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Abstract 

Interaction plays a fundamental role as it sets bridges between humans and computers. However, people with disability are 
prevented to use computers by the ordinary means, due to physical or intellectual impairments. Thus, the human-computer 
interaction (HCI) research area has been developing solutions to improve the technological accessibility of impaired people, by 
enhancing computers and similar devices with the necessary means to attend to the different disabilities, thereby contributing to 
reduce digital exclusion. 
Within the aforementioned scope, this paper presents an interaction solution for upper limb amputees, supported on a myographic 
gesture-control device named Myo. This device is an emergent wearable technology, which consists in a muscle-sensitive bracelet. 
It transmits myographic and inertial data, susceptible of being converted into actions for interaction purposes (e.g. clicking or 
moving a mouse cursor). 
Although being a gesture control armband, Myo can also be used in the legs, as was ascertained through some preliminary tests 
with users. Both data types (myographic and inertial) remain to be transmitted and are available to be converted into gestures. 
A general architecture, a use case diagram and the two main functional modules specification are presented. These will guide the 
future implementation of the proposed Myo-based HCI solution, which is intended to be a solid contribution for the interaction 
between upper limb amputees and computers. 
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1. Introduction 

Nowadays, computers and similar devices are largely accepted as simultaneously essential and common elements 
on society's daily routines. In fact, they are used in a wide range of activities, such as personal (e.g. fitness monitoring, 
leisure), professional (e.g. medical care, financial management, education) and even those involving risk (e.g. clinical 
patient monitoring, financial decision support). Nonetheless, interaction with the aforementioned technologies may 
not be accessible to everyone, considering that there are people which have different disability types. Consequently, 
as a result of the inherent digital exclusion, the lack of access to these technologies can lead to this public's social 
exclusion1. 

With respect to disability types, physical disability has a particular impact in HCI as it may inhibit the body's 
ordinary activity, resulting in difficulties while performing interaction tasks. In the specific case of individuals with 
upper limbs disability, the use of computers and similar devices can be extremely complicated due to the need for 
inputs that are typically provided by arm-hand-fingers coordination. Upper limbs disability can be originated by 
several health conditions, such as amputations, cerebral palsy, multiple sclerosis, rheumatoid arthritis and Parkinson's 
disease, affecting a considerable range of publics2. These need an adequate interaction strategy to achieve a successful 
engagement with technology, especially with computers. 

HCI research area includes - but it is not limited to - virtual reality, health, interactive computer games and 
accessibility3. It provides solutions that support communication between humans and technology through diversified 
forms of interaction, including speech recognition, gestures and handwritten words4. With regard to accessibility, it 
aims to include people with disabilities in the digital society by combining product design with the impressive capacity 
that humans have to overcome physical issues by improving the skills of intact or less damaged body parts5. As an 
example, upper limb amputees can develop the physical ability to act more accurately with their legs. 

This paper proposes a novel HCI solution for upper limb amputees, based on Myo: a wearable device capable of 
acquiring electromyographic readings (muscular activity) and inertial data that can be converted into input gestures 
for interacting with computers. Although being a gesture control armband, we intend to use Myo in the legs, under 
the assumption that they also have muscular groups which are suitable for gesture inputs. 

The remainder of this paper is organized as follows. Section 2 presents the most significant human disabilities that 
range from visual impairment to intellectual dysfunction, as well as some related HCI solutions. In Section 3, a set of 
existing HCI devices oriented to gesture recognition will be presented, highlighting the Myo armband, which is the 
core technology of our solution proposal for upper limb amputees, presented in Section 4. Section 5 provides some 
final conclusions and directions for future work. 

2. Accessible Human-Computer Interaction 

According to the International Classification of Functioning, Disability and Health, disabilities are “problems in 
body function or structure as a significant deviation or a loss”6. For each disability type there are different HCI 
technologies that can be employed to compensate the lack of a specific capability. The following list contains a set of 
disabilities and how technology can aid to interact with computers or similar devices, in each case: 

• Visual disability: through touch or audio (e.g. braille line, voice synthesizer); 
• Hearing disability: it does not impose major difficulties in the different interactions, except in using sound; 
• Physical disability: interactions are made through the eyes, the voice or over brain-computer interfaces (BCI); 
• Disability in the speech: there are no difficulties of interaction, unless voice recognition is necessary; 
• Dyslexia: voice systems can be very useful to facilitate reading and writing. Moreover, writing review software 

can also be advantageous; 
• Intellectual disability: these type of limitations do not affect the physical aspect. However, both the software and 

the hardware solutions that provide support for this kind of users must consider intuitiveness and ease of use2. 

Physical disability is emphasized in this work due to its restrictive nature when it comes to perform tasks involving 
computer hardware. Such condition can be defined as a “complete or partial change of one or more segments of the 
human body, causing in the impairment of physical function, appearing in the form of paraplegia, paraparesis, 
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monoplegia, monoparesis, quadriplegia, tetraparesis, triplegia, triparesia, hemiplegia, hemiparesis, amputation or 
absence of the member, cerebral palsy, members with congenital or acquired deformities, except cosmetic deformities 
and those which do not cause difficulties for the performance of functions” 7. 

Specifically in what regards the upper limbs, there are several disabilities that affect them either directly or 
indirectly, as for example: cerebral palsy, multiple sclerosis, rheumatoid arthritis, Parkinson's disease and amputation8-

12. From these, the upper limbs amputation represents a major barrier for the interaction between a person and a 
computer or a similar device. Typically, persons who have this disability can experience three damage classes affecting 
different parts of the limb12: 

• Hand amputation (including partial hand amputation, transcarpal and wrist disarticulation); 
• Arm amputation (including transradial, elbow disarticulation and transhumeral); 
• Shoulder amputation (including shoulder disarticulation and scapulothoracic amputation). 

To overcome the lack of technological accessibility induced by physical disabilities, several solutions have been 
proposed within the HCI research area. Fig. 1 presents a diagram that establishes a correspondence between the 
different disabilities and interaction types. For example, for people with a physical disability the most common 
interaction types are gesture, voice and gaze recognition. People use voice recognition and gaze (using an eye tracker) 
when they normally do not have any kind of mobility what so ever. Such devices involve techniques and mechanisms 
capable of providing reliable communication capabilities between persons (with disability or not) and computers, 
enabling the exchange of control inputs and responsive outputs. 

Fig. 1. Diagram depicting the different interaction types used to bridge distinct disabilities. For each disability, there is a HCI strategy that tries to 
suppress the need of defective human elements (such as senses, the intellect or body limbs), potentiating the use of the healthy ones. 

The following subsections will provide a short survey on HCI approaches that include interaction techniques and 
related devices, covering both the general public and persons with physical disabilities. 

2.1. Gesture Recognition 

HCI through gesture recognition is the most natural and simple interaction type, because it is identical to the 
interplay between humans. There are two main techniques to recognize gestures: using electromechanical or magnetic 
sensors and through digital image processing3. Moreover, it is possible to recognize static and dynamic gestures. The 
static gestures are considered as different positions of the hands and fingers (eg. open hand, fist, etc.). The various 
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characteristics of each gesture can simplify its detection. In the capture of a dynamic gesture, the most important is 
the trajectory that it produces4. 

2.2. Voice Recognition 

Voice recognition consists in the computerized conversion of spoken words into digital text. This interaction is 
used to write text messages (using, for example, email or short message services) and even to issue computer 
commands in order to accomplish tasks. However, this interaction technique has still several issues that need to be 
overcome, including voices differentiation, accentuated vocabulary, emotional gauging, specificities related with 
location-based vocabulary, among others. Despite voice recognition being able to achieve an impressive success rate 
of 97%, this interaction technique is mainly used as an alternative in some particular situations, where the use of 
physical keyboards is not suitable13. 

2.3. Handwriting Recognition 

Handwriting recognition is another method for text input. Its usage metaphor is based on a common and usual 
handwriting activity. Differences in calligraphy constitute the most prevalent issue in this interaction technique, which 
has a character recognition effectiveness directly related with the similarity between the writing style and 
computerized fonts: the more similar, the more effective2. 

2.4. Touch Recognition 

Touch interfaces are closely connected to haptic and kinesthetic interaction. They usually allow computer inputs 
while the user is touching in devices that comprehend pressure, texture, vibration or/and others. For example, Braille 
line is a well-known and commonly used device to help blind people interacting with computer systems14. Texture 
patterns supply the blind user with the necessary haptics to perform tasks successfully. 

2.5. Eye Recognition 

Visual contact is used to regulate interaction and to point out interest in a certain viewable target. Both goals can 
be achieved through eye-tracking: a well-known process for monitoring the human eye, including movements and 
gazes, in the context of computer scene observation. Underlying the eye-tracking process, there is the eye recognition 
that is currently managed through several techniques such as video-oculography, video-based infrared, pupil-corneal 
reflection and electrooculography. The main issue related with the interaction using eye recognition is the required 
ability to focus with precision15. 

Besides the aforementioned interaction techniques, there are others implemented by devices that range between 
popularity and novelty. The most common are the mouse and the touchpad. Others, less used, include the trackball, 
the thumbwheel and the joystick. Usually, these latter interaction devices are used by people with physical disability2

who also have available other equipment - for example, eye-tracking, BCI and switches - specifically designed to deal 
with some particular disabilities16. The next section will explore further the gesture recognition devices, highlighting 
an emergent electromyographic-based technology known as Myo, due to its relevance to this work.

3. HCI solutions based on gesture recognition 

Upper limb amputees can find it quite difficult to interact with computers and similar devices because they cannot 
use common input peripherals such as a keyboard or a mouse. There are simpler interaction devices that can be used 
by people with this type of physical disability, as head pointers, voice recognition systems and gesture recognition 
through a web camera. Mouse cursor movements, click and double click can also be triggered by a person's mouth 
and gentle air puffs, that control a straw-like joystick. Moreover, there are also devices that are enabled by the lower 
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limbs, as pedals and pull-click starters. Software that supports HCI by means of gesture recognition (head movements, 
for example), gaze (electrooculography) and electromyography17 is also available. 

In the last few years, some interaction devices based on gesture recognition have been appearing, such as: Kinect, 
DepthSense HTlib, Leap Motion and Myo18. Microsoft Kinect was initially developed for gaming. It consists of a 
RGB camera, a depth sensor, accelerometers and a set of microphones for voice recognition. Kinect is capable of 
detecting up to 48 articulation points of the human body, has a 60% view field and recognizes gestures from different 
persons by means of digital image processing. Although being able to detect the whole human body, Kinect was 
particularly designed to follow the hands' movement, which are the most important limbs to be considered in a 
gesture19. As for the Leap Motion, its objective is to convert hand movements into computer commands. It connects 
to a computer via USB and when placed facing up in a given surface is capable to detect an above area with a sensibility 
to about one meter. This device has some issues, such as motion sensitivity and arm fatigue. Moreover, it does not 
have predefined gestures, which means that different movements will be used in different applications to perform the 
same action20. DepthSense HTlib was developed by Softkinetix company for PlayStation4 and its purpose is to 
improve games' interactivity and realism. Just like Microsoft Kinect, this device operates on the human body 
recognition field, detecting up to 4 persons simultaneously and up to 21 articulations points per person. The calibration 
is performed automatically and the device filters out all objects that are not being detected as people21. 

Myo was developed by a Canadian company called Thalmic Labs, in 2014. It consists in an armband equipped 
with several sensors - whose purpose is to recognize hand and arm movements22 – and is synchronized with a given 
computer by means of a Bluetooth 4.0 interface. However, Myo requires a calibration step every time it is used by a 
different person, due to the morphological differences that describe each arm, with respect to skin and muscle23. 
Besides predefined gestures, new ones can be defined24. Regarding the aforementioned HCI solutions based on gesture 
recognition, Myo has a clear potential to not restrict interaction to upper limbs. Being that the proposed HCI solution 
for upper limb amputees is based on this device, its discussion will be more extended. Although Myo can be considered 
a novelty, there is already a considerable amount of work developed around it. A few examples are going to be 
presented and discussed. Navigating in a map through gesture recognition instead of using a mouse is a project based 
on Myo developed by Sathiyanarayanan and Mulling23. The authors have concluded that issuing commands with Myo 
in that context is very difficult. Nymoen et al.25, evaluated Myo in a musical interaction context, through the 
comparison of its components (electromyographic and inertial sensors) against control instruments (BioFlex 
electromyographic sensors and marker-based optical motion capture). It was found that the detection of 
electromyographic data through Myo is not the best due to the variation of the arms' size. The little diversity of allowed 
gestures was also reported as a disadvantage. Cheng26 proposed a testbed with participants to compare Myo, Kinect 
and a mouse/keyboard and conclude which one is the best interaction device. The winner was the couple 
mouse/keyboard for the simplicity of use. Regarding Myo, they concluded that the vibration that it produces is 
annoying and makes people nervous. Donato and Bullock27, applied Myo to control audio interactively, including the 
sound level and the audio file. The authors enjoyed Myo’s ease of use and highlighted its usefulness in handling mixed 
reality environments with audio. Finally, Sathiyanarayanan et al.28 are developing a robot for military purposes, 
controlled through Myo, which already has a recognized potential in this context. However, approaches where Myo 
is used to support people with disabilities are still scarce. To the best of our knowledge there is only one approach, 
proposed by Phelan et al. 29, in which a virtual kitchen was developed in a work that involved multiple interaction 
devices, such as: Kinect, Oculus Rift, headphones and Myo. The preliminary results seem to indicate that these devices 
may be relevant to amputees in the selection of prosthetic arms and related functionalities. 

In the next section, a Myo-based HCI solution for upper limb amputees will be presented, namely the proposed 
system's architecture and an explanation of its components: gesture profiling and gesture matching. 

4. Myo-based HCI solution proposal for upper limb amputees 

The lack of technological accessibility is a real issue for upper limb amputees as they cannot easily interact with a 
computer or a similar device. Therefore, this section describes a myographic-based HCI solution that allows leg 
gestures as inputs and employs Myo as the interaction bridge between upper limb amputees and computers. To begin 
with, an exploratory experiment was made to check the viability of this proposal, mainly if the Myo armband could 
function correctly when used in a leg. This will be presented in the first subsection. Based upon encouraging results, 
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the second subsection presents a general architecture for the proposed solution, as well as the specification of the two 
main functional modules. 

4.1.  Leg gestures' characterization using Myo: a preliminary proof of concept 

Myo operates with data acquired from two incorporated components: the inertial measurement unit (IMU) and the 
electromyographic (EMG) sensor (which is actually composed by eight individual sensors). While the former provides 
parameters such as speed, orientation and acceleration using a combination of inertial sensors (accelerometer, 
gyroscope, and magnetometer), the latter gives information related with the muscular electrical activity23. Moreover, 
this device has a vibratory apparatus that provides haptic feedback at different intervals (small, medium and large), 
accordingly with the performed gestures. 

Despite being designed to be worn on the arm, the authors were confident that Myo could also be used in the leg 
while maintaining its partial or full functionalities, based mainly in two assumptions: 

• the legs are also human body limbs equipped with muscles that - just like arms - are liable of being measured 
regarding muscular activity and orientation; 

• Myo is a full stack myographic device, equipped with sensors to acquire inertial and muscular activity data that 
has its own software development kit. This may enable the development of solutions for which it was not 
originally thought out. 

Whilst the latter assumption is supported on documentation available in Myo’s website1, the former is based on the 
promising outcomes of an exploratory experiment carried out in which EMG and IMU data were acquired from three 
individuals that were using Myo in a leg (Fig. 2). The preliminary analysis made upon the resulting data revealed that 
those values presented a distinguishable and consistent variation among the experimented leg gestures.

Fig. 2. Exploratory experiment with Myo device placed in a person’s leg. Similarly to what occurs in an arm, Myo bracelet is also capable of 
acquiring EMG and IMU data from a leg. It was noticed that several leg gestures were suitable to be profiled due to the differentiation and 
consistency of acquired data. 

The process used to perform the preliminary analysis to the data obtained from the exploratory experiment was 
designed based on a set of observations and in some options. It will now be explained in detail, using as an example 
the two gestures depicted in Fig. 3. 

1 Myo’s website available in https://www.myo.com/ 



8   Andreia Matos et al.  /  Procedia Computer Science   100  ( 2016 )  2 – 13 

Fig. 3. Two gestures - gesture A (first and second images) and gesture B (third and fourth images) - that were made with Myo placed in a person's 
leg, to better explain the leg gestures' characterization and comparison process. 

To analyze the IMU data - the pitch, the roll and the yaw – a gesture was divided into five moments and at the end 
of each of those moments a reading was made. The acquired values were then converted to a range between 0 and 9 
to simplify data visualization and its analysis. Although using the same gestures, the values between readings were 
not equal. After analyzing more data from gestures' readings, a pattern was found: in each gesture, the pitch, the roll 
and the yaw values usually have two states. Table 1 presents two readings (pitch, roll and yaw) for each gesture – a 
pre-acquired control reading and a sample reading - as well as an individual comparison between sequential gesture 
moments. The values obtained from the control gesture and from the sample gesture can vary but the moments' 
comparison patterns are almost always identical. For example, in gesture A, the roll value changed when comparing 
the first two moments in the control reading. In the sample reading that did not happen. However, regarding the yaw 
value when comparing the second and the third moment, the variation was the same in the two gesture readings. In 
gesture B, the yaw value varied when comparing the first two moments in the control reading but, in the sample 
reading, the roll value also varied. When comparing variation patterns between the same moments in different gesture 
readings (e.g. in gesture A, the comparison result between the first two moments of both readings), a gesture will be 
disregarded if there are differences in more than one of the parameters (pitch, roll or yaw). 

Table 1. IMU data – pitch (P), roll (R) and yaw (Y) - for two readings of gestures A and B. Each gesture is divided into five moments for analysis 
purposes and the table also presents the comparison between the values of sequential moments. 

Gestures and 
readings 

Moments 

Gesture A IMU readings Gesture B IMU readings 

Control Sample Control Sample 

P R Y P R Y P R Y P R Y 

Moment 1 2 8 1 2 9 1 2 1 8 2 0 8 

Moment 2 2 9 1 2 9 1 2 1 7 2 1 7 

Moment 1 vs Moment 2 0 1 0 0 0 0 0 0 -1 0 1 -1 

Moment 3 2 9 0 2 9 0 3 3 6 3 3 6 

Moment 2 vs Moment 3 0 0 -1 0 0 -1 1 2 -1 1 2 -1 

Moment 4 2 9 0 2 9 0 4 3 6 4 3 6 

Moment 3 vs Moment 4 0 0 0 0 0 0 1 0 0 1 0 0 

Moment 5 2 9 0 2 9 0 4 3 6 4 3 6 

Moment 4 vs Moment 5 0 0 0 0 0 0 0 0 0 0 0 0 

In what regards EMG data, Myo outputs an identical muscular activity for identical gestures. Fig. 4 presents two 
graphics per gesture: the top row has two repetitions of gesture A and the bottom row has two repetitions of gesture 
B. 
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Fig. 4. Graphics showing the muscular activity of two repetitions of gestures A and B, obtained from Myo diagnostics page. The upper graphs are 
from gesture A, while the lower ones are from gesture B. 

To analyze the EMG data – from the eight electromyographic sensors – a subset was created with the last hundred 
values acquired per sensor. This is because observations led to the conclusion that usually it is in the final moments 
of the gesture that there is more muscular activity. Then, the average value is calculated for each sensor and they are 
ordered from the highest to the lowest. After some analysis to gestures' EMG data, the conclusion was that they are 
distinguishable mainly through the highest values. Thus, the sensors position in the ranking and not their values are 
compared to assess if gestures are similar. The rule is that if the first three ordered sensors are the same in each gesture 
reading the remaining sensors positions are compared. If those are also the same or only one differs, gestures are 
considered similar. Otherwise gestures are deemed as different. Table 2 presents three readings (myographic) for each 
gesture – a pre-acquired control reading and two sample readings. As aforementioned, gestures are considered similar 
if their respective sensors' ranking coincides at least in six positions (one difference is allowed between readings, 
which implies that two positions are affected). For example, in gesture A, the sensors' ranking of the control and the 
first sample readings coincide in the first four positions. However, the last four positions do not match. Thus, the 
gesture made in the first sample reading is not considered similar with the control gesture. Regarding the second 
sample reading and in spite of the mismatch in the fifth (and consequently in the eighth) ranking position with the 
control reading, this gesture is considered similar, with only one different position. When comparing the rankings of 
both sample readings of gesture B with the control reading, they differ in the fifth (and consequently in the seventh) 
position. Thus, both samples gestures are considered analogous. 

Table 2. This table presents EMG data (myographic) for three readings of gestures A and B. Each gesture has a control reading and two sample 
readings for comparison purposes. Every reading has a value calculated per sensor (the average value of the last hundred acquired values) and the 
respective position in the ordered ranking. Gestures are considered similar if their respective sensors' ranking coincides at least in six positions. 

Gestures and 
readings

Sensors  
(Index) 

Gesture A EMG readings Gesture B EMG readings 

Control 1st Sample 2nd Sample Control 1st Sample 2nd Sample 

Value Rank  Value Rank  Value Rank  Value Rank  Value Rank  Value Rank

0 4,36 3 3,29 3 4,52 3 1,95 3 1,32 3 1,32 3 

1 5,85 2 5,02 2 6,49 2 3,98 2 2,42 2 2,42 2 

2 41,48 4 30,81 4 43,41 4 12,84 4 11,03 4 11,03 4 

3 48,27 1 33,38 1 55,62 1 27,96 1 22,64 1 22,64 1 

4 11,26 0 11,35 5 20,1 5 5,82 0 6,81 5 6,81 5 

5 4,08 6 3,54 0 5,89 6 1,58 7 1,34 7 1,34 7 

6 4,2 7 3,1 6 5,11 7 1,34 5 1,24 0 1,24 0 

7 4,19 5 3,01 7 5,07 0 1,6 6 1,34 6 1,34 6 
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Considering that the exploratory experiment's results have shown that Myo is capable of acquiring EMG and IMU 
data from a leg and that leg gestures can be profiled as they produce consistent and distinguishable signals, the authors 
propose an alternative interaction solution involving leg gestures' recognition using Myo, to promote the digital 
inclusion of those who live with partially or completely amputated upper limbs. 

The next subsection will address an architecture and the specification of a HCI solution proposal for upper limb 
amputees, in which the Myo armband is used in a person's leg. Data acquired from Myo will be used to create a 
gestures profile for each person and to validate gestures, by comparing them to the ones saved in the individual 
profiles. 

4.2. General architecture and specification 

The underlying architecture to this HCI solution proposal for upper limb amputees, depicted in Fig. 5, has two main 
components: the HCI and the analysis and processing device. While the former is the Myo armband that is 
continuously transmitting EMG and IMU data acquired from a person, the latter consists in an analysis and processing 
device that deals with the received data sets, in two different modules: gesture profiling (GPM) and gesture matching 
(GMM). The GPM implements an initial training phase, necessary to acquire a person's gestures data and with it 
populate the gesture database, whereas the GMM regards to the process of comparing the acquired data sets with the 
recorded gestures' data: when they match up, a related action will be triggered (e.g. mouse right click, cursor 
navigation). 

Fig. 5. General architecture for the proposed myographic-based interaction solution for upper limb amputees. The HCI – Myo armband – is 
represented in the figure's left side and is constantly transmitting EMG and IMU data to the analysis and processing device (figure's right side). The 
latter is capable of storing gestures profiles for predefined actions and when the solution is being used, tries matching up incoming data and recorded 
gestures to assist the person while performing tasks. 

Fig. 6 presents a use case diagram specifying the interaction between an upper limb amputee and the proposed 
Myo-based solution, namely with the GPM and GMM modules. With the former, the person will establish a gestures 
profile, by recording some data sets related with the presently available predefined mouse actions - activate/deactivate, 
double-click, left click and right click - to the gestures database. This is typically done only the first time that the 
proposed solution is used. The latter module gathers the set of interactions which are related with the gestures that the 
person can input to perform an action, within a daily usage context. 
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Fig. 6. Use case diagram depicting two strictly related functionality modules: the GPM involves training the Myo-based solution to obtain a person's 
gesture profile and the GMM gathers the daily actions that a person can perform, while interacting with the proposed solution. 

To better explain both processes, Fig. 7 presents the GPM and GMM modules workflow diagrams. In what regards 
the capture of a single gesture for profiling purposes, depicted in Fig. 7 a), the process unfolds as following: initially, 
an action to associate a gesture is selected; then, the person must move the leg concordantly with the desired selected 
action (this has to occur a few times to ensure the robustness of the gesture which is being stored); finally, the gesture 
related with the selected action is saved to gesture database. When using the proposed Myo-based solution to interact 
with a computer in a daily context and for each provided gesture, the process - depicted in Fig. 7 b) – unfolds as 
follows: the EMG and IMU data representing the gesture is read; then, data is converted to a unified format for 
comparison purposes; converted data is then compared with each previously stored gesture; during the search, only a 
match triggers the related action. 

Fig. 7. Workflow diagrams depicting the proposed solution two main functionalities: a) depicts the gesture profiling process to record a user gesture 
and b) presents the process of comparing an entry gesture with the ones recorded in database, to try to find a match for control purposes, in a daily 
usage context. 

This section has shown that Myo can be successfully used in a leg and that the respective gestures' signals are both 
consistent and distinguishable. Therefore, person-based gesture profiles can be created. A general architecture for the 
proposed Myo-based HCI solution was presented, as well as the specification of its two main functional modules and 
their respective workflow diagrams. In the next section, some conclusions will be drawn and the future work will be 
presented. 
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5. Conclusions and future work 

Interaction plays a fundamental role as it sets bridges between humans and computers. However, people with 
disability are prevented to use computers by the ordinary means, due to physical or intellectual impairments, which 
may lead to this public's social exclusion1. This paper presents a HCI solution proposal for upper limb amputees, 
supported on a myographic device named Myo that operates with data acquired from two incorporated components: 
the IMU and the EMG sensor. 

Considering that Myo was design to be used in an arm, an exploratory experiment was carried out to assess the 
possibility of using Myo in a person’s leg. In this experiment, patterns analysis for IMU data relied in the division of 
gestures into five moments and in a ranking approach for EMG readings. Some relaxation factors were also considered 
in both data types. The results have shown that: 

• leg gestures can be profiled, as they produce consistent and distinguishable signals; 
• Myo can also be used to interact with computers and similar devices while used in a person's leg. 

As future work, the proposed myographic-based HCI solution will be implemented, considering the proposed 
architecture and specification. The solution will then be tested with upper limb amputees to optimize it and also to 
understand what are the advantages and disadvantages of interacting with it when comparing with other commonly 
used devices in the addressed disability. 
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