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Abstract

To enhance the anti-ultraviolent properties of technical jute fabrics, the enzymatic sur-

face coating with the in-situ produced phenolic polymers of polyhydric phenols was

investigated in this study. Firstly, the laccase-mediated polymerization of the five poly-

hydric phenols (catechol, resorcinol, hydroquinone, pyrogallol and phloroglucinol) was

analyzed by FT-IR. Catechol and pyrogallol were polymerized together by laccase with

ether bonds linked. On the contrary, the units of resorcinol, hydroquinone and phlor-

oglucinol in their enzymatically formed polymers concatenated to each other by C-C

bonds. Then, the coated jute fabrics were characterized in terms of X-ray photoelec-

tron spectroscopy and scanning electron microscopy. The increasing of the C/O ratio

on the jute fabric surface after the coating treatments supported the achievement of the

enzymatic coating on jute fabrics via the in-situ polymerization of phenolic compounds

and the grafting reaction of polyphenols with lignins on the surface. The sequence of the

coating extent by using various polyhydric phenols was proved to be catechol, pyro-

gallol, resorcinol, phloroglucinol and hydroquinone in order from rich to poor accord-

ing to the O-C-O component of cellulose in the C1s spectra of jute fabrics and the
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scanning electron microscopy photographs of jute surfaces. Lastly, the ultraviolent pro-

tection factor and the ultraviolent resistance of the coated jute fabrics were measured.

The ultraviolent protective performance of jute fabrics after the coating treatments

depended both on the coating amount and the chemical structure of the coated poly-

mers. Among the tested polyhydric phenols, the polymerization of catechol obtained

the best coating for ultraviolent protection. Different polyhydric phenols employed for

the enzymatic coating showed different trends in ultraviolent protection factor of jute

fabrics with the increasing of incubation time. The jute fabrics coated with in-situ-

generated polycatechols or polyresorcinols had excellent ultraviolent resistances.
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Introduction

In recent decades, the destruction of ozone layer in air due to wanton discharge of
chlorofluorocarbons in production and living has gained wide concern. Nowadays,
the surface of earth receives more ultraviolent (UV) rays than that in the past. As a
consequence, human beings as well as lifeless substrates are suffering more chal-
lenges of UV radiation. Despite the elimination of air pollution has to be carried
out, textiles with UV protective properties are also needed for preventing human
beings or vulnerable materials from UV lights [1–6].

Jute fiber is a widely used textile material in home and industry [7–9]. Jute
fabrics can be utilized in technical textiles outdoors, such as packing bags, ropes
and textile coverings. The anti-UV performance of jute products can enhance
their working life and maintain the mechanical properties for a longer time
under sun light. In order to increase the UV resistance of technical jute textiles,
chemical modifications including surface coating have been employed generally
[10–13]. Nowadays, the use of enzymes as important biotechnological catalysts
has emerged in the processing of lignocellulosic polymers [14–19]. Enzymatic
processes have numerous advantages such as specificity, low cost to effectness,
eco-friendly nature and working in mild conditions as compared to the conven-
tional methods. Laccases (EC 1.10.3.2, benzenediol: oxygen oxidoreductase) are
multi-copper-containing zymoproteins that catalyze the mono-electronic oxida-
tion of phenols or aromatic amines to reactive radical species and simultaneously
reduce molecular oxygen to water in a redox reaction [20]. Lignin is a three-
dimensional aromatic polymer with three structural units including guaiacyl,
syringyl and p-hydroxyphenyl jointed together in an irregular manner [21].
Researches show that lignin is a suitable substrate for laccase and the phenolic
sites of lignin molecules can be oxidized to phenoxyl radicals by laccase [22,23].
With the laccase-catalyzed oxidation of lignin moieties rich on the surface, the
lignocellulosic materials could be activated to create a radical-rich reactive sur-
face to which oxidized (radical-containing) phenolic molecules by laccase
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simultaneously can be grafted [24–30]. Jute fiber with lignin content of 14%–20%
also has the potential to be modified by this green biotechnology for endowing it
with better performance or new functions.

According to the literature [31], phenolic compounds with low molecular weight
could be polymerized to macromolecules by the oxidative catalysis of laccase. With
the involvement of jute fabrics in the reaction, however, the coupling of the in-situ-
produced polyphenol chains to lignin moieties on the jute surface or the initiation
of the grafting copolymerization with phenolic monomers at the lignin-containing
surface sites should occur. Simultaneously, the generated homopolymers could also
deposit onto the jute surface and combine with the grafted polymers or jute surface
by hydrogen bonds to form a new surface coating. Thus, this novel laccase-facili-
tated coating with the synergy of covalent coupling/grafting and non-covalent
deposition will lead to strong binding bond onto the jute surface compared with
conventional depositions [32]. Among the various phenolic compounds, polyhydric
phenols such as catechol and pyrogallol have higher redox potentials for laccase
and could be easily oxidized and polymerized with higher polymeric degree [33].
The corresponding polymerized coating which carries tremendous phenyl groups
would show strong anti-UV properties and could further protect the jute fabrics
from UV rays. However, as far as our knowledge goes, this kind of polyphenol-
based UV protection of textiles has not been made before.

In this work, the laccase-mediated polymerization of five polyhydric phenols
(catechol, resorcinol, hydroquinone, pyrogallol and phloroglucinol) and the in-
situ coating with produced polyphenols for improving the UV protection of indus-
trial jute fabrics were investigated, as presented in Figure 1. Initially, the chemical
structures of the enzymatically produced phenolic polymers were analyzed by
FT-IR in comparison with their corresponding phenolic monomers. Then, the
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Figure 1. Schematic illustration of the enzymatic coating of jute fabrics for enhancing anti-UV

properties via in-situ polymerization of polyhydric phenols.
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surfaces of jute fabrics coated by various polyhydric phenols were characterized in
terms of X-ray photoelectron spectroscopy (XPS) and scanning electron micros-
copy (SEM). Further, the ultraviolent protection factor (UPF) and the UV resist-
ance of jute fabrics after the coating treatments with different incubation periods
were determined.

Materials and methods

Materials

Laccase from Trametes Versicolor was provided by Sigma-Aldrich. The 100% raw
jute fabric (427 g/m2), with a 7/7 (warp/weft) cm–1 fabric density, was supplied by
Longtai weaving Co., Ltd (Changshu, China). Five polyhydric phenols including
catechol, resorcinol, hydroquinone, pyrogallol and phloroglucinol were all com-
mercially available and were of analytical purity.

Laccase assay

The activity of laccase was determined using a UV/Vis spectrophotometer by moni-
toring the oxidation of 2, 20-azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS;
"420=36,000M�1� cm�1) as substrate at 420 nm in 0.2mM acetate buffer
(pH 4) at 50�C. The enzyme activity was expressed in units defined as micromoles
of ABTS oxidized per minute [34].

Enzymatic oxidative polymerization of polyhydric phenols

Each polyhydric phenol (catechol, resorcinol, hydroquinone, pyrogallol and phlor-
oglucinol) of 40mM was incubated in 0.2M acetate buffer (pH 4) with 2.5U/mL
laccase. The reaction was carried out at 50�C for 36 h in a shaking bath with a
speed of 30 r/min. Then the reaction solution was centrifuged and the precipitates
were washed with distilled water twice to obtain the polyphenols.

FT-IR analysis of polyphenols

The FT-IR analysis of the polyphenols obtained above was performed using a
Nicolet iS10 FT-IR spectrometer (Thermo Fisher Scientific, USA) with the KBr
pellet technique. The spectra were recorded in the range of 4000–650 cm�1 at
4 cm�1 resolution and 16 scans per sample.

Jute fabric preparation

The jute fabrics were Soxhlet-extracted with benzene/ethanol (v:v, 2:1) for 12 h to
remove lipophilic extractives and then boiled with distilled water for 3 h to remove

Dong et al. 163



water-soluble fractions. As a result, the oxidation of substrate molecules by laccase
and the analysis of modified fabrics could be carried out without interference.

Enzymatic coating of jute fabrics by in-situ polymerization

Jute fabrics of 1 g were incubated in 50mL acetate buffer (pH 4, 0.2M) with 2.5 U/
mL laccase and 40mM phenolic monomer at a shaking bath of 50�C for 36 h.
Afterwards, the fabrics were washed with distilled water at 50�C for 20min
twice. Control sample and the laccase-treated sample followed the same treatment
condition as mentioned above.

XPS analysis of jute fabrics

XPS experiments were carried out using an Amicus spectrophotometer (Kratos
Analytical Ltd., UK) with Mg Ka radiation. The X-ray anode was run at 180W
and the high voltage was kept at 12.0 kV. The pass energy was fixed at 75 eV to
ensure sufficient resolution and sensitivity. The base pressure of the analyzer cham-
ber was about 1� 10�6Pa. The sample was directly pressed to a self-supported disk
(10� 10mm) and mounted on a sample holder then transferred into the analyzer
chamber. The whole spectra (0–1100 eV) and the narrow spectra of carbon, oxygen
and nitrogen with much high resolution were both recorded. Binding energies were
calibrated with the containment carbon (C1s=284.6 eV). The spectrum analysis
including background subtraction, deconvolution, integration and quantitation
was carried out by using the XPS Peak4.1 software.

SEM analysis of jute fabrics

The jute fabric samples were scanned using a SU1510 SEM (Hitachi, Japan) under
5.00 k voltages at 1.00 k magnification.

UPF measurement of jute fabrics

The UPF of control, laccase-treated and various coated jute fabric samples with
incubation time of 12 h, 24 h, 36 h, 48 h and 60 h was determined on a UV trans-
mittance analyzer UV-1000F (Labsphere Co., USA). The detective wavelength
ranged from 450 nm to 250 nm. For each fabric sample, four spots were measured
and the results were averaged. For each treatment, quintuplicate samples were
measured.

UV resistance measurement of jute fabrics

Jute samples incubated for 36 h were exposed to UV rays at 0.89W/m2 for 8 h in an
accelerated UV-aging tester QUV/SPRAY (Q-Lab Co., USA). Then the UPF of
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the irradiated fabrics was determined and compared with that of the samples before
irradiation.

Results and discussion

FT-IR analysis of polyphenols

To estimate the structural characteristics of the five polyhydric phenols and their
laccase-induced polymeric products, corresponding FT-IR spectra were measured
and are presented in Figure 2. The peaks from 3500 to 3200 cm�1 in the IR spectra
of all samples belonged to the phenolic O-H vibrations. Bands between 1650 and
1400 cm�1 represented the aromatic skeletal vibrations. The peaks at 1300–
1000 cm�1 and 900–650 cm�1 were contributed to the C-O stretching vibrations
and the C-H out-of-plane bending vibrations in aromatic rings, respectively. In
contrast to the phenolic monomers, the phenolic O-H vibration peaks of polyphe-
nols became broader due to the intramolecular hydrogen bonding between the
repeating units in polyphenol chains [35]. In addition, the absorption bands of
the polymeric structures between 1600 and 650 cm�1 were weakened, which can
be ascribed to the more rigid groups in the polymers when compared to the mono-
mer molecules [35]. Meanwhile, the steric hindrance of the macromolecular poly-
mers produced by the laccase-mediated polymerization might also hinder the
detection of these groups [36].

Figure 2. FT-IR spectra of the five polyhydric phenols and their corresponding polymers.
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For catechol, the characteristic doublet peaks at 3451 cm�1 and 3328 cm�1 rep-
resented the vibrations of its phenolic ortho-hydroxyl structure. On the contrary,
the phenolic O-H adsorption bands of polycatechol appeared as one broad peak at
3405 cm�1. This variation can be mainly explained that the hydroxyl groups in
catechol monomers were involved into the laccase-mediated oxidative polymeriza-
tion. Four peaks of catechol at 1620, 1602, 1514 and 1470 cm�1 belonged to the
aromatic C=C vibration, while the peaks at 1609 cm�1 and 1493 cm�1 of poly-
catechol were due to the ortho-disubstitute benzene ring vibrations. In addition,
the C-O stretching vibrations for catechol were observed at 1280, 1256 and
1242 cm�1, while the characteristic C-O-C adsorption peak of phenyl ether in
polycatechol structure appeared at 1269 cm�1. The intense C-O-C bond absorption
for phenyl ether indicated that catechol units in polycatechol structure jointed with
each other by ether linkages [35]. Meanwhile, the broad phenolic O-H vibration
suggested that there were still a large amount of phenolic O-H groups in polyca-
techol structure. The chemical structure of the enzymatically produced polycate-
chol was speculated and is presented in Figure 3(a).

Figure 3. The proposed chemical construction of the enzymatically produced phenolic poly-

mers with catechol (a), resorcinol (b), hydroquinone (c), pyrogallol (d) and phloroglucinol (e),

respectively.
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For resorcinol, the adsorption bands at 3258 cm�1, 1608 and 1490 cm�1,
1297 cm�1 belonged to the phenolic O-H vibration, the aromatic C=C vibrations
and the phenolic C-O vibration, respectively. In comparison, the above IR vibra-
tions of polyresorcinol appeared at 3423, 1606 and 1148 cm�1, respectively. No
remarkable vibration peaks of phenyl ether bond were observed in the IR spectrum
of polyresorcinol. Moreover, the second and fourth aromatic carbons of resorcinol
possess high reactivity and always act as initiating sites of corresponding chemical
reactions. As supported above, C-C linkage was assumed the binding bond of
resorcinol units in polyresorcinol macromolecules (shown in Figure 3b).

For hydroquinone, the peaks at 3262 cm�1, 1518 and 1475 cm�1, 1259 and
1243 cm�1 represented the phenolic O-H vibration, the C=C vibrations of aro-
matic rings and the phenolic C-O vibrations, respectively. By contrast, the above
vibrations of polyhydroquinone emerged at 3416 cm�1, 1628 and 1505 cm�1,
1197 cm�1, respectively. The new bands at 1793 and 1655 cm�1 was corresponding
to the C=O vibrations of quinones [31]. However, the C-O-C vibration bands of
phenyl ether between 1300 and 1200 cm�1 were inconspicuous. As given above, it
can be supposed that hydroquinone units in polyhydroquinone structure linked
with each other by C-C bonds as shown in Figure 3(c).

For pyrogallol, the bands at 3431 cm�1, 1622, 1524 and 1484 cm�1, 1288 and
1244 cm�1 were ascribed to the phenolic O-H vibration, the aromatic skeletal vibra-
tions and the phenolic C-O vibrations, respectively. In comparison, the phenolic
O-H vibration and the aromatic skeletal vibration of polypyrogallol were observed
at 3416 and 1597 cm�1, respectively. The characteristic C-O-C stretching vibration
for phenyl ether was also seen at 1219 cm�1. The adsorption bands of phenolic
hydroxyl group and the phenyl ether bond in polypyrogallol indicated that pyro-
gallol units in the produced polypyrogallol connected to each other by ether link-
ages [37] as shown in Figure 3(d).

For phloroglucinol, its characteristic phenolic O-H vibrations were at 3474 and
3204 cm�1. The peaks at 1620, 1499 and 1420 cm�1 were attributed to the aromatic
skeletal vibrations and the peak at 1300 cm�1 was due to the phenolic C-O vibra-
tion. By contrast, the above three adsorptions in polyphloroglucinol appeared at
3428, 1631 and 1154 cm�1, respectively. There was no distinct vibration peak from
1300 to 1200 cm�1 representing the C-O-C stretching vibration of phenyl ether.
As suggested above, it can be hypothesized that phloroglucinol monomers conca-
tenated to each other by C-C linkages after the laccase-mediated oxidative poly-
merization as shown in Figure 3(e).

XPS analysis of jute fabrics

XPS was employed to analyze the changes in surface chemistry of jute fabrics after
the enzymatic coating with the in-situ-produced polymers of the five polyhydric
phenols. Table 1 gives the surface elemental compositions of control, laccase-trea-
ted and various coated jute fabric samples. It was found that the C/O ratios of
the coated jute fabrics were increased when compared with the control and
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laccase-treated one. This is mainly due to the surface covering of polyphenols with
high C/O ratios. The C/O ratios of polycatechol, polyresorcinol and polyhydro-
quinone were calculated to be 2.25 from the assumed constitutional formulas in
Figure 3 and the C/O ratios of polypyrogallol and polyphloroglucinol were 1.5.
However, some coated jute fabrics showed higher C/O ratios than their coating
polymers such as polycatechol-coated jute fabric, polypyrogallol-coated jute fabric
and polyphloroglucinol-coated jute fabric. This can be explained that the phenolic
–OH groups of the in-situ-formed polyphenols were involved into the grafting
reaction with lignin on the jute surface and condensed with the ortho-disubstitute
phenolic –OH groups of lignin molecules to form phenyl ethers.

The increase in the nitrogen content of the laccase-treated jute fabric could be
attributed to some adsorbed laccase proteins. The nitrogen content of the coated
jute fabrics could be the combined contribution of surface coating with nitrogen-
free polyphenols and enzyme adsorption. The more the coated polymers on the jute
surface, the lower the nitrogen content of jute fabrics is. And the more the adsorbed
laccase proteins, the higher the nitrogen content is. The adsorption of laccase
proteins on the coated jute surface partly depended on the hydroxyl content of
the new surface which is in accordance with the amount and structural property of
each coated polyphenol. For catechol, pyrogallol, resorcinol and hydroquinone,
the nitrogen contents of jute fabrics coated with their corresponding polymers were
lower than that of the control sample, which indicated their surface coating is
dominating in the contribution of the nitrogen content. For phloroglucinol, the
nitrogen content of the coated jute fabric was higher than that of the laccase-
treated sample since the enzyme adsorption took place of the surface coating to
be dominant.

In order to obtain the chemical bonding state of carbon atom on the jute fabric
surface, the deconvolution of C1s high-resolution spectra was carried out by curve
fitting. As shown in Figure 4, the C1s spectra were deconvoluted into five peaks of
C1, C2, C3, C4 and C5. According to the literature [38], the C5 peak with the

Table 1. Surface chemical compositions of various jute fabrics obtained by

X-ray photoelectron spectroscopy XPS) analysis.

Samples

Elements (%)
C/O

ratioC1s O1s N 1s

Control jute 58.63 38.00 3.37 1.54

Laccase-treated jute 59.19 36.90 3.91 1.60

Polycatechol-coated jute 72.55 26.54 0.91 2.73

Polyresorcinol-coated jute 66.33 31.35 2.32 2.12

Polyhydroquinone-coated jute 66.28 31.35 2.37 2.11

Polypyrogallol-coated jute 63.76 34.63 1.61 1.84

Polyphloroglucinol-coated jute 62.23 33.68 4.08 1.85
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lowest binding energy originates from a carbon atom bound only to carbon or
hydrogen atoms (-C-C/-C-H). The C4 peak represents a carbon atom linked to an
ether oxygen atom (-C-O-C). The C3 peak corresponds to a carbon atom bound to
a hydroxyl oxygen atom (-C-O-H). The C2 peak represents a carbon atom linked to
two non-carbonyl oxygen atoms (O-C-O) which only existed in the cellulose of jute
fiber. The C1 peak with the highest binding energy represents a carbon atom bound
to one carbonyl oxygen atom (-C=O) in lignin or pectin. The proportions and the
peak assignments of these chemical bonds were presented in Table 2. The laccase-
treated jute fabric showed decreasing of C3 content and increasing of C4 and C5
contents, which suggested the transformation of phenolic -OH group to phenyl
ether and the formation of C-C bond between two aromatic rings after the laccase-
mediated oxidation of lignin on the jute fabric surface. After the coating treat-
ments, the C2 contents of the jute fabrics were decreased for the covering of
cellulose component on the surface with polyphenols. The more the coated poly-
mers on the jute surface, the lower is the C2 content of C1s spectra. Consequently,
the catechol monomer obtained the most coating effect on jute fabrics via the
laccase-mediated in-situ oxidative polymerization. The next is pyrogallol, resor-
cinol, phloroglucinol and hydroquinone in sequence. The C3 and C5 contents of
the coated jute fabrics were increased when compared with the laccase-treated jute

Figure 4. Deconvoluted C1s spectra of control jute (a), laccase-treated jute (b), polycatechol-

coated jute (c), polyresorcinol-coated jute (d), polyhydroquinone-coated jute (e), polypyrogallol-

coated jute (f) and polyphloroglucinol-coated jute (g).
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fabrics as a result of the introduction of polyphenols on surfaces. The C4 propor-
tions of the coated jute fabrics were various. The variations of the C3, C4 and C5
contents on the jute surface all depended on the coated amount and the structural
properties of the adsorbed polyphenols and the grafted ones by condensation with
lignin.

SEM analysis of jute fabric surfaces

The surface morphology of control, laccase-treated and polyphenol-coated jute
fabrics was investigated by SEM and is shown in Figure 5. The surface of the
control jute was neatly arranged with some natural impurities covered
(Figure 5a). After the laccase treatment the jute surface became smooth and
glossy (Figure 5b), which is probably owing to the enzymatic dislodgement and
redistribution of bulgy lignins on the surface as a result of the laccase-mediated
simultaneous degradation and polymerization of lignin [39]. The jute surfaces
coated with different polyphenols were rough and irregular with some particulates
or flakes contained as shown in Figure 5(c) to (g), respectively. These materials on
the enzymatically coated jute surface were considered the homopolymers of the five

Figure 5. SEM images of control jute fabric (a), laccase-treated jute fabric (b), polycatechol-

coated jute (c), polyresorcinol-coated jute (d), polyhydroquinone-coated jute (e), polypyrogallol-

coated jute (f) and polyphloroglucinol-coated jute (g) amplified at 1.00 k.
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polyhydric phenols and attached by way of covalent grafting and non-specific
hydrogen-bonding absorption. Besides, the degree of the enzymatic coating was
associated with the monomers used. Jute fabrics coated by the laccase-mediated in-
situ polymerization of catechol and resorcinol showed more amount of surface
coating than those of polypyrogallol, phloroglucinol and hydroquinone, which is
approximately in accordance with the conclusion supported by the C2 data of XPS
in Table 2.

UV-protective properties of jute fabrics

The effects of the coating treatments with different polyhydric phenols and the
incubation time on the UPF of jute fabrics were investigated as shown in
Figure 6. After various coating treatments, the UPF values of jute fabrics were
increased with different degrees. The increasing extent in UPF of coated jute fabrics
possibly depended not only on the coating amount but also on the chemical struc-
ture of the coated polymers. The polymeric structure was bound up with the poly-
merization characteristics of the phenolic monomers. The coating amount of
phenolic polymers on jute fabric surface was affected by the incubation time and
the selected phenol. The five polyhydric phenols tested for the enzymatic coating
showed different trends in UPF of jute fabrics with the increasing of incubation
time. In the enzymatic coating reaction, polymerization and depolymerization of
polyhydric phenols occurred simultaneously. At the beginning, the phenolic mono-
mers were polymerized dramatically under the catalysis of laccase. The coating
resulted from the covalent coupling/grafting and the non-covalent deposition
was also enhanced. In the latter stage of the reaction, the laccase-mediated depoly-
merization became predominant. The coated polymers started to degrade

Figure 6. The UPF values of control, laccase-treated and enzymatically coated jute fabrics with

various polyhydric phenols in different incubation periods.
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into lower-molecular-weight pieces and fall back to the aqueous medium [39]. The
incubation time for different polyhydric phenols to reach their maximum polymer-
ization degree was various. The coating with polycatechol obtained the best UV-
protective performance and got its maximum UPF at the incubation time of 48 h.
The others were polypyrogallol, polyresorcinol, polyhydroquinone and polyphlor-
oglucinol in order from massive to poor. And their incubation periods for the
optimal UPF of jute fabrics were 48 h, 36 h, 24 h and 36 h, respectively.

UV resistance of jute fabrics

As shown in Figure 7, the UV resistance of jute fabrics after various coating
treatments was studied as compared with the laccase-treated and control samples.
The jute fabrics coated with polycatechol and polyresorcinol exhibited strong UV
resistance with no UPF dropped after radiation. However, the UPF values of jute
fabrics coated with polyhydroquinone, polypyrogallol and polyphloroglucinol
after radiation were declined by 22.35%, 24.18% and 33.40%, respectively.
These results indicated that the laccase-induced polymeric structures of catechol
and resorcinol in jute fabric coatings were more tolerant for suffering the radiation
of UV rays.

Conclusions

The present work demonstrated that the enzymatic coating via the in-situ poly-
merization of polyhydric phenols was achieved for enhancing the UV protective

Figure 7. The UPF comparison of various jute fabric samples before and after radiation.
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properties of technical jute fabrics. The units in the polymer of catechol or pyro-
gallol were connected to each other by ether bonds. However, monomers of resor-
cinol, hydroquinone and phloroglucinol were polymerized, respectively, by laccase
with C-C bonds jointed together. The enzymatic coatings of jute fabrics with these
polyhydric phenols were confirmed by XPS and SEM. The grafting reaction of
polyphenols to lignins on the jute surface was proved to be actually existed and the
sequence of the coating amounts varied from different polyhydric phenols. The UV
protective performance of jute fabrics after the coating of polyphenols was
increased in variety, which depended on the coating amount and the chemical
structure of the coated phenolic polymers. The enzymatic coating polymerized
with catechol obtained the best anti-UV properties. Besides, different polyhydric
phenols used in the enzymatic coating showed various trends in UPF of jute fabrics
with the increasing of incubation time. The jute fabrics coated with in-situ gener-
ated polycatechols or polyresorcinols presented almost no decrease in UPF after
radiation, showing excellent UV aging resistance. The enzymatically coated jute
fabrics which were UV-resistant could be utilized in technical textiles outdoors,
such as packing bags, ropes and textile coverings to enhance their working life and
maintain the mechanical properties for a longer time under sunlight.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, author-

ship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, author-
ship, and/or publication of this article: This work was Enancially supported by National
Natural Science Foundation of China (51173071), Program for New Century Excellent

Talents in University (NCET-12-0883), Program for Changjiang Scholars and Innovative
Research Team in University (IRT1135), Fundamental Research Funds for the Central
Universities (JUSRP51312B), the Graduate Student Innovation Plan of Jiangsu Province

of China (CXZZ13_0752) and the Doctor Candidate Foundation of Jiangnan University of
China (JUDCF13023).

References

[1] Saravanan D. UV protection textile materials. Autex Res J 2007; 7: 53–62.

[2] Das BR. UV radiation protective clothing. Open Text J 2010; 3: 14–21.
[3] Ibrahim NA, Amr A, Eid BM, et al. Poly(acrylic acid)/poly(ethylene glycol) adduct for

attaining multifunctional cellulosic fabrics. Carbohyd Polym 2012; 89: 660–684.
[4] Ibrahim NA, Refaie R and Ahmed AF. Novel approach for attaining cotton fabric with

multi-functional properties. J Ind Text 2010; 40: 65–83.
[5] Ibrahim NA, El-Zairy EMR, El-Zairy MR, et al. Improving transfer printing and UV-

blocking properties of polyester of polyester-based textiles using MCT-bCD, chitosan

and ethylendiamine. Color Technol 2010; 126: 330–336.
[6] Ibrahim NA, Eid BM, Hashem MM, et al. Smart options for functional finishing of

linen-containing fabrics. J Ind Text 2010; 39: 233–265.

174 Journal of Industrial Textiles 46(1)



[7] Val Y, Ioan N and Chen Y. Thermal insulation properties of cellulosic-based nonwo-

ven composites. J Ind Text 2006; 36: 73–87.
[8] Chattopadhyay BC and Chakravarty S. Application of jute geotextiles as facilitator in

drainage. Geotex Geomembranes 2009; 27: 156–161.
[9] Thilagavathi T, Pradeep E, Kannaian T, et al. Development of natural fiber nonwovens

for application as car interiors for noise control. J Ind Text 2010; 39: 267–278.
[10] Chattopadhyay SN, Pan NC, Roy AK, et al. Development of natural dyed jute fabric

with improved colour yield and UV protection characteristics. J Text I 2013; 104:

808–818.
[11] Ibrahim NA, Amr A, Eid BM, et al. Innovative multi-functional treatments of ligno-

cellulosic jute fabric. Carbohyd Polym 2010; 82: 1198–1204.
[12] Grifoni D, Bacci L, Lonardo SD, et al. UV protective properties of cotton and flax

fabrics dyed with multifunctional plant extracts. Dyes Pigments 2014; 105: 89–96.
[13] Ammayappan L, Nayak LK, Ray DP, et al. Functional finishing of jute textiles - an

overview in India. J Nat Fibers 2013; 10: 390–413.
[14] Hüttermann A, Mai C and Kharazipour A. Modification of lignin for the production of

new compounded materials. App Microbiol Biotechnol 2001; 55: 387–394.
[15] Nyanhongo GS, Kudanga T, Prasetyo EN, et al. Enzymatic polymer functionalisation:

advances in laccase and peroxidase derived lignocellulose functional polymers. Adv

Biochem Eng Biotechnol 2011; 125: 47–68.

[16] Kudanga T, Nyanhongo GS, Guebitz GM, et al. Potential applications of laccase-

mediated coupling and grafting reactions: A review. Enzyme Microb Technol 2011;

48: 195–208.
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