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Abstract

Dynamic models formulated as a set of ordinary differential equations
provide a detailed description of the time-evolution of a system. Such models
of (bio)chemical reaction networks have contributed to important advances
in biotechnology and biomedical applications, and their impact is foreseen
to increase in the near future. Hence, the task of dynamic model building
has attracted much attention from scientists working at the intersection of
biochemistry, systems theory, mathematics, and computer science, among
other disciplines—an area sometimes called systems biology. Before a model
can be effectively used, the values of its unknown parameters have to be
estimated from experimental data. A necessary condition for parameter
estimation is identifiability, the property that, for a certain output, there
exists a unique (or finite) set of parameter values that produces it. Identifi-
ability can be analysed from two complementary points of view: structural
(which searches for symmetries in the model equations that may prevent
parameters from being uniquely determined) or practical (which focuses on
the limitations introduced by the quantity and quality of the data available
for parameter estimation). Both types of analyses are often difficult for
nonlinear models, and their complexity increases rapidly with the problem
size. Hence, assessing the identifiability of realistic dynamic models of bio-
chemical networks remains a challenging task. Despite the fact that many
methods have been developed for this purpose, it is still an open problem
and an active area of research. Here we review the theory and tools available
for the study of identifiability, and discuss some closely related concepts such
as sensitivity to parameter perturbations, observability, distinguishability,
and optimal experimental design, among others.
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1 Introduction: motivating the study of parametric

identifiability

Mathematical models play a key role in many scientific areas as well as in engineering

practice. They are used not only for representing the available knowledge about a system

in an unambiguous, compact form, but also for making informed predictions, among

other applications. Models that include information about the system kinetics (dynamic

models) allow to characterize in detail the evolution of the studied system in time.

Dynamic models are extensively used in chemistry, biology, physics, engineering, and

other disciplines. In some applications, such as those involving engineered (designed)

systems, it can be relatively straightforward to know the model structure. Their dynamic

equations can often be obtained from first principles, and their parameters can be either

directly measured or calculated by other means.

In contrast, the mechanisms underlying biological systems–and biochemical networks

in particular–are generally known only partially, and must be “reversed engineered” from

data. The ability to do so is of high relevance, since dynamic models are increasingly used

in biology and medicine, and their use is expected to contribute to important progress

in areas such as systems biology [38, 115], metabolic engineering [18, 27, 96], industrial

biotechnology [1, 94], or personalized medicine [4, 68], to name a few.

As a motivating example, consider the diagram shown in Figure 1, which represents the

network of chemical reactions included in a model of a bioprocess involving Chinese Ham-

ster Ovary cells (CHO) [116]. These cells are used for antibody production by means of a

fed-batch fermentation process. Many efforts are currently being made in the biotechnol-

ogy industry to optimize CHO strains in order to improve process yield and productivity.

Such an optimization can be efficiently aided by computer simulations that predict the

behaviour of CHO cells after modifications in the enzyme levels of specific reactions, or in

different experimental conditions. To perform those simulations, a detailed kinetic model

of the metabolic network is required. Dynamic models of CHO cells, consisting of a set

of densely parameterized ordinary differential equations (ODEs), have been already used

in metabolic engineering [77, 78]. However, the success of their application depends on

the accuracy of their predictions, which is limited by the uncertainty that is inherently

present in the model.

Biochemical systems of interest such as the cellular network mentioned in this exam-
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Figure 1: Metabolic network of Chinese Hamster Ovary cells, which are used for antibody
production [116]. The concentrations of those metabolites located in the fermenter can
be measured; the ones in the cytosol and mitochondria are obtained by model simulation.

ple often have a complex and highly redundant structure, being the result of long term

evolution by natural selection [2]. They frequently adopt the form of densely connected

networks with many components and abundance of regulatory loops [34,126]. Even in the

best studied of those systems, many details are commonly unknown. Biochemical mod-

els are simplifications of such highly complex systems, and as a consequence they usually

have a large uncertainty associated to their structure and parameter values. Furthermore,

realistic models often have nonlinear dynamics, which further complicates their analysis.

Due to these complexities, it is crucial to be aware of the limitations of current bio-

chemical models in order to avoid creating false expectations and having excessive trust

in potentially unreliable results [22]. Limitations may be intrinsic to the model, that is,

a direct consequence of its structure, or they may be originated from more external fac-

tors such as lack of data necessary for calibration [52]. A number of concepts have been

introduced to describe and quantify these limitations, and many methods for calculating
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Figure 2: Simple example illustrating structural and practical identifiability issues.

them are available. Terms such as identifiability (structural or practical, a priori or a

posteriori, quantitative or qualitative, theoretical or numerical, geometric, algebraic...),

estimability, parameter sloppiness, sensitivity, distinguishability, observability, controlla-

bility, reachability, and designability, among others, have been coined.

Simply speaking, a model is identifiable if it is possible to determine, in a unique way,

the values of its parameters by observing the model inputs and outputs [125]. Identi-

fiability problems can be illustrated with the following toy example [9]. Let us assume

a model consisting of two states, x1 and x2, which represent e.g. the concentrations of

two chemical compounds. Assume that their evolution in time is given by the following

equations:

ẋ1 = p1 · x1 · x2
ẋ2 = p2 · u

(1)

where u is an external input assumed constant, positive, and known. We can measure

the concentration of the first state, that is, y = x1, which initially is x1(t = 0) = 1.

The identifiability question is: can the values of the unknown parameters p1 and p2 be

determined from measurements of y = x1? Figure 2 plots the system output y in several

scenarios. In panel (A) the initial condition of x2 is zero, and two different combinations

of parameter values produce the same system output (in fact, any combination of values

such that p1 · p2 = 2 yields the same outcome, so there is an infinite number of possible
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solutions for p1 and p2). Hence the model is not identifiable. It might be thought that

this lack of identifiability is not a problem, because even though the parameters cannot be

determined, the output of the model is still correct. However, as panel (B) shows, under

a different experimental condition (when x2(t = 0) 6= 0) the output of the model becomes

different for the same choice of parameter values. Thus, if we were going to use the model

calibrated with data from panel (A) to make predictions in the situation shown in panel

(B), we would be almost surely making a wrong prediction (unless by pure chance we had

chosen the right combination of values among the infinite possibilities, which is of course

highly unlikely). This example illustrates the problems that may appear due to lack of

structural identifiability.

Let us now assume that the fact that x2(t = 0) > 0 is part of the model specifications,

and therefore the output will always be different for different values of p1 and p2, as

in panel (B). That is, now we have a structurally identifiable model, and we want to

estimate the values of its parameters. In practice, any experimental data will contain

some measurement errors, so instead of the situation in panel (B) we will have something

like panel (C). The two curves are now hardly distinguishable, and the parameter values

estimated from such dataset will have some degree of uncertainty. Quantifying that

uncertainty is the aim of practical identifiability analysis.

The present paper addresses the study of the identifiability problem, and aims at

1. providing a tutorial introduction to well established concepts and techniques,

2. reviewing recent relevant developments in the area, and

3. providing critical comparisons of the strengths and limitations of the existing ap-

proaches.

The focus will be on large models, since they provide the appropriate level of descrip-

tion for many applications of interest, and they pose the kind of real-world challenges

that do not arise in small or “toy” models. Roughly speaking, a dynamic model of a

biochemical network–for example, a metabolic, signaling, or gene regulatory network–can

be considered “large” by current standards if it has > 10 states and > 100 parameters.

A set of examples of such large-scale dynamic models can be found for example in the

BioPreDyn-bench collection [118].
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The properties we will study can be classified as structural or non-structural, among

other possible distinctions. The former can be derived from the model structure; two ex-

amples are (structural) identifiability and distinguishability [125]. Given a model structure

with unknown parameters, structural identifiability analysis studies whether it is possible

to uniquely determine the parameter values by inspection of the model equations [14].

Given several model structures, distinguishability analysis studies whether it is possible

to differentiate between their outputs [110]. Non-structural properties, on the other hand,

depend on other factors such as data quality and availability. Parameter sloppiness and

the so-called practical or numerical identifiability analysis fall in this category [13,19].

It should be kept in mind that identifiability analysis is embedded in the more general

problem of dynamic model building, which consists of a number of tasks with tight links

among them, as shown schematically in Figure 3.

This paper is organized as follows: we begin by introducing in section 2 the concept

of sensitivity, which plays an important role in many of the techniques reviewed here.

Quantifying the model sensitivity to parameter variations provides a way of ranking the

model parameters according to their relative importance. However, they do not paint the

whole picture, and a parameter can be difficult or impossible to identify even if the model

has a high sensitivity to it, for example if it is correlated with another parameter. Thus in

section 3 we study the (structural) identifiability problem, which consists of determining

whether the model parameters can be identified in principle. However structural identifia-

bility is not the full picture either, because it does not consider limitations caused by data

availability or numerical issues. Therefore we introduce practical identifiability tools in

section 4, which can be used for quantifying the uncertainty in the parameter estimates.

After that, in section 5 we connect the theory and methodologies of identifiability analysis

with other related tasks in the modelling cycle, such as parameter estimation, experiment

design, and model discrimination and distinguishability, finishing by discussing whether,

despite the ubiquitous uncertainty in model parameters, we can still have confidence in

the model predictions.

Notation

In the remaining of the text we will use the following notation: let M be a model structure

with a real-valued vector of parameters p ∈ <p, of inputs u ∈ <r, of states x ∈ <n, and of
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Figure 3: Overview of the main tasks in the modelling cycle. Building a model of a
complex biochemical network is usually a time-consuming process, with uncertainties of
different types arising at every step. Ideally, it should be carried out in an iterative way,
obtaining successive refinements until a the resulting model is deemed satisfactory.

measured outputs y ∈ <m. The model dynamics are defined by the following equations:

ẋ(t) = f [x(t,p),u(t), t,p] (2)

y(t) = g[x(t,p),p] (3)

x0 = x(t0,p) (4)

heq[x(t,p),u(t),p] = 0 (5)

hin[x(t,p),u(t),p] > 0 (6)

where f , g, heq, and hin are nonlinear vector functions, with heq and hin representing

algebraic equality and inequality constraints respectively. In general, simulating M entails

determining the values of x(t) for all t, which in turn requires knowledge of p.

Abbreviations

DA: Differential Algebra, DSM: Discrete-time Sensitivity Matrix, EE: Elementary Effect,

FIM: Fisher Information Matrix, FOLS: First-Order Local Sensitivity, LTI: Linear Time-

Invariant, OAT: One parameter At a Time, ODE: Ordinary Differential Equation, PCA:
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Principal Component Analysis, PL: Profile Likelihood, SA: Sensitivity Analysis, SVD:

Singular Value Decomposition, TS: Taylor Series.

2 Model sensitivity to parameter variations

Given a mathematical model with a possibly large number of parameters, it is natural

to ask which parameters are more important, that is, which have a greater effect in the

model output. To answer this question we begin by defining the concept of sensitivity.

The state variable sensitivities are the partial derivatives of the measured state variables

with respect to the parameter values. Mathematically they are defined as follows. Let us

consider first, for simplicity, a model with only one state x, which we further assume to

be measured, and one parameter p. The (time-varying) relative sensitivity of the state

variable x to the parameter p is:

sxp(t) =
∂x(t, p)/x(t, p)

∂p/p
=
∂x(t, p)

∂p

p

x(t, p)
(7)

where p is the reference or typical value of the parameter and x(t, p) the corresponding

state. If the sensitivity is zero (or close to zero, for practical purposes), changes in the

parameter p will have no (or almost no) effect on x. It will not be possible to estimate

the value of p from measurements of x, and, as will be explained in more detail in the

following sections, parameter p will be classified as not identifiable.

Let us now generalize this simple notion to a model with m outputs, n states and p

parameters, like the one defined by equations (2)–(6). To this end we perform a Taylor

series (TS) expansion of the state variables. We write the TS expansion of state variable

xi around the parameter vector p as:

xi(t,p + ∆p) = xi(t,p) +
∂xi
∂p

∆p +
1

2
∆pT

∂2xi
∂p2

∆p + . . . (8)

where the terms or order higher than two are truncated. The total variation ∆xi(t,p) is:

∆xi(t,p) =
∂xi
∂p

∆p +
1

2
∆pT

∂2xi
∂p2

∆p + . . . (9)

where the first order partial derivative ∂xi
∂p

is a p-dimensional vector, and the second order

partial derivative, ∂2xi
∂p2 , is the p× p Hessian matrix whose elements are ∂2xi

∂pj∂pk
.

To obtain the total variation in the state xi due to perturbations ∆pj in the parameters

around their nominal value, we must consider all the terms present in equation (9).
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However, in the following subsection we will neglect the second-order and higher order

terms, and we will restrict ourselves to the analysis of first-order sensitivities, those that

include only the first partial derivative. These sensitivities will not only be first-order

but also local, since they depend on a particular value of p, and therefore valid only in

its neighbourhood. Note that in doing so we are considering a simplified case. We will

extend these notions to the more general global sensitivity analysis in section 2.2.

2.1 First order local sensitivities

The first-order local sensitivity (FOLS) of state variable xi to parameter pj is defined as:

vij(t,p) ≡ vij =
∂xi(t,p)

∂pj
≡ ∂xi
∂pj

(10)

The FOLS can be included in a n× p matrix of first-order local sensitivity functions,

V (t,p), whose elements are the vij. It is important to note that, in general, sensitivities

depend not only on the parameter values, but also on time. Since FOLS are a function of

time, their evolution can be described by differential equations. Indeed, since the FOLS

also depend on the system states, the ODEs of the model and the ODEs of the FOLS are

coupled, and they must be solved simultaneously in order to calculate the time course of

the sensitivities. The ODEs of the FOLS can be written as:

dvij
dt

=
d

dt

(
∂xi
∂pj

)
=
∂ẋi
∂pj

=
∂

∂pj
fi[x(t,p),u(t), t,p]

=

(
∂fi
∂x

)(
∂x

∂pj

)
+

(
∂fi
∂p

)(
∂p

∂pj

)
(11)

=

(
∂fi
∂x

)(
∂x

∂pj

)
+
∂fi
∂pj

(12)

=
n∑
k=1

∂fi
∂xk

vkj +
∂fi
∂pj

(13)

The set of equations can be written in matrix form as a n× p ODE:

V̇ =
∂f

∂x
V +

∂f

∂p
(14)

We have seen how parameter variations affect the state variables; let us now focus on

how they affect the model outputs. The m× p matrix of output sensitivities is
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∂y

∂p
=

[
∂yi
∂pj

]
=


∂y1
∂p1

· · · ∂y1
∂pp

∂y2
∂p1

· · · ∂y2
∂pp

...
...

∂ym
∂p1

· · · ∂ym
∂pp

 (15)

where each element can be calculated, similarly to equations (11)–(13), as

∂yi
∂pj

=
∂gi[x(t), t,p]

∂pj
=

(
∂gi
∂x

)(
∂x

∂pj

)
+

(
∂gi
∂p

)(
∂p

∂pj

)
=

n∑
k=1

∂gi
∂xk

vkj +
∂gi
∂pj

(16)

Since the output sensitivities are computed from the state sensitivities, the same re-

marks that were made for state sensitivities apply here.

If we have a set of d measurements, we can build a discrete-time sensitivity matrix

(DSM) with (m× d) rows and p columns as:

∂y

∂p
=

[
∂yi
∂pj

]
=



∂y1(t1)
∂p1

∂y1(t1)
∂p2

· · · ∂y1(t1)
∂pp

∂y1(t2)
∂p1

∂y1(t2)
∂p2

· · · ∂y1(t2)
∂pp

...
...

...
∂y1(td)
∂p1

∂y1(td)
∂p2

· · · ∂y1(td)
∂pp

∂y2(t1)
∂p1

∂y2(t1)
∂p2

· · · ∂y2(t1)
∂pp

...
...

...
∂ym(td)
∂p1

∂ym(td)
∂p2

· · · ∂ym(td)
∂pp


(17)

Remark on calculating sensitivities. Note that in equation (14) one can obtain ∂f
∂x

and ∂f
∂p

analytically by symbolic differentiation of f . However, to obtain V it is necessary

to solve the ODEs of the original dynamical system (2)–(3) together with the sensitivity

equations (14), and for this purpose numerical integration is needed. Solvers available for

this task include ODESSA [55–57] and CVODES [92], which can be called e.g. from the

AMIGO toolbox [12].

2.2 Global sensitivities

Calculation of local sensitivities, taking into account the variation in one parameter at a

time, is both the simplest and most common way of performing sensitivity analysis. How-

ever, this approach is limited, since it does not consider interaction effects, and not entirely

appropriate for assessing the relative importance of several parameters in the output [89].

If possible, one should resort instead to the more general global sensitivity analysis, which

-268-



explores the whole parameter space and varies all parameters simultaneously–note that

in local sensitivity analysis the parameters are changed one at a time (or “OAT”) [38].

Methods for calculating global sensitivities can be classified as variance-based or

derivative-based. Variance-based methods aim at estimating the total sensitivity index

ST i, which is the sum of all effects involving a parameter pi. The total sensitivity index

can be thought of as the expected fraction of variance that would remain after all the pa-

rameter values, except pi, have been determined. The Fourier Amplitude Sensitivity Test

(FAST) method [35] assigns an integer frequency to each unknown parameter, and calcu-

lates the sensitivity indexes by scanning the parameter space. When a particular index

ST i is computed, a high scanning frequency is selected for factor i, while the remaining

factors are assigned low frequencies. A Fourier analysis allows to recover the sensitivity

indexes. An enhanced version of this method, extended FAST, was presented in [90].

The method of Sobol’ [95] follows a similar approach, although it is less computationally

efficient than the extended FAST. A review of these methods can be found in [89]; for an

extensive treatment of the subject the reader is referred to the book [88].

A different approach is the one taken by so-called derivative-based methods, which

estimate sensitivities by calculating derivatives, as shown in the preceding subsection.

While those estimations are local (see e.g. the FOLS), since they are calculated around

a particular point, they may be extended to a range of values by performing multiple

calculations around different values. However, the remaining parameters are kept constant

in this analysis, which is an important difference with respect to variance-based methods.

While variance-based methods can provide more information than derivative-based

ones, they are also more computationally expensive, which limits their applicability to

large-scale models. As an implementation example, the AMIGO toolbox [12] provides

derivative-based procedures for estimating both local and global parameter sensitivities.

However, it should be noted that while the “global” sensitivities cover a user-defined range

of values in the parameter space, they are calculated OAT, and therefore they would not

fit completely in the definitions of “global” sensitivities used e.g. in [38,89].

2.3 Parameter ranking

Sensitivity functions allow ranking the parameters according to their influence in the

model outputs. The parameter ranking may not be unique, as several criteria can be used
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for measuring influence, specially in systems with multiple outputs. For example, the fol-

lowing five sensitivity-based indicators have been suggested for assessing the identifiability

of parameter sets [20]

δmsqr
j =

√
1
n

∑p
i=1 v

2
ij; δmabs

j = 1
n

∑p
i=1 |vij|; δmean

j = 1
n

∑p
i=1 vij;

δmax
j = maxivij; δmin

j = minivij
(18)

These quantities–or others that may be used–are calculated from local sensitivities,

that is, they depend on a specific choice of parameter values. Hence the corresponding

ranking is local. To escape from the local nature of such an approach, the calculations

may be repeated several times by randomly sampling the parameter space. Analysis of the

distribution of the resulting sensitivities is then used to assess the relative importance of

the inputs globally. When sampling the parameter space computational efficiency is a key

factor, since a exhaustive evaluation of different combinations of parameter values would

be generally prohibitive. Hence a fundamental challenge is to design a parameter screening

method that allows to detect as many significant changes as possible with a reduced

number of runs. While a simple Monte Carlo random sampling would be the most obvious

choice, other approaches such as the popular Latin Hypercube Sampling (LHS) [66] or

the Morris method [75] have been shown to be statistically more efficient. Although

the method of Morris can be used to find the subset of most important parameters, it

provides only qualitative sensitivity measures. Since it is computationally cheaper than

quantitative approaches such as FAST and Sobol, it may be preferred for analysis of

large models. Implementations of some of these techniques are available; for example,

the AMIGO Matlab toolbox computes parameter rankings from local sensitivity analysis,

and also allows using LHS to sample the parameter space efficiently [10,12].

3 Structural identifiability

The concept of structural identifiability was introduced by Bellman and Åström [14]

with the aim of addressing the following question: is it possible to know, by examining

the model equations, whether the model parameters can be uniquely determined from

measurements of the model outputs? Other authors have referred to this concept with the

equivalent terms a priori identifiability [7], theoretical identifiability [79], or qualitative

identifiability [111], among other names. This fact, together with the introduction of

many ad hoc definitions, quickly led to a number of ambiguities and misunderstandings,
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as already acknowledged by DiStefano and Cobelli in 1980 [30]. In the following we will

avoid the specialized jargon as much as possible.

Structural identifiability is a model property depending on the system dynamics, ob-

servable functions, external stimuli, and initial conditions [125]. It does not depend on the

amount or quality of the available data. Assuming that the model structure M is correct,

that the data is noise-free, and that the inputs to the system can be chosen freely, it is

always possible to choose an estimated parameter vector p̂ such that the model output

M(p̂) equals the one obtained with the true parameter vector, M(p∗). If p̂ = p∗ this is

obviously the case. Parameter pi is structurally globally (or uniquely) identifiable (s.g.i.)

if, for almost any p∗ in P ,

M(p̂) = M(p∗)⇒ p̂i = p∗i (19)

A model M is s.g.i. if all its parameters are s.g.i.

A parameter pi is structurally locally identifiable (s.l.i.) if for almost any p∗ in P there

is a neighbourhood V (p∗) such that

p̂ ∈ V (p∗) and M(p̂) = M(p∗)⇒ p̂i = p∗i (20)

A model M is s.l.i. if all its parameters are s.l.i.

If equation (20) does not hold in any neighborhood of p∗, parameter pi is structurally

unidentifiable (s.u.i.). A model M is s.u.i. if at least one of its parameters is s.u.i.

3.1 Global structural identifiability

As has been already mentioned, the term structural identifiability was coined by Bellman

and Åström. Since they worked in systems and control theory, it was natural for them

to study it with the tools commonly used in that field. Thus in their original paper [14]

they employed the transfer function, that is, the input-output map of the system, which

can be obtained for linear time-invariant (LTI) systems with a Laplace transform. They

noted that, since the input-output relation of a system is given by its impulse response,

if the system is identifiable it can be identified from impulse response measurements.

Bellman and Åström also reported results for systems in diagonal and companion form,

as well as for some simple compartmental structures, all of which were shown to be

structurally identifiable under certain conditions. Other methods proposed for analyzing
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structural identifiability of LTI systems include power series expansion [79] and similarity

transformation [121], although extensions of these methods for nonlinear systems have

been developed too.

For nonlinear dynamic models, assessing the global structural identifiability is much

more complicated. Analytical approaches generate large symbolic expressions whose treat-

ment quickly becomes impractical as the problem dimension increases, even for models of

moderate size. Hence this is currently an open research problem, for which many different

approaches have been suggested. In two reviews published in 2011 Chiş et al [26] and Miao

et al [73] compared approaches based on Taylor series [79], generating series [122], simi-

larity transformation [109], differential algebra [61], direct test [37,120], implicit function

theorem [127], and test for reaction networks [32, 36]. An overview of the main methods

is given below; we refer the reader interested in the full details to the original publications

or to the review articles [26, 73].

The Direct Test approach is arguably the simplest, and hence also very limited in

its application. Its basic idea is to compare the right hand side, f , of equation (2). If

f(p) = f(p*)⇒ p = p*, the two systems (which must be uncontrolled and autonomous)

are unidentifiable. Solving this analytically is difficult in practice for all but the simplest

models.

The Taylor series approach (TS, also called power series) expands the model output

y(t,p) and its derivatives in a Taylor series around t = 0:

y(t,p) = y(0,p) +
dy(0,p)

dt
t+

d2y(0,p)

dt2
t2

2!
+ ...+

diy(0,p)

dti
ti

i!
+ ... (21)

The coefficients of the TS are unique. Equating the derivatives diy(0,p)
dti

with their analytical

expressions yields a set of algebraic equations that relate the unknown parameters with

the output derivatives evaluated at time t = 0. If the parameters can be determined from

these equations, they are structurally identifiable.

The Generating Series, or Volterra series coefficient approach (GS), has conceptual

similarities with the TS approach. It expands the observables in series with respect to

time and inputs with the use of Lie derivatives. The Lie derivative of a function g along

another function f is defined as

Lfg(x) =
∂g(x)

∂x
f(x, u) (22)
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The GS approach requires that the model is linear in the inputs, that is,

ẋ(t) = f0(x, t,p) +
nu∑
i=1

ui(t) · fi(x, t,p) (23)

The coefficients of the series are then the output functions g(x, t = 0,p) and their Lie

derivatives along the functions fi, that is, Lfj0 . . . Lfjkg(x, t = 0,p). If the coefficients are

unique, then the system is structurally globally identifiable. A disadvantage shared by

the TS and GS approaches is that the required number of derivatives is unknown. On the

other hand, the expressions obtained with GS are usually simpler than with TS. This is

important since the nonlinear algebraic relations in the parameters obtained by the GS

may be too challenging to solve even with state of the art symbolic software [26].

The Differential Algebra approach (DA) consists in rewriting the model in an equiv-

alent form, which leaves out the unobservable state variables. This is done using Ritt’s

pseudo-division algorithm [15]. The newly obtained model is expressed in terms of the

input and output variables and the parameters, called the input-output map or charac-

teristic set. The characteristic set gives a Gröbner basis for the model equations and its

derivatives. The result is a set of nonlinear algebraic equations among the parameters.

By solving them, the structurally identifiable parameters and combinations of parameters

can be retrieved.

The Implicit Function Theorem proposed by Xia and Moog [127] also seeks to eliminate

the unobserved states from the system equations, by obtaining high order time derivatives

of the observables. The procedure yields a matrix consisting of the partial derivatives of

f with respect to the parameters, which must be non singular for the system to be

identifiable.

The Similarity Transformation approach, initially proposed for linear systems by Wal-

ter and Lecourtier [121], is based on finding a transformation of the state variables

that does not modify the input-output mapping. For the linear case, given a system

ẋ = A ·x+B ·u it seeks a similar matrix S = P−1 ·A ·P such that ẋ = P−1 ·A ·P ·x+B ·u.

If it is possible to find a matrix P 6= I that satisfies this condition, the system is not

identifiable. This idea was later extended to the nonlinear case by Vajda, Godfrey, and

Rabitz [109], and compared to the TS approach in [23]. Two main drawbacks hamper the

application of this method to nonlinear systems in practice: the complexity arising from

the need of solving a set of partial differential equations, and the requisite that the system

under analysis must be observable and controllable [73]. Observability and controllability
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are defined in section 3.2.

The main conclusions of the analyses and comparisons performed in [26] is that no

single method is amenable to all types of problems. Furthermore, when benchmarked on a

set of small and medium-sized nonlinear models, the results varied widely from one method

to another. Typically, some methods were either not applicable for a particular problem,

or–if applicable–they were not capable of reaching a result due to computational errors,

or–even if a result was obtained–the result was sometimes not conclusive. This variation

shows that great care should be taken when selecting a particular method. This applies

not only to the theoretical approach, but also to the implementation details, which can

also have a large influence on the results. Regarding implementations, there are currently

at least two publicly available toolboxes for computing global structural identifiability of

nonlinear models: DAISY [15], which implements the differential algebra approach, and

GenSSI [25], which combines the generating series approach with identifiability tableaus.

As can be noted from the descriptions above, the common idea of these methods is

to obtain analytic relations between the model outputs and the parameters (usually by

differentiation of some kind) and then establish whether these relations are unique. In

general, identifiability is very difficult to assess for models with a low ratio between number

of observables and number of parameters. If this is the case, one can only expect to obtain

(in the best case) partial results about subsets of parameters. Such limitation appears, for

example, in a medium-sized model of the circadian clock of Arabidopsis Thaliana, which

has 7 differential equations, 29 parameters and two measured outputs [62]. This shows

that much more progress is still needed in order to assess the structural identifiability of

medium- to large-scale nonlinear models.

3.2 Local structural identifiability

The sensitivity of the model outputs–or more generally, of the model states–with respect to

changes in the parameter values, which was described in section 2, provides an indication

of the parameter identifiability. Clearly, if the sensitivity function of a parameter pk is

zero or close to zero, pk is not identifiable. Furthermore, if two sensitivity functions are

linearly dependent, the corresponding parameters cannot be identified either (even if the

model is highly sensitive to both of them). If the sensitivity functions are almost linearly

dependent, their parameters are highly correlated and they are very difficult to identify
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in practice [13].

These conditions can be tested by means of the DSM of equation (17). The jth column

in the DSM contains all the output sensitivities to parameter pj. If the DSM has linearly

dependent columns, its rank will be less than the number of its columns, p. The rank

of the DSM can be calculated by singular value decomposition (SVD). If all its singular

values are different from zero, the DSM has full column rank and all the parameters in

the model are practically identifiable. On the other hand, one or more singular values

equal to zero indicate that there are unidentifiable parameters.

A method for assessing local structural identifiability that exploits this idea was re-

cently presented by Stigter and Molenaar [97]. It combines numerical and symbolic ap-

proaches with the aim of exploiting the strengths of both, that is, the relatively fast

computations allowed by the former and the rigorous results provided by the latter.

Specifically, the numerical part consists of performing a SVD of the output sensitivity

matrix for a set of randomly chosen parameter vectors. If a near-zero singular value is

found, the parameters in the corresponding singular vector are correlated, and thus taken

as candidates for constituting a non empty null space of the model. To confirm this guess,

symbolic calculations in the form of Lie derivatives are then performed on the reduced

model. By first using SVD to guide the search, the dimension of the problem to be ana-

lyzed symbolically is greatly reduced, thus decreasing its computational complexity. This

method has been tested on models with up to ≈ 50 parameters.

A simplified version of the DSM in equation (17) was used by Li and Vu [58]. Instead

of calculating each element as in equation (16), that is, ∂yi
∂pj

=
n∑
k=1

∂gi
∂xk

vkj+
∂gi
∂pj

, the elements

are simply ∂gi
∂pj

. This amounts to discarding the part corresponding with
n∑
k=1

∂gi
∂xk

vkj; in this

way the calculation of vkj is avoided, which in turns eliminates the need for numerical

integration of the model, since ∂gi
∂pj

can be derived analytically. However, by discarding

part of the mathematical expressions of the sensitivities, only a sufficient condition for

unidentifiability (not necessary) can be obtained. Thus, even if the condition does not

hold, the model may still be unidentifiable (conversely, the method can provide only

necessary conditions for identifiability, not sufficient).

Note that calculating the rank of the DSM in equation (17) numerically entails choos-

ing specific values for the parameter vector. Additionally, to build the DSM it is necessary

to choose the set of time points in which the partial derivatives will be evaluated. Since
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these points correspond to “artificial measurements”, there is no need to have experi-

mental data nor to assume any measurement errors. Noiseless data, simulated with a

particular parameter vector, can be used for this purpose. However, the requirement of

specifying the number and location of measurement time points is in principle contra-

dictory with the notion of structural identifiability, which should be analyzed only from

the model structure, without depending on the experimental setup. Hence, some authors

have argued [73] that this type of analysis is somehow intermediate between structural

and practical identifiability, and avoid using the term “structural local identifiability” for

this reason. Instead, they refer to this approach simply as “sensitivity-based identifiability

analysis”. According to this criterion, the method presented by Stigter and Molenaar [97]

and the Profile Likelihood approach (PL) [83] reviewed afterwards in this section would

not be considered as structural identifiability methods, despite being presented as such

by their authors. Acknowledging that the difference between structural and practical

identifiability is not as obvious as it could seem at first sight, we choose to include the

aforementioned methods in this section and encourage the reader to extract her/his own

conclusions.

Instead of using the sensitivity matrix, an alternative approach is to consider structural

local identifiability as a particular case of observability, where parameters are seen as

state variables which satisfy ṗ = 0. Observability and controllability are dual concepts

introduced by R.E. Kalman in 1960 [49]. Initially developed for linear systems, extensions

for nonlinear systems were already proposed in the 1970s [31,46,47,100]. Broadly speaking,

controllability can be defined as the ability of a system to be driven from an initial state

to a target state in finite time and with finite inputs. Observability, on the other hand,

refers to the ability to determine the states of a system from knowledge of its inputs and

outputs. More formally, a system is observable at time t1 if it is possible to determine its

state x(t1) from future measurements, that is, from a set of y(t) such that t1 < t < t2,

where t2 is a finite time. A system is called completely observable if it is observable for

any state and any time.

Before turning to nonlinear systems, we provide some classical results available for

linear time-invariant (LTI) systems. Consider a LTI system defined by the equations:

ẋ = A · x+B · u
y = C · x (24)
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where u ∈ <r, x ∈ <n, and y ∈ <m. The linear observability matrix is defined as:

O =


C

C · A
C · A2

...
C · An−1

 (25)

The linear observability condition states that the system in equation (24) is observable

if rank(O) = n.

The linear controllability matrix is defined as:

C =
(
B|A ·B|A2 ·B| · · · |An−1 ·B

)
(26)

The linear controllability condition states that the system is controllable if rank(C) =

n.

The notions of observability and controllability can be generalized to nonlinear systems

of the form (2)–(5) with the use of Lie algebra. The nonlinear observability matrix is

ONL =


∂
∂x
g(x)

∂
∂x

(Lfg(x))
∂
∂x

(L2
fg(x))
...

∂
∂x

(Ln−1f g(x))

 (27)

where Lfg(x) is the Lie derivative of g(x) along f , which was defined in equation (22)

and is reproduced below for convenience:

Lfg(x) =
∂g(x)

∂x
f(x, u) (28)

And the ith Lie derivatives are defined recursively as follows:

L2
fg(x) =

∂Lfg(x)

∂x
f(x, u)

· · ·
Lifg(x) =

∂Li−1
f g(x)

∂x
f(x, u)

(29)

Like in the linear case, the condition for nonlinear observability is that rank(ONL) = n.

Local structural identifiability can be seen as a particular case of observability, if model

parameters p are considered as state variables which satisfy ṗ = 0 [108]. Identifiability
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is then assessed by calculating the rank of a generalized observability matrix, in which

the state vector is augmented to include also the unknown parameters. August and Pa-

pachristodoulou [8] used semidefinite programming to assess whether this matrix had full

rank or not, by means of a sum of squares decomposition. A problem of such an approach

is that the computational complexity associated with this symbolic rank calculation in-

creases very fast with system size, making it infeasible in practice for large models. As

an alternative, Sedoglavic [91] proposed a numerical algorithm which efficiently calcu-

lates this rank in the case of rational systems. Sedoglavic’s algorithm was implemented in

Mathematica and extended in [50] to cover more generally parametrized initial conditions.

In [82] Raue et al compared this approach, which they referred to as the Exact Arithmetic

Rank (EAR) method, with the already mentioned Differential Algebra Identifiability of

Systems (DAISY) approach of Saccomani et al [87] and the Profile Likelihood approach

(PL) [83]. PL is an a posteriori (i.e. data-based) approach. It evaluates identifiability by

performing repeated parameter estimation runs as follows. For each parameter pi, a set

of possible values are chosen. Then pi is fixed to the first in the set, and all the remaining

parameters in the model are estimated with an optimization algorithm. Repeating this

procedure for all the possible values results in a set of values of the likelihood function (i.e.

the objective to be minimized in the optimization procedure). If these values are equal a

flat profile is obtained, which means the parameter is not identifiable. The PL approach

can be used to assess structural or practical identifiability, depending on whether the data

used for calibration is simulated or experimental, respectively. It should be noted that

the EAR and PL approaches assess local identifiability, while DAISY’s results are global.

Hence the computational cost of DAISY is larger than that of EAR and PL, and the scope

of models that it can analyse is more reduced.

Finally, a related challenge is to determine the outputs that must be measured in order

to guarantee local structural identifiability [3].

3.3 Finding structurally identifiable subsets of parameters and
reparameterizations

The result of an identifiability analysis is often that a model is unidentifiable. Note, how-

ever, that for a model to be considered as unidentifiable it is sufficient that only one of

its parameters is unidentifiable. Obviously, much more information is provided by deter-

mining which parameters are identifiable and which are not. Most of the aforementioned
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methods for structural identifiability are capable of reporting (albeit with certain limi-

tations) which parameters of an unidentifiable model are identifiable. Once the subset

of identifiable parameters has been determined, a new question naturally arises: given

the remaining set of unidentifiable parameters, is it possible to combine them in order

to find one or several identifiable reparameterizations? This task is more difficult than

“simply” determining the identifiability of a set of parameters, and only a few of the afore-

mentioned methods are also capable of finding identifiable combinations of parameters.

The similarity transformation approach inspired a procedure for finding locally identifi-

able reparameterizations [24] which was extended using Taylor series [41]. This approach

was also adopted more recently by Stigter and Molenaar [97]. In a series of publica-

tions [70, 71], DiStefano and coworkers extended the differential algebra approach [87] to

find parameter combinations (‘combos’) which are globally identifiable, using Gröbner

bases to determine the simplest set of identifiable parameter combinations. Notably, the

method is capable in principle of determining whether a parameter is globally or locally

identifiable, and how many local solutions exist. A web-based application that implements

this approach [72] can be accessed at http://biocyb1.cs.ucla.edu/combos/. However,

limitations in model size are very strict for this task, which can typically be achieved for

models with only a few (ten or less) parameters.

4 Practical identifiability

Assessing the structural identifiability of a model is only part of the general identifiability

problem. Even in the most favourable case (that a model is structurally identifiable), it

may not be possible to determine its parameter values in practice. The reason is that

structural identifiability analyses assume that unlimited, noiseless data are available for

parameter estimation; however, in practice data are always noisy and limited.

Practical identifiability is about quantifying the uncertainty in the estimated param-

eter values and calculating their confidence intervals, taking into account not only the

model structure but also the information contained in the available data. To avoid con-

fusion, it should be noticed that practical identifiability has also been called numerical

identifiability [38], quantitative identifiability [111], or a posteriori identifiability [85].

Other authors have called it estimability [48, 67], reserving the term “identifiability” for

structural identifiability.
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For an estimated parameter vector p̂ the covariance matrix provides information about

the variability, both for individual parameters and for pairs. It is defined as:

COV = E
[
(p̂− p̄) (p̂− p̄)T

] σ2(p̂1) · · · cov(p̂1p̂p)
...

. . .
...

cov(p̂pp̂1) · · · σ2(p̂p)

 (30)

where: p̄ is the mean value; E() is the expected value, that is, E(p̂) = p̄; σ2(p̂i) is the

estimated variance; and cov(p̂1p̂p) is the estimated covariance. The correlation coefficients

between pairs of parameters can be calculated as:

corr(p̂ip̂j) =
cov(p̂ip̂j)√
σ2(p̂i) · σ2(p̂j)

(31)

The Hessian matrix, Ĥ(p̂) =
(
∂2y
∂p2

)
p=p̂

, is asymptotically equal to the covariance

matrix,

COV(p̂) ≈ Ĥ(p̂) (32)

Hence the covariance matrix can be approximated from estimations of the Hessian.

The covariance matrix (COV) and the Fisher information matrix (FIM) are closely

related. The FIM measures the amount of information contained in the experimental

data. It can be written as a function of the sensitivity functions as

FIM(p) =

(
∂y

∂p

)T
W

(
∂y

∂p

)
(33)

where W is a data weighting matrix. Typically, weights should be chosen as the inverse

of the error variance for each experimental data point.

For a set of d measurements, the FIM can be calculated as

FIM(p) =
d∑

k=1

(
∂y(tk,p)

∂pi

)
W

(
∂y(tk,p)

∂pj

)T
(34)

The Cramér-Rao theorem [33] states that, if p̂ is an unbiased estimate of p (i.e.

E(p̂) = p̄), the inverse of the FIM provides a lower bound estimate for the COV,

COV(p̂) ≥ FIM−1(p̂) (35)

Thus, we see how the correlations between parameters can be derived from sensitivity-

based criteria like the Fisher Information Matrix (FIM). Like the DSM, the FIM provides

information about parameter identifiability. Since the FIM includes information about
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experimental measures (variances), it can be used for practical identifiability analysis.

If the FIM is singular, there are unidentifiable parameters; if it is near-singular, there

are highly correlated parameters which will be very difficult or impossible to identify in

practice.

Several scalar measures have been proposed to summarize the information contained

in the FIM, in order to be used as criteria in optimal experimental design or subset

selection [113]. Two commonly used ones are the D and E criteria, which are defined as

follows:

D-criterion = max(det(FIM)) (36)

E-criterion = max(λmin(FIM−1)) (37)

where λmin is the minimum eigenvalue of the FIM. The D-criterion minimizes the volume of

the confidence ellipsoids, and therefore the geometric mean of the errors in the parameters.

The E-criterion minimizes the largest error.

The FIM is easy to calculate. However, since the sensitivity analysis based on FIM

relies on a linearization of the model, it may be misleading if strong nonlinearities are

present. As a consequence, confidence intervals estimated from the FIM can be overly

optimistic. An alternative is to use other computational approaches such as jacknife or

bootstrap [13]. These are much more expensive computationally speaking: the bootstrap

approach involves solving the parameter estimation problem a large number of times

(usually in the hundreds or thousands), starting from different initial solutions. It should

be noted that even a single parameter estimation can require very high computation

times in realistic systems biology applications (typically at least several hours for dynamic

nonlinear models of medium or large-scale size [118]).

A concept related to practical identifiability is parameter sloppiness, which was intro-

duced by Sethna and coworkers [19,44,65]. The basic idea is that the output of so-called

sloppy models is mostly determined by a reduced subset of parameters, or of combinations

of parameters, while the remaining parameter directions have little or no influence–and

therefore cannot be estimated from data. In [44] a total of 17 systems biology models

were analysed, concluding that sloppiness is a universal property. However, as other au-

thors have shown [5], sloppiness can be avoided (at least in some cases) by obtaining new
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data from rationally designed experiments. Thus, sloppiness does not have to be taken

for granted in dynamic biological models. On the theoretical side, it has also been ar-

gued [115] that the concept of sloppiness is strongly related to identifiability (despite the

fact that this relation was not acknowledged nor investigated in [44]). Indeed, it seems to

refer, somehow ambiguously, to both structural and practical identifiability.

4.1 Finding practically identifiable subsets of parameters

Even when a model is structurally identifiable, it may be practically unidentifiable: the

parameter estimation problem may be ill-conditioned, meaning that its optimal solution

will be highly sensitive to variations in the data. This may be due to an excess of pa-

rameters or lack of sufficiently informative experimental data. Such an overparameterized

model can lead to overfitting when trying to estimate the parameter values [45]. The

ill-conditioned nature of the PE can be remedied with the use of regularization tech-

niques [43], modifying the objective function of the associated optimization problem in

order to make its minimum more robust. Subset selection can be seen as a way of reg-

ularizing the problem adopting a model reduction perspective [53], and it is particularly

interesting because it maintains model interpretability. It consists of finding the subset(s)

of parameters which are identifiable in practice, that is, taking into account the limita-

tions caused by the quantity and quality of available data. From a practical identifiability

point of view, there will often be several possible subsets of identifiable parameters.

A number of approaches for subset selection have been presented. They usually in-

volve calculations of the model’s output sensitivities to parameter values [53, 84]. Two

aspects related to parameter sensitivities must be taken into account: their magnitude

(i.e. a parameter cannot be identified it the model output is hardly sensitive to it) and

correlation (i.e. two or more parameters cannot be estimated if their effects can be mu-

tually compensated). Thus, a general sequential procedure for subset selection can be as

follows:

1. Rank the parameters according to their sensitivities, e.g. using one of the measures

in eq. (18).

2. Select the parameter with the highest sensitivity.

3. From the remaining parameters, choose the one that:

-282-



(a) is least correlated with the parameter(s) already included in the set

(b) has the largest influence on the model output

4. Repeat step 3 until a stopping criterion (typically based on a threshold on the

dependence of parameters) is met.

Several variations of this procedure have been proposed, differing on the specific choices

made in the implementation of steps 3 and 4. For example, orthogonalization approaches

do it by projecting the sensitivity vectors of the unselected parameters to an orthogonal

space of the already selected parameters [63]. Alternatively, it has been proposed to add

parameters based on the collinearity index, a measure of “compensability” introduced

in [20], which is defined as the minimum achievable norm of a linear combination of the

sensitivity functions with normalized coefficients,

γ(p) =
1

min‖β‖=1‖s̃1β1 + . . .+ s̃mβm‖
(38)

where s̃i is the normalized sensitivity of parameter i.

Other possibilities for choosing the new parameters in the subset include adding them

based on the D or E criteria of equations (36), (37) [28, 64], using principal component

analysis [59], combining subset selection with the profile likelihood approach [39], or using

hierarchical parameter clustering [29], possibly combined with mutual information [76].

It is important to realize that sequential procedures do not guarantee finding the “best”

subset, that is, the one containing the most sensitive and least correlated parameters. An

alternative is to use optimization methods [28], which entails a higher computational cost.

5 Related Challenges in Modelling

Identifiability analysis is not an isolated task, but part of the broader process of model

building. Model building can be seen as a cycle, as shown in Figure 3, consisting of sev-

eral procedures that should ideally be performed iteratively until obtaining a satisfactory

model [10]. Of course, it will not always be necessary to perform all the steps shown in

Figure 3; for example, often the structure of the system (i.e. the set of chemical reactions,

including stoichiometry and type of kinetics) will be assumed known. In such scenario we

can directly formulate the differential equations that define the model dynamics, and pro-
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ceed to analyse its structural identifiability with the techniques reviewed in the preceding

sections.

After identifiability analysis has determined which parameters in a model are iden-

tifiable, the next step is naturally identifying them. Parameter Estimation (PE), also

called model calibration, is the task of determining the values of unknown parameters

from experimental data [6, 125]. This is carried out by finding the parameter values that

minimize a measure of the difference between the model output and the measurements.

Typical measures are the (weighted) least squares (LS), maximum likelihood (ML), and

Bayesian estimators [60], in increasing order of the amount of information required to

calculate them. The LS estimator consists simply of a (possibly weighted) sum of squared

differences between model outputs and experimental measures. The ML estimator uses

the probability distribution of the parameters, and Bayesian measures need additionally

the conditional probability distribution of the measurements. Minimization of the error

is achieved by an optimization procedure, where one of these measures is selected as the

objective function that must be minimized. For the large, nonlinear models on which

this paper focuses, the search space of the objective function will usually be also large,

non-convex, and will have several minima, specially if noisy data are used for calibration

(which is in practice unavoidable) [115]. Hence the methods that will be more likely to pro-

vide good solutions in reasonable computation times will generally be non-deterministic

global optimization algorithms [40, 74], such as metaheuristics, which may be combined

with local deterministic methods if it is suspected that the search is in the vicinity of a

minimum [98].

Often the available data is not sufficient to calibrate the model properly. If this is

the case, new data should be collected if possible, by designing and performing new

experiments. Optimal Experiment Design (OED) deals with defining new experiments

which will produce data with the maximum possible information content [13, 99]. It is

tightly related with practical identifiability analysis, since OED can be used to reduce the

uncertainty in the estimated parameter values, obtaining narrower confidence intervals for

them. Optimization techniques can be used to design experimental setups by minimizing

a objective function that represents some measure of the uncertainty in the parameters

[11]. The formulation of this objective will depend on the purpose of the experiment.

OED can be used not only with the aim of improving parameter estimates, but also
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to characterize new or specific parts of a model, or to discriminate between competing

modelling structures [69,93,112].

Until now we have always considered the problem of identifying a given model, but if

instead of a single model structure there are a number of candidate models that compete

for describing a system, a question naturally arises: can we select the correct (or best)

model, and if so, how? Model selection, or discrimination, is a non-trivial matter, since

the selected model should not necessarily be the one that achieves the best fit to the data.

Other criteria, such as biochemical interpretation and degree of complexity (measured

e.g. by the number of parameters) should be taken into account; to this end, statistical

measures such as the Akaike or Bayesian information criteria can be used to quantify the

degree of complexity of the model [17, 119]. The model choice should reflect a balance

between these factors [80].

A prerequisite to choose among different models is distinguishability, a concept that

addresses this question: can two different models produce the same output for any al-

lowed input? Although they are sometimes mistaken, distinguishability and identifiabil-

ity are different concepts [123, 124]: identifiability is a property of a single model, while

distinguishability refers to several models. As an example, assume that a given model

M1(x,p,u, t) (where we have made explicit the dependence on the states, parameters,

inputs, and time) is identifiable. As we have seen, this means that, assuming that its

structure is known, we can uniquely determine the values of its parameters p by observing

their inputs u and outputs y. Now imagine that we have a second model, M2(x,p,u, t),

which has a different internal structure than M1 but the same input-output behaviour.

In this case, although M1 is identifiable, it is not distinguishable from M2. In general,

two models may be identifiable but their outputs can be indistinguishable (and clearly

the opposite also holds). The identifiability of two structures is neither necessary nor

sufficient for their distinguishability. That said, although both concepts are different,

they are clearly related, and similar approaches as those used for determining structural

identifiability can be applied to distinguishability [42, 81, 110]. For the specific case of

chemical reaction networks, several methods for finding alternative structures have been

presented in recent years by Szederkényi and coworkers [86,101–106].

Finally, before concluding this paper we cannot avoid a pending question: if, after

all, we cannot escape from having an unidentifiable model, can we still use it to make
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predictions? At first sight, it may appear that we cannot trust predictions made by

unidentifiable models. Indeed, when calibrating a model with identifiability issues it is

easy to incur in overfitting. In that case, although the model manages to fit the available

data very well, it is being trained to fit the noise present in the data instead of the true

underlying dynamics. This is due to the model being more complex than it is necessary

to describe the system under study [45]. An undesired consequence is that the model

predictions in different conditions may be very different from the actual system outputs.

Thus, we may ask: to which extent does the uncertainty in parameter values translate

into uncertainty in the model predictions? Is it possible to find bounds for this uncertainty

and, even better, reduce it?

A possible approach to take prediction uncertainty into account is to use an ensemble

of plausible models instead of a single one. In this way, instead of predicting a sin-

gle point, or a single time-series, it is possible to generate a cloud of such predictions.

Ensemble modelling has been applied to genetic [51], cell signalling [54], and metabolic

networks [107]. Bever [16] showed that the consensus between models in the ensemble may

be used to find high-confidence predictions, and recently such consensus has been shown

to be correlated with prediction quality in biochemical models [114, 117]. A step fur-

ther is represented by so-called core predictions, a concept introduced by Cedersund [21]

to denote well-determined predictions, which can be obtained even from unidentifiable

models. The idea can be seen as a further refinement of the cloud of predictions made by

ensemble models, by finding the boundaries (extreme values) of the point-cloud generated

with all the possibly acceptable parameters. Different variants of this approach, including

connections with the profile likelihood methodology, were discussed in [22].

In conclusion, in this paper we hope to have conveyed the idea that there is a wealth

of mathematical and computational techniques that can provide invaluable help in the

task of modelling complex biochemical systems. When used appropriately, they can aid

in identifying possible sources of uncertainty and remedying them, eventually leading to

accurate and useful representations of the system under study.
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[43] A. Gábor, J. R. Banga, Robust and efficient parameter estimation in dynamic mod-

els of biological systems, BMC Syst. Biol. 9 (2015) #74.

[44] R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, J. P.

Sethna, Universally sloppy parameter sensitivities in systems biology models, PLoS

Comput. Biol. 3 (2007) e189.

[45] D. M. Hawkins, The problem of overfitting, J. Chem. Inf. Comput. Sci. 44 (2004)

1–12.

[46] G. Haynes, H. Hermes, Nonlinear controllability via Lie theory, SIAM J. Control 8

(1970) 450–460.

[47] R. Hermann, A. J. Krener, Nonlinear controllability and observability, IEEE Trans.

Autom. Control 22 (1977) 728–740.

[48] J. A. Jacquez, P. Greif, Numerical parameter identifiability and estimability: Inte-

grating identifiability, estimability, and optimal sampling design, Math. Biosci. 77

(1985) 201–227.

[49] R. E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mex-

icana 5 (1960) 102–119.

[50] J. Karlsson, M. Anguelova, M. Jirstrand, An efficient method for structural identi-

fiability analysis of large dynamic systems, in: M. Kinnaert (Ed.), 16th Symposium

on System Identification, IFAC, 2012, pp. 941–946.

[51] S. Kauffman, A proposal for using the ensemble approach to understand genetic

regulatory networks, J. Theor. Biol. 230 (2004) 581–590.

[52] P. Kirk, D. Silk, M. P. Stumpf, Reverse engineering under uncertainty, in: L. Geris,

D. Gomez–Cabrero (Eds.), Uncertainty in Biology , Springer, 2016, pp. 15–32.

[53] C. Kravaris, J. Hahn, Y. Chu, Advances and selected recent developments in state

and parameter estimation, Comput. Chem. Eng. 51 (2013) 111–123.

[54] L. Kuepfer, M. Peter, U. Sauer, J. Stelling, Ensemble modeling for analysis of cell

signaling dynamics, Nat. Biotechnol. 25 (2007) 1001–1006.

[55] J. R. Leis, M. A. Kramer, Sensitivity analysis of systems of differential and algebraic

equations, Comput. Chem. Eng. 9 (1985) 93–96.

-290-



[56] J. R. Leis, M. A. Kramer, Algorithm 658: ODESSA – an ordinary differential

equation solver with explicit simultaneous sensitivity analysis, ACM TOMS 14

(1988) 61–67.

[57] J. R. Leis, M. A. Kramer, The simultaneous solution and sensitivity analysis of

systems described by ordinary differential equations, ACM TOMS 14 (1988) 45–

60.

[58] P. Li, Q. D. Vu, Identification of parameter correlations for parameter estimation

in dynamic biological models, BMC Syst. Biol. 7 (2013) #91.

[59] R. Li, M. Henson, M. J. Kurtz, Selection of model parameters for off-line parameter

estimation, IEEE Trans. Contr. Syst. Technol. 12 (2004) 402–412.

[60] L. Ljung, System Identification – Theory for the User , Prentice Hall, Upper Saddle

River, 1999.

[61] L. Ljung, T. Glad, On global identifiability for arbitrary model parameterizations,

Automatica 30 (1994) 265–276.

[62] J. Locke, A. Millar, M. Turner, Modelling genetic networks with noisy and varied

experimental data: the circadian clock in Arabidopsis thaliana, J. Theor. Biol. 234

(2005) 383–393.

[63] B. F. Lund, B. A. Foss, Parameter ranking by orthogonalization–applied to nonlin-

ear mechanistic models, Automatica 44 (2008) 278–281.

[64] V. C. Machado, G. Tapia, D. Gabriel, J. Lafuente, J. A. Baeza, Systematic iden-

tifiability study based on the fisher information matrix for reducing the number of

parameters calibration of an activated sludge model, Environ. Modell. Softw. 24

(2009) 1274–1284.

[65] B. B. Machta, R. Chachra, M. K. Transtrum, J. P. Sethna, Parameter space com-

pression underlies emergent theories and predictive models, Science 342 (2013)

604–607.

[66] M. D. McKay, R. J. Beckman, W. J. Conover, Comparison of three methods for

selecting values of input variables in the analysis of output from a computer code,

Technometrics 21 (1979) 239–245.

[67] K. A. McLean, K. B. McAuley, Mathematical modelling of chemical processes –

obtaining the best model predictions and parameter estimates using identifiability

and estimability procedures, Can. J. Chem. Eng. 90 (2012) 351–366.

-291-
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