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In this study, Ta;xOx coatings were deposited by reactive magnetron sputtering aiming at the
enhancement of the electrochemical stability stainless steel 316L. The coatings were produced using
variable oxygen content in order to determine its influence on the films morphological features and
corrosion resistance. Structural and morphological characteristics were correlated with the corrosion
behavior in artificial saliva. Potentiodynamic and electrochemical impedance spectroscopy tests were
complemented with X-ray photoelectron spectroscopy to determine the electrochemical behavior of the
coatings. The results reveal a more protective behavior of the coatings as the oxygen amount increases in
the films, as well as pitting inhibition in the coated stainless steel, independently of the film composition.
A synergetic effect between Ta,Os and phosphate-based passive layers is suggested as the protective
mechanisms of the coatings; while the more active electrochemical behavior of low oxygen content films
is evidenced as a consequence of the metallic tantalum on the surface with a more open morphology and
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larger density of defects on the surface.
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1. Introduction

Nowadays, dental implants are usually fabricated using
titanium (Ti) based materials due to its biocompatibility and
strong corrosion resistance [1]. Ti6Al4V is the most common alloy
for this application due to its higher corrosion resistance [2,3].
However, the low capacity to form a strong chemical bond with
living tissue, known as bioactivity, is a significant limitation for Ti-
based materials [4,5]. In fact, the number of dental implants
failures associated to the healing process (osseointegration) is
around 47% before artificial crown implantation and 53% during
the first year of use [6]. Currently, tantalum (Ta) is proposed as an
alternative to replace Ti. Ta is a bioactive element presenting
interesting wettability and surface free energy which promotes
osseointegration and good corrosion resistance [7-10]. The
superior surface free energy of tantalum oxides stimulates the
regeneration process in living tissues, and thus, increases the
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efficiency of osseointegration [10-13], besides enhancing corro-
sion resistance due to its high chemical stability [ 14-16]. However,
Ta presents higher prices and density comparatively with other
metals [15,17]. Hence, the objective of this work is to coat stainless
steel 316L (SS 316L) with Ta;_4 Oy films to combine the enhanced
bioactivity of Ta-based materials [ 18] with the low cost of SS 316L
and evaluate the system corrosion resistance in artificial saliva.

The degradation of metallic dental implants is a common
process caused by the physiological environment that surrounds
the implant. Thus, additionally to an excellent osseointegration
shown by the developed bioactive surfaces, it is mandatory to
further evaluate their corrosion properties in order to obtain an
appropriate coating performance.

Previous works studying the corrosion of Ti-based dental
implant materials reported that the stability of the TiO, protective
passive layer (Me-0) is pH dependent and can degrade in the oral
environment due to the presence of corrosive substances on saliva
[19,20]. As mentioned before, Ta-based materials can replace Ti
dental implants. Consequently, it is important to note that only few
studies report the corrosion performance of Ta-based materials
and are out of the scope of dental implant application. Mostly, the
studies focus on Ta corrosion behavior influenced by crystalline
phases [21,22] or surface roughness [23] in acid environments (i.e.
H,S0,4), or on the influence of different Ta deposition methods on
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the corrosion performance in saline environments (NaCl), testing
steel corrosion protection approaches [24]. For instance, it has
been reported that coatings with a-Ta or 3-Ta phases showed
protective behavior to steel substrates being dependent on the
presence of defects such as pinholes or porosity. The corrosion
processes is controlled by the steel dissolution through the open
pores. Still, B-Ta structure is more susceptible to suffer corrosion
due to its brittle nature [21,22]. Additionally, it was found that the
corrosion protection was maintained even using substrates with
different roughness [23]. On the other hands, the electrochemical
performance for tantalum oxides has shown to be dependent on
the oxide morphology/density, revealing a lower coating break-
down potential and faster pit growth in highly porous Ta,Os.
Furthermore, some studies are focused on Ta,Os corrosion
performance for bio-applications, due to the high biocompatibility
and bioactivity, however in Simulated Body Fluid (SBF) environ-
ment [16,25], which present a more neutral character compared to
simulated saliva. Besides the improvement of corrosion resistance
of Ti by Ta-based coating, denser Ta,0s coating improves corrosion
resistance in biological environments [16,25].

As a result, this work is focused on the electrochemical
assessment in artificial saliva of Ta and tantalum oxide films
produced by DC reactive magnetron sputtering and the determi-
nation of the structural and morphological effect on the
electrochemical characteristics.

2. Experimental Details
2.1. Coatings deposition

Ta-based films were deposited onto polished stainless steel
316L (SS 316L) (20x20mm?) and single crystalline silicon (100)
(1x1 mm?) substrates by reactive DC magnetron sputtering using a
high-purity Ta target (99.6% Ta) (200x100 mm?). The SS 316L
substrates were grinded using emery paper from 600 to 2400 grit
and then mirror polished with a diamond solution, attaining a
surface roughness <3 nm. All the substrates were ultrasonically
cleaned using distilled water, ethanol and acetone for 10 min in
each solvent.

The substrates were located at 70 mm in front of the target and
the rotation speed and deposition temperature were kept constant
at 7 rpm and ~200 °C, respectively. Previous to each deposition, the
substrates were sputter-etched to remove remaining impurities
and surface oxides on the target and substrate surface, improving
film adhesion. To further enhance the coatings adhesion a Ta
interlayer was deposited, with approximately 200nm. The
interlayer deposition was carried out with a current density of
10mAcm 2 in Ar atmosphere (0.6 Pa) at constant bias voltage
(=75V). The film depositions were carried out in Ar+O, atmo-
sphere with a constant bias voltage of —75 V. The current density
applied to the Ta target was varied from 10 to 5 mA cm 2 in order to
achieve stoichiometric tantalum oxide. Ar flow was kept constant
while the O, flow was adjusted, as depicted in Table 1. The base

Table 1

pressure was 6x10~4Pa and the discharge pressure ranged from
0.6 to 0.7 Pa depending on the gas flow.

2.2. Coatings characterization

The coating chemical composition was determined by Cameca
SX50 electron probe microanalysis (EPMA) equipment, operating
at 10kV and 40 nA. Scanning electron microscopy (SEM) was used
to observe the surface and cross-sectional morphology of the films
and measure the film thickness employing a NanoSEM - FEI Nova
200 (SEM) operating at 5keV and a LEICA S360 microscope,
operating at 15kV in secondary electron mode. XPS analysis was
performed using a Kratos AXIS Ultra HSA, with VISION software for
data acquisition and CASAXPS software for data analysis. The
analysis was carried out with a monochromatic Al Ko X-ray source
(1486.7eV), operating at 15kV (150W), in FAT mode (Fixed
Analyser Transmission), with a pass energy of 40 eV for regions ROI
and 80eV for survey. Data acquisition was performed with a
pressure lower than 1x10~°Pa, and a charge neutralisation system
was used. The effect of the electric charge was corrected by the
reference of the carbon peak (285eV).

Optical micrographs were obtained to analyze the size, area and
distribution of surface defects using Image] software and a
subsequently descriptive statistical analysis was performed. EPMA,
SEM and XRD analysis were performed in coatings deposited onto
Si substrates, while XPS analysis and optical microscopy were
performed on coatings deposited onto SS 316L.

2.3. Electrochemical experiments

The corrosion performance was assessed by open circuit
potential (OCP), electrochemical impedance spectroscopy (EIS)
and anodic potentiodynamic polarization experiments. The
apparatus for electrochemical measurement consisted of a Gamry
REF600 potenciostat controlled by EIS300 and DC105 software.
Electrochemical experiments were carried out with a standard
three-electrode cell. A saturated calomel electrode (SCE) was used
as the reference electrode with a platinum counter electrode and
the SS 316L coated with Ta-based film as the working electrode,
with an exposed area of 0.44cm? The experiments were
performed on CP Ti grade 2 (Gr2) (ASTM: F67) as a commercial
surface control, on SS 316L as surface control and on Ta;_xOx
coatings as a developed surfaces. Each sample was immersed into a
volume of 200ml of Fusayama artificial saliva (0.4wt.% NaCl;
0.4wt% KCl; 0.795wt.% CaCl,-2H,0; 0.005wt.% NayS-9H,0;
0.69wt.% NaH,P04:2H,0; and 1wt.% Urea) with stabilized pH at
5.5 in equilibrium with air. The tests were performed at room
temperature, under static conditions. Three measurements were
performed for each sample to statistically validate the results. OCP
and EIS experiments were carried out as a function of the
immersion time after 2, 24hours and 7 days. Before each
impedance experiment, a stable OCP potential was achieved
during 1hour for the first measurement and 30min for the

Chemical composition, deposition parameters, thickness and deposition rate of the deposited samples.

Sample Chemical composition 0, Flow (sccm) Currenty density (mAcm™2) Thickness (um) Deposition rate (wmh~1)
(at.%)
Ta (6]

TO6 95+0.3 5+03 0 10 4.5 23

TO1 89+0.6 11 + 0.6 2 10 4.2 21

TO5 57+0.2 43 + 0.2 10 10 5.5 2.8

TO6 30+04 70 £ 0.4 13 5 3.8 19
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Fig. 1. SEM micrograph of Ta;_«Ox coatings as a function of oxygen content, deposited onto Si substrates. Each inset correspond to each coating surface.

following measurements. Thereafter, EIS experiments were carried
out with a sinusoidal AC perturbation of 10 mV (rms) amplitude
around the open circuit potential applied to the electrode over the
frequency range 0.001Hz to 1MHz. At the end of 7days of
immersion, potentiodynamic tests were performed using a
scanning rate of 60 mV/min from —0.3V vs. OCP to +1.2V vs
OCP. Potentiodynamic tests were also performed at Ohours of
immersion, allowing OCP primary stabilization, in order to study
the influence of the immersion time on the electrochemical
response.

3. Results
3.1. Coatings chemical, structural and morphological characterization

Table 1 shows the deposition conditions, chemical composition
and some physical properties of the films. The chemical composi-
tion reveals a progressive increase of the oxygen content from 5 to
70 at. % along with the decrease in tantalum content from 95 to 30
at. %, following the O, flow rate tendency. The oxygen content (5 at.
%) present in Tal coating is related with some residual O, in the
chamber during the deposition. For a current density of 10 mA
cm~2 with the increase of O, flow rate, the amount of molecules
inside the chamber increases, which leads to an increase of the
deposition rate. When the current density change to 5mAcm 2 a
significant decrease in the deposition rate is verified due to the
reduction of the sputtering yield.

A complete structural analysis of the coatings was previously
performed and can be found in previous publication [18]. Briefly, X-
ray diffraction analysis showed three fundamental behaviors: (i)

Tal coating revealed a crystalline body-centered cubic phase (bcc),
characteristic a-Ta phase; when the oxygen content increases to 11
at. % (TO1), the coating maintains the crystallinity but changes
from a bcc structure to a mixture of a-Ta (bcc) and [-Ta
(tetragonal) phases, due to the distortion of the a-Ta phase by
oxygen incorporation; (ii) for films with intermediate oxygen
content (TO5) the coating became quasi-crystalline with a broader
peak elucidating a mixture of phases, such as a-Ta, 3-Ta, Ta,0, TaO,
and/or Tay0s; (iii) the coating with the highest oxygen content
(TO6) is completely amorphous, without presence of any diffrac-
tion band.

SEM micrographs, showed in Fig. 1, demonstrate a typical
columnar morphology for Tal and TO1. TO1 film shows sharp
edges particles over the coating surface that, according to Zhou
et al. [26], is related with the mixture of « and 3 Ta phases, in
agreement with XRD results. Denser coatings with featureless
morphology are observed for higher oxygen content, which leads
to a reduction in the size of the columns, showing a smooth surface
(cf. Fig. 1 inset). This morphology confirms the results obtained by
XRD analysis, which revealed a transition from nanocrystalline to
amorphous coatings with increasing of oxygen content.

A more detailed study of the chemical, physical, structural and
morphological properties of Ta;_xOx coatings can be found in [18].

Fig. 2 shows the size distribution of the surface defects
calculated from optical micrographs. The defects are usually
identified as pin-holes and/or droplets associated to the sputtering
process. The number of defects is evidently reduced both in the
histogram and the surface micrographs when oxygen is incorpo-
rated (see Fig. 2) attributed to a morphology densification due to a
more compact growth, as demonstrated by SEM surface images.
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Fig. 2. (a) Defects histogram analysis of Ta;_xOx coatings as a function of oxygen content, calculated with the Image] software using the optical micrographs and (b) Optical

micrographs (8bits) of the as-deposited coatings on SS 316L.
3.2. Electrochemical performance

The electrochemical tests were performed in six samples, CP Ti
Gr2, SS 316L, Tal, TO1 TO5 and TO6; the first two serving as control
samples, while the remaining four coatings correspond to the
proposed bioactive surfaces.

The OCP evolution during 1hour of immersion is plotted in
Fig. 3a, showing a stable electrochemical cell after this period of
time. The Tal coating showed an OCP value between —350 and
—400mV vs. SCE. The TO1 and TO5 sub-stoichiometric coatings
showed the lowest OCP values, even lower than Ta1 coating. In fact,
these coatings reveal to have a mixture of a-Ta, B-Ta and/or
tantalum sub-stoichiometric oxides such as Ta,0, TaO, or Ta,0s5
phases, while Tal coating evidences a pure «-Ta phase. This
suggests that the mixture of phases have an adverse effect in OCP
of the samples, probably explained by a lower OCP of [3-Ta phase,
and hence, the mixed potential is reduced, causing an increase of
the susceptibility for corrosion. TO6 coating, on the other hand,
showed the highest OCP value around —100 and —80 mV vs. SCE,
due to the higher oxygen content that allow the formation of a
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stable stoichiometric oxide, which has better performance against
corrosion.

Fig. 3b shows the OCP as a function of immersion time of
Ta;_xOyx coatings in artificial saliva at room temperature after 2 h,
24h and 7 days. The values reveal that the Ta-based samples
exhibit very stable OCP. The coatings with higher oxygen content
show a slight overall increase of the OCP values after 7 days of
immersion, which may indicate that dense oxide layers favor the
increase of the energy barrier needed to suffer corrosion.

The potenciodynamic curves, 0 and 7 days after immersion, are
plotted in Fig. 4. In all samples, pitting (metastable pitting) or
localized corrosion was not observed, except for the bare SS 316L
wherein the breakdown potential (E,) occurs at around 550 mV vs.
SCE, revealing a protective behavior of the films for polarization
induced corrosion of SS 316L, matching the performance of the CP
Ti Gr2. Such localized corrosion protection is expected to be
effective for compact morphologies (i.e. higher O content), where
the penetration of the electrolyte can be more largely avoided,
preventing the contact with the SS 316L. Thus, large defects or
damage to the films must be avoided to maintain this protection.
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Fig. 3. (a) OCP evolution of CP Ti Gr2, SS 316L and Ta1-xOx samples immersed during 1 h in artificial saliva at room temperature. The graphic profiles depicted above are
representative of the undertaken measurements; (b) OCP as a function of immersion time of CP Ti Gr2, SS 316L and Ta1-xOx samples immersed in artificial saliva at room

temperature. The results are an average calculated from three different samples.
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Fig. 4. Potenciodynamic curves of CP Ti Gr2, SS 316L and Tal-xOx samples: (a) immediately; and b) after 7 days of immersion on artificial saliva at room temperature.

The potendiodynamic curves immediately after immersion also
reveal that the coatings with higher oxygen content (TO5 and TO6)
possess lower current density, indicating that corrosion occurs at
slower rates, when compared to the other samples. These results
are in agreement with the SEM and MO results, where these
coatings present denser morphology with lower number of
superficial defect, as shown in Figs. 1 and 2. For low oxygen
content films, the anodic branch of the potentiodynamic test
shows similar kinetic, where the slope of the curves are similar
between each other, indicating larger electrochemical activity of
these films, likely due to the presence of a higher number of surface
defects and more metallic Ta.

After 7days of immersion the potenciodynamic curves evi-
dence clear changes. All the samples present a more passive
behavior compared to the curves immediately after immersion and
areduction of the current density, compared to the initial behavior.
This indicates that after 7 days of immersion a passive layer is
formed on the samples surface. Coatings with low content of
oxygen still present the lowest corrosion resistance, attributed to a
more metallic Ta composition of the films and subsequently higher
number of defects. Thus, increasing the immersion time, the
artificial saliva penetrates progressively throughout the porosity
and the superficial defects, increasing the exposed area. The more
columnar-like morphology and higher number of defects observed
in the low oxygen content films accelerates the electrolyte intake,
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slowing down the reduction of the current density due to the fact
that the exposed area is increasing, while on the other samples, a
more compact morphology and less superficial defects help to
block the electrolyte penetration.

In order to better understand the passivation of the surface, XPS
studies were performed before and after 7 days of immersion (at
OCP potential) to identify the chemical bonds present in the as-
deposited coatings and after 7 days of immersion on artificial saliva
at room temperature. XPS analysis was performed in two samples,
Tal and TO6 since these two coatings presented the threshold
values measured by EDS for the chemical composition, with
highest Ta or O content, respectively.

It is important to note that, Ta element can assume different
oxidation states as Ta>*, Ta?*, Ta?*, Ta" and Ta® depending on the
oxide type formed. Each oxidation state is characterized in Ta 4f
spectra by a spin-orbital doublet (Ta 4f 7/2 and Ta 4f 5/2),
frequently separated by 1.9 eV [27]. The XPS results of Tal and TO6
coatings, before and after immersion, are shown in Fig. 5.

Ta 4f photoemission spectrum at the films surface shows the
spectral doublet around 26.3 (4f 7/2) and 28.2 (4f 5/2) eV for both
analyzed coatings, before and after immersion. The binding
energies of this doublet correspond to Ta,0Os, indicating that the
Ta atoms are positively charged in Ta>" oxidation state relatively to
Ta metal, due to the bonding of these atoms with oxygen [28]. This
bond is confirmed by the O 1s peak nearby 530.6eV that
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Fig. 5. XPS spectra of (a) O 1s, (b) C 1s, (c) P 2p and (d) Ta 4f of Ta; xOx coatings, before and after 7 days of immersion on artificial saliva at room temperature.
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corresponds to the O-Ta chemical bonding (Fig. 5a), according with
the literature [29]. The appearance of Ta 4f doublet assigned to
Tap,0s for as-deposited Tal coating demonstrates the high
tendency of tantalum to passivate. Contrary to TO6, Tal displays
an additional doublet around 21.1 and 23.0eV, corresponding to
the binding energies of Ta® suggesting that the surface is
composed by a mixture of pure metal and oxide. This mixture is
likely to be due to a very thin passivation layer of Ta,Os and the
metallic state underneath the oxide. Hence, the more passive
behavior of TO6 observe in the potentiodynamic tests can be
attributed to a pure oxide composition on the surface of the
coatings, while coatings with lower content of oxygen such Tal
displays both tantalum oxide and metallic tantalum, exhibiting a
more active electrochemical behavior.

It must be stressed that the growth of the oxide layer on Tal
coatings was not observed, since the ratio between the Ta*> and Ta°
before and after immersion is maintained, indicating that an
additional parameter contributes to the passivation of the films
and the corrosion protection. Such passivation is attributed to the
formation of Ta-O-P layer, as seen in Fig. 5c. In effect, it has been
reported that the phosphate ions can bind with metal oxides and
form phosphates [30]. These phosphates ions are known as
excellent inorganic corrosion inhibitors that provide protection to
a surface susceptible to suffer corrosion [31,32].

The small peak around 532.3eV in O 1s spectrum of the
immersed coatings is attributed to the surface passivation (O-P). It
is important to note that the appearance of this minor peak is
caused by the incorporation of a small amount of phosphorus in
the top layer coating and can be confirmed by the P 2p observed
peak at 134.0eV that correspond to the P-O chemical bond [10],
confirming the formation of a Ta-O-P passive layer.

Electrochemical impedance spectroscopy was performed to
characterize in detail the corrosion performance of the samples.
Fig. 6 shows the Bode and Nyquist plots for all the samples
immediately after and 7 days after immersion.

The impedance results reveal larger impedance as oxygen
increases in the films. This effect is clearly seen in the Nyquist plot
shown in Fig. 6b and d, where the TO6 possesses the highest
impedance values.

All the samples show a capacitive behavior with a single time
constant, apart from the TO6 that displays a double time constant
behavior, as shown in the phase angle curves present in Fig. 6a and
¢. A more capacitive-like behavior is observed as a function of the
immersion time, seen in the increment of the imaginary part of the
impedance and the phase at lower frequency values, as shown in
Fig. 7. The increment indicates an enhanced protective behavior of
the coatings, due to the passivation of the films, which increases



C.F. Almeida Alves et al./ Electrochimica Acta 211 (2016) 385-394 391

a) |1Z| curves —&— 2 hours—@— 24 hours—A— 7 days

Z phase —— 2 hours—O— 24 hours—/>— 7 days
e ,, Lt :
10’—: ;"80
10° 4 F-60
e 1 F o
S 1054 a
G 3 F40 &
% S
£ gl - N
3 F-20
10°
T T T T T T T A T l T F 0
10* 10° 10% 10" 10° 10" 10* 10° 10* 10° 10° 107

Frequency / Hz

2.5x107 T T T T T
—=&— 2 hours T
—&— 24 hours R
7| 3 P 4
2.0x10 A— 7 days
o 1.5x107 B
£
o
o}
~ 7
o 1-0x107 B
©
£
N 5.0x10° - g
0.0 -

¥ T T T T
0.0 2.0x10° 4.0x10° 6.0x10° 8.0x10°

Zreal / @om?

Fig. 7. (a) Bode and (b) Nyquist plot of TO5 sample as a function of immersion time on artificial saliva at room temperature. (Measured (dots) and fitted (lines) values of the
impedance module are related to the left axis while the measured (dots) and fitted (lines) values of phase are related to the right axis).

the charge transfer resistance of the coating during the corrosion
process.

After 7days of immersion, Tal and TO1 films display a very
similar electrochemical response, which mimics the SS 316L, as
observed in Fig. 6¢, where the impedance modulus and phase
overlap among the three samples. This indicates that the open
columnar morphology of these coatings allows the electrolyte to
penetrate until the substrate, and thus, the electrochemical
response is governed by the substrate. On the other hand, the
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R
el

films with higher oxygen amount show a distinctive performance,
enhancing the corrosion resistance of the substrate. TO5, for
instance, possesses higher impedance, and phase values compared
to the previously mentioned coatings, whereas TO6 shows a
broader capacitive behavior and higher impedance values in the
entire frequencies spectrum studied, indicating a more protective
film.

In order to be able to quantify the electrochemical process, EIS
results were fitted using two equivalent circuits (EC) shown in

b)

sol

Bl

CPEint :_

Fig. 8. Equivalent circuit models scheme used for fitting the EIS data. The Rsol represents the electrolyte resistance, the Rp represents the transference charge resistance of

material and CPE represents the constant phase replacing a capacitance element.
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Fig. 9. Evolution of the polarization resistance of SS 316L and Ta1-xOx coatings as a
function of immersion time, on artificial saliva at room temperature.

Fig. 8. Fig. 8a represent the model used to fit SS 316L, Tal, TO1 and
TO5, where a constant phase element (CPE) is used to replace the
capacitance element, to consider the surface roughness and
heterogeneities. This element simulates the series combination
of the double-layer and film capacitive behavior at the film/
electrolyte interface. The Rp, known as polarization resistance
element, represents the charge transfer resistance. In the EC
adopted for TO6, the first capacitive loop represents the tantalum
oxide layer, while the second corresponds to the double-layer

Table 2
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capacitance and charge transfer resistance at the interface
between TO6 and the metallic portion (Ta and SS 316L), as
described in Fig. 8b. It must be stressed that despite TO1 and TO5
coatings also possess a Ta interface, the absence of the
electrochemical response of these layer may be due to the
existence of metallic Ta in the functional layers, which hinder the
differentiation between the coatings (TO1 and TO5), interlayer and
substrate, and hence, a single time constant is observed in these
samples (cf. Fig. 6¢).

The evolution of the polarization resistance in the samples is
plotted in Fig. 9, demonstrating a rise as a function of immersion
time, validating once more the passivation of the surface. In
addition, for TO6 the tendency may indicate obstruction of the
diffusion path that contribute to the charge transfer in the system,
due to passive film. For Tal, TO1 and TO5 the consumption of free
species, such as Ta, and hence its passivation also causes a slightly
obstruction of the diffusion path in the coatings. However, the high
number of surface defects in Tal and TO1 samples allows artificial
saliva to progressively penetrate, explaining the similarities in the
electrochemical response between these two samples and SS 316L.

For clarity, Table 2 only shows the fitting results of EIS data after
7 days of immersion.

The samples with higher oxygen content reveal a larger
polarization resistance (Rp), in agreement with the potentiody-
namic tests. TO1 and TO5 show Rp values two or three folds higher
than Tal and SS 316L samples, while TO6 has almost one order of
magnitude difference. Once again the electrochemical response
demonstrates that the stoichiometric oxide (TO6 sample) exhibit a
lower electrochemical activity in artificial saliva solution, due to
the stability of the oxide phase in the film, whereas in sub-
stoichiometric oxides and Ta samples the metallic tantalum
species contributes to anodic reaction while oxidizes, reducing
the stability of the coatings.

EIS fitting parameters of SS 316L and Ta;_xOx samples after 7 days of immersion on artificial saliva at room temperature. The results are standard deviations calculated based

on experimental data of three separate samples.

Sample Rsol Rp Q n Cesr Rpint Qint Njne
(Qcm?) (MQ cm?) (wSs"cm2) WwFcm~2 (k€2 cm?) (wSsacm™2)
SS 316L 169 + 50 34.0 + 4.7 404 + 12.8 0.92 + 0.01 78.5 + 30.7 - - -
Tal 209 + 75 22.7 + 141 24.0 + 211 0.92 + 0.01 70.6 + 21.8 - - -
TO1 257 +£ 45 58.6 + 16.3 40.3 + 8.43.71 0.89 + 0.01 103.0 + 35.0 - - -
TO5 216 + 17 64.0 + 6.5 13.0 + 0.2 0.96 + 0.00 173 + 03 - - -
TO6 81 +2 714 + 87.0 0.65 + 0.08 0.89 + 0.00 14 + 0.14 73.5+17.9 4.57+0.22 0.56+0.00
All the models showed a goodness of fit between 3.2 x 10 % and 8.8 x 10 ~%.
c 3 _ Matrial permittivity + exposed area
apacitance = oxide thickness
Electrolyte Electrolyte

Ta oxide mwm

SS 316L

Capacitor

Oxygen contentincreases

i

Capacitor

T

SS 316L

=)

Fig. 10. Schematic representation of the evolution of the capacitor as a function of oxygen content.
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Additionally, a progressive decrease of the Q parameter in the
CPE compared to the control samples (SS 316L) is observed.
Although this parameter does not directly represent the capaci-
tance of the system, an effective capacitance may be calculated
using the equation 1 [33].

R
Copf = % (1)

Where Q and n are mathematical constants of the CPE impedance
(for a pure capacitor elements Q = capacitance and n=1) and R;, is
polarization resistance.

Table 2 shows a reduction of the effective capacitance of the
system with the increase of the oxygen, due to a more ceramic
behavior of the coatings, which reduces the formation of a double
layer capacitance and reduces the overall capacitance due to the
increase of the thickness in the dielectric materials (i.e. Ta50s), as
schematize in Fig. 10.

4. Conclusions

SEM, optical micrographs and XPS analysis have been combined
with potenciodynamic and EIS electrochemical analysis aiming at
investigate the corrosion/electrochemical stability and enhance-
ment of the stainless steel 316L performance, provided by Ta;_xOx
coatings deposited by reactive magnetron sputtering. The assess-
ment of sputtered Ta-based coatings revealed more compact
coatings with morphology densification as oxygen amounts
increase, showing smoother surfaces. Surface defects analysis
revealed that the number of defects is reduced when oxygen is
incorporated, attributed to denser coatings.

The electrochemical response evidenced a protective behavior
of the films for polarization induced corrosion of SS 316L, matching
the performance of the CP Ti Gr2, as well as a progressive increase
in the corrosion resistance as a function of the immersion time in
all the coatings, attributed to the passivation of the surface by both
Tap0s5 and Ta-O-P formation. A more capacitive-like behavior is
also observed as a function of the immersion time highlighting the
enhanced protective behavior of the coatings.
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