
Some Rules to Transform Sequence Diagrams

into Coloured Petri Nets ⋆

Óscar R. Ribeiro and João M. Fernandes

{oscar.rafael, jmf}@di.uminho.pt
Dept. of Informatics, University of Minho, Portugal

Abstract. This paper presents a set of rules that allows software engi-
neers to transform the behavior described by a UML 2.0 Sequence Dia-
gram (SD) into a Colored Petri Net (CPN). SDs in UML 2.0 are much
richer than in UML 1.x, namely by allowing several traces to be com-
bined in a unique diagram, using high-level operators over interactions.
The main purpose of the transformation is to allow the development
team to construct animations based on the CPN that can be shown to
the users or the clients in order to reproduce the expected scenarios and
thus validate them. Thus, non-technical stakeholders are able to discuss
and validate the captured requirements. The usage of animation is an
important topic in this context, since it permits the user to discuss the
system behavior using the problem domain language. A small control ap-
plication from industry is used to show the applicability of the suggested
rules.

1 Introduction

Although complex systems are, by their nature, hard to build, the problem can
be ameliorated if the user requirements are rigorously and completely captured.
This task is usually very difficult to complete, since clients and developers do
not use the same vocabulary to discuss. For behavior-intensive applications,
this implies that the dynamic behavior is the most critical aspect to take into
account. This contrasts with database systems, for example, where the relation
among data types is the most important concern to consider. A scenario is a
specific sequence of actions that illustrates behaviors, starting from a well defined
system configuration and in response to external stimulus. Petri nets are used to
formalize the behavior of some component, system or application, namely those
that have a complex behavior. Since Petri nets are a formal model, they do not
carry any ambiguity and are thus able to be validated.

This paper proposes a set of rules that allow software engineers to transform
requirements, expressed as a UML 2.0 SD into an behaviorally equivalent CPN.
The main purpose of the transformation is to generate a CPN [1] that is akin
to be animated (with the mechanism available in CPN-Tools) and thus under-
stood by the users. The synthesized CPN that can be shown (i.e. animated) to

⋆ This work has been supported by the grant with reference SFRH/BD/19718/2004 from
“Fundação para a Ciência e Tecnologia”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/76177158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the users or the clients in order to reproduce the expected scenarios and thus
validate them. Thus, non-technical stakeholders are able to discuss and validate
the captured requirements. The usage of animation is an important topic in
this context, since it permits the user to discuss the system behavior using the
problem domain language, which they are supposedly familiar with.

The paper is organized as follows. In section 2, the SDs of UML 2.0 are intro-
duced. Section 3 presents some rules of how to translate a SD into a behaviorally
equivalent CPN. In section 4, the result of applying the rules presented in pre-
vious section to the case study of an industrial reactor system. In Section 5 is
presented a discussion of the related work. Section 6 presents the conclusions of
this work and some possible directions for the future work.

2 UML Diagrams for interaction

The introduction of UML 2.0 standard changed almost every sort of things in
previous versions designated by UML 1.0.

The dynamic part of the system can be specified in UML 2.0 through various
behavioral diagrams, such as: activity diagrams, sequence diagrams and state
machines diagrams. These diagrams use behavioral constructs, namely activities,
interactions, and state machines.

Interactions are a mechanism for describing systems, which can be under-
stood and produced, at varying level of detail. Usually, interactions do not tell
the complete story, when they are produced by designers or by computer systems,
because normally some other legal and possible traces are not contained within
the described interactions. There are some exceptions where the project request
that all possible traces of a system shall be documented through interactions.

An interaction is formed by lifelines and messages between them, that se-
quence is important to understand the situation. Although data may be also
important, its manipulation is not the focus of interactions. Data is carried by
the messages, and stored in the lifelines, and can be used to decorate the dia-
grams.

SDs are the most common interaction diagram defined by the UML [2], that
focus on the message interchange between a number of lifelines. Communication
diagrams show interactions through an architectural view where the arcs be-
tween the communicating lifelines are decorated with description of the passed
messages and their sequencing. Interaction overview diagrams are a variant of
activity diagrams that define interactions in a way that promotes overview of the
control flow, these diagrams can be seen as a high-level structuring mechanism
that is used to compose scenarios through sequence, iteration, concurrency or
choice. There are also optional diagram notations such as timing diagrams and
interaction tables. In this work, we concentrate on SDs.

In the UML 2.0 new notions for SDs are introduced to treat iterative, con-
ditional and various other control of behavior. The old iteration markers and
guards on messages have been dropped from SDs.



Fig. 1: An example of a UML 2.0 SD

Fig. 1 shows an example of a SD. A SD is enclosed in a frame and includes
a pentagon in the upper left handed corner with the keyword sd followed by a
label identifying the SD.

There are several possible operators, whose meaning is described informally
in the UML 2.0 Superstructure specifications [2]:

– sd: Indicates the principal frame of the sequence diagram;
– ref: references another fragment of interaction;
– seq: indicates the weak sequencing of the operands in the fragment, which

is select by default. The weak sequencing maintain the order inside each
operand, and the events on different operands and different lifelines may
occur in any order.

– strict: specifies that messages in the fragment are fully ordered;
– alt: specifies that the fragment represents a choice between two possible

behaviors. There is a guard associated with the fragment, its evaluation
define which of choices is executed;

– par: indicates that the fragment represents a parallel merge between the
behaviors of the operands;

– loop: indicates an interaction fragment that shall be repeated some number
of times. This may be indicated using a guard condition, and it is executed
until the guard evaluates to false.

UML 2.0 provides two kinds of conditions in SDs, namely interaction con-

straints and state invariants. An interaction constraint is a boolean expression
shown in square brackets covering the lifeline where the first event will occur,
positioned above that event inside an interaction operand. A state invariant is



a constraint on the state of an instance, and is assumed to be evaluated during
run time immediately prior to the execution of the next event occurrence. No-
tationally, state invariants are shown as a constraint inside a state symbol or in
curly brackets, and are placed on a lifeline.

In the previous versions of UML it was not possible to express that, at any
time, a specific scenario should not occur. In the UML 2.0 negative behavior (i.
e. invalid traces) can be specified using the new operator neg. Currently, this
operator is not considered in this work.

3 Transforming SD Operators into CPNs

In this section we show how to translate some of the high-level operators available
in the UML 2.0 SDs, into a behaviorally equivalent CPN. To accomplish this, we
explain the semantics of the operator, we describe in an informal way how the
transformation is achieved, and additionally we show the result of applying these
ideas to some illustrative examples. We restrict our study to the following high-
level operators: strict, seq, par, loop and alt. Operators like neg, assert,
critical are not considered by now.

First of all we look to InteractionFragments without any of the high-level
operators. An InteractionFragment is a set of Lifelines, each of which has a
sequence of EventOccurences associated with it.

We consider a semantic for SD with a order relation between messages such
that the emission requires the reception of the preceding message.

(a) A UML 2.0 SD without high-level oper-
ators

()

()

()

m3(aB)

aB

()

m1(aB)

aB

()

()aC

m2(aC)

m3

m1

m2

UNIT

Fusion 2 

B

UNIT

UNIT

Fusion 2 
B

Fusion 3
C

UNIT

Fusion 3

Fusion 2 

Fusion 2 

(b) The obtained CPN

Fig. 2: Example of transform a SD without high-level operators

The SD presented in Fig. 2a represents an interaction without high-level
operators. There are three Lifelines and three messages between them. The ob-
tained CPN (see Fig. 2b) associates a transition for each message in the SD. In



this way an execution of a message is represented by the firing of its correspond-
ing transition in the CPN. There are places to guarantee the order between the
firring of transitions, and other places to represent the object which the message
changes when executing. When firing a transition, a function is applied to the
object in the place. This function is a representation of the changes made in the
object of the lifeline in the message’s destination. To represent the guards in the
SD we use a transition guarded by a conditions over the object representation.
When there are more than one message in the same point of a lifeline we consider
a unique transition which includes all the messages.

Let us consider CombinedFragments with high-level operators.

3.1 Alternative Choice

The choice of behavior is represented by a CombinedFragment with the interac-

tionOperator alt. Each operand of alt has an associated guard, which is evalu-
ated when choosing the operand to be executed. No more than one operand will
be chosen and in this work we assume that the guards must be disjoint. When
one of the operands has its guard evaluated to true, the interaction associated
with this operand is considered. The empty guard is by default evaluated to
true. The operand guarded by else means that the guard is evaluated to true
when none of the guards in the other operands is evaluated to true. In the case
that none of the operands’ guards are evaluated to true (this means that there
are no else and empty guards) none of the operands are executed.

The SD in Fig. 3a is transformed into the CPN in Fig. 3b. Each operand
in SD is transformed in a sequential branch. All sequential branchs begin in a
common input place and end a common output place.

(a) A UML 2.0 SD

()

anA anA

m3(aB)

aB

()

()

()

aC

m2(aC)

m1(aB)

()

()

()

aB ()

()

anA

()()
()

m3

m2

m1

alt ELSEalt2

[cond2(anA)]

alt1

[cond1(anA)]

Fusion 1
A

Fusion 1
A

Fusion 2
B

UNIT

UNIT

UNIT

UNIT

Fusion 3
C

Fusion 2

B

Fusion 1
A

UNIT

Fusion 1

Fusion 2

Fusion 3

Fusion 2

Fusion 1 Fusion 1

[(not (cond1 anA)) 
 andalso
 (not (cond2 anA))]

(b) The obtained CPN

Fig. 3: Example with the alternative choice operator (alt)



Please notice that in this case there is no else guard, and thus when none of
the guards is evaluated as true, no operand is executed. In terms of CPNs this is
represented by the rightmost part of the CPN where the “alt ELSE” transition
condition is the negated disjunction of all other guards. The other branches are
guarded by the same condition as in SD and describe the same sequence.

3.2 Optional

The optional operator, represented by InteractionOperator opt, can be seen as
an alternative choice with only one Operand, whose guard is not the else (see
Fig. 4). With this similarity, we can apply to the optional operator the same
general translation scheme used for alternative choice.

(a) A UML 2.0 SD (b) The corresponding UML 2.0 SD with alt

Fig. 4: The option operator (opt) expressed by an alternative choice

3.3 Parallel Composition

The parallel merge between two or more behaviours is represented by a Com-

binedFragment with the interactionOperator par. Keeping the order imposed
within operands, EventOccurrences from different operands can be interleaved
in any way. The SD in Fig. 5a is transformed into the CPN in Fig. 5b. The
obtained CPN has two additional transitions to control the interleaving of be-
haviors. The transition “begin par” creates two branches (one for each operand)
introducing a token into the two output places, in this way we obtain the inter-
leaving between the transitions of each branch. The transition “end par” wait
for the execution of all created branches, because it is enabled only when its
input place has a number of token equal to the number of created branches.

3.4 Weak Sequencing

When using the InteractionOperator seq the corresponding CombinedFragment

represents a weak sequencing between the behaviors of the operands. The or-



(a) A UML 2.0 SD

()

()

()

()

()

m3(aB)

aB

()

2`()

()

m1(aB)

aB

()

()

()

aC

m2(aC)

m3

end par

begin par

m1

m2

UNIT

Fusion 2 
B

UNIT

UNIT

UNIT

Fusion 2 
B

UNIT

UNIT

Fusion 3
C

Fusion 3

Fusion 2 Fusion 2 

(b) The obtained CPN

Fig. 5: Example with the parallel composition operator (par)

dering of EventOccurrences within each of the operands are maintained in the
result. OccurrenceSpecifications on different lifelines from different operands may
come in any order. OccurrenceSpecifications on the same lifeline from different
operands are ordered such that an EventOccurrence of the first operand comes
before that in the second operand.

In Fig. 6a we have an example of a SD with seq operator. The messages m1
and m3 have the EventOccurence in the same Lifeline, and in the first operand,
after the message m1 we have the message m2. Thus, message m1 must occur
before messages m3 and m2.

To construct a corresponding CPN to a SD with the seq operator, we first
consider the CPN for the parallel composition between the operands, and after
that we impose some more order between transitions in different branches. The
CPN in Fig. 6b is obtained from the CPN in Fig 5b changing the name of tran-
sitions “begin par” and “end par”) to “begin seq” and “end seq”, adding the
place between transitions “m1” and “m3” and the corresponding arcs to complete
the connection.

The SD in Fig. 7a is another example using the operator seq. The corre-
sponding CPN is presented in Fig. 7b.

There are some particular cases using this operator. If the EventOccurrence of
the last message from the first operand is in the same Lifeline as the first message
of the second operand, we have a sequential order between all the messages in
the operands. If none EventOccurrence of messages is in the same lifeline we
have a parallel composition between the operands.



(a) A UML 2.0 SD

()

()

2`()

()

()
aC

m2(aC)

m3(aB)()

()

()

()

()

m1(aB)

aB

()

end 
seq

m2

m3

begin
seq

m1

UNIT

Fusion 3
C

UNIT

Fusion 2 
B

UNIT

UNIT

UNIT

Fusion 2 
B

UNIT

Fusion 2 Fusion 2 

Fusion 3

UNIT

()

aB()

(b) The obtained CPN

Fig. 6: Example with the weak sequencing operator (seq)

(a) A UML 2.0 SD

()
m3(aB)

()

m2(aC)

aC

()()

()

()

()

()

()

2`()

()

()

m1(aB)

aB

()

()
aC

m2(aC)

m3

m4

begin
seq

end 
seq

m1

m2

Fusion 3
C

UNIT

UNIT

UNIT

UNIT

Fusion 2 
B

UNIT

UNIT

UNIT

Fusion 2 
B

UNIT

Fusion 3
C

Fusion 3

Fusion 2 Fusion 2 

Fusion 3

() aB

UNIT

()

()

(b) The obtained CPN

Fig. 7: Another example with the weak sequencing operator (seq)



3.5 Looping

The loop InteractionOperator represents the iterative application of the operand
in the CombinedFragment. This iterative application can be controlled by a guard
or by a minimum and maximum number of iterations.

Given the CPN for the operand inside the loop, we add two transitions:
“loop” and “end loop”. These two transitions have the same input place. Tran-
sition “loop” is enabled if the condition (guard for loop operator) evaluates to
true, and its output place is the input place for the operand’s CPN. The transi-
tion “end loop” is enabled when the condition evaluates to false and its output
place is used as connection to the end of the loop operator. In Fig. 8 we have
an example with the loop operator.

(a) A UML 2.0 SD

aBaB

()

()

()
()

m1(aB)

aB

()

()

()

()

aC

m2(aC)

[not (cond aB)][cond(aB)]

m1

Fusion 2
B

Fusion 2
B

UNIT

UNIT

Fusion 2
B

UNIT

UNIT

Fusion 3
C

Fusion 3

Fusion 2

Fusion 2 Fusion 2

m2

loop end loop

(b) The obtained CPN

Fig. 8: Example with the looping operator (loop)

4 Validation of the Rules

To validate the proposed transformation rules we plan to apply them to several
case studies, so that we can also evaluate their practical usefulness. Currently we
are using an industrial reactor as a case study. In this chapter we show two CPNs
for the reactor: one obtained directly from the requirements (or more precisely
adapted from a PN-based specification) and another one obtained from a SD
using the proposed translation rules.



4.1 A Case Study: Industrial Reactor

The industrial reactor system consists in a reactor that controls the filling of a
tank. It was used in previous works [3–5].

A plant of the reactor system is presented in Fig. 9. The system has two
storage vessels, called SV1 and SV2, each of them has a valve (openSV1 and
openSV2) to control the exit of liquid. Downside of each storage vessel there is a
measuring vessel (MV1 and MV2). A measuring vessel has the same structure as
the storage vessel plus two sensors, one indicating when it is full and another
when it is empty.

Start

OpenCar EmptyCar

Unloading AreaLoading Area

Car

OpenReactor

EmptyReactor Reactor

Mixer

Turn

MV2MV1
EmptyMV1
FullMV1

EmptyMV2
FullMV2

OpenMV2OpenMV1

Button

SV2SV1

OpenSV1 OpenSV2

FullReactor
MixingLevelReactor

Fig. 9: The environment of industrial reactor system

The Reactor is fed with two kinds of liquids from measuring vessels MV1 and
MV2 which draw from storage vessels SV1 and SV2. After the reaction between
the liquids is complete, the reactor is discharged into catch vessel named Car.
When the Reactor is empty the process product is transported using carriage
Car. To ensure complete reaction the process liquid in the reactor is agitated by
stirrer Mixer.

When the push button Start is pressed the valves OpenSV1 and OpenSV2

are opened and measuring vessels MV1 and MV2 are refilled until a high-level
condition FullMV1 (FullMV2) is sensed. After that, OpenSV1 (OpenSV2) is closed.



The reactor is filled with a liquid input control valves OpenMV1, OpenMV2 and a
product discharge valve OpenReactor. At the start of a reaction cycle charges
of process, liquids are delivered into the reactor from the measuring vessels MV1
and MV2. The valves OpenMV1, OpenMV2 are opened while this proceeding the
reactor stirrer may start (Turn), when the level in the reactor is higher than
MixingLevelReactor. When a low level (EmptyMV1 in MV1, EmptyMV2 in MV2)
is sensed the valves OpenMV1 an OpenMV2 must be closed and the reactor is
emptied (OpenReactor). After discharging the reactor (EmptyReactor) product
is transported by using carriage which may move right (GoUnloadingArea) or
left (GoLoadingArea).

4.2 A Manual CPN model

A model of the industrial reactor using High-Level Petri Nets was presented in
[4], where a shobi-PN (Synchronous, Hierarchical, Object-Oriented and Inter-
preted Petri Net) model of an industrial reactor control system is considered as
a case study to illustrate the model’s applicability and capabilities. The shobi-
PN model is an extension to SIPNs (Synchronous and Interpreted Petri Nets)
[5]. The model of shobi-PN includes the same characteristics as the SIPN model,
in what concerns to synchronism and interpretation, and adds to functionalities
by supporting object-oriented modeling approaches and new hierarchical mech-
anism, in both the control unit and the plant. We have done a translation of
SIPN models into PROMELA code to improve the analysis methods for SIPNs
[6]. We used the SIPN model of industrial reactor as a case study to validate
our approach.

Based on the shobi-PN model of reactor system presented in [4] we created
the CPN model in Fig. 10.

The objects are represented by record colors, and the methods are represented
by functions on the the object’s color, e.g. the storage vessel object and the
method to open a storage vessel is defined by the following CPN-ml code:

1 colset StorageVessel =
2 record id : INT *
3 isOpen : BOOL*
4 capacity : INT ;

5 fun openStorageVessel (sv:StorageVessel)
6 = StorageVessel.set_isOpen sv true;

In this model we have some more pipelining between tasks of the system,
than in the shobi-PN model. For example, it is possible to be emptying the
storage vessels while the the car is going to the unloading area.

Notice that the tokens associated to each instance of an object is used to
control the behavior of the CPN model. The place anti-place is only used to
restrict the firing of transition t1. To simulate the system behavior we create a
CPN to represent the environment of reactor.



e

e

aCar

goLoadingArea(aCar)

aReactor

aReactorturnOffMixer(aMixer)

(aReactor,aMixer)

aCar

aCar

goUnloadingArea(aCar)

aCar

aCar

openCar(aCar)

(openReactor(aReactor),aMixer)

(aReactor,aMixer) aCar

listEmptyMVs

aMV

aMV(aReactor, turnOnMixer(aMixer))

aReactor

closeAllMVs(listEmptyMVs)

closeReactor(aReactor)

openAllMVs(listFullMVs)
aReactor

aReactor
listFullMVs

closeCar(aCar)

aCar

aCar
aMV

aMV

closeSV(aSV)

aSV

openAllSVs

aButton

listStorageVessels

t1b

t10b

[isAboveMixingLevelReactor(aReactor)]

t13

[isEmptyCar(aCar)]

t12

[isAtUnloadingArea(aCar)]

t11

[isEmptyReactor(aReactor)]

t10

t7 t8

[isEmptyMV(aMV)]

t5

[isAtMixingLevelReactor(aReactor)]

t4 t9

[isAtLoadingArea(aCar)]

t2 t3

[isConnected(aSV,aMV) andalso 
isFullMV(aMV)]

t1

[isPressed(aButton)]

anti-place

1`e

E

p14c

Fusion 4

Reactor

p14b

Car

p16

Car Events 3

Car

p15

Car Events 2

Car

p14

Fusion 3

Reactor_x_Mixer

p13

Car

p11 p12

MeasuringVessel

p7

Reactor_x_Mixer

mixer

Mixer

p9 10

MV Events2 MeasuringVessel

p8

Fusion 2
Reactor

pf8

reactor

Reactor

p4 p5

MeasuringVessel

pf6 7

MV Events1

listMeasuringVessels

MeasuringVessel

p2 p3

SV Events
StorageVessel

p6
Car Events 1

Car

Pf4

listCars

Car

Pf2

Fusion 1

1`false

Button
Pf 1 2

listStorageVessels

StorageVessel

Fusion 1

Car Events 1
SV Events

MV Events1

Fusion 2

MV Events2

Fusion 3

Car Events 2

Car Events 3

Fusion 4

aMixer

Fig. 10: A CPN model for reactor system



4.3 A CPN model from a SD

This subsection presents a SD for some scenarios of reactor system’s usage, and
a CPN model obtained from the SD through the rules presented in section 3.

The reactor system is textually described in subsection 4.1, and in subsection
4.2 there is a CPN model which defines its behavior. Taking into account these
two exercises of analyzing the reactor system we construct the SD in Fig. 11 to
represent the handled scenarios. This SD uses high-level operators, namely the
ref to point to another two SDs: “Preparing Car” (see Fig. 12) and “Vessels
Behavior” (see Fig. 13).

Fig. 11: A SD describing some scenarios of using the reactor system

To transform this SD we firstly apply the rules to the fragments with one
high-level operator. After that we compose the obtained CPNs into a hierarchical
CPN. We put each SD pointed by ref into a subpage. Fig. 14 shows the CPN
obtained from the SD in Fig. 12, where we can find transitions which are links
to a CPN in a subpage. The subpage Vessels Behavior is presented in Fig. 14,
which corresponds to the SD presented in Fig. 12.



Fig. 12: A SD describing the behavior of vessels

Fig. 13: A SD describing the preparation of car



openReactor(aReactor)

aReactor

closeMVs(listAllMVs)

listAllMVs

start(aButton)

aButton

aButtonaButton

()

()

()

()

()

()

2`()

()

()()
()

()

()

()

()

()

()

()
()

()

()

2`()

()

()

()

()

()

()

Preparing 
Car_

Prepapring Car

end par 2

begin par 2

CloseAllMVs
openReactor

Preparing 
Car

Prepapring Car

Vessels
Behavior

Vessels Behavior

Transport

Transport

Vessels
Behavior_

Vessels Behavior

end loop

[not (isPressed aButton)]

Start

loop

[isPressed(aButton)]

begin par 1

end par 1

Fusion 4
Reactor

Fusion 3
MeasuringVessel

Fusion 1
Button

Fusion 1
Button

Fusion 1
Button

UNIT

UNITUNIT

UNIT

UNIT

UNIT

UNIT

1`()

UNIT

UNIT

UNIT

UNIT

UNIT

UNIT

Vessels Behavior
Transport

Vessels Behavior Prepapring Car

Prepapring Car

Fusion 1 Fusion 1

Fusion 1

Fusion 3

Fusion 4

Fig. 14: CPN from the SD presented in Fig. 11



()()

() ()

()

()()

()

()

()

()

()

()

()

()

()

2`()

()()

()

()

()

()

()

Start Emptying 
MVs

Start Emtying  MVs

Mix

Mix

end par 2

begin par 2

openAllSVs

end par 1

begin par 1

closeSV2

Full MV2Full MV1

closeSV1

UNIT UNIT

UNITUNIT

UNIT

UNIT

UNIT

UNIT

UNITUNIT

UNIT

In
UNIT

Out
UNIT

Out

In

MixStart Emtying  MVs

Fusion 2

listAllSV

StorageVessel

openSVs(listAllSV)

Fusion 2 Fusion 2
StorageVessel

closeSV(sv1)

StorageVessel

sv2

closeSV(sv2)

Fusion 2

Fusion 2 Fusion 2

Fusion 3Fusion 3
MeasuringVessel

mv1

sv1

mv2

[isFullMV mv2][isFullMV mv1]

Fusion 3

MeasuringVessel

Fusion 3

Fig. 15: CPN to represent the behavior of vessels (see Fig. 12)

4.4 Animation

We have developed a SceneBeans [7] animation to be associated with the created
CPNs, through the BRITNeY animation tool [8]. A screen shot of the animation
of reactor system is shown in Fig. 16.

In this animation we can find the elements of the problem domain, which is
the reactor domain. We obtain this animation using the Scenebeans animator.
On the left top side of the image we have commands accepted by the animation.
On the left button side, we have the events produced by animation. These set
of commands and events are use to do the interaction between the animation
and the CPN models. For example, to animate the message “openAllSVs” in
SD of Fig. 12, we invoke, in the corresponding transition, two commands of the
animation: “openSV1” and “openSV2”. The user can interact with the animation
using the start button. The vessels on the top are the storage vessels. Each
storage vessel has a corresponding measuring vessel. In the center we have the
reactor vessel, with a mixer inside of it. On the button we have which transports
the liquid to the unloading area.

This animation is intended to help us in validating the obtained CPNs in
terms of their appropriateness to express in the user’s domain language the re-
quirements of a given system. Additionally we plan to use the animation to
compare the two CPNs for the reactor system (Figs. 10 and 14) and to eval-
uate the performance of the rules to generate “good” CPNs. We would like to



Fig. 16: The animation of the reactor system

observe if the animations controlled by both CPNs produce the same externally
observable behavior, independently of their internal structures.

5 Related work

Transforming scenarios into state-based models (namely, sequential finite-state
machines) has been the subject of many researchers. In fact, several approaches
were already proposed to combine the usage of both scenarios and state-based
models and, in this section, some of them are discussed. A major problem for
obtaining state-based models from scenarios is the big computational complexity
of the synthesis algorithms that does not allow the technique to scale up. Some
additional obstacles include methodological issues, the definition of the level of
detail in the scenarios to allow effective synthesis, to the problem of guaranteeing
that the scenarios are representative of the users’ intentions.

The majority of the approaches propose the usage of FSM (finite state ma-
chine). Krüger et al. suggest the usage of Message Sequence Charts (MSCs)
for scenario based specifications of component behavior, especially during the
requirements capture phase of the software process [9]. They discuss how to
schematically derive statecharts from MSCs, in order to have a seamless de-
velopment process. Harel proposes the usage of scenario based programming,
through UML (Unified Modeling Language) [2] use cases and play in scenar-
ios [10]. Harel’s play in scenarios make it possible to go from a high level user
friendly requirements capture method, via a rich language for describing message



sequencing, to a full model of the system, and from there to the final implemen-
tation.

Whittle and Schumann propose an algorithm to automatically generate UML
statecharts from a set of UML sequence diagrams [11]. The usage of this algo-
rithm for a real application is also presented [12, 13], and the main conclusion
is that it is possible to generate code mostly in an automatic way from scenario
based specifications.

Hinchey et al. propose a round trip engineering approach, called R2D2C
(Requirements to Design to Code), where designers write requirements as sce-
narios in constrained (domain specific) natural language [14]. Other notations
are however also possible, including UML use cases. Based on the requirements,
an equivalent formal model, using CSP, is derived, which is then used as a basis
for code generation.

Uchitel and Kramer present an MSC language with semantics in terms of la-
beled transition systems and parallel composition [15]. The language integrates
other languages based on the usage of high level MSCs and on the identification
of component states. With their language, scenario specifications can be broken
up into manageable parts using high level MCSs. These authors also present
an algorithm that translates scenarios into a specification in the form of Fi-
nite Sequential Processes, which can be used for model checking and animation
purposes.

The synthesis of Petri nets from scenario-based specification is less popu-
lar than the one that generates FSMs, because Petri nets represent a model of
computation, where parallelism and concurrency of activities are “natural” char-
acteristics. We next describe some of the approaches proposed to obtain Petri
nets from a set of scenarios. In [16], the authors present a polynomial algorithm
to decide if a scenario, specified as a Labelled Partial Order, is executable in a
given place/transition Petri net. The algorithm preserves the given amount of
concurrency and does not add causality. In case the scenario is indeed executable
in the Petri net, the algorithm computes a process net that respects the concur-
rency expressed by the scenario. Although quite useful, this technique is not yet
available for high-level Petri nets, such as Object-oriented Petri nets, Colored
Petri nets (CPNs), or Reference nets.

In [17] an informal methodology to map Live Sequence Charts (LSCs) into
CPNs is presented, for allowing properties of the system to be verified and ana-
lyzed.

The formal translation of Interaction Overview Diagrams (IODs) into PEPA
nets is described in [18]. PEPA nets constitute a performance modeling language
that consists of a restriction of Petri nets, where tokens are terms of a stochastic
process algebra [19]. The translation is based on the idea that the structure given
by the IOD corresponds to the high level net structure of the PEPA net, and
the behavior described in the IOD nodes (sequence diagrams) can be translated
onto PEPA terms. The translation allows a designer to formally analyze UML
2.0 models, using the tools for PEPA nets.



A formal semantics by means of Petri nets is presented in [20] for the major-
ity of the concepts of sequence diagrams. This semantics allows the concurrent
behavior of the diagrams to be modeled and subsequently analyzed. Moreover,
the usage of CPNs permits an efficient structure for data types and control el-
ements. In their approach they use places to represent the messages, instead
transitions as we do.

This work is based on the preliminary results presented in [21], where the
authors show how the behavior of animation prototypes results from the trans-
lation of SDs into CPNs. We extend their results by showing how to translate
more types of operators in UML 2.0 SDs, namely by considering parallel con-
structors which result in CPNs with true concurrency (i.e. CPNs that are not
just sequential machines).

6 Conclusions

In this paper we show a set of rules to transform SD into equivalent CPNs for
animation proposes. In UML 2.0, SDs are quite expressive and this work explores
the new constructors (in relation to UML 1.x) that allow several plain sequences
to be combined in a unique SD. Thus the rules allow the generation of a CPN
that covers several sequences of behaviors. This work is in progress so we plan to
develop it further. First we plan to investigate all SD operators, namely the neg

operator and evaluate if it can be useful for the software engineer. Second, we
need to better tune the rules, to realize if they can be automated. In the future
we would like to use a UML-based tool to draw the SD diagrams and apply au-
tomatically the rules to obtain a CPN for animation. Probably this automation
requires a second set of rules that “optimizes” the CPN by eliminating redun-
dant parts. In this work we only have a validation of transformations though
the implementation, we plan to study the soundness and completeness of the
approach.

Finally the usage of the rules in real-world projects is planned, since we
believe that methods and tools for software engineers need to be evaluated by
them in complex industrial projects.

References

1. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Brauer, W. and Gozenberg, G. and Salomaa edn. Volume Volume 1, Basic
Concepts of Monographs in Theoretical Computer Science. Springer-Verlag (1997)
ISBN: 3-540-60943-1.

2. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modelling
Language. Addisson-Wesley (2003)

3. Adamski, M.: Direct Implementation of Petri Net Specification. In: 7th Interna-
tional Conference on Control Systems and Computer Science. (1987) 74–85

4. Machado, R.J., Fernandes, J.M., Proença, A.J.: Specification of Industrial Digital
Controllers with Object-Oriented Petri Nets. In: IEEE International Symposium
on Industrial Electronics (ISIE’97). Volume 1. (1997) 78–83



5. Fernandes, J.M., Pina, A.M., Proença, A.J.: Concurrent Execution of Petri Nets
based on Agents. In: Encontro Nacional do Colégio de Engenharia Electrotécnica
(ENCEE95), Lisbon Portugal, Ordem dos Engenheiros (1995) 83–9

6. Ribeiro, O.R., Fernandes, J.M., Pinto, L.F.: Model Checking Embedded Systems
with PROMELA. In: 12th IEEE International Conference on the Engineering of
Computer Based Systems (ECBS 2005), Greenbelt, MD, E.U.A., IEEE Computer
Society Press (2005) 378–85

7. Pryce, N., Magee, J.: SceneBeans: A Component-Based Animation Framework for
Java. (Online) http://www-dse.doc.ic.ac.uk/Software/SceneBeans/.

8. Westergaard, M., Lassen, K.B.: Building and Deploying Visualizations of Coloured
Petri Net Models Using BRITNeY Animation and CPN Tools. In: Sixth Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. (2005)

9. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts. In Rammig,
F.J., ed.: Distributed and Parallel Embedded Systems, Kluwer Academic Publish-
ers (1999) 61–71

10. Harel, D.: From play-in scenarios to code: An achievable dream. IEEE Computer
34(1) (2001) 53–60 (Also, Proc. Fundamental Approaches to Software Engineering
(FASE; invited paper), Lecture Notes in Computer Science, Vol. (Tom Maibaum,
ed.), Springer-Verlag, March 2000, pp. 22-34.).

11. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: 22nd
International Conf. on Software (ICSE), Limerick, Ireland (2000) 314–323

12. Whittle, J., Saboo, J., Kwan, R.: From scenarios to code: An air traffic control
case study. In: ICSE’03. (2003) 490–497

13. Whittle, J., Kwan, R., Saboo, J.: From scenarios to code: An air traffic control
case study. Software and Systems Modeling 4(1) (2005) 71 – 93

14. Hinchey, M.G., Rash, J.L., Rouff, C.A.: A formal approach to requirements-based
programming. ecbs 00 (2005) 339–345

15. Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from
scenarios. In: Proceedings of the 23rd International Conference on Software Engi-
neering, ICSE 2001, 12-19 May 2001, Toronto, Ontario, Canada, IEEE Computer
Society (2001) 188–197

16. Juhs, G., Lorenz, R., Desel, J.: Can I Execute My Scenario in Your Net? In
Ciardo, G., Darondeau, P., eds.: Applications and Theory of Petri Nets 2005: 26th
International Conference (ICATPN 2005). Volume 3536 of LNCS., Miami, USA,
Springer (2005) 289

17. Amorim, L., Maciel, P., Nogueira, M., Barreto, R., Tavares, E.: A methodology
for mapping live sequence chart to coloured petri net. In: IEEE International
Conference on Systems, Man and Cybernetics. Volume 4. (2005) 2999–3004

18. Kloul, J., Kuster-Filipe, J.: From interaction overview diagrams to pepa nets.
In: Proceedings of the 4th Workshop on Process Algebras and Timed Activities
(PASTA’05), Edinburgh (2005)

19. Gilmore, S., Hillston, J., Kloul, L., Ribaudo, M.: Pepa nets: a structured perfor-
mance modelling formalism. Performance Evaluation 54(2) (2003) 79–104

20. Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., Stehno, C.: Compositional
semantics for UML 2.0 sequence diagrams using Petri Nets. In Lecture Notes in
Computer Science, Volume, J.., ed.: SDL 2005: Model Driven Systems Design: 12th
International SDL Forum. Volume 3530., Grimstad, Norway (2005) 133–148

21. Machado, R.J., Lassen, K.B., Oliveira, S., Couto, M., Pinto, P.: Execution of
UML Models with CPN Tools for Workflow Requirements Validation. In: Sixth
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools. (2005)


