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Abstract. In this paper, we present a comparative study involving several penalty functions that can be used in a penalty
approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies
on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty
function based on the ‘erf’ function is proposed. The continuous nonlinear optimization problems are sequentially solved by
the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of
the produced solutions, when compared with other penalty functions available in the literature.
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INTRODUCTION

This paper aims to compare the performance of several penalty functions on an exact penalty approach for globally
solving bMINLP problems. The presented penalty approach seeks for a global solution of the bMINLP problem by
replacing it by a sequence of continuous nonlinear programming (NLP) problems with only continuous variables. The
mathematical formulation of the problem to be addressed has the form:

min f (x)
subject to x 2 W ⇢ Rn

xi 2 R for i = 1, . . . ,nc , x j 2 Z for j = nc +1, . . . ,n
(1)

where f : Rn ! R is a continuous function and W is a compact convex set. In this paper, the set W = {x 2 Rn : li 
xi  ui, i = 1, . . . ,n} where l and u are the vectors of the lower and upper bounds respectively. nc denotes the number
of continuous variables, ni = n�nc gives the number of integer variables. The feasible set W of bMINLP problem (1)
is defined by W = {x 2 W ⇢ Rn : x j 2 Z for j = nc +1, . . . ,n}.

We consider the following continuous reformulation of the bMINLP problem (1), which comes out by relaxing all
integer variables to continuous ones and adding a particular penalty term to the objective function:

min Y(x;e) ⌘ f (x)+f(x;e)
subject to x 2 W and xi 2 R for i = 1, . . . ,n (2)

where f(x;e) is the penalty function. In [1] it is shown that, the problems (1) and (2) are equivalent, for any e 2 (0, ē],
in the sense that they have the same global minimizers. The penalty function in (2) is termed ‘exact’ since the two
problems have the same global minimizers for a sufficiently small value of the penalty parameter e . In this work we
use a similar exact penalty algorithm as proposed in [1], which combines a global optimization technique for solving
the continuous reformulation for a given value of the penalty parameter e and an automatic updating of e occurring a
finite number of times. Problem (2) parameterized by e is globally solved by a simple and stochastic population-based
algorithm, known as firefly algorithm (FA) [2, 3]. We present a new penalty function based on the ‘erf’ function, and
analyze its performance when compared with other penalty function available from the literature. Some preliminary
results are presented with a benchmark set of mixed-integer nonlinear programming problems.

The remainder of this paper is as follows. First, five penalty terms known from the literature and the proposed ‘erf’
penalty function are presented. Second, the exact penalty algorithm and a brief description of the FA are provided.
Finally, some numerical experiments and conclusions are reported.
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PENALTY FUNCTIONS ON A PENALTY APPROACH

Exact penalty approaches have been used to solve general nonlinear integer programming problems [1, 4, 5, 6, 7].
From the class of penalty functions that can be used in this penalty approach, the two most used are:

f(x;e) = Â
j2J

min
l jdiu j

di2Z

�

log [|x j �di|+ e]
 

(3)

f(x;e) = 1
e Â

j2J
min

l jdiu j
di2Z

�

[|x j �di|+ e]p
 

, 0 < p < 1 (4)

where the index set J is defined by J = {nc + 1, . . . ,n}. Other penalty terms that may be considered are simple
adaptations of those reported in [1] for the zero-one programming problem:

f(x;e) = Â
j2J

min
l jdiu j

di2Z

�

� [|x j �di|+ e]�q , q > 0
(5)

f(x;e) = 1
e Â

j2J
min

l jdiu j
di2Z

�

1� exp(�r|x j �di|)
 

, r > 0 (6)

f(x;e) = 1
e Â

j2J
min

l jdiu j
di2Z

n

[1+ exp(�r|x j �di|)]�1
o

, r > 0. (7)

The new herein proposed penalty function based on the continuous ‘erf’ function for solving the bMINLP problem is
the following. We note that the function erf(·) is differentiable and strictly increasing on the set W. The penalty term
takes the form

f(x;e) = 1
e Â

j2J
min

l jdiu j
di2Z

�

erf
�

�

�x j �di
�

�+ e
� 

. (8)

The exact penalty algorithm is composed by an outer cycle where, at each iteration k, the continuous reformulation
problem (2) is solved for a fixed value of the penalty parameter e(k). See Algorithm 1. At each iteration k, an
approximate global minimizer x(k) of problem (2) is computed. Whenever the computed x(k) is not feasible for problem
(1) and the condition

y(x(k);e(k))�y(z(k);e(k)) e(k)L kx(k)� z(k)k

is verified, where z(k) 2W , the penalty parameter e(k) is decreased and the tolerance for solution quality d (k) remains
unchanged. Otherwise, e(k) remains unchanged and d (k) is allowed to decrease. The point z(k) results from rounding
x(k)j , j 2 J to the nearest integer. The algorithm terminates when the number of iterations, k, exceeds a given threshold
value kmax. This stopping criterium allows us to analyze the quality of the solutions produced by the algorithm.
However, other stopping criteria may be used. Namely, if the optimal value is known, criteria based on the feasibility
of x(k) and on the proximity of the objective function value to the known minimum may be used.

Our proposal for finding an approximate global minimizer of each problem (2), is based on the stochastic population-
based FA. The FA is a bio-inspired population-based metaheuristic developed to solve global optimization problems
with simple bounds. It is inspired by the flashing behavior of fireflies at night. The FA was developed by [2, 3] and is
based on the following three main rules: a) it is assumed that all fireflies are unisex, meaning that they will be attracted
to each other regardless of their sex; b) the attractiveness is proportional to their brightness but decrease as the distance
increases. In the case of no existence of no brighter firefly, the fireflies will move randomly; c) the brightness of a
firefly is determined from the encoded objective function to be optimized.

In the original version of FA, the main ideas to construct FA are related with the brightness emitted by each firefly
and the degree of attractiveness that is generated between two fireflies. The movement of a firefly i towards another
brighter firefly j is determined by:

xi = xi +b (x j � xi)+ae i, (9)

where xi and x j denote the location of fireflies i and j in the search space W, respectively. In (9), the second
term is due to the attraction and the third term is due to randomization with a 2 (0,1) being the randomization



Algorithm 1 Exact penalty algorithm

Require: kmax, e(1) > 0, d (1) > 0, L > 0, s 2 (0,1)
1: Set k = 1
2: Randomly generate x(0) 2 W
3: while k  kmax do
4: Given x(k�1), compute an approximate global minimizer x(k) of problem (2) such that

y(x(k);e(k)) y(x;e(k))+d (k), for all x 2 W

5: if x(k) /2W and y(x(k);e(k))�y(z(k);e(k)) e(k)L kx(k)� z(k)k then
6: Set e(k+1) = se(k), d (k+1) = d (k)

7: else
8: Set e(k+1) = e(k), d (k+1) = sd (k)

9: end if
10: Set k = k+1
11: end while

parameter. Here, e i = L(0,1)s i/2 where L(0,1) is a random number from the standard Lévy distribution and
s i =

�

|xi
1 � x1

1|, . . . , |xi
n � x1

n|
�T is a vector that gives the variation of xi relative to the position of the brightest firefly,

x1. The parameter b = b0 exp
�

�gkxi � x jk2� gives the attractiveness of a firefly i and varies with the brightness seen
by adjacent firefly j and the distance between themselves. b0 is the attraction parameter when the distance is zero.
The parameter g � 0 characterizes the variation of the attractiveness, and is crucial to speed the convergence of the
algorithm.

NUMERICAL EXPERIMENTS

The numerical experiments were carried out on a PC Intel Core 2 Duo Processor E7500 with 2.9GHz and 4Gb of
memory RAM. The algorithm was coded in Matlab Version 8.1 (R2013a). Eighteen bMINLP problems are used for
the comparison of the six penalties. This comparison is based on the solution quality which is measured in terms of
the difference between the best obtained result (out of 10 independent runs), fbest, and the known optimal value, f ⇤.
Algorithm 1 is terminated when the number of iterations kmax = 20. The parameters in the algorithm are set as follows:
m = 5n, d (1) = 1e�5, e(1) = 10, L = 10, s = 0.1, p = 0.5, q = 1, r = 1. FA is allowed to run for 100 iterations, and
b0 = 1, a and g are reduced as a function of the iteration counter until they reach 0.001, starting from 0.5 and 10,
respectively.

From the results of Table 1 we may conclude that (considering ‘wins’ and ‘ties’) penalties (4) and (8) have similar
performances with the best solutions in 72% and 67% of the tested problems respectively. The quality of the solutions
produced by penalty (7) is better than or equal to the other cases in 50% of the problems and penalty (3) wins and
produces ties on 33% of the problems. Penalties (5) and (6) perform poorly with only 22% of ‘wins’ and ‘ties’.

Figure 1 displays the plots of the best four penalties using two values of e: 1 (dotted lines) and 0.25 (solid lines).
To identify (3), we use lines with the marker ‘�’, to identify (4) the lines have a marker ‘⇤’, to identify (8) the lines
are marked with ‘.’, and to identify (7) the lines are marked with ‘+’. We note that penalties (4) and (8) have similar
behavior as a function of e and |x�di|.

CONCLUSIONS

This paper presents a practical comparison between penalty functions when used in an exact penalty approach to
globally solve bMINLP problems. A new penalty term based on the ‘erf’ function is presented. In order to assess
the performance of the proposed penalty algorithm, eighteen bMINLP problems are used. The numerical experiments
carried out to compare the quality of the produced solutions show that the penalty function (8) is competitive when
compared with the other tested five penalty terms.



TABLE 1. Comparison of | fbest � f ⇤|

Prob. n ni penalty (3) penalty (4) penalty (5) penalty (6) penalty (7) penalty (8)

ACK_5 5 5 2.344E-02 1.492E-07 8.751E-01 3.931E-06 8.882E-16 1.096E-05
ACK_10 10 10 3.243E+00 1.609E+00 3.252E+00 2.630E+00 2.971E-01 1.651E+00
AP 2 1 8.607E-05 8.604E-05 3.203E-02 8.607E-05 8.605E-05 8.604E-05
Bea 2 1 3.890E-17 5.916E-20 4.776E-02 1.737E-09 2.444E-18 1.056E-17
BL 2 2 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
BF1 2 2 0.000E+00 0.000E+00 8.062E-01 3.124E-13 0.000E+00 0.000E+00
Buk 2 2 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
DA 2 2 4.829E-01 4.817E-01 4.856E-01 4.842E-01 4.823E-01 4.820E-01
DP_2 2 1 1.473E-16 1.142E-17 3.282E-02 4.548E-11 2.691E-20 2.936E-18
DP_4 4 1 1.194E-16 9.621E-17 8.693E-01 7.119E-07 3.256E-16 7.642E-17
Him 2 2 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
LM2_5 5 5 1.532E-05 1.500E-32 1.988E-01 1.231E-14 1.269E-31 1.500E-32
LM2_10 10 10 1.914E-04 1.500E-32 5.399E-01 7.891E-14 2.709E-30 1.500E-32
NF2 4 4 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
RG_5 5 5 2.077E-02 0.000E+00 4.732E-01 9.628E-12 0.000E+00 0.000E+00
RG_10 10 10 2.986E+00 0.000E+00 3.034E+00 4.014E+00 0.000E+00 0.000E+00
S10 4 4 9.095E-04 4.384E-03 5.058E-01 4.384E-03 4.384E-03 4.384E-03
SS_5 5 5 7.303E-05 1.277E-32 7.741E-01 2.123E-13 5.551E-30 1.530E-33
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FIGURE 1. Plots of penalties (3), (4), (8) and (7)
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