
Spray-assisted layer-by-layer assembly on hyaluronic acid scaffolds
for skin tissue engineering

Isa P. Monteiro,1,2,3 Anita Shukla,1* Alexandra P. Marques,2,3 Rui L. Reis,2,3 Paula T. Hammond1

1Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,

Massachusetts 02139
23B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European

Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Guimar~aes,

Portugal
3ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimar~aes, Portugal

Received 17 January 2014; revised 11 March 2014; accepted 19 March 2014

Published online 3 April 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.a.35178

Abstract: Tissue engineering approaches for the develop-

ment of a single epidermal–dermal scaffold to treat full-

thickness skin defects have been limited by difficulties in the

fabrication of a bilayer scaffold combining the specific prop-

erties of the epidermis and the dermis. Here we present an

innovative approach to developing a scaffold that holds

promise for skin tissue engineering. We utilize the spray-

assisted layer-by-layer assembly technique to deposit a poly-

electrolyte multilayer film composed of hyaluronic acid and

poly-L-lysine (the epidermal component) on a porous hyal-

uronic acid scaffold (the dermal component), in a rapid and

controlled manner. The multilayer film promotes cell adhe-

sion, contributing to regeneration of the epidermal barrier

functions of skin. While human keratinocytes attached and

proliferated on the coated porous scaffolds, they did not

invade the porous dermal component, thus leaving room for

seeding of relevant fibroblast cell types in this scaffold. This

scaffold therefore holds promise for co-culture of different

cells, which may be useful for treatment of full-thickness

skin defects as well as other tissue engineering applications.
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INTRODUCTION

Clinical management of wounds, burns, and nonhealing
ulcers remains challenging, especially for deep and extensive
lesions.1 Any loss of skin of >4 cm in diameter will be unable
to heal properly without a graft.2 Grafting is limited by the
availability of donor skin.3 Skin tissue engineering remains a
valid option to treat difficult skin defects. The scaffold should
act as a biodegradable template to mimic the natural skin
microenvironment, containing both the barrier function of
the epidermal component and the mechanical stability and
elasticity of the dermal component.4 Despite many efforts,
the only commercially available bilayer scaffold for skin that
allows permanent wound closure is difficult to generate and
has high production costs.5–8 This bilayer scaffold is based on
a hyaluronic acid (HA) ester, and it incorporates a dermal
substitute (Hyalograft3DVR ) and an epidermal replacement

autograft (LaserskinVR )9 for use as a scaffold for autologous

cells. Because the two independent structures need to be

applied consecutively to the wound, this scaffold cannot be

considered a ‘true’ dermal-epidermal skin substitute.5 In

addition, this commercial scaffold usually requires the fixa-

tion of a non-degradable medical-grade synthetic elastomer

on top of the scaffold, which has to eventually be removed.10

A skin substitute composed of epidermal and dermal layers

in a single structure would reduce the number of surgical

interventions and consequently, the cost associated with skin

regenerative therapies. However, the lack of a cost-effective

fabrication method to produce constructs combining epider-

mal and dermal layers has been a major limitation.
We investigated the layer-by-layer (LbL) assembly tech-

nique as a facile, cost-effective method to create a single
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epidermal-dermal substitute. We developed a bioactive LbL
membrane on top of a porous dermal scaffold using HA and
poly-L-lysine (PLL), which have been successfully used in
numerous other bioactive LbL films.11–13 HA is an anionic
polysaccharide composed of repeating disaccharide units of
D-glucuronic acid and N-acetyl-D-glucosamine,14 with a pKa

of 2.915 and hence a net charge of 21 per repeat unit at
physiologic pH of 7.4. It is a native extracellular matrix mac-
romolecule that serves a mechanical and structural role in
vivo,16 enhances angiogenesis, participates in tissue hydra-
tion and promotes scarless wound healing.17–22 PLL is a lin-
ear polyisopeptide,23 with a pKa of 9; it is positively
charged in physiologic conditions. PLL has been used exten-
sively in several biomedical applications include drug and
gene delivery and promotion of cellular adhesion.24 It has
also been used to functionalize HA gels in order to improve
cell attachment.25

In this work, we took advantage of the properties of HA
and PLL to efficiently produce a stable membrane (the epi-
dermal component), which is adsorbed on top of a porous
HA scaffold (the dermal component), thus creating a single
three-dimensional epidermal-dermal scaffold for eventual
use in full-thickness skin regeneration. The porous HA scaf-
fold is formed from lyophilization and acts as a negatively
charged substrate, in which aerosolized solutions of the pos-
itively charged PLL and the negatively charged HA are
sprayed sequentially, with intermediate rinses (see Fig. 1).
The oppositely charged species adsorb to the growing LbL
film at rates that enable nanometer-scale control over the
film thickness.26 We opted to use spray-LbL assembly,
rather than the traditional dip-LbL assembly technique,
because the speed of assembly prevents excessive swelling
of the HA scaffold during film assembly. As with the tradi-
tional dip-LbL assembly technique, spray-LbL assembly
allows for the manipulation of the chemical, physical, and
surface properties of multilayer film architectures by simply
changing properties such as pH and ionic strength of the
deposition solutions.27–29 Furthermore, previous work has
shown that spray-LbL can be used to form conformal coat-
ings on top of porous membranes by bridging the pores on
the top surface of the membrane rather than penetrating
the entire depth of the membrane.27,30 Our approach
focused on studying the assembly behavior and bioactivity
of the electrostatically assembled (PLL/HA) multilayer film.

We examined the film growth properties along with the
ability to promote adhesion and proliferation of keratino-
cytes on these (PLL/HA) films deposited on both flat sub-
strates and on the porous HA scaffold.

MATERIALS AND METHODS

Materials
Hyaluronic acid (HA) with molecular weight (MW) of 64
kDa, 351–600 kDa, and 1.2–1.8 MDa was purchased from
LifeCore Biomedical (Chaska, MN). Adipic acid dihydrazide
(ADH), sodium acetate buffer, 1-ethyl-3-[3-(dimethylamino)-
propyl]carbodiimide (EDC), sodium hydroxide (NaOH),
hydrochloric acid (HCl), hydroxybenzotriazole (HOBt),
sodium periodate (NaIO4), ethylene glycol, poly-L-lysine
(PLL) hydrobromide (MW 40–60 kDa), phosphate buffered
saline (PBS), hyaluronidase, osmium tetroxide, sucrose, ace-
tate veronal, and dimethyl sulfoxide were acquired from
Sigma–Aldrich (St. Louis, MO). Dialysis membranes (MW
cut-off of 3.5 kDa) were purchased from Spectrum Labs
(Rancho Dominguez, CA). Progenitor cell target media (CnT-
57) and 3D prime differentiation media (CnT-02-3DP) were
obtained from CELLnTEC (Bern, Switzerland). Millicell cell
culture inserts (0.4-mm pore size polycarbonate, 12 mm fil-
ter diameter) were obtained from Millipore (Billerica, MA).
Biopsy punches were obtained from HealthLink (Jackson-
ville, FL). Human adult keratinocytes, penicillin/streptomy-
cin, Quant-ITTM PicoGreenVR dsDNA kit and LIVE/DEADVR

viability/cytotoxicity kit for mammalian cells were obtained
from Invitrogen Life TechnologiesTM (Carlsbad, CA). Parafor-
maldehyde, glutaraldehyde, and sodium cacodylate were
purchased from Electron Microscopy Sciences (Hatfield, PA).
Silicon wafers were acquired from SiliconQuest International
(Santa Clara, CA).

Preparation of porous scaffolds
Fermentation-derived HA was modified to both aldehyde
(ALD) and hydrazide (ADH) forms, as described by others.31

For the ALD form, HA (MW 351–600 kDa) was dissolved in
ultrapure water at a concentration of 0.5% w/v. ADH was
added in excess and allowed to dissolve completely; the pH
was then adjusted to 6.8. EDC (5 mM) and HOBt (5 mM)
were separately dissolved in a solution of 1:1 dimethyl sulf-
oxide and double distilled water. Both solutions were
sequentially added to the HA-ADH mixture drop-wise. After

FIGURE 1. Schematic of the approach. The polycation, poly-L-lysine, and the polyanion, hyaluronic acid, are sprayed on top of the hyaluronic

acid porous scaffold, creating a layer-by-layer membrane. Keratinocytes are seeded on top of the membrane, forming a cell monolayer. The

layer-by-layer membrane acts as an epidermal substitute, which adheres to the dermal component (the porous hyaluronic acid scaffold). [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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stirring overnight, the modified HA was dialyzed and freeze-
dried. For the ADH form, HA (MW 1.2–1.8 MDa) was dis-
solved in water at a concentration of 10 mg mL21. Sodium
periodate was dissolved in 5–10 mL of distilled water and
added drop wise. After 2 h of stirring, ethylene glycol was
added to stop the reaction. After 1 h of stirring, the modi-
fied HA was dialyzed and freeze-dried for 5 days. The ALD
and the ADH were separately dissolved in deionized-
distilled water at a concentration of 40 mg mL21. The two
solutions were then mixed to promote HA crosslinking. The
scaffolds were obtained by freeze-drying the crosslinked
gels.

Pore size of the freeze-dried HA scaffolds was deter-
mined by using scanning electron microscopy (JEOL 5600LV
SEM, Peabody, MA). Before observation, the scaffolds were
coated with an ultrathin (10 nm) gold layer using a
Hummer 6.2 Sputtering System (Anatech, Battle Creek, MI).
The SEM images obtained where used to measure-length of
pores using AxioVision Software (Zeiss, Germany) and
obtain an average pore size. When the pores were not per-
fectly round, the length was measured as the largest diame-
ter in each pore.

Spray-assisted layer-by-layer assembly of (PLL/HA) films
A solution of 2.5 mM sodium acetate buffer was prepared
from a 3 M stock solution and used for rinsing during LbL
assembly and to dissolve the polyanion, HA, (64 KDa) and
the polycation, PLL, at a concentration of 1 mg mL21 and
pH 5, 6, or 7. Films were either sprayed on silicon wafers
or on porous HA scaffolds. Prior to film assembly on silicon,
the wafers were cut into pieces (4 cm 3 3 cm), cleaned
using methanol and deionized water, dried with compressed
nitrogen and plasma etched using air in a Harrick PDC-32G
plasma cleaner (Harrick Scientific, Pleasantville, NY) at high
radio frequency (RF) level. Immediately following plasma
etching, the substrates were submerged in PLL overnight at
4�C. For films deposited on the HA scaffolds, the scaffolds
were used as made without any plasma etching or addi-

tional treatment. An automated spray-assisted LbL system
(Svaya Nanotechnologies, Sunnyvale, CA) was used to
deposit the film. The architecture of the films is denoted
(PLL/HA)n, where n represents the number of bilayers
deposited (n of 50, 100, and 150 was investigated in this
work). Sodium acetate buffer diluted in PBS at a concentra-
tion of 2.5 mM was sprayed between the cation and the
anion deposition steps for rinsing (the pH was matched to
the pH of the cation and anion solutions). Each HA and PLL
deposition step lasted 2 s and each spray of rinsing solu-
tion was 3 s, with a flow rate of 0.25 mL s21. After deposit-
ing LbL films on silicon, the films were dried under
nitrogen and stored at 4�C until subsequent use. After
spraying the LbL films on the scaffolds, the substrates were
allowed to dry and a biopsy punch was used to produce
smaller coated scaffolds for subsequent experiments (8-mm
diameter, �3-mm thick) which were stored at 4�C until
they were used.

Film growth, morphology, and erosion characterization
Film growth and morphology were characterized on LbL
film-coated silicon wafers. Film growth was measured using
a surface profilometer (Dektak 150 Surface, Veeco, Plain-
view, NY). The dried films were scratched using a sharp
razor and three measurements were taken over a 100-
micrometer length per scratch. For each film deposition con-
dition, the roughness and the step height of three samples
was determined. The topography and roughness of the dif-
ferent films was analyzed using a Dimension 3100 Nanoman
atomic force microscope (Veeco Metrology, Santa Barbara,
CA). SEM was also used to observe the films deposited
either on top of the silicon wafers or on top of the scaffolds
after sputtering with gold as described earlier.

Erosion of (PLL/HA)150 films assembled at pH 7 on
silicon wafers was evaluated by incubating the samples in
PBS solution with or without the enzyme hyaluronidase on
an orbital shaker at 37�C. Film thickness loss was tracked
by drying these films and using the profilometer to moni-
tor film thickness in the same way in which film growth
was quantified. Normalized film thickness was obtained at
each time point by dividing the average of thickness meas-
ured for four samples by the average of thickness meas-
ured for the same samples before starting the film erosion
study in PBS.

Cell culture on film-coated substrates
Human keratinocytes were expanded in CnT-57 medium
with 1% penicillin/streptomycin. Cells at passage 3 were
used in the study. Film-coated silicon wafers (1 cm2) were
placed in 12-well culture plates (one piece per well). Kerati-
nocytes (2 3 105 cells) were seeded directly on the top of
each film-coated silicon wafer in 400 mL of CnT-57 media.
After 5 h, 1 mL of CnT-57 media was added to each well.

The film-coated scaffolds were placed individually inside
12 mm inserts with a pore size of 0.4-mm. The inserts con-
taining the scaffolds were then placed into a 60-mm cell
culture dish. After wetting the inserts and the scaffolds with
media, 2 3 105 keratinocytes were seeded on each scaffold

FIGURE 2. Average film thickness of sprayed (poly-L-lysine/hyaluronic

acid)n films for n 5 50, 100, and 150 bilayers at pH 5, 6, and 7. Data

are mean 6 standard deviation, compared by one-way ANOVA

Tukey’s post hoc multiple comparison test. No significant differences

were found between the different pH values used: p value 5 0.8591 for

one-way ANOVA.
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in 400 mL of CnT-57 medium. The appropriate amount of
culture medium was then added outside the scaffold con-
taining inserts, in order to obtain the same medium level
inside and outside the inserts and completely cover the
cells. Once keratinocytes reached confluence on the mem-
branes, the media was changed to the CnT-02-3DP media,
and after 15 h, exposed to the air-liquid interface. Cells
were cultured at 37�C and 5% CO2.

32 Cellular DNA was
quantified using the PicoGreenVR dsDNA kit, according to
manufacturer instructions. The cell content was removed
from the scaffolds by freezing them at 280�C and subse-

quent sonication. Fluorescence of samples and standards
was measured using 485-nm excitation light at an emission
wavelength of 528-nm. The DNA concentration was extrapo-
lated from a previously established standard curve. A LIVE/
DEADVR viability/cytotoxicity kit for mammalian cells was
used to test for keratinocyte viability at days 3, 7, and 14.
Calcein-AM and ethidium homodimer-1 were dissolved in
PBS at a concentration of 2 and 4 lM, respectively. Keratino-
cytes growing on the LbL film-coated silicon wafers were
incubated for 20 min at 37�C and 5% CO2 with the LIVE/
DEADVR kit solutions. After washing twice with PBS, the

FIGURE 3. Film topography and roughness. A. Atomic force microscopy images show the surface topography (10 lm 3 10 lm) for (poly-L-

lysine/hyaluronic acid)n films (zmax 5 500 nm), representative of the entire film area for the different conditions tested. Films exhibited uniform

roughness over the sprayed area. The lowest roughness values were obtained for n 5 150. B. Root mean squared (RMS) film roughness. Data

are mean 6 standard deviation, compared by one-way ANOVA Tukey’s post hoc multiple comparison test. No significant differences between

the different pHs were found: p value 5 0.5181 for one-way ANOVA. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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fluorescence of cells on the wafers was observed using fluo-
rescence microscopy.

Silicon wafers or scaffolds previously seeded with cells
were fixed overnight using a solution of 2% glutaraldehyde,
3% paraformaldehyde, 5% sucrose, 7% sodium cacodylate
(0.1 M), and 1.5% water at a pH of 7.4. Samples were
washed twice (5 min each) in sodium cacodylate buffer (0.1
M) and immersed in a post fixative solution prepared with
2 mL of 4% osmium tetroxide, 1 mL of acetate-veronal, 1
mL of HCl, and 1.75 mL of water. The samples were dehy-
drated with a graded series of ethanol, 50, 70, 90, 95, 100,
100, 100%, 10–30 min per step. The ethanol was removed
by critical point drying, and once the samples were sput-
tered with gold, they were imaged via SEM.

Statistical analysis
Experiments were performed using four samples per condi-
tion. Data are presented as mean6 standard deviation, with
n5 4 for each group, compared by one-way ANOVA Tukey’s
post hoc multiple comparison test or by an unpaired t-test
using GraphPad Prism 5.

RESULTS AND DISCUSSION

Layer-by-layer film growth and morphology
Using an automated spray-assisted LbL system, we were
able to sequentially deposit hyaluronic acid (HA) and poly-L-
lysine (PLL) on top of both flat silicon substrates and
porous HA scaffolds in a fast and controlled manner. A low
molecular weight HA (64 kDa) was used to control solution
viscosity, such that the HA solution could easily be aerosol-
ized for the spray LbL assembly process. Prior to cell cul-
ture and in order to understand the growth mechanisms of
the LbL films using spray-assisted LbL, we sprayed the poly-
electrolyte films, (PLL/HA)n, at pH 5, 6, and 7 with n550,
100, and 150 bilayers on silicon wafers. PLL/HA films
assembled via dip LbL assembly have been observed to
have different properties based on their assembly pH.33 We
examined sprayed film properties for assembly pH values
close to a physiologic pH of �7. We limited our analysis to
the pH range of 5–7, ensuring minimal film reorganization
in cell culture applications and eventual in vivo applications.
The film thickness at these conditions was quantified using

profilometry (Fig. 2). Film thickness increased with the
number of bilayers deposited for all pH conditions tested.
Although the thickest film was built using 150 bilayers at
pH 7 (16836291 nm), the thickness results were not stat-
istically significant between different pH values, disabling
conclusions regarding the influence of pH on the growth
mechanism of the films. In the pH range examined, both HA
and PLL are in the highly charged state, leading to similar
LbL film thickness values at each pH with linear growth
behavior between 50 and 150 bilayers.

The �100 nm/bilayer growth behavior and apparent lin-
ear growth are both features previously reported for PLL/
HA multilayers, which undergo exponential growth due to
interdiffusion from �9 to 13 bilayers, related to the unique
ability of PLL to migrate in and out of the growing multi-
layer film.11,34 These films typically level off to a constant
but relatively large thickness per bilayer pair beyond the
first 8–10 bilayers.11 Films of 50, 100, and 150 bilayers
were generated using spray-LbL to create films that range
from �5- to 15-lm thick. We have previously shown that
spray-LbL assembly can lead to inhibition of the super-
linear growth process due to the suppression of inter-
diffusion in the sprayed films and to the kinetic trapping of
polyelectrolyte chains on the film surface during spray dep-
osition35; however, with the conditions and the polyelectro-
lytes examined in this study, this phenomenon was not
observed.

Atomic force microscopy (AFM) was used to characterize
the film topography and quantify film roughness. Selected
atomic force microscopy images representative of the entire
film area for 50, 100, and 150 bilayer films assembled at
pH 5, 6, and 7 show that the films were uniformly spread
on the surface of the silicon wafer [Fig. 3(A)]. The root
mean squared (RMS) roughness values obtained for these
films [Fig. 3(B)] indicated a uniform roughness ranging
from 0.886 0.23 nm to 3.3061.52 nm. Overall the lowest
roughness values were obtained for 150 bilayer films. No
statistically significant differences were observed in rough-
ness for the different assembly pH values tested, indicating
that film assembly is relatively unaffected between different
pH values, which can be expected in this narrow pH range.
For other polymer multilayers, it has been observed that

FIGURE 4. Hyaluronic acid (HA) scaffold. A. HA scaffold after freeze-drying, held by forceps. B and C. SEM images of the scaffolds at different

magnifications. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIGURE 5. Layer-by-layer films coated on hyaluronic acid scaffolds. A. Top view. B. Transverse cut view (arrows indicate the direction of the

section).
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sprayed films usually present much lower roughness values
compared to dipped films.35

After studying film growth and topography on the sur-
face of silicon wafers, we tested the possibility of depositing
(PLL/HA)n films on top of porous HA scaffolds. High molec-
ular weight (MW) (1.2–1.8 MDa) and low MW (351–600
KDa) HA were functionalized respectively with aldehyde
(HA-CHO) and hydrazide (HA-ADH) groups, as described
previously.31,36–39 For the HA-ADH, ADH was introduced in
the HA sugar unit and for the HA-ALD, the aldehyde groups
were introduced by reaction with sodium periodate, that
oxidizes the proximal hydroxyl groups to create dialdehydes,
thereby opening the sugar ring.31 HA-CHO and HA-ADH
were mixed at equivalent molar ratios, forming cross-linked
HA gels, HAX, by hydrazone bonds. A viscous and resilient
gel was formed right after crosslinking. Subsequent freeze-
drying of the gel generated an open microstructure with a
high degree of interconnectivity. After freezing at 220�C
and lyophilization, a white and porous spongy structure was
obtained [Fig. 4(A)]. The average pore size determined by
SEM image analysis was 183.86 38.7 mm [Fig. 4(B,C)]. The
scaffolds in which the (PLL/HA)n films were deposited
were also observed under SEM; the top view of the scaffold
and its cross section are shown in Figure 5(A,B), respec-
tively. As more film bilayers were deposited, the LbL film
progressively coated the scaffold, creating a film bridging
the topmost surface, while keeping an intact porous bottom
structure. Similar morphologies of sprayed-LbL films have
been observed on electrospun membranes.30,40 The polye-
lectrolyte chains begin to fill the gaps between fibers, and
as serial deposition continues, the coating grows laterally,
filling in interstitial voids.30 As the sprayed polymers are
first adsorbed on the scaffold, before starting to build a con-
tinuous film, the coating becomes more homogeneous with
an increasing number of layers. SEM confirmed that the
deposition of 50–150 bilayer films led to uniform coatings
across the surface of the scaffolds for all pH values tested.

No significant differences in film morphology were found
for the same number of layers in the study at the different
pH values. It has previously been shown that conformal
spray-LbL coatings on porous electrospun mats can be
developed in the absence of a pressure gradient. The polye-
lectrolyte chains arriving at the surface initially fill the gaps
between fibers, as the mat catches the polyelectrolyte drop-
lets that arrive at the surface through favorable interfacial
interactions. As serial deposition continues, the coating
grows laterally, filling interstitial voids, rather than penetrat-
ing the depth of the mat.41 In our case, the HA scaffold
likely behaves similarly to these electrospun materials dur-
ing LbL film deposition.

Characterizing layer-by-layer film erosion
From the conditions tested, we selected the pH 7 deposition
condition for further evaluation, as this is closest to a physi-
ologic pH of 7.4, thus ensuring more stable films at in vitro
conditions; the 150 bilayer film samples were chosen for
further studies with cells. This number of layers was
selected in order to create a film that would form the best
barrier at the dermal-epidermal porous interface, acting as
a flat membrane for keratinocyte adhesion.

Consequently, we proceeded to examine erosion of 150
bilayer films assembled on silicon wafers at pH 7 by incu-
bating the samples in PBS with and without 10 U mL21 of
hyaluronidase (an enzyme that degrades HA) in an orbital
shaker at 37�C. Film erosion was evaluated by quantifying
the decrease in film thickness over time by profilometry.
Figure 6 shows the change in film thickness. The film thick-
ness decreased linearly (R2 of 0.97 and 0.95 without and
with enzyme, respectively). Loss in thickness was monitored
for 16 days, after which, it was no longer possible to accu-
rately quantify the thickness, as the films were too thin.
Overall, the presence of the enzyme appeared to accelerate
the decrease in film thickness. In the presence of the

FIGURE 6. Change in film thickness with and without hyaluronidase

in PBS at 37�C for (poly-L-lysine/hyaluronic acid)150 assembled at pH

7. In the presence of the enzyme, the average film thickness loss is

11.8% per day, while in PBS without enzyme it is 11% per day. Data

are mean 6 standard deviation; differences in means are not signifi-

cant for day 0, 4, and 14, but are significant (*) for the other time

points (p< 0.05) evaluated via an unpaired t-test.

FIGURE 7. Double-stranded DNA quantification represents the prolif-

eration of keratinocytes on (poly-L-lysine/hyaluronic acid)150.5 film-

coated substrates. Cells growing on tissue culture plates, starting with

the same initial cell concentration were used as a control. Data are

mean 6 standard deviation; difference in means are not significant for

days 2, 4, 6, 8, and 10, but are significant for days 12, 14, and 16

(*p< 0.05, evaluated via an unpaired t-test).
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enzyme, half of the film was lost by the sixth day, with an
average thickness loss of 11.8%/day, while in PBS without
enzyme, 50% of thickness was lost by the 8th day with an
average film loss of 11%/day. These numbers suggest that
although hyaluronidase assists in film breakdown, the pri-
mary erosion mechanism is unrelated to enzymatic degrada-
tion. It is likely that gradual film swelling and some amount
of charge shift on the HA backbone leads to gradual destabi-
lization and disassembly of the film. In addition, the use of
a low MW HA may contribute to faster erosion as compared
to films containing larger MW HA. The erosion may have
also been accelerated due to the way in which we con-
ducted our erosion experiment. The shear stress induced by
the orbital shaker likely promoted increased film erosion
compared to static conditions. An increase in ionic strength
of the PBS as compared to the sodium acetate film deposi-
tion buffer may also have contributed to film erosion, as
charge shielding at these higher salt concentrations can lead
to film destabilization.42 For a skin tissue engineering appli-
cation, our (PLL/HA) film would act as a substrate for initial
keratinocyte attachment. The film would then degrade as
the new skin epithelium forms. Keratinocytes tend to aggre-
gate yielding complete monolayers by 3–4 days in culture.
At around 6 days, a second layer forms, which consists of
cells with an extensive internal network of fibrils.43 There-
fore, the 16 days over which films persist in vitro should be
sufficient to ensure healthy keratinocyte adhesion in future
applications.

Keratinocyte behavior on layer-by-layer films
Adult skin consists of two tissue layers: epidermis and der-
mis.44 The uppermost layer of skin, the epidermis, consists
primarily of keratinocytes, which form an effective protec-
tive barrier for the body.45,46 In the healthy skin, the basal
keratinocyte layer attaches to a carpet of specialized matrix,
the basal lamina.44 Here, we tried to mimic the basal lamina
with our LbL membrane. HA-based gels and HA-coated
surfaces have previously been shown to be non-adhesive to
cells.47–49 Because HA is highly hydrophilic, we added an
extra layer of PLL to the top of the assembled films, in
order to improve cell adhesion, yielding (PLL/HA)150.5 (0.5
denotes the extra PLL layer). (PLL/HA) LbL films have pre-
viously been used to functionalize photocrosslinked HA

hydrogels in order to improve cell adhesion.25 Furthermore,
PLL has been widely used as a cell adhesive.49

We were able to successfully seed human adult keratino-
cytes on our (PLL/HA)150.5-coated substrates. To verify
keratinocyte proliferation, double-stranded DNA (dsDNA)
content was quantified up to 16 days following initial kera-
tinocyte seeding on the LbL film-coated samples (Fig. 7). At
earlier time points, cells proliferated on the LbL films at
similar rates to cells on tissue culture plastic. However, at
later time points (12, 14, and 16 days), the dsDNA content
for cells on the LbL film-coated substrates was significantly
lower when compared to the tissue culture plate. This
behavior is likely primarily due to the gradual disassembly
and erosion of the underlying LbL film. Cell viability studies
were carried out using LIVE/DEADVR assays on keratino-
cytes seeded on LbL film-coated silicon substrates. Figure 8
provides representative images of cells on these LbL films,
which show that most of the cells remain viable (green
color) at 3, 7, and 14 days in culture. On the 14th day, the
high cell density at confluence leads to increased cell death
(red color) compared to earlier time points and detachment
of some cells.

Next, we observed the morphology of adult human kera-
tinocytes on LbL films with SEM. After 24 h in culture, the
keratinocytes seeded on film-coated silicon wafers, were
adherent to the surface, with a typical morphology. Figure
9(A) shows the evident adhesion sites and prominent
nuclei. For films coating the tops of the 3D porous HA scaf-
folds, cells attached after 3 days in culture, showing the typ-
ical cuboidal morphology of basal keratinocytes (early stage
of maturation) [Fig. 9(B)].50 An increase in cell number was
observed after 7 days in culture [Fig. 9(C)], confirming pro-
liferation. After 10 days in culture [Fig. 9(D)], the LbL film
was completely covered by a sheet of keratinocytes that dis-
played a flattened cell morphology, characteristic of supra-
basal cells.43 At days 12 and 14, keratinocytes exhibited
increased size, flattened morphology and strong adherence
to the film-coated substrate [Fig. 9(E,F)]. At day 16, cells
appeared rounded and unhealthy [Fig. 9(G)], suggesting ker-
atinization of the epithelial cells by day 18 [Fig. 9(H)] (later
stage of maturation).51

The successful attachment and proliferation of keratino-
cytes cultured on top of the (PLL/HA)150.5 film-coated

FIGURE 8. LIVE/DEADVR viability/cytotoxicity assay for keratinocytes growing on (poly-L-lysine/hyaluronic acid)150.5 film-coated substrate. Three

days after seeding, the keratinocytes started the formation of colonies, which colonized the layer-by-layer film by day 7. At day 14, the keratino-

cytes formed a confluent layer and some cells started to detach. Calcein-AM stains live cells in green and propidium iodide stains dead cells in

red. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIGURE 9. Scanning electron microscopy images of keratinocytes cultured on top of (poly-L-lysine/hyaluronic acid)150.5 films assembled at pH 7.

A. Cells on film-coated silicon substrates 24 h after seeding. Cells on film-coated hyaluronic acid scaffolds at B. day 3, C. day 7, D. day 10, E. day 12,

F. day 14, G. day 16, and H. day 18.
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porous HA scaffolds developed in this work opens up the
possibility of using this bilayer scaffold for skin tissue engi-
neering applications. The LbL film would act as the epider-
mal component and the porous scaffold as the dermal
component. Here we have demonstrated how to build a
dermal-epidermal scaffold that could be used to co-culture
cells in the epidermis and dermis portions, allowing the
interactions between the different cell types, which could
promote the healing process.52,53 It has previously been
shown that in the presence of fibroblasts, keratinocytes
have better proliferation and are able to give rise to an
improved basement membrane and a thicker epithelium. An
increased production of laminin and type IV collagen has
also been noted for such co-culture systems.54,55 In the scaf-
fold we have developed, the LbL membrane would contrib-
ute towards cohesion of the epidermal and dermal
components, serving as the interface and the exchange zone
between cell layers, allowing the interaction between differ-
ent types of cells. Consequently, the polyelectrolyte multi-
layer would help in the assembly of the three-dimensional
stratified epidermis and contribute to the reconstruction of
a dermal–epidermal junction, resembling a basement mem-
brane. This would improve the strength of tissue engineered
skin and better mimic in vivo tissue. Our LbL film could
also be loaded with angiogenic growth factors, tuned to
release over timescales required to recruit endothelial cells,
in order to promote the tissue vascularization necessary for
skin regeneration.

CONCLUSION

We have successfully developed a polyelectrolyte multilayer
film, which adheres to the surface of a porous scaffold, is
stable yet degradable, and is compatible for biological appli-
cations. This LbL thin film, together with the underlying
porous hyaluronic acid scaffold creates a single, epidermal–
dermal structure for potential use in skin tissue engineering
applications. The specific properties of each component are
addressed in order to potentially favor the formation of the
normal skin architecture and consequently, the regeneration
of a basal lamina and the stratification of keratinocytes. The
epidermal component is flat, enabling the formation of a
monolayer of keratinocytes, as demonstrated in this work,
and the dermal component is porous in order to promote
three-dimensional dermal matrix formation that may ulti-
mately enable culture of dermal fibroblasts.
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