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Abstract

The study of host reactions in the biomedical and tissue engineering (TE) fields is a key issue but
somehow set aside where TE constructs are concerned. Every day new biomaterials and TE constructs
are being developed and presented to the scientific community. The combination of cells and biomol-
ecules with scaffolding materials, as TE constructs, make the isolation and the understanding of the
effect of each one those elements over the overall host reaction difficult. Eventually, all variables in-
fluence the host reaction and the performance of the constructs. For this reason, current assessment
of the in vivo performance of TE constructs follows individual approaches, using specific animal
models to independently provide insights regarding the contribution of the biomaterials/scaffolds
towards the host reaction, and of all the constructs regarding their functionality. Skin wound healing
progress into tissue regeneration or repair is highly dependent on the specificities of the inflamma-
tory stage, as demonstrated by comparison between fetal and adult mechanisms. Thus, it would be
expected that insights acquired from host tissue reaction evaluation to biomaterials/scaffolds would
be explored to predict healing progression and improve the functionality of skin TE constructs. The
rational of this review is to make a comprehensive analysis of to what extent the knowledge obtained
from the evaluation of in vivo host reactions to implantable biomaterials/scaffolds has been used in
the design of skin TE strategies, by promoting tissue regeneration rather than repair. Copyright ©
2016 John Wiley & Sons, Ltd.
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1. Introduction

The main objective of skin wound closure is to re-establish
tissue and organ homeostasis preventing the invasion of
microorganisms and infections. It is obvious that the
sooner the wound heals, the lower is the infection proba-
bility and the faster the organism may return to its ’nor-
mal’ function. However, accelerated closure is mainly
achieved by rapid interposition of fibroblasts that will
form the scar tissue.

Many text books (Fantone and Ward, 1999; Frank and
Kaempfer, 2003; Gamelli and He, 2003; Williams, 2001)
and review papers (Gurtner et al., 2008; Martin et al.,
2003; Martin and Leibovich, 2005; Monaco and Lawrence,
2003; Werner and Grose, 2003) have been compiling
the acquired knowledge on the cascade of events subse-
quent to tissue injury. However, the mechanisms by
which organisms repair or regenerate injured tissue are
not completely disclosed. Important insights have been
revealed by studying the regeneration of amputated
appendages of amphibians, showing that differentiated
cells from mature tissues surrounding the wound dedif-
ferentiate into mononuclear blastemal cells, which then
differentiate into multiple tissue lineages (Brockes and
Kumar, 2002; Suzuki et al., 2005). Also, data from
developmental studies in the sponge Amphimedon
queenslandica (Adamska et al., 2007) and in Drosophila
melanogaster (Woolner et al., 2005) revealed remarkable
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similarity with human wound closure mechanisms,
namely cell–cell interactions mediated by Wnt proteins
and transforming growth factor-β (TGFβ). Furthermore,
salamanders and humans share the molecular machinery
to regenerate tissues but the main difference relies on the
rapid deposition of fibrotic tissue in adult humans, limit-
ing the regenerative potential (Gurtner et al., 2008).

Human fetal skin wound healing also presents very dis-
tinct characteristics from adult healing, among which is
reduced inflammatory response (Cowin et al., 1998;
Ferguson and O’Kane, 2004; Hopkinson-Woolley et al.,
1994). In fact, this is translated by the diminished number
and persistence of inflammatory cells, such as monocytes,
and by the lack of B lymphocytes (Cowin et al., 1998), un-
til the third trimester of gestation. In fetal skin wound
healing, reduction in the number and type of inflamma-
tory and immune system cells also represents, as com-
pared to adult process, decreased levels of inflammatory
signals, cytokines and growth factors, with rapid clear-
ance from the wound site (Table 1) (Chen et al., 2005a,
2005b; Cowin et al., 2001; Ferguson and O’Kane, 2004;
Levine et al., 1993; Liechty et al., 1998, 2000a, 2000b).
In addition, the difference in the inflammatory cells’
presence/absence and interval of action also impact extra-
cellular matrix formation, re-epithelialization and wound
contraction (Ferguson and O’Kane, 2004). Lack of macro-
phages and polymorphonuclear neutrophils were shown
to improve re-epithelialization and diminished scar for-
mation (Martin et al., 2003). In fact, the presence of a
more persistent acute inflammation (Adzick et al., 1985)
and keratinization in adult wound healing leads to the for-
mation of scabs, resulting in almost permanent scars
(Ferguson and O’Kane, 2004). Conversely, the absence
of an underlying cell growth, a sterile and relatively low
moist environment, high oxygen tension (Hunt et al.,
1969), slow matrix deposition and epithelialization
(Lorenz et al., 1992) and extensive angiogenesis leads to
a slower closure rate in adult skin healing (Ferguson and
O’Kane, 2004), which might contribute to tissue
regeneration.

Given the relevance of inflammatory cells and media-
tors within the repair/regeneration process, it is clear that
the host tissue response to tissue-engineering (TE) con-
structs, resulting from the individual and, most impor-
tantly, the concerted action of all their elements, is of
major significance in determining constructs functionality
in vivo. Furthermore, the identification of major factors in-
volved in scarless fetal wound healing, and the establish-
ment of their corresponding role within host reaction
mechanisms, might be a way to achieve tissue regenera-
tion and functional skin tissue in particular.

2. Host reaction

Ideally, a TE construct aims to interact with and integrate
host tissue, allowing functional re-establishment and
complete recovery of the injured tissue. The resolution

of inflammation, with concomitant integration of the
transplant into the host tissue, precedes complete healing
(Langer and Vacanti, 1993). In a TE construct, where the
scaffolding material works as a temporary structure, con-
stant change of the implanted material, due to degrada-
tion and interaction with the host environment, certainly
influences the reaction from the host and, thus, tissue
healing. Moreover, the presence of cells and bioactive
agents in the constructs, also known as relevant players
in the host reaction, raises additional concerns and fur-
ther impedes understanding of their individual and con-
certed contributions, and consequently the achievement
of ideal regeneration settings.

2.1. Host reaction models

Subcutaneous, intraperitoneal and intramuscular mouse
and rat (Azab et al., 2007; Christenson et al., 1991;
Kamath et al., 2008; Krause et al., 1993; Meinel et al.,
2005; Mendez et al., 2004; Tang et al., 1998) models are
the most commonly used to assess the host response to
newly developed biomaterials/scaffolds for different TE
applications. Despite the well-known influence of the pro-
cessing methodologies the surface properties of materials
(Gomes et al., 2004; Tuzlakoglu et al., 2010, 2011) and
their degradation behaviour (Azab et al., 2007; Dagang
et al., 2008; Gomes et al., 2008), host reaction models
usually have the limitation of not dealing with the final
shape of the device. Nonetheless, valuable considerations
can be obtained with those models regarding acute (Azab
et al., 2007; Marques et al., 2005; Rhodes et al., 2007;
Spargo et al., 1994) or chronic inflammation (Azab et al.,
2007; Kim et al., 2007; Marques et al., 2005; Rhodes
et al., 2007), as well as long-term reactions with full inte-
gration of the biomaterials/scaffolds into the host tissue
(Ishii et al., 2009; Matthews et al., 2005; Rhodes et al.,
2007; Schlosser et al., 2002). Additionally, conclusions re-
garding the local and/or systemic effects of injectable or
scaffolding materials over the host have been obtained
(Azab et al., 2007; De Souza et al., 2009; Rhodes et al.,
2007; Tomazic-Jezic et al., 2001). Subcutaneous and in-
tramuscular models have mostly focused on assessing
the direct effect of the biomaterial/scaffold over the
implantation site. Due to muscle high degree of vasculari-
zation that assists the activation of complement and
clot systems, intramuscular models can be considered
more reliable for providing information on the fibrotic
capsule formation and development throughout the im-
plantation (Meinel et al., 2005; Mendez et al., 2004). Var-
iations of classical subcutaneous implantations, such as
subcutaneous air pouches (Hooper et al., 2000; Krause
et al., 1993; Wooley et al., 2002), dorsal skin fold chamber
(Laschke et al., 2005) or cage implants (Brodbeck et al.,
2002, 2003; Kao and Lee, 2001; Marchant et al.,
Marchant et al. 1983, 1989; Rodriguez et al., 2008), have
also demonstrated reliable results regarding the interplay
between direct and indirect surface reactions of materials.
Conversely, intraperitoneal models have been useful in
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evaluating the reactions of abdominal organs, such as
spleen, liver, kidney, mesenteric lymph nodes and the ad-
jacent adipose tissue (Azab et al., 2007; De Souza et al.,
2009; Tomazic-Jezic et al., 2001), translating the host
systemic reaction to the biomaterial/TE scaffold. Addi-
tionally, intraperitoneal and intramuscular models also
allow evaluation of the systemic recruitment of host
inflammatory cells and secretion of molecules after
transplantation/injection at short and long time periods

of reaction (Busuttil et al., 2004; Lozano et al., 2002; Tang
and Eaton, 1993; Tomazic-Jezic et al., 2001; Schlosser
et al., 2002). However, cell recovery from intraperitoneal
fluid is easier than from intramuscular models, also
allowing kinetic studies. The antigenic/immunogenic po-
tential of a biomaterial and the consequent acquired im-
munity by the host has also been studied after repeated
implantations in either subcutaneous or intraperitoneal
rat models (Schlosser et al., 2002; van Luyn et al., 2001) .

Table 1. Inflammatory cells and molecules in fetal vs adult skin wound healing

Molecule Secreted by Role Fetus Adult

EGF Platelets
Monocytes/macrophages
Keratinocytes
Fibroblasts
Endothelial cells

Re-epithelialization
Stimulation of
collagen secretion by
fibroblasts

– mRNA decreases with
gestational age
(Peled et al., 2001)

VEGF Platelets
Mast cells
Neutrophils
Monocytes/macrophages
Keratinocytes
Fibroblasts
Endothelial cells

Angiogenesis Unclear (Wilgus et al., 2008) –

PDGF Platelets
Mast cells
Monocytes/macrophages
Fibroblasts
Endothelial cells

Fibroplasia
Recruitment of
fibroblasts to the
wound site

High levels but rapid
clearance from
wound site
(Chen et al., 2005b)

–

FGF Platelets
Mast cells
Monocytes/macrophages
Keratinocytes
Fibroblasts
Endothelial cells

Matrix deposition,
Re-epithelialization,
angiogenesis, cell
migration
(endothelial,
keratinocyte and
fibroblast)

High expression of FGF2
(Chen et al., 2005b)
Downregulation of
FGF7 and FGF10
(Dang et al., 2003)

–

TGFβ3 Platelets
Mast cells
Neutrophils
Monocytes/macrophages
Keratinocytes
Fibroblasts
Endothelial cells

Infiltration of PMNs
and MΦ, fibroplasia,
matrix deposition
Angiogenesis

Low levels and increased
clearance (Cowin et al., 2001;
Levine et al., 1993)

High levels and long
intracellular signalling
(Levine et al., 1993)

IGF-I Platelets
Monocytes/macrophages
Fibroblasts

Matrix deposition
Scarring
Re-epithelialization

Low proliferation and
collagen synthesis
(Werner and Grose, 2003)

High proliferation and
collagen synthesis
(Rolfe et al., 2007)

IL-1β Platelets
Mast cells
Neutrophils
Monocytes/macrophages
Keratinocytes
Fibroblasts
Endothelial cells

Perpetuation of
inflammation
Induction of
proteolytic activity
Vascularization

Induction of lower response
of fibroblasts to contraction
(in vitro) (Irwin et al., 1998)

Induction of higher
response of fibroblasts
to contraction (in vitro)
(Irwin et al., 1998)

IL-4 Platelets
Mast cells

Reduction of
inflammation

– Downregulation of
inflammatory cytokines
(Leonard et al., 1993)

IL-6 Mast cells
Monocytes/macrophages
Keratinocytes
Fibroblasts
Endothelial cells

Re-epithelialization
and granulation tissue
formation

Increased expression
but rapid clearance from
wound site (Liechty et al.,
2000a•)

Mitotic effect in
keratinocytes and
chemoattractive to
granulocytes (Sato et al.,
1999a•)

IL-8 Mast cells
Neutrophils
Monocytes/macrophages
Keratinocytes
Fibroblasts
Endothelial cells

Re-epithelialization
Inflammation
induction
Wound contraction
reduction

Chemoatractant for granulocytes
but rapid clearance from
wound site (Liechty et al.,
1998)

Chemoatractant for granulocytes
(Liechty et al., 1998;
Rennekampff et al., 2000)
Inhibition of keratinocyte
proliferation (Rennekampff
et al., 2000)

IL-10 Mast cells
Monocytes/macrophages

Fibrosis/scar
formation and
inflammation
inhibition

Regulating the expression
of proinflammatory
cytokines (Liechty et al.,
2000b•)

Inhibition of granulocytes
and MΦ infiltration at
the wound site (Sato et al.,
1999b•)
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2.2. Mechanistics of the host reaction to
biomaterials/scaffolds

Among inflammatory cells, macrophages, always a major
player in the host reaction, recognize and react with the
proteins adsorbed to the material’s surface (Anderson
and Miller, 1984). Although some insight has been gained
regarding this surface-dependent interaction (Kao, 1999;
Kao and Lee, 2001; Keselowsky et al., 2007; Schmidt and
Kao, 2007), the mechanisms by which macrophages
adhere and react to the different surfaces are still far from
being revealed. Specific fibronectin peptide sequences,
such as Pro–His–Ser–Arg–Asn (PHSRN) and Arg–Gly–Asp
(RGD) were shown to elicit an early-stage foreign body
giant cells (FBGCs) reaction (Kao and Lee, 2001). Thus,
those domains were identified as important factors medi-
ating macrophage adhesion to polyethyleneglycol-based
surfaces and then in the formation of FBGCs (Kao and
Lee, 2001). A transgenic mouse model, in which plasma
fibronectin [p(FN)] was depleted (Keselowsky et al.,
2007), permitted further demonstration that, besides being
an important regulator of FBGCs reaction, p(FN) plays a role
in fibrotic capsule formation. Additionally, two other trans-
genic mouse models, where either fibrinogen or plasmino-
gen was depleted, proved that leukocyte recruitment after
the intraperitoneal implantation of polyethylene terephthal-
ate is plasminogen-dependent, while leukocyte adhesion is
fibrinogen-dependent (Busuttil et al., 2004).

Ultimately, the specific cellular response to the material’s
surface determines the deposition of collagen by the tissue-
repairing cells and consequently the extent of the fibrotic
capsule deposited (Keselowsky et al., 2007). Fibrotic tissue
surrounding the implant hinders the interaction of the host
with the implanted biomaterial (Tang and Eaton, 1995;
Wynn, 2008). This diminished interaction may protect the
host from eventual material debris but, more importantly,
will not allow integration of the implant into the host tissue,
therefore being highly detrimental in TE approaches.

Despite the achievements using subcutaneous, intramus-
cular and intraperitoneal models regarding the evaluation
of host inflammatory/immune reactions to biomaterials
/scaffolds, understanding of the mechanisms involved on
the transition from an acute to a chronic reaction, which
the existing animal models are not capable of answering, is
a significant lack in this field. This issue is particularly rele-
vant for skin regeneration, due to the need to restore its
integrity after injury in a short time frame. Furthermore, as
the cascade of events in inflammatory/immune reactions
involves crucial host cells and molecules that influence the
progression of skin healing, comprehension of these insights
offers important cues to lead tissue regeneration that have
been poorly used or disregarded by researchers.

2.3. Modulating the host response through
modification of biomaterials

Classically, researchers in the biomedical/TE field tend to
consider the material–host interface as a key issue in

evaluating tissue reactions. In fact, great efforts have been
made to develop materials whose surfaces are less
antigenic/immunogenic (Hetrick et al., 2007; Hickey
et al., 2002; Khouw et al., 2001; Ravin et al., 2001). The
reduced number and lack of in vitro models to validate
the antigenic/immunogenic potential of biomaterials still
renders in vivo tests more reliable for testing the success
of these approaches. The effect of key molecules, such
as dexamethasone (Hickey et al., 2002), nitric oxide
(Hetrick et al., 2007), tumour necrosis factor-α (TNFα),
interferon-γ (IFNγ) (Khouw et al., 2001), vascular endo-
thelial growth factor (VEGF) and fibroblast growth
factor-β (FGF-β) (Ravin et al., 2001), has been tested in
subcutaneous rat (Hetrick et al., 2007; Hickey et al.,
2002) and mouse (Khouw et al., 2001) models, as well
as in an intramuscular rat model (Ravin et al., 2001).
However, due to given differences in the models and con-
sequent differences in reaction mechanisms on the mate-
rials, and thus the surface properties, few remarks
regarding the potential of the tested molecules in modu-
lating the host response can be extracted.

In a TE context, these approaches easily find a parallel
in the functionalization of scaffolding structures with dif-
ferent bioactive molecules; however, these have been
mainly chosen to direct the differentiation of the
transplanted cells towards a specific lineage (Altman
et al., 2009; Santos et al., 2013) or to recruit progenitor
cells (Aguirre et al., 2012) responsible for new tissue for-
mation. To consider the action of those molecules as an
intricate signalling network that not only directs new tis-
sue formation but also determines the host reaction still
remains to be particularly addressed.

3. Skin healing

The ultimate goal of skin TE is to lead the regeneration of
new skin tissue with all the sensorial and aesthetic func-
tionalities restored. Trauma and surgical procedures are
the main causes of acute skin lesions and their healing
mechanisms are not necessarily similar. Incisional wounds
heal by primary intention (Gamelli and He, 2003), mean-
ing that tissue loss is not extensive, the inflammatory re-
sponse is not exuberant and scar formation is not a
relevant issue. In contrast, skin excisions involve high tis-
sue removal and, thus, a secondary-intention healing
process (Frank and Kaempfer, 2003), characterized by
abundant inflammation and granulation tissue formation,
resulting in significant scarring. Acute skin wounds follow
a well-established pattern of progression through the in-
flammatory, proliferative and maturation phases (Baum
and Arpey, 2005; Fantone and Ward, 1999; Williams,
2001). It is expected that an acute excisional wound will
be closed within 2 weeks, although this time frame may
vary depending on the extent of the excised tissue
(Monaco and Lawrence, 2003). Conversely, chronic
wounds take months to years to close or might never do
so. In chronic wounds, healing progression is impaired
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due to arrest at one or more stages of the process, caused
by local or systemic factors. Exuberant contamination,
hypoxia, trauma, presence of foreign bodies, diabetes,
malnutrition, immunodeficiency and medication (Komesu
et al., 2004; Robson, 1988; Williams and Harding, 2003)
are among those.

3.1. Chronic skin wound-healing models

When an cute inflammatory reaction persists at the
wound site, a chronic skin wound with delayed healing
and inability to re-epithelialize within 6–8 weeks develops
(Menke et al., 2007; Schultz and Wysocki, 2009). A major
problem of chronic wounds with associated impaired
healing relies on its different aetiologies, such as diabetes,
immunosuppression, blood supply or nourishing deficien-
cies, glucocorticoids administration and age (Davidson,
1998; Menke et al., 2007), which do not represent a local-
ized deficit.

Frequently, the established chronic animal models
mimic delayed wound healing and not the impaired
wound healing observed in the clinical condition of
chronic wounds. Therefore, these models have been
mainly used to try to understand the mechanisms under-
lying impaired healing, as the case of diabetes, in mice
(Brown et al., 1997) and rats (Chen et al., 1999; Komesu
et al., 2004), instead of working as proper chronic wound
models for testing skin regeneration strategies. An exam-
ple of an animal model that may mimic a particular char-
acteristic of chronic wounds, such as ischaemia, is the
porcine split-thickness skin wound model. Even though
it is not a specific model of chronic wound formation, its
impaired blood supply allows testing the potential of TE
constructs to trigger angiogenesis and to promote dermal
regeneration (Markowicz et al., 2006b•). Contrarily, rabbit
(Niitsuma et al., 2003) and murine (Wassermann et al.,
2009) models of decubitus ulcers, although representing a
specific type of chronic wound, have been mainly used to
gather further knowledge on the mechanisms of pressure
ulcer development and the assessment of basic healing
mechanisms of chronic wounds.

3.2. Acute skin wound-healing models

Incisional full-thickness wound rat (Cho et al., 1999; Hu
et al., 2003; Ono et al., 2004) and mouse (Ishihara et al.,
2001; Repertinger et al., 2004) models have been used
to evaluate the effect of biomaterials per se, or of locally
releasing growth factors over healing rates, considering
skin breaking strength and bleeding cessation. However,
these models are not able to offer valid information for
skin TE, since healing by primary intention does not
characterize the mechanisms involved in skin regenera-
tion. In turn, partial or full-thickness excisional acute
wound models are the most appropriate and the ones
that were proved useful (Davidson, 1998) in predicting
the biofunctionality of biomaterials for skin-related

applications or of skin TE constructs. Full-thickness
wound models are, contrarily to the partial-thickness
models, essential to demonstrate the direct role of bio-
materials (Cho et al., 1999; Choi et al., 2001; Hu
et al., 2003; Ishihara et al., 2001; Noorjahan and Sastry,
2004; Sugihara et al., 2000; Suzuki et al., 1999) and
TE constructs (Altman et al., 2009; Inoue et al., 2008;
Markowicz et al., 2006a, 2006b•) over the healing mech-
anisms. Despite this, the panniculus carnosus muscle be-
neath the dermis is a main concern in rodents and
lagomorphs models, due to tissue contraction. Moreover,
the fast healing rate observed in small animals, even after
the administration of steroids to impair wound healing
(Saulis and Mustoe, 2001), compel researchers to adjust
the rodent models, or to substitute small animals by larger
animals (Ma et al., 2007; Middelkoop et al., 2004) with
skin healing closer to humans. The resemblances between
human and porcine skin (Metcalfe and Ferguson, 2007)
support the reliability of these models. In fact, swine full-
thickness skin excisional models have proved useful and
reliable tools to evaluate skin regeneration after the
grafting of skin tissue-engineering constructs. In fact,
results concerning the involvement of transplanted cells
(mostly autologous keratinocytes), acellular matrices and
host cells and molecules (Butler and Orgill, 2005; Druecke
et al., 2004; Jones et al., 2003; Melendez et al., 2008;
Wood et al., 2007) obtained with this model were trans-
lated to the clinic. Therefore, these and the similarities be-
tween porcine and human skin healing counterbalances
the high costs and demanding logistics of using this model,
and support controversy about the relevance of the results
obtained with the different acute skin wound healing ro-
dent models.

Researchers are not prone to using comparative ani-
mal models to evaluate the functionality of the proposed
approaches. Either the constructs are only tested in ro-
dents or directly transplanted into porcine models. From
our perspective, these models could complement each
other. The possibility of directly comparing the healing
microenvironment evaluated in skin-healing models
with the reaction to the scaffolding material determined
in host-response models could somehow surpass the lim-
itation of the rodent models. Thus, a systematization of
this comparative approach would contribute to better
predicting the functionality of the constructs and refine
the TE strategies to be tested in larger animal models
afterwards.

4. Host reaction vs skin regeneration

Inflammation and wound healing share the extraordi-
narily important feature of restoring the homeostatic sta-
tus of a living body. Inevitably, wound healing is
preceded by inflammation; the key inflammatory cells
and mediators also share functions in the progression of
wound healing and tissue regeneration, especially in skin.
Polymorphonuclear neutrophils (PMNs), macrophages
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(MΦ), mast cells, lymphocytes and platelets secrete a
wide range of molecules that balance the inflammatory
response, but are also involved in the stimulation or re-
straint of matrix deposition, cell infiltration, vasculariza-
tion, angiogenesis and re-epithelialization during skin
healing. A clear crosstalk between the inflammatory and
connective tissue cells (e.g. fibroblasts) that, in a first
stage, regulate the resolution of inflammation and then
the restoration of the original tissue, demonstrates the
existing interplay. After 6 weeks of implantation in full-
thickness porcine wounds, mononuclear cells (MΦs and
lymphocytes) and giant cells were found in direct contact
with the collagen scaffold fibres of Integra. Although no
signs of phagocytosis were observed, the number of giant
cells was significantly higher than in healthy tissue
(Druecke et al., 2004; Melendez et al., 2008). This de-
codes an activation of MΦs, inducing them to fuse without
achieving the phagocytosis step. In a subsequent study,
(Agrawal et al., 2012) identified the presence of M1 and
M2 type MΦs up to 42 days postimplantation of Integra
(R), associated with a more constructive tissue remodel-
ling response than for AlloDerm®. In this case, MΦs were
predominantly M1 and a more inflammatory-type tissue
remodelling outcome was observed. Thus, a balanced ef-
fect where, due to the persistent presence of the Integra
(R) scaffold, M1 type MΦs influenced the formation of
giant cells and the M2 MΦs led skin healing towards a
fibrosis-free scar was potentially occurring. Thus, in the
context of biomaterials, the host response and the pro-
gression to a wound-healing profile, the cytokines pro-
duced by the M2 polarized macrophages, known to
have anti-inflammatory potential, are expected to aid
tissue remodelling and vascularization and to inhibit
fibrous tissue formation (Gordon and Martinez, 2010).
The capacity of a biomaterial to modulate the expres-
sion of inflammatory mediators and the time course of
cutaneous healing, particularly the relationship between
IL-8 expression and re-epithelialization, was also dem-
onstrated (Kleinbeck et al., 2010). Thus, an intervention
in the early stage of wound healing, particularly
targeting the inflammatory mediators, is expected to
trigger the skin tissue regeneration pathway, providing
better outcomes than the current strategies, which have
been mainly targeting the later phases of proliferation
and remodelling.

The improvement of scarless skin healing was also asso-
ciated with beneficial crosstalk between the transplanted
keratinocytes and host fibroblasts (Melendez et al.,
2008). In fact, autologous keratinocytes in combination
with Integra (R) were shown to enhance the epithelializa-
tion of porcine full-thickness wounds (Jones et al., 2003;
Melendez et al., 2008; Wood et al., 2007) and seemed to
influence the progression of the inflammatory reaction
towards a more remodelling-prone response.

Overall, it seems evident that, by identifying and study-
ing the cells and molecules involved in the ongoing
resolution of the host reaction to skin TE constructs, im-
portant insights could be drawn in the context of restoring
homeostasis with skin tissue regeneration.

5. Final Remarks

From this overview, it becomes clear that inflammatory and
immune cells, as well as the associated mediators
(cytokines and growth factors) involved in the host reaction
to material/TE scaffolds, are intrinsically related to the pro-
gression of skin tissue healing into scar formation (repair)
or regeneration. Although demonstration is yet to be
attained, it is likely that a material that elicits a less severe
inflammatory response is more prone to trigger skin regen-
eration rather than repair. Nonetheless, the interplay and
complexity of these phenomena significantly hinder the
controlled and well-designed approaches that have yet to
be proposed. Exploitation of the knowledge acquired from
host tissue reaction models to predict and modulate skin
tissue healing is seen as an extremely valuable approach
to attain this. Ultimately, this complementarity will benefit
the development of improved skin TE constructs capable of
modulating the progression of the host reaction by targeting
the key signalling pathways that rule skin regeneration.
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