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ABSTRACT 12 

This paper describes a plasticity-damage multidirectional fixed smeared cracking (PDSC) model to simulate the failure 13 

process of concrete and reinforced concrete (RC) structures subjected to different loading paths. The model proposes a 14 

unified approach combining a multidirectional fixed smeared crack model to simulate the crack initiation and 15 

propagation with a plastic-damage model to account for the inelastic compressive behaviour of concrete between 16 

cracks. The smeared crack model considers the possibility of forming several cracks in the same integration point during the 17 

cracking process. The plasticity part accounts for the development of irreversible strains and volumetric strain in 18 

compression, whereas the strain softening and stiffness degradation of the material under compression are controlled by 19 

an isotropic strain base damage model. The theoretical aspects about coupling the fracture, plasticity, and damage 20 

components of the model, as well as the model appraisal at both material and structural levels, have been detailed in a 21 

former publication. This study briefly summarizes the model formulations, and is mainly dedicated to further explore 22 

the potentialities of the proposed constitutive model for the analysis of concrete and RC structures. The model is 23 

employed to simulate experimental tests that are governed by nonlinear phenomenon due to simultaneous occurrence of 24 

cracking and inelastic deformation in compression. The numerical simulations have predicted with good accuracy the 25 

load carrying capacity, ductility, crack pattern, plastic (compressive) zone, and failure modes of all types of structures 26 

analysed. The influence of the model parameters that simulate the nonlinear behaviour of concrete under tension and 27 

compression is analysed through a parametric study. 28 
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1. INTRODUCTION 31 

Nonlinear finite element analysis (NFEA) has now been widely adopted as an effective and reliable method to analyze 32 

reinforced concrete (RC) structures subjected to various loading scenarios. Amongst many key factors that affect the 33 

reliability of a NFEA tool used for analysing RC structures, the selected constitutive model still remains the foremost 34 

challenging task due to the complexity of concrete behaviour. Concrete exhibits highly nonlinear behaviour by 35 

increasing deformation, with dissymmetric responses in tension and in compression. Experimental tests demonstrate 36 

that concrete behaviour in tension is brittle, and after cracking initiation concrete develops a softening behaviour with a 37 

decay of tensile capacity with the widening of the cracks. This crack opening process is followed by a decrease of crack 38 

shear stress transfer due to the deterioration of aggregate interlock. Concrete in compression also demonstrates a 39 

pronounced nonlinear behaviour with an inelastic irreversible deformation. In the pre-peak stage of concrete response in 40 

uniaxial compression, a nonlinear stage is observed, whose amplitude depends of the concrete strength class, followed 41 

by a softening stage where brittleness is also dependent of the strength class. For a realistic NFEA of RC structures, 42 

constitutive models are required to adequately describe these complex behaviours of concrete.  43 

This study is mainly dedicated to evaluate the potentialities of a plastic-damage multidirectional smeared crack 44 

constitutive model able to represent the complex failure mechanism of concrete in tension and compression. The 45 

proposed model simulates the crack opening and shear sliding according to an already existing multidirectional fixed 46 

smeared crack model [1–3]. The models based on a smeared crack approach assume that the local displacement 47 

discontinuities at cracks are distributed, theoretically, over a certain length used to transform crack width/sliding in a 48 

strain concept, also assumed to represent the length zone of the fracture process [4-5]. This length dimension is related 49 

to the finite element characteristics in order to assure the results are independent of the adopted finite element mesh 50 

refinement, preserving the fracture energy as a material property. However, these models cannot predict the precise 51 

localization and propagation of the discrete cracks, since the assumption of continuity of displacement field does not 52 

reflect the nature of displacement discontinuities at the cracks. However the smeared cracking approach is very 53 

convenient for relatively large concrete structures, mainly those with reinforcement that assure the formation of 54 

relatively high number of cracks, since modelling the cracking process is almost resumed to the adoption of a proper 55 

constitutive model.   56 

The proposed model simulates the inelastic compressive behaviour of the material between cracks by a numerical 57 

strategy that combines plasticity and damage theories. The theory of plasticity has been frequently used for modelling 58 

compression due to its simple and direct representation of multiaxial stress field. The models based on the theory of 59 

plasticity are able to describe the dilatancy, permanent strain and hardening/softening behaviour of the concrete, see for 60 

instance [6-9], but the experimentally observed stiffness degradation of concrete is not captured accurately by using 61 

exclusively the plasticity theory [10, 11]. On the other hand, the theoretical framework of the continuum damage 62 
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mechanics (CDM) is based on the gradual reduction of the elastic stiffness. The damage is defined as the loss of 63 

strength and stiffness of the material when subjected to a certain loading process. However the CDM alone is not able to 64 

reproduce the irreversible (permanent) deformation of the concrete that is pronounced when highly confined [12-14]. 65 

So, in the proposed model, plasticity and damage theories are being merged in an attempt of constituting reliable 66 

approaches capable of simulating the strength and stiffness degradation and occurrence of irreversible deformations of 67 

concrete in compression. Combination of the plasticity and damage theories is assured by considering the plastic flow 68 

occurs in undamaged (with respect to compression) material, together with the strain based damage approach assuming 69 

state of damage equally distributed in all the material directions (isotropic damage).  70 

Formulation of the constitutive model, as well as the theoretical consideration for coupling the smeared cracking, 71 

plasticity, and damage concepts of the model are detailed in a previous publication [15]. The former studies [15-16] 72 

include also the implementation of the proposed constitutive model into FEMIX FEM based computer program [17], 73 

and the model appraisal at both material and structural levels. The present paper includes a short resume of the model 74 

formulation, and mainly discusses the capabilities of the model for simulating the behaviour of concrete and RC 75 

structures whose failure is governed by cracking and inelastic behaviour in compression. In this type of simulations the 76 

concrete of a large number of integration points (IP) is submitted to cracking and inelastic compressive deformations. 77 

This situation can be considered as a complicated loading scenario, since both smeared cracking and plastic-damage 78 

parts of the model are active over a large region of the simulated structure, therefore two types of nonlinearities are 79 

occurring simultaneously. A wide range of experimental tests including splitting tensile test, RC deep beams with 80 

square openings, and a series of RC shear wall panels submitted to biaxial loading conditions, are simulated to highlight 81 

the capability of the model to simulate the behaviour of this type of structures with good accuracy. For all the analysis 82 

the results are compared with the experimental observations. The paper ends with a parametric study that aims to 83 

highlight the sensitivity of the numerical simulations to the values adopted for the model parameters. 84 

 85 

2. MODEL DESCRIPTION 86 

2.1 Introduction 87 

This section describes briefly the formulation of the plastic-damage multidirectional smeared crack (PDSC) constitutive 88 

model, since a detailed exposition can be found elsewhere [15].  89 

 90 

2.2 Plastic-damage multidirectional fixed smeared crack (PDSC) model 91 

Modelling cracked materials using a smeared approach is usually based on the decomposition of the total incremental 92 

strain vector,  , into an incremental crack strain vector, 
cr

 , and an incremental concrete strain vector, 
co

 , as 93 
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proposed by de Borst and Nauta [18], ( co cr
       ). Deformational contribution of the sets of smeared cracks that 94 

can be formed (according to a crack opening criterion) in an integration point (IP) is considered in cr
 . For modelling 95 

a cracked member with material between cracks in nonlinear compression, the term 
co

  is further decomposed into its 96 

elastic (
e

 ) and plastic parts (
p

 ), (
co e p

       ). Thereby the incremental constitutive relation of the PDSC 97 

model is obtained as:  98 

( )
e p cr

D         (1) 

being 
1 2 12{ , , }         the incremental stress vector induced in the material due to 

1 2 12{ , , }        , and 99 

considering the constitutive matrix of the intact material, 
e

D . 100 

The 
cr

  is evaluated using a multidirectional fixed smeared crack model [1-3] that considers the possibility of forming 101 

several cracks in the same IP, whose orientations, conditioned by an adopted criterion, are however preserved constant during 102 

the cracking process. The crack initiation is governed by the Rankine failure criterion that assumes a crack occurs when 103 

the maximum principal tensile stress in an IP attains the concrete tensile strength (
ctf ) under an assumed tolerance.  104 

After crack initiation, the relationship between the normal stress and the normal strain in the crack coordinate system, 105 

i.e. cr cr

n n  , is simulated via the trilinear diagram represented in Fig. 1 [1]. Normalized strain, ( 1,2)i i , and stress, 106 

( 1,2)i i , parameters are used to define the transition points between linear segments, being 
fG  the fracture energy 107 

mode I, while 
bl  is the characteristic length (crack bandwidth) used to assure that the results of a material nonlinear 108 

analysis is not dependent of the refinement of the finite element mesh. 109 

The model simulates the shear behaviour of the cracked concrete using an incremental crack shear stress-shear strain 110 

approach based on a shear retention factor. According to this approach, the crack shear stress ( cr

t ) increases with the 111 

crack shear strain ( cr

t ) up to attain a maximum that depends on the crack shear modulus ( cr

tD ), see Fig. 2 [19]. The 112 

modulus cr

tD  is simulated as [1]:  113 

1

cr

t cD G






 

( 2) 

where 
cG  is the concrete elastic shear modulus, while the shear retention factor,  , can be a constant value or, 114 

alternatively, a function of current crack normal strain, cr

n , and of ultimate crack normal strain, 
,

cr

n u , such as: 115 

1

,

1

P
cr

n

cr

n u






 
   
 

 ( 3) 

being the exponent P1 a parameter that defines the decrease rate of   with increasing cr

n . 116 
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The plastic strain vector, 
p

 , which appears in Eq. (1), includes the inelastic compressive deformation of the material 117 

between the smeared cracks. The plastic strain vector is evaluated by a stress based plasticity model according to the 118 

following flow rule: 119 

p f
 




  


 

(4) 

where   is the non-negative plastic multiplier and f  is a scalar function, called yield function, that is dependent on 120 

the stress vector   applied to the undamaged (with respect to compression) configuration of the material, and the 121 

hardening function 
c , i.e. ( ; )cf f   . The yield function, f , was derived from the five-parameter Willam and 122 

Warnke failure criterion [20] (the details of this process are in the [15]). The equation of this yield function is [15]: 123 

 

1/2

1

2 2

2 2
; ( ) ( ) ( ) 0

3
   

  
       
   

c c c c c c

I b a
f J J

c cc
 

(5) 

 

where 1I  is the first invariant of the stress tensor, 2J  is the second invariant of the deviatoric stress tensor: 124 

1
1 2 2

;ii ij ijI J S S   (6) 

where 
, ( , 1, 2,3)ij i j 

 is the stress tensor, 1 3  ij ij ijS I  is the deviatoric stress tensor. The variables a, b and c are the 125 

scalars used to interpolate the current yield meridian between the tensile meridian and compressive meridian, as 126 

described in detail in Edalat-Behbahani et al., [15].  127 

Hardening function (
c ) carries the meaning of uniaxial compressive stress acting on undamaged (with respect to 128 

compression) configuration of the material, and is dependent on the hardening parameter (
c

). The hardening parameter 129 

is a scalar measure used to characterize the plastic state of the material under compressive stress field. In fact, the 130 

compressive behaviour of the material is governed by the uniaxial hardening law  c c
 represented in Fig. 3a. In this 131 

figure 
cf  is the compressive strength, and 

0cf  is the uniaxial compression stress at the initiation of the stress-strain 132 

nonlinear behaviour, defined by the 
0  that is a material constant in the range  0,1  i.e. 

0 0( 0)  c c c cf f  . 133 

Hardening parameter at the compressive strength (
1c
) is obtained from the following equation:  134 

1 1 c c cf E  ( 7) 

being 
1c  the strain at compressive strength, and E  is the elasticity modulus of concrete.   135 

Once the   is calculated from Eq. (1) at a generic 1n   loading stage (
1n  ), the stress vector at this stage is 136 

updated (
1 1n n n     ). The stress vector 

1n 
 does not take into account the strain softening of the material 137 

under compression since the adopted  c c
 law (Fig. 3a) at the post-peak stage (

1c c
) does not include a softening 138 
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branch (slop of the  c c
 law for the domain 

1c c
 is zero). To simulate the strain softening and stiffness 139 

degradation of the material under compression, an isotropic damage law is included according to the following equation 140 

[15]: 141 

1 1 , 1 1(1 )n n c n nd  
 

       (8) 

where 
1n 
 is the stress vector in damaged (with respect to compression) configuration of the material, 

1n



 and 

1n



 142 

are the positive (tensile) and the negative (compressive) parts of the stress vector 
1n 
. The variable 

cd  is a scalar 143 

measure in the range  0,1  that is used to represent the damage level due to compression. Fig. 3(b) represents the 144 

evolution of the variable 
cd  as a function of a scalar parameter known as damage internal variable, 

d
. The variable 

d
 145 

can be evaluated as a function of the plasticity hardening variable, 
c

, according to the following equation [15]:    146 

1

1 1

0 c c

d

c c c c

if

if


 

 
 

(9) 

Analysis of Fig. 3(b) indicates that at the plastic deformation corresponding to 
1c c  ( 0d

) the material is intact 147 

( 0cd  ), and for 
c cu  (

1d cu c  ) the material is completely damaged ( 1cd  ). The variable 
cu

 is the maximum 148 

equivalent strain in compression that is related to the compressive fracture energy (
,f cG ), the characteristic length for 149 

compression (
cl ), the compressive strength (

cf ), and 
1c
 according to the following equation [15] (see Fig. 3(b) and 150 

Fig. 3(c)):  151 

,

1

3.1 11

48

f c

cu c

c c

G

l f
   

(10) 

The characteristic lengths in tension (
bl ) and compression (

cl ) are usually considered the same [21], then in the present 152 

approach 
c bl l . The parameters 0 , cf , 1c , ,f cG  can be determined by the stress-strain response (let’s designate this 153 

response as c c  ) obtained from compression tests carried out in high stiff rigs, under displacement control, with 154 

specimens of slenderness capable of assuring a central zone considered in uniaxial stress field (for this purpose is 155 

opportune to minimize friction between the specimen extremities and the loading platens of the testing rig), where the 156 

strains are locally measured up to the complete exhaustion of the load carrying capacity of the model. For plain 157 

concrete, CEB-FIP Model Code 2010 [22] has recommendations to derive E , 0 , 1c , 
,f cG  from cf  (it is assumed the 158 

same E  in compression and tension). 159 

 160 

3. PREDICTIVE PERFORMANCE OF THE MODEL 161 

3.1 Introduction 162 
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The PDSC model was implemented in FEMIX 4.0 computer program [17] as a new approach to simulate the nonlinear 163 

behaviour of concrete and RC structures. This section is dedicated to assess the model robustness and predictive 164 

performance when applied to different types of concrete and RC structures. Several experimental tests from literature 165 

including splitting tensile test, RC deep beams with square openings, RC shear walls submitted to biaxial loading 166 

conditions are simulated, and comparisons with available experimental data are executed. These structures are of 167 

particular interest for the assessment of the reliability of the proposed model, since in these examples the failure 168 

mechanism involved simultaneous occurrence of cracking and inelastic deformation in compression. The structures 169 

under consideration are also simulated by another constitutive model, available in FEMIX 4.0, which includes the same 170 

multidirectional fixed smeared crack approach [1-3] to account for cracking, but considers the linear elastic behaviour 171 

for the material under compressive deformations. The later model is herein designated as SC model. 172 

For all the analysis performed in this study, the incremental-iterative procedure is used in the form of a modified 173 

Newton Raphson method, where the tangential stiffness matrix is only updated in the first iteration of each load 174 

increment. The convergence criterion is based on the normalized energy norm assuming an error tolerance of 0.001. A 175 

path independent approach was adopted for the stress update strategy in the incremental-iterative procedure. The 176 

numerical simulations are executed in displacement control in order to reproduce, as much as possible, the experimental 177 

testing conditions. The analysis is interrupted when the crack pattern demonstrates the eminence of structural collapse, 178 

which is in general followed by difficulties in assuring convergence due to the formation of failure mechanisms. 179 

 180 

3.2 Indirect (splitting) tensile test 181 

Splitting tensile tests are frequently executed as the indirect method for determining the tensile strength of cement based 182 

materials. In this section the model ability to predict the concrete behaviour under the splitting tensile test is 183 

investigated. The model is applied to simulate the test executed in the work of Abrishambaf et al. [23], and the model 184 

predictions are compared with the results reported at the experimental program. The specimen is a cylinder with a 185 

diameter of 150 mm and length of 60 mm made by a steel fibre reinforced self-compacting concrete, SFRSCC, of 60 kg 186 

per m3 steel fibers. To localize the crack plane, the specimen includes two 5 mm notches cut on each opposite face of 187 

the specimen. Fig. 4 shows the specimen geometry, loading configuration and experimental crack pattern observed at 188 

the failure stage.  189 

Only a quarter of the specimen is modelled, due to the double symmetry condition. Roller supports were imposed at all 190 

the nodes on the both axes of symmetry to fix the displacements perpendicular to the axes of symmetry (see Fig. 5). The 191 

finite element mesh of 8-noded plane stress finite elements with 33 Gauss-Legendre IP scheme was adopted for the 192 

specimen and the loading plate, see Fig. 5. Elements of the loading plate are assumed to exhibit linear elastic behaviour 193 
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with the elastic modulus and Poisson’s ratio corresponding to 200E  GPa, and 0.3  . Perfect bond was assumed 194 

between the elements of the loading plate and the elements of surrounding concrete. The applied load is uniformly 195 

distributed over the edges of the elements of the loading plate, under the displacement control by the arc-length method. 196 

The properties of concrete are taken from Abrishambaf et al. [23], and the values of the parameters to define the 197 

constitutive law for concrete are included in Table 1. 198 

Fig. 6 demonstrates the applied load vs. the crack opening mouth displacement ( F W ) response obtained at the 199 

experiment and the responses predicted by both SC and PDSC constitutive models. The good predictive performance of 200 

the PDSC model is further demonstrated by providing the numerical crack pattern and the plastic zone i.e. the area 201 

indicating those IPs under inelastic compressive deformation, obtained at the final converged loading step of the 202 

calculation process (see Fig. 7).  203 

The analysis executed by SC model reveals at the load corresponding to 45  kN the splitting cracks are initiated (see 204 

Fig. 6). These cracks have an orientation of 0º   and are formed in IPs in the vicinity of the vertical symmetry axis of 205 

the cylinder. Once these cracks start to propagate ( 0W  ), the stiffness of F W  response slightly decreases, but the 206 

predicted load carrying capacity continuously increases without the occurrence of a failure load, since this model (SC 207 

model) assumes an elastic behaviour for the concrete in compression. However according to the PDSC response, after 208 

the initiation of the splitting cracks ( 0W  ), the predicted load increases and attains a hardening branch followed by a 209 

softening stage that is mainly governed by the nonlinear inelastic behaviour of concrete under compression. From Fig. 6 210 

it is evident that there is a close correlation between the experimental F W  response and the one predicted by the 211 

PDSC model. Fig. 7(a) demonstrates that the cracks having the orientation of 0º   and with highly propagated 212 

opening status are spread along the vertical symmetry axis of the specimen, while Fig. 7(b) shows the plastic zone is 213 

concentrated at the region under the loading plate. These observations imply the final failure mechanism of this test (see 214 

Fig. 4(c)) is a combination of the tensile splitting crack and the compressive failure modes. The information required to 215 

interpret status of a generic crack at any stage of its development is indicated in the caption of the Fig. 7.  216 

It should be aware that in the approach followed in the current work for modelling the behaviour of SFRSCC, this 217 

material is considered to be homogeneous. However SFRSCC can be regarded as a heterogeneous medium, like the 218 

approach proposed by Cunha et al. [26]. Within their numerical model, SFRSCC was modeled as a material composed 219 

of two phases: matrix and discrete steel fibres. The matrix phase is simulated with a 3D multidirectional fixed smeared 220 

crack model, while the stress transfer between crack planes due to the reinforcing mechanisms of fibres bridging active 221 

cracks is modeled with 3D embedded elements. This approach is, however, too demanding in terms of computer time 222 

consuming when applied to elements of structural scale, which is the type of structures aimed to be analyzed in the 223 

present work. 224 
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 225 

3.3 RC deep beams 226 

Application of the PDSC model for simulating reinforced concrete deep beams with openings, tested by El-Maaddawy 227 

and Sherif [27], is considered in this section. A total of six beams (NS-200-B, NS-250-B, NS-200-T, NS-250-T, NS-228 

200-C, NS-250-C) are analysed which have the same shear span over dept ratio, thickness, and reinforcement layout. 229 

All the beams include two square openings, one in each shear span, while the differences between these beams are 230 

restricted to the location and size of the openings. These beams can be categorized considering the location of the 231 

openings within shear span in three groups: group C which includes the beams whose openings are installed at the 232 

middle points of the shear spans; group B, and group T, which include the beams that their openings are located, 233 

respectively, at bottom of shear spans near loading points, and at top of the shear spans near supports. The opening size 234 

for each beam was either 200×200 mm2 or 250×250 mm2 giving the opening height over the depth (a/h) ratios of 0.4 235 

and 0.5 respectively. More details corresponding to the geometry and loading configuration of these beams are provided 236 

at Fig. 8, and Table 2. 237 

The tensile reinforcement consists of 4 steel bars of 14 mm diameter, with the cross-sectional area of 153.9 mm2 for 238 

each bar, while two steel bar of 8 mm diameter, with the cross-section area of 50.3 mm2 for each bar, are applied as the 239 

compressive reinforcement. The web reinforcements are applied with the steel bar of 6 mm diameter, with the cross-240 

section area of 28.3 mm2, spaced at 150 mm in both vertical and horizontal directions (see Fig. 8). The web 241 

reinforcement intersecting the opening spaces is cut prior to casting the corresponding specimen [27]. 242 

Due to symmetry of the beams about the vertical axis at the center of the beam, only half beam was modelled. 243 

Horizontal displacements of all the nodes on the symmetry axis of the beam are fixed, by applying roller support, to 244 

impose the symmetry condition. Eight-noded serendipity plane stress finite elements with 33 Gauss–Legendre IP 245 

scheme were used for modelling the beams, supports and loading plates. In Fig. 9 is represented, as an example, the 246 

finite element mesh used for the simulation of the beam NS-200-C. The steel reinforcement is meshed using 2-noded 247 

perfect bonded embedded cables with two IPs. The assumption of the perfect bond for the embedded cable elements 248 

implies the translational degrees of freedom of the nodes of these elements are constrained with respect to their host 249 

elements (plane stress finite elements used for modelling concrete). For modelling the behaviour of the steel bar 250 

elements, the stress-strain relationship represented in Fig. 10 was adopted. The curve (under compressive or tensile 251 

loading) is defined by the points PT1 = ( ,sy sy  ), PT2 = ( ,sh sh  ), and PT3 = ( ,su su  ) and a parameter P2 that 252 

defines the shape of the last branch of the curve. Unloading and reloading linear branches with the slope of 253 

s sy syE    are assumed in the present approach [1]. The values of parameters used to define the stress-strain diagram 254 

indicated in Fig. 10 are included in Table 3. Support and loading plates are modeled as a linear-elastic material with 255 
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Poisson’s coefficient of 0.3 and elasticity modulus of 200 GPa. Perfect bond was assumed between the elements of 256 

supports/loading plates and the elements of surrounding concrete. Properties of concrete are taken from Hawileh et al. 257 

[28], and the values of the parameters to define the PDSC model are, accordingly, included in Table 1. 258 

Fig. 11 shows the experimental load vs. mid-span deflection ( P U  relationship) for the beams in analysis and the 259 

respective numerical predictions with the SC and PDSC models. Table 2 gives the failure loads of the beams obtained 260 

in the experimental program ( exp

uP ) and in the numerical simulations ( num

uP ). Amongst the beams with the opening size 261 

of 200×200 mm2 (NS-200-B, NS-200-T, NS-200-C), i.e. the beams having the a/h ratio of 0.4, the beam NS-200-T has 262 

the maximum experimental failure load (see Fig. 11 and Table 2). The failure load of the beam NS-200-T is close to 263 

that of the beam NS-200-B (the load corresponding to the beam NS-200-T is 4.4% larger than that of NS-200-B), and is 264 

35% higher than that of the beam NS-200-C. The beam NS-200-C has the minimum failure load among these three 265 

beams, since its openings, located at the center of the shear spans, significantly interrupts the loading path which is a 266 

line connecting loading to the support plates. In case of the beams NS-200-B and NS-200-T whose openings are located 267 

at the corners of the shear spans, the loading paths are less interrupted and higher load carrying capacities are obtained 268 

at the experimental program. A close inspection of Table 2 also reveals that the PDSC model was able to simulate this 269 

experimental observation, since the numerical failure load ( num

uP ) predicted for the beam NS-200-B is higher than that 270 

of NS-200-C and is lower than the value calculated for the beam NS-200-T.  271 

By comparing the experimental failure loads of the beams in the same geometry group (group B, group C, or group T) 272 

but with the different opening sizes (different a/h ratios of 0.4 or 0.5), e.g. compare the failure load of the beam NS-273 

200-T with that of the beam NS-250-T, it can be concluded as the opening size increases, the loading path of the beam 274 

is more interrupted, and the failure load decreases. From Fig. 11 and Table 2, it is evident that PDSC model was able to 275 

simulate the reduction of the load carrying capacity as the a/h ratio of the beams increases from 0.4 to 0.5.  276 

Fig. 11 also shows that the PDSC model fit with high accuracy the experimental P U  curves at all stages of loading 277 

till failure. The failure loads were predicted with the average error of 4.45% (see Table 2). If SC approach is taken into 278 

account to simulate these beams, the predicted P U  responses consider the stiffness degradation only due to cracking 279 

of concrete and yielding of steel reinforcements. Since the SC model assumes a linear behaviour for the concrete in 280 

compression, the stiffness and ultimate load is overestimated for all the beams, and the final failure mode is incorrectly 281 

predicted as yielding of reinforcement (see Fig. 11).  282 

The experimental cracking patterns of all the beams at the failure stage demonstrated two critical diagonal cracks in the 283 

above and below of one of the openings, see Fig. 12. As can be seen in Fig. 13, the crack patterns predicted by PDSC 284 

model demonstrate flexural cracks with insignificant opening status in middle of the beams, whereas more propagated 285 

diagonal cracks (cracks with the orientation of 45º  ) can be observed along the line connecting the support and 286 
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loading plates. It seems clear that the PDSC model was able to simulate with high accuracy the experimentally observed 287 

crack patterns of the beams in analysis.  The simulated plastic zones for these beam, see Fig. 13, evidence formation of 288 

the compressive struts connecting the loading points and supports.  289 

 290 

3.4 Shear RC walls 291 

To highlight the efficiency of the proposed constitutive model, the shear wall panels, tested by Maier and Thürlimann 292 

[29], were simulated. The analysed specimens are registered at the experiment as S1, S2, S3, S4, S9, and S10. The 293 

experimental loading procedure introduces an initial vertical compressive force, 
vF , and then a horizontal force, 

hF , 294 

that was increased up to the failure of the wall. These shear walls had a relatively thick beam at their bottom and top 295 

edges for fixing the walls to the foundation, and for applying 
hF  and 

vF , respectively, as depicted in Fig. 14. The 296 

analysed shear walls differ in geometry, reinforcement ratio, and initial vertical load (
vF ). These walls can be 297 

categorized considering geometry of the walls in two groups: group A, which includes walls with vertical flanges at 298 

their lateral edges; group B, which contains the walls with uniform rectangular cross section (without vertical flanges). 299 

All the walls are reinforced in both vertical and horizontal directions with the reinforcement ratios designated as 
x  and 300 

y . For the walls at the group A (specimens with vertical flanges), 
F  indicates the reinforcement ratio of the vertical 301 

flanges. Table 4 includes the details corresponding to geometry, reinforcement ratios, and initial vertical force for each 302 

shear wall analysed at this study. 303 

FEM modelling of the walls and top beams were performed using 8-noded serendipity plane stress finite elements with 304 

33 Gauss-Legendre IP scheme. Fig. 15(a) presents, as an example, the finite element mesh used for analysis of the 305 

wall S3. Instead of modelling the foundation, the bottom nodes of the panels are fixed in vertical and horizontal 306 

directions. The vertical and horizontal loads are uniformly distributed over the edges of the top beam, as schematically 307 

represented in Fig. 15(a). Elements of the top beam are assumed to exhibit linear elastic behaviour during the analysis, 308 

since no damage is reported for these elements in the original papers. For modelling the behaviour of the steel bars, the 309 

stress-strain relationship represented in Fig. 10 was adopted. The reinforcement is meshed using 2-noded perfect 310 

bonded embedded cables with two IPs. The values of parameters used to define the constitutive models of concrete and 311 

steel are included in Table 1 and Table 5, respectively. The effect of tension-stiffening was indirectly simulated using 312 

the trilinear tension-softening diagram. 313 

The experimental relationship between the applied horizontal force and the horizontal displacement of the top beam, Fh-314 

Uh, for the wall S3 is represented in Fig. 15(b). This figure also includes the predicted Fh-Uh response obtained by both 315 

PDSC and SC models. According to the experimental observations the wall S3 attains the load carrying capacity at peak 316 

stage corresponding to 977 kN, which is maximum amongst all the panels, and after attaining the peak the panel failed 317 
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in brittle manner mainly due to crushing of concrete at the bottom left side of the panel. At the failure stage, this panel is 318 

densely cracked as can be seen in the experimental crack pattern (see fig. 15(e)). Predictions of the PDSC model are 319 

obtained for three levels of compressive fracture energy (
, 20,30,40 /f cG N mm ) to demonstrate the effect of this 320 

model parameter on behaviour of the simulated wall. At 5hU mm  the IP closest to the left bottom side of the wall 321 

enters in the compressive softening phase ( 0cd  ). After 10hU mm  the load carrying capacity and ductility of the 322 

simulated Fh-Uh responses are significantly affected by changing the compressive fracture energy; the load carrying 323 

capacity and ductility increase with 
,f cG . Ductility of the wall is underestimated for the simulation with 324 

, 20 /f cG N mm , and overestimated when using 
, 40 /f cG N mm . A proper fit of the experimentally observed load 325 

carrying capacity and ductility of Fh-Uh response was obtained for the simulation using 
, 30 /f cG N mm . This value is 326 

close to the upper limit of the interval values obtained by Vonk [30]. Fig. 15(c) and (d) present, respectively, the 327 

numerical crack pattern and the plastic zone for the simulation using 
, 30 /f cG N mm , at the deformation 328 

corresponding to 16.5hU mm (final converged step). Fig. 15(c) demonstrates that the cracks with fully opened status 329 

are spread over a large area of the panel. The cracks at the right side of the panel (mainly at the right vertical flange of 330 

the panel) are mostly oriented with an inclination of about 90º  , while the cracks at the middle region of the panel 331 

have the orientation of 45º  . This numerical prediction correlates well with the experimental crack pattern (see Fig. 332 

15(e)). The simulated plastic zone evidences the formation of a compressive strut connecting the right top side of the 333 

panel to the bottom left side.   334 

Results of the analysis for the other shear walls are represented in Fig. 16 in terms of Fh-Uh relationship and crack 335 

pattern. As can be seen in this figure the PDSC model assuming 
, 30 /f cG N mm  was able to accurately predict the 336 

overall experimental Fh-Uh behaviour and the experimental crack patterns of these walls. For all the 6 shear walls the 337 

numerical peak load, ,

num

h uF , predicted by the PDSC model are compared with the experimental ones, 
exp

,h uF , at Table 4. 338 

The information provided at Table 4 verifies the peak loads of all the shear walls are precisely simulated with the 339 

average error of 4.85%. Comparing the Fh-Uh responses obtained by both PDSC and SC models reveals the major 340 

influence of simulating compressive nonlinearity on the predicted deformational behaviour and failure mechanism of 341 

these shear walls. If nonlinear compressive behaviour is neglected in these analyses, as the approach adopted in SC 342 

model, the ductility and load carrying capacity are significantly overestimated.   343 

 344 

3.5 Parametric study for the model parameters, and mesh sensitivity analysis 345 

A parametric study is executed to assess the influence of the values of the model parameters on the simulated behaviour 346 

of the structures analyzed in the previous sections. The parameters under consideration are the compressive strength 347 
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(
cf ), strain at compressive strength (

1c ), compressive fracture energy (
,f cG ), tensile strength (

ctf ), and fracture 348 

energy mode I (
fG ), that they all have the most significant impact on the predictive performance of the model. To 349 

assess the influence of the parameters 
cf , 

1c , 
,f cG , 

ctf , 
fG  on the responses predicted by the PDSC model, the 350 

values of these parameters are modified from those used in the previous sections (the values of all the remaining 351 

parameters were maintained the same as those of Table 1). A mesh analysis is also performed to investigate the the 352 

sensitivity of the structural response of the PDSC model to the applied mesh schemes. The RC shear wall S4 was 353 

selected for the parametric study and the mesh analysis, but the conclusions to be extracted can be generalized to other 354 

structural members simulated in the present work. 355 

 356 

3.5.1 Influence of 
c

f  357 

Fig. 17(a) demonstrates the influence of the concrete compressive strength on the force-deflection (Fh-Uh) relationship 358 

when simulating the S4 shear wall (details are provided in Section 3.4). Three different values for 
cf  were adopted, 20, 359 

30 and 40 N/mm2, the first one is lower than the value considered in the analysis of Section 3.4 ( 2=30 N / mmcf ), while 360 

the third is higher. As expected, by increasing 
cf  the stiffness and the load carrying capacity also increase, but the 361 

displacement at peak load is almost the same for the three considered values. As also expected, the Fh-Uh response 362 

obtaining using the SC model can be considered an upper limit, since in this model the effect of the nonlinear 363 

compressive deformation of concrete is neglected.   364 

The stages where the effect of inelastic compressive deformation becomes relevant on the Fh-Uh responses of the panel 365 

in analysis are indicated in Fig. 17(a) using markers. It is verified that these markers are localized in the force-deflection 366 

response of the wall when predictions with the PDSC model start diverging from that of SC model. The higher is the 367 

concrete compressive strength the larger is the load carrying capacity of the beam corresponding to the marker, which is 368 

justified by the adoption of a constant value for the 
0  parameter, which defines the initiation of the inelastic 369 

deformation of concrete in compression (
0 0c cf f ).  370 

 371 

3.5.2 Influence of 
1c

  372 

The parameter 
1c  influences both plasticity and damage parts of the PDSC model. Within the plasticity part, the value 373 

of the hardening parameter at compressive strength, 
1c
, is calculated according to Eq. (7) by attributing a certain value 374 

to 
1c . According to this equation 

1c
 decreases with 

1c , resulting a stiffer pre-peak branch (hardening phase) of the 375 

1c c  diagram, as shown in Fig. 3(a).  376 
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According to the approach adopted in PDSC model, the damage threshold is assumed to be related to 
1c
: when 

1c c
,  377 

0cd  , while for 
1c c
 the scalar damage parameter is 0cd  . Therefore by increasing 

1c  the 
1c
 also increases, and 378 

the occurrence of damage (i.e. 0cd  ), which characterize the entrance of concrete in its compressive strain softening 379 

stage, initiates at higher compressive deformation. To assess the influence of the parameter 
1c  on the response of the 380 

wall in analysis, three values were considered, 0.0018, 0.0035 and 0.0055, the first one is lower than the value 381 

considered in the analysis executed in Section 3.4 (
1  0.0035c  ), while the third value is higher. Fig. 17(b) shows that 382 

by increasing the 
1c  the stiffness of the load vs. deflection response decreases, but the peak load, and mainly its 383 

deflection increase, with benefits in terms of the ductility response and load capacity of the beam. In fact by increasing 384 

1c , in spite of the less stiffer pre-peak branch of the 
c c   diagram, the entrance in the concrete compressive strain 385 

softening phase (damage activation) is postponed resulting higher deformability and load capacity for the concrete 386 

element. 387 

 388 

3.5.3 Influence of ,f c
G  389 

The parameter of compressive fracture energy (
,f cG ) controls the rate of strain softening, i.e. the level of stress decrease 390 

with the increase of strain, in post-peak stage of the concrete behaviour in compression (see Fig. 3(c)). As larger is 
,f cG  391 

as smaller is this stress decay, which is a characteristic of very ductile materials like fibre reinforced concrete [31].  392 

Fig. 17(c) compares the Fh-Uh responses obtained for three different values of the 
,f cG , 20, 30 and 40 N/mm, the first 393 

one is lower than the value considered in the analysis of Section 3.4 (
,  30 N/mmf cG  ), while the third is higher. As 394 

can be seen at Fig. 17(c) the parameter 
,f cG  influences the Fh-Uh response of the wall only after the deflection of 7 mm 395 

corresponding to the stage that the effect of post-peak strain softening behaviour of concrete under compression 396 

becomes relevant. For the deformations larger than 7 mm, the load carrying capacity and ductility of the simulated Fh-397 

Uh curves increase with 
,f cG . 398 

 399 

3.5.4 Influence 
ctf  400 

Fig. 18(a) represents the influence concrete tensile strength ( ctf ) on the force-deflection (Fh-Uh) relationship of the wall 401 

S4. Three different values for ctf  were chosen, 1.2, 2.2 and 4.2 N/mm2, the first one is lower and the last one is higher 402 

than the value considered in the analysis of Section 3.4 ( 22.2=  N / mmctf ). Fig. 18(a) shows the influence of ctf  is 403 

mainly resumed to the first stage of the cracking process, by anticipating this process as lower is ctf , with the 404 
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consequent decrease of stiffness of the structural response. When the cracking process is stabilized, the influence of 
ctf  405 

was not totally null because the other fracture parameters were considered the same in these analysis, therefore as larger 406 

is 
ctf  as smaller is the ultimate normal crack strain, as shown in Fig. 18(b). 407 

 408 

3.5.5 Influence of 
fG  409 

Fig. 19(a) compares the force-deflection (Fh-Uh) relationships obtained for three different values of fracture energy 410 

mode I (
fG ), 0.08, 0.14 and 0.4 N/mm, the first one is lower and the last one is higher than the value considered in the 411 

analysis of Section 3.4 ( 0.14=  N / mmfG ). As can be seen in this figure, after crack initiation the load carrying 412 

capacity increases with 
fG , but the stiffness of the response of the structure in its crack propagation stage was not 413 

significantly affected. The response of the analysis with 
fG  of 0.08 and 0.14 N/mm become almost coincident after the 414 

yield initiation of the reinforcement because at this stage the cracks in the governing failure zone are completely open 415 

(the fracture energy was completely exhausted). In the analysis with 
fG =0.4 N/mm, the load carrying capacity at post-416 

yielding phase was higher than in the other two simulations (
fG  of 0.08 and 0.14 N/mm) due to the post-cracking 417 

residual tensile capacity provided by the cracks at this stage (see Fig. 19(b)). 418 

 419 

3.5.6 Influence of mesh size  420 

Size of the finite element mesh used in the section 3.4 for the analysis of the wall S4 is refined with a factor of four in 421 

order to show the structural response predicted by the PDSC model is not dependent of the adopted mesh refinement. 422 

Fig. 20(a) shows the refined mesh adopted for this analysis. Eight-noded serendipity plane stress finite elements with 423 

33 Gauss–Legendre IP scheme are adopted. The Fh-Uh relationship predicted by the analysis with the refined mesh is 424 

compared in Fig. 20(b) with that of the analysis with the coarse mesh (the one already obtained in section 3.4). From 425 

this figure it is verified that sensitivity of the structural response of the PDSC model to the applied mesh schemes is 426 

negligible. Both meshes show similar cracking patterns (see Fig. 16 and Fig. 20(c)). 427 

 428 

4. CONCLUSION 429 

This study describes a constitutive approach based on combination of a multidirectional fixed smeared crack model to 430 

simulate crack initiation and propagation, and a plastic-damage model to account for nonlinear compressive behaviour 431 

of material between the cracks. The crack opening process is initiated based on the Rankine tensile criterion, whereas a 432 

trilinear softening diagram is used to simulate the crack propagation. The plasticity part of the model accounts for the 433 
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development of irreversible strains and volumetric strain in compression, whereas the strain softening and stiffness 434 

degradation of the material under compression are controlled by an isotropic strain base damage model.  435 

The constitutive model was implemented in the finite element computer code FEMIX, and its performance was assessed 436 

by simulating concrete and RC structures whose failure mechanisms are governed by, simultaneously, cracking and 437 

inelastic compressive deformations. The analysis includes splitting tensile test, RC deep beams, and RC shear wall 438 

panels submitted to biaxial loading configuration. The model succeeds to predict with high accuracy the deformational 439 

and cracking behaviour as well as the experimentally observed failure modes of the simulated structural members. The 440 

results of these analysis indicates the robustness and accuracy of the proposed model for simulating concrete and RC 441 

structures subjected to multi-axial loading configurations. A parametric study was also performed to assess the 442 

sensitivity of the simulations to the values of the model parameters. 443 
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NOTATIONS 529 

a  height of the openings at the deep beam tests 

cd  scalar describing the amount compressive damage 

eD  linear elastic constitutive matrix 

cr

nD  the stiffness modulus correspondent to the fracture mode I   

cr

tD  the stiffness modulus correspondent to the fracture mode II   

E  elasticity modulus of concrete 

sE  unloading-reloading slop for the steel constitutive law 

cf  compressive strength of concrete 

ct
f  tensile strength of concrete 

( , )cf    yield function of the plasticity model 

0cf  uniaxial compressive stress at plastic threshold   

F  applied load (total load) at the splitting tensile test 

vF  initial vertical load applied to the shear wall panel 

hF  horizontal load applied to the shear wall panel 

exp

,h uF  experimental horizontal load at peak stage of Fh-Uh diagram 

,

num

h uF  numerical horizontal load at peak stage of Fh-Uh diagram (predicted by PDSC model) 

h  dept of the beam at the deep beam tests 

IP  integration point 

c
G  elastic shear modulus 

I
f

G  mode I fracture energy 

,f c
G  compressive fracture energy 

b
l  crack bandwidth 

c
l  compressive characteristic length which was assumed identical to the crack bandwidth  

n  a generic loading stage of analysis 

P  applied load at the deep beam test  

1P

 

parameter that defines the amount of the decrease of   upon increasing cr

n  
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2P

 

parameter that defines the shape of the last branch of the steel stress-strain curve 

exp

uP

 

failure loads of the deep beams at the experimental program 

num

uP

 

failure loads of the deep beams obtained by PDSC model 

U

 

mid-span deflection at the deep beam test  

hU  horizontal deformation of the panel 

W  crack opening mouth displacement at the splitting tensile test 

  stress vector  at global coordinate system providing no compressive damage is included 

  stress vector at global coordinate system which include compressive damage softening 




 positive part, tensile, of stress vector   




 negative part, compressive, of stress vector    

cr
  

crack strain vector 

co
  

concrete strain vector  

  total strain vector 

p
  

plastic strain vector 

e
  

elastic strain vector 

cr

n  normal components of the local crack stress vector 

cr

t  shear components of the local crack stress vector 

cr

n  normal components of the local crack strain vector 

cr

t  shear components of the local crack strain vector 

  Poisson’s coefficient 

i
  normalized stress parameters (i=1, 2) in the trilinear diagram 

  shear retention factor 

i
  normalized strain parameter (i =1, 2) in the trilinear diagram 

,

cr

n u  ultimate crack normal strain 

c  hardening function of the plasticity model 

1c  strain at compression peak stress 
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c
 compressive hardening variable 

  plastic multiplier 

1c
 hardening parameter at uniaxial compressive peak stress 

cu
 maximum equivalent strain in compression 

0  material constant to define the beginning of the nonlinear behaviour in uniaxial compressive stress-

strain test 

d
 internal damage variable for compression 

  crack orientation (angle between the x1 axis and the vector orthogonal to the plane of the crack)  

x  horizontal reinforcement ratio of web of the shear wall panel 

y  vertical reinforcement ratio of web of the shear wall panel 

F  vertical reinforcement ratio corresponding to the vertical flange of the shear wall panel 

, ,sy sh su    three strain points at the steel constitutive law  

, ,sy sh su    three stress points at the steel constitutive law 
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Table captions 

Table 1 Values of the parameters of the concrete constitutive model. 

Table 2 Details for the deep beam tests. 

Table 3 Values of the parameters of the steel constitutive model for deep beams tests. 

Table 4 Details for the shear wall panels. 

Table 5 Values of the parameters of the steel constitutive model for shear walls tests. 
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Figure captions 

Fig. 1 Diagram for modelling the fracture mode I at the crack coordinate system [1]. 

Fig. 2  Relation between crack shear stress and crack shear strain for the incremental approach based on a 

shear retention factor [19]. 

Fig. 3 Diagrams for modelling compression: (a) the  c c
 relation used in the plasticity model; (b) the 

(1 )c dd   relation adopted in the isotropic damage model; (c) the 
c c   diagram for compression 

with indication of the compressive fracture energy, 
,f cG .   

Fig. 4 Details of the splitting tensile test: (a) setup of the test [23]; (b) geometry of the specimen, dimensions 

are in mm; (c) experimental crack pattern at the failure stage [24]. 

Fig. 5 Finite element mesh, load and support conditions used for analysis of the splitting tensile test. 

Fig. 6 Experimental load vs. crack mouth opening displacement relationship [22] in comparison with the 

predictions of the PDSC and SC models. 

Fig. 7 Predictions of PDSC model for the splitting tensile test: (a) numerical crack pattern; (b) numerical 

plastic zone (results of (a) and (b) correspond to 1.9W  mm, the final converged loading step). 

Note: In pink color: crack completely open; in red color: crack in the opening process; in cyan color: 

crack in the reopening process; in green color: crack in the closing process; in blue color: closed crack; 

in red circle: the plastic zone. 

Fig. 8 Deep beams with openings tested by Maaddawy and Sherif [26]: (a) details of the reinforcement 

system, common for all the beams in the experimental program; (b) geometry of the beams at group B, 

NS-200-B and NS-250-B; (c) geometry of the beams at group T, NS-200-T and NS-250-T; (d) 

geometry of the beams at group C, NS-200-C and NS-250-C.         

Fig. 9 Finite element mesh, load and support conditions used for analysis of the beam NS-200-C.   

Fig. 10 Uniaxial constitutive model (for both tension and compression) for the steel bars [1]. 

Fig. 11 Experimental load vs. mid-span deflection [26] in compare with the predictions of the PDSC and SC 

models for the beams: (a) NS-200-B; (b) NS-200-T; (c) NS-200-C; (d) NS-250-B; (e) NS-250-T; (f) 

NS-250-C. 

Fig. 12 Experimental crack patterns [26] for the beams: (a) NS-200-B; (b) NS-200-T; (c) NS-250-B; (d) NS-

250-T; (e) NS-250-C. 

Fig. 13 Numerical crack patterns (left) and plastic zones (right) predicted by PDSC model for the beams in 

analysis (the results correspond to the final converged step). 
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Note: the crack pattern and plastic zone are represented over the finite element mesh adopted for the 

concrete. 

Fig. 14 Geometry and loading configurations of the shear walls tested by Maier and Thürlimann [28] 

(dimensions in mm): (a) the walls in group A (with vertical flange); (b) the walls in group B (without 

vertical flange). 

Fig. 15 Simulation of the S3 shear wall tested by Maier and Thürlimann [28]: (a) finite element mesh used for 

the analysis; (b) horizontal load vs. horizontal displacement relationship, Fh-Uh; (c) numerical crack 

pattern predicted by PDSC model and (d) plastic zone predicted by PDSC model (results of (c) and (d) 

correspond to 16.5hU mm , the final converged step); (e) experimentally observed crack pattern [28]. 

Note: the crack pattern and plastic zone are represented over the finite element mesh adopted for the 

concrete. 

Fig. 16 Simulation of the shear walls S1, S2, S4, S9, S10 tested by Maier and Thürlimann [28]: (a) horizontal 

load versus horizontal displacement relationship, Fh-Uh; (b) numerical crack pattern predicted by PDSC 

model and corresponding to the final converged step; (c) experimentally observed crack pattern [28]. 

Note: the crack pattern is represented over the finite element mesh adopted for the concrete. 

Fig. 17 Sensitivity of the analysis of the panel S4 respect to the values of the parameters: (a)
cf ; (b)

1c ; (c)

 

,f cG . 

Fig. 18 Sensitivity of the analysis of the panel S4 respect to the value of the parameter 
ctf : (a) Fh-Uh 

relationship; (b) crack normal stress-crack normal strain diagram ( cr cr

n n  ) for the 
ctf  equal to 1.2, 

2.2, and 4.2 MPa. 

Fig. 19 Sensitivity of the analysis of the panel S4 respect to the value of the parameter fracture energy mode I 

(
fG ): (a) Fh-Uh relationship; (b) crack normal stress-crack normal strain diagram ( cr cr

n n  ) for the 

fG  equal to 0.08, 0.14, and 0.4 MPa. 

Fig. 20 Sensitivity of the analysis of the panel S4 respect to the size of finite element mesh: (a) refined finite 

element mesh used for analysis; (b) Fh-Uh relationship; (c) Numerical crack pattern obtained at final 

converged step of the analysis. 

Note: the crack pattern is represented over the finite element mesh adopted for the concrete. 
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Table 1 – Values of the parameters of the concrete constitutive model. 575 
Property Value 

Poisson’s ratio 0.2   

Young’s modulus  for the splitting tensile test 
2

36000E N mm ;  

for the deep beam tests 
2

20000E N mm ;  

for the shear wall tests 
2

26000E N mm ; 

Parameters defining the plastic-

damage part of the model 
for the splitting tensile test 

2

, 148.0 ; 35.0 ; 0.0035c f c cf N mm G N mm    ;  

for the deep beam tests 
2

, 120.0 ; 8.0 ; 0.0035c f c cf N mm G N mm    ;  

for the shear wall tests 
2

, 130.0 ; 30.0 ; 0.0035c f c cf N mm G N mm    ; 

Parameter to define elastic limit 

state  
for all the simulations 

0 0.4    

Parameter defining the Trilinear 

tension-softening diagram 

for the splitting tensile test 
2

1 1 2 23.5 ; 3.0 ; 0.007; 0.5; 0.15; 0.55ct ff N mm G N mm          ; 

for the deep beam tests 
2

1 1 2 21.1 ; 0.04 ; 0.0022; 0.3; 0.1; 0.15ct ff N mm G N mm          ; 

for the shear wall tests 
2

1 1 2 22.2 ; 0.14 ; 0.15; 0.3; 0.575; 0.15ct ff N mm G N mm          ;

 Parameter defining the mode I 

fracture energy available to the new 

crack [1] 

for all the simulations 2 

Type of shear retention factor law for all the simulations P1 = 2 

Crack bandwidth for all the simulations this parameter was set as square root of the area of Gauss 

integration point 

Threshold angle [1] for all the simulations 30 degree 

Maximum number of cracks per 

integration point [1] 

for all the simulations 2 
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Table 2 – Details for the deep beam tests. 592 
specimen ID geometry  opening size (mm2) a/h(4) ratio exp ( )uP kN  ( )num

uP kN  exp exp (%)num

u u uP P P  

NS-200-B group B(1) 200×200 0.4 210.7 212 0.61 

NS-250-B group B 250×250 0.5 137.9 143.15 3.8 

NS-200-C group C(2) 200×200 0.4 163 183 12.2 

NS-250-C group C 250×250 0.5 106.6 108.9 2.1 

NS-200-T group T(3) 200×200 0.4 220 236 7.2 

NS-250-T group T 250×250 0.5 127.6 128.6 0.78 

average   4.45 

(1) Opening is located at bottom of shear span near loading point. 593 
(2) Opening is located at middle of the shear span. 594 
(3) Opening is located at top of shear span near support. 595 
(4) a: height of openings; h: dept of the beam. 596 
 597 
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Table 3 – Values of the parameters of the steel constitutive model for deep beams tests. 621 
 (%)sy  2( )sy N mm

 

(%)sh  2( )sh N mm  (%)su  2( )su N mm

 

Third branch 

exponent 

14  0.21 420 1.4 430 4.4 540 1 

8  0.21 420 1.4 430 4.4 540 1 

6  0.15 300 1.4 330 4.4 440 1 

 622 
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Table 4 – Details for the shear wall panels. 650 
Specimen ID  geometry (%)x  (%)y  (%)F  ( )vF kN  exp

, ( )h uF kN  , ( )num

h uF kN  exp exp

, , , (%)num

h u h u h uF F F  

S1 group A 1.03 1.16 1.16  433 680 721 6.0 

S2 group A 1.03 1.16 1.16  1653 928 958 3.3 

S3 group A 1.03 2.46 2.46  424 977 991 1.4 

S4 group B 1.03 1.05 1.05  262 392 364 7.1 

S9 group B 0.0 0.99 0.99  260 342 310 9.3 

S10 group B 0.98 1.0 5.71  262 670 656 2 

 average 4.85 
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Table 5 – Values of the parameters of the steel constitutive model for shear walls tests. 678 
 (%)sy  2( )sy N mm

 

(%)sh  2( )sh N mm  (%)su  2( )su N mm

 

Third branch 

exponent 

8  0.287 574 0.287 574 2.46 764 1 
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680 
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Fig. 1 – Diagram for modelling the fracture mode I at the crack coordinate system [1]. 
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Fig. 2 – Relation between crack shear stress and crack shear strain for the incremental approach based on a shear 

retention factor [19]. 
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Fig. 3 – Diagrams for modelling compression: (a) the  c c
 relation used in the plasticity model; (b) the (1 )c dd   

relation adopted in the isotropic damage model; (c) the 
c c   diagram for compression with indication of the compressive 

fracture energy, 
,f cG .   

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 



 33 

 

5

150

60

5

notch

 

 

 

(a) (b) (c) 

Fig. 4 – Details of the splitting tensile test: (a) setup of the test [24]; (b) geometry of the specimen, dimensions are in mm; 

(c) experimental crack pattern at the failure stage [25].  
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Fig. 5 – Finite element mesh, load and support conditions used for analysis of the splitting tensile test. 
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Fig. 6 – Experimental load vs. crack mouth opening displacement relationship [22] in comparison with the predictions 

of the PDSC and SC models. 
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(a) (b) 

Fig. 7 – Predictions of PDSC model for the splitting tensile test: (a) numerical crack pattern; (b) numerical plastic zone (results of (a) 

and (b) correspond to 1.9W  mm, the final converged loading step). 

Note: In pink color: crack completely open; in red color: crack in the opening process; in cyan color: crack in the reopening process; in 

green color: crack in the closing process; in blue color: closed crack; in red circle: the plastic zone. 
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Fig. 8 – Deep beams with openings tested by El-Maaddawy and Sherif [27]: (a) details of the reinforcement system, 

common for all the beams in the experimental program; (b) geometry of the beams at group B, NS-200-B and NS-250-

B; (c) geometry of the beams at group T, NS-200-T and NS-250-T; (d) geometry of the beams at group C, NS-200-C 

and NS-250-C.         
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Fig. 9 – Finite element mesh, load and support conditions used for analysis of the beam NS-200-C.   

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 



 39 

( , )su su 

( , )sh sh 
( , )sy sy 

3PT

2PT
1PT

SE

s

s

SE

 
Fig. 10 – Uniaxial constitutive model (for both tension and compression) for the steel bars [1]. 
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Fig. 11 – Experimental load vs. mid-span deflection [27] in compare with the predictions of the PDSC and SC models for the 

beams: (a) NS-200-B; (b) NS-200-T; (c) NS-200-C; (d) NS-250-B; (e) NS-250-T; (f) NS-250-C. 
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Fig. 12 – Experimental crack patterns [27] for the beams: (a) NS-200-B; (b) NS-200-T; (c) NS-250-B; (d) NS-250-T; (e) NS-

250-C. 
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Fig. 13 – Numerical crack patterns (left) and plastic zones (right) predicted by PDSC model for the beams in 

analysis (the results correspond to the final converged step). 

Note: the crack pattern and plastic zone are represented over the finite element mesh adopted for the concrete. 
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Fig. 14 – Geometry and loading configurations of the shear walls tested by Maier and Thürlimann [29] (dimensions in mm): (a) 

the walls in group A (with vertical flange); (b) the walls in group B (without vertical flange). 
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Fig. 15 – Simulation of the S3 shear wall tested by Maier and Thürlimann [29]: (a) finite element mesh used for the analysis; (b) 

horizontal load vs. horizontal displacement relationship, Fh-Uh; (c) numerical crack pattern predicted by PDSC model and (d) 

plastic zone predicted by PDSC model (results of (c) and (d) correspond to 16.5hU mm , the final converged step); (e) 

experimentally observed crack pattern [29]. 

Note: the crack pattern and plastic zone are represented over the finite element mesh adopted for the concrete. 
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Fig. 16 – Simulation of the shear walls S1, S2, S4, S9, S10 tested by Maier and Thürlimann [29]: (a) horizontal load versus horizontal 

displacement relationship, Fh-Uh; (b) numerical crack pattern predicted by PDSC model and corresponding to the final converged step; (c) 

experimentally observed crack pattern [29]. 

Note: the crack pattern is represented over the finite element mesh adopted for the concrete. 
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Fig. 17 – Sensitivity of the analysis of the panel S4 respect to the values of the parameters: (a)
cf ; (b)

1c ; (c)
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Fig. 18 – Sensitivity of the analysis of the panel S4 respect to the value of the 

parameter 
ctf : (a) Fh-Uh relationship; (b) crack normal stress-crack normal strain 

diagram ( cr cr

n n  ) for the 
ctf  equal to 1.2, 2.2, and 4.2 MPa. 
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Fig. 19 – Sensitivity of the analysis of the panel S4 respect to the value of the 

parameter fracture energy mode I (
fG ): (a) Fh-Uh relationship; (b) crack normal stress-

crack normal strain diagram ( cr cr

n n  ) for the 
fG  equal to 0.08, 0.14, and 0.4 MPa.  
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Fig. 20 – Sensitivity of the analysis of the panel S4 respect to the size of finite element mesh: (a) refined finite element mesh used for 

analysis; (b) Fh-Uh relationship; (c) Numerical crack pattern obtained at final converged step of the analysis.  

Note: the crack pattern is represented over the finite element mesh adopted for the concrete. 
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