well accepted that oxidative stress, 

mitochondrial dysfunction and abnormal protein aggregation are the key molecular mechanisms 

involved in PD neurodegeneration process (Figure 2) (Dauer and Przedborski, 2003; Dexter and Jenner, 

2013).   

 The central nervous system (CNS) is particularly sensitive to oxidative stress due to different 

reasons, including its high oxygen consumption even under basal conditions, high production of reactive 

species from specific neurochemical reactions as well as increased deposition of metal ions in the brain 

with aging (Chiurchiu et al., 2016). Throughout the whole lifespan, DAergic neurons are exposed to 

reactive oxygen species (ROS) as a result of the metabolism of DA itself. In DAergic cells, ROS 

generation occurs by deamination (auto-oxidation process) of DA by the monoamine oxidase (MAO) 

activity. This results in significant amounts of hydrogen peroxidase (H2O2) that can further interact with 

metal ions (e.g. iron), leading to the origin of the reactive hydroxyl radical (!OH), which is highly toxic to 

the neurons (Bhat et al., 2015; Datta and Bhonde, 2012). Indeed, post-mortem analysis has shown 

that significantly higher concentrations of iron, in SNpc region, were found in brain tissue of PD patients 

when compared to healthy individuals (Griffiths et al., 1999). Indeed, DAergic neurons are more 

susceptible to oxidative damage when compared to other neuronal cells mainly because of the dual 

presence of DA and high levels of iron. Mitochondrial dysfunction is also another origin of oxidative 

stress that has been widely associated with the pathogenesis of PD. Neurons are metabolically very 

active, and as such, they greatly depend on mitochondria for energy production. Any pathological 

situation that leads to mitochondrial dysfunction can cause a higher increase in ROS, inducing (for 

instance) the release of cytochrome c in the cytosol, and consequently apoptosis (Bhat et al., 2015; 

Moon and Paek, 2015). In addition, the decrease of complex I (of the mitochondrial respiratory chain) 

enzyme activity was also observed to be an important player of degeneration in the SNpc of 

parkinsonian patients (Parker et al., 1989). In fact this process in known to cause excitotoxicity and 

axonal damage, leading to the progression of PD (Chiurchiu et al., 2016). 

 Finally, the abnormal deposition of proteins in brain tissue has also been an important feature 

in the pathophysiology of PD. Although it remains unclear how misfolded proteins could directly cause 

toxicity or damage the cells via the formation of protein aggregates, the prevailing hypothesis is that the 

formation of the latter triggers a cascade of neurodegenerative events (Diack et al., 2016). Oxidative 
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damage, linked to mitochondrial dysfunction and an abnormal DA metabolism, may also promote or 

predispose misfolded proteins conformations. Nonetheless, these events are not mutually exclusive, 

and one of the aims of the current PD research is to elucidate the sequence in which they act and 

understand the interaction between these pathways (Dauer and Przedborski, 2003).  

 

 

Figure 2. Key molecular mechanisms that contribute to the neurodegenerative process in dopaminergic 

neurons in Parkinson’s disease. 

Cell death may be caused by oxidative stress, mitochondrial and UPS dysfunction, and α-synuclein aggregation. Pathogenic 

mutations may directly induce mitochondrial dysfunction (DJ-1, PINK-1), abnormal protein conformations (as believed to be 

the case with α -synuclein) or damage the ability of the cellular machinery to detect and degrade misfolded proteins (Parkin, 

UCHL1). Controversy exists regarding whether LBs promote toxicity or protect the cells from harmful effects of misfolded 

proteins. ROS generation occurs by the auto-oxidation process of DA resulting in significant amounts of H2O2 that can further 

interact with metal ions like iron. Oxidative damage, linked to mitochondrial dysfunction and abnormal dopamine 

metabolism, may also promote misfolded protein conformations. ROS: Reactive oxygen species. UPS: Ubiquitin proteasome 

system. 
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1.2. Current therapeutic approaches in Parkinson’s Disease: how far are we from the 

cure? 

  The treatment of PD has not significantly changed over the years, and the use of levodopa (L-

DOPA) is still considered the gold standard treatment since its introduction in the early 1960s (LeWitt 

and Fahn, 2016). L-DOPA, is a naturally occurring aminoacid and is the immediate metabolic precursor 

for catecholamines like DA, and in contrast to DA, L-DOPA can readily cross the blood-brain barrier 

(BBB). This drug has revolutionized symptomatic treatment by providing improvement in activities of 

daily living and life quality. However, L-DOPA is just efficient during the first years of usage as its chronic 

administration has been associated with the appearance of undesirable side effects such as nausea, 

vomit, hypotension and long-term complications including motor fluctuations (loss of therapeutic effect 

benefit after each dose) and dyskinesias (excessive involuntary movements occurring at the peak of L-

DOPA dosing) (Jankovic and Aguilar, 2008; Jimenez-Shahed, 2016; Rascol et al., 2003).  

  The use of DA agonists and enzyme inhibitors has been used as alternative to the above 

mentioned (Dexter and Jenner, 2013; Rascol et al., 2003). In the case of the DA agonists (e.g. 

pramipexole and ropinirole), studies have shown that they are efficient in controlling the cardinal motor 

symptoms of PD, particularly in early stages of the disease and in patients who have not been exposed 

to L-DOPA (Jankovic and Aguilar, 2008). For instance, the administration of pramipexole or ropinirole 

was found to significantly reduce the risk of motor complications compared to L-DOPA (Holloway et al., 

2004; Rascol et al., 2000). However, the prolonged exposure to DA agonists also presents limiting 

features such as somnolence, sleep disturbances and impulse control disorders (Jankovic and Aguilar, 

2008). On the other hand, the use of MAO-B inhibitors such as selegiline and rasagiline has attracted 

some attention (Dexter and Jenner, 2013). Safinamide, another MAO-B inhibitor compound, has 

recently been claimed as a promising agent for the treatment of PD. In Phase-III clinical trials, 

safinamide is a molecule with a dual mechanism of action based on the enhancement of the DAergic 

function and inhibition of the excessive release of glutamate. Indeed, safinamide was found to be a 

useful as a combinatory strategy to DA agonists in the early phases of PD, as well as to be able to 

reduce dyskinesias when used together with L-DOPA in patients with advanced PD (Kandadai et al., 

2014; Onofrj et al., 2008). Despite these promising results, most of these treatments were not able to 

promote the total recovery of PD symptomatology, presenting long-term inefficiency as well as an 

inability to recover lost DAergic neurons or to protect the viability of the remaining ones.  

  Surgical treatments, such as deep brain stimulation (DBS) in the globus pallidus internus (GPi) 

or in the STN have been applied as an alternative in patients with significant motor complications where 
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the pharmacological treatment is no longer effective (Hariz et al., 2016; Hutchinson and Wick, 2016). 

Indeed, it has been reported that this surgical procedure is safe, leading to the lower consumption of 

anti-parkinsonian medications and dyskinesias (deSouza et al., 2013). However, DBS requires expertise 

in diagnosis, imaging and stereotaxic surgery, thereby limiting its widespread applicability (Rascol et al., 

2003). 

  In addition to the conventional clinical treatments, some clinical trials based in the 

transplantation of human ventral mesencephalic tissues into the striatum of PD patients with advanced 

disease, were conducted in the late 1980s (Lindvall et al., 1990; Sawle et al., 1992). The results were 

quite promising, with patients displaying increased levels of DA, motor function amelioration as well as, 

reduction in the L-DOPA dosage requirement (Singh et al., 2007). Although these studies confirmed the 

relevance and feasibility of cell transplantation, the use of human tissue has some limitations 

associated with ethical and religion questions, as well as logistics of acquiring sufficient amount of fetal 

tissues (Kim et al., 2013; Suksuphew and Noisa, 2015). 

  In summary, all these interventions are not fully efficacious, and more importantly, the 

progression of the PD degenerative process is not avoided. Based on such limitations, cell-based 

strategies through the use of stem cells have been proposed as a possible therapeutic tool for the 

treatment of CNS disorders, including PD (Anisimov, 2009).  

 

1.3. Stem cell-based therapeutic approaches  

 The low regeneration potential of CNS make it a challenge for the development of new 

protocols and strategies that could allow the generation of new functional neurons in response to injury 

(Williams, 2014). Endogenous stem cells are found in specific niches of human brain, which have the 

ability to differentiate and replace the damaged cells and secrete trophic factors required for tissue 

repair. However, this self-repair is not sufficient in most pathological processes, demanding external 

intervention (Buzhor et al., 2014). Recently, cell therapy has been proposed as an attractive option, and 

stem cells represent the most favorable cell source for such therapies, since these cells have the ability 

to renew themselves continuously, have high proliferation capability and are able to differentiate into 

different cell types (Kim et al., 2013; van der Kooy and Weiss, 2000). Over the years, several types of 

stem cells were investigated as potential agents for cellular therapy including embryonic stem cells 

(ESCs), neural stem cells (NSCs), mesenchymal stem cells (MSCs), or even induced pluripotent stem 

cells (iPSCs) from different sources, showing promising results in a wide panel of CNS disorders 

including PD (Goodarzi et al., 2015). From these, NSCs and MSCs have a number of interesting 
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properties that we will describe throughout this work. Indeed, it has been described that these cells 

display therapeutic effects of neuroprotection and immunomodulation, such as the capacity to protect 

and regenerate damaged DAergic neurons, as well as increase the motor function in PD animal models 

(Bonnamain et al., 2012; Drago et al., 2013; Kassem et al., 2004). Therefore, we focused our efforts in 

studying their potential use, as well as of its secretome, as a potential alternative therapy for PD.  

 

1.3.1. Neural stem cells   

 NSCs are multipotent cells isolated from fetal and adult nervous system tissues, which have the 

ability to self-renew and differentiate into specialized functional neurons, astrocytes and 

oligodendrocytes (Buzhor et al., 2014; Fu et al., 2015), which makes them an interesting source of 

cells for neuronal repair after injury or disease (Bonnamain et al., 2012). It is known that NSCs exist not 

only in the developing brain but also in the adult brain (Palmer et al., 2001), particularly in the 

subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus and the subependymal zone 

(SEZ) of the lateral ventricles (as reviewed by Salgado et al., 2015). These cells are commonly identified 

by the expression of the intermediate filament Nestin, GFAP, transcription factor Sox2, and the RNA 

binding protein Musashi1, together with absence of expression of the differentiated markers CD24, 

NeuN and O4 (Suksuphew and Noisa, 2015). NSCs are typically isolated from embryonic, fetal or adult 

nervous system tissue (Alvarez-Buylla and Garcia-Verdugo, 2002; Ogawa et al., 2009; Toma et al., 

2001; Zhang et al., 2009), and can be cultured in vitro as neuroshperes, in the presence of growth 

factors such as basic fibroblast growth factor (FGF-2) and epidermal growth factor (EGF) (Bonnamain et 

al., 2012).  

 A growing number of studies have also highlighted NSCs as immunomodulatory agents and 

their capacity to reduce CNS inflammation (Ben-Hur, 2008; Kokaia et al., 2012). Although no reports 

have been presented regarding these effects of NSCs specifically in PD, it is known that inflammatory 

responses (e.g. T cell infiltration, increased expression cytokines, toxic mediators derived from activated 

glial cells) are prominent features of PD (Tufekci et al., 2012), and therefore, the immumodulation 

effects presented by these cells may be important for its use in cell transplantation.  

 Regarding the application of NSCs in PD, there are several examples of their impact on the 

reversion of the latter. For instance, Harrower et al. (Harrower et al., 2006) showed a reliable long-term 

survival and integration of transplanted NSCs in the striatum of rats lesioned with 6-hydroxydopamine 

(6-OHDA). According to the authors, an increase of DA fiber densities, as well as synapse formation was 

observed. Richardson and colleagues (Richardson et al., 2005) demonstrated that the transplantation of 
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adult NSCs (expanded from SEZ) in the striatum of 6-OHDA-lesioned rats led to a functional recovery in 

the animals, and the DAT immunoreactivity was restored in the host tissue. Using the same model (6-

OHDA), Armstrong and colleagues (Armstrong et al., 2002) revealed that transplanted NPCs could 

differentiate into neurons, and indeed, a small number of TH-immunopositive neurons were present in 

both intrastriatal and intramesencephalic grafts. Yasuhara and co-workers (Yasuhara et al., 2006) also 

observed that by transplanting an immortalized NSC line (HB1.F3), functional improvements could be 

observed along with an evident preservation of TH immunoreactivity in the nigrostriatal pathway. 

Moreover, in other CNS related disorders, such as amyotrophic lateral sclerosis (ALS), Huntington’s 

disease (HD) and ischemic stroke, the transplantation of NSCs was also effective in delaying disease 

progression, exert neuronal protection and enhance motor function, and led to the increase of dendritic 

plasticity and axonal rewiring (Andres et al., 2011; Ryu et al., 2004; Xu et al., 2006).  

 Although promising, it is important to note that the application of NSCs for transplantation is 

still limited. Tissue availability, ethical and logistical concerns linked to the fact that it is also challenging 

to maintain and expand these cells for long periods of time, represent important issues to overcome in 

the future before resuming it for clinical applications (Bonnamain et al., 2012; Fu et al., 2015). Besides 

that, NSCs have been described as a potential stem cell source for the treatment of neurological 

disorders not only because they may provide a (tissue-specific) cellular reservoir for the replacement of 

lost or damaged cells, but also because of other capabilities, such as tissue trophic support (Ben-Hur, 

2008; Drago et al., 2013). 

 

1.3.2. Mesenchymal Stem Cells  

 MSCs represent a non-hematopoietic and multipotent stem cell population with self-renewal 

capacity and multiple differentiation potential (Wang et al., 2011). According to the International Society 

for Cellular Therapy (ISCT), there are three minimal criteria to define MSCs, namely: (1) the adherence 

to plastic surfaces when maintained in standard culture conditions; (2) the positive expression of 

specific surface markers such as CD105, CD90 e CD73, and negative expression of hematopoietic 

surface markers like CD14, CD34, CD45, HLA-DR, or CD11B, CD79α or CD19; and (3) in vitro 

differentiation into at least osteoblasts, adipocytes, and chondroblasts (Dominici et al., 2006). 

Friedenstein and colleagues (Friedenstein et al., 1974) were the first to isolate MSCs from bone 

marrow, describing them as fibroblastoid cells with clonogenic potential and plastic culture adherence. 

Following these early studies, countless reports have confirmed that in addition to bone marrow, MSCs 

can also be isolated from various adult and neonatal tissues such as adipose tissue, dental pulp, 
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amnion, placenta, Wharton jelly of the umbilical cord, and even the brain (Erices et al., 2000; Gronthos 

et al., 2000; Hass et al., 2011; Paul et al., 2012; Sarugaser et al., 2005; Wang et al., 2004; Zuk et al., 

2002). The potential of MSCs has been attributed to their widespread availability throughout the human 

body, easy isolation and expanding, as well as maintenance of viability and regenerative capacity after 

cryopreservation (Uccelli et al., 2011a; Uccelli et al., 2011b; Wang et al., 2011). In addition to this, 

MSCs have also demonstrated low immunogenic properties due to the lack of the major 

histocompatibility complex class II (MHC-II), making them an attractive cell source for transplantation 

(Morandi et al., 2008). Furthermore, MSCs have been also described as immunomodulatory agents, 

being able to interact with different components of the immune system (Wang et al., 2011). For 

example, it has been described that MSCs are capable to regulate the proliferation, activation and 

maturation of T and B lymphocytes in vitro (Bartholomew et al., 2002), and to induce long-term survival 

in an allogeneic context (Aggarwal and Pittenger, 2005), which is an important concern for its use in 

transplantation.  

 Regarding PD, several reports have already shown that the transplantation of MSCs acts as a 

promoter of neuroprotection and/or neuronal function (Glavaski-Joksimovic and Bohn, 2013). Hellman 

and co-workers (Hellmann et al., 2006) demonstrated that after transplantation, bone marrow MSCs 

(BM-MSCs) were found to be viable and migrate in the brain parenchyma of a 6-OHDA PD rat model. 

Using the same PD model and the same MSCs population, Danielyan and colleagues (Danielyan et al., 

2011) showed neuroprotective effects against nigrostriatal degeneration and improvements in the 

motor function of the 6-OHDA lesioned rats. Blandini et al. (Blandini et al., 2010) also achieved the 

same outcomes, verifying that although no differentiation of MSCs toward a neuronal (DAergic) 

phenotype was obtained in vivo, the animals that received the striatal MSCs grafts presented an 

increased survival of both cell bodies and terminals of DAergic neurons. With MSCs derived from 

adipose tissue (ASCs), Schwerk and colleagues (Schwerk et al., 2015) demonstrated a significant 

increase in TH-positive expression in transplanted animals when compared to the untransplanted 

group. The same results were also obtained by Xiong and colleagues (Xiong et al., 2010), which 

demonstrated neuroprotective and neuroregenerative effects in a rotenone-induced hemiparkinsonian 

rat model using MSCs isolated from umbilical cord. In patients, Venkataramana and co-workers 

(Venkataramana et al., 2010) observed that the transplantation of BM-MSCs led to a partial 

amelioration in the symptomatology and life quality of the patients [measured by Unified Parkinson’s 

disease rating scale (UPDRS)]. 
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 The specific mechanism by which MSCs are able to improve the motor performance either in 

animals or patients remains unclear. It is well studied that MSCs populations can be sub-passaged and 

differentiate into different cell lineages, however the differentiation into functional neuronal lineages is 

not likely to happen in such a relevant manner that could impact the recovery of PD animal models or 

patients (Maltman et al., 2011; Teixeira et al., 2013). Therefore, although some reports suggest the 

differentiation of MSCs into DAergic neurons or other neuronal lineages as the principal outcome of 

their therapeutical effects, recent evidences have proposed the secretome of these cells as the main 

responsible of their therapeutic action (Teixeira et al., 2013). 

 

1.3.3. Stem cells secretome  

 The therapeutic effects of transplanted stem cells were initially attributed to their differentiation 

capacity. Indeed, most of the studies emphasize the ability of stem cells to migrate to the sites of injury, 

integrate the damaged tissue and differentiate into specialized cells (Drago et al., 2013). However, it 

has also been shown that only a small percentage of cells truly engraft and survive in the damaged host 

tissue, leading the current body of research to argue that the multipotent differentiation of stem cells, 

within the CNS, contributes minimally to the observed beneficial effects (Kupcova Skalnikova, 2013; 

Lavoie and Rosu-Myles, 2013). On the other hand, robust data has recently demonstrated that most of 

these potential effects, promoted by stem cells, are mainly mediated by the secretion of bioactive 

molecules (e.g., proteins, cytokines, vesicles), which is defined as secretome (Drago et al., 2013; 

Salgado et al., 2010; Salgado et al., 2015; Teixeira et al., 2013). The concept of secretome has been 

described as the proteins released by a cell, tissue or organism, being essential in the regulation of 

different cell processes (Teixeira et al., 2013). In fact, it has been demonstrated that these secreted 

molecules by stem cells act as modulators of cell survival, proliferation and differentiation, as well as 

regulators of inflammatory processes and promoters of angiogenesis (Teixeira et al., 2013). Although 

most of the secretome studies have been focused in their proteic soluble fraction (e.g. factors, growth 

factor and cytokines), nowadays it has also been described that stem cells are able to secrete a 

vesicular fraction that is constituted by microvesicles and exosomes, which involves the transference of 

proteins and genetic material to neighboring cells (Salgado et al., 2015; Yu et al., 2014).  

 In 2006, Crigler and colleagues (Crigler et al., 2006) were the first to show that BM-MSCs were 

able to induce neuronal cell survival and neurite outgrowth in a neuroblastoma cell line and in dorsal 

root ganglion explants, through the secretion of neurotrophic factors such as brain-derived neurotrophic 

factor (BDNF) and nerve growth factor (NGF). Further characterization studies have reported that, 
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indeed, these cells are able to secrete a wide panel of growth factors such as glial cell-derived 

neurotrophic factor (GDNF), FGF-2, insulin-like growth factor 1 (IGF-1), hepatocyte growth factor (HGF), 

vascular endothelial growth factor (VEGF) and EGF, as well as cytokines like interleukin 6 (IL-6), 

interleukin-10 (IL-10), transforming growth factor beta (TGF-β), stem cell factor (SCF) and stromal cell-

derived factor 1 (SDF-1) (Baraniak and McDevitt, 2010; Meyerrose et al., 2010; Nakano et al., 2010; 

Ribeiro et al., 2012), which are described as important modulators of neuronal survival/differentiation, 

neurite outgrowth and glial cells. Cantinieaux and co-workers (Cantinieaux et al., 2013) showed in vitro 

that the BM-MSCs secretome was pro-angiogenic and was able to protect neurons from apoptosis. With 

ASCs secretome, Lu et al. (Lu et al., 2011) demonstrated its potential to protect a PC13 cell line model 

from glutamate excitotoxicity-induced apoptosis through the secretion of BDNF, VEGF and HGF. Salgado 

and colleagues (Salgado et al., 2010) revealed that the secretome of human umbilical cord perivascular 

cells (HUCPVCs) was also a modulator of neuronal viability and cell survival. In the context of PD, Kim 

and colleagues (Kim et al., 2009), using co-cultures of microglia and mesencephalic neurons together 

with BM-MSCs, observed that there was a decrease in the microglia activation due to the release of anti-

inflammatory molecules such as IL-6 and TGF-β, thereby protecting dopaminergic neurons from death. 

Similar results were also presented by Wang and colleagues (Wang et al., 2010), which showed that 

BM-MSCs could exert neuroprotection in 6-OHDA-exposed dopaminergic neurons in vitro, through anti-

apoptotic mechanisms promoted by the expression of SDF-1. In vivo, the secretome of MSCs also plays 

an important role, either by the active secretion in situ (after MSCs transplantation) or by the injection of 

the secretome itself in the form of conditioned media (CM) (Teixeira et al., 2013). Previous studies from 

Salgado’s lab showed that the injection of MSCs secretome was able to revert the parkinsonian 

phenotype from both histological and functional outcomes (data not published). This is in line with what 

has been described in the literature regarding the trophic capability of MSCs in PD. For instance, Sadan 

and colleagues (Sadan et al., 2009), using human BM-MSCs as neurotrophic factors secreting cells 

(NTF-SC), observed a remarkable attenuation in the amphetamine-induced rotation and other abnormal 

behavior, as wells as in the loss of TH immunoreactive nerve terminals when compared to the 

untreated MSCs group, attributing these effects to the secretion of BDNF and GDNF. Similar 

observations were also claimed by Cova and co-workers (Cova et al., 2010), which observed that after 

intrastriatal transplantation of MSCs there was an increase in the preservation of spared DAergic 

neurons, which was correlated with an increased expression of BDNF by MSCs. Interestingly, in a 

comparative study reported by Teixeira and colleagues (Teixeira et al., 2015), animals injected just with 
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the secretome of HUCPVCs into the DG of adult rats, disclosed levels of neuronal survival and 

differentiation very similar to those observed in cell-transplanted groups.  

 Neurotrophic growth factors such as NGF, BDNF, GDNF have also been found to be increased 

after NSCs transplantation (Drago et al., 2013). Likewise MSCs, currently there are no studies 

regarding the application of NSCs secretome alone in animal models of PD. However, studies have 

suggested NSCs as neurotrophic-factor secreting cells (Drago et al., 2013). For instance, Yasuhara and 

co-workers (Yasuhara et al., 2006) showed that after intrastriatal transplantation of NSCs in 6-OHDA PD 

model, there was an improvement in the behavioral performance of the animals, which was correlated 

with the increase of TH innervation due to an active expression of SCF. Similar outcomes were also 

presented by Ourednik and colleagues (Ourednik et al., 2002), which demonstrated, using a MPTP PD 

model, that after the transplantation of NSCs there was an increased recovery of TH and DAT activity 

due to an in situ expression of GDNF. Moreover, the authors suggest that the NSCs have the capacity to 

create host environments rich in trophic and neuroprotective support to rescue imperiled host cells 

(Ourednik et al., 2002). Ebert and colleagues (Ebert et al., 2008) demonstrated that NSCs 

overexpressing either IGF-1 or GNDF were able to significantly reduce amphetamine-induce rotational 

behavior and DA neuronal loss in 6-OHDA PD animals, when compared to the untransduced NSCs. 

Behrstock et al. (Behrstock et al., 2006) demonstrated, in vitro, that the number of primary neurons 

staining for TH significantly increased after the addition of NSCs CM. In vivo, using NSCs genetically 

modified to release GDNF, the same authors showed that more TH positive neurons were present in the 

transplanted rats (partial lesioned with 6-OHDA), verifying fewer rotations compared to the 

untransplanted group (Behrstock et al., 2006). 

 Besides the paracrine soluble factors released by stem cells to the extracellular space, intensive 

research has also been investigating the role of secreted extracellular vesicles (EVs) in the therapeutic 

potential of stem cells (Drago et al., 2013). Exosomes and microvesicles are the most well studied 

classes of EVs. These vesicles are involved in cell-to-cell communication, with the ability to transfer 

proteins and functional genetic material such as micro-RNAs (miRNAs) to other cells, which are 

implicated in important physiological processes such as antigen presentation, genetic exchange, 

immune responses and angiogenesis (Lener et al., 2015; Lopez-Verrilli et al., 2016; Xin et al., 2013; Yu 

et al., 2014). A more detailed characterization of EVs secreted by both MSCs and NSCs is required, in 

an effort to select and identify the molecules responsible for the therapeutic effects of the secretome 

(Drago et al., 2013; Lai et al., 2010).  
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 Altogether, these findings strongly suggest that stem cells’ secreted factors are the key players 

on stem cells’ mediated effects in models of injury and disease in the CNS. Therefore, the use of 

secretome as a possible replacement of cell transplantation is of enormous interest and may be a new 

and important tool for the treatment of PD (Figure 3).  

 

 

Figure 3. Stem cells secretome-based therapy for Parkinson’s disease. 

The trophic action of stem cells has been increasingly accepted nowadays as a new concept for the regeneration of the CNS, 

including PD. The ability to secrete growth factors, cytokines and chemokines seems to be one of the reasons to the 

contribution to the protection/survival of the preexisting DAergic neurons in lesioned areas, leading to functional 

amelioration and improvement of motor function. Adapted from (Teixeira et al., 2013).  
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2. RESEARCH OBJECTIVES 

 

 Stem cells have been on the forefront of new possible therapeutic strategies for CNS 

regeneration. Recent evidences have indicated that most of the beneficial actions caused by these cells 

are related with their secretome and its trophic capability. This is extremely important as it should 

minimize biological variability, allowing precise dosing, and overcome several stem cells related issues 

including the number of available cells for transplantation and its survival after this procedure. 

Therefore, the main goal of the present project is to determine the role of secretome as a potential cell-

free therapy for PD, when compared to cell-based transplantation approaches. Therefore, the main 

objectives of the present thesis are: 

 

1. Characterize the secretome of human MSCs (hMSCs) and human NPCs (hNPCs), 

performing a comparative study through proteomic-based approaches. 

2. Determine the impact of hMSCs and hNPCs secretome on the neuronal survival and 

differentiation of hNPCs in vitro. 

3. Establish the therapeutic potential of hMSCs secretome in an in vivo model of PD (6-

OHDA), comparing it to the outputs obtained from animals transplanted with hMSCs, 

hNPCs and their secretome. 
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3. MATERIALS AND METHODS  

 

3.1. Cell Culture 

3.1.1. Expansion of hMSCs and collection of conditioned medium 

 hMSCs derived from bone marrow (Lonza, Switzerland) were thawed and plated into T-75 

gelatin (0.1%, Sigma, USA)-coated culture flasks (SPL Life Sciences, Korea) with 12 mL of serum-free 

growth medium (PPRF-msc6). The formulation and preparation of PPRF-msc6 has previously been 

described in detail (Jung et al., 2010). The medium was renewed every 3 days and the culture 

maintained at 37°C in a humidified atmosphere containing 5% CO2. When the cells reached 80-90% of 

confluence, they were enzymatically dissociated using 0.05% trypsin-EDTA (Life Technologies, USA) 

during 5 min at 37°C. Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies, USA) 

supplemented with Fetal bovine serum (FBS, Biochrom, Germany) was then added to stop the reaction. 

After that, cells were centrifuged at 1200 rpm (4°C) for 5 min. The supernatant was removed and the 

pellet was resuspended in fresh growth medium, in which a small volume of cells was diluted in Trypan 

Blue (Life Technologies, USA) to perform cell counts. At last, the cells were plated into new gelatin-

coated culture flasks at a density of 5000 cells/cm2  for experiments, and 12 000 cells/cm2  for 

proteomic procedures.  At passage 5 (P5), after 72 hours of growth, the medium was removed and the 

cells were washed twice with Neurobasal A medium (Life Technologies, USA). Following this, 

Neurobasal-A medium supplemented with 1% kanamycin (Life Technologies, USA) was added to the 

cells, which were placed at 37°C in a humidified atmosphere containing 5% CO2. After 24 h, this 

medium, containing the factors secreted by hMSCs (called conditioned medium (CM)) was collected 

and centrifuged at 1200 rpm for 10 min to remove any cell debris, and then stored at -80°C until it 

was required for further experiments.  

 

3.1.2. Expansion of hNPCs and collection of conditioned medium 

hNPCs were a kind gift from Prof. Leo A. Behie (University of Calgary, Canada). Cells were 

isolated from the telencephalon region of a 10 week post-conception fetus according with the protocols 

and strict ethical guidelines previously established and approved by the Conjoint Health Research Ethics 

Board (CHREB, University of Calgary, Canada; ID:E-18786) (Baghbaderani et al., 2010; Mendez et al., 

2002; Mendez et al., 2005). hNPCs were thawed and the content placed in T-75 culture flasks 

containing 15 mL of serum-free medium PPRF-h2 (Baghbaderani et al., 2010). After 3 days, the cells 

were mechanically triturated using a P1000 Pipetman set to 850µL (25-30 times) into a single cell 
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suspension, being then cultured in fresh growth medium (PPRF-h2). Every 3 days, 40% of spent 

medium was replaced with fresh growth medium and the culture was maintained at 37°C in a 

humidified atmosphere containing 5% CO2. After 10-12 days of growth, hNPCs were centrifuged at 1000 

rpm during 6 min and then enzymatically dissociated using 0.05% Trypsin-EDTA (1 mL) during 10 min 

at 37°C. Afterwards, was added 5 mL of growth medium to the cell suspension to stop trypsin activity. 

Then, the content were centrifuged at 1000 rpm for 10 min. The supernatant was discard and the 

pellet was resuspended 25-30 times in fresh growth medium. A small volume of cells was then diluted 

in Trypan Blue to perform cell counts. Finally, the cells were plated into new tissue culture flasks at a 

density of 5000 cells/cm2 for experiments, and 12 000 cells/cm2  for proteomic procedures. At P5, after 

10-12 days of growth, the cells were centrifuged at 1000 rpm for 5 min. The supernatant was discard 

and then Neurobasal A medium supplemented with 1% kanamycin was added to the cells, and these 

were placed in a humidified incubator, operating at 37°C and 5% CO2. After 24 h, the medium was 

removed, centrifuged at 1200 rpm for 10 min to remove any cell debris and then stored at -80°C until 

it was required for further experiments.  

 

3.2. In vitro assay 

3.2.1. Growth of hNPCs and incubation with hMSCs and hNPCs conditioned medium 

 Pre-isolated and cryopreserved hNPCs were thawed at 37ºC and placed in T-75 culture flasks 

with 15 mL of serum-free medium PPRF-h2. After 3 days, the cells were mechanically dissociated into a 

single cell suspension and cultured in fresh growth medium. Every 4 days, the 40% of the spent 

medium was replaced with fresh growth medium and the culture as maintained at 37°C in a humidified 

atmosphere containing 5% CO2. After 10-15 days of growth, hNPCs were passaged and plated on pre-

coated [poly-D-lysine (100 µg/mL, Sigma, USA) and laminin (10 µg/mL, Sigma, USA)] 24-well plates at 

a density of 50 000 cells per well, for 5 days, with the hMSCs and hNPCs CM and placed at 37°C in a 

humidified atmosphere containing 5% CO2. Neurobasal-A medium supplemented with 1% kanamycin 

was used as control group. 

 

3.2.2. In vitro immunostaining of hNPCs 

 hNPCs were fixed in 4% paraformaldehyde (PFA, Merck, Portugal) for 30 min at room 

temperature (RT), to retain the antigenicity of the target molecules and preserve cells morphology. Cells 

were permeabilized in 1X phosphate buffered saline (PBS) with 0.1% Triton X-100 (Sigma, USA) (PBS-T) 

for 5 min at RT and washed three times with 1X PBS. Blockage of non-specific binding sites was 
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performed using 1X PBS with 10% newborn calf serum (NBCS; Biochrom, Germany) for 1 h at RT. 

hNPCs were then incubated with the primary antibodies (Table 1) diluted in 1X PBS with 10% NBCS for 

1h at RT, after which they were washed with 1X PBS with 0.5% NBCS and incubated with the secondary 

antibodies (Table 2) diluted in 1X PBS with 10% NBCS for 1 h at RT. The cells were then incubated with 

the nuclear counterstain 4-6-diamidino-2-phenylindole-dhydrochloride (DAPI, 1:1000; Life Technologies, 

USA) for 10 min at RT. Afterwards, coverslips were mounted on glass slides using immu-mount 

(Thermo Scientific, UK). Finally, for quantification analysis, samples were observed under blind 

conditions using a fluorescence microscope (BX61, Olympus, Japan). For this purpose, four coverslips 

per condition and ten representative fields were chosen and analyzed. In order to normalize the data 

between the different sets, the results are presented in percentage of cells. This was calculated by 

counting the positive cells for the respective markers (Table 1), dividing this value by the total number 

of cells/field (DAPI-positive cells). 

 

Table 1. Primary antibodies 

Antibody – Specie Working dilution Company 

Doublecortin (DCX) - Rabbit 1:300 Abcam (UK) 

Microtubule associated protein-2 

(MAP-2) - Mouse 
1:500 Sigma (USA) 

Beta III tubulin - Mouse 1:500 Millipore (USA) 

 

Table 2. Secondary antibodies 

Antibody – Antigenicity Working dilution Company 

Alexa Fluor 488 - Goat anti-rabbit 

1:1000 Life Technologies (USA) Alexa Fluor 488 - Goat anti-mouse 

Alexa Fluor 594 - Goat anti-mouse 

 

3.3. Stereotaxic surgeries  

3.3.1. 6-OHDA lesions  

 All the experiments were done after the consent from the Portuguese national authority for 

animal research, Direcção Geral de Alimentação e Veterinária (ID: DGAV28421) and Ethical 

Subcommittee in Life and Health Sciences (SECVS; ID: SECVS-008/2013, University of Minho), 

conducted in accordance with the local regulations on animal care and experimentation (European 

Union Directive 2010/63/EU). Eight-weeks old Wistar-Han male rats  (Charles River, Barcelona) were 

housed in pairs, in appropriate cages, under standard controlled conditions (12 h light/12 h dark 

cycles; RT at 22-24°C and 55% humidity; food and water ad libitum). Animals were handled for 1 week 
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before the beginning of the injections, in order to reduce the stress induced by the surgical procedures. 

Therefore, for surgical procedures, animals were anesthetized with ketamine (Imalgene, Merial, USA)-

medetomidine (Dorbene, Zoetis, Spain) [75 mg/kg; 0.5 mg/kg, intraperitoneally (i.p)], placed on a 

stereotaxic frame (Stoelting, USA), and unilaterally injected using a 30-gauge needle Hamilton syringe 

(Hamilton, Switzerland), with either vehicle (Sham group, n=9) or 6-OHDA hydrochloride (Sigma, USA) 

(6-OHDA group, n=25) directly into the medial forebrain bundle (MFB) [coordinates related to Bregma: 

AP= -4.4 mm, ML= - 1.0 mm, DV= -7.8 mm; (Paxinos and Watson, 2007)]. At a rate of 1 µl/min, Sham 

animals received 2 µl of 0.2 mg/ml of ascorbic acid in 0.9% NaCl and the 6-OHDA animals were 

injected with 2 µl of 6-OHDA hydrochloride (4 µg/µl) with 0.2 mg/ml of ascorbic acid in 0.9% NaCl. 

After each injection the needle was left in place for 2 min in order to avoid any backflow up the needle 

tract. Behavioral assessment was performed three weeks after surgery. 

 

3.3.2. Surgical treatment - Injection of hMSCs, hNPCs and CM 

 Five weeks after the lesion, the animals received cell transplants (hMSCs and hNPCs) and their 

secretome. As previously described, under ketamine-medetomidine [75 mg/kg; 0.5 mg/kg, i.p.] 

anesthesia, the animals were placed on a stereotaxic frame, and unilaterally injected, using a 30-gauge 

needle Hamilton syringe, with either vehicle (Neurobasal A medium: 6-OHDA control group; n=5), 

hMSCs (n=4), hNPCs (n=5), hMSCs CM (n=6) or hNPCs CM (n=5) directly in the SNpc (coordinates 

related to Bregma: AP= - 5.3mm, ML= -1.8 mm, DV=-7.4mm) and striatum (coordinates related to 

Bregma: AP= -1.3 mm, ML= 4.7 mm, DV= -4.5 mm; AP= -0.4 mm, ML= 4.3 mm, DV= -4.5 mm; AP= 

0.4 mm, ML= 3.1 mm, DV= -4.5 mm; AP= 1.3 mm, ML= 2.7 mm; DV= -4.5 mm) (Paxinos and 

Watson, 2007). 6-OHDA-control group received 4 µl of Neurobasal A medium in the SNpc and 2 µl in 

each coordinate of striatum at a rate of 1 µl/min. Cell transplanted groups received 200 000 cells in 

SNpc and 50 000 cells in each coordinate of striatum. CM-injected animals received 4 µl in the SNpc 

and 2 µl in each coordinate of striatum at a rate of 1 µl/min. After each injection the needle was left in 

place for 2 min in order to avoid any backflow up the needle tract. At one week, four weeks and seven 

weeks after treatments, behavioral assessment was performed (Figure 4).  
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Figure 4. Experimental design. 

PD model was induced by a 6-OHDA unilateral injection. 3 weeks later the animals were submitted to a first behavioral 

analysis to validate the model. Afterwards, the animals were treated with hMSCs, hNPCs and their secretome in the SNPc 

and striatum. After this, behavioral analysis (1, 4 and 7 weeks after transplantation) was performed, and the animals were 

posteriorly sacrificed. 

 

3.4. Behavioral assessment 

3.4.1. Rotarod  

 The Rotarod test was used to assess motor coordination and balance of the animals as 

previously described (Monville et al., 2006). All animals were pre-trained on an automated 4-lane 

Rotarod unit (3376-4R, TSE systems, USA) with 7 cm diameter drums (which are machined with 

grooves to improve grip) in order to get a stable performance. The training consisted of four trials during 

3 days, under an accelerating protocol starting at 4 rpm and reaching 40 rpm in 5 min. As the speed of 

rotation is increases, it becomes more difficult for the animal to keep its balance. The animals were 

allowed to rest at least 20 min between each trial. At the fourth day using the same protocol, the 

animal latency to fall was recorded.  

 

3.4.2. Skilled paw reaching test (Staircase)  

 The skilled paw reaching test (also named staircase test) was assessed using double staircase 

boxes (80300, Campden Instruments Ltd., UK) as previously described (Montoya et al., 1991). This 

test was developed to provide the basic assessment of the independent forelimb use in skilled reaching 

and grasping test. Briefly, this type of apparatus consists of a clear chamber with a hinged lid (285 x 90 

x 60 mm). A narrow compartment, with a central platform running along its length, is connected to the 

chamber. The removable double staircase with 7 steps on each side can be inserted in the space 

between the platform and the box walls. Five pellets were placed into each well of the double staircase 
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apparatus. In the first day, the rats were familiarized with the test, with the pellets available for 10 min. 

In the test session, animals were placed inside the box, having 15 min to reach, retrieve and eat the 

food pellets. All sessions were performed at the same time of the day (during 7 days) and with food 

deprived animals. After each test period, animals were removed from the staircase boxes and the 

remaining (left over) pellets were counted. In the last 2 days it was performed a forced-choice task, in 

which the animals were forced to choose one of the steps-side of the double staircase (left or right), 

evaluating in this way the motor impairments of the affected side.  

 

3.4.3. Apomorphine turning behavior (Rotameter) 

 Rotation asymmetry was performed under the influence of the apomorphine in order to obtain 

an estimate of the extent of DA depletion in each animal as previously described (Carvalho et al., 

2013). For this purpose, animals were injected subcutaneously with 0.05 mg/kg apomorphine 

hydrochloride  (Sigma, USA) dissolved in 1% of ascorbic acid in 0.9% NaCl, an then placed on 

automated metal testing bowls (MED-RSS, Med Associates, USA) during 45 min. Full body turns were 

counted and data was expressed as net contralateral rotations, with rotation toward the side of the 

lesion given a positive value. Net rotational behavior represents the number of contralateral turns minus 

the number of ipsilateral turns. As apomorphine is a strong DA agonist, its repeated use could lead to 

an overstimulation of the DAergic system, which could impair the adequate interpretation of the impact 

of the treatments on the functional outcomes of the animals. Therefore, this test was only used to select 

the animals that were truly injured upon 6-OHDA lesions (Bibbiani et al., 2005; Poewe and Wenning, 

2000; Trenkwalder et al., 2015).  

 

3.5. Histological analysis   

After 13 weeks (including the development of the lesion and consequent treatment) animals were 

sacrificed with sodium pentobarbital (Eutasil, 60 mg/kg, i.p., Ceva Saúde Animal, Portugal) and 

transcardially perfused using 4% paraformaldehyde with 0.1% 1X PBS. Subsequently, the brains were 

stored in 30% sucrose solution with 0.1% azide before heading to histological processing.   

 

3.5.1. Tyrosine hydroxylase immunohistochemistry   

Striatal and mesencephalon coronal sections (including SNpc) were obtained using a vibratome 

(VT1000S, Leica, Germany) with a thickness of 50 µm and processed as free-floating sections. Four 

series of consecutive slices were obtained and storage at -20°C in a cryopreservation solution with 
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ethylene glycol and 30% sucrose. 

Initially, the inhibition of endogenous peroxidase activity was performed using a solution of 1X 

PBS with 3% hydrogen peroxidase (H2O2) for 20 min.  Then, the slices were permeabilized in 0.1% PBS-

T (for 10 min) followed by blockage using a solution of 1X PBS with 5% NBCS during 2 h. After this, 

slices were incubated overnight at 4°C with rabbit TH primary antibody diluted in 1X PBS with 2% 

NBCS (TH, 1:2000, Millipore, USA). Afterwards, the slices were washed with 0.1% PBS-T (three times 

for 10 min). Then, after incubation for 30 min at RT with a biotinylated anti-rabbit secondary antibody 

(LabVison, USA), the sections were incubated with strepptavidine-peroxidase solution (LabVison, USA) 

for 30 min at RT. Slices were afterwards immersed in 1X Tris-HCl buffer for 10 min and the antigen 

visualization was performed using 3,3i-diaminobenzidine tetrahydrocloride (DAB, Sigma, USA) (25 mg 

of DAB in 50 mL of 1X Tris-HCL with 12.5 µl of H2O2). The slices were mounted on superfrost slides 

and allowed to dry in the dark. After 24 h, thionin counter-coloration was performed and the sections 

were coverslipped using entellan (Merck KGaA, Germany). 

 

3.5.2. Stereological analysis  

 In order to have a representative sampling between all the animals, four identical TH-labeled 

slices covering the entire mesenphalon were chosen, including all the portions of the SNpc. Using a 

brightfield microscope (BX51, Olympus, Japan) equipped with a digital camera (PixeLINK PL-A622, 

CANIMPEX Enterprises Ltd., Canada), and with the help of Visiopharm integrator system software 

(V2.12.3.0, Denmark), the boundaries of SNpc area was drawn. The delineation of this region was 

performed through identification of anatomic standard reference points and with the help of the rat 

brain atlas (Paxinos and Watson, 2007). Counting of total TH-immunopositive cells in the SNpc area 

was performed on both hemispheres (40 x magnification), and the data were presented as the 

percentage (%) of remaining TH+ cells in the lesioned side compared to the control side. All the counting 

and analysis was performed under blind conditions. 

 

3.5.3. Striatal fiber density measurement 

 Total immunoreactivity of TH-positive fibers was measured by densitometry, being this method 

a gross estimation of the parkinsonian pathology as described by Febbraro et al. (Febbraro et al., 

2013). For this purpose, TH-immunostained striatal sections (four sections per animal) representing the 

coordinates of injection sites (within the striatum) were selected and photographed (1 x magnification) 

under brightfield illumination (SZX16, Olympus, Japan) fitted with a DP-71 digital camera (Olympus, 
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Japan). All image analysis was completed using the ImageJ software (ImageJ v1.48, National Institute 

of Health, USA). Micrographs were converted to grey scale and analyzed for grey intensity after 

calibrating ImageJ program. This was done using the “optical density step tablet” to determine the 

optical density (O.D.) of the selected sections and performed according to program instructions. From 

this, striatum O.D. values were determined in both hemispheres using a 1.0 mm2 rectangular grid, 

encompassing injection sites, as determined by anatomical references and rat brain atlas (Paxinos and 

Watson, 2007). Corpus callosum (internal control) O.D. was also measured in both hemisphere sides, 

to avoid nonspecific background. TH striatal fiber densities were determined by calculating the O.D. 

difference between the lesioned side and the corpus callosum, as well as, between the intact striatum 

and corpus callosum. The extent of the immunostaining on lesioned side was expressed as a 

percentage of the intact side (contralateral striatum).  

 

3.5.4. BrdU administration and in vivo immunostaining  

 Rats were injected daily with 50 mg/kg (i.p.) of 5-bromo-2-deoxyuridine (BrdU; Sigma, USA) 

during 5 days before the sacrifice. Afterwards, striatal coronal sections were obtained by vibratome with 

a thickness of 50 µm and processed as described above. As first approach, sections were 

permeabilized with 0.3% PBS-T (three times for 6 min), and pre-treated with HCl (2M) for 45 min at RT. 

Then the slices were washed with 1X PBS (three times for 6 min) and incubated in 1X PBS with 10% 

NBCS during 30 min for endogenous blocking. After that, sections were incubated overnight at 4ºC with 

rat BrdU primary antibody (1:100; Abcam, UK) for proliferation detection and rabbit TH primary 

antibody for DAergic neurons, diluted in 1X PBS with 2% of FCS. Sections were then washed in 1X PBS 

(three times for 6 min) and incubated with secondary antibodies: Alexa Fluor 488 goat anti-rat (Life 

Technologies, USA) and Alexa Fluor 594 goat anti-rabbit (Life Technologies, USA) during 2 h at RT. 

Then the slices were stained with DAPI, and mounted on slides using immu-mount.   

 Images were obtained with a confocal microscope (FV1000, Olympus, Japan) using the 

software FV10-ASW 2.0c (Olympus, Japan), presenting part of SEZ and striatum (five sections per 

animal were analyzed for a n=3/group).  

 

3.6. Proteomics - Mass Spectrometry and SWATH Acquisition  

3.6.1. In gel digestion/Sample preparation 

 hMSCs and hNPCs CM was firstly concentrated (100X) using a 5 kDA cut-off concentrator 

(Vivaspin, GE Healthcare, UK) by ultracentrifugation at 3000 g during 45 min. Proteomic analysis of the 
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hMSCs and hNPCs CM was performed at Dr.Bruno Manadas Laboratory (Proteomic Unit of 

CNC/Biocant) and the outcomes of this were analysed in our laboratory. For this purpose, the samples 

were precipitated using the Trichloroacetic acid (TCA, Sigma, USA) – Acetone (Sigma, USA) procedure. 

TCA was added to each sample to a final concentration of 20% (v/v), followed by 30 minutes of 

incubation at -80ºC and centrifugation at 20 000 g for 20 min. Protein pellets were washed with ice-

cold  (-20°C) acetone. Briefly, the pellets were solubilized in acetone, aided by ultrasonication, followed 

by a centrifugation at 20 000 g for 20 min. The washed pellets were ressuspended in 40 µL 2X 

Laemmli buffer (BioRad, USA), aided by ultrasonication and denaturation at 95°C, and 10 µL of each 

replicate (in a total of three replicates per condition) were used to create a pooled sample for protein 

identification.   

 After denaturation, the replicates and pooled samples were alkylated with acrylamide and 

subjected in gel digestion by using the short-GeLC approach (Anjo et al., 2014). Briefly, the entire 

sample was loaded in a “4–20% TGX Stain-Free Gel” (Bio-Rad, USA) and subjected to a partially 

electrophoretic separation: 15 min at 110 V to allow the samples to enter into the gel. After SDS-PAGE 

proteins were visualized with Colloidal Coomassie Blue. The staining was performed as previously 

described (Candiano et al., 2004) with slight modifications (Manadas et al., 2009). The entire lanes 

were sliced into three parts and each part was sliced in small pieces and processed. Gel pieces were 

destained using the destaining solution (50 mM ammonium bicarbonate and 30% acetonitrile) following 

by a washing step with water. Gel pieces were dehydrated on Concentrador Plus/Vacufug Plus 

(Eppendorf, Germany). Then, were added 75 µL of trypsin (0.01 µg/µL solution in 10 mM ammonium 

bicarbonate) to the dried gel bands and left for 15 min on ice to rehydrate de gel pieces. After this 

period, 30 µL of 10 mM ammonium bicarbonate were added and in-gel digestion was performed 

overnight in the dark at RT. After the digestion, the excess solution from gel pieces were collected to a 

low binding microcentrifuge tube (LoBind, Eppendorf, Germany) and peptides were extracted from the 

gel pieces by sequential addition of three solutions of acetonitrile (ACN) in 1% formic acid (FA) (30%, 

50%, and 98% of ACN, respectively). After the addition of each solution, the tubes were shaken in the 

thermomixer (Eppendorf, Germany) at 1050 rpm for 15 min and the solution was collected to the tube 

containing the previous fraction. At this stage, the peptides extracted from the three fraction of each 

replicate sample were combined into a single sample for quantitative analysis. All the peptides mixtures 

were dried (preferentially not completely) by rotary evaporation under vacuum. Before performing the 

liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis, the peptide 

mixtures were subjected to SPE using OMIX tips with C18 stationary phase (Agilent Technologies, USA) 
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as recommended by the manufacture. Eluates were dried by rotator evaporation, avoiding to totally 

evaporate the samples and peptides mixtures were ressuspended in 20 µL solution of 2% ACN and 

0.1% FA followed by vortex, spin and sonication in water bath [2 min with pulses of 1-1 s sonication 

followed by 1 s break pulse, at 20% intensity, in a sonicator VibraCell 750 watts (Sonics&Materials, 

USA)]. In order to remove insoluble material the peptide mixture were then centrifuged for 5 min at 14 

000 g and collected into the proper vial for LC-MS injection.  

 

3.6.2. SWATH acquisition 

 Samples were analyzed on a Triple TOF 5600 System (ABSciex, USA) in two phases: 

information-dependent acquisition (IDA) of the pooled samples and SWATH (Sequential Windowed data 

independent Acquisition of the Total High-resolution Mass Spectra) acquisition of each individual 

sample. Peptides were resolved by LC (nanoLC Ultra 2D, Eksigent, USA) on a Micro LC column 

ChromXP C18CL (300 µm ID × 15cm length, 3 µm particles, 120 Å pore size, Eksigent, USA) at 5 

µL/min with a multistep gradient: 0-2 min linear gradient from 5 to 10 %, 2-45 min linear gradient from 

10 % to 30 % and, 45-46 min to 35 % of acetonitrile in 0.1 % FA.  Peptides were eluted into the mass 

spectrometer using an electrospray ionization source (DuoSpray Source, ABSciex, USA) with a 50 µm 

internal diameter (ID) stainless steel emitter (New Objective, USA).  

 IDA experiments were performed for each 3 peptides mixtures per samples. The mass 

spectrometer was set to scanning full spectra of ions (350-1250 m/z range) for 250 ms, followed by up 

to 100 MS/MS scans (100–1500 m/z from a dynamic accumulation time - minimum 30 ms for 

precursor above the intensity threshold of 1000, in order to maintain a cycle time of 3.3 s). Candidate 

ions with a charge state between +2 and +5 and counts above a minimum threshold of 10 counts per 

second were isolated for fragmentation and one MS/MS spectra was collected before adding those ions 

to the exclusion list for 25 seconds (mass spectrometer operated by Analyst TF 1.7, ABSciex, USA). 

Rolling collision was used with a collision energy spread of 5 eV. Peptide identification and library 

generation were performed with Protein Pilot software (v5.1, ABSciex, USA), using the following 

parameters: i) search against a database composed by Homo Sapiens from SwissProt (release at April 

2016), and malE-GFP or against a database composed by Homo Sapiens and Bovine from SwissProt 

(release at April 2016), and malE-GFP; ii) acrylamide alkylated cysteines as fixed modification and iii) 

trypsin as digestion type. An independent False Discovery Rate (FDR) analysis using the target-decoy 

approach provided with Protein Pilot software was used to assess the quality of the identifications and 
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positive identifications were considered when identified proteins and peptides reached a 5% local FDR 

(Sennels et al., 2009; Tang et al., 2008).  

 For SWATH-MS based experiments, the mass spectrometer was operated in a looped product 

ion mode (Gillet et al., 2012) and the same chromatographic conditions used as in the IDA run 

described above. The SWATH-MS setup was designed specifically for the samples to be analyzed, in 

order to adapt the SWATH windows to the complexity of the set of samples to be analyzed. A set of 60 

windows of variable width (containing 1 m/z for the window overlap) was constructed covering the 

precursor mass range of 350-1250 m/z. A 250 ms survey scan (350-1500 m/z) was acquired at the 

beginning of each cycle for instrument calibration and SWATH-MS spectra were collected from 100–

1500 m/z for 50 ms, resulting in a cycle time of 3.25 s from the precursors ranging from 350 to 1250 

m/z. The collision energy for each window was determined according to the calculation for a charge +2 

ion centered upon the window with variable collision energy spread (CES) according with the window. 

 A specific library of precursor masses and fragment ions was created by combining all files 

from the IDA experiments, and used for subsequent SWATH processing. Libraries were obtained using 

Protein PilotTM software (v5.1, ABSciex, USA) with the same parameters as described above. Data 

processing was performed using SWATH processing plug-in for PeakView (v2.0.01, ABSciex, USA). 

Briefly, peptides were selected automatically from the library using the following criteria: (i) the unique 

peptides for a specific targeted protein were ranked by the intensity of the precursor ion from the IDA 

analysis as estimated by the ProteinPilot software and (ii) Peptides that contained biological 

modifications and/or were shared between different protein entries/isoforms were excluded from 

selection. Up to 15 peptides were chosen per protein, and SWATH quantitation was attempted for all 

proteins in library file that were identified below 5% local FDR from ProteinPilot searches. In SWATH 

acquisition data peptides are confirmed by finding and scoring peak groups, which are a set of fragment 

ions for the peptide. 

Target fragment ions, up to 5, were automatically selected and peak groups were scored following the 

criteria previously described (Lambert et al., 2013). Peak group confidence threshold was determined 

based on a FDR analysis using the target-decoy approach and 1% extraction FDR threshold was used for 

all the analyses. Peptide that met the 1% FDR threshold in at least two of the three biological replicates 

were retained, and the peak areas of the target fragment ions of those peptides were extracted across 

the experiments using an extracted-ion chromatogram (XIC) window of 4 min with 100 ppm XIC width. 

The levels of the human proteins were estimated by summing all the transitions from all the peptides 
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for a given protein [an adaptation (Collins et al., 2013)] and normalized to the internal standard (malE-

GFP). 

 

3.7. Data analysis  

 Statistical analysis was performed using IBM SPSS Statistics ver.22 (IBM Co., USA) and 

graph’s representation using GraphPad Prism ver.6 (GraphPad Software, La Jolla, USA).  

  For the evaluation of the in vitro assay a one-way ANOVA was applied in order to compare the 

mean values for the three groups. Statistical evaluation for animal behavior tests after 6-OHDA 

injections was performed using an independent sample t-test, and repeated measures ANOVA if an 

evaluation along time was desired. After treatments, the behavior and histological data was analyzed 

using one-way ANOVA in order to compare the mean values for the six groups. If an evaluation along 

time was required, a mixed design factorial ANOVA was performed. Regarding proteomic analysis, the 

differences between the two tested conditions were evaluated using an independent sample t-test (for 

each protein individually).  

 Normality was measured using the Kolmogorov-Smirnov and Shapiro-Wilk statistical tests and 

taking into account the respective histograms and measures of skewness and kurtosis. Equality of 

variances and Sphericity were measured using the Levene’s and Mauchly’s tests, respectively, and was 

assumed when p>0.05. Multiple comparisons between groups were accomplished through the 

Bonferroni statistical test.  

 Values were accepted as significant if the p-value was higher than 0.05 and all results were 

expressed as group mean±SEM (standard error of the mean). Effect size was calculated using the 

Cohen’s d or η2
partial.  
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4. RESULTS 

 

4.1. Neuronal differentiation of hNPCs induced by hMSCs and hNPCs conditioned 

medium  

 hNPCs grow as neurospheres (Figure 5A) in the presence of PPRF-h2 serum-free medium as 

previously described (Baghbaderani et al., 2010). Typically, upon removal of PPRF-h2 medium hNPCs 

lose their neurosphere-like conformation, adhere to tissue culture plastic and spontaneously start to 

differentiate (Figure 5B). 

 

 

Figure 5. Expansion of hNPCs derived from telencephalon in vitro. 

(A) In the presence of PPRF-h2 growth medium, continued cell division generates non-adherent neurospheres. (B) 

Spontaneous differentiation into neural phenotypes upon PPRF-h2 removal. (Scale bar: 100 µm). 

 

 Regarding the effects of hMSCs and hNPCs CM on the differentiation of hNPCs, results have 

revealed distinct trends (Figure 6; Table 3). Indeed, immunocytochemistry analysis revealed that when 

hNPCs were incubated for 5 days with the hMSCs secretome there was a significant increase in the cell 

population expressing beta III tubulin (intermediate neuronal state of maturation, Figure 6G) and MAP-2 

(mature neurons, Figure 6K) when compared to the control group (incubation with Neurabasal A 

medium, Figure 6E, H-I, L). Additionally, it was possible to observe that the secretome of hMSCs also 

induced an increased differentiation of beta III tubulin and MAP-2 positive cells when compared to the 

secretome of hNPCs (Figure 6F, H, J, L). Regarding the DCX positive cells (immature neurons, Figure 

6A-D) no differences were found between groups.  
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Figure 6. In vitro differentiation of hNPCs. 

hMSCs secretome was able to significantly increase the differentiation of hNPCs into (G) beta III tubulin-positive cells and (K) 

MAP-2-positive cells when compared to the (F, J)  secretome of hNPCs and to the (E, I) control group (H, L). Data presented 

as mean±SEM. n=3. *p<0.05, ***p<0.001. CTR: control group (Neurobasal A medium); CMN: hNPCs conditioned medium; 

CMM: hMSCs conditioned medium. (Scale bar: 50 µm).   
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Table 3. Statistical analysis of the in vitro assay (Data presented as mean±SEM) 

 

4.2. In vivo assay  

4.2.1. Phenotypic characterization of 6-OHDA lesions  

 To further evaluate the functional integrity of the DAergic system after the injection of 6-OHDA, 

and therefore select the animals that were truly injured, the rotameter test was performed at the end of 

the behavior assessment (rotarod and staircase tests). 3 weeks after the 6-OHDA injections, statistical 

analysis revealed differences in the apomorphine-induced turning behavior, resulting from a significantly 

higher number of rotations in the 6-OHDA-injected animals when compared to the Sham group (Figure 

7A; Table 4). In addition, also the motor performance of the animals was affected by the 6-OHDA 

injections. Motor coordination and balance, measured by the rotarod test, was found to be impaired in 

animals injected with 6-OHDA (Figure 7B; Table 4). In the staircase test, used to assess the forelimb 

use and skilled motor function, was also observed that the 6-OHDA-injected animals were evidently 

affected when compared to Sham animals (Figure 7C; Table 4). Furthermore, a significant effect was 

observed for factor time (days) and interaction between time and group (Table 4). Moreover, in the 

forced-choice task (in which animals were forced to choose one of the steps-side), the 6-OHDA-injected 

animals were also found to be significantly impaired in the left side (the affected side) when compared 

to the Sham animals (Figure 7D; Table 4).   

Markers Control hNPCs CM hMSCs CM Statistical test, significance, effect size 

DCX 19.5±2.7 21.4±7.5 36.8±2.1 F(2,7)=5.0, p=0.045, η2
partial=0.588 

Beta III tubulin 18.9±5.7 9.4±8.7 44.6±0.91 F(2,4)=15.3, p=0.013, η2
partial=0.884 

MAP-2 19.5±5.3 30.5±7.0 53.3±3.8 F(2,19)=10.9, p=0.001, η2
partial=0.535 
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Figure 7. Behavioral characterization of 6-OHDA-induced lesions.  

(A) Apomorphine-induced turning behavior (rotameter) revealed that 6-OHDA-injected animals exhibited intense turning 

behavior when compared to Sham group. 6-OHDA-injected animals also presented significant impairment in motor 

coordination on the (B) rotarod test and in (C,D) the paw-reaching test performance. Sham: n=9, 6-OHDA: n=25. Data 

presented as mean±SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

Table 4. Statistical analysis of the phenotypic characterization of the 6-OHDA lesions (Data presented as 

mean±SEM)  

Behavior tests Sham 6-OHDA Statistical test, significance, effect size 

Rotameter 0±0 386.3±28.9 t(28)=8.7, p<0.0001, Cohen’s d=0.899 

Rotarod 192.3±24.1 114.9±11.1 t(27)=3.3, p=0.003, Cohen’s d=0.555 

Staircase 

Day 1 20.2±2.4 4.9±1.2 Treatment effect: 

F(1,32)=31.8, p<0.0001, η2
partia=0.498 

Time effect: F(2.8,90.2)=35.4, p<0.0001, 
η2

partial=0.525 

Interaction time-group: 

F(2.8,90.2)=4.5, p=0.006, η2
partia=0.124 

Day 2 30.0±3.1 10.1±2.4 

Day 3 38.8±2.9 13.4±2.8 

Day 4 41.1±2.6 14.2±2.8 

Day 5 44.1±3.0 14.5±3.1 

Forced-choice right 52.7±7.6 36.5±5.4 t(32)=1.6, p=0.119, Cohen’s d=0.308 

Forced-choice left 30.8±6.6 5.3±2.6 t(32)=4.4, p<0.001,  Cohen’s d=0.604 
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4.2.2. Transplantation of hMSCs, hNPCs and conditioned medium 

 In order to address the effects of hMSCs and hNPCs transplantation and its CM (i.e. 

secretome) in 6-OHDA-injected animals, the motor performance was assessed at 1, 4 and 7 weeks 

after treatments through the rotarod and staircase tests, as previously described.  

 

4.2.2.1. Rotarod 

 Regarding motor coordination and balance, assessed by the rotarod test, statistical analysis 

showed a significant effect for the factor treatment and for the factor time (weeks), but no interaction 

between these factors (Table 5). When we compared the animals injected with cells (hNPCs and 

hMSCs) and its CM with the untreated group 6-OHDA, the CM injected animals (of both hMSCs and 

hNPCs) displayed a positive trend on the latency to fall (Figure 8). In addition to this, when we 

compared CM-injected animals with cells-transplanted animals, we were able to observe a significant 

improvement of motor coordination performance promoted by the hMSCs and hNPCs CM when 

compared to hNPCs-injected group (p< 0.05, Figure 8). 

 

 

Figure 8. Motor coordination performance 1, 4 and 7 weeks after the transplantation of hMSCs, hNPCs 

and its CM (i.e. secretome) in the SNpc and striatum.  

Latency to fall was measured in the accelerating rotarod test, demonstrating that the hMSCs and hNPCs CM-injected 

animals had a significant improvement in their motor coordination when compared to the hNPCs-transplanted group. Sham: 

n=7, 6-OHDA control: n=5, hMSCs: n=4, hNPCs: n=5, hMSCs CM: n=5, hNPCs CM: n=5. Data presented as mean±SEM. 

*p<0.05. Sham animals statistically different from all the other groups, #p<0.001. 
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Table 5.  Statistical analysis of the rotarod test after treatments (Data presented as mean±SEM)  

 

4.2.2.2. Staircase  

 The skilled paw reaching test was used to assess the forelimb use and the fine motor 

coordination of the animals. Statistical analysis revealed a significant effect for the factor treatment and 

for the factor time (weeks), but no interaction between these two factors (Table 6). Comparing the 

animals injected with CM with the untreated group (6-OHDA), post-hoc analysis revealed that the 

injection of CM (from both hMSCs and hNPCs) led to a significant improvement on the success rate of 

eaten pellets (p<0.05, Figure 9A). Moreover, we were also able to observe that hMSCs CM ameliorate 

the performance in the injected animals when compared to the hNPCs-transplanted group (p<0.05, 

Figure 9A).  

 Regarding the forced-choice task, in which the animals were forced to choose one of the steps-

side of the double staircase, statistical analysis revealed an effect for the factor treatment and for the 

factor time (weeks), but no effect in the interaction between these factors (Figure 9B-C; Table 7 and 

Table 8). Regarding the left side (the affected side), when we compared animals injected with the cells 

(hNPCs and hMSCs) and its CM with the untreated group 6-OHDA, hMSCs CM-injected animals 

displayed a positive trend on the success rate of eaten pellets when compared to the untreated group 6- 

OHDA (Figure 9B).  

 

 

 

 

 

 

 

 

Group After lesion 1 week 4 weeks 7 weeks 
Statistical test, significance, 

effect size 

Sham 192.3±24.1 200.8±17.1 203.8±20.0 182.8±15.5 Treatment effect: 

F(5,25)=15.2, p<0.0001, η2
partial=0.753 

Time effect: 

F(3,75)=3.5, p=0.018, η2
partial=0.124 

Interaction time-group: 

F(15,75)=0.8, p=0.669, η2
partial=0.139 

6-OHDA control 110.9±10.5 98.0±18.3 65.5±15.4 59.3±12.0 

hMSCs 117.7±1.9 94.5±12.41 69.0±16.8 92.5±18.9 

hNPCs 109.8±34.5 66.35±1.2 76.4±29.2 47.7±9.9 

hMSCs CM 111.35±23.05 111.0±21.7 100.1±16.9 100.8±22.0 

hNPCs CM 120.7±7.6 128.9±26.1 123.0±37.8 119.6±32.0 
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Figure 9. Skilled motor performance 1, 4 and 7 weeks after the transplantation of hMSCs, hNPCs and its 

CM (i.e. secretome) in the SNpc and striatum.   

(A) Paw reaching performance of rats (through staircase test) demonstrated a significant improvement of the forelimb 

coordination of the hMSCs and hNPCs CM-injected animals when compared to the untreated group 6-OHDA. The animals 

injected with hMSCs CM also presented significant improvements when compared to the hNPCs-transplanted group.  When 

the animals were submitted to the (B, C) paw reaching forced performance task, the animals injected with hMSCs CM 

displayed positive trend in skilled motor performance when compared to the untreated group 6-OHDA regarding the left side 

(the affected side). Performance of rats is expressed as success rate of eaten pellets. Sham: n=9, 6-OHDA control: n=5, 

hMSCs: n=4, hNPCs: n=5, hMSCs CM: n=6, hNPCs CM: n=5. Data presented as mean±SEM. *p<0.05. Sham animals 

statistically different from all the other groups, #p<0.001.  
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Table 6. Statistical analysis of the staircase test after treatments (Data presented as mean±SEM) 

Group After lesion 1 week 4 weeks 7 weeks 
Statistical test, significance, effect 

size 

Sham 34.9±2.2 51.7±3.9 61.5±5.4 66.6±6.6 
Treatment effect: 

F(5,28)=13.9, p<0.0001, η2
partial=0.712 

Time effect: 

F(1.6,43.7)=49.4, p<0.0001, η2
partial=0.638 

Interaction time-group: 

F(7.8,43.7)=1.2, p=0.305, η2
partial=0.180 

6-OHDA control 5.7±2.8 9.7±8.1 22.2±7.6 21.8±5.1 

hMSCs 6.19±5.0 22.14±4.1 24±3.3 26.8±2.8 

hNPCs 3.6±2.1 15.7±6.7 20.6±6.0 22.6±5.5 

hMSCs CM 9±9.0 28.0±4.5 35.4±3.3 39.8±3.4 

hNPCs CM 9.62±5.1 26.1±4.0 36.9±2.2 42.2±2.9 

 

Table 7. Statistical analysis of the forced choice task for the left side after treatments (Data presented as 

mean±SEM) 

Group After lesion 1 week 4 weeks 7 weeks 
Statistical test, significance, effect 

size 

Sham 39.6±4.2 56.2±8.0 68.6±7.7 77.1±8.7 
Treatment effect: 

F(5,28)=8.5, p<0.0001, η2
partial=0.604 

Time effect: 

F(3,84)=7.1, p<0.001, η2
partial=0.203 

Interaction time-group: 

F(15,84)=1.1, p=0.407, η2
partial=0.159 

6-OHDA control 0.6±0.6 1.1±1.1 2.9±2.9 8±6.7 

hMSCs 2.1±2.1 17.9±9.1 18.6±8.9 17.4±11.8 

hNPCs 0±0 12.6±7.6 10.9±9.4 12.0±7.0 

hMSCs CM 0.7±0.7 28.1±14.1 27.6±6.2 31.4±10.0 

hNPCs CM 0.6±0.6 21.1±12.9 17.1±9.0 26.3±15.6 

 

Table 8. Statistical analysis of the forced choice task for the right side after treatments (Data presented as 

mean±SEM) 

Group After lesion 1 week 4 weeks 7 weeks 
Statistical test, significance, effect 

size 

Sham 63.3±2.8 67.6±6.9 70.8±7.3 78.1±5.9 
Treatment effect: 

F(5,28)=3.0, p=0.028, η2
partial=0.346 

Time effect: 
F(1.8,49.9)=12.7, p<0.0001, η2

partial=0.311 

Interaction time-group: 
F(8.9,49.9)=0.6, p=0.778, η2

partial=0.099 

6-OHDA control 54.3±2.9 48.6±15.3 47.6±10.1 53.1±12.9 

hMSCs 56.2±3.4 51.4±9.6 48.6±8.4 53.6±7.9 

hNPCs 45.7±4.4 51.4±4.2 41.4±7.9 45.0±2.1 

hMSCs CM 56±4.7 60.9±10.6 63.3±9.4 68.6±7.7 

hNPCs CM 61.4±4.4 65.1±12.0 70.5±11.6 77.1±7.6 
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4.3. Assessment of the extension of the lesion 

 In order to analyze the effects of the 6-OHDA injections as well as the resulting treatments, 

histological analyses for TH was performed. From the results we observed that there was a significant 

decrease of DAergic neurons after the injection of 6-OHDA into the MFB (Figure 10A-F; Table 9). 

Statistical analyses demonstrated that the injection of the hMSCs CM most likely play a role in the 

survival of DAergic neurons, leading to a significant increase of TH-positive cells in the SNpc when 

compared to the untreated group 6-OHDA (p<0.05, Figure 10G). The same observations were also 

found in the striatum, by assessing TH-positive fibers through densitometry analysis (Figure 11A-F; 

Table 10).  Comparing the animals injected with cells (hMSCs and hNPCs) and its CM with the 

untreated group 6-OHDA, statistical analysis revealed that hMSCs CM was able to increase the TH 

expression levels when compared to the untreated group 6-OHDA (p<0.05, Figure 11G). 

 

Table 9. Statistical analysis of the TH-positive cells in the SNpc (Data presented as mean±SEM) 

Group Mean±SEM Statistical test, significance, effect size 

Sham 83.5±3.6 

 
F(5,28)=54.2, p<0.0001, η2

partial=0.906 

 

6-OHDA control 1.8±0.1 
hMSCs 6.7±1.9 
hNPCs 6.7±2.8 

hMSCs CM 21.5±8.5 
hNPCs CM 16.2±6.1 

 

Table 10. Statistical analysis of the TH-positive fibers in the striatum (Data presented as mean±SEM) 

Group Mean±SEM Statistical test, significance, effect size 

Sham 82.9±4.6 

 

F(5,25)=71.6, p<0.0001, η2
partial=0.952 

 

6-OHDA control 12.8±1.3 
hMSCs 18.7±1.6 
hNPCs 14.0±1.8 

hMSCs CM 27.5±2.6 
hNPCs CM 24.9±4.7 
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Figure 10. Representative micrographs of SNpc slices stained for TH.  

Compared to the (A) Sham group, all the animals that were submitted to 6-OHDA injection presented a reduction of TH cells 

(B-F). However, animals injected with (E) hMSCs CM presented a significant TH-positive staining cells when compared to (B) 

6-OHDA-control group (G). Sham: n=9, 6-OHDA control: n=5, hMSCs: n=4, hNPCs: n=5, hMSCs CM: n=6, hNPCs CM: n=5. 

Data presented as mean±SEM. *p<0.05. Sham animals statistically different from all the other groups, #p<0.001. (Scale 

bar: 2000 µm).  
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Figure 11. Representative micrographs of striatum slices stained for TH.  

Compared to the (A) Sham group, all the animals that were submitted to 6-OHDA injection presented a reduction of the TH 

positive fibers (B-F). However, animals injected with (E) hMSCs CM presented a significant TH-positive staining when 

compared to (B) 6-OHDA-control group (G). Sham: n=6, 6-OHDA control: n=5, hMSCs: n=4, hNPCs: n=5, hMSCs CM: n=6, 

hNPCs CM: n=5. Data presented as mean±SEM. *p<0.05. Sham animals statistically different from all the other groups, 

#p<0.001. (Scale bar: 2000 µm). 
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4.4. Secretome of hNPCs and hMSCs increased BrdU and TH-positive cells 

 Qualitative analysis of the SEZ and striatum (Figure 12) indicates that the secretome of both 

hMSCs and hNPCs (Figure 12E-F) increased the expression of BrdU and TH-positive cells in the lesion 

side when compared to the untreated group 6-OHDA (Figure 12B) and to the cell-transplanted groups 

(Figure 12C-D). Interestingly, we have observed that hMSCs CM seems to be more prone to induce 

DAergic neuronal differentiation in the lesion side (Figure 12E, BrdU+TH co-localization), although 

quantitative analysis is further required to ensure this assumption.  

 

 

Figure 12. Animals were injected daily with BrdU 5 days before sacrifice. 

Histological sections were immunostained for BrdU (green) and TH (red). Nuclei were labeled with DAPI. Qualitative analysis 

indicates that the secretome of (E) hMSCs is able to induce TH neuronal differentiation (BrdU-positive/TH-positive cells) in 6-

OHDA animals, a fact that was not observed in the (B) untreated group (6-OHDA) neither in groups transplanted with (C-D) 

cells or with (F) hNPCs CM.  
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4.5. hMSCs and hNPCs secretome proteomic analysis   

 In order to further understand the differences evidenced on the in vitro and in vivo studies, the 

secretome from both hMSCs and hNPCs was characterized through a non-targeted proteomic approach 

based analysis namely, LS-MS/MS and SWATH acquisition. From proteomic analysis, we observed that 

the secretome of hMSCs present a different pattern of protein expression when compared to the 

secretome of hNPCs (Figure 13A-B). In line with this, through the use of the Venn diagram software 

(http://bioinformatics.psb.ugent.be/webtools/Venn/) we were able to identify 691 proteins in the 

secretome of hMSCs and 675 proteins in the secretome of hNPCs, in which 633 proteins were 

common to the two conditions (Figure 13C). 

 

 

Figure 13. Proteomics - Heatmap and Venn diagram. 

Graphical representation of hMSCs and hNPCs CM proteomic analysis by LS-MS/MS and SWATH acquisition. Peaks 

detected after CM analysis showed that the pattern of protein expression is different between (A) hMSCs CM and (B) hNPCs 

CM. Proteomic analysis identified more proteins in hMSCs CM (691 proteins) when compared to the hNPCs CM (675 

proteins), in which 633 proteins were common to the two conditions (C). n=3.   



 

52 

 Among these 633 proteins identified in common in the secretome of hMSCs and hNPCs, 590 

were quantified. From these 590 proteins, further analysis revealed that these two cell populations were 

able to secrete a panel of proteins with neuroregulatory actions on the CNS (Figure 14) such as 

Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), Thioredoxin reductase 1 (TrxR1), 14-3-3 

proteins, Macrophage migration inhibitory factor (MIF), Superoxidase dismutase-cytoplasmatic (SODC), 

Superoxidase dismutase-mitochondrial (SODM), Ezrin, Radixin, Protein deglycase DJ-1 and 

Peroxiredoxin-1 (Prdx1), which were significantly more expressed in the hMSCs CM (Figure 14). Other 

important proteins were also expressed in both hMSCs and hNPCs CM such as Clusterin, Pigment 

epithelium-derived factor (PEDF), Semaphorin-7A (SEM7A), Glia derived nexin (GDN), Dickkopf 3, 

Galectin-1, Cystatin C (Cys C), Cahdherin-2 and Fibronectin, although no statistical differences were 

found between the two cell populations (Figure 14).  

 In addition to this, we have also identified specific proteins that were strictly expressed by each 

cell population, presenting also important roles in CNS physiology. Regarding hMSCs CM, we were able 

to identify the presence of Prosaposin, Gremlin, and Beta-1,4-galactosyltransferase 1 whereas, in the 

hNPCs CM were identified the Interleukin-6 (IL-6) and Prefoldin.  



 

 

 

Figure 14. Specific hMSCs and hNPCs CM proteins with neuroregulatory potential in CNS physiology. 

Comparative analysis of the secreted paracrine factors collected from the hMSCs and hNPCs CM proteins: UHCL1 (upregulated in hMSCs CM), PEDF, 14-3-3teta (upregulated in hMSCs CM), 

Clusterin, Cadherin-2, TrxR1 (upregulated in hMSCs CM), SODC (upregulated in hMSCs CM), SODM, Ezrin (upregulated in hMSCs CM), Radixin (upregulated in hMSCs CM), MIF (upregulated in 

hMSCs CM), GDN (upregulated in hNPCs CM), Dickkopf 3, SEM7A, Galectin-1, Cys C, DJ-1 (upregulated in hMSCs CM), 14-3-3zeta/delta (upregulated in hNPCs CM), 14-3-3- epsilon 

(upregulated in hMSCs CM), Prdx1 (upregulated in hMSCs CM), and Fibronectin. Data presented as mean±SEM. n=3. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. IS: internal standard. 
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5. DISCUSSION 

 

 The limited regeneration capacity of CNS represents a challenge for the development of new 

therapeutic strategies. Therefore, there as been an increasing interest on the development of cell-based 

protocols for the treatment of CNS disorders, including PD. Due to their ability of self-renewal and 

differentiation potential, stem cells have been proposed as promising therapeutic tools (Dantuma et al., 

2010). Compelling evidence suggests that adult stem cells, such as hMSCs and hNPCs, are able to 

exert therapeutical effects when applied in the CNS (Azari et al., 2010; Joyce et al., 2010; Kim et al., 

2013; Suksuphew and Noisa, 2015). Throughout the years most of these beneficial effects (after stem 

cells transplantation) were mainly attributed to their differentiation capacity. However, in recent years 

there was a paradigm shift, in which different reports have shown that the release of neurotrophic 

paracrine factors (i.e. secretome) is the main route by which these stem cell populations can mediate 

improvements in the CNS (Drago et al., 2013; Teixeira et al., 2015). Based on such evidences, the 

initial in vitro experiments performed in the present report focused on exploring the effects of the 

hMSCs and hNPCs secretome on the neuronal differentiation of hNPCs, revealed that both hMSCs and 

hNPCs secretome were able to induce the differentiation of human CNS-derived cells. Indeed, as shown 

in Figure 6, when hNPCs were incubated with the hMSCs secretome an increased differentiation of 

hNPCs into neuronal lineages - both intermediate mature neurons (beta III tubulin positive cells) and 

mature neurons (MAP-2 positive cells) - was observed when compared to the control group. This is in 

line to what Sart and colleagues (Sart et al., 2014) had already reported regarding the effects of hMSCs 

secretome on hNPCs differentiation and maturation. Moreover, they observed that hMSCs secretome 

was able to enhance the proliferation, migration and neurite extension of hNPCs, correlating these 

observations with presence of bioactive molecules in the secretome namely, FGF-2, TGF-β1 and BDNF. 

Also with HUCPVCs secretome, Teixeira and colleagues (Teixeira et al., 2015) observed an increase in 

the differentiation of hNPCs into neuronal lineages. In addition to the above-referred results, we also 

observed that in comparison to the hNPCs secretome, the hMSCs secretome was significantly more 

efficient in promoting neuronal differentiation of hNPCs (Figure 6F-H and 6J-L). This result was 

interesting, while simultaneously puzzling, as no references on the literature have mentioned the in vitro 

application of the hNPCs secretome in the modulation of neuronal differentiation. Nonetheless, 

although the mechanisms by which hMSCs and hNPCs secretome modulates the behavior of neural 

progenitors still remains unclear, its application in the CNS have already demonstrated therapeutical 

effects, even in the context of disease as PD (Drago et al., 2013). 
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 In order to further understand which molecules, present in hMSCs and hNPCs secretome, 

could be involved in observed results, a non-targeted proteomic approach (by LC-MS/MS and SWATH 

acquisition) was performed. The results revealed that hMSCs and hNPCs produce additional molecules, 

than those already reported for these kind of studies, with neuroregulatory actions both in vitro and in 

vivo CNS models of injury and disease, as wells as other processes such as neurite growth and/or 

neuronal protection, survival and differentiation (Figure 14). From these, 14-3-3 proteins, UCHL1, MIF, 

Ezrin and Radixin were found to be upregulated in the secretome of hMSCs CM (Figure 14). For 

instance, 14-3-3 proteins are known to play crucial roles in several biological processes including cell 

migration and proliferation, neurite outgrowth, as well as in response to cells damage and prevention of 

apoptosis, including in CNS-derived cells (Chen et al., 2007; Fraga et al., 2013). Moreover, Ramser and 

colleagues (Ramser et al., 2010) demonstrated that 14-3-3 zeta protein stimulated the neurite 

outgrowth from cultures rat hippocampal neurons. On the other hand, UCHL1, an important 

component of ubiquitin-proteasome system (UPS), as been described as a potential target of some 

neurodegenerative disorders like PD (Gong and Leznik, 2007). Although the role of the UCHL1 in 

neurogenesis it is poorly understood, Sakurai and colleagues (Sakurai et al., 2006) showed that this 

molecule regulated the morphology of NPCs and positively modulated their differentiation. In addition, 

previous results from our group have also identified the presence of 14-3-3 proteins and UCHL1 in 

hMSCs secretome, correlating its presence with the increase of neuronal cell densities in cortical and 

cerebellar primary cultures in vitro (Fraga et al., 2013). Regarding MIF, Ohta et al. (Ohta et al., 2012) 

showed that this protein was able to promote the survival and proliferation of NPCs, suggesting that it 

may be a potential therapeutic factor, capable of activating NPCs, for the treatment of degenerative 

brain disorders. From the molecular point of view, Zhang and co-workers (Zhang et al., 2013) showed 

that MIF not only promoted the proliferation but also induced the differentiation of NPCs into neuronal 

lineages through the modulation of the Wnt/β-Catenin signal pathway. Similarly, Ezrin and Radixin were 

found to be important mediators of neuritogenesis and regulators of neuronal migration and 

differentiation, respectively (Matsumoto et al., 2014; Persson et al., 2010; Persson et al., 2013).  

Interestingly, in addition to the above-referred proteins, we have also identified the presence of specific 

molecules only in the hMSCs secretome namely, beta-1,4-galactotransferase. According to Huang and 

colleagues (Huang et al., 1995), beta-1,4-galactotransferase is an important mediator of neurite 

initiation, neurite formation and elongation. Altogether, these evidences clearly indicates hMSCs 

secretome as potential modulator of neuronal cell survival and differentiation, and could explain the 

differences observed between hMSCs and hNPCs in the in vitro experiments. Nevertheless, we also 
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identified in the secretome of hMSCs and hNPCs, other specific proteins with neuroregulatory potential 

such as GDN, Cys C, Galectin-1, PEDF, Clusterin, SEM7A and Cadherin 2, although no statistical 

differences were found between the two conditions (Figure 14). For instance, GDN and Cys C are 

known to play crucial roles in the enhancement of neurite outgrowth and neuroprotection through the 

prevention of oxidative stress (Farmer et al., 1990; Hoffmann et al., 1992; Nishiyama et al., 2005; 

Tizon et al., 2010). On the other hand, Galectin-1 and PEDF have been described as important 

regulators involved in neurogenesis, playing a role on neural stem cells self-renewal and differentiation 

(Kajitani et al., 2009; Ramirez-Castillejo et al., 2006; Sakaguchi and Okano, 2012; Yabe et al., 2010). 

Clusterin and SEM7A have also been described as enhancers of neuroprotection, neurogenesis (e.g. 

neuronal process formation, elongation and plasticity) and axonal outgrowth (Kang et al., 2005; 

Pasterkamp and Kolodkin, 2003; Pasterkamp et al., 2003; Pucci et al., 2008; Wicher et al., 2008). In 

the case of Cadherin-2, one of the important molecules for cell to cell interaction in the developing CNS, 

Gao et al. (Gao et al., 2001) suggested that it played a role in neurodifferentiation of P19 cells, possibly 

through the Wnt signaling pathways (involved in the majority of the processes required to generate fully 

functional neurons in the CNS) (Munji et al., 2011).  

 As stated in the introduction, PD is characterized by a progressive and extensive loss of DAergic 

neurons in the SNpc and their terminals in the striatum, resulting in debilitating motor problems 

(Mahlknecht and Poewe, 2013). In the in vivo experiments of the present study, we used a well-defined 

rat model of PD, induced by unilateral injection of 6-OHDA into the MFB (Carvalho et al., 2013). This 

model mimics the progressive nature of DAergic degeneration process in human PD, leading to the 

appearance of the main motor deficits associated to PD (Carvalho et al., 2013; Simola et al., 2007). 

Indeed, as shown in the apomorphine-turning behavior (Figure 7A), 6-OHDA-injected animals displayed 

an intense turning behavior when compared to the Sham group, indicating a clear decline in the 

functional integrity of the DAergic system. In addition, we verified that the motor function of these 

animals was also affected, which is in agreement with previous reports (Monville et al., 2006; Truong et 

al., 2006). In fact, the animals presented impairments in motor coordination and balance, as assessed 

by the rotarod test, and in the skilled motor function addressed by the staircase test (Figure 7B-D). In 

the present work, we intended to analyze the effects of secretome derived from hMSCs and hNPCs on 

the animal motor performance and on the DAergic neuronal survival after 6-OHDA injections, 

comparing its outputs to the ones obtained from the animals transplanted with cells. Regarding the 

effects on balance and motor coordination, assessed by the rotarod test, we were able to observe that 

the CM injection (either from hMSCs and hNPCs) was able to improve the motor performance of the 
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injected animals when compared to the hNPCs-transplanted group (Figure 8). Although no statistical 

differences were found, the CM-injected animals also displayed a positive trend on latency to fall when 

compared to the untreated group 6-OHDA (Figure 8). Similar outcomes were also observed in the 

staircase test (which assesses the paw reaching motor coordination), in which we verified that the 

injection of hMSCs and hNPCs CM improved the success rate of eaten pellets in the CM-injected 

animals when compared to the untreated group 6-OHDA (Figure 9A). In addition to this, we have also 

observed that the animals injected with hMSCs CM had a significant better performance when 

compared to the hNPCs-transplanted group (Figure 9A). In the forced-choice task, in the left side (the 

affected side), we observed a remarkable trend in the animals injected with hMSCs CM when compared 

to the 6-OHDA group (Figure 9B). After histological analysis, we also observed that the administration of 

the hMSCs (significantly increase) and hNPCs secretome was able to increase the TH-positive neurons 

and fibers (Figure 10 and Figure 11) when compared to untreated group 6-OHDA. These histological 

outcomes nicely correlate with positive functional improvements that we observed for the animals 

treated with secretome. Similar results, regarding hMSCs secretome, were also observed in previous 

work from our group, showing that the injection of hMSCs CM in the SNpc and striatum of 6-OHDA-

lesioned animals, potentiated the recovery of DAergic neurons (estimated by neuronal densities in SNpc 

and striatum), thereby supporting the recovery observed in the animals’ motor performance outcomes 

(data not published). Although no reports have been presented with hMSCs secretome in PD animal 

models to date, the secretion of bioactive factors is known to play a critical role in the mechanisms of 

action of these cells (Lavoie and Rosu-Myles, 2013). In fact, several studies, using different hMSCs 

populations, reported that they were able to attenuate the abnormal behavior and the loss TH 

immunoreactive nerve terminals, to protect spared DAergic neurons as well as display anti-apoptotic 

effects, attributing these outcomes to the secretion of factors such as BDNF, GDNF and SDF-1α (Cova 

et al., 2010; Sadan et al., 2009; Wang et al., 2010) 

 As mentioned earlier, the use of hNPCs CM also led to the enhancement of the motor 

performance of the animals.  In fact, hNPCs have been described as a potential stem cell source for the 

treatment of neurological disorders, including PD, and their beneficial effects are also attributed to their 

neurotrophic capability (Ben-Hur, 2008; Drago et al., 2013). Likewise hMSCs, currently, there are no 

studies regarding the application of hNPCs secretome in animal models of PD. However, different 

studies have suggested that hNPCs were able to increase the behavioral performance of lesioned 

animals, TH innervation and DAT activity, as well as the capacity to create host environments rich in 

trophic and neuroprotective support to rescue imperiled host cells, though the secretion of SCF, IGF-1 
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and GDNF (Behrstock et al., 2006; Ebert et al., 2008; Ourednik et al., 2002; Yasuhara et al., 2006). 

The outcomes of the present work show that stem cells secretome could represent a new wave of 

possible therapeutic strategies for PD. This is extremely important as, instead of transplanting cells, one 

could envisage therapies where just the secretome could be used. By doing so, we could overcome 

some of the current limitations of stem cell based therapies namely, the number of available cells for 

transplantation and cell death after this procedure. Moreover, in a comparative study recently guided by 

Teixeira and colleagues (Teixeira et al., 2015), it was observed that the animals injected only with the 

secretome of hMSCs into the hippocampus of adult rats, disclosed similar levels of neuronal survival 

and differentiation to those observed in cell-transplanted groups.  

 Also in the context of PD, our proteomic based analysis revealed the secretion of important 

neuroregulatory candidates both in hMSCs and hNPCs secretome (Figure 14). From these, PEDF was 

found to have important actions in the migration, differentiation and neuroprotection mechanisms both 

in vitro and in vivo (Falk et al., 2010; Yabe et al., 2010). Moreover, as stated by Falk and colleagues 

(Falk et al., 2010) when comparing with other factors (e.g. GDNF family) PEDF has advantages in the 

ease of delivery and functional outcomes. Moreover, Falk and collegues (Falk et al., 2009) reported that 

PEDF is not only neurotrophic but also neuroprotective in both 6-OHDA and rotenone primary midbrain 

culture model of PD. DJ-1, also identified in the secretome of both hMSCs and hNPCs, it is a 

multifunctional protein deeply linked to PD. DJ-1 has various functions, including transcriptional 

regulation, anti-oxidative stress reaction, and chaperone, protease and mitochondrial regulation (Ariga 

et al., 2013; Miyazaki et al., 2008). The loss of its function is thought to result in the onset of PD (Ariga 

et al., 2013; Miyazaki et al., 2008). DJ-1 is also a stress sensor and its expression is increased upon 

various stresses, including oxidative stress (Ariga et al., 2013; Martinat et al., 2004; Yokota et al., 

2003), modulating signaling pathways critical to cell survival such as PTEN and AKT (Aleyasin et al., 

2010; Kim et al., 2005). Moreover, Inden and colleagues (Inden et al., 2006) showed that the 

administration of DJ-1 protein prevented DAergic cell death and restored locomotion in a 6-OHDA-rat 

model of PD, suggesting DJ-1 as a possible pharmaceutical target for PD. Another study conducted by 

Paterna et al. (Paterna et al., 2007) demonstrated that viral overexpression of DJ-1 reduced nigral 

dopamine neuronal loss in a MPTP mice model of PD. Similarly, it was also possible to identify other 

proteins known as anti-oxidant factors such as TrxR1, Prdx1, and SOD enzymes (Vlamis-Gardikas and 

Holmgren, 2002; Zhou et al., 2008; Zhu et al., 2012). For instance, Arodin and colleagues (Arodin et 

al., 2014) by examining the expression of redox proteins in human postmortem PD brains, found that 

the levels of Trx1 and TrxR1 were significantly decreased. Using a Caenorhabditis elegans (C.elegans) 
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model, the authors concluded that in the absence of TrxR1, DAergic neurons were significantly more 

sensitive to 6-OHDA with significantly increased neuronal degradation, suggesting that this molecule is 

important for neuronal survival in dopamine-induced cell death (Arodin et al., 2014). Regarding Prdx1, 

its overexpression in DAergic neuronal cell line has shown to counteract 6-OHDA-induced DAergic cell 

death by acting as ROS (superoxidase anion and H2O2) scavenger (Lee et al., 2008). Among the ROS-

scavenging enzymes, SOD enzymes are often regarded as the first line of defense against ROS (Zhou et 

al., 2008). Indeed, Filograna and co-workers (Filograna et al., 2016), using human SH-SY5Y 

neuroblastoma cells, tested the beneficial role of SOD enzymes against paraquat-induced toxicity, 

verifying that both cytosolic (SODC) and mitochondrial (SODM) were effective in protecting cells against 

superoxide overproduction. Fibronectin, has also been described to exert neuroinflammatory and 

neuroprotective associated roles (Wang et al., 2013). In fact, evidence showed that Fibronectin could 

bind integrin and growth factor receptors (such as IGF-1 receptor) to trans-activate intracellular signaling 

events, such as the phosphatidylinositol 3 kinase/protein kinase B pathway, leading to the increase of 

growth factor-like neuroprotective actions (Wang et al., 2013). Dickkopf 3, was also identified in the 

secretome of both hMSCs and hNPCs, and has been described as an important modulator of DAergic 

neuronal differentiation through the Wnt/β-catenin signaling pathway (Fukusumi et al., 2015).  

 In addition to this, we discovered specific proteins that were restricted to each condition, 

presenting also important roles in CNS physiology. In the hMSCs CM, besides the beta-1,4-

galactotransferase already mentioned above, we were able to identify the presence of Prosaposin and 

Gremlin, whereas in the hNPCs CM were identified the IL-6 and Prefoldin. Prosaposin (also known as 

SGP-1) is an intriguing multifunctional protein that plays roles both intracellularly, as regulator of 

lysossomal enzyme function, and extracellularly, as a secreted protein with neuroprotective and 

glioprotective effects (Meyer et al., 2014). For instance, Prosaposin treatment was shown to upregulate 

the anti-apoptotic factor Bcl-2, and down-regulated the pro-apoptotic factor BAX, inhibiting MPTP-

induced toxicity both in vitro (in SH-SY5Y cells) and in vivo (on DAergic neurons in the PD model mice), 

suggesting an action on signaling pathways that inhibit apoptosis (Gao et al., 2013). Regarding Gremlin, 

Phani and collegues (Phani et al., 2013) proposed that Gremlin could be a novel neuroprotective factor 

for DAergic neurons. In this study, the authors showed that the addition of exogenous Gremlin 

(transcriptionally increased in the VTA in response to MPTP) was able to significantly protected DAergic 

neurons against MPTP in vitro (using DAergic cell lines and primary SN neuronal cultures). Additionally, 

it also exhibited neuroprotective ability when used in an MPTP mouse model of PD (TH-positive 

neuronal survival was significantly increased when compared to controls). Taken together these results 
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suggest that Gremlin may play an endogenous role in protecting VTA against neurotoxins, but also is 

capable of protecting DAergic neurons, therefore providing an opportunity for the development of novel 

PD therapeutic approaches (Phani et al., 2013). On the other hand, IL-6 has been reported to play 

important roles in scavenging superoxidase radicals by increasing the antioxidant enzyme activity, 

through STAT pathways, and protect neuronal cells from death (Hirano et al., 2000). Prefoldin was 

found to be an important protein in the context of PD, as it has been (Takano et al., 2013) suggested as 

a protective factor in aggregated α-synuclein-induced cell death. Interestingly, in addition to the proteins 

mentioned above, studies from our group, demonstrated (using targeted proteomic-based approaches) 

that molecules like VEGF, NGF, BDNF, IL-6 and GDNF, described as stronger modulators neuronal 

survival and differentiation, as well as modulators of DAergic survival and protection, (Allen et al., 2013; 

Hirano et al., 2000; Pucci et al., 2008; Xiong et al., 2011) were also present in hMSCs secretome 

(Teixeira et al., 2016).  

 In addition to these results, besides the DAergic survival, it has also been described that the 

modulation of neurogenesis may also play a role in the recovery of PD (Geraerts et al., 2007; 

Regensburger et al., 2014). Indeed, from a qualitative analysis of SEZ and striatum (Figure 12) also 

indicates that the secretome of both hMSCs and hNPCs increased the expression of BrdU and TH-

positive cells in the lesion side. More intriguing, we have observed that hMSCs CM seems to be more 

prone to induce DAergic neuronal differentiation in the lesion side. Park et al. (Park et al., 2012) 

demonstrated that hMSCs administration significantly augmented neurogenesis in both the SEZ and SN 

of MPTP PD animal model, which led to an increase in the differentiation of NPCs into DAergic neurons 

in the SN. Furthermore, hMSCs-induced EGF modulation appears to be one of underlying contributors 

to the enhancement of neurogenesis by hMSCs (Park et al., 2012). Similarly, Schwerk and colleagues 

(Schwerk et al., 2015) verified that ASCs increased neurogenesis in hippocampal and subventricular 

regions in 6-OHDA-lesioned rat brain, correlating this effect with the in vivo BDNF expression. 

Nevertheless, regarding the present work, quantitative analysis and further studies are required 

particularly to: 1) understand how stem cells secretome modulates/control neurogenesis and 2) if and 

how the new differentiated cells integrate into the existing neuronal networks in the context of PD. 

 In summary, the injection of the hMSCs and hNPCs secretome acts as modulator of neuronal 

cell survival and differentiation. In the context of disease, we have found that the injection of secretome 

(regardless the cell populations used) was able to increase the densities and fibers of TH-positive cells, 

a fact that probably explains the improved behavioral performance of the CM-injected animals. Overall, 

our results strongly suggest that the use of the secretome per se may be considered as a possible cell-
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free therapeutic tool for the treatment of PD, since the secretome is able to better modulate the DAergic 

neuronal survival and animal behavior performance when compared to the transplantation of cells. 

Thus, we hypothesize that the modulation effect in DAergic neurons triggered by the hMSCs and hNPCs 

secretome could be related with the presence/expression of specific molecules described throughout 

this work. Furthermore, our findings suggest that, although there is a different secretion profile between 

hMSCs and hNPCs secretome, both led to histological and functional improvements, leading to the 

conclusion that this stimulation by stem cells secretome is not dependent upon the presence of just 

one secreted factor, but several, demonstrating that different factors (secreted by the two populations) 

can achieve the same outcomes, as revealed by our proteomic-based analysis. It is also important to 

note that MSCs are easy to isolate, culture and manipulate in ex vivo culture, and when compared to 

the other sources, such as ESCs or even NSCs, they not imply the ethical and moral questions in their 

isolation, in vitro expansion and further in vivo application. Therefore, MSCs can be the most 

advantageous cell population for the acquisition of the secretome.  
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6. CONCLUDING REMARKS 

 

 As final remarks it can be stated that the work performed and included in this thesis provided 

important insights on the potential use of stem cells secretome as a future cell-free therapeutic tool for 

CNS neurodegenerative disorders, particularly PD. In fact, we observed that the injection of secretome 

(with no cell transplantation) was able to modulate the DAergic neuronal survival and ameliorate the 

motor deficits of a 6-OHDA rat model of PD. Proteomic analysis demonstrated that these outcomes are 

associated with the presence of important neuroregulatory molecules within the secretome, that are 

involved in a different therapeutic mechanisms spanning from antiapoptotic mechanisms, anti-

inflammatory responses, reduction of oxidative stress and endogenous regeneration, stimulation of 

neurogenesis/gliogenesis, cell survival and differentiation, neurite outgrowth, immunomodulation, 

among others. In addition to the many important trophic factors that have been described in the 

literature, PEDF or DJ-1 may be, at least, partly involved on the observed outcomes, which could open 

novel therapeutic and pharmacological opportunities for PD. Although candidate molecules are under 

investigation, further detailed studies are needed to carefully define which factors may be responsible 

for the stem cells secretome-mediated neuroprotective and regenerative properties. Furthermore, it will 

also be important to understand the mechanisms behind the beneficial effects of the secretome, as the 

elucidation of activation or inhibition of molecular pathways, as well as its temporal effects. By doing so 

it could be possible, in a near future, to rationally design new therapeutical strategies for the functional 

recovery of neurological or neurodegenerative disorders, particularly PD, based on the use of stem cells 

secretome.   
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8. SUPPLEMENTARY INFORMATION  
 

Table S1. List of proteins identified in both hMSCs and hNPCs secretome 

Entry Entry name Protein Name_UNIPROT  recommended 

P02751 FINC_HUMAN Fibronectin 

P12111 CO6A3_HUMAN Collagen alpha-3(VI) chain 
P02768 ALBU_HUMAN Serum albumin 

P08123 CO1A2_HUMAN Collagen alpha-2(I) chain 
P02452 CO1A1_HUMAN Collagen alpha-1(I) chain 

Q99715 COCA1_HUMAN Collagen alpha-1(XII) chain 
P21333 FLNA_HUMAN Filamin-A 

P01023 A2MG_HUMAN Alpha-2-macroglobulin 
P08253 MMP2_HUMAN 72 kDa type IV collagenase 

P12109 CO6A1_HUMAN Collagen alpha-1(VI) chain 
P02787 TRFE_HUMAN Serotransferrin 

Q15063 POSTN_HUMAN Periostin 
P08670 VIME_HUMAN Vimentin 

P49327 FAS_HUMAN Fatty acid synthase 
P07996 TSP1_HUMAN Thrombospondin-1 

O43707 ACTN4_HUMAN Alpha-actinin-4  
Q00610 CLH1_HUMAN Clathrin heavy chain 1 

Q15582 BGH3_HUMAN Transforming growth factor-beta-induced protein ig-h3 
P12110 CO6A2_HUMAN Collagen alpha-2(VI) chain 

Q14767 LTBP2_HUMAN Latent-transforming growth factor beta-binding protein 2 
Q16555 DPYL2_HUMAN Dihydropyrimidinase-related protein 2 

P11142 HSP7C_HUMAN Heat shock cognate 71 kDa protein 
P14618 KPYM_HUMAN Pyruvate kinase PKM 

P29401 TKT_HUMAN Transketolase 
P30101 PDIA3_HUMAN Protein disulfide-isomerase A3 

P20908 CO5A1_HUMAN Collagen alpha-1(V) chain 
P13639 EF2_HUMAN Elongation factor 2 

P07437 TBB5_HUMAN Tubulin beta chain 
P05121 PAI1_HUMAN Plasminogen activator inhibitor 1 

P06733 ENOA_HUMAN Alpha-enolase 
P55072 TERA_HUMAN Transitional endoplasmic reticulum ATPase 

P55786 PSA_HUMAN Puromycin-sensitive aminopeptidase 

P26038 MOES_HUMAN Moesin 
P02545 LMNA_HUMAN Prelamin-A/C 

Q71U36 TBA1A_HUMAN Tubulin alpha-1A chain 
P10915 HPLN1_HUMAN Hyaluronan and proteoglycan link protein 1 

P63261 ACTG_HUMAN Actin, cytoplasmic 2 
Q16658 FSCN1_HUMAN Fascin 

Q14766 LTBP1_HUMAN Latent-transforming growth factor beta-binding protein 1 
O75326 SEM7A_HUMAN Semaphorin-7A 

O94985 CSTN1_HUMAN Calsyntenin-1 
P12107 COBA1_HUMAN Collagen alpha-1(XI) chain 

P31150 GDIA_HUMAN Rab GDP dissociation inhibitor alpha 
P07195 LDHB_HUMAN L-lactate dehydrogenase B chain 

P13611 CSPG2_HUMAN Versican core protein 
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P08238 HS90B_HUMAN Heat shock protein HSP 90-beta 
P11021 GRP78_HUMAN 78 kDa glucose-regulated protein 

P12277 KCRB_HUMAN Creatine kinase B-type 
P22314 UBA1_HUMAN Ubiquitin-like modifier-activating enzyme 1 

O75874 IDHC_HUMAN Isocitrate dehydrogenase [NADP] cytoplasmic 
P00558 PGK1_HUMAN Phosphoglycerate kinase 1 

P07585 PGS2_HUMAN Decorin 
P52209 6PGD_HUMAN 6-phosphogluconate dehydrogenase, decarboxylating 

Q15113 PCOC1_HUMAN Procollagen C-endopeptidase enhancer 1 
P36955 PEDF_HUMAN Pigment epithelium-derived factor 

P09486 SPRC_HUMAN SPARC 
P60174 TPIS_HUMAN Triosephosphate isomerase 

P06744 G6PI_HUMAN Glucose-6-phosphate isomerase 
P62258 1433E_HUMAN 14-3-3 protein epsilon 

Q16270 IBP7_HUMAN Insulin-like growth factor-binding protein 7 
P04406 G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase 

P00338 LDHA_HUMAN L-lactate dehydrogenase A chain 
Q14194 DPYL1_HUMAN Dihydropyrimidinase-related protein 1 

P23471 PTPRZ_HUMAN Receptor-type tyrosine-protein phosphatase zeta 
P04075 ALDOA_HUMAN Fructose-bisphosphate aldolase A 

Q01995 TAGL_HUMAN Transgelin 
P08476 INHBA_HUMAN Inhibin beta A chain 

P08603 CFAH_HUMAN Complement factor H 
P27797 CALR_HUMAN Calreticulin 

P04264 K2C1_HUMAN Keratin, type II cytoskeletal 1 
Q12841 FSTL1_HUMAN Follistatin-related protein 1 

P24821 TENA_HUMAN Tenascin 
Q9Y617 SERC_HUMAN Phosphoserine aminotransferase 

P21810 PGS1_HUMAN Biglycan 
Q14195 DPYL3_HUMAN Dihydropyrimidinase-related protein 3 

P23528 COF1_HUMAN Cofilin-1 
P05997 CO5A2_HUMAN Collagen alpha-2(V) chain 

P37837 TALDO_HUMAN Transaldolase 
P51884 LUM_HUMAN Lumican 

Q9BPU6 DPYL5_HUMAN Dihydropyrimidinase-related protein 5 
Q16610 ECM1_HUMAN Extracellular matrix protein 1 

O00391 QSOX1_HUMAN Sulfhydryl oxidase 1 
P23284 PPIB_HUMAN Peptidyl-prolyl cis-trans isomerase B 

P62937 PPIA_HUMAN Peptidyl-prolyl cis-trans isomerase A 
P07237 PDIA1_HUMAN Protein disulfide-isomerase 

P34932 HSP74_HUMAN Heat shock 70 kDa protein 4 
P0DMV9 HS71B_HUMAN Heat shock 70 kDa protein 1B  

P68104 EF1A1_HUMAN Elongation factor 1-alpha 1 
P13645 K1C10_HUMAN Keratin, type I cytoskeletal 10 

P40926 MDHM_HUMAN Malate dehydrogenase, mitochondrial 

P00738 HPT_HUMAN Haptoglobin 
P02461 CO3A1_HUMAN Collagen alpha-1(III) chain 

Q99497 PARK7_HUMAN Protein deglycase DJ-1 
Q08380 LG3BP_HUMAN Galectin-3-binding protein 

P19022 CADH2_HUMAN Cadherin-2 
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P98160 PGBM_HUMAN Basement membrane-specific heparan sulfate proteoglycan core protein 
P50395 GDIB_HUMAN Rab GDP dissociation inhibitor beta 

Q06830 PRDX1_HUMAN Peroxiredoxin-1 
P09211 GSTP1_HUMAN Glutathione S-transferase P 

P61978 HNRPK_HUMAN Heterogeneous nuclear ribonucleoprotein K 
Q13822 ENPP2_HUMAN Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 

P02790 HEMO_HUMAN Hemopexin 
O75083 WDR1_HUMAN WD repeat-containing protein 1 

P08572 CO4A2_HUMAN Collagen alpha-2(IV) chain 
Q14204 DYHC1_HUMAN Cytoplasmic dynein 1 heavy chain 1 

P22626 ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins A2/B1 
P63104 1433Z_HUMAN 14-3-3 protein zeta/delta 

P28074 PSB5_HUMAN Proteasome subunit beta type-5 
Q14697 GANAB_HUMAN Neutral alpha-glucosidase AB 

Q96KP4 CNDP2_HUMAN Cytosolic non-specific dipeptidase 
Q02809 PLOD1_HUMAN Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 

P27695 APEX1_HUMAN DNA-(apurinic or apyrimidinic site) lyase 
P00505 AATM_HUMAN Aspartate aminotransferase, mitochondrial 

P14625 ENPL_HUMAN Endoplasmin 
P18669 PGAM1_HUMAN Phosphoglycerate mutase 1 

P07355 ANXA2_HUMAN Annexin A2 
P35237 SPB6_HUMAN Serpin B6 

P35052 GPC1_HUMAN Glypican-1 
P09936 UCHL1_HUMAN Ubiquitin carboxyl-terminal hydrolase isozyme L1 

P40925 MDHC_HUMAN Malate dehydrogenase, cytoplasmic 
P37802 TAGL2_HUMAN Transgelin-2 

Q13308 PTK7_HUMAN Inactive tyrosine-protein kinase 7 
P09104 ENOG_HUMAN Gamma-enolase 

P16035 TIMP2_HUMAN Metalloproteinase inhibitor 2 
P10809 CH60_HUMAN 60 kDa heat shock protein, mitochondrial 

P23142 FBLN1_HUMAN Fibulin-1 
P30041 PRDX6_HUMAN Peroxiredoxin-6 

P09871 C1S_HUMAN Complement C1s subcomponent 
Q16881 TRXR1_HUMAN Thioredoxin reductase 1, cytoplasmic 

Q9Y240 CLC11_HUMAN C-type lectin domain family 11 member A 
P35908 K22E_HUMAN Keratin, type II cytoskeletal 2 epidermal 

O14594 NCAN_HUMAN Neurocan core protein 
P20618 PSB1_HUMAN Proteasome subunit beta type-1 

P12956 XRCC6_HUMAN X-ray repair cross-complementing protein 6 
P60900 PSA6_HUMAN Proteasome subunit alpha type-6 

Q9NY33 DPP3_HUMAN Dipeptidyl peptidase 3 
P32119 PRDX2_HUMAN Peroxiredoxin-2 

P07339 CATD_HUMAN Cathepsin D 
P27348 1433T_HUMAN 14-3-3 protein theta 

Q9HC38 GLOD4_HUMAN Glyoxalase domain-containing protein 4 

Q9NRN5 OLFL3_HUMAN Olfactomedin-like protein 3 
Q16531 DDB1_HUMAN DNA damage-binding protein 1 

P22392 NDKB_HUMAN Nucleoside diphosphate kinase B 
P07900 HS90A_HUMAN Heat shock protein HSP 90-alpha 

P17174 AATC_HUMAN Aspartate aminotransferase, cytoplasmic 
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O15540 FABP7_HUMAN Fatty acid-binding protein, brain 
Q9BWD1 THIC_HUMAN Acetyl-CoA acetyltransferase, cytosolic 

P11766 ADHX_HUMAN Alcohol dehydrogenase class-3 
P10909 CLUS_HUMAN Clusterin 

O14818 PSA7_HUMAN Proteasome subunit alpha type-7 
O00410 IPO5_HUMAN Importin-5 

Q15907 RB11B_HUMAN Ras-related protein Rab-11B 
P30086 PEBP1_HUMAN Phosphatidylethanolamine-binding protein 1 

P28066 PSA5_HUMAN Proteasome subunit alpha type-5 
Q4ZHG4 FNDC1_HUMAN Fibronectin type III domain-containing protein 1 

Q13838 DX39B_HUMAN Spliceosome RNA helicase DDX39B 
P01034 CYTC_HUMAN Cystatin-C 

P12004 PCNA_HUMAN Proliferating cell nuclear antigen 
P12814 ACTN1_HUMAN Alpha-actinin-1 

P49721 PSB2_HUMAN Proteasome subunit beta type-2 
Q14019 COTL1_HUMAN Coactosin-like protein 

P26022 PTX3_HUMAN Pentraxin-related protein PTX3 
P49321 NASP_HUMAN Nuclear autoantigenic sperm protein 

P01033 TIMP1_HUMAN Metalloproteinase inhibitor 1 
Q14974 IMB1_HUMAN Importin subunit beta-1 

P04792 HSPB1_HUMAN Heat shock protein beta-1 
P02766 TTHY_HUMAN Transthyretin 

P06576 ATPB_HUMAN ATP synthase subunit beta, mitochondrial 
P09651 ROA1_HUMAN Heterogeneous nuclear ribonucleoprotein A1 

P18206 VINC_HUMAN Vinculin 
P07737 PROF1_HUMAN Profilin-1 

Q9BVA1 TBB2B_HUMAN Tubulin beta-2B chain 
P15144 AMPN_HUMAN Aminopeptidase N 

P14314 GLU2B_HUMAN Glucosidase 2 subunit beta 
P09382 LEG1_HUMAN Galectin-1 

O95965 ITGBL_HUMAN Integrin beta-like protein 1 
P25787 PSA2_HUMAN Proteasome subunit alpha type-2 

Q92820 GGH_HUMAN Gamma-glutamyl hydrolase 
O95336 6PGL_HUMAN 6-phosphogluconolactonase 

P13010 XRCC5_HUMAN X-ray repair cross-complementing protein 5 
P60842 IF4A1_HUMAN Eukaryotic initiation factor 4A-I 

P08758 ANXA5_HUMAN Annexin A5 
P49419 AL7A1_HUMAN Alpha-aminoadipic semialdehyde dehydrogenase 

P05067 A4_HUMAN Amyloid beta A4 protein 
P35527 K1C9_HUMAN Keratin, type I cytoskeletal 9 

P23246 SFPQ_HUMAN Splicing factor, proline- and glutamine-rich 
P25789 PSA4_HUMAN Proteasome subunit alpha type-4 

P35579 MYH9_HUMAN Myosin-9 
P23526 SAHH_HUMAN Adenosylhomocysteinase 

Q76M96 CCD80_HUMAN Coiled-coil domain-containing protein 80 

P15121 ALDR_HUMAN Aldose reductase 
Q99879 H2B1M_HUMAN Histone H2B type 1-M 

P26641 EF1G_HUMAN Elongation factor 1-gamma 
P46821 MAP1B_HUMAN Microtubule-associated protein 1B 

P14324 FPPS_HUMAN Farnesyl pyrophosphate synthase 



 

91 

P13667 PDIA4_HUMAN Protein disulfide-isomerase A4 
Q8NBS9 TXND5_HUMAN Thioredoxin domain-containing protein 5 

P23396 RS3_HUMAN 40S ribosomal protein S3 
P62987 RL40_HUMAN Ubiquitin-60S ribosomal protein L40 

P07858 CATB_HUMAN Cathepsin B 
Q15019 SEPT2_HUMAN Septin-2 

P25786 PSA1_HUMAN Proteasome subunit alpha type-1 
P62805 H4_HUMAN Histone H4 

Q08629 TICN1_HUMAN Testican-1 
P61981 1433G_HUMAN 14-3-3 protein gamma 

Q96CG8 CTHR1_HUMAN Collagen triple helix repeat-containing protein 1 
P84077 ARF1_HUMAN ADP-ribosylation factor 1 

Q01581 HMCS1_HUMAN Hydroxymethylglutaryl-CoA synthase, cytoplasmic 
P30044 PRDX5_HUMAN Peroxiredoxin-5, mitochondrial 

Q01469 FABP5_HUMAN Fatty acid-binding protein, epidermal 
Q9BRK3 MXRA8_HUMAN Matrix-remodeling-associated protein 8 

P39019 RS19_HUMAN 40S ribosomal protein S19 
Q14103 HNRPD_HUMAN Heterogeneous nuclear ribonucleoprotein D0 

Q15631 TSN_HUMAN Translin 
Q15084 PDIA6_HUMAN Protein disulfide-isomerase A6 

P61769 B2MG_HUMAN Beta-2-microglobulin 
Q09028 RBBP4_HUMAN Histone-binding protein RBBP4 

O76061 STC2_HUMAN Stanniocalcin-2 
Q68BL8 OLM2B_HUMAN Olfactomedin-like protein 2B 

Q13509 TBB3_HUMAN Tubulin beta-3 chain 
P05155 IC1_HUMAN Plasma protease C1 inhibitor 

O00533 NCHL1_HUMAN Neural cell adhesion molecule L1-like protein 
P68036 UB2L3_HUMAN Ubiquitin-conjugating enzyme E2 L3 

P78371 TCPB_HUMAN T-complex protein 1 subunit beta 
O75368 SH3L1_HUMAN SH3 domain-binding glutamic acid-rich-like protein 

P02792 FRIL_HUMAN Ferritin light chain 
Q01518 CAP1_HUMAN Adenylyl cyclase-associated protein 1 

P11216 PYGB_HUMAN Glycogen phosphorylase, brain form 
Q13263 TIF1B_HUMAN Transcription intermediary factor 1-beta 

P49720 PSB3_HUMAN Proteasome subunit beta type-3 
Q04760 LGUL_HUMAN Lactoylglutathione lyase 

Q92743 HTRA1_HUMAN Serine protease HTRA1 
P52565 GDIR1_HUMAN Rho GDP-dissociation inhibitor 1 

P09493 TPM1_HUMAN Tropomyosin alpha-1 chain 
P62269 RS18_HUMAN 40S ribosomal protein S18 

P35442 TSP2_HUMAN Thrombospondin-2 
P05388 RLA0_HUMAN 60S acidic ribosomal protein P0 

P07686 HEXB_HUMAN Beta-hexosaminidase subunit beta 
P11047 LAMC1_HUMAN Laminin subunit gamma-1 

Q99832 TCPH_HUMAN T-complex protein 1 subunit eta 

P10155 RO60_HUMAN 60 kDa SS-A/Ro ribonucleoprotein 
O00299 CLIC1_HUMAN Chloride intracellular channel protein 1 

Q15149 PLEC_HUMAN Plectin 
P43490 NAMPT_HUMAN Nicotinamide phosphoribosyltransferase 

P50990 TCPQ_HUMAN T-complex protein 1 subunit theta 
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O75390 CISY_HUMAN Citrate synthase, mitochondrial 
P61604 CH10_HUMAN 10 kDa heat shock protein, mitochondrial 

Q12765 SCRN1_HUMAN Secernin-1 
P14866 HNRPL_HUMAN Heterogeneous nuclear ribonucleoprotein L 

P62081 RS7_HUMAN 40S ribosomal protein S7 
Q15181 IPYR_HUMAN Inorganic pyrophosphatase 

Q9Y490 TLN1_HUMAN Talin-1 
P60981 DEST_HUMAN Destrin 

P14550 AK1A1_HUMAN Alcohol dehydrogenase [NADP(+)] 
Q96QV6 H2A1A_HUMAN Histone H2A type 1-A 

P31946 1433B_HUMAN 14-3-3 protein beta/alpha 
P50454 SERPH_HUMAN Serpin H1 

P16949 STMN1_HUMAN Stathmin 
P59998 ARPC4_HUMAN Actin-related protein 2/3 complex subunit 4 

P28072 PSB6_HUMAN Proteasome subunit beta type-6 
Q9UBR2 CATZ_HUMAN Cathepsin Z 

P40227 TCPZ_HUMAN T-complex protein 1 subunit zeta 
P25788 PSA3_HUMAN Proteasome subunit alpha type-3 

P00390 GSHR_HUMAN Glutathione reductase, mitochondrial 
P06865 HEXA_HUMAN Beta-hexosaminidase subunit alpha 

P62826 RAN_HUMAN GTP-binding nuclear protein Ran 
P61158 ARP3_HUMAN Actin-related protein 3 

P19338 NUCL_HUMAN Nucleolin 
P06396 GELS_HUMAN Gelsolin 

P13497 BMP1_HUMAN Bone morphogenetic protein 1 
P20700 LMNB1_HUMAN Lamin-B1 

P61088 UBE2N_HUMAN Ubiquitin-conjugating enzyme E2 N 
P30153 2AAA_HUMAN Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform 

P02765 FETUA_HUMAN Alpha-2-HS-glycoprotein 
Q16851 UGPA_HUMAN UTP--glucose-1-phosphate uridylyltransferase 

P18065 IBP2_HUMAN Insulin-like growth factor-binding protein 2 
Q04917 1433F_HUMAN 14-3-3 protein eta 

P08865 RSSA_HUMAN 40S ribosomal protein SA  
P07910 HNRPC_HUMAN Heterogeneous nuclear ribonucleoproteins C1/C2 

Q13907 IDI1_HUMAN Isopentenyl-diphosphate Delta-isomerase 1 
P28838 AMPL_HUMAN Cytosol aminopeptidase 

P53396 ACLY_HUMAN ATP-citrate synthase 
P41222 PTGDS_HUMAN Prostaglandin-H2 D-isomerase 

Q9NVA2 SEP11_HUMAN Septin-11 
Q15691 MARE1_HUMAN Microtubule-associated protein RP/EB family member 1 

P07093 GDN_HUMAN Glia-derived nexin 
Q9UKK9 NUDT5_HUMAN ADP-sugar pyrophosphatase 

P00441 SODC_HUMAN Superoxide dismutase [Cu-Zn] 
Q9BRA2 TXD17_HUMAN Thioredoxin domain-containing protein 17 

P29279 CTGF_HUMAN Connective tissue growth factor 

P46926 GNPI1_HUMAN Glucosamine-6-phosphate isomerase 1 
P13693 TCTP_HUMAN Translationally-controlled tumor protein 

P05455 LA_HUMAN Lupus La protein 
O15067 PUR4_HUMAN Phosphoribosylformylglycinamidine synthase 

P22692 IBP4_HUMAN Insulin-like growth factor-binding protein 4 
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Q14011 CIRBP_HUMAN Cold-inducible RNA-binding protein 
Q9Y4K0 LOXL2_HUMAN Lysyl oxidase homolog 2 

P13797 PLST_HUMAN Plastin-3 
P63241 IF5A1_HUMAN Eukaryotic translation initiation factor 5A-1 

Q13404 UB2V1_HUMAN Ubiquitin-conjugating enzyme E2 variant 1 
P63244 RACK1_HUMAN Receptor of activated protein C kinase 1 

P09960 LKHA4_HUMAN Leukotriene A-4 hydrolase 
P62701 RS4X_HUMAN 40S ribosomal protein S4, X isoform 

P55060 XPO2_HUMAN Exportin-2 
Q12905 ILF2_HUMAN Interleukin enhancer-binding factor 2 

P30048 PRDX3_HUMAN Thioredoxin-dependent peroxide reductase, mitochondrial 
Q13228 SBP1_HUMAN Selenium-binding protein 1 

P84243 H33_HUMAN Histone H3.3 
P11586 C1TC_HUMAN C-1-tetrahydrofolate synthase, cytoplasmic 

P12955 PEPD_HUMAN Xaa-Pro dipeptidase 
P35241 RADI_HUMAN Radixin 

P04083 ANXA1_HUMAN Annexin A1 
P12081 SYHC_HUMAN Histidine--tRNA ligase, cytoplasmic 

P34897 GLYM_HUMAN Serine hydroxymethyltransferase, mitochondrial 
P60953 CDC42_HUMAN Cell division control protein 42 homolog 

P04217 A1BG_HUMAN Alpha-1B-glycoprotein 
P47756 CAPZB_HUMAN F-actin-capping protein subunit beta 

P54687 BCAT1_HUMAN Branched-chain-amino-acid aminotransferase, cytosolic 
Q15366 PCBP2_HUMAN Poly(rC)-binding protein 2 

P00491 PNPH_HUMAN Purine nucleoside phosphorylase 
P99999 CYC_HUMAN Cytochrome c 

O00154 BACH_HUMAN Cytosolic acyl coenzyme A thioester hydrolase 
P38159 RBMX_HUMAN RNA-binding motif protein, X chromosome 

P10599 THIO_HUMAN Thioredoxin 
P13798 ACPH_HUMAN Acylamino-acid-releasing enzyme 

Q15257 PTPA_HUMAN Serine/threonine-protein phosphatase 2A activator 
O43852 CALU_HUMAN Calumenin 

P15880 RS2_HUMAN 40S ribosomal protein S2 
P37108 SRP14_HUMAN Signal recognition particle 14 kDa protein 

Q15417 CNN3_HUMAN Calponin-3 
P15531 NDKA_HUMAN Nucleoside diphosphate kinase A 

Q969H8 MYDGF_HUMAN Myeloid-derived growth factor  
P00367 DHE3_HUMAN Glutamate dehydrogenase 1, mitochondrial 

P78417 GSTO1_HUMAN Glutathione S-transferase omega-1 
P22234 PUR6_HUMAN Multifunctional protein ADE2 

Q99873 ANM1_HUMAN Protein arginine N-methyltransferase 1 
P68366 TBA4A_HUMAN Tubulin alpha-4A chain 

P33993 MCM7_HUMAN DNA replication licensing factor MCM7 
Q16643 DREB_HUMAN Drebrin 

O94760 DDAH1_HUMAN N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 

P14174 MIF_HUMAN Macrophage migration inhibitory factor 
Q8NCW5 NNRE_HUMAN NAD(P)H-hydrate epimerase  

Q15102 PA1B3_HUMAN Platelet-activating factor acetylhydrolase IB subunit gamma 
Q9NTK5 OLA1_HUMAN Obg-like ATPase 1  

P07477 TRY1_HUMAN Trypsin-1 
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P42574 CASP3_HUMAN Caspase-3 
P51858 HDGF_HUMAN Hepatoma-derived growth factor 

Q05682 CALD1_HUMAN Caldesmon 
P48637 GSHB_HUMAN Glutathione synthetase 

Q53FA7 QORX_HUMAN Quinone oxidoreductase PIG3 
P08133 ANXA6_HUMAN Annexin A6 

Q9UQ80 PA2G4_HUMAN Proliferation-associated protein 2G4 
P49368 TCPG_HUMAN T-complex protein 1 subunit gamma 

P68871 HBB_HUMAN Hemoglobin subunit beta 
P16403 H12_HUMAN Histone H1.2 

Q99436 PSB7_HUMAN Proteasome subunit beta type-7 
Q15365 PCBP1_HUMAN Poly(rC)-binding protein 1 

P15311 EZRI_HUMAN Ezrin 
P67936 TPM4_HUMAN Tropomyosin alpha-4 chain 

P17987 TCPA_HUMAN T-complex protein 1 subunit alpha 
Q8WX77 IBPL1_HUMAN Insulin-like growth factor-binding protein-like 1 

O95865 DDAH2_HUMAN N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 
P15104 GLNA_HUMAN Glutamine synthetase 

P68371 TBB4B_HUMAN Tubulin beta-4B chain 
Q9UHD8 SEPT9_HUMAN Septin-9 

P29966 MARCS_HUMAN Myristoylated alanine-rich C-kinase substrate 
P46783 RS10_HUMAN 40S ribosomal protein S10 

P67775 PP2AA_HUMAN Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform 
Q9H299 SH3L3_HUMAN SH3 domain-binding glutamic acid-rich-like protein 3 

P62942 FKB1A_HUMAN Peptidyl-prolyl cis-trans isomerase FKBP1A 
P43003 EAA1_HUMAN Excitatory amino acid transporter 1 

Q96A72 MGN2_HUMAN Protein mago nashi homolog 2 
P62244 RS15A_HUMAN 40S ribosomal protein S15a 

P13489 RINI_HUMAN Ribonuclease inhibitor 
Q9BUT1 BDH2_HUMAN 3-hydroxybutyrate dehydrogenase type 2 

O14531 DPYL4_HUMAN Dihydropyrimidinase-related protein 4 
P49458 SRP09_HUMAN Signal recognition particle 9 kDa protein 

P68402 PA1B2_HUMAN Platelet-activating factor acetylhydrolase IB subunit beta 
P41250 SYG_HUMAN Glycine--tRNA ligase 

P62851 RS25_HUMAN 40S ribosomal protein S25 
P31948 STIP1_HUMAN Stress-induced-phosphoprotein 1 

P07108 ACBP_HUMAN Acyl-CoA-binding protein 
P60660 MYL6_HUMAN Myosin light polypeptide 6 

O00468 AGRIN_HUMAN Agrin 
Q9Y266 NUDC_HUMAN Nuclear migration protein nudC 

P28065 PSB9_HUMAN Proteasome subunit beta type-9 
Q9Y281 COF2_HUMAN Cofilin-2 

P35268 RL22_HUMAN 60S ribosomal protein L22 
Q92688 AN32B_HUMAN Acidic leucine-rich nuclear phosphoprotein 32 family member B 

P48643 TCPE_HUMAN T-complex protein 1 subunit epsilon 

P62906 RL10A_HUMAN 60S ribosomal protein L10a 
P11940 PABP1_HUMAN Polyadenylate-binding protein 1 

O43776 SYNC_HUMAN Asparagine--tRNA ligase, cytoplasmic 
P18085 ARF4_HUMAN ADP-ribosylation factor 4 

P78330 SERB_HUMAN Phosphoserine phosphatase 
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Q06323 PSME1_HUMAN Proteasome activator complex subunit 1 
P54578 UBP14_HUMAN Ubiquitin carboxyl-terminal hydrolase 14 

P31153 METK2_HUMAN S-adenosylmethionine synthase isoform type-2 
P23919 KTHY_HUMAN Thymidylate kinase 

O15511 ARPC5_HUMAN Actin-related protein 2/3 complex subunit 5 
P02771 FETA_HUMAN Alpha-fetoprotein 

Q14847 LASP1_HUMAN LIM and SH3 domain protein 1 
P33316 DUT_HUMAN Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial 

Q13162 PRDX4_HUMAN Peroxiredoxin-4 
P61457 PHS_HUMAN Pterin-4-alpha-carbinolamine dehydratase 

O00231 PSD11_HUMAN 26S proteasome non-ATPase regulatory subunit 11 
Q16181 SEPT7_HUMAN Septin-7 

Q9NPH2 INO1_HUMAN Inositol-3-phosphate synthase 1 
Q9UHY7 ENOPH_HUMAN Enolase-phosphatase E1  

Q16778 H2B2E_HUMAN Histone H2B type 2-E 
Q9HAV0 GBB4_HUMAN Guanine nucleotide-binding protein subunit beta-4 

O15144 ARPC2_HUMAN Actin-related protein 2/3 complex subunit 2 
Q14914 PTGR1_HUMAN Prostaglandin reductase 1 

P63279 UBC9_HUMAN SUMO-conjugating enzyme UBC9 
O14979 HNRDL_HUMAN Heterogeneous nuclear ribonucleoprotein D-like 

P61247 RS3A_HUMAN 40S ribosomal protein S3a  
Q9UNN8 EPCR_HUMAN Endothelial protein C receptor 

Q96FW1 OTUB1_HUMAN Ubiquitin thioesterase OTUB1 
P27824 CALX_HUMAN Calnexin 

Q86VP6 CAND1_HUMAN Cullin-associated NEDD8-dissociated protein 1 
P35637 FUS_HUMAN RNA-binding protein FUS 

O43175 SERA_HUMAN D-3-phosphoglycerate dehydrogenase 
P28300 LYOX_HUMAN Protein-lysine 6-oxidase 

Q9Y547 IFT25_HUMAN Intraflagellar transport protein 25 homolog 
Q9H0R4 HDHD2_HUMAN Haloacid dehalogenase-like hydrolase domain-containing protein 2 

P28482 MK01_HUMAN Mitogen-activated protein kinase 1 
P16070 CD44_HUMAN CD44 antigen 

P27816 MAP4_HUMAN Microtubule-associated protein 4 
Q13885 TBB2A_HUMAN Tubulin beta-2A chain 

P62140 PP1B_HUMAN Serine/threonine-protein phosphatase PP1-beta catalytic subunit 
P53618 COPB_HUMAN Coatomer subunit beta 

Q9NZL9 MAT2B_HUMAN Methionine adenosyltransferase 2 subunit beta 
P04004 VTNC_HUMAN Vitronectin 

Q9UL46 PSME2_HUMAN Proteasome activator complex subunit 2 
Q9GZT8 NIF3L_HUMAN NIF3-like protein 1  

Q6EEV6 SUMO4_HUMAN Small ubiquitin-related modifier 4 
Q15293 RCN1_HUMAN Reticulocalbin-1 

P62917 RL8_HUMAN 60S ribosomal protein L8 
P52888 THOP1_HUMAN Thimet oligopeptidase 

P28799 GRN_HUMAN Granulins 

P62318 SMD3_HUMAN Small nuclear ribonucleoprotein Sm D3 
P01308 INS_HUMAN Insulin 

P18621 RL17_HUMAN 60S ribosomal protein L17 
P68032 ACTC_HUMAN Actin, alpha cardiac muscle 1 

Q99523 SORT_HUMAN Sortilin 
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Q15819 UB2V2_HUMAN Ubiquitin-conjugating enzyme E2 variant 2 
O43809 CPSF5_HUMAN Cleavage and polyadenylation specificity factor subunit 5 

Q96G03 PGM2_HUMAN Phosphoglucomutase-2 
O76003 GLRX3_HUMAN Glutaredoxin-3 

Q9Y3B8 ORN_HUMAN Oligoribonuclease, mitochondrial 
Q7KZF4 SND1_HUMAN Staphylococcal nuclease domain-containing protein 1 

P35555 FBN1_HUMAN Fibrillin-1 
P14543 NID1_HUMAN Nidogen-1 

Q07954 LRP1_HUMAN Prolow-density lipoprotein receptor-related protein 1 
O14786 NRP1_HUMAN Neuropilin-1 

P03956 MMP1_HUMAN Interstitial collagenase 
P00736 C1R_HUMAN Complement C1r subcomponent 

Q9HCU0 CD248_HUMAN Endosialin 
Q02388 CO7A1_HUMAN Collagen alpha-1(VII) chain 

Q13740 CD166_HUMAN CD166 antigen 
O43854 EDIL3_HUMAN EGF-like repeat and discoidin I-like domain-containing protein 3 

P28070 PSB4_HUMAN Proteasome subunit beta type-4 
Q8IUX7 AEBP1_HUMAN Adipocyte enhancer-binding protein 1 

Q9UBX5 FBLN5_HUMAN Fibulin-5 
P55287 CAD11_HUMAN Cadherin-11 

Q14112 NID2_HUMAN Nidogen-2 
Q96GW7 PGCB_HUMAN Brevican core protein 

P04179 SODM_HUMAN Superoxide dismutase [Mn], mitochondrial 
P61163 ACTZ_HUMAN Alpha-centractin 

Q92626 PXDN_HUMAN Peroxidasin homolog 
Q9BUD6 SPON2_HUMAN Spondin-2 

P19823 ITIH2_HUMAN Inter-alpha-trypsin inhibitor heavy chain H2 
Q7Z7M9 GALT5_HUMAN Polypeptide N-acetylgalactosaminyltransferase 5 

P31949 S10AB_HUMAN Protein S100-A11 
P19105 ML12A_HUMAN Myosin regulatory light chain 12A 

P19367 HXK1_HUMAN Hexokinase-1 
P26599 PTBP1_HUMAN Polypyrimidine tract-binding protein 1 

P62249 RS16_HUMAN 40S ribosomal protein S16 
Q01105 SET_HUMAN Protein SET 

P36222 CH3L1_HUMAN Chitinase-3-like protein 1 
Q13813 SPTN1_HUMAN Spectrin alpha chain, non-erythrocytic 1 

Q6EMK4 VASN_HUMAN Vasorin 
Q9UBG0 MRC2_HUMAN C-type mannose receptor 2 

P02794 FRIH_HUMAN Ferritin heavy chain 
Q07020 RL18_HUMAN 60S ribosomal protein L18 

O14498 ISLR_HUMAN Immunoglobulin superfamily containing leucine-rich repeat protein 
P78539 SRPX_HUMAN Sushi repeat-containing protein SRPX 

Q15233 NONO_HUMAN Non-POU domain-containing octamer-binding protein 
P51149 RAB7A_HUMAN Ras-related protein Rab-7a 

P62820 RAB1A_HUMAN Ras-related protein Rab-1A 

P10768 ESTD_HUMAN S-formylglutathione hydrolase 
O60506 HNRPQ_HUMAN Heterogeneous nuclear ribonucleoprotein Q 

P30050 RL12_HUMAN 60S ribosomal protein L12 
Q96AE4 FUBP1_HUMAN Far upstream element-binding protein 1 

P35080 PROF2_HUMAN Profilin-2 
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P02462 CO4A1_HUMAN Collagen alpha-1(IV) chain 
O14980 XPO1_HUMAN Exportin-1 

Q9Y696 CLIC4_HUMAN Chloride intracellular channel protein 4 
O75223 GGCT_HUMAN Gamma-glutamylcyclotransferase 

P31943 HNRH1_HUMAN Heterogeneous nuclear ribonucleoprotein H 
Q07812 BAX_HUMAN Apoptosis regulator BAX 

P28161 GSTM2_HUMAN Glutathione S-transferase Mu 2 
Q92734 TFG_HUMAN Protein TFG 

P07954 FUMH_HUMAN Fumarate hydratase, mitochondrial 
Q29963 1C06_HUMAN HLA class I histocompatibility antigen, Cw-6 alpha chain 

Q9ULV4 COR1C_HUMAN Coronin-1C 
P00568 KAD1_HUMAN Adenylate kinase isoenzyme 1 

P46108 CRK_HUMAN Adapter molecule crk 
P61586 RHOA_HUMAN Transforming protein RhoA 

P62241 RS8_HUMAN 40S ribosomal protein S8 
P43121 MUC18_HUMAN Cell surface glycoprotein MUC18 

P26639 SYTC_HUMAN Threonine--tRNA ligase, cytoplasmic 
P50991 TCPD_HUMAN T-complex protein 1 subunit delta 

Q13151 ROA0_HUMAN Heterogeneous nuclear ribonucleoprotein A0 
P62857 RS28_HUMAN 40S ribosomal protein S28 

Q15121 PEA15_HUMAN Astrocytic phosphoprotein PEA-15 
P43487 RANG_HUMAN Ran-specific GTPase-activating protein 

O75531 BAF_HUMAN Barrier-to-autointegration factor 
O60888 CUTA_HUMAN Protein CutA 

P42765 THIM_HUMAN 3-ketoacyl-CoA thiolase, mitochondrial 
P55263 ADK_HUMAN Adenosine kinase 

P61353 RL27_HUMAN 60S ribosomal protein L27 
Q86Y38 XYLT1_HUMAN Xylosyltransferase 1 

P06703 S10A6_HUMAN Protein S100-A6 
O75882 ATRN_HUMAN Attractin 

P01008 ANT3_HUMAN Antithrombin-III 
P48681 NEST_HUMAN Nestin 

P26373 RL13_HUMAN 60S ribosomal protein L13 
P50281 MMP14_HUMAN Matrix metalloproteinase-14 

O60462 NRP2_HUMAN Neuropilin-2 
Q6NVV1 R13P3_HUMAN Putative 60S ribosomal protein L13a protein RPL13AP3 

O75367 H2AY_HUMAN Core histone macro-H2A.1 
P55001 MFAP2_HUMAN Microfibrillar-associated protein 2 

P53004 BIEA_HUMAN Biliverdin reductase A 
Q07092 COGA1_HUMAN Collagen alpha-1(XVI) chain 

P49589 SYCC_HUMAN Cysteine--tRNA ligase, cytoplasmic 
Q07666 KHDR1_HUMAN KH domain-containing, RNA-binding, signal transduction-associated protein 1 

Q14764 MVP_HUMAN Major vault protein 
P62854 RS26_HUMAN 40S ribosomal protein S26 

P62277 RS13_HUMAN 40S ribosomal protein S13 

P43034 LIS1_HUMAN Platelet-activating factor acetylhydrolase IB subunit alpha  
P62304 RUXE_HUMAN Small nuclear ribonucleoprotein E 

P16401 H15_HUMAN Histone H1.5 
P42126 ECI1_HUMAN Enoyl-CoA delta isomerase 1, mitochondrial 

P18124 RL7_HUMAN 60S ribosomal protein L7 
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P30530 UFO_HUMAN Tyrosine-protein kinase receptor UFO 
Q9UBP4 DKK3_HUMAN Dickkopf-related protein 3 

P10253 LYAG_HUMAN Lysosomal alpha-glucosidase 
P55083 MFAP4_HUMAN Microfibril-associated glycoprotein 4 

Q9UNM6 PSD13_HUMAN 26S proteasome non-ATPase regulatory subunit 13 
Q00839 HNRPU_HUMAN Heterogeneous nuclear ribonucleoprotein U 

P16930 FAAA_HUMAN Fumarylacetoacetase 
Q99426 TBCB_HUMAN Tubulin-folding cofactor B 

P02788 TRFL_HUMAN Lactotransferrin 
P52597 HNRPF_HUMAN Heterogeneous nuclear ribonucleoprotein F 

Q00688 FKBP3_HUMAN Peptidyl-prolyl cis-trans isomerase FKBP3 
P42785 PCP_HUMAN Lysosomal Pro-X carboxypeptidase 

Q14315 FLNC_HUMAN Filamin-C 
Q15717 ELAV1_HUMAN ELAV-like protein 1 

P53602 MVD1_HUMAN Diphosphomevalonate decarboxylase 
Q99729 ROAA_HUMAN Heterogeneous nuclear ribonucleoprotein A/B 

P56537 IF6_HUMAN Eukaryotic translation initiation factor 6  
O00469 PLOD2_HUMAN Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 

Q15436 SC23A_HUMAN Protein transport protein Sec23A 
P98179 RBM3_HUMAN RNA-binding protein 3 

P69905 HBA_HUMAN Hemoglobin subunit alpha 
Q9NR12 PDLI7_HUMAN PDZ and LIM domain protein 7 

Q14566 MCM6_HUMAN DNA replication licensing factor MCM6 
P32969 RL9_HUMAN 60S ribosomal protein L9 

P02774 VTDB_HUMAN Vitamin D-binding protein 
P01344 IGF2_HUMAN Insulin-like growth factor II 

P02753 RET4_HUMAN Retinol-binding protein 4 
P06748 NPM_HUMAN Nucleophosmin 

P29218 IMPA1_HUMAN Inositol monophosphatase 1 
Q9BZM5 N2DL2_HUMAN NKG2D ligand 2 

O00487 PSDE_HUMAN 26S proteasome non-ATPase regulatory subunit 14 
P06493 CDK1_HUMAN Cyclin-dependent kinase 1 

P62753 RS6_HUMAN 40S ribosomal protein S6 
P05386 RLA1_HUMAN 60S acidic ribosomal protein P1 

P09341 GROA_HUMAN Growth-regulated alpha protein 
Q9UMY4 SNX12_HUMAN Sorting nexin-12 

P62829 RL23_HUMAN 60S ribosomal protein L23 
P62314 SMD1_HUMAN Small nuclear ribonucleoprotein Sm D1 

P67809 YBOX1_HUMAN Nuclease-sensitive element-binding protein 1 
Q6YP21 KAT3_HUMAN Kynurenine--oxoglutarate transaminase 3 

P42766 RL35_HUMAN 60S ribosomal protein L35 
P09874 PARP1_HUMAN Poly [ADP-ribose] polymerase 1 

Q9NR31 SAR1A_HUMAN GTP-binding protein SAR1a 
Q9Y5S9 RBM8A_HUMAN RNA-binding protein 8A 

P16152 CBR1_HUMAN Carbonyl reductase [NADPH] 1 
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Table S2. List of proteins identified in the hMSCs secretome 

Entry Entry name Protein Name_UNIPROT  recommended 

P35555 FBN1_HUMAN Fibrillin 1 
O14672 ADA10_HUMAN Disintegrin and metalloproteinase domain-containg protein 10 

P19652 A1AG2_HUMAN Alpha-1-acid glycoprotein 2 
P15291 B4GT1_HUMAN Beta-1,4-galactosyltransferase 1 

O60869 EDF1_HUMAN Endothelial differentiation-related factor 1 
Q7Z7G0 TARSH_HUMAN Target of Nesh-SH3 

P05556 ITB1_HUMAN Integrin beta-1 
P07602 SAP_HUMAN Prosaposin 

P07942 LAMB1_HUMAN Laminin subunit beta-1 
P17936 IBP3_HUMAN Insulin-like growth factor-binding protein 3 

P69905 HBA_HUMAN Hemoglobin subunit alpha 
Q8NBJ4 GOLM1_HUMAN Golgi membrane protein 1 

P58397 ATS12_HUMAN A desintegrin and metalloproteinase with thrombospondin motifs 12 
P43681 ACHA4_HUMAN Neuronal acetylcholine receptor subunit alfa-4 

A1L4H1 SRCRL_HUMAN Soluble scavenger receptor cysteines-rich domain-containing protein SSC5D 
P55001 MFAP2_HUMAN Microfibrillar-associated protein 2 

O00244 ATOX1_HUMAN Copper transport protein ATOX1 
P02749 APOH_HUMAN Beta-2-glycoprotein 1 

O60687 SRPX2_HUMAN Sushi repeat-containing protein SRPX2 
P27658 CO8A1_HUMAN Collagen alpha-1 (VIII) chain 

Q92626 PXDN_HUMAN Peroxidasin homolog 
Q08431 MFGM_HUMAN Lactadherin 

Q9H3R0 KDM4C_HUMAN Lysine-specific demethylase 4C  
P61916 NPC2_HUMAN Epididymal secretor protein E1 

Q9Y6C2 EMIL1_HUMAN Emilin-1 
O75821 EIF3G_HUMAN Eukaryotic translation initiation factor 3 subunit G 

Q07507 DERM_HUMAN Dermatopontin 
P30040 ERP29_HUMAN Endoplasmatic reticulum residente protein 29 

Q07954 LRP1_HUMAN Prolow-density lipoprotein 
Q12884 SEPR_HUMAN Prolyl endopeptidase FAP 

P02763 A1AG1_HUMAN Alpha-1-acid glycoprotein 1 
O00622 CYR61_HUMAN Protein CYR61 

O95967 FBLN4_HUMAN EGF-containing fibulin-like extracelular matrix protein 2 
Q9BTY2 FUCO2_HUMAN Plasma alfa-L-fucosidase 

P17050 NAGAB_HUMAN Alpha-N-acetylgalactosaminidase 

Q6YHK3 CD109_HUMAN CD109 antigen 
Q6UVK1 CSPG4_HUMAN Chondroitin sulfate proteoglycan 4 

P02647 APOA1_HUMAN Apolipoprotein A-I 
Q06481 APLP2_HUMAN Amyloid-like protein 2 

Q9Y2B0 CNPY2_HUMAN Protein canopy homolog 2 
P43251 BTD_HUMAN Biotinidase 

Q10471 GALT2_HUMAN Polypeptide N-acetylgalactosaminyltransferase 2 
Q96S86 HPLN3_HUMAN Hyaluronan and proteoglycan link protein 3 

Q02818 NUCB1_HUMAN Nucleobindin-1 
O14950 ML12B_HUMAN Myosin regulatory Light chain 12B 

P39060 COIA1_HUMAN Collagen alpha-1 (XVIII) chain 
P26885 FKBP2_HUMAN Peptidyl-prolyl cis-trans isomerase FKBP2 

Q13162 PRDX4_HUMAN Peroxiredoxin-4 
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P48444 COPD_HUMAN Coatomer subunit delta 
O14817 TSN4_HUMAN Tetraspanin-4 

P56537 IF6_HUMAN Eukaryotic translation initiation factor 6 
P22413 ENPP1_HUMAN Ectonucleotoide pyrophosphatase/phosphodiesterase family member 1 

O00462 MANBA_HUMAN Beta-mannosidase 
P07711 CATL1_HUMAN Cathepsin L1 

O60565 GREM1_HUMAN Gremlin-1 
P45877 PPIC_HUMAN Peptidyl-prolyl cis-trans isomerase C 

P33908 MA1A1_HUMAN Mannosyl-oligosaccharide 1,2-alpha-mannosidase IA 
Q9BRF8 CPPED_HUMAN Serine/threonine-protein phosphatase CPPED1 

 

Table S3. List of proteins identified in the hNPCs secretome 

Entry Entry name Protein Name_UNIPROT  recommended 

P41219 PERI_HUMAN Peripherin 

P30464 1B15_HUMAN HLA class I histocompatibility antigen, B-15 alpha chain 
Q99536 VAT1_HUMAN Synaptic vesicle membrane protein VAT-1 homolog 

Q86XF0 DYRL1_HUMAN Dihydrofolate reductase, mitochondrial 
P21695 GPDA_HUMAN Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmatic 

Q6GMV3 PTRD1_HUMAN Putative peptidyl-tRNA hydrolase PTRHD1 
P30685 1B35_HUMAN HLA class I histocompatibility antigen, B-35 alpha chain 

P30495 1B56_HUMAN HLA class I histocompatibility antigen, B-56 alpha chain 
P30484 1B46_HUMAN HLA class I histocompatibility antigen, B-46 alpha chain 

Q29960 1C16_HUMAN HLA class I histocompatibility antigen, Cw-16 alpha chain 
P30498 1B78_HUMAN HLA class I histocompatibility antigen, B-78 alpha chain 

P35749 MYH11_HUMAN Myosin-11 
A6NCE7 MP3B2_HUMAN Microtubule-associated proteins 1A/1B light chain 3 beta 2 

P05231 IL6_HUMAN Interleukin-6 
Q13630 FCL_HUMAN GDP-L-fucose synthase 

P0CG48 UBC_HUMAN Polyubiquitin-C 
P30492 1B54_HUMAN HLA class I histocompatibility antigen, B-54 alpha chain 

P60709 ACTB_HUMAN Actin, cytoplasmic 1 

P60983 GMFB_HUMAN Glia maturation factor beta 
P00374 DYR_HUMAN Dihydrofolate reductase  

Q15843 NEDD8_HUMAN NEDD8 
Q9H492 MLP3A_HUMAN Microtubule-associated proteins 1A/1B light chain 3A 

P30493 1B55_HUMAN HLA class I histocompatibility antigen, B-55 alpha chain 
P61758 PFD3_HUMAN Prefoldin  

P18465 1B57_HUMAN HLA class I histocompatibility antigen, B-57 alpha chain 
Q9GZQ8 MLP3B_HUMAN Microtubule-associated proteins 1A/1B light chain 3B 

Q9Y3C6 PPIL1_HUMAN Peptidyl-prolyl cis-trans isomerase-like 1 
P52758 UK114_HUMAN Ribonuclease UK114 

Q6S8J3 POTEE_HUMAN Pote ankyrin domain family member E 
Q9UNZ2 NSF1C_HUMAN NSFL1 cofactor p47 

Q15185 TEBP_HUMAN Prostaglandin E synthase 3 
P28062 PSB8_HUMAN Proteasome subunit beta type-8 

P10319 1B58_HUMAN HLA class I histocompatibility antigen, B-58 alpha chain 
P30490 1B52_HUMAN HLA class I histocompatibility antigen, B-52 alpha chain 

Q04837 SSBP_HUMAN Single-stranded DNA-binding protein, mitochondrial 
P18464 1B51_HUMAN HLA class I histocompatibility antigen, B-51 alpha chain 
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P30491 1B53_HUMAN HLA class I histocompatibility antigen, B-53 alpha chain 
P63010 AP2B1_HUMAN AP-2 complex subunit beta 

O43242 PSMD3_HUMAN 26S proteasome non-ATPase regulatory subunit 3 
P06753 TPM3_HUMAN Tropomyosin alpha-3 chain 

Q29940 1B59_HUMAN HLA class I histocompatibility antigen, B-59 alpha chain 

 


