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a b s t r a c t

Auxetic materials are gaining special interest in technical sectors due to their attractive mechanical beha-
viour. This paper reports a systematic investigation on missing rib design based auxetic structures pro-
duced from braided composites for civil engineering applications. The influence of various structural
and material parameters on auxetic and mechanical properties was thoroughly investigated. The basic
structures were also modified with straight longitudinal rods to enhance their strengthening potential
in structural elements. Additionally, a new analytical model was proposed to predict Poisson’s ratio
through a semi empirical approach. Auxetic and tensile behaviours were also predicted using finite ele-
ment analysis. The auxetic and tensile behaviours were observed to be more strongly dependent on their
structural parameters than the material parameters. The developed analytical models could well predict
the auxetic behaviour of these structures except at very low or high strains. Good agreement was also
observed between the experimental results and numerical analysis.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Poisson’s ratio is defined as the lateral strain to the longitudinal
strain for a materials undergoing tension in the longitudinal direc-
tion. In common, all materials possess positive Poisson’s ratio, i.e.
the materials shrink laterally under tensile loading, and expand
transversely when compressed. However, in auxetic materials the
phenomena is just reverse, i.e. when material stretched it expands
transversely and contracts during compression that is, they exhibit
negative Poisson’s ratio (NPR) [1–9]. Negative Poisson’s ratios are
theoretically accepted. For an isotropic material, the range of Pois-
son’s ratio is from �1.0 to 0.5, based on thermodynamic consider-
ation of strain energy in the theory of elasticity. However, for
anisotropic materials, these range is higher and limits do not apply
[2,6,10].

Auxetic materials gains specific interest due to their unusual
behaviour which results improved mechanical properties, such as
improved fracture toughness, higher indentation resistance, high

energy absorption, sound absorption properties, improved shear
modulus, hardness, synclastic curvature (dome shape on out-of-
plane flexure) in sheets and panels, high volume change, high
impact resistance, etc. [2,6–9,11–13].

Diverse range of auxetic materials includes, naturally occurred
pyrolytic graphite, cancellous bone, rock with micro-cracks, aux-
etic three dimensional foams, auxetic bio-materials, auxetic two-
dimensional honeycomb, auxetic composites (fibre reinforced
plastics or FRPs) auxetic microporous polymers, etc. [2,6,9–
11,14]. Auxetic textile materials are widely used as filter, sports
clothing, biomedical application, defense industries, etc. Also, aux-
etic composites can find potential applications in aerospace and
automotive industry as well as in materials for protection, where
non-auxetic composites with high specific strength and stiffness
are currently used [2,6,8,10–12,15].

Besides composites, the auxetic property can also be attained
with definite structural designs. In the last few decades, divergent
geometric structures and models exhibiting auxetic behaviour
have been proposed, studied and tested for their mechanical prop-
erties. The main auxetic structures reported are two dimensional
(2D) and three dimensional (3D) re-entrant structures, rotating

http://dx.doi.org/10.1016/j.compositesa.2016.04.020
1359-835X/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Centre for Textile Science and Technology, University
of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal.

E-mail address: soheliitd2005@gmail.com (S. Rana).

Composites: Part A 87 (2016) 86–97

Contents lists available at ScienceDirect

Composites: Part A

journal homepage: www.elsevier .com/locate /composi tesa

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/76177867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


rigid/semi-rigid units, chiral and cross chiral structures, hard mole-
cules, liquid crystalline polymers and microporous polymers
[6,7,11,14,16–20,21].

Fibre reinforced polymer composites have been applied widely
in civil structural applications due to their enhanced properties as
compared to conventional materials (concrete and steel) or cera-
mic based composites. These properties include high tenacity,
low density, higher stiffness and strength, and easy handling. Com-
posites are introduced into structural elements to improve their
flexural resistance, shear strength, confinement, bending property,
etc. [22–27]. Recently developed braided composite rods (BCRs)
are a special class of FRPs, which have been used in structural
applications due to their several advantages over the other types
of FRPs such as simple and economical manufacturing process, tai-
lorable mechanical properties and good bonding behaviour with
cementitious matrices [28–33]. Currently, research is being carried
out to employ composite materials in structural elements to
improve their resistance against earthquake, blast or impact loads
caused by explosions [34–37]. Capacity to absorb energy is one of
the principal requirements for these applications and, in this sense,
auxetic composites and structures may prove to be excellent
materials.

In our previous research study, auxetic structures were devel-
oped from braided composite rods based on missing rib or
lozenge grid or cross-chiral (Fig. 1a) design and their auxetic

and tensile behaviours were studied, mainly focusing on the
influence of structural angle [2]. Similar to other studies
[17,18], this initial study also showed that the structures based
on the cross-chiral configuration exhibited negative Poisson’s
ratio. However, a recently performed analytical study revealed
that the Poisson’s ratio in the cross-chiral structures should be
zero [20]. The equivalent negative Poisson’s ratio which was
observed in the experimental studies was the result of uniaxial
shear coupling existing in these structures [20]. In contrast to
our previous work [2], which only considered the influence of
structural angle on auxetic and tensile behaviours, the influence
of all important structural and material parameters has been con-
sidered in the present work. Moreover, the previous work consid-
ered the existing analytical model (based on the hinging
mechanism, according to Refs. [17,18]) to predict the auxetic
behaviour of developed structures leading to no correlation
between the experimental and analytical results. To overcome
this, in the present work a new analytical model (based on the
hinging mechanism, but with additional parameters) has been
proposed both for the basic and modified structures. Numerical
modelling based on finite element (FE) method has also been
performed to predict auxetic and tensile behaviours. Also, in
the present case, the rib length of the structures has been
decreased to increase their closeness and consequently, their
strengthening capability for civil engineering applications.

Fig. 1. Auxetic structural design used in the present study showing the structural angles (r1 – longitudinal rod rib length and r2 – transversional rod rib length). (a) Schematic
of structure-1, (b) real structure-1, (c) portion of structure in close-up, (d) schematic of structure-2 and (e and f) structure-2 and structure-3.
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These structures were subjected to tensile loading in a Univer-
sal Testing Machine and auxetic behaviour (Poisson’s ratio) was
characterized by means of simple image analysis technique (using
ImageJ software). The influence of different structural parameters
(angle u, BCR diameter and addition of straight rods) and material
parameters (type of fibres and linear density) on Poisson’s ratio
and tensile properties was thoroughly investigated.

2. Materials and methods

2.1. Materials

For the production of braided composite rods, glass fibre roving
with linear density of 1200 tex and 4800 tex was purchased from
Owens Corning, France. Also, basalt fibre roving with 4800 tex
and carbon fibre roving with linear density of 1600 tex were pur-
chased from Basaltex, Belgium and Toho Tenax, Germany, respec-
tively and used to produce braided composites. The epoxy resin
used to in this work was supplied by Sika, Germany, in two parts:
Biresin CR83 Resin and Biresin CH-83-2 Hardner. The resin and
hardener components were mixed in a weight ratio of 100:30 prior
to use. The important properties of fibre and resin are given in
Table 1.

2.2. Fabrication of braided composite rods and auxetic structures

Textile fibres reinforced braided structures were produced in a
vertical braiding machine using polyester multi-filament yarns
(with linear density of 110 tex) in the sheath and glass, basalt,
and carbon multifilament rovings as the core material.

During the braiding process, sixteen polyester filament bobbins
were used to supply the sheath yarns, which were braided around
the core fibres to produce the braided structures [30–32]. Produced
braided structures were then used to develop three types of aux-
etic structures, as shown in Fig. 1. First, structure-1 (Fig. 1b) was
developed based on the missing rib or lozenge grid or cross-
chiral auxetic structural design (Fig. 1a). Second, the basic design
was modified with longitudinal straight rod to improve the tensile
behaviour termed structure-2. Third, structure-2 was further mod-
ified to enhance the strengthening behaviour using undulation lon-
gitudinal rods with higher angle of inclinations, resulting in
structure-3. In each type, four samples were produced with the
total gauge length and width as 40 cm and 15 cm, respectively,
with extra length for clamping during tensile testing. The following
are the steps used to develop auxetic structures mentioned above:
(1) the auxetic structural design (Fig. 1a and d) was drawn on a
white chart paper; (2) the chart paper was placed on a board and
the braided structures were placed over the drawn design firmly
with help of adhesive tape; (3) the cross-over points were tied
by polyester filaments and epoxy resin was applied over the struc-
tures using a brush; (4) after curing, the structures were removed
from the board. The braided structures after resin application and
curing became circular composites termed as braided composite
rods (BCR). The weight percentage of core fibres in each of these
rods was around 51% ± 2%. Resin use was essential to provide ade-
quate mechanical strength to the braided composites in order to

handle them easily and turn them in to rigid auxetic structures.
In addition, the braided structures exhibit appropriate mechanical
property necessary for the directed use only after the resin applica-
tion and formation of BCR, as the matrix embraces the different
constituents (sheath and core fibres) of braided structure together,
facilitating them to act as a single structure. In absence of resin,
there may be slippage between the sheath and core as well as
between the core fibres resulting in poor mechanical
characteristics.

2.3. Parameters of developed auxetic structures

In order to study the influence of different parameters, auxetic
structures were produced using different types of core fibres hav-
ing different linear densities (2400 tex, 4800 tex, and 6000 tex
glass fibre; 4800 tex basalt fibre and 4800 tex carbon fibre). Also,
structures angle u (66�, 72� and 78�) was varied and its effect on
auxetic and tensile behaviour was studied. Moreover, modification
of basic structure through addition of straight longitudinal rod and
further change in structural angle resulted in different structural
parameters, which are listed in Table 2, along with material param-
eters. The developed structures are presented in Fig. 1.

2.4. Evaluation of auxetic and tensile behaviours of the structures

The measurement of Poisson’s ratio and tensile properties of the
auxetic structures was carried out in a Universal Tensile Testing
Machine. The cross-head speed of tensile testing machine was kept
at 25 mm/min. White marks were painted on the structures at top
(1/4), middle (1/2) and bottom (3/4) of the structures [18]. During
tensile testing, the video of sample deformation with load was cap-
tured using Canon EOS 650D and later, the video was converted
into images at specific intervals (per second) using image analysis
software (ImageJ). The distance between the marks in the struc-
tures, both in longitudinal and transverse directions, was mea-
sured in pixels using ImageJ software. The longitudinal and
transverse strains were then calculated by using the following for-
mulae [18]:

�x ¼ xn � x0
x0

ð1Þ

�y ¼ yn � y0
y0

ð2Þ

where xn and yn are the distance between the points marked on the
structure at nth of loading, x0 and y0 are the original distance
between the marks at zero loading. The average transverse strain
was calculated by averaging the transverse strain calculated at
top, middle and bottom points (1–3, 4–5, and 6–8). Similarly, the
average longitudinal strain was calculated from longitudinal strains

Table 1
Physical properties of core fibres and resin.

S. no. Properties Basalt Glass Carbon Epoxy

1 Density (g/cm3) 2.63 2.62 1.77 1.15
2 Filament diameter (lm) 17 – 13 –
3 Tensile strength (MPa) >4000 3100–3800 4400 122
4 Tensile modulus (GPa) 87 80–81 240 3.3
5 Elongation (%) – – 1.8 6.7

Table 2
Parameters of developed auxetic structures.

Structure Core fibre
type

Core fibre,
tex

Angle u, � Rib length, cm

S-1 Glass 2400 66 r1 – 2.70 & r2 – 2.35
S-1 Glass 4800 66 r1 – 2.70 & r2 – 2.35
S-1 Glass 6000 66 r1 – 2.70 & r2 – 2.35
S-1 Glass 9600 66 r1 – 2.70 & r2 – 2.35
S-1 Glass 4800 72 r1 – 2.60 & r2 – 2.35
S-1 Glass 4800 78 r1 – 2.50 & r2 – 2.35
S-1 Basalt 4800 66 r1 – 2.70 & r2 – 2.35
S-1 Carbon 4800 66 r1 – 2.70 & r2 – 2.35
S-2a Glass 4800 66 r1 – 2.70 & r2 – 2.35
S-3a Glass 4800 78 r1 – 2.50 & r2 – 2.35

a S-2 and S-3 consists both undulation and straight longitudinal rods.

88 R. Magalhaes et al. / Composites: Part A 87 (2016) 86–97



measured from left and right points of the structures (1–6, 2–7, and
3–8). The measurement principle has been illustrated in Fig. 2.
Later, the Poisson’s ratio was calculated from the average strains
by [18],

mxy ¼ � h�xih�yi ð3Þ

3. Results and discussion

3.1. Auxetic behaviour of the structures

The developed structures based on missing rib or lozenge grid
design show negative Poisson’s ratio. While tensile load is applied
to the structure longitudinally, the angle of longitudinal rods grad-
ually increases, resulting in straightening of these rods until angle
u reaches 90�. Straightening of the longitudinal rods leads to open-
ing of the undulated transverse rods through connecting point, i.e.
the angle a increases, resulting in transverse expansion of the
structures. To explain this point, the change of unit cell at different
stages of tensile loading is shown in Fig. 3.

3.2. Effect of core fibre on auxetic behaviour

To study the effect of core fibre type, auxetic structures were
developed from braided composite rods consisting of glass, basalt,
and carbon core fibres with same linear density, 4800 tex. As pre-
sented in Fig. 4a and given in Table 3, the core fibre type displays
influence on auxetic behaviour and the trend of Poisson’s ratio
change with longitudinal strain is the same for all the fibres. The
value of Poisson’s ratio first stays same with certain strain level
and decreases with increase of longitudinal strain.

The Poisson’s ratio values remain constant until around �5.5%
longitudinal strain and then start to decrease with additional
increase of strain until failure of the structures. The straightening
of longitudinal rods stop at this strain level (�5.5%), i.e. they
become fully straight and no further transverse expansion is possi-
ble. Further axial strain after this point, therefore, results in reduc-
tion of Poisson’s ratio.

The maximum negative Poisson’s ratio value is observed for
glass fibre structure, followed by basalt and carbon fibre structures.
Maximum Poisson’s ratio obtained with glass fibre was �18% and
�23% higher as compared to basalt and carbon fibre based
structures, respectively. The stiffness of the core fibre strongly
influences the auxetic behaviour of the structures. The structures
developed from high stiffness fibre (carbon) experience lower
deformation, i.e. lower expansion of transverse rods under
tensile load resulting in lower Poisson’s ratio value. Hence,
the developed auxetic structures show Poisson’s ratio in the
following order, which is just the opposite of the stiffness of core
fibres: Poisson’s ratioglass structure > Poisson’s ratiobasalt structure >
Poisson’s ratiocarbon structure.

3.3. Effect of linear density of braided composite rods on auxetic
behaviour

The effect of linear density of core fibres (i.e. BCR diameter) on
auxetic behaviour of developed structures can be seen from Table 4
and Fig. 4b. It is obvious from Table 4 that the diameter of BCRs
increases with the increase in linear density of core fibre. The
change in the BCR diameter causes change in the auxetic behaviour
of the structures. An increase in the BCR diameter reduces the aux-
etic behaviour (4800–6000 tex). This is due to the fact that higher
diameter (i.e. high linear density core) longitudinal and transverse
elements present more resistance towards deformation, resulting
in lower transverse expansion and Poisson’s ratio. However, the
structures produced using glass fibre with linear density of
2400 tex, exhibit lower Poisson’s ratio as compared to 4800 tex
glass fibre. This is attributed to the fact that too low linear density
of core fibres, i.e. BCR diameter results in highly flexible structures,
which are not capable of transmitting the longitudinal strains to
the transverse direction, resulting in lower Poisson’s ratio. There-
fore, there exists an optimum value for the core linear density or
BCR diameter, below or above which Poisson’s ratio decreases.

3.4. Effect of structural angle u on auxetic behaviour

Table 5 and Fig. 4c show the effect of initial structural angle, u.
It can be observed that an increase in u increases the Poisson’s
ratio value. Higher angle of the longitudinal inclined rods results
in improved tensile load bearing capability and this, in turn, leads
to higher deformation in transverse direction and higher Poisson’s
ratio. Maximum Poisson’s ratio obtained with initial structural
angle 66� was �41% and �73% lower as compared to 72� and
78�, respectively.

3.5. Influence of structural modification on auxetic behaviour

The basic auxetic structure, i.e. missing rib or lozenge grid or
cross-chiral design has been modified with longitudinal straight
rods to enhance their strengthening behaviour (especially at lower
strain level), so that auxetic structures will be suitable for strength-
ening of structural elements. The auxetic behaviour of the modified
structures is shown in Fig. 5. Even though the modified structure
consists of straight longitudinal rod, it exhibits negative Poisson’s
ratio, but the Poisson’s ratio value is considerably lower as com-
pared to the basic structure (structure-1). The straight longitudinal
rods restrict the structural deformation and transverse expansion
of the structure leading to lower Poisson’s ratio. Poisson’s ratio
remains high at very low strain and then drops, and again starts
to increase until 3% strain value, after which Poisson’s ratio
remains constant until �6% strain and decreases again sharply
until the failure of the structures. This type of trend is due to the
complex structural deformation due to the presence of the straight
rods which break at around 3% axial strain value (see Fig. 5).

Fig. 2. (a) Auxetic structure with painted marks, and (b) schematic points for strain
calculation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The initial structural angle u of the longitudinal rod of
structure-2 is 66�. This angle is increased to 78� in structure-3 to
enhance their strengthening capability. The auxetic behaviour of
this structure is shown in Fig. 5. Poisson’s ratio of structure-3 is sig-
nificantly higher as compared to structure-2 and decreases with
increase in longitudinal strain. The higher Poisson’s ratio is due
to the higher initial angle of longitudinal inclined rods.

3.6. Tensile properties of auxetic structures

The tensile properties of auxetic structures-1, (produced by
varying type of fibre, linear density, and varying angle u)
structure-2 and 3 are provided in Table 6. The tensile load is the
highest for carbon, followed by basalt and glass. Higher tensile load
obtained in case of carbon fibre based structures is due to higher
stiffness of carbon fibres. Similarly, basalt fibres have higher tensile
properties as compared to glass fibres resulting in higher tensile
load in basalt based structures. The typical tensile behaviour of
the developed auxetic structures is shown in Fig. 6.

Table 6 also shows that the increase in linear density of core
fibre increases the tensile load and decreases elongation (%) value.
This is due to the fact that the increase in linear density (6000 tex)
increases the no. of filaments in BCR cross section and improves
the load bearing capacity of the structures. It can also be noted
from Table 6 that increase in initial structural angle (u) increases
the tensile load of the structures. With higher initial angle u
(78�), the longitudinal inclined rods become straight quickly and
starts bearing higher load as compared to the inclined rods with
lower initial angle u (66�).

3.7. Failure mode of auxetic structures

The failure modes of the developed auxetic structures are
shown in Fig. 7. The weakest points in these auxetic structures
are the linking points or ribs bases. Therefore, during loading,
stress concentration occurred in these points leading to failure of
the structures (shown by arrows in Fig. 7a). In the modified struc-
tures with straight rods (structure-2, and 3), in the initial period,
load was mainly taken by the straight rods. So, in this period they
are subjected much higher stresses as compared to the bent rods
(shown by arrows in Fig. 7b). So, failure first occurred in the

straight rods and after the breakage of the straight rods, load was
fully transferred to the bent elements resulting in their straighten-
ing, stretching and finally failure at the weak points (shown by
arrow in Fig. 7c).

The fracture surface of the braided rods is presented in Fig. 8. It
shows the broken glass fibres in the core region surrounded by the
outer polyester fibres. At high magnification it is evident that both
polyester and glass fibres were impregnated by the resin. The brit-
tle fracture of glass fibres and the ductile failure of polyester cover
fibres can also be clearly noticed from the fracture surface.

3.8. Work of rupture of the developed auxetic structures

Work of rupture (WOR) or energy required to break the struc-
tures has been calculated using load-elongation curve of the struc-
tures. Work of rupture (J) calculated for the developed auxetic
structures are given in Table 6. As expected, the work of rupture
of structure-1 increases with the increase in the linear density of
glass fibre and structural angle u. The work of rupture of the struc-
tures developed from different core fibres lies in the following
order: WORglass < WORbasalt < WORcarbon, which is the same as the
tensile load bearing capacity of the structures. Work of rupture
for different structures developed from glass fibre lies in the order:
WORstructure-1 < WORstructure-2 < WORstructure-3, which also follows
the same order as the tensile performance of the structures. As
structure-3 exhibits higher work of rupture and better tensile
property than other structures as well as moderate auxetic beha-
viour, it can be proposed for the structural applications.

4. Analytical model

4.1. Analytical model for structure-1

The analytical model which was used in our previous work [2]
showed large difference between the experimental and analytical
results and the previous model has been revised in the present
work considering the real deformational modes of the structures.
In the previous analytical model, angles f and u were considered
to be related with each other and both with respect to the vertical
undulation rods. In other words, it was assumed that the longitu-
dinal and transverse strains are dependent on the stiffness of f

Fig. 3. Unit cell of structure-1. (a) Schematic diagram of force acting and displacement of unit cell, and (b) displacement of unit cell (real structure-1) at different stages of
loading.
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and u, hinges, respectively. Meanwhile the deformation (and thus
stiffness) of f, is related to u. However, from the deformation of the
structure during testing (Fig. 3), it seems that although a hinging
mechanism formula can be suitable for the structure, the opening

Fig. 4. Auxetic behaviour of developed structures. (a) Effect of core fibre type, (b)
effect of core fibre linear density, and (c) effect of structure’s initial angle (u).

Table 3
Poisson’s ratio of the auxetic structures developed from various core fibres.

Core
fibre
(tex)

Type
of fibre

Average
diameter of
BCR (mm)

Average max.
Poisson’s
ratio

Percentage of change in
Poisson’s ratio w.r.t
glass

4800 Glass 2.4 (2.1) �2.2 (4.0) –
4800 Basalt 2.4 (3.4) �1.8 (8.3) # 18.2
4800 Carbon 2.1 (4.0) �1.7 (14.3) # 22.7

Table 4
Poisson’s ratio of auxetic structures produced from glass fibres with different linear
densities.

Glass
fibre
(tex)

Average
diameter
(mm)

Average max.
Poisson’s ratio

Percentage of change in
Poisson’s ratio w.r.t 2400 tex

2400 2.1 (3.9) �2.1 (3.7) –
4800 2.4 (2.1) �2.2 (4.0) " 4.8
6000 2.7 (2.4) �1.9 (6.7) # 9.5

Note: the values in the bracket are CV%.

Table 5
Auxetic behaviour of structures having different initial angle u.

Glass
fibre
(tex)

Initial
angle u
(�)

Average max.
Poisson’s ratio

CV
%

Percentage of change in
Poisson’s ratio w.r.t 66�

4800 66 �2.2 4.0 –
4800 72 �3.1 2.5 " 40.9
4800 78 �3.8 1.2 " 72.7

Fig. 5. Auxetic behaviour of structure-2 and structure-3 produced from glass fibre
reinforced BCRs.

Table 6
Tensile properties of developed auxetic structures.

Structure Fibre
type

Tex Angle
u (�)

Avg. max.
tensile
load (kN)

Avg.
elongation at
max. tensile
load (%)

Avg.
work of
rupture
(J)

S-1 Glass 2400 66 4.2 (10.6) 10.0 (4.1) 35.2
(12.0)

S-1 Glass 4800 66 4.9 (15.2) 9.3 (6.3) 38.2
(2.7)

S-1 Glass 6000 66 5.9 (10.5) 9.1 (2.2) 49.2
(5.0)

S-1 Glass 4800 72 5.1 (12.7) 7.2 (6.5) 42.9
(6.0)

S-1 Glass 4800 78 6.9 (10.1) 4.3 (9.7) 47.8
(8.7)

S-1 Basalt 4800 66 6.1 (14.7) 9.5 (1.9) 45.7
(14.5)

S-1 Carbon 4800 66 7.3 (15.5) 8.7 (5.6) 71.3
(12.4)

S-2 Glass 4800 66 3.4 (11.2) 8.9 (5.0) 43.7
(10.5)

S-3 Glass 4800 78 5.5 (8.3) 3.0 (7.9) 48.8
(6.1)

Note: values in the bracket are CV%
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of horizontal undulation rods (stiffness of angle a, Fig. 1a) governs
that structure’s transverse expansion and thus the equations
should be modified based on this mechanism. In this case, the lon-
gitudinal strain (�y), the transverse strain (�x) can be expressed as
follows:

�x ¼ sinan

sina0
� 1

� �
; ð4Þ

�y ¼ sinun

sinu0
� 1

� �
; ð5Þ

mxy ¼ � �x

�y
ð6Þ

Fig. 9 shows that the angle a can be presented as a function of angle
u based on the obtained experimental results as:

a ¼ 0:948 u� 6:82 ð7Þ
Using Eq. (7), the angle a is calculated with respect to varying angle
u periodically from the initial angle (u-66�). By using angle a and u
the transverse strain and longitudinal strain were calculated (using

Eqs. (4) and (5)) and the Poisson’s ratio was obtained using Eq. (6).
Fig. 10 shows Poisson’s ratio of structure-1 calculated from revised
analytical model and compared with experimental results. The
results show that the Poisson’s ratio calculated from the revised
analytical model is well fitted with experimental results. However,
it is observed that after around 6% longitudinal strain the analytical
Poisson’s ratio increases in contrary to the experimental results.
This is due to the fact that after a certain opening of hinges (or lon-
gitudinal strain), the stretching mechanism becomes the governing
behaviour and the hinging mechanism cannot produce accurate
predictions. Activation of the stretching mechanism leads to reduc-
tion of Poisson’s ratio as it can be observed in the experimental
results. As the developed analytical model does not consider this
phenomenon, the predicted results diverge from the experimental
observations after 6% longitudinal strain.

4.2. Analytical model for structure-2 and 3

The experimental results show hinging mechanism is still suit-
able for simulating the deformation of the modified design of miss-
ing rib or lozenge grid or cross-chiral (structures-2 and 3). Eq. (5)
can be used to calculate longitudinal strain as a function of angle
u. However, Eq. (4) needs to be revised as the unit cell is different
in these structures.

Here, structure’s width is selected as the unit cell as shown in
Fig. 11. Therefore, the transverse deformation of the structures
become dependent on the angles a and b. However, analysis of
the experimental results showed the transverse deformation
mainly occurs due to the changes of angle a as angle b does not sig-
nificantly change during tests due to the effect of vertical straight
rod. Fig. 12, presenting the relation between angle u vs angle a and
angle b, clearly presents this observation. (All the angles u, a, and b
are measured from the images taken during tensile loading.)
Assuming that the transverse deformation is only dependent on
angle a, the change of transverse length can be written as
Dl = 4r2 sin an

2

� �� sin a0
2

� �� �
. The transverse strain can thus be

obtained as follows:

eT ¼ Dl
l
¼ 4r2 sin an

2

� �� sin a0
2

� �� �
l

ð8Þ

Fig. 6. Tensile behaviour of developed auxetic structures.

Fig. 7. Failure mode of developed auxetic structures. (a) Breakage of bent rods in structure-1, (b) breakage of straight rods in structure-2 and 3 and (c) breakage of bent rods
in structure-2 and 3.
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Fig. 12 shows that the angle a can be presented as a function of
angle u based on the obtained experimental results:

a ¼ 0:9622 u� 7:5212 ð9Þ
Using Eq. (9), the angle a is calculated with respect to varying angle
u periodically from the initial angle (u � 66�). By using angle a and
u the transverse strain and longitudinal strain were calculated from
Eqs. (5) and (8) and the Poisson’s ratio was obtained using Eq. (6).

The analytical Poisson’s ratio of structure-2 is compared with its
experimental results in Fig. 13. The results show the analytical
Poisson’s ratio is similar to experimental ones until a longitudinal
strain of about 4.5%. There is a slight difference in the Poisson’s
ratio at higher longitudinal strains, as the previous structure,
which may be due to the assumptions considered in the analytical
model, i.e. the structures deforms freely in the transverse direction
which does not occur in this case as well due to the clamping
system.

5. Finite element modelling

5.1. Modelling strategy

A two dimensional model is produced in FE code DIANA to sim-
ulate the tensile response of the developed auxetic structures.
According to the experimental results, the braided composites
used for preparation of the specimens have a linear elastic beha-
viour until failure. The observed nonlinear force–displacement
response and auxetic behaviour of the structures are due to the
large structural deformation at the ribs’ bases and geometric non-
linearity of the system.

The FE model is produced based on the geometry of the tested
structures. A simple modelling strategy is adopted using linear
three-node beam elements (labeled as L7BEN in DIANA) to

Fig. 8. (a) Fracture surface of braided rods showing overall fracture morphology, (b) axial glass fibre bundles and (c) outer polyester fibres.

Fig. 9. Relationship between angle u and angle a.
Fig. 10. Poisson’s ratio of structure-1: analytical vs. experimental.
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represent the ribs and linear rotational spring elements (labeled as
SP2RO in DIANA) for simulating the ribs rotational stiffness at the
curvature points, see Fig. 14. The beams have a circular cross sec-
tion with diameter of D = 2.39 mm according to the experimental
measurements. The intersection of the vertical and the horizontal
joints are modelled with continuous elements without introducing
any extra degree of freedom. The constraints and loading condi-
tions are applied to the model as the experimental tests were per-
formed, i.e. the displacements of the structure at both ends are
constrained in both x and y directions. An incremental monotonic
displacement load is applied to one side of the model for simulat-
ing the tensile test conditions.

A linear elastic with brittle failure material model and a linear
elastic rotational spring are used for the ribs and the springs,
respectively. The elastic modulus, E, of rods was taken 14.2 GPa
according to the experimental results. Due to the lack of sufficient
information, the properties of rotational springs are obtained by
performing a parametric analysis as explained in Section 5.2.

A geometric nonlinear analysis with total Lagrange formulation
is performed to simulate the large deformation and auxetic beha-
viour of the structures. The total Lagrange formulation is useful
when rotations and displacements are large and strains are small
as is the case of the structures under study.

As explained before, the force–displacement response of origi-
nal auxetic structures (e.g. structure-1) consisted of two main
phases. In the initial phase, the response was governed by large
deformation and low load resistance. After a certain deformation
level, in the second phase, the structure resisted higher loads with
lower deformation capacity. Different solution strategies deemed
necessary for numerically simulating of the structural response
in each phase. A modified Newton–Raphson iterative scheme
together with the line search method and displacement conver-
gence criteria are used for solving the nonlinear equations in the
initial phase of structural behaviour. The analysis is then contin-

Fig. 11. Unit cell of structure-2. (a) Schematic diagram of force acting and displacement of unit cell, and (b) displacement of unit cell (real structure-2) at different stages of
loading. (a and b – angles formed at the bending of horizontal undulation rod nearer to the vertical undulation rods and nearer to the vertical straight rod, respectively.)

Fig. 12. Relation between angle u vs angle a and b.

Fig. 13. Poisson’s ratio of structure-2: analytical vs. experimental.
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ued, in the second phase, with a quasi-Newton iterative method
and force (or energy) convergence criteria. On the other hand,
the behaviour of modified structures (e.g. Structure-2) generally
consisted of three phases initiating with a linear elastic behaviour
until the failure of the straight rods. Then, the load dropped signif-
icantly by entering the second phase which was similar to the first
phase behaviour of original structures (large deformation and low
load resistance) followed by the third phase (small deformation
and high load resistance). A similar solution strategy as the original
structures was adopted for each phase of the analysis to ease the
convergence of the numerical problem.

5.2. Springs’ properties validation

A numerical back analysis was performed for estimating the
rotational stiffness of the springs. For this reason, tensile tests were
performed on two type of specimens each consisting of five
straight rods and four curvature points, see Fig. 15a. The specimens
were prepared with different connection angles of 19� and 29�
(three specimens for each angle).

The numerical analysis was then performed to simulate the
experimental tensile behaviour of each specimen type following
the same modelling strategy as explained in Section 5.1. Having
the elastic modulus of the rods, a parametric study was performed
on the stiffness of the rotational springs for obtaining the best sim-
ulation of experimental results. It was observed that a rotational
stiffness of k = 1000 N mm/rad leads to an acceptable prediction
of the experimental behaviour in both specimen types, see
Fig. 15b. This rotational stiffness is thus used in further
simulations.

5.3. FE modelling results

The same modelling strategy and material models presented in
Section 5.1 are used for simulating the observed experimental
behaviour of developed auxetic structures presented in Fig. 1(a &
d). The main focus is on prediction of the force–displacement beha-
viour and the changes of the Poisson’s ratio during the tests. The
numerical results are presented in Fig. 16a–d in comparison to
the experimental observations. It can be seen that the numerical

predictions are in good agreement with experimental results in
both prediction of the load–displacement response and Poisson’s
ratio. The changes of the Poisson’s ratio have some differences with
the experimental results and this difference is in acceptable range
and can be attributed to the imperfections of the handmade spec-
imens and simplified assumptions of the numerical model. In gen-
eral, the developed numerical model, although being simple,
suitably predicted the global response and local deformation of dif-
ferent auxetic structures, being the evidence of applicability of this
modelling strategy for predictive purposes or simulating the beha-
viour of auxetic structures at the structural level.

6. Summary and conclusions

In this research, auxetic structures were developed from glass,
basalt and carbon fibre reinforced braided rods, and their auxetic
and tensile behaviours were studied. A simple image analysis tech-
nique was used to measure the strain components of the structures
due to tensile loading, and accordingly, Poisson’s ratio was calcu-
lated. All structures exhibited negative Poisson’s ratio and Pois-
son’s ratio was strongly dependent on the initial value of
structural angle (u). Poisson’s ratio was found to increase with
the increase in the initial angle u. Also, Poisson’s ratio of the struc-
tures varied significantly with the change in the core fibres such as
carbon, basalt and glass as well as with the braided rod diameter
(which depends on the linear density of core fibres). The structure
consisting of high stiffness fibre exhibited lower Poisson’s ratio as
compared to those with lower stiffness fibres. Moreover, the struc-
tures with lower braided rod diameter showed higher Poisson’s
ratio except rods with too low linear density core fibres
(2400 tex). The modified auxetic structures (structure-2 and 3)
exhibited lower Poisson’s ratio than the basic structures due to
the restriction in structural movement by the straight elements.

The work of rupture and tensile behaviour of the structures
were also observed to depend significantly on the structure angle,
braided rod diameter and type of fibre. Higher work of rupture and

Fig. 14. FE modelling strategy. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 15. (a) Validation of the mechanical properties for rotational springs and (b)
comparison of experimental and numerical results for single rod tests. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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tensile behaviour were observed for the structures with higher
angle, higher rod diameter and high stiffness fibre (e.g. carbon
fibre). The work of rupture and tensile behaviour were also
enhanced by modifying the structures with straight longitudinal
rods (structure-2 and structure-3).

The new analytical model proposed in this research could well
predict Poisson’s ratio of the basic as well as modified structures,
except at very low and high strain levels. Also, the auxetic and ten-
sile behaviour of the developed structures could be well predicted
using FE based numerical modelling. It can concluded that the
modified auxetic structures developed in this research can have
good application possibility for strengthening of civil engineering
structures such as concrete elements and masonry walls to resist
impact, explosion and seismic loading due to their ductile beha-
viour and higher energy absorption capability as well as due to
possibility to design these structures with the developed modelling
techniques.

Acknowledgement

The authors gratefully acknowledge the financial support for
carrying out this research work from University of Minho –
UMINHO/BI/146/2012, under the scheme of ‘‘Strategic plan of
school of engineering – Agenda 2020: Multidisciplinary projects.”

References

[1] Smardzewski J, Klos R, Fabisiak B. Design of small auxetic springs for furniture.
Mater Des 2013;51:723–8.

[2] Subramani P, Rana S, Oliveira DV, Fangueiro R, Xavier J. Development of novel
auxetic structures from braided composites. Mater Des 2014;61:286–95.

[3] Alderson A, Rasburn J, Ameer-Beg S, Mullarkey BG, Perrie W, Evans KE. An
auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling
properties. Ind Eng Chem Res 2000;39:654–65.

[4] Scarpa F, Smith C, Chambers B, Burriesci G. Mechanical and electromagnetic
behaviour of auxetic honeycomb structures. Aeronaut J 2003:175–83.

[5] Alderson A, Rasburn J, Evans KE. Mass transport properties of auxetic (negative
Poisson’s ratio) foams. Phys Status Solidi (B) 2007;244(3):817–27.

[6] Liu Y, Hu H. A review on auxetic structures and polymeric materials. Sci Res
Essays 2010;5(10):1052–63.

[7] Hu H, Wang Z, Liu S. Development of auxetic fabric using flat knitting
technology. Text Res J 2011;81(14):1493–502.

[8] Ugbolue SC, Kim YK, Warner SB, Fan Q, Yang CL, Kyzymchuk O, et al.
Engineering warp knit auxetic fabrics. J Text Sci Eng 2012;2(1):1–8.

[9] Sanami M, Ravirala N, Alderson K, Alderson A. Auxetic materials for sports
applications. Procedia Eng 2014;72:453–8.

[10] Evans KE, Anderson KL. Auxetic materials: the positive side of being negative.
Eng Sci Educ J 2000:148–54.

[11] Bhullar SK. Three decades of auxetic polymers: a review. e-Polymers 2015;15
(4):205–15.

[12] Kortur C, Liebold-Ribeiro Y. A synthetic approach to identify cellular auxetic
materials. Smart Mater Struct 2015;24:1–10.

[13] Yao YT, Uzun M, Patel I. Working of auxetic nano-materials. J Achieve Mater
Manuf Eng 2011;49(2):585–93.

[14] Fozdar DY, Soman P, Lee JW, Han LH, Chen S. Three dimensional polymer
constructs exhibiting a tuneable negative Poisson’s ratio. Adv Funct Mater
2011;21:2712–20.

[15] Darja R, Tatjana R, Alenka PC. Review auxetic textiles. Acta Chim Slov
2013;60:715–23.

[16] Ali I, Jun YJ. Mathematical models for in-plane moduli of honeycomb
structures – a review. Res J Appl Sci Eng Technol 2014;7(3):581–92.

[17] Smith CW, Grima JN, Evans KE. A novel mechanism for generating auxetic
behaviour in reticulated foams: missing rib foam model. Acta Mater
2000;48:4349–56.

[18] Gaspar N, Ren XJ, Smith CW, Grima JN, Evans KE. Novel honeycombs with
auxetic behaviour. Acta Mater 2005;53:2439–45.

Fig. 16. Auxetic and tensile behaviour of structures: numerical vs experimental. (a) Auxetic behaviour of structure-1, (b) auxetic behaviour of structure-2, (c) tensile
behaviour of structure-1 and (d) tensile behaviour of structure-2.

96 R. Magalhaes et al. / Composites: Part A 87 (2016) 86–97



[19] Scarpa F. Auxetic materials for bioprostheses. IEEE Signal Process Mag
2008;25:126–8.

[20] Reis FD, Ganghoffer JF. Equivalent mechanical properties of auxetic lattices
from discrete homogenization. Comput Mater Sci 2012;51:314–21.

[21] Boldrin L, Scarpa F, Rajasekaran R. Thermal conductivities of iso-volume
centre-symmetric honeycombs. Compos Struct 2014;113:498–506.

[22] Sarker P, Begum M, Nasrin S. Fibre reinforced polymers for structural
retrofitting: a review. J Civil Eng 2011;39(1):49–57.

[23] Saafi M. Design and fabrication of FRP grids for aerospace and civil engineering
applications. J Aerosp Eng 2000;13(4):144–9.

[24] Gudonis E, Timinskar E, Gribniak V, Kaklauskas G, Arnautov A, Tamulenas V.
FRP reinforcement for concrete structures: state-of-the-art review of
application and design. Eng Struct Technol 2013;5(4):147–58.

[25] Yan L, Chouw N, Jayaraman K. Effect of UV and water spraying on the
mechanical properties of flax fabric reinforced polymer composites used for
civil engineering applications. Mater Des 2015;71:17–25.

[26] Turgay T, Polar Z, Koksal HO, Doran B, Karakoc C. Compressive behaviour of
large scale square reinforced concrete columns confined with carbon fibre
reinforced polymer jackets. Mater Des 2010;31(1):357–64.

[27] Einde LVD, Zhao L, Seible F. Use of FRP composites in civil structural
applications. Constr Build Mater 2003;17:389–403.

[28] Ahmadi MS, Johari MS, Sadighi M, Esfandeh M. An experimental study on
mechanical properties of GFRP braid-pultruded composite rods. Express Polym
Lett 2009;3(9):560–8.

[29] Pereira CG, Fangueiro R, Jalali S, Marques PP, Araujo M. Hybrid composite rods
for concrete reinforcement. Struct Arch – Cruz (Ed.) 2010:1605–12.

[30] Rana S, Zdraveva E, Pereira C, Fangueiro R, Correia AG. Development of hybrid
braided composite rods for reinforcement and health monitoring structures.
Sci World J 2014:1–9.

[31] Rosada KP, Rana S, Pereira C, Fangueiro R. Self-sensing hybrid composite rod
with braided reinforcement for structural health monitoring. Mater Sci Forum
2013;730–732:379–84.

[32] Cunha F, Rana S, Fangueiro R, Vasconcelos G. Excellent bonding behaviour of
novel surface-tailored fibre composite rods with cementitious matrix. Bull
Mater Sci 2014;37(5):1013–7.

[33] Fangueiro R, Rana S, Correia AG. Braided composite rods: innovative fibrous
materials for geotechnical applications. Geomech Eng 2013;5(2):87–97.

[34] Malvar L, Crawford J, Morrill K. Use of composites to resist blast. J Compos
Constr 2007:601–10.

[35] Mosallam A, Taha MMR, Kim JJ, Nasr A. Strength and ductility of RC slabs
strengthened with hybrid high-performance composite retrofit system. Eng
Struct 2012;36:70–80.

[36] Mosallam AS, Banerjee S. Shear enhancement of reinforced concrete beams
strengthened with FRP composite laminates. Composites Part B
2007;37:781–93.

[37] Buchan PA, Chen JF. Blast resistance of FRP composites and polymer
strengthened concrete and masonry structures – a state-of-the-art review.
Composites Part B 2007;38:509–22.

R. Magalhaes et al. / Composites: Part A 87 (2016) 86–97 97


