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Abstract: 

Low voltage actuators based on poly(vinylidene fluoride) (PVDF) with 10, 25 and 40 % 

1-hexyl-3-methylimidazolium chloride ([C6mim][Cl]) and 1-hexyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide ([C6mim][NTf2]) are prepared by solvent casting in 

order to evaluate the effect of anion size in the bending properties. Independently of the 

ionic liquid type and content, its presence leads to the crystallization of PVDF in the -

phase. The addition of ionic liquid into the polymer matrix decreases significantly its 

degree of crystallinity and the elastic modulus. It is also confirmed the good miscibility 

between PVDF and IL, determined by the interaction of the CF2 groups from the PVDF 

chains with the imidazolium ring in the ionic liquid (IL). The AC conductivity of the 

composites depends both on the amount of ionic liquid content and anion size.  

The bending movement of the IL/PVDF composites is correlated to their degree of 

crystallinity, mechanical properties and ionic conductivity value and the best value of 

bending response (0.53 %) being found for IL/PVDF composite with 40 wt% of 

[C6mim][Cl] at an applied voltage of 10 volts square signal. 
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1. Introduction 

The combination of ionic liquids (ILs) and piezoelectric polymers allows the 

development of a new class of electroactive smart materials [1, 2] with suitable electrical, 

mechanical and electromechanical properties for applications in the areas of sensors and 

actuators [3-5], energy generation and storage [6, 7] and biomedicine [8, 9], among 

others. These composites combine the attractive properties of polymers (lightweight, 

inexpensive, fracture tolerant, pliable and easily processed) with the properties of the ILs 

(low melting temperature, negligible vapor pressure, high chemical and thermal 

stabilities, high ionic conductivity, and a broad electrochemical potential window) [10-

12]. 

In this scope, one of the most interesting application areas of those materials is the 

development of electroactive actuators, as they can be operated at lower-voltages when 

compared with related systems, such as shape memory alloys (SMA), electroactive 

ceramics (EAC) [13, 14] and conductive polymers or aerogels [15]. Those actuators can 

achieve large deformations and do not deteriorate under the application of cycling driving 

voltages or under atmosphere conditions [16-19]. Further, the properties of the ILs, 

including near-zero vapor pressure and high thermal stability over a broad temperature 

range, allow to improve lifetime of electroactive actuators and their high temperature 

(>100 ºC) operation [20]. 

The high value of the electrical conductivity and the large electrochemical windows of 

ILs can lead to improved actuation speed and strength by tailoring the number of cations 

and anions as well as their sizes [21]. 

The first work reporting on the use of ILs for actuators was related to conducting polymer 

actuators [16], which are driven by doping and undoping of π-conjugated polymers by 

redox reactions. Electroactive actuators based on piezoelectric polymer and IL operate in 
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a similar way to electric double layer capacitors and can bring advantages in terms of the 

simplicity and durability with respect to the previous ones [22]. 

The most interesting and used polymers for electroactive actuators are Nafion [23], 

poly(vinylidene fluoride) (PVDF) [24] and its copolymers poly(vinylidene fluoride-co-

chlorotrifluoroethylene) (PVDF-CTFE) [25] and poly(vinylidene fluoride-co-

hexafluoropropylene), (PVDF-HFP) [26]. 

PVDF and its copolymers are known by its piezoelectric properties but for large strain 

actuator application the most relevant characteristics are their high dielectric constant, 

polarity and ionic conductivity [27].  

Thus, large actuator strains have been observed in poly(vinylidene fluoride-co-

chlorotrifluoroethylene)/poly(methylmethacrylate) (PVDF−CTFE/PMMA) with 1-ethyl-

3-methylimidazolium trifluoromethanesulfonate ([C2mim][TfO]) [25], PVDF-HFP with 

1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) [26] and PVDF-HFP 

with [C2mim][BF4] with two bucky-gel electrode layers, the latter showing a maximum 

stress and strain of 4.7 MPa and 1.9 %, respectively [5]. Further, PVDF-HFP actuators 

have been developed also with other IL such as [C2mim][BF4] and 1-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) [28]. The largest 

strains (up to 4%) have been developed with Nafion and ILs such as 1-ethyl-3-

methylimidazolium hexafluorophosphate ([C2mim][PF6]) and 1-hexyl-3-

methylimidazolium hexafluorophosphate ([C6mim][PF6]), without any signs of back 

relaxation [22]. 

Thus, suitable actuators are developed with PVDF based polymers and IL such as IL: 1-

ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2] [29], the 

electrical transport process being one of the critical issues in actuator performance that 

must be further investigated. As IL based on 1-n-alkyl-3-methylimidazolium cation 
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[Cnmim+][X−] are among the most interesting for actuator applications, the goal of this 

work is the preparation of PVDF composites with 1-hexyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide ([C6mim][NTf2]) and 1-hexyl-methylimidazolium 

chloride ([C6mim][Cl]) in order to evaluate the effect of anion size ([Cl]-: 25.9 cm3mol-1 

and [NTf2]
-: 158.7 cm3mol-1 [30]) and filler content on bending actuation. Thus, the 

objective of the present study it to determine the role of the anion size and IL content on 

the performance of the actuators.  
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2. Experimental 

2.1. Materials 

Poly(vinylidene fluoride) (PVDF, Solef 6020) and N,N-dimethylformamide (DMF) were 

obtained from Solvay and Merck, respectively. The ionic liquids 1-hexyl-3-

methylimidazolium chloride ([C6mim][Cl]) and 1-hexyl-3-methyl imidazolium 

bis(trifluoromethylsulfonyl)imide ([C6mim][NTf2]) where acquired in liquid form from 

Iolitec (Germany) with a purity of 99% . 

 

2.2. Sample preparation 

For the preparation of the composite films, 1g of PVDF was dissolved at room 

temperature under magnetic stirring for ~ 4 h in 6 mL of DMF with a polymer/solvent 

ratio of 15/85 w/v. Then, the ionic liquid was added to the solution, the relative ionic 

liquid/polymer concentration ranging from 10 up to 40 % (w/w). The IL content within 

the composite films were chosen taking into account the compatibilization and miscibility 

between PVDF and ILs, as well as the corresponding electrical properties. After complete 

homogenization, the solution was spread at room temperature on a clean glass substrate 

and the solvent was evaporated at 210 ºC for 10 minutes in an air oven (Binder, ED23) 

and cooling down at room temperature ( ̴ 23°C). The thickness of the obtained ILs/PVDF 

films is ~ 50 m.  

 

2.3. Characterization of the samples 

The morphology of the samples was evaluated by scanning electron microscopy (SEM) 

with a Quanta 650 FEG (FEI) scanning microscope. Previously, the samples were coated 

with gold using a magnetron sputtering Polaron Coater SC502.  
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Fourier transformed infrared spectroscopy (FTIR) measurements were performed at room 

temperature with a JASCO FT/IR-4100 spectrometer in the attenuated total reflection 

(ATR) mode. FTIR spectra were collected with 64 scans and a resolution of 4 cm-1 in the 

spectral range between 650 and 4000 cm-1. 

Differential scanning calorimetry measurements (DSC) were performed in a DSC 200 F3 

Maia NETZSCH apparatus at a heating rate of 10 °C min-1. The samples were cut into 

small pieces and placed into 25 L aluminium pans. Experiments were performed from 

25 to 200 °C under nitrogen purge. 

Dielectric measurements were carried out using a Quadtech 1929 Precision LCR meter at 

room temperature in the frequency range from 20 Hz to 1 MHz with an applied voltage 

of 0.5 V. The samples were prepared in the form of a parallel plate condenser with circular 

gold electrodes (5mm diameter) deposited by magnetron sputtering with a Polaron Coater 

SC502. The capacity and the dielectric losses were recorded and the real and imaginary 

parts of the dielectric constant were obtained taking into consideration the geometrical 

characteristics of the samples. The a.c. conductivity was calculated from [31]: 

    ''

0

'                                                  (1)                                          

where ε0 is the permittivity of free space, f 2  is the angular frequency and 

   tan'''   is the frequency dependent imaginary part of the dielectric permittivity 

 

Stress-strain mechanical measurements were carried out in samples with dimensions of 

15 mm × 10 mm with an AG-IS universal testing machine from Shimadzu with a load 

cell of 50 N. Tests were performed in the tensile mode at room temperature ( ̴ 23°C) using 

a stretching rate of 1 mm min-1.      
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Bending measurements were performed using a high definition camera Logitech HD 

1080p connected to a PC and a home-made sample holder. The camera allows the analysis 

of the sample movements with 200 μm accuracy. The samples were prepared in the form 

of 12 mm x 2 mm rectangles and fixed using two needles, leaving a free length of 10 mm. 

The sample-holder was then connected to an BK precision 4053 function generator and 

an oscilloscope PicoScope 4227 was placed in parallel to the sample to detect possible 

short-circuits and guarantee the electrical integrity of the samples along the tests. Figure 

1 shows the schematic representation of the displacement measurement procedure as well 

as of the internal structure variation of the actuator under applied voltage. 

The samples were driven by a square wave signal with three peak voltages: 2.5, 5 and 10 

Volts at a frequency of 0.1 Hz, allowing anion and cation migration to the electrodes. 

The measurements were evaluated by analysing the movement of the films every 5 

seconds. Bending (ε) was calculated after measuring the sample displacement along the 

x axes according to the equation 2 [28]: 

100
2

22










L

d
                                                           (2) 

where L is the sample free length, d the thickness δ the displacement. The measured 

displacement δ was transformed into the curvature (1/R) by equation 3[5]: 

22

21








LR
                                                          (3) 

 where R is the curvature radius and L is the length of the sample. 
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Figure 1 – Schematic representation of the displacement measurement procedure 

 

Sample characterization and actuator performance measurements were performed at least 

in triplicate and the average value and standard deviation were calculated. 
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3. Results and discussion 

3.1 Morphology, polymer phase and thermal properties 

3.1.1 Morphological variations 

Characteristic SEM images of the pristine polymer and the IL/polymer composites are 

represented in Figure 2 for both IL types, showing that for both IL types, the spherulitic 

microstructure characteristic of PVDF is observed [32].  

 

Figure 2 - SEM image of the pristine polymer (a); of IL/PVDF composites with [Cl] 

anion with different IL contents: 25 % (b) and 40 % (c) and for composites with the [NTf2] 

anion with 40 % (d) IL content. 

 

It can be observed that the spherulitic structure characteristic of PVDF (Figure 2a) is 

maintained but that the spherulite size deceases with increasing [C6mim][Cl] filler content 

(Figure 2b and c). Further, the borders between spherulites become more evident, leading 
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to the appearance of voids. These images and the corresponding conclusions are also 

representative for the samples with [C6mim][NTf2] as filler (Figure 2d), the results being 

thus independent of the anion type.  The decrease in the average spherulite size and 

therefore the increase in their number is due to two factors: first, the ionic liquids act as 

nucleation agents [33, 34], promoting a larger number of crystallization nucleus and 

therefore leading to spherulites with smaller sizes; second, the strong electrostatic 

interactions between the IL with the local dipole moments of the polymer chains, strongly 

affects polymer crystallization kinetics [35]. 

It is also to notice that when the nuclei density is high (Figures 2c and 2d), the nuclei of 

the spherulites are too close to each other, hindering free growth and leading to spherulites 

with well-defined borders and even with the presence of voids [36]. The main difference 

between the samples with IL containing [Cl] or [NTf2] as anions is that, for a given IL 

content, the samples with [NTf2] show slightly smaller spherulite sizes, indicating 

stronger interaction with the polymer due to the larger anion size. 
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3.1.2 Electroactive phase content 

The identification and quantification of the crystalline forms of PVDF (α-, β- or γ-phase) 

was performed by FTIR spectroscopy [27]. Figure 3 shows the FTIR-ATIR spectra for 

the different IL/PVDF composites. 
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Figure 3 - FTIR-ATR spectra of pristine PVDF and IL/PVDF composites with 10, 25 

and 40 wt% [C6mim][Cl] (a) and [C6mim][NTf2] (b) content. 

 

The pristine polymer crystallizes in the nonpolar α-phase, as indicated by the bands at 

766, 795, 855 and 976 cm-1 and the absence of bands identified with the β-phase (840 and 

1279 cm-1)  [27]. Moreover, for both IL type, the characteristic bands of the β-phase 

increase and the ones corresponding to the α-phase decrease with increasing of IL content, 

independently of the anion type. No traces of the γ-phase are observed. Thus, it is 

concluded that the presence of the IL induces the PVDF polar crystalline β-phase during 

the crystallization of the polymer. Similar results have been reported for the 

[C2mim][NTf2] [29, 37] and [C4mim][PF6] [38] IL/PVDF composites. 

The nucleation of the crystalline β-phase of PVDF is attributed to the electrostatic 

interactions between the ionic liquid and the dipoles of the PVDF chains through ion-
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dipole interactions, leading to preferred crystallization in the all-trans chain conformation 

of PVDF [33, 34]. 

The crystalline phase content of the different phases present in the IL/PVDF composites 

can be quantified by applying equation 4, once the sample contains only  and  phases 

[27]: 










AAKK

A

XX

X
F







)/(
)(                                       (4) 

 

where A and A represent the absorbance at 766 and 840 cm-1 and K and K are the 

absorption coefficients at the respective wavenumber, which values are 6.1×104 and 7.7× 

104 cm2 mol-1, respectively. 

 

The polar -phase content in the different samples, calculated after equation 4, is shown 

in Table 1.  

 

Table 1 - -phase, melting temperature and degree of crystallinity of PVDF and the 

corresponding IL/PVDF composites. 

Sample  phase ± 5  Melting temperature ± 2 °C Δχ ± 4  

PVDF 0 170 52 

10, [Cl] 67 169 39 

25, [Cl] 89 161 36 

40, [Cl] 100 151 37 
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10, [Ntf2] 93 171 55 

25, [Ntf2] 80 165 42 

40, [Ntf2] 90 162 47 

 

 

For [C6mim][Cl] IL, the incorporation of 10 %wt IL leads to a nucleation of the -phase 

up to 67%, which further increase up to 100 % with an IL content of 40 %wt (Table 1). 

On the other hand, the incorporation of [C6mim][ NTf2] leads to the nearly full nucleation 

of the polymer in the polar -phase (above 90% -phase content), independently of the 

filler content, indicating, as already observed with respect to the morphology, a larger 

interaction of this anion with the polymer chains, which is related to the  anion size. 

Since the size of [NTf2] anion is larger than the size of the [Cl] anion, it leads to larger 

electrostatic interactions between the negative charge of the IL anion with the positive 

side of the PVDF dipolar moments, promoting the crystallization of the polymer chains 

in the all-trans chain conformation of the -phase for smaller amounts of IL [34]. 

For imidazolium ions, the miscibility and interaction between PVDF and IL is confirmed 

by the FTIR-ATR spectra of Figure 3 through of the CF2-CH2 vibration band [38]. 

Whereas for pristine PVDF this characteristic band is located at 875 cm-1 [39], this band 

gradually shifts to higher wavenumber with increasing IL content, independently of the 

IL type, indicating the interaction of the CF2 groups from the PVDF chains with the 

imidazolium ring in the IL [38]. 
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3.1.3 Degree of crystallinity and melting temperature 

Variations in the degree of crystallinity and melting temperature with IL type and content 

were evaluated after the DSC measurements shown in Figure 4. 
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Figure 4 - DSC scans of pristine PVDF and IL/PVDF composites with 10, 25 and 40 

wt% of [C6mim][Cl] (a) and [C6mim][NTf2] (b). 

 

All samples are characterized by a single endotherm peak, indicative of the melting of 

PVDF (Figure 4).  

Independently of the IL type, it is observed a shift of the melting temperature to lower 

values with increasing IL content, that represent a destabilization of the crystalline phase 

(Table 1) due to the electrostatic interaction with the IL. 

Figure 4a also shows an endothermic peak around ~70 ºC for the samples with 

[C6mim][Cl], which increases with increasing IL content. This peak is ascribed to the 

presence of water in the IL/PVDF composites [37], the water content in the surface 

structure of [C6mim][Cl] being related to the influence of the intermolecular forces 

between cation and anion alone [40]. For chloride anion and [C2mim]+ cation, 2H2O-2Cl 

clusters are typically formed [40], as verified in this work. It is also possible that water 

molecules and ions aggregate in a variety of different clusters, facilitated by hydrogen 

bonding. The presence of water weakens the ionic interactions in ILs due to competitive 
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hydrogen bonding, but in the present case the amount of water molecules is small and just 

affects the surface structure [40].  

 

The degree of crystallinity of the samples (table 1) was obtained by applying equation 5: 

 HyHx

H
X S

C



                                                              (5) 

where sH  represents the melting enthalpy of the sample and H  and H  are the 

melting enthalpies of a 100 % crystalline sample in the  and -phase (93.07 Jg-1 and 

103.4 Jg-1 [27, 41]), respectively. Further, x and y represent phase content of the  and -

phases present in the sample, respectively, as obtained from the FTIR experiments (Table 

1).  

 

Table 1 shows the melting temperature and degree of crystallinity of the ILs/PVDF 

composites, indicating that the degree of crystallinity is affected by the IL type and 

content present in the composite.  

 

The presence of both IL fillers lead to a decrease of the degree of crystallinity of the 

polymer, being this stronger for the samples with [C6mim][Cl] in comparison with the 

ones with [C6mim][NTf2]. Further, the decrease of the degree of crystallinity is almost 

independent on the filler content. In this way, the [C6mim][Cl] filler acts as a defect into 

the PVDF structure, whereas the stronger electrostatic interactions of the [C6mim][NTf2] 

lead to a stronger effect on the crystallization process and to a larger degree of crystallinity 

for a given IL concentration in comparison with [C6mim][Cl]. It is to notice that those 

results are in agreement with the FTIR and SEM results.   

Thus, Table 1 shows that IL type influences the degree of crystallinity of the samples, 

which in turn will be reflected in the mechanical and electrical properties of the materials. 
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3.2 Mechanical properties 

For electromechanical actuator applications, the evaluation of the mechanical properties 

of the IL/PVDF composites is one of the key issues as it directly affects actuator 

performance. Representative stress–strain curves for the IL/PVDF composites with 

[C6mim][Cl] content are shown in Figure 5, being also representative for the 

[C6mim][NTf2] samples (not shown). 

Figure 5 shows the mechanical behavior typical of the thermoplastic polymer 

independently of the IL content, being therefore characterized by a linear elastic regime 

(where the Young Modulus is determined) and the yielding stress (limiting the elastic and 

plastic regions) [42]. 
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Figure 5 – Stress-strain curves for [C6mim][Cl]/PVDF composites (a) and elastic 

modulus (E’) for the different samples (b).  

 

Figure 5a shows that the IL content deeply influences the mechanical properties of the 

polymer, the elastic modulus and the yielding stress generically decreasing with 

increasing IL content. Further, the yielding strain is largely broadened with the addition 

of IL, indicating that both IL types act as plasticizer within the polymer matrix [29].  
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The elastic modulus (Figure 5b), obtained from a linear fit up to a deformation of 4%, not 

only decreases with increasing IL content, but also is lower for the composites with 

[NTF2]
- anion in comparison to the ones with [Cl]- anion. Thus, as the degree of 

crystallinity is larger for the [NTF2]
- anion containing samples and the mechanical 

properties are determined mainly by the amorphous part of the material, in which the IL 

is placed, the higher relative IL content in the amorphous part of the material for that 

anion leads to a higher plasticizer effect and therefore to a lower elastic modulus. 
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3.3 Electrical properties  

Figure 6 a-c shows the real part of the dielectric constant and the a.c. conductivity for the 

pure polymer and the [C6mim][NTf2]/PVDF composites with different ILs contents as a 

function of frequency at 23ºC, the behavior being also representative for the 

[C6mim][Cl]/PVDF composites (data not shown).  
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Figure 6 – Dielectric (a) and a.c. conductivity (c) for the different [C6mim][NTf2]/PVDF 

composites  as a function of frequency. For 40 %wt IL content and both IL types, 

dielectric (b) and a.c. conductivity (d) as a function of frequency.  

Figure 6a-c shows that the addition of IL increases the dielectric constant and a.c. 

conductivity in comparison to the pristine polymer matrix [43]. This behavior is due to 
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dissociation and ion transport of the ionic liquid resulting in higher carrier numbers within 

the polymer matrix [44]. For IL contents above 25 %wt (Figure 6a and c) a trend to 

saturation both in the dielectric constant and a.c. conductivity is observed. 

For high IL contents (40 %), Figure 6b and d shows that the dielectric constant and a.c. 

conductivity depends on the type of anion present in the ionic liquid: as the size of the 

cation is the same for both IL types, it is shown that ions diffusion is strongly influenced 

by the size of the anion, being higher for the anion type with smaller size ([Cl]). In this 

sense, the mobility is further improved for the samples with lower degree of crystallinity 

([C6mim][Cl]/PVDF), allowing higher ion mobility. 

 

 

3.4 Bending actuation response 

 

Independently of IL type, the IL/PVDF composites with the best ionic conductivity are 

the samples with 40%wt IL content, the bending performance being determined for these 

samples due to the higher number and mobility of ions. Thus, Figure 7 shows the bending 

response generated by the migration and accumulation of ions as a function of time for 

different voltages and the same frequency of 0.1 Hz (see also supplementary videos 

[C6mim][Cl] and [C6mim][NTf2]). Typically, the bending response decreases with 

increasing frequency due to the low ion mobility in the polymer layers, the maximum 

frequency reported in the literature being also below 0.5 Hz, as for higher frequency, the 

movement of ions is at lower speed than the voltage polarity switch [22]. 
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Figure 7 - Displacement of the IL/PVDF composites as a function of time under an 

applied voltage of 5 and 10 Volts at a frequency of 0.1 Hz for: a) 40 %wt of 

[C6mim][NTf2] and  b) 40 %wt of [C6mim][Cl]. 

 

Figure 7 shows the displacement (δ) measured from the position of the actuator tip 

(represented in the Figure 1) as a function of time for different voltages. The displacement 

is determined by the diffusion of anions of cations near the electrodes (due to the ion 

concentration gradient) that is related to the conductivity of the PVDF/IL composites. 

Independently of IL type, it is observed that the displacement increases with increasing 

applied voltage, correlated with the flowing current between electrodes. The bending 

movement under the applied voltage is due to the movement of the anions and cations 

present in the IL to the negative and positive electrode layers, respectively, forming an 

electric double layer. It is also observed that the displacement is not symmetric with 

respect to the initial position, due to ion irreversible movement and relaxation, i.e, the 

physical result of the motion and accumulation of the anion from IL [45]. This is 

particularly relevant for the sample with [C6mim][Cl], which for the larger potential, just 

suffer actuation towards one direction, indicating a nonreversible separation of the ions 
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within the actuator structure. This behavior is related with the fact that, due to the smaller 

size and larger size difference between the anions and cations, more ions can be 

accommodated near the electrodes, which in turn boosts the overall bending curvature. 

For 10 V, the maximum displacement is 4.4 mm for the samples with the [Cl] anion and 

3.4 mm for the [NTf2] anion. 

Thus, there are not only differences on the actuation range but also on the behavior (one 

direction actuation for the [C6mim][Cl] IL due to the lower anion size and therefore larger 

ionic gradient along the actuator.  

Figure 8 shows a picture of the bending motion for 40 %wt of [C6mim][NTf2] of the 10 

mm × 2 mm sized actuator strip under a ± 10 Volts square signal, showing the large 

bending for a positive voltage. This bending motion is representative for the samples with 

[C6mim][Cl] IL. 

 

 

Figure 8 – Performance of the actuator under an applied voltage of 10 Volts square signal 

and frequency of 0.1 Hz for 40 wt% of [C6mim][NTf2]. 

Table 2 summarizes the main parameters (displacement, bending and curvature) 

calculated for the IL/PVDF composite with 40%wt IL for an applied voltage of 10 Volts 
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square signal and a frequency of 0.1 Hz. The bending and curvature parameters were 

determined after equation 2 and 3, respectively (see also Figure 1). 

Table 2 - Displacement, bending and curvature for the IL/PVDF composites with 40 %wt 

IL content at 10 Volts square signal and 0.1 Hz. 

Parameter 

Samples 

40  ± 1%, [NTf2] 40  ± 1%, [Cl] 

Displacement (δ) / mm 3.4 4.4 

Bending (ε) / % 0.5 0. 53 

Curvature (1/R) / mm-1 0.061 0.074 

 

The bending response depends on the thickness of the sample [5], the samples with 40 

%wt IL exhibiting large s and stable over time bending response for thickness around 75 

μm. The large bending response represents an improvement in comparison to the data 

reported in the literature for [C2mim][NTf2]/PVDF with 5 Volts square signal and 0.5 Hz 

and [C2mim][TFSI]/PVDF-HFP  [28, 29, 46]. 
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Conclusion 

IL/PVDF composites based on [C6mim][Cl] and [C6mim][NTf2] were prepared by 

solvent casting with different ionic liquid contents. Independently of the type and content 

of IL, the characteristic spherulitic structure of PVDF is observed, the size of the 

spherulites decreasing with increasing IL content and being smaller for the larger [NTf2] 

anion. Thus, the IL acts as nucleation centres during polymer crystallization, leading also 

to an increase of the β-phase content and a decrease of the degree of crystallinity of the 

samples. Further, the IL/PVDF shows lower elastic modulus that the pristine PVDF 

matrix and decreases with increasing IL content, opposite to the dielectric constant and 

a.c. conductivity, which increase with increasing IL content. Considerable bending 

actuations are obtained in the samples, the best value of the bending response (0.53 %) 

being is found for the IL/PVDF composite with 40 %wt of [C6mim][Cl] at 10 Volts square 

signal. 
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