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Abstract

The ability to effectively guide electromagnetic radiation below the diffraction limit is

of the utmost importance in the prospect of all-optical plasmonic circuitry. Here, we pro-

pose an alternative solution to conventional metal-based plasmonics by exploiting the deep

subwavelength confinement and tunability of graphene plasmons guided along the apex of a

graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model

to describe the plasmonic eigenmodes in such a system, including the complete determination

of their spectrum and corresponding induced potential and electric field distributions. We have

found that the dispersion of wedge/groove graphene plasmons follows the same functional de-

pendence as their flat-graphene plasmons counterparts, but now scaled by a (purely) geometric
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factor in which all the information about the system’s geometry is contained. We believe our

results pave the way for the development of novel custom-tailored photonic devices for sub-

wavelength waveguiding and localization of light based on recently discovered 2D materials.

Over the last couple of decades we have been witnessing a steady, exponential growth in the

amount of information produced on a daily basis. In today’s “information age”, huge amounts

of data must be processed, stored, and delivered around the world. While the data-processing

part is still primarily carried by electronics, the routing of large volumes of information is han-

dled with photonic technologies since only these can meet the requirements in terms of high-

speed, density and bandwidth. One of the greatest ambitions of modern nanophotonics1 is to

bridge the gap between electronic and photonic components, and ultimately to replace electronic

circuits and processing units by their photonic-based counterparts. Current scalable photonic-

based communications, however, still could not surpass the threshold towards miniaturization

posed by the diffraction limit. In this regard, a great deal of hope2 has been deposited in the

sub-discipline of photonics known as plasmonics,3,4 which exploits the ability of surface plasmon-

polaritons (SPPs)—collective oscillations of the free-electrons at metal/dielectric interfaces—to

localize light into subwavelength dimensions.5–8 Although the pursuit of plasmonic devices suit-

able for mass-production is still going on, plasmonics has already achieved some milestones,

for instance, subwavelength plasmonic circuitry including waveguides, interferometers and res-

onators,9–12 nanolasers,13–16 quantum optics with or mediated by SPPs,17–21 label-free and sin-

gle molecule biochemical sensing,22–26 high-resolution nanoscopy,27,28 and even cancer theranos-

tics.29–31

A key component in any plasmonic circuit would be an element to transfer and guide the

electromagnetic (EM) fields from point A to point B. Typical SPP-guiding structures32 con-

sist in small metallic stripes on a dielectric substrate,3,32 chains of plasmonic nanoparticles,33–35

metal/dielectric/metal slabs,32 or V-shaped grooves carved into a metallic substrate,36–38 just to

name a few. Among these, the latter are believed to be appealing candidates for subwavelength

waveguiding of light since they support SPP modes coined as channel plasmon-polaritons (CPPs),3,36
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which have been shown to deliver localized EM fields with relatively long propagation lengths,12,36,39

ability to work at telecommunication wavelengths,10,40,41 and feasibility to steer the EM field along

bends.10,42 The earliest reference on CPPs can be found in a theoretical investigation carried out by

Dobrzynski and Maradudin, having obtained analytic expressions in the electrostatic limit for an

infinitely sharp wedge.43 Many subsequent works then followed in similar wedge configurations

with a rounded edge.44–47 During the past decade—owing to the rapid progresses in nanofabrica-

tion and computational tools—a renewed interest has emerged on CPPs guided along triangular

grooves sculpted in metal substrates, leading to a plethora of theoretical and experimental stud-

ies.36,38,40,48–51.

In recent years, graphene52,53—an atomically-thin sp2-hybridized carbon allotrope in which

the atoms sit at the vertexes of a honeycomb lattice—has come to the light as a novel plasmonic

material.54–58 Graphene is classified as a two-dimensional (2D) semi-metal whose charge-carriers

exhibit a linear dispersion.52,53 When doped, graphene also sustains plasmon-polaritons that inherit

the extraordinary optoelectronic properties of this material. In particular, gate-tunable graphene

surface plasmons (GSPs) have been shown to deliver highly confined EM fields into deep subwave-

length regions, large field-enhancements, strong light-matter interactions, and carry the prospect of

low-loss plasmonics.54–59 In addition, the ability to easily control the carrier-density in graphene,

e.g. by electrostatic gating and/or chemical means, constitutes a major advantage of GSPs over

conventional metal-based plasmonics. Popular configurations to realize GSPs involve the nanos-

tructuring of an otherwise continuous graphene sheet into graphene ribbons,26,60–63 disks,64–68

rings,64,65 and graphene anti-dots (either as individual structures or in periodic arrays).67,69,70

Here, we propose a different approach to deliver strongly localized GSPs which does not in-

volve any nanopatterning done on the graphene layer; it simply consists in depositing graphene

onto a V-shaped wedge or groove previously sculpted in the receiving substrate (a different, but

related configuration was the subject of a previous numerical study71). This can be done by em-

ploying the same techniques used to fabricate metallic grooves,36 followed by the graphene de-

position or even direct-growth on a pre-configured copper substrate.72 Other possibilities include
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folding a graphene layer or by exploring the formation of wrinkles (either naturally occuring73–75

or deliberately formed72). In this way, one departures from customary flat-graphene geometries

and effectively produces a 1D channel which not only confines light in the vertical direction that

bisects the channel, but is also capable of producing lateral confinement of EM radiation.

In this work, we present a quasi-analytic method to derive the dispersion relation and cor-

responding spatial distributions of the potential and electric fields akin to GSPs guided along a

V-shaped channel. We shall consider both the wedge and groove geometries—see Fig. 1. In what

wedge

groove

Figure 1: Upper panel: pictorial representation of a guided GSP mode along a dielectric wedge;
we denote the system a wedge (groove) whenever the medium filling the 2ϕ-open region possesses
a higher (lower) value for the relative permittivity. Lower panel: coordinate system for a wedge or
groove interface—with an opening angle of 2ϕ— between two dielectric media characterized by
relative permittivities ε2 (for −ϕ ≤ θ ≤ ϕ) and ε1 (for ϕ ≤ θ ≤ 2π−ϕ).

follows we work within the electrostatic limit, which turns out to be a very good approximation

for GSPs owing to the large wavevectors carried by plasmons in graphene (and thus retardation

becomes unimportant). Interestingly, we find that for a fixed wedge/groove angle the correspond-

ing wedge/groove graphene plasmon (WGP/GGP) dispersions follow a universal scaling law that
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depends purely on the system’s geometry. Thus, by performing the calculations for a given an-

gle, ϕ , one immediately gains complete knowledge of the WGPs/GGPs’ wavevectors for every

frequency—in other words, all the modes and corresponding dispersion relations are obtained at

once. This constitutes an enormous advantage in terms of computational resources and time when

gauged against full-wave numerical simulations. From a device-engineering perspective this scal-

ing property should also significantly ease design of waveguides for given applications. Finally,

in further support of the accuracy of our quasi-analytic technique, we have also performed rigor-

ous electrodynamic simulations with the aid of a commercially available (Comsol MultiPhysics)

finite-element method (FEM), to which we have obtained a remarkable agreement.

We demonstrate that by using graphene-covered triangular wedges or grooves one can harness

the unique properties of GSPs to create novel 1D subwavelength plasmonic waveguides that can

squeeze light into deep subwavelength regimes. This becomes particularly relevant at THz and

mid-IR frequencies since traditional metal-based plasmonics perform poorly in this spectral range

(resembling freely propagating light).3 Furthermore, we believe that this work can set the stage for

future investigations of graphene plasmons in 1D channels, with potentially relevant applications

ranging from plasmonic circuitry and waveguiding to biochemical sensing with WGPs/GGPs or

their integration with microfluidics on a chip.

Results and Discussion

We consider an idealized geometry in which a graphene monolayer is sandwiched between a tri-

angular dielectric wedge (or groove) with relative permittivity ε2 and a capping dielectric material

with relative permittivity ε1, as depicted in Fig. 1. As it will become apparent later, our model is

completely general irrespective of the specific values for the dielectric constants of the cladding

insulators. However, in order to cope with the standard nomenclature, we shall refer to a wedge

whenever ε2 > ε1 and vice-versa to denote a groove. In addition, albeit here we are primarily in-

terested in graphene, the theory outlined below can be applied to any 2D layer deposited onto the
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triangular shape, be it a 2D electron gas or a doped 2D transition metal dichalcogenide (TMDC),

etc.

Before proceeding to the description of our quasi-analytic method, we first bring to the reader’s

attention that one can treat the cases of even and odd symmetry in the potential (or induced

charges) — with respect to the line bisecting the triangular cross-section—separately, as this

makes the problem more amenable to handle. In particular, for the case of even symmetry (i.e.,

when the induced charges are symmetric in the graphene half-planes which constitute the V-

shape), we have found that these even-symmetry modes are not highly confined near the apex

of the wedge/groove, with their dispersion being virtually the same as for GSPs in a flat, pla-

nar dielectric/graphene/dielectric interface (cf. SI). Conversely, as it will become clear ahead,

the corresponding odd WGPs/GGPs modes exhibit strong field confinement near the apex of the

wedge/groove, and therefore we shall limit our discussion solely to the odd-symmetry case here-

after. Owing to the high localization of the field near the apex, we note that although we assume

(for simplicity) an infinitely long V-shape, the theory developed here remains adequate in the de-

scription of V-structures of finite height/depth as long as their size is larger than the region spanned

by the field distribution along the axis of symmetry.

The extremely large wavevectors (when compared with light’s free-space wavevector, k0 =

ω/c) attained by graphene plasmons allow us to treat plasmonic excitations in graphene within the

electrostatic limit with high accuracy. In this regime, the induced electric potential akin to GSPs

must satisfy Poisson’s equation, which in cylindric coordinates reads

[
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
∂ r2

∂ 2

∂θ 2 −q2
]

Φ(r,θ) =−ρ(r,θ)
ε0

, (1)

where we have written the scalar potential as Φ(r) = Φ(r,θ)eiqz, owing to the system’s transla-

tional invariance along the z-axis (an implicit time-dependence of the form e−iωt is assumed). This

effectively reduces our initial 3D problem into a 2D one, and will allow us to parameterize the dis-

persion relation of the guided GSPs in terms of the propagation constant q, i.e. ω ≡ ω(q). Hence,
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the solution of Eq. (??) renders the WGPs/GGPs modes which propagate along the longitudinal

direction. Formally, the solution of this equation in the medium j = 1,2 can be written as

Φ(r,θ) =
iσ(ω)

ω

∫
∞

0
dr′G j(r,θ ;r′,ϕ)

[
∂ 2

∂ r′2
−q2

]
Φ(r′,ϕ) , (2)

where σ(ω) is the dynamical conductivity of graphene, and G j(r,θ ;r′,ϕ) is the Green’s func-

tion associated with Eq. (??) in that medium; the latter is defined explicitly in the SI. More-

over, when writing the preceding equation, we have expressed the carrier-density as ρ(r,θ) =

−en(r)δ (θ −ϕ)/r, where the 2D particle density, n(r), was written in terms of the electrostatic

potential by combining the continuity equation together with Ohm’s law (cf. SI). We further re-

mark that we only need to solve for the potential in, say, the upper-half space (0 ≤ θ ≤ π), since

we are looking for solutions in which the potential is odd with respect to the symmetry axis. It is

clear from Eq. (??) that the potential in the whole space can only be derived once the potential

at the graphene sheet (i.e., θ = ϕ) is determined. To that end, we set θ = ϕ and then employ

an orthogonal polynomials expansion technique54,76,77 to transform the above integro-differential

equation for the potential at the graphene, φ(r) ≡ Φ(r,ϕ), into a standard linear algebra eigen-

problem. This is done by expanding the electrostatic potential evaluated at the graphene layer

as φ(r) = ∑n cnL(0)
n (qr)e−qr/2 , with L(0)

n denoting the generalized Laguerre polynomials,78 and

where the cn’s are the entries of the eigenvectors defined by the following eigensystem (obtained

by exploiting the appropriate orthogonality relations78):

iω
qσ(ω)

cm =
∞

∑
n=0

Umncn , (3)

where the matrix elements Umn read

Umn =
∫

∞

0

∫
∞

0
dxdy G(x,ϕ;y,ϕ)e−

x+y
2 L(0)

m (x)

×
[

3
4

L(0)
n (y)−L(2)

n−2(y)−L(1)
n−1(y)

]
. (4)
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We note that the double integration over the dimensionless variables x = qr and y = qr′ can be

performed analytically, thereby making the computation of the matrix elements extremely fast.

Notice that we have dropped the index j in the Green’s function because the boundary condition

at θ = ϕ enforces that G1(x,ϕ;y,ϕ) = G2(x,ϕ;y,ϕ), and therefore one can choose either Green’s

function arbitrarily without any loss of generality.

The eigenvalue equation (??) can be solved numerically using standard linear-algebra routines.

Once we find the corresponding eigenvalues λ̃n (whose number matches the length of the vector~c,

i.e. N +1, where N truncates the expansion for φ(r), and convergence was checked empirically—

cf. SI), the spectrum of graphene plasmons traveling along the triangular wedge/groove straight-

forwardly follows from
iω

qσ(ω)
= λ̃n , (5)

where, for a given opening angle 2ϕ , Eq. (??) returns a discrete set of WGPs/GGPs modes.

We stress that all the momentum and frequency dependence stems from the LHS of the previous

equation; hence, the eigenvalues λ̃n ≡ λ̃n(ϕ) carry a purely geometric meaning since they depend

uniquely on the configuration of the system (opening angle and material parameters). In particu-

lar, using graphene’s Drude-like conductivity with negligible damping,54 one obtains a “universal

scaling law” for the dispersion relation of wedge/groove graphene plasmons,

Ω(q) = Ωflat(q)
2
π

√
λn , (6)

where the relation λ̃n =
4

π2ε0(ε1+ε2)
λn has been used, and stems from factorizing a constant propor-

tionality factor entering in the Green’s function (see the text after Eq. (S33) in the SI). The above

equation gives the energy of the guided graphene plasmon modes parameterized by the propaga-

tion constant along the apex of the wedge. Here, Ωflat(q) =
√

4α h̄c
ε1+ε2

EFq is simply the dispersion

relation followed by GSPs in flat graphene54 sandwiched between two dielectrics with ε1 and ε2

(where α ' 1/137 denotes the fine-structure constant). Notice that once we have determined λn,

we possess complete knowledge of the WGPs/GGPs spectrum—for any point in the entire (q,ω)-
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space —, all of this with only one computation. In fact, we can even plot the dispersion of distinct

2D materials that support SPPs modes from a single computation of λn, since the latter does not

depend on the 2D conductivity that characterizes the particular 2D material [recall Eq. (??)]. It

is instructive to note that, in general, the spectrum of WGPs/GGPs contains a discrete set of even

and odd modes (although here we describe only modes with odd-symmetry for the reason stated

above in the text), in a similar way to SPPs supported at metallic wedges/grooves.36 This is a con-

sequence of the lateral confinement near the tip of the wedge (or the bottom of the groove), and

bears some resemblance to finding the electronic eigenstates of a particle in a quantum wire.79

In Fig. 2 we have plotted the dispersion relation of graphene plasmons guided along the edge of

triangular wedges and grooves with different opening angles, 2ϕ (indicated in the insets), which,

as we have already anticipated, consists in a discrete set of well-defined modes with increasing

energy. The figure plainly shows that the spectrum of both WGPs and GGPs strongly depend on

the angles of the triangular opening, with smaller angles rendering correspondingly larger plasmon

wavevectors for the same frequency, which in turn is an indication of stronger field confinement

near the apex of the V-shape. Another striking feature visible in the figure is the outstanding agree-

ment between the quasi-analytic theory detailed above and the electrodynamic simulations using

the FEM technique (see SI for details on the simulations). This constitutes further evidence of

the ability of our quasi-analytic method to render accurate results, while also providing a deeper

fundamental understanding of the scaling properties. Also from the inspection of Fig. 2, a strong

contrast can be perceived between the dispersion curves akin to WGPs and GGPs, demonstrating

the superiority of the former in squeezing light below the diffraction limit as they attain larger

wavevectors for the same angle of the structure. We further note that one can transform a wedge

into a groove and vice-versa either by swapping the values of ε or by applying the angular transfor-

mation ϕ→ π−ϕ (this essentially interchanges the Green’s functions G1 and G2). For the sake of

completeness, in Fig. 2f panel we have portrayed the spectrum of GSPs guided along a triangular

apex embedded in a homogeneous dielectric medium with the same average relative permittivity

as its wedge and groove counterparts. It can be observed that—for the same angle—each of the
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Figure 2: Spectrum of WGPs (upper row) and GGPs (first two bottom panels) sustained in different
graphene-covered triangular configurations, with different opening angles, 2ϕ (indicated in the
insets), as given by Eq. ?? [we take EF = 0.4 eV]. The solid black line represents the dispersion of
GSPs in a flat interface and serves as reference. The colored5,© and4 data points figuring in the
upper row correspond to the results for the WGP dispersion as obtained from full-wave numerical
simulations (COMSOL’s finite-element method). The insets’ shading represents an insulator
with ε = 4, whereas the white regions denote a medium with ε = 1 (e.g. air). The last panel shows
the spectrum of GSPs guided along a V-shaped graphene embedded in a homogeneous medium
with ε = 2.5 (shaded in the inset as ).
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modes attain increasingly larger wavevectors as we move from a groove, embedded and wedge

configuration (in this order). This hints us that the ability to reach deep subwavelength regimes

strongly depends on the ε2/ε1 ratio, for a fixed (acute) angle. Such prediction is confirmed by

Fig. 3, in which we observe that the scaling factor appearing in Eq. (??) decreases monotonically

with increasing ε2/ε1. In turn, this translates into higher effective indexes, neff = q/k0, for larger

quotients ε2/ε1. As an example, we have obtained neff ' 72 for a frequency of 20 THz in a config-

uration corresponding to panel in Fig. 2b. Even larger effective indexes can be obtained at higher

frequencies (for instance, for the CO2 laser wavelength of 10.6 µm this value climbs to neff ' 100,

using the same parameters). Naturally, the higher amount of field localization promoted by the

flat GSPs

grows WGPs
GGPs

Figure 3: Dependence of the eigenvalues akin to the fundamental mode—in fact, of the proportion-
ality factor, 2π−1

√
λ , figuring in Eq. (??)—as a function of the ratio ε2/ε1. In computing the data

in blue we have fixed ε1 = 1 while varying ε2, and vice-versa for the red data points. The vertical
green dashed line indicates the point where ε1 = ε2 = 1, whereas the horizontal gray dashed line
sets the upper bound corresponding to the flat GSP dispersion. We further note that the value of λ

is also sensitive to the absolute value of the dielectric constant that is kept constant while the other
varies.

WGP/GPP modes comes hand in hand with slightly larger propagation losses (cf. SI), a trait that

is well-known and characteristic of plasmonics. Still, we have found that the number of plasmon

oscillations within a propagation length4,54 remains unaltered when comparing between different

mode orders or flat-GSPs (see SI for further details). Indeed, owing to the “universal scaling” epit-

omized by Eqs. (??) and (??), the ratio between loss and field confinement is independent of the

mode order and is the same as for flat-GSPs.

Before concluding the analysis of Fig. 2, we highlight the capability of these guided GSPs
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modes to render extreme light-localization. This ability can be appreciated by considering the dis-

tance of their dispersion curves to the light-line (yellowish dashed-line near the vertical axis) and

the large effective indexes that were obtained. This departure from the light-cone also justifies the

high accuracy in the treatment of these modes within the electrostatic limit, as retardation effects

are negligible and GSPs possess an essentially electrostatic character.

Potential and electric-field distributions. Furthermore, we remark that the solution of the eigen-

problem in Eq. (??) also allows us to reconstruct the electrostatic potential within the graphene by

feeding the obtained eigenvalues and eigenvectors back into the expansion for φ(r). From here,

the 2D particle-density directly follows via n(r) = σ(ω)
ieω

[
∂ 2/∂ r2−q2]φ(r) (see SI). Both these

physical quantities, evaluated at the graphene’s surface, that is θ = ϕ (at θ =−ϕ the distributions

are antisymmetric), are shown in Fig. 4. Here, we consider WGPs with frequency f = 20 THz

guided along a 2ϕ = 25◦ triangular wedge (which corresponds to the case illustrated in Fig. 2b).
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Figure 4: Radial distributions of the electrostatic potential, φ(r)≡Φ(r,ϕ), and 2D particle density,
n(r), for the three lowest eigenmodes of a 25◦ wedge covered with graphene (in a.u.), at a resonant
frequency of f = 20 THz. The radial coordinate is plotted in units of the inverse wavevector akin
to each mode [obtained by inverting Eq. (??) for a angular frequency of ω = 2π×20 THz]. The
remaining parameters are the same as in Fig. 2b (i.e., ε1 = 1, ε2 = 4, and EF = 0.4 eV).

Figure 4 indicates that the highest density of charge-carriers occurs at the apex of the wedge,
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irrespective of the mode order, although the density drops towards zero at increasingly larger dis-

tances from the origin for the higher-order modes. In addition, we note that q−1
3rd > q−1

2nd > q−1
1st

for the same frequency, which makes the difference in the confinement even more dramatic. We

emphasize that the number of nodes of both φ(r) and n(r) is given by m− 1, where m = 1,2, ...

(for modes below the flat GSP dispersion curve) stands for the mode order. On the other hand,

the value of the potential evaluated at the graphene layer is large near the vertex of the triangular

cross-section, specially for the fundamental mode (where it is maximum). We acknowledge that,

however, it is not located exactly at r = 0. This is consequence of the infinitely sharp apex, whose

corresponding Green’s functions strongly oscillate at very small r, since they are not well-defined

(but are bounded, i.e. do not diverge) in the r→ 0 limit. Conversely, for modes with higher energy,

the potential tends to shift its weight farther from the apex of the V-structure as the mode order

increases. Such behavior was already expected in the light of Fig. 2, since the WGP wavelength

becomes smaller as the mode order decreases; as a consequence, the fundamental WGP mode

exhibits the highest field-confinement, thereby being able to probe deeper into the V-wedge ow-

ing to its shorter wavelength when compared to the higher branches of the polaritonic spectrum.

Again, we stress that although our model assumes infinitely deep triangular cross-sections, it can

accurately describe finite-sized V-shapes as long as the height (depth) of the wedge (groove) is

located at a distance somewhere along the “tail” of the quantities plotted in Fig. 4 (where they are

essentially zero). In passing, we note that apart from the plasmon modes located at the apex of,

say, a wedge (2ϕ opening angle), the modes sustained at the corresponding “grooves”, originating

from the truncation of the structure—forming a π/2+ϕ angle—, can also be determined using

the same guidelines as above, provided that the height of the wedge is large enough to prevent the

hybridization of the modes. The same reasoning also holds for grooves.

We recall that once in possession of the potential evaluated at the graphene, one can build

the potential in the entire coordinate space using Eq. (??). From here, the corresponding induced

electric field follows directly by taking the gradient, i.e. E(r) =−∇Φ(r). In what follows, we shall

discuss only the spatial distributions of the potential and electric field within the plane transverse
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to the propagation direction, since its dependence along the z-axis is trivial due to the translational

invariance of the system along this direction. The calculated 2D distributions (in the xy-plane) of

the potential and concomitant electric field akin to WGPs in a representative 2ϕ = 25◦ dielectric

wedge are shown Fig. 5. Note that the electric field in cartesian coordinates can be fetched from its

Figure 5: Two-dimensional potential, Φ(x,y), and electric-field distributions, E(x,y) =
−∇2DΦ(x,y), ascribed to the fundamental (upper panels) and second order (lower panels) WGPs
modes, at a resonant frequency of f = 20 THz. The parameters used in these computations match
the ones in Fig. 4. The plotted region is the same in each pair of 2D plots, with axes of the panels
on the left written in dimensionless units (normalized to the corresponding propagation constants)
and the axes of the plots on the right are given in nanometers.

polar version by applying a rotation matrix, namely (Ex,Ey)
T =R(ϕ)(Er,Eθ )

T . The figure exhibits

telling evidence of the remarkable confinement WGP are able to attain near the apex of the wedge

(the results for the groove are qualitatively similar, albeit with slightly less localization for the same
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resonant frequency); this can be observed both from the induced potential or the electric-field. The

intensity plot in the background of the vectorial representation of the 2D E(x,y) refers to the value

of the y-component of this quantity, which is dominant in most of the spatial region. Notice that

since the potential has odd symmetry with relation to the y = 0 plane, then the correspondent

component of the electric field must be of even symmetry. It should also be highlighted that the

vertical confinement (with respect to the apex edge) decreases rather rapidly as we move from the

fundamental resonance to the higher order branches of the polaritonic spectrum. For the particular

case depicted in the figure, the lowest energy mode essentially remains localized within the first 200

nm, whereas for the second order mode that distance grows beyond 3.6 µm. Figure 5 also serves to

support our previous claim that despite inherent simplifications in our theory, it may still be applied

to realistic wedges (grooves) of finite height (depth). More specifically, the results portrayed in the

figure accurately describe the 1st WGP in a 200nm-tall dielectric wedge, or, instead, both WGPs

modes in a wedge with about 4 µm in height.

The behavior of the spatial distributions displayed in Fig. 5 is qualitatively maintained through-

out most of the dispersion curve (and similarly for different angles), the only important difference

being the degree of confinement in the whereabouts of the apex edge. Therefore, an infinitely vast

number of V-shaped geometric configurations, with different angles, heights or depths, may be

engineered depending on the required level of localization and/or frequency region of interest. In

this regard, one can use our model to effectively design and architecture a device which meets the

pre-established requirements in terms of operating frequency range and dimensions.

Concluding Remarks and Outlook

In summary, we envision the exploitation of the folding of an otherwise planar graphene sheet—or

any other SPP-supporting 2D material—into an (out-of-plane) triangular-like shape as a mean to

achieve deep subwavelength waveguiding and light-localization using the plasmon modes guided

along the apex of a V-shaped substrate. The fabrication of such devices is well within reach of
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current experimental state-of-the-art capabilities, as much of the technology has already been de-

veloped in the context of traditional 3D metal plasmonics. As an example, nanoimprint approaches

developed for metal grooves80 could be readily applied also to the present case. The same goes

in what concerns potential mechanisms to excite these modes, since the same techniques used to

excite CPPs could also be applied to excite WGP/GGP modes (e.g. end-fire coupling or excitation

by fast electrons).36 In this article, we have outlined a quasi-analytic method to theoretically de-

scribe graphene plasmons either guided along the ridge of a dielectric wedge or along the valley of

a groove carved in an insulating substrate. The model accurately obtains the spectrum of the plas-

monic eigenmodes supported by the aforementioned structures, as well as the potential and electric

field distributions akin to those excitations. The computed modal distributions advocate the ability

of these modes to achieve large field-enhancements and to deliver strong light-localization in the

neighborhood of the triangular edge. Interestingly, we have found that the dispersion of each par-

ticular WGP/GGP mode obeys a universal scaling law, in the sense that the functional dependence

of the flat-GSP spectrum is maintained up to a multiplication constant that depends solely on the

particular geometric configuration of the system (i.e., the angle ϕ for a given ε1 and ε2). The re-

sults of our calculations were verified by performing rigorous electrodynamic simulations based

on the FEM, to which a very good agreement was observed. We note, however, that the quasi-

analytical model presented above not only provides more physical insight when gauged against

numerical simulations, but is also far less computationally demanding and less time-consuming

that the latter, since all the eigenmodes for a given structure can be determined at once from a sin-

gle computation. Moreover, we have showed that WGPs and GPPs may be suitable candidates for

versatile platforms (specially when taking advantage of the gate-tunability of graphene plasmons)

to effectively route highly confined EM radiation. In this context, subsequent theoretical investi-

gations of wedges/grooves with more realistic, rounded edges should constitute the basis of future

work. The rounding of the apex leads to a slight decrease in the effective index of the plasmon

modes, as shown by our finite-element simulations (cf. SI). Nevertheless, we expect our results

to be qualitatively robust with respect to rounding. Furthermore, it was demonstrated that even
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for infinitely sharp metallic apexes, non-local effects prevent the emergence of singularities at the

tip.81 The case of a 2D layer deposited on a V-shaped substrate with a frequency-dependent dielec-

tric function, e.g. a metal or a polar medium, can also be considered using the theory developed

here. In addition, the effects of strain owing to the folding of the 2D sheet around the apex remain

largely unexplored in what concerns their implications in plasmonic excitations [for instance, in

electronic transport it is well-known that strain introduces a scattering potential for the 2D Dirac

fermions (via a gauge field) which can lead to the modification of the bandstructure].82,83 We thus

expect that this work will fuel future experimental realizations of WGPs/GGPs, as we believe that

such modes may hold interesting implications for future all-photonic circuitries at the nanoscale.
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