
1 

Tension-stiffening model for FRC reinforced by hybrid FRP and steel 

bars 

Hadi Mazaheripour1, Joaquim Barros2, Jose Sena-Cruz3 

 

ABSTRACT 

This paper presents a tension stiffening model for Fiber Reinforced Concrete (FRC) tensile member reinforced by 

hybrid glass fiber reinforced polymer (GFRP) and steel bars. The model is developed through an explicit analytical 

bond formulation by considering a four-linear bond shear stress-slip relationship to simulate the bond behavior 

between reinforcing bars and surrounding FRC. The model is also capable of simulating both the fiber 

reinforcement contribution and the yielding stage of steel bar at cracked section. Additionally, a FE Model is 

carried out using a multi-directional smeared crack approach for modeling cracking process in FRC, and adopting 

interface finite elements to simulate the bond behavior between reinforcements and FRC, whose constitutive model 

was defined from the aforementioned bond law. Both the analytical and numerical approaches showed a good 

agreement with some recent experimental results on tension-stiffening in the literature. Finally, an extensive 

parametric study is performed by using the analytical model, and the influence of the involved parameters on the 

tension-stiffening and cracking behavior of hybrid GFRP/steel FRC tensile member is investigated. 
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1. INTRODUCTION 

For the last two decades, the use of Glass Fiber Reinforced Polymer (GFRP) bars as internal reinforcements for 

concrete has been significantly increased, mostly for those Reinforced Concrete (RC) structures that are exposed 

to aggressive environments. However, the relatively low axial stiffness of GFRP bars, as well as theirdifferent 

bond-slip behavior of GFRP-concrete interface  [1, 2] when compared with steel-concrete interface, usually result 

in higher deformability and crack width at serviceability load conditions. Hence, a deeper attention in predicting 

and designing GFRP-RC members is needed. Many studies have already been carried out to investigate the 

structural behavior of GFRP Reinforced Concrete (GFRP-RC) members, e.g.[3-5] and also several countries have 

already published codes and design guidelines including ACI [6], JSCE [7], FIB [8] and CSA [9] for FRP 

reinforced concrete members. However, the brittle failure behavior of GFRP bars, and the lower structural 

performance under service loads compared with conventional steel bars are still concerns on the adoption of GFRP 

reinforcements in many structural applications. To this end, GFRP-RC beams are usually over-reinforced in such 

way that concrete crushing in compression zone governs the failure mode. Additionally, GFRP bars are susceptible 

to fire. 

Combining GFRP and steel bars as hybrid flexural reinforcing system seems to be a promising solution to 

overcome such problems. In this hybrid system, steel reinforcement ratio is designed to assure safety and integrity 

requirements in case of fire as well as to enhance the structural performance in terms of crack width, deformability 

and ductility. To improve durability, these longitudinal steel bars are placed in the tensile region of the member 

with relatively larger concrete cover for being better protected from corrosion. Due to the corrosion immunity of 

GFRP bars, a minimum concrete cover is used in order to assure proper transmission of bond forces and maximize 

the inner lever arm formed by GFRP bars and concrete under compression. Some research has already been carried 

out where GFRP and steel bars are combined [10-12], and it is reported an improvement in the flexural behavior 

when comparing with GFRP-RC solutions. 

In addition, steel stirrups are the reinforcing system more succepible to corrosion since they are closer to the 

exposed surfaces of concrete elements. For eliminating steel stirrups, using a High-Performance Fiber Reinforced 

Concrete (HPFRC) might be a solution, as long as this material provides similar shear reinforcement effectiveness 

[13, 14]. Due to the quite high post-cracking tensile strength and energy absorption capacity that HPFRC can 
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attain, this composite can be used not only to assure the required shear capacity to RC elements, but also to enhance 

the structural performance at serviceability and ultimate limit states (SLS and ULS, respectively) [13, 14]. 

In the context of this research topic, a study on the interaction between Fiber Reinforced Concrete (FRC), GFRP 

and steel bars seems to be essential for a reliable prediction of the behavior of hybrid FRC members. For this 

purpose, a FRC member reinforced with GFRP and steel bars (hybrid reinforcement) is subjected to uniaxial 

tension, and its cracking and tension stiffening behavior is theoretically studied. Some researchers have already 

investigated the tension stiffening of conventional Steel-FRC structures [15-17], and more recently some studies 

have been done with GFRP-RC [18-21]. Most of them have focused on the results obtained experimentally by 

subjecting a concrete member to uniaxial tension test. Some theoretical approaches have been developed for 

predicting the tension stiffening behavior of GFRP-RC [22, 23] and S-FRC [16, 24, 25]. However, according to 

the knowledge of the athours, there is no research on cracking analysis and tension stiffening effect of hybrid FRP-

steel reinforced FRC structures. 

By using a local bond-slip law for modeling the bond behavior between FRC and FRP/Steel bar reinforcement, an 

analytical model is developed in the present work through an explicit formulation. This model is then validated by 

using some recent experimental data available in the literature. However, since there is no experimental results 

available for tension stiffening of hybrid FRP/Steel FRC tensile member, a finite element (FE) model using 

interface elements [26] is employed, and the results from the numerical simulations are compared with those 

obtained from the analytical model. A parametric study is also carried out by using the proposed analytical 

approach, and the effectiveness of the model parameters in terms of cracking and tension-stiffening behavior of 

hybrid FRP/Steel FRC is assessed. 
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2. ANALYTICAL MODEL 

A FRC member is considered to be reinforced with a constant reinforcement ratio of FRP and steel bars along its 

longitudinal axis, which is subjected to uniaxial tension load in order to analyze the tension-stiffening effect and 

its cracking behavior. To prevent bending effects in the member, symmetric arrangement of the reinforcements is 

assumed in the FRC cross-section. 

 

2.1. Crack formation stage 

When the load is applied to the  member, it is transmitted to the FRC throughout a part of embedded length of 

reinforcing bar in which the total bond shear force over this distance is in static balance with the applied load. This 

part of embedded length can be named as transferred bond length ( trL ), which depends on the bond mechanism 

between the reinforcing bars and surrounding FRC [27]. The part of the member beyond the trL  behaves as a real 

composite element (“tie region” in Figure 1), where the slip (  ) between the bars and surrounding FRC is null and 

the total applied force is shared between them in accordance with their axial stiffness. Since the total applied load 

is transferred throughout two different trL  that belong to FRP and steel bars, the higher trL  is adopted to calculate 

the tie region. 

As long as the FRC tensile stress in the tie region is less than its tensile strength, ctf  , the member remains un-

cracked. At this stage, the fibers are almost inactive. Once ctf  is reached in the tie region, a crack is formed over 

the weakest section (It is assumed that this section distanced crL  from the specimen’s extremity, see Figure 1). 

At this cracked section, the tensile stress of concrete matrix tends to drop to zero with the crack opening, while the 

tensile stresses in the bars and discrete fibers, which are now active, tend to increase. By increasing the tensile 

stresses in the reinforcements, the reinforcing bars and fibers start slipping out from the surrounding concrete 

matrix, leading to an increase of the crack width. The total force is redistributed to the concrete, and if once again 

the tensile strength is reached, a second crack is formed. At this stage, the force transferred by fibers at the first 

cracked section also contributes to the formation of the second crack. This process, which named “crack formation 

stage” [28], continues until all cracks are formed along the member and no tie region exists anymore. 
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2.2. Bond formulation and bond-slip law of the reinforcing bars 

An infinitesimal length dx of the tensile member at a distance x (see Figure 1) is shown in Figure 2. The equilibrium 

of this element can be expressed by 
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and also 

  ( ) ( ) ( ) ( )c cf c F F s sx x A x A x A F       (4) 

where cf  is the local tensile stress of concrete due to the force transferred to the concrete matrix by the steel 

fibers at cracked section in the member. c , s  and F  are the tensile stress of concrete matrix, steel bar and 

FRP bar, respectively. Hereafter, subscript “s” is used to designate parameters for steel bar, while “F” is for FRP 

bar. The perimeter of the steel and FRP bars is designated by sP  and FP , respectively, while the cross sectional 

area of these bars is sA  and FA . c cE A  is the concrete axial stiffness. 

The slip (  ) between the reinforcements and FRC is defined by Eq. (5) and (6) for steel and FRP bar, respectively. 
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where u  and   represent elongation and strain, respectively. By substituting Eq. (1) and (3) into Eq. (5) and also 

Eq.  (2) and (3) into Eq. (6) yield the following set of nonlinear differential equations governing the bond problem 

of the member: 
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where n is the modular ratio ( s s cn E E , F F cn E E ), and ρ is the reinforcement ratio ( s s cA A  , 

F F cA A  ). It should be noticed that the materials are assumed to follow the Hook’s constitutive law. Moreover, 

in the equilibrium conditions expressed in Eqs. (1) to (3), the resisting tensile stress due to the concrete softening 

at cracked section is neglected since this value drops asymptotically to zero for a very small slip of the 

reinforcements [29]. 

To simplify the complexity of solving the set of second-order nonlinear differential equations presented in Eqs. (7)

, the elastic deformation of surrounding concrete matrix is neglected against the reinforcement’s deformation at 

the interface (i.e. s cu u  and F cu u ). By this assumption, Eqs. (5) and (6) become 

 
2 2
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Hence, Eq. (7) is derived as 
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where  
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Depending on the bond-slip relationship between reinforcing bar and concrete, Eqs. (9) can be solved explicitly 

or by using a numerical procedure [30]. There are several bond-slip constitutive laws in the literature that have 

been proposed for FRP reinforcing bars, namely Malvar Model [31], mBEP Model, CMR Model [32], the model 

proposed by Model Code 2010 [28], and etc. In all these models, nonlinear formula has been adopted for the first 

branch of the constitutive law. Thus, by substituting any of these models in Eq. (9), it does not lead to an explicit 

solution. Then, numerical procedure is required to solve the equation. From this standpoint, a multi-linear bond-

slip diagram, consisting of two linear ascending branches prior to the peak bond shear stress, is adopted in the 

present study to solve Eq. (9) for both steel and FRP bars. This multi-linear bond-slip diagram is shown in 

Figure 3a, and is mathematically represented by the following equation: 
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2.3. Contribution of discrete fibers 

Once the crack formed, the fibers start pulling out from the crack plane with increase in crack width. In order to 

calculate the force transferred by these discrete fibers at the cracked plane, two methods can be used according to 

the data available for modeling the fiber reinforcement contribution. If the fiber bond-slip behavior is known, the 

following equations represent the bond problem formulation of each fiber at cracked plane: 
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where the subscript “fr” designates the parameters  for discrete fibers with the same concepts as defined previously 

for reinforcing bars. frx  origins at the extremity of the effective bond length of a fiber crossed by the cracked 

plane (see Figure 4a). According to the literature, this fiber effective bond length is statistically considered 0.25 

of total length [33, 34], leading to pulled out of fiber at one side of the cracked plane (i.e. fr crw  ), therefore, 

Eq. (12) can be solved by the following boundary conditions 

 
   

 

0 0 0

0.25

fr
fr fr fr

fr fr fr cr

d
x x

dx

x l w


    


  

 (13) 

where frl  is the fiber length and crw  is the crack width. Based on what bond-slip constitutive law is adopted for 

fiber, Eq. (12) can have an explicit solution, or a numerical procedure is required (e.g. Runge-Kutta-Nystrom 

method [35]). Cunha et al. in 2010 presented different bond-slip constitutive laws for steel fibers depending on 

the angle between fibers and crack plane they are crossing, as well as the type of steel fibers [36]. Therefore, by 
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adopting a proper bond-slip law, the pullout force of steel fibers can be calculated using the analytical model 

proposed by these authors. Lee et al. in 2011 [37] developed a model named “Diverse Embedment Model (DEM)” 

to calculate the tensile behavior of FRC by considering the pullout characteristics of fibers, as well as the effective 

orientation of fibers in regards to the crack plane. Abrishambaf et al. [38] also compared different post-cracking 

response of steel fiber Reinforced Self-Compacting Concrete (SFRSCC) by taking into account fiber’s orientation 

towards the crack plane. Once the pullout force of each fiber is calculated, the total force of fibers can be 

determined by considering an average number of fibers at cracked section in accordance with their volume friction 

in concrete mix. 

On the other hand, if the uniaxial behavior of FRC in tension is known, the contribution of fibers may be measured 

alternatively by subtracting the tension softening diagram of concrete from the post-cracking diagram of FRC. The 

tension softening diagram of concrete can be estimated according to the CEB-FIB Model Code 2010 [28] or from 

available experimental data [28], by considering the effective length equal to distance between two cracks. This 

concept is shown in Figure 4b. In the present study, the contribution of fibers is calculated based on the average 

post-cracking response of FRC, which can be obtained by performing uniaxial tensile tests or from inverse analysis 

considering the results recorded in three point notched beam bending tests [39, 40]. Therefore, the total force 

transferred to the concrete matrix by fibers is calculated by 

 ( ) ( )cr
c fr ct cr cV w A    (14) 

where 
cr
ct  is the concrete crack tensile stress as function of crack width, crw . 

 

2.4. Bond boundary conditions and solutions for reinforcing bars 

Bond mechanism of a reinforcing bar crossed by two consecutive cracks can be analyzed solving Eq. (9) using 

boundary condition as follow:  

  0, 0
,

r

b r cr

x
x L
  
   

 (15) 

where x  origins from the midway section between two consecutive cracks, bL  is the bond length that is equal to 

2crL  being crL  the distance between two cracks, and cr is the slip at crack section. Based on Eq. (5) and (6), the 
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strain of reinforcing bars at the midway section is equal to the derivation of the slip at this point (i.e. ( 0)m
r

d x

dx

 
 

). The total force that is transferred to the concrete matrix by the reinforcing bars is calculated using the difference 

of the tensile strain of reinforcing bars at cracked section (i.e. 
( )cr b

r

d x L

dx

 
  ) and at midway section, 

multiplying by the reinforcing bar’s axial stiffness: 

 ( ) ( )cr m
c r r r r rV E A      (16) 

where ( )c rV  is the total force transferred to the surrounding concrete matrix due to the bond action of reinforcing 

bars. Note that the subscript “r” represents parameters for both reinforcing bars, FRP and steel bars. 

During the “crack formation stage”, where the tie region exists in the member, bond mechanism at one side of the 

last formed crack (designated by letter “R” meaning right side) undergoes “Infinite Bond Length” (IBL) boundary 

conditions (see Figure 5). IBL represents a bond boundary condition where the trL  increases with the pullout force 

in which the slip and its derivative at the extremity of trL  are always null (i.e. ( 0) 0Rx   , 
( 0)

0R

R

d x

dx

 
 ). On 

the other hand, another side of the last formed crack (designated by letter “L” meaning left side) undergoes “Finite 

Bond Length” (FBL) boundary conditions. FBL represents bond boundary condition where the transferred bond 

length ( trL ) equals to a finite bond length (for case of this study / 2b crL L ) and slip at the extremity of this bond 

length is null, while its derivative is not null (i.e. ( 0) 0Lx   , 
( 0)

0L

L

d x

dx

 
 ). Under this consideration, at the 

last formed cracked plane two bond conditions govern the bond formulation, where the slips on left and right sides 

of this crack are not necessarily equal (Figure 5), and, therefore, Eqs. (9) is solved by using the following boundary 

conditions  

 
( 0) 0 ( 0) 0
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L R

Left Right
L b cr R tr cr

x x
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x L x L
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 
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 (17) 

where Rx  has its origin at section B, and Lx  at section A. The slip at left ( )Left
cr  and right side ( )Right

cr  of the 

last formed crack is not necessarily equal, but due to the compatibility of strain at this section, the derivatives of 

the slip at right and left are equal to the reinforcing bar’s strain, i.e. 
cr
r  
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 ( ) ( )cr
r Right Left

R L

d d

dx dx

 
     (18) 

By solving Eq. (9) using FBL and IBL boundary conditions, for whatever value of cr , slip distribution, ( )x , 

reinforcing bar’s tensile strain, ( )r x , and bond shear stress, ( )x , as well as the force transferred to concrete by 

the bond action, ( (x))c rV , are calculated throughout crack spacing ( crL ), as will be explained in the following 

sections. 

The formulations for IBL conditions and its solving procedures are described in detail elsewhere [27], while, the 

formulation for FBL conditions is summarized hereafter. 

According to the adopted bond-slip law, see Figure 3a, five different bond phases are considered during debonding 

progress, namely: 

1) Elastic phase (e): 1cr    ; 

2) Hardening phase (h): 1 2cr     ; 

3) Plastic phase (p): 2 3cr      ; 

4) Softening phase (so): 3 4cr     ; 

5) Frictional phase (f): 4cr   . 

Based on these five bond-slip phases, substituting Eq. (11) into Eq. (9), and taking FBL boundary conditions 

indicated in Eq. (18), the closed-form solution of Eq. (9) for each reinforcing bar can be expressed by 
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  (19) 

where the definition of ex , hx , px , sox , fx , 
e
trL , 

h
trL , 

p
trL , 

so
trL , and 

f
trL  can be found in Appendix A, as well as 

how the eC , hC , pC , soC and fC  constant parameters are determined. The slip solutions 1C  to 10C  are obtained 

for whatever value of cr  and the transferred bond length of each bond phases (i.e. 
e
trL , 

h
trL , 

p
trL , 

s
trL and 

f
trL ). 
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By considering the compatibility conditions of the strain at the connection point of two consecutive bond phases 

(found in Appendix A), as well as the following conditions of the bond length ( 1
2b crL L ) with respect to the 

different stages of cr , the values of 
1e

trL , 
2e

trL , 
p
trL , 

so
trL and 

f
trL  are calculated for whatever value of cr . Therefore, 

by imposing , theses transferred bond lengths and the slip solutions (i.e.  to ) are found. 

- Stage 1 ( 10 cr    ): the total bond length undergoes only the elastic bond phase, i.e. 
e

b trL L ; 

- Stage 2 ( 1 2cr     ): the total bond length undergoes the elastic and hardening bond phases, i.e. 

e h
b tr trL L L  ; 

- Stage 3 ( 2 3cr     ): the total bond length undergoes elastic, hardening and plastic bond phases, i.e. 

e h p
b tr tr trL L L L   ; 

- Stage 4 ( 3 4cr     ): the total bond length undergoes elastic, hardening, plastic and softening bond 

phases, i.e. 
e h p so

b tr tr tr trL L L L L    ; 

- Stage 5 ( 4cr   ): the total bond length undergoes all the bond phases, i.e. 
e h p so f

b tr tr tr tr trL L L L L L     . 

If the compatibility conditions of the strain at the connection point of two consecutive bond phases (e.g. elastic-

hardening or hardening-plastic) are considered, the values of 
1e

trL , 
2e

trL , 
p
trL , 

so
trL and 

f
trL  can be calculated for 

whatever value of cr . The compatibility conditions of each solving stage are included in Appendix A. 

By imposing a value of cr  and using the above compatibility conditions, the transferred bond lengths, as well as 

the slip solutions (i.e. 1C  to 10C ) are found. Once ( )x  is found, the distribution of tensile strain in the reinforcing 

bars and also the bond shear stress are given by 

 2

2

( )
( )

1 ( )
( )

r r

r

d x
x E

dx

d x
x

J dx


 



 


  (20) 

where rJ  is defined in Eq. (10) for both FRP and steel bars, and rE  is the elasticity modulus of reinforcing bar. 

The solving procedure of Eq. (9) under FBL boundary conditions, and the respective formulations, as well as the 

flowchart of the FBL algorithm are given in detail in Appendix A. 

cr 1C 10C
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2.5. Secondary crack formation stage 

Once all the cracks are formed at “crack formation stage”, by increasing the slips at cracked sections, the tensile 

strains of reinforcement at crack, 
cr
r , and midway section, 

m
r , increase. Note that, at this stage no “tie region” 

exists in the member, and only FBL boundary conditions govern the bond formulation. The total value of the force 

transferred to the concrete matrix by the bond mechanism of the reinforcements (both reinforcing bars and fibers) 

is estimated by 

 ( ) ( ) ( )c t c r c frV V V    (21) 

where ( )c frV  is the total force transferred to the concrete matrix by fibers, which is calculated by Eq. (14). In this 

equation, the value of crack opening, crw , is estimated as double value of reinforcing bar’s slip at cracked section 

due to the symmetric bond action [41], which means: 

 2cr crw     (22) 

If the value of ( )c tV  reaches the concrete cracking force, cr ct cV f A  , a new crack is formed in the midway section 

between two consecutive cracks (e.g. section A in Figure 5). The bond length associated to this new crack is 4crL

, and the symmetric section between two cracks is now changed from section A to C (see Figure 5). This stage can 

be named as “secondary crack formation stage”.  

 

2.6. Updating bond-slip constitutive law during the analysis 

The proposed local bond-slip constitutive law is valid while the slip is increasing. If the slip at a local point of 

interface tends to decrease,     follows an “unloading” branch. If the slip at this point once again tends to 

increase, it follows a “reloading” branch. This unloading/reloading branch can be defined by a single linear branch 

of stiffness /un reK  that depends of the current magnitude of slip exactly before decreasing, which is named as m  

in this study (see Figure 6a). If 10 m    , which means the slip is in the elastic bond phase, it is assumed that 

/un reK  is calculated by , ( )un re e m mK      where ( )m   is the corresponding value of the bond shear stress at m  

(see Figure 6a where 10 m    ). For the cases where 1m   , which means the slip is in the inelastic bond phase, 
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/ / ,un re un re inK K  is assumed to be equal to 1 1   similar to the idealized unloading/reloading of inelastic materials 

discussed in the plasticity theory [42] (see Figure 6a where 1 m   ). Therefore, the value of /un reK  is given by 

the following equation:  

 

1

/
1

1
1

( )

( )

m
m

m
un re m

m

K

 
   

  
   



  (23) 

In fact, this unloading/reloading branch defines a permanent bond damage at the interface between the reinforcing 

bar and concrete. This damage is theoretically simulated by an irreversible slip, ir , that remains in the interface 

when the applied load is totally removed (see Figure 6a). For RC member under direct tension, this 

unloading/reloading phase may occur when a new crack formation stage starts (e.g. “secondary crack formation 

stage”). Figure 6b compares the slip distribution at primary and secondary crack formation stages. As shown, by 

forming a new crack (section B in Figure 6b), slip at this new crack section tends to increase, while it tends to 

decrease at the already existing cracks. In order to consider the effect of increasing/decreasing of the slip in the 

theoretical formulation, an updated bond-slip constitutive law is used at the beginning of each new crack formation 

stage. This updated bond-slip law can be calculated using an average value of slip (named as m ) at 2crx L  

from the previous cracking stage, where x  has its origin from section C (see Figure 6b). Then the value of 

irreversible slip, ir , is calculated by: 

 
1

1
/

0

( )

ir m

m
ir m m

un reK

    


 
      


  (24) 

Figure 6a shows all possible updated bond-slip law according to the value of m . 

 

2.7. Effect of steel yielding strain on its bond behavior 

The tensile strain of steel bar at cracked section (
cr
s ) can exceed its yielding strain ( sy ), even if the mean value 

of tensile strain of the member is still less than the yielding strain [24]. This means that the steel bar is locally 

yielded at the cracked section. The yielding strain of steel bar affects its bond behavior [43]. Hence, this effect 



14 

should be considered in the formulation. For this purpose, the bK factor proposed by Ruiz et al. [43] is adopted in 

this study to modify the bond-slip law of steel bar after yielding: 

 
mod ( ) ( )s s b s sK        (25) 

where 

 
10( )

1

cr
sy s

cr
s sy

b
cr
s sy

K
e

 

   


 
   

  (26) 

After yielding of steel bar, the force transferred to the concrete by steel, ( )c sV , which was previously calculated 

by Eq. (16), is now given by 

 ( ) ( )m cr
c s s sy s s s syV A E        (27) 

where sy  is the yielding stress of steel bar, and 
m
s  is the steel bar’s strain at the midway section (see Figure 5), 

which is computed by FBL model (see Appendix A) by considering the modified bond shear stress provided by 

Eq. (25). 

 

2.8. Effect of pre-stress of reinforcing bars 

Applying pre-stress on internal embedded reinforcing bars enhances the structural performance of RC beams at 

serviceability limit states [14, 44]. The pre-stressing force in RC beams creates an initial compressive strain in the 

concrete tensile zones and a negative camber to RC beam, which delays concrete to reach its tensile strength [44]. 

However, for uniaxial tensile member with a symmetric arrangement of reinforcements, pre-stress theoretically 

creates only an initial compressive strain that can be estimated from: 

 
prepre pre

c s s s F F Fn n         (28) 

where 
pre
c  is the initial concrete compressive strain due to the pre-strain applied to steel (

pre
s ) and FRP bars (

pre
F

). The force due to the pre-stress of reinforcing bars is transferred to the member by the bond mechanism between 

reinforcing bars and surrounding FRC throughout the bond transferred length. The bond transferred length due to 

the pre-stress of reinforcing bars (i.e. 
pre
trL ) can be calculated using IBL boundary conditions [27] as follow: 
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0 0

( )
pre pre pre

s trF

d
at x

dx

d
or at x L

dx


 


    



  (29) 

where x  origins from the extremity of the member where the pre-stress force is released. It should be noted that 

the RC system located beyond 
pre
trL  behaves as a real composite similar to the “tie region”, as previously explained. 

 

2.9. Tension-stiffening model 

The algorithm of the analysis procedure, which was described in the previous sections, is presented in Figure 7. 

At the beginning, the algorithm calculates the total applied force (i.e. F ) by using IBL model [27] for both FRP 

and steel bars until formation of the first crack (Module 1). When first crack is formed, the algorithm calculates 

the total applied force by taking the strain compatibility condition of reinforcing bars, which was presented in 

Eq. (18), at right (using IBL model) and left sides (using FBL model) of this crack, as well as the contribution of 

fibers (by using Eq. (14), where ( ) ( )Left Right
cr cr crw     ), (Module 2). If the value of F  reaches the cracking 

force of the member ( crV ), the next crack is formed. The algorithm repeats the calculation process at the location 

of this new crack, which is now the last formed crack. This process continues until the bond progress of the 

reinforcing bars reaches the extremity of the member, by considering that 

 
1

( )
crn

cr i eff

i

L L


  (30) 

where crn  is the number of cracks and effL  is the total embedded length of reinforcing bars to the surrounding 

concrete, which is assumed to be equal to member’s length in the further analysis. When Eq. (30) is satisfied, no 

“tie region” exists in the member, hence, the algorithm moves to Module 3, where the bond length bL  is calculated 

as half of the average value of crack spacing from Module 2: 

 1

( )

2

crn

cr i

i
b cr

cr

L

L L
n

 


 (31) 

Consequently, the average value of crack width at the beginning of Module 3 is 
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 1

( )
crn

cr i

i
cr

cr

w

w
n




 (32) 

Then, for each increment of crw , the total applied force is calculated by 

 ( )r c frF F V   (33) 

where rF  is the total tensile force of the reinforcing bars, which is given by 

 
cr cr cr

s s s F F F s sy
cr crr

s sy F F F s sy

E A E A
F

A E A

      
 

     
 (34) 

cr
s  and 

cr
F  are computed by running the FBL model described in the Appendix A, and ( )c frV  is determined by 

Eq. (14). 

Additionally, the total value of force transferred to the concrete matrix by the reinforcements, ( )c tV , is calculated 

using Eq. (21). If ( )c tV  reaches the cracking force of the member, i.e. crV , the midway section (A in Figure 5) 

cracks, in which the number of cracks becomes double, and the bond length becomes half of its value. The bond-

slip law of the reinforcing bars is updated based on the value of m , which was described in section 2.6. 

Module 3 is repeated until FRP bar’s strain meets its rupture strain. If steel bar yields before, the bond shear stress 

of steel bar is modified based on Eq. (25). In the model, a bi-linear elasto-plastic stress-strain relationship is 

considered for steel bar in tension. It is assumed that the ultimate tensile strain of FRP bar’s ( Fu ) is always 

reached before the steel tensile strain at hardening initiation ( sh ) is attained (Figure 8b).  
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3. DESCRIPTION OF FINITE ELEMENT (FE) MODEL 

The hybrid FRP/Steel FRC tensile member analyzed in the previous section is simulated by using Finite Element 

(FE) models available in FEMIX, a FEM-based computer program [45]. In this section some relevant information 

is given about the numerical model including FEs and constitutive laws adopted for concrete and reinforcements. 

Then, the predictive performance of the proposed analytical and FE models are appraised by simulating recent 

experimental tests dedicated to the tension-stiffening phenomenon. 

 

3.1. Finite elements 

Eight-node Plane Stress FEs are used to simulate concrete, with a Gauss-Legendre (G-L) integration scheme of 

2×2, while the reinforcing bars are simulated by using 3-nodes Cable 2D elements with 2 G-L integration points. 

To simulate bond between the reinforcements and concrete, 6-nodes 2D Interface FEs are employed by using 

Gauss-Lobatto integration scheme of 3 points. 

 

3.2. Constitutive laws for the materials 

A multi-directional smeared crack model described in detail elsewhere [46], and available in FEMIX [45], is 

assigned to the Plane Stress FEs to simulate the elasto-cracked behavior of FRC. In this model, a linear and elastic 

constitutive law is adopted for concrete in compression and also in tension prior to crack initiation. When the 

tensile strength is attained in a certain integration point, the four-linear constitutive law shown in Figure 8a is 

followed in order to simulate the post-cracking response of FRC. In this figure, the parameter fG  is the mode I 

fracture energy of FRC [40] and the parameter bl  is the crack band width, which is assumed equal to the square 

root of the area assigned by each integration point in order to assure that the results are not dependent of the FE 

mesh refinement. 
cr
n  and 

cr
n  are the crack tensile strain and stress components, respectively, normal to the crack 

plane. The coefficients i  and i  ( 1,2,3i  ) define the transition points of the branches of the diagram. 

The linear-elastic stress-strain diagram represented in Figure 8b is adopted for FRP bars, where Fu  is the ultimate 

strain, while an elasto-plastic model [46] is employed to simulate the tensile behavior of steel bars, by using the 

following equation (Figure 8b): 
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   
          


             
   
   

 (35) 

where  

 ( ) ( )sy sh sy sh syE        (36) 

and sy , sh , su , sy , sh  and su  are defined in Figure 8b. The parameter p  normally ranged between 1 and 

4. 

 

3.3. Interface behavior 

The sliding component of the constitutive model for the Interface FEs is defined by the bond-slip relationship 

represented in Figure 3b, which is characterized by the following three branches [26, 46]: 

 1

2

1 1 1

2 1 2

2 2

τ ( ) 0

( ) τ τ ( )

τ τ ( )

m

m





        


           


      

  (37) 

where 11
1 2 1( )m


     . 

 

3.4. Geometry, mesh and boundary conditions 

Figure 9 shows the typical scheme of tension-stiffening specimens used in experiments, as well as the mesh and 

geometry of FE model proposed in the present study. As shown, the FE model has a line of symmetry through its 

axis at center of the section. The interface elements are located at this symmetric line, where the axial stiffness of 

the reinforcing bar sets as half value. The interface elements are assigned only to the bonded area as shown in this 

Figure.  
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4. MODEL VALIDATION 

Two sets of data of RC in direct tension tests have been selected from the literature. The first is GFRP-RC carried 

out by Baena et al. in 2011 [47], and the second belongs to the work recently carried out by Moreno et al. in 2014 

on Hybrid Fiber-Reinforced Concrete (named as “HyFRC”) containing conventional steel bar [17]. For the second 

one [17], the bond-slip law suggested by CEB-FIB Model Code 2010 [28] for steel bars is adopted. However, for 

the first one, the local bond-slip law of the used GFRP bar is calibrated by employing the bond model proposed 

by Mazaheripour et al. [27] by fitting the theoretical pullout force versus loaded end slip to the experimental results 

of the direct pullout tests presented by the same authors in 2009 [48]. It is worth noticing that the bond length in 

their tests was five times of the GFRP bar’s diameter [48]. Table 1 reports the values that define the bond-slip law 

used in the proposed numerical models, and Table 2 includes the relevant properties of the used concrete and FRC, 

and reinforcements, which were reported in [17, 47]. 

Additionally, the post-cracking behavior of “HyFRC” is simulated by the diagram represented in Figure 8a, whose 

data for its definition ( i , i  and fG ) was obtained by fitting the post-cracking response recorded in the uniaxial 

tensile tests carried by Moreno et al. [17]. In case of analytical model, the contribution of fibers are obtained by 

subtracting the concrete softening from the given post-cracking response of “HyFRC” [49]. The concrete softening 

is obtained by using the bi-linear diagram recommended by CEB-FIB Model Code 2010 [28]. Figure 10a shows 

the contribution of fibers, and the total post-cracking stress-strain diagram of “HyFRC” that is used in the analytical 

model and FE model, respectively. 

In Figure 10b, 11a, b and c the experimental results are compared to those obtained by the proposed analytical and 

FE models. By giving the relevant input data that defines the material properties of concrete, reinforcing bar, and 

the bond-slip law’s parameters, the models predict well the experimental results. 

Moreover, Figure 10c and Figure 11d compare the crack pattern obtained experimentally and numerically. The FE 

model predicts fairly in an acceptable way the experimental crack pattern registered in the GFRP-RC specimens. 

However, in the simulation of the tensile response of HyFRC the crack pattern obtained by FE model showed 

some differences in terms of number of cracks and crack spacing since the model is not simulating the influence 

of fiber distribution and orientation on the post-cracking behavior of HyFRC. To take these aspects into 

consideration, more sophisticated models should be used, like the one detailed in [50].  
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5. PARAMETRIC STUDY 

By using the proposed analytical model, two groups of parametric studies, A and B, are carried out to evaluate the 

influence of the main model parameters on the variations of tensile stress of reinforcing bars due to their bond 

interaction to surrounding concrete, which is defined as tension-stiffening effect ,r TSf  hereafter. For this purpose, 

a FRC tensile member containing FRP and steel bars in a symmetric arrangement in the concrete section is 

considered to be subjected to direct tension load. The effective embedded length of the reinforcing bars ( effL ) is 

assumed equal to 1000 mm. In this work, the properties of the adopted FRP bars correspond to the type of Schöck 

ribbed GFRP bars previously tested by the authors [51]. The typical properties of mild steel that is being used in 

construction industry are also taken for the steel bars in this study. Finally, three types of FRCs (named FRC1, 

FRC2 and FRC3), with different values of mode I fracture energy ( fG ), are considered to be representative of a 

concrete mix with different volume fraction of fibers. Figure 12 compares the post-cracking behavior of FRC1, 2 

and 3 in terms of the parameter   versus   as they were defined earlier in Figure 4b, and the respective values 

are written in Table 3 The contribution of fibers after cracking is simply defined by using the same four-linear 

post-cracking response of FRC shown in Figure 12, but having the first point starts at (0, 0), that is null values for 

the both   and   (see dotted line in Figure 12). This represents in a simple manner how the pullout force by 

fibers starts increasing from null value while the crack is opening (or increase in crack strain). 

5.1. Studies of Group A 

Group A includes 10 different studies that focus on the influence of the steel versus FRP reinforcement ratio (i.e. 

/s F  ) and concrete fracture energy mode I, fG : 

- Studies 1 to 5: the steel reinforcement ratio, s , is varied by adopting different steel bars in terms of 

diameter (Ø12, 14, 16, 20 and 25 mm), while the properties of concrete and GFRP reinforcement ratio 

(4Ø8 GFRP) are kept constant. Plain concrete (without fibers) is used in these studies; 

- Studies 6 to 7: The reinforcement arrangement of Study 3 (i.e. 4×Ø8 GFRP + 1×Ø16 steel) with a total 

reinforcement ratio of 1.30%s F      is adopted in these studies, but for Study 6, s  is assumed to 

be null, which means no steel bars are used [i.e. (4×Ø8+1×Ø16) GFRP], while in Study 7 no GFRP bars 

are applied [i.e. (4×Ø8+1×Ø16) Steel]. 
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- Studies 8 to 10: the hybrid reinforcement of Study 3 is used for studies 8 to 10, but the fG  varies by 

taking FRC type 1, 2 and 3; 

Although different bars’ diameter are used in Studies 1 to 10, the bond-slip law’s parameters are kept constant in 

order to neglect the effect of bond-slip law’s parameters in these studies. Table 3 reports the properties of the used 

materials in Studies 1 to 10. The values that define the bond-slip relationship for these studies are indicated in the 

first row of Table 4. 

5.2. Group B 

Group B includes 6 studies, 11th to 16th, that aim to assess the influence of the bond-slip law’s parameters of GFRP 

bars on the variation of ,r TSf . The type of concrete, the reinforcement ratio and arrangement are those adopted in 

Study 3. Note that the bond-slip law’s parameters of steel bar are constant in the analysis of Group B. 

- Studies 11 to 13 the stiffness of the first and second linear branches of    diagram (shown in Figure 3a) 

are defined as 1K  and 2K , respectively. Then, they are calculated by 

 

1
1

1

1
2

2 1

( )

( )

m

K

K


 


   
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  (38) 

In Studies 11 to 13, the value of 1K  is varied by changing the value of 1  (Figure 13a). However, the 

value of 2  is adjusted in order to keep the value of 2K  constant and equals to the value defined in Study 

3. In this case, 2  is calculated by  

 1
2 1

2

( )m

K

  
      (39) 

The values of 1  and m  are those adopted in Study 3, since the concrete compressive strength (fcm) is 

considered equal in all studies, and considering that the bond strength of a bar-concrete interface is 

commonly presented as function of fcm
1/2; 

- Studies 14 to 16: the value of 2K  is varied by changing only the value of 2  (Figure 13b). The other 

parameters are the same adopted in Study 3; 
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Table 4 includes the bond-slip law’s parameters adopted in all the studies. As shown in Figure 13, the alteration 

of the stiffness of the pre-peak branches can be simulated by changing the power value of 1  with a bond-slip 

diagram similar to the one adopted in the FE model (Figure 3b), which has already been used by many authors 

[23, 24, 46, 52]. 

 

5.3. Results and discussion 

The tension-stiffening effect, ,r TSf , is defined as the portion of tensile stress of reinforcing bars at crack section 

that is carried by the surrounding concrete due to the bond behavior of reinforcing bars. Based on this definition, 

,r TSf  is determined by: 

 ,

1
( )r TS r bare

c

f F F
A

   (40) 

where bareF  is the tensile force of bare bars (un-bonded bars): 

 ( )bare s s F FF E A E A    (41) 

being   the mean strain of member, if the elastic defomration of FRC between cracks is neglected, the mean value 

is simply obtained by: 

 cr
cr

cr

w

L
     (42) 

where crL  and crw  are obtained according to equations (31) and (32), respectively, and cr  is the elastic mean 

strain of member at cracking point. By substituting Eq. (34) to Eq. (40), ,r TSf  becomes: 

 ,

( ) ( )

( ) ( )

cr cr cr
s s s F F F s sy

cr crr TS
s sy s F F F s sy

E E
f

E E

           
 

           
 (43) 

Hereafter the normalized tensile stress, , /r TS ctf f , is used being ctf  the concrete tensile strength. 

 

5.3.1. Normalized , /r TS ctf f  versus member’s mean strain 

Figure 14a and b present the results of the parametric study of group A (studies 1 to 5, and 8 to 10), and Figure 

14c and d show the results obtained from the parametric study of group B (studies 11 to 16), both in terms of 
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, /r TS ctf f  versus mean strain of the member (  ). In accordance with the tension-stiffening responses obtained 

from the results of the parametric study, a multi-linear diagram presented in Figure 15 can be proposed for tension-

stiffening model of concrete (or FRC) member reinforced by hybrid FRP/steel bars. This diagram can be defined 

by three coefficients of, j , i , and i  (i= 1 to 3, j=1 to 4 and j= 1 to 5) where: 

- Values of j cr   define the level of concrete tensile strain ( ct ) due to the tension-stiffening effects, in 

which 1  corresponds to the concrete crack tensile strain at the beginning of the primary crack formation 

stage, 2  corresponds to the concrete tensile strain at the initiation of steel yielding at crack section while 

3  defines the concrete tensile strain equals to steel yielding strain (i.e. 30ct sy cr     ), 4  defines the 

concrete crack tensile strain corresponding to reinforcing bar’s slip ( cr ) at the end of the elastic bond 

phase ( 1 ), and finally, 5  defines the concrete tensile strain at rupture of FRP bar. 

- Values of i ctf  define the level of concrete tensile stress ( ct ) due to the tension stiffening, in which 1  

to 4  define the crack tensile stress corresponding to 1  to 4 , respectively. 

- Values of i cE  define the stiffness of the ascending linear branches of the model (pseudo-hardening 

stages), in which i  corresponds to the axial stiffness of the reinforcing bars, as well as their bond 

stiffness by     diagram.  

By fitting the proposed diagram to the tension-stiffening responses shown in Figure 14, the variation of these 

coefficients versus the parametric variables of /s F  , fG , 1K  and 2K  are determined, and plotted in 

Figure 16. 

 

Effect of increasing the steel reinforcement ratio ( s F  ):  

When the steel reinforcement ratio increases, the average crack spacing ( crL ), as well as the bond length ( bL ) 

decreases. Hence, by increasing the slip of reinforcing bars at crack section, the difference between 
cr
r  and 

m
r  

in Eq. (16) for both FRP and steel bars decreases, and based on Eq. (42), the mean value of   approaches to the 

value of 
cr
r . Therefore, the tension-stiffening effect calculated by Eq. (44) decreases. This was evidenced from 



24 

the obtained results plotted in Figure 14a, as well as the decrease in the value of coefficients i  versus /s F   in 

Figure 16. Before yielding of steel bar, by increasing s , 1  increase due the increase in the axial stiffness of the 

steel bars. However, after yielding of the steel, the value of 2  and 3  decrease due to the significant drop in the 

axial stiffness of steel bar at cracked section, as well as the increase in its bond stiffness (by Eq. (25)). 

Additionally, when ( )cr
r    decreases, coefficients 2  and 5  increase, in which 2  gets closer value to 

30sy cr   , and 5  to the level of strain at rupture of FRP ( 167fu cr   ). 

 

Effect of increasing the fracture energy of FRC 

When of the mode I fracture energy ( fG ) increases, the number of cracked sections in the member increases 

significantly, leading to a smaller average crack spacing. Therefore, similar to what already explained, the ( )cr
r    

parcel of Eq. (43) decreases with the increase of the slip at cracked section. Since in these studies the reinforcement 

ratios ( F  and s ) are constant, the decrease in the tension-stiffening effect calculated by Eq. (43) is more 

noticeable (comparing the obtained results in Figure 14a and Figure 14b). The same tendency that was previously 

obtained for i , i  and j  when s  is increased, is also obtained with the increase of fG . However, in the 

present studies the 1  is almost constant since the axial stiffness of the steel bar does not change (see Figure 16, 

variation of the model coefficient versus fG ). 

 

Effect of increasing the stiffness of elastic bond phase of FRP bar ( 1K ) 

By increasing the stiffness of the elastic branch of bond law assumed for FRP bar (i.e. 1K ), the tension-stiffening 

effect of reinforcing bars increases. This can be evidenced by the obtained results shown in Figure 14c, as well as 

the increase in coefficient i  versus the variation of 1K  in Figure 16. When 1K  increases, the parcel ( )cr m
r r    

of Eq. (16) increases, and considering that 
m
r    (Eq. (43)), the ,r TSf  determined from Eq. (44) also increases. 

On the other hand, if the parcel ( )cr
F    increases, FRP bar attains its ultimate strain ( Fu ) at lower level of the 

concrete crack tensile strain, which can be seen by the variation of 4  versus 1K  in Figure 16. 
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Additionally, 1  and 2  increase with 1K , while 3 is not significantly affected for the variation of this parameters 

because for 3ct cr     the slip of FRP bars at crack section is not in its elastic bond phase. 

 

Effect of increasing the stiffness of hardening bond phase of FRP bars ( 2K ) 

For the material properties and the bond-slip relationship adopted in this study, Figure 14d shows that 2K  has a 

negligible effect on the variation of tension stiffening ,r TSf . Only the stiffness of the third linear branch ( 3 ) is 

influenced by the variation of 2K . This is due to the fact that for the concrete cracking strain greater than 3 cr  , 

the slip of FRP bar at crack section is beyond the elastic bond phase of the bond diagram, and consequently it is 

influenced by the value of 2K . 

 

5.3.2. Total force versus the average crack width and the mean strain 

In Figure 17a the total force versus the average crack width (i.e. crw ) obtained in the studies 6 and 7, corresponding 

to the GFRP-RC and Steel-RC tensile member, are compared to the hybrid GFRP-Steel RC tensile member of 

Study 3. The enhancement in terms of crack width by adding steel reinforcement to the GFRP-RC member is 

observable. Note that the same total reinforcement ratio of 1.3% was adopted for the three studies. However, after 

yielding of steel, the crack width increases considerably due to the significant loss in the steel axial stiffness, as 

well as its bond to concrete. 

In addition to the analytical results obtained from the parametric studies of 3, 6 and 7, FE analysis were carried 

out by using FEMIX, and the results obtained from the simulation are compared with the analytical ones in terms 

of the total force versus average crack width and mean strain, which are plotted in Figure 17a and 17b, respectively. 

The average crack width in the FE model was obtained by computing the average value of inelastic deformation 

of the integration points at the location of the main cracks for different load combinations. The inelastic 

deformation of the integration points was calculated by multiplying the crack tensile strain in loading direction by 

the crack band width ( bl ). As a results, a good agreement between both models was achieved. 

 

5.3.3. Post-cracking response of FRC including tension-stiffening effect 
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In case of modeling of RC members, if the bond-slip behavior of reinforcing bars and concrete is not simulated, 

the tension-stiffening effect due to the reinforcements is normally performed through the concrete tensile stress-

strain relationship in order to get more accurate results. This is the same concept when S- FRC or FRP reinforced 

FRC members are simulated. The tension-stiffening of FRP and steel bars due to their bond behavior with FRC 

should be included in the post-cracking behavior of FRC, which is normally obtained by uniaxial tensile tests. 

In this context, if the tension-stiffening response obtained from the parametric studies of 8 to 10, shown in 

Figure 14b, is added to the respective post-cracking response of FRCs, shown in Figure 12, the total post-cracking 

response of hybrid FRP/steel reinforced FRC including the tension-stiffening effect of the reinforcing bars is 

attained. Figure 18 compares the post-cracking response of FRC1, 2 and 3 with and without the tension stiffening 

effect. This figure is plotted in terms of dimensionless coefficient of   versus  , where the black dots show the 

failure of FRP bars corresponding to the attainment of the ultimate tensile strain adopted for FRP bars (see 

Table 3). The post-cracking response of hybrid reinforced FRC is appropriate to be used in the finite elemental or 

sectional analysis where the interfacial bond behavior between reinforcing bar and FRC is ignored. 
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6. CONCLUSIONS 

In the present work, the tension-stiffening effect due to the bond interaction between a hybrid reinforcement system 

composed by fiber reinforced polymer (FRP) and steel bars and surrounding fiber reinforced concrete (FRC) was 

theoretically investigated through an explicit analytical formulation. The analytical model is based on the bond-

slip behavior of the reinforcing bars and the surrounding FRC, as well as the post-cracking response of FRC in 

tension. The tension-stiffening effect was also investigated by employing 2D interface finite elements using a 

constitutive model that simulates the bond behavior of reinforcing bars and concrete. This interface was used to 

connect 2D Cable elements to 2D Plane Stress finite elements, which simulate concrete employing a multi-

directional smeared crack approach. With a basis of the results from the proposed model, the following conclusion 

can be drawn: 

1) The two analytical and numerical models showed a good agreement with some recent experimental tests 

available in the literature in case of GFRP reinforced tensile member and S-FRC tensile member, leading 

to show their capability to address to the tension-stiffening effect of such reinforced members. 

2) The post-yielding of steel bar as well as the loss in its bond to concrete was modeled through an empirical 

coefficient. This gives possibility of modeling the decrease in tension stiffening effect of steel-RC element 

after yielding of steel bar. 

3) Based on the results of parametric study, increase in mode I fracture energy of FRC will reduce the tension-

stiffening effect by reinforcing bars in reinforced FRC members. This is attributed to the fact that the 

higher fracture energy results in higher number of cracks and lower crack spacing, and consequently, 

lower bond length. If the bond length decreases, tension stiffening significantly decreases. On the other 

hand, the higher fracture energy decrease the average crack width, which is beneficial for serviceability 

limit state requirements. 

4) An improve in terms of crack width and load carrying capacity can be observed for the hybrid FRP-steel 

reinforced FRC member if the steel reinforcement ratio increases. However, after yielding of the steel bar, 

this hybrid system showed the higher average crack width when it compares with the FRP reinforced FRC 

member without steel bar (in case of the same total reinforcement ratio for both reinforced member). 
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5) The tension-stiffening effect of hybrid steel/GFRP reinforced FRC element was introduced as a modified 

crack stress-strain diagram of FRC in which a fracture energy higher than its original value was adopted 

before rupturing strain of GFRP. This modification is based on the properties of the reinforcing bars and 

their bond-slip characterizations. The modified crack tensile stress-strain diagram is functional to be used 

in the sectional or finite elemental analysis of hybrid FRP/steel reinforced FRC elements where no attempt 

is made to simulate the effect of bond-slip behavior of the reinforcing bars. 

It should be noticed that the influence of concrete cover, reinforcing bar’s diameter, and concrete splitting are not 

considered in the proposed model. However, their effectiveness can be simply added to the model if the relevant 

bond-slip law including those effect is adopted in the model. In addition, the discrete crack analysis proposed in 

this study may not be functional for cement-based composite materials that exhibits strain-hardening behavior 

after cracking. 
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Notice: i is the value of imposed slip at loaded end of the bond length, bL  
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Figure A.1.Algorithm of FBL model 
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Figure A.2.Schematic definition of ex , hx , px , sox  and fx , as well as 
e
trL , 

h
trL , 

p
trL , 

so
trL  and 

f
trL  (not to 

scale). 
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