

JUNE 2015

Thesis Advisor: Prof. Dr. Nadia ERDOĞAN

Faculty of Computer and Informatics

Computer Engineering Programme

Bilgisayar Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

M.Sc. THESIS

Murat ÖZTÜRK

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

A DATA REPLICATION STRATEGY TO IMPROVE SYSTEM AVAILABILITY

FOR CLOUD STORAGE SYSTEMS

THIRD LINE IF NECESSARY, FIT TITLE IN THREE LINES

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/76124816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

Murat ÖZTÜRK

504111552

Faculty of Computer and Informatics

Computer Engineering Programme

Bilgisayar Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Thesis Advisor: Prof. Dr. Nadia ERDOĞAN

JUNE 2015

A DATA REPLICATION STRATEGY TO IMPROVE SYSTEM AVAILABILITY

FOR CLOUD STORAGE SYSTEMS

THIRD LINE IF NECESSARY, FIT TITLE IN THREE LINES

HAZİRAN 2015

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BULUT DEPOLAMA SİSTEMLERİ İÇİN SİSTEM ERİŞİLEBİLİRLİĞİNİ

ARTIRAN VERİ KOPYALAMA STRATEJİSİ

YÜKSEK LİSANS TEZİ

Murat ÖZTÜRK

504111552

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Bilgisayar Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez Danışmanı: Prof. Dr. Nadia ERDOĞAN

iii

Thesis Advisor : Prof. Dr. Nadia ERDOĞAN

 İstanbul Technical University

 I

 İstanbul Teknik Üniversitesi

Jury Members : Prof. Dr. Bülent ÖRENCİK

Beykent University

 Hava Harp Okulu

 Asst. Prof. Deniz Turgay ALTILAR

İstanbul Technical University

İstanbul Teknik Üniversitesi

Murat Öztürk, a M.Sc student of ITU Institute of / Graduate School of Science

Engineering and Technology student ID 504111552, successfully defended the

thesis/dissertation entitled “A DATA REPLICATION STRATEGY TO

IMPROVE SYSTEM AVAILABILITY FOR CLOUD STORAGE SYSTEMS”,

which he prepared after fulfilling the requirements specified in the associated

legislations, before the jury whose signatures are below.

STORAGE SYSTEMS” başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile

sunmuştur.

Date of Submission: 4 May 2015

Date of Defense: 01 June 2015

iv

v

To my family,

vi

vii

FOREWORD

I would like to thank to my advisor Prof. Dr. Nadia Erdoğan for her technical and

intangible support during my thesis study. She was always very helpful and patient to

me. Almost every week, we had meetings on this study. Besides her

technical/theoratical knowledge, personally she is really constructive, creative and

kind person. I am extremely happy that I had a chance to work with her. I also would

like to thank to my family keeping my motivation high during this period.

May 2015

Murat Öztürk

Computer Engineer

viii

ix

TABLE OF CONTENTS

Page

FOREWORD .. vii
TABLE OF CONTENTS .. ix
ABBREVIATIONS ... xi
LIST OF TABLES .. xiii

SUMMARY .. xvii

ÖZET .. xix

1. INTRODUCTION .. 1
1.1 Purpose of the Thesis ... 3

2. RELATED WORKS .. 5
3. CLOUD COMPUTING ... 7

3.1 What is Cloud computing ? .. 7

3.2 The Services in Cloud .. 8
3.3 The Evolution of Cloud Computing ... 8

3.4 Cloud Formations ... 9
3.5 Silver Linings and Thunder Clouds ... 10

3.5.1 Advantages ... 10

3.5.2 Disadvantages .. 13
3.6 Cloud Service Models .. 14

4. DATA STORAGE AS A SERVICE ... 17
4.1 STaaS Storage Types ... 18

4.1.1 Structured storage... 18
4.1.2 Block storage .. 19
4.1.3 Object storage... 19

4.2 Example STaaS Provider – Amazon S3... 21
4.3 Example STaaS Middleware – OpenStack Swift....................................... 23

4.4 Example STaaS API - CDMI ... 23
4.5 CloudSim ... 25

5. STORAGE CLOUDSIM ... 27
5.1 Architecture .. 27

5.1.1 User code and user interface structures .. 27
5.1.2 Provided storage services ... 28
5.1.3 Resources, resource usage and network ... 29

5.2 Sequence Diagram ... 29
5.3 Implementation .. 32

5.3.1 STaaS provider models .. 32
5.3.1.1 Internal storage models .. 34

5.3.1.1.1 Blob and blobLocators ... 34

5.3.1.1.2 Servers and hard drives .. 34

x

5.3.1.2 Object storage cloud model .. 35

5.3.2 User models .. 36
5.3.2.1 StorageBroker class .. 36
5.3.2.2 UsageSequence class .. 36

5.3.2.3 Service level aggrements .. 37
5.3.2.4 MetaStorageBroker class .. 37
5.3.2.5 Request layers .. 38
5.3.2.6 CDMI requests ... 39

5.3.2.6.1 Cloud discovery request ... 39

5.3.2.6.2 GET container request .. 39
5.3.2.6.3 GET object request ... 39
5.3.2.6.4 Put container request .. 40
5.3.2.6.5 Put object request – creation ... 40
5.3.2.6.6 Put object request – update ... 41

5.3.2.7 UserRequest and UserMetaRequest class 41

5.3.3 Scenario generation .. 42

6. SYSTEM ARCHITECTURE .. 45
6.1 System Model ... 45
6.2 Disk Weighting .. 48
6.3 Optimum Replica Number and Replica Placement Algorithm 49

7. PERFORMANCE EVALUATION .. 55
7.1 Generate Cloud GUI ... 55

7.2 Sequence Generator GUI ... 56
7.3 Main GUI ... 60
7.4 Experiments .. 60

8. CONCLUSION ... 69

REFERENCES ... 71
APPENDICES .. 73

APPENDIX A .. 74

CURRICULUM VITAE .. 79

xi

ABBREVIATIONS

SLA : Service Level Aggrements

CDMI : Cloud Data ManagementInterface

STaaS : Storage as a Service

PaaS : Platform as a Service

IaaS : Infrastructure as a Service

SaaS : Software as a Service

API : Application Programming Interface

VM : Virtual Machine

DBMS : Database Management Systems

SAN : Storage Area Network

xii

xiii

LIST OF TABLES

Sayfa

Table 4.1: Comparison between Block Storage and Object Storage 20

Table 4.2: Storage Prices for Amazon S3 standart storage in US 21

Table 4.3: Costs per request for Amazon S3 in US... 22

Table 4.4: Traffic cost for Amazon S3 in US.. 22

Table 6.1: Server-Disk pairs after sorting with sequence numbers 51

Table 6.2: Each Queue and its disks.. 52

Table 7.1: Experiment Types .. 61

xiv

xv

LIST OF FIGURES

Sayfa

Figure 3.1 Cloud Service Models .. 15

Figure 4.1: CDMI root container wirh multiple containers 24

Figure 4.2: CloudSim Overview ... 25

Figure 5.1: StorageCloudSim Architecture .. 28

Figure 5.2: Sequence diagram for Storage CloudSim .. 30

Figure 5.3: StorageCloudSim Class Diagram ... 33

Figure 5.4: CDMI Object, Blob and Blob Locators ... 34

Figure 5.5: Server and Disk IO Limitations ... 35

Figure 5.6: Request Layers ... 38

Figure 5.7: PutObject State Diagram .. 40

Figure 5.8: Creating user request from JAVA code ... 42

Figure 5.9: XML representation of SLA of normal sequence 43

Figure 5.10: XML representation of a complete sequence 44

Figure 6.1: Failure probability definition for disk in cloud model xml 45

Figure 6.2: Minimum availability definition in cloud model xml 46

Figure 6.3: Servers location definition in cloud model xml 46

Figure 6.4: Minimum availability definition in cloud model xml 47

Figure 6.5: User SLA minimum availability definition in user sequence xml 48

Figure 6.6: User location definition in user sequence xml 48

Figure 6.7: Algorithm: Our strategy for replica placement 53

Figure 7.1: Generate Cloud GUI Screen... 55

Figure 7.2: Adding servers and their configuration screen................................... 56

Figure 7.3: Sequence Generator GUI Screen ... 57

xvi

Figure 7.4: Generated User Sequence file example .. 59

Figure 7.5: Main Screen .. 60

Figure 7.6: Replica count graphic for experiment 1 ... 62

Figure 7.7: Load rate graphic for experiment 1 .. 63

Figure 7.8: Graphic for disk load rates as bar representation in experiment 1 64

Figure 7.9: Replica count graphic for experiment 2 ... 65

Figure 7.10: Graphic for disk load rates in experiment 2 66

Figure 7.11: Graphic for disk load rates as bar representation in experiment 2 . 67

Figure A.1: Generated Cloud file example .. 78

xvii

A DATA REPLICATION STRATEGY TO IMPROVE SYSTEM

AVAILABILITY FOR CLOUD STORAGE SYSTEMS

SUMMARY

The Cloud environment constitutes a heterogeneous and a highly dynamic

environment. The Cloud Computing provides the software and hardware

infrastructure as services using large-scale data centers. As a result, Cloud

Computing moved away the computation and data storage from the end user and

onto servers located in data centers, thereby relieving users of the burdens of

application provisioning and management and enabling them to focus on managing

of their application logic. However, failures on the data center storage nodes often

take place in cloud computing environments. As a result, the cloud environment

requires some capability for an adaptive data replication management in order to

cope with the inherent characteristic of the Cloud environment. To improve system

availability and get high fault tolerance, replicating data is a good choice. Replication

is the process of providing different replicas of the same service at different nodes. In

most of the real cloud, data replication is achieved through data resource pool, the

number of data replicas is statistically set based on history experience and is usually

less than 3. This strategy works well at most time, but it will fail at inclement times.

Replicating the data with a fixed number of its copies to multiple suitable locations

should not be an advisable choice. How to decide a reasonable number and

right/suitable locations for replicas has become a challenge in the cloud computing.

In this thesis, we present a new dynamic data replication strategy suitable for cloud

environments. Our technique provides optimum replica number and prevents the

replica number from incrementing in time. In addition, it enables the replicas to be

placed to all data center nodes in a balanced way depending on the available disk

space for a disk, expected availability of requesting cloud users, failure probability of

each node in data center servers. We also conclude that bandwidth usage can be

reduced by considering the distance between user and data center servers and

locating the replicas nearby users who requests for.

xviii

xix

BULUT DEPOLAMA SİSTEMLERİ İÇİN SİSTEM ERİŞİLEBİLİRLİĞİNİ

ARTIRAN VERİ KOPYALAMA STRATEJİSİ

ÖZET

Bulut Bilişim ortamı farklı özelliklerde olan ve oldukça dinamik bir ortamdan oluşur.

Bulut Bilişim, büyük ölçekli veri merkezlerini kullanarak yazılım ve donanım

altyapısını servisler olarak dışarıya kullanıma açmaktadır. Sonuç olarak, Bulut

Bilişim işlem ve veri depolama işini son kullanıcıdan veri merkezlerindeki

sunuculara taşımaktadır, bu sayede kullanıcıları uygulama kurulumu ve yönetimi

yüklerinden kurtarıp, kullanıcıların sadece kendi uygulamalarının mantığını

yönetmelerine odaklanmalarını sağlamaktadır. Ancak, bulut bilişim ortamlarında,

veri merkezlerinin depolama düğümlerinde sıklıkla hatalar oluşmaktadır. Sistemin

erişilebilirliğini artırmak ve yüksek oranda hata toleransı sağlamak için, verilerin

kopyasını oluşturmak iyi bir seçenektir. Kopyalama, aynı servisin farklı düğümlerde

farklı kopyalarının olmasını sağlama sürecidir. Gerçek dünyadaki bulut ortamların

çoğunda, veri kopyalama veri kaynak havuzlarıyla gerçekleştirilir, veri kopyalarının

sayısı geçmiş deneyimlere bakılarak statik olarak karar verilir ve genellikle 3’den

küçüktür. Bu strateji çoğunlukla iyi çalışır, ancak zorlu durumlarda hata verecektir.

Verilerin sabit sayıda kopyasını oluşturmak ve bunları farklı uygun lokasyonlara

koymanın tercih edilen bir yaklaşım olmaması gerekir. Mantıklı ve uygun bir sayıda

kopya oluşturmak ve bu kopyaları yerleştirmek için doğru/uygun yerleri seçmek,

bulut bilişim çevreleri için çözülmesi gereken bir sorun haline gelmiştir.

Bu tez kapsamında, bulut ortamları için geliştirdiğimiz yeni bir dinamik veri

kopyalama tekniğini sunuyoruz. Tekniğimiz, optimum kopya sayısını

sağlayabilmektedir ve zamanla kopya sayısının artmasını engellemektedir. Ayrıca,

bir disk için müsait durumdaki disk boşluğu durumu, istekte bulunan bulut ortam

kullanıcılarının talep ettikleri erişilebilirlik değeri ve ver merkezi sunucularındaki her

bir düğümün hata alma olasılıklarına bağlı olacak şekilde, kopyaları tüm veri

merkezi düğümlerine dengeli bir şekilde yerleştirilmesine imkan sağlamaktadır.

Ayrıca bu çalışmayla, bulut kullanıcıları ve veri merkezleri arasındaki uzaklığı da

göz önünde bulundurarak, ve verilerin kopyalarını isteği yapan kullanıcılara yakın

olan veri merkezlerine sunucularına yerleştirerek veri genişliği kullanımını da

azaltabileceğimiz sonucunu çıkardık.

Optimum kopya sayısını sağlayabilmek ve bu değerin zamanla artmasını engellemek

amacıyla kullandığımız yaklaşımlar genel olarak şu şekildedir;

 Öncelikle yeni bir nesne depolama isteği geldiğinde, onu depolayabilecek

kadar yeri olan aday diskler çıkartılır.

xx

 Aday diskler içerisinden, kullanıcı tarafından girilen istek dosyalarında

verilen readLatency değerinden daha yüksek read latency konfigürasyonuna

sahip olan diskler çıkartılır.

 Bu aday diskler ağırlıklarına gore sıralanır. Her bir diskin ağırlığı, o diskin

hata verme olasılığının, içinde bulunduğu sunucunun isteği yapan kullanıcıya

uzaklığının ve diskin o andaki doluluk oranının belirlik katsayılarla çarpılıp

toplanmasından oluşan ve 1’den küçük olan bir değerdir.

İsteği yapan kullanıcıya uzaklığın ağırlık hesaplamasına dahil edilmesinin

sebebi; kullanıcının depolamak istediği nesnelerin kendisine yakın olan

sunuculardaki disklerde tutularak, bu nesnelere erişmek istendiğinde daha

yakınında olan sunuculardan getirilerek veri genişliğinin daha etkin bir

şekilde kullanılmasıdır.

Diskin o andaki doluluk oranının ağırlık hesaplamasına dahil edilmesinin

sebebi ise; hata verme olasılığı daha düşük olan disklerin hep en iyi disk

olarak seçilerek hep aynı disklerin dolmasının engellenmek istemesidir.

Çünkü, bulut sistemlerde dinamik kopyalama stratejileri konusundaki diğer

çalışmalarda olduğu gibi, sadece diskin hata verme olasılığına bakılarak

diskler içerisinde sıralama yapılırsa, her nesne depolama isteği geldiğinde,

hep hata verme olasılığı düşük olan aynı diskler seçilecektir. Böylece, iyi

disklerde yeterince yer var iken bulunan optimum kopya sayısı, iyi disklerde

yer kalmadıkça ve daha yüksek hata verme olasılığı olan diskler

kullanıldığında, keskin bir artış gösterecektir.

 Disklerin ağırlıklarına göre sıralanmasından sonra, nesnenin depolanacağı

diskler sırasıyla gezilir ve depolamak amacıyla seçilir. Ancak bu esnada,

doğrudan sıralamaya gore disklere kopyaları yerleştirmek yerine, her bir

kopya için ilk olarak farklı sunucuların diskleri aranır. Çünkü, gerçek

dünyadaki sistemlerde, sunucuların diskleri homojendir , yani bir sunucunun

bütün disklerinin hata verme olasılıkları birbirinin aynısıdır. Böyle bir

sistemde, diskleri ağırlıklarına gore sıraladığımızda, aynı sunucunun farklı

diskleri en iyi diskler olarak ağırlık sıralamasında önlerde gelecektir ve diğer

sunucuların disklerinin kopyayı tutma olasılığı azalacaktır. Bu durumun iki

yönden dezavantajı bulunur; Bu dezavantajlardan biri; bir nesnenin

kopyalarını içeren disklerin sunucusu çöktüğü takdirde, o sunucu içerisindeki

bütün disklere erişim imkansız hale gelecektir, bu nedenle farklı sunucularda

kopyaları bulundurmak system erişilebilirliğini artıracaktır. Diğer dezavantaj

ise, yine aynı sunucunun disklerinin seçildiği durumda, nesne depolama

istekleri için hep daha iyi diskler seçilecektir, diğer sunucuların daha düşük

ağırlıklı diskleri boş kalacaktır. Zamanla, bir sunucudaki ağırlığı iyi olan

diskler dolduğunda, başka sunucudaki daha düşük ağırlıklı diskler tercih

edilmesi zorunlu hale gelecektir ve optimum kopya sayısının keskin bir artış

göstermesi kaçınılmaz olacaktır.

 Eğer bir nesneyi depolamak için farklı sunuculardaki diskler uygun durumda

ise, her sunucudaki disk yukarıda anlatıldığı gibi kullanılacaktır. Ancak, bir

nesneyi depolamak için, belli bir anda sadece bir sunucuya ait diskler uygun

durumda ise, bu durumda erişilebilirliği bozmamak adına o sunucudaki diğer

diskler de değerlendirilir.

 Nesnenin depolanacağı diskler belirlendikten sonra, bu disklere nesneler

yerleştirilir. Bu esnada belirlenen kısıtlamalardan biri de, aynı diske aynı

xxi

nesnenin birden fazla kopyasının yerleştirilmemesidir. Çünkü, disk erişilemez

duruma geldiği takdirde, aynı nesneye ait iki kopyada erişilemez hale

gelecektir ve sistem erişilebilirlğinin artması sağlanamayacaktır.

 Kullanıcılar tarafından diskler üzerinde kopyaları bulunan mevcut bir nesneyi

güncellemek isteği geldiğinde, öncelikle o nesneye ait olan bütün kopyalar

disklerden silinecektir. Daha sonra tekrar, sanki sisteme gelen yeni bir nesne

depolama isteğiymiş gibi işleme konulur. Bunun yapılmasındaki amaç; bir

nesne depolama isteği geldiğinde, düşük ağırlıklara sahip diskler uygun

durumda olabilir ve o nesnenin yüksek sayıda kopyası oluşturulmuş olabilir.

Mevcut nesneyi güncelleme isteği geldiğinde ise, sistemde daha yüksek

ağırlıklı diskler müsait duruma gelmiş olabilir ve belki de o nesne için daha

az sayıda kopya oluşturmak yetebilir. Bu şekilde, bir nesneye güncelleme

isteğiyle beraber, o nesneye ilişkin tutulacak olan kopya sayısının azalabilme

olasılığını düşünerek, güncelleme isteği geldiğinde mevcut kopyalar

silinmekte ve o nesneye sisteme yeni gelen bir depolama isteği gibi

davranılmaktadır.

Sistemi test etmek ve farklı senaryoları kolayca test edebilmek amacıyla, 3 farklı

arayüz geliştirilmiştir. Ayrıca, sistemin çalışması süresince, gelen kullanıcı

isteklerine karşılık belirlenen optimum kopya sayıları ve sunuculardaki disklerin

durumları, geliştirilen grafikler ile gösterilerek, kolay karşılaştırma yapabilme ve

sistemi genel çerçeveden görme imkanı sağlanmıştır.

xxii

1

1. INTRODUCTION

Cloud computing is one of the most emerging technologies of the past few years. It

has become a significant technology trend, and many experts expect that cloud

computing will reshape information technology (IT) processes and IT marketplace. It

consists of a collection of interconnected and virtualized computing resources that are

managed to be one or more unified computing resources.

Cloud computing is a network of data centers. In a cloud environment, applications are

accessible anywhere, anytime and storage becomes available for all intents and

purposes in cloud environment. High availability, high fault tolerance and high

efficiency access to cloud data centers where failures are so normal rather than

exceptional are significant issues. Data replication allows reducing user waiting time,

speeding up access time and increasing data availability by providing the user with

different replicas of the same service, all of them with a coherent state. [1]

There are two types of data replication techniques, namely, static and dynamic. In

static data replication, the number of replicas to be created and the nodes where

replicas should be placed are decided statically during cloud system setup time. The

static replication strategies are simple to implement but not frequently used. This

strategy works well at most time, but it fails at increment times. In order to meet the

high availability, high fault tolerance and high efficiency requirement, it is necessary

to adapt changes based on user requests, storage capacity and bandwidth. And it

means that the number of data replicas and the sites to place the new replicas should

be dynamically determined according to features of the current cloud environment.

There are two important problems that must be solved in order to achieve the dynamic

data replication.

 How many suitable new replicas should be created in the cloud to meet a

reasonable system availability requirement is another important issue. With the

number of new replicas increasing, the system maintanance cost will significantly

2

increase, and too many replicas may not increase availability, but bring unnecessary

spending instead.

 Where the new replicas should be placed to meet the system task successfull

execution rate and bandwith consumption requirements is also an important issue to be

explored in detail.

In our proposed replication strategy, there are some factors to dynamically determine

the replica number and the places which replicas are put into. The replica number of

an object is mainly determined by the minimum expected data availability which user

requires. Another factor to decide the replica number is failure probability of disks

contained in data center servers since disks do have the different configuration

(capacity, read latency, failure probability, etc.) in data centers of a cloud environment.

In addition, we considered the disk usage during runtime while placing the replicas so

that replicas can be distributed to all data center servers in a well-balanced way.

To meet the bandwidth consumption requirements, where the new replicas should be

placed is also an important issue to be explored in detail. New replicas should be

created on near-by locations for users who generate the requests for the data. Thus, we

also considered the distance between the cloud servers and the user who generates the

request while determining the replica placement to provide minimum bandwidth

consumption.

To model cloud environments and to create user requests and requirements, Storage

CloudSim framework[2] which is a storage extension of CloudSim[3] has been used in

this study. Each cloud environment is illustrated with a cloud model file. The data

availability which cloud can provide, and server&disk configurations(such as disk

count, disk capacity/read latency/disk failure probabilities in servers, server location)

is modeled in these files. Users define their SLA requirements such as minimum

expected data availability and also object operations in request files. According to their

requirements, the best cloud model is selected and used for each requirement of user.

Our proposed algorithm works for only put and update object operations.

3

1.1 Purpose of the Thesis

In this thesis, we aim to develop a new dynamic data replication strategy for cloud

environments to increase system availability and reduce bandwidth usage by

regarding the failure probabilities and the current usage of disks and also the distance

between user requesting the data and the data center servers. We aim to find an

optimum replica number and prevent the replica number from increasing as time goes

by.

4

5

2. RELATED WORKS

There are lots of researches in the design of cloud storage. Many of these researches

are file system based storage system such as GFS[4] and HDFS[5]. These

architectures are master-slave routing paradigm. In those storage systems, replication

management is performed by using default replica number. Moreover, the load

balancing is achieved by data migration in these systems. It can cause to more

bandwidth utilization cost to the whole system.

Julia Myint and Thinn Thu Naing[6] proposed a management of data replication for pc

cluster based cloud storage system. As they think that cloud service providers use high

performance storage server as datacenter which is very expensive and reliable and

storing informating and managing its storage in a limited budget is a critical issue for a

small business as well as for large enterprises, they propose the design of cloud

storage system which utilizes a PC cluster consisting of computer machines (PCs)

operating in their university. This solution is very cost effective because any

organization or university can utilize this system over their existing desktop machines

without purchasing any extra hardware or software components. They developed a

formula to determine optimum replica number and the places which replicas are put.

The designed storage system is based on PC cluster for cloud. PC cluster is used for

data storage. Data on cloud computing is stored in PC cluster. Their system is

composed of N independent heterogeneous nodes which have different failure

probabilities and store of M different blocks. The availability of a system, α is defined

as the fraction of time that the system is available for serving user requests. For a

given α value, they calculated the optimum replica number of a data block.

R. Kingsy Grace and R. Manimegalai[13] discussed various replica replacement and

selection strategies along with their merits and demerits in data grid environment.

They also analysed the performance of these strategies with respect to different

parameters such as bandwidth consumption, access cost, scalability, execution time

and storage consumption. They evaluated the trategies based on the following aspects;

parameters used to evaluate the grid performance, architectural models (such as

6

hierarchical architecture or graph topology), assumptions made during replication and

simulation tools used. According to their summary, any replica placement and

selection strategy tries to improve one or more of the following parameters; reliability,

scalability, fault tolerance, load balancing and bandwidth conversation.

D.W. Sun et al[1] analyzed and modeled the relationship between system availability

and the number of replicas. They formulated a mathematical model to describe the

relationship among them. They also evaluated and identified the popular data. The

popular data is identified according to the temporal locality. When the popularity of a

data file passes a dynamic threshold, the replication operation is triggered. Their

formula placed replicas among data nodes in a balanced way, as well. They could

minimized cloud system bandwidth consumption and reduced bandwith consumption

by placing the popular data files closer to the users who generate the most requests for

the data. Their strategy is also developed on simulation framework and they didnt

deploy and test it on a real cloud computing.

M.K. Hussein[8] made a similar study as D.W. Sun. Their proposed strategy selects

the data files which require replication in order to improve the availability of system.

It also decides dynamically the number of replicas as well as the effective data nodes

for replication.

7

3. CLOUD COMPUTING

3.1 What is Cloud computing ?

Cloud computing is best described as ‘a model for enabling convenient, on-demand

network access to a shared pool of configurable computing resources […] that can be

rapidly provisioned and released with minimal management effort or service provider

interaction’. National Institute of Standards and Technology (NIST).

Cloud computing consists of three different types of service provision. In each case the

services are hosted remotely and accessed over a network (usually the internet)

through a customer’s web browser, rather than being installed locally on a customer’s

computer. Firstly, SaaS (software as a service) refers to the provision of software

applications in the cloud. Secondly, PaaS (platform as a service) refers to the provision

of services that enable customers to deploy, in the cloud, applications created using

programming languages and tools supported by the supplier. Thirdly, IaaS

(infrastructure as a service) refers to services providing computer processing power,

storage space and network capacity, which enable customers to run arbitrary software

(including operating systems and applications) in the cloud. These three elements are

together referred to as the cloud computing ‘stack’. This article concentrates on the

issues surrounding the provision of SaaS.

The supply of IT services in the cloud has been enabled both by the evolution of

sophisticated data centres and widespread access to improved bandwidth. These

technical advances mean that services may be hosted on machines across a wide range

of locations but, from the customer’s perspective, they simply originate in the ‘cloud’.

The cloud model enables customers to access, from any computer connected to the

internet (whether a desktop PC or a mobile device), a multitude of IT services rather

than being limited to using locally installed software and being dependent on the

storage capacity of their local computer network.

This model of IT service provision is one that is growing exponentially. It is estimated

that one third of all revenue generated in the software market today relates to the

8

delivery of cloud computing services, and that the value of the UK cloud computing

market could reach around £10.5 billion in 2014, up from £6 billion in 2010. [9]

3.2 The Services in Cloud

The multitude of IT services available in the cloud include familiar web-based email

services such as Windows Live Hotmail (Microsoft), Yahoo! Mail, Gmail (Google),

and the search engine facilities Google, Bing (Microsoft), Yahoo! and AltaVista. They

also include the social networking services of Facebook, Twitter, Friends Reunited,

Bebo, Flickr, YouTube, MySpace and LinkedIn, which provide chat, instant

messaging and file sharing services. But there are a growing number of other services

available. Two examples from different ends of the spectrum are Zynga, which

provides online gaming services, and Wikileaks, which publishes and comments on

leaked documents alleging government and corporate misconduct. These services are

often provided free of charge to the user.

There are also a range of paid-for business-orientated IT services. These are provided

by suppliers including Google, Microsoft, Amazon, Salesforce.com and Tempora.

They offer a suite of services to assist with business management. Google offers

Google Docs for word processing, Business Gmail for emails, Google Calendar for

diary management and Google Sites for website management, and it even offers

different editions of its applications for different sectors (education, governmental and

‘not for profit’). Microsoft offers Windows Azure that allows users to build and host

applications on Microsoft servers (PaaS).

Amazon Web Services (AWS) offers its Elastic Compute Cloud (Amazon EC2),

enabling customers to rent space on Amazon’s own computers from which they can

run their own applications. Tempora provides a time recording and profitability

analysis system for creative agencies and professional service firms, and

Salesforce.com provides customer relationship management solutions. [9]

3.3 The Evolution of Cloud Computing

Long before the term cloud computing was coined, software suppliers were providing

services to their customers from remote servers via internet-enabled computers. This

was called Application Service Provision (ASP) and was the original platform of IT

9

service delivery to emerge from the convergence of computing and communications in

the mid-1990s. However, the ASP model ultimately was an experiment that failed.

Firstly, it involved more complicated initial installation and configuration (at the

customer end) than is involved with today’s on-demand cloud services. Secondly, it

originated as a means of providing software on a one-to-one basis rather than on the

one-to-many (multi-tenant) basis of cloud computing, where one supplier has many

customers. Consequently, ASP lacked the huge advantage that cloud computing enjoys

of being very scalable.

The emergence of software as a service (SaaS) in around 2001 signified the beginning

of software delivery based on multi-tenant architecture involving network-based

access to software managed from a central location and removing the need for

customers to install patches or upgrades.

The term SaaS is useful because it highlights the principal difference between the

internet-based model of software provision and the more orthodox licence and

installation-based model. The latter involves a customer being granted a licence to use

a software package, while the former involves the provision of a web-based service

under a contract for services. There are considerable differences between a software

licence and a contract for services. [9]

3.4 Cloud Formations

The cloud environment is subdivided into public, private, hybrid and community

clouds. [9]

• Public clouds

They are those in which services are available to the public at large over the

internet in the manner already described in this chapter.

• A private cloud

This is essentially a private network used by one customer for whom data

security and privacy is usually the primary concern. The downside of this type of

cloud is that the customer will have to bear the significant cost of setting up and

then maintaining the network alone.

10

• Hybrid cloud

Environments are often used where a customer has requirements for a mix of

dedicated server and cloud hosting, for example if some of the data that is being

stored is of a very sensitive nature. In such circumstances the organisation may

choose to store some data on its dedicated server and less sensitive data in the

cloud. Another common reason for using hybrid clouds is where an organisation

needs more processing power than is available in-house and obtains the extra

requirement in the cloud. This is referred to as ‘cloud bursting’. Additionally,

hybrid cloud environments are often found in situations where a customer is

moving from an entirely private to an entirely public cloud setup.

• Community clouds

Usually exist where a limited number of customers with similar IT requirements

share an infrastructure provided by a single supplier. The costs of the services are

spread between the customers so this model is better, from an economic point of

view, than a single tenant arrangement. Although the cost savings are likely to be

greater in a public cloud environment, community cloud users generally benefit

from greater security and privacy, which may be important for policy reasons.

3.5 Silver Linings and Thunder Clouds

The main benefits and drawbacks of cloud computing are as follows. [9]

3.5.1 Advantages

• Access to resources

The greatest advantage of cloud computing is the access it provides to the

processing power of multiple remote computers. This enables customers to take

advantage of greater computation speed and larger storage capacity than most

organisations can provide on their premises and at a fraction of the cost.

• Mobility

Customers can access the services from almost any location in the world because

the services are web-based (and because of the advent of mobile devices). This

can enable employees to access important business tools while they are on the

11

move. For example, the employee can fill in a Tempora online timesheet whilst

on a train, providing the rest of the business with access to that data in real time.

• Easily scalable

Both the monthly subscription and ‘pay as you use’ charging models make it

easy for the amount of service being provided to be increased or decreased.

Should a customer want to increase the number of ‘seats’ included in its

subscription to Tempora or the amount of megabytes of storage space rented

from AWS, this can be done easily. The supplier simply provides access to

additional users or increases the storage space available in exchange for higher

monthly payments by the customer. The scalability of the cloud computing

model makes it especially attractive to growing organisations with varying levels

of demand for computer resources (e.g. where an organisation’s website receives

higher volumes of visitors at certain times of year).

• Data security and storage capacity

Data security is of particular importance as lapses in procedure can cause severe

financial and reputational damage. For the majority of organisations, the data

security and data storage capacity offered by data centres is far superior to that

which can be afforded in-house. This is because they specialise in the secure

storage of data.

• Cost savings

Most business-orientated cloud computing services are paid for and the payment

model is usually a rental arrangement based on monthly subscription charges

(per user or ‘seat’) or a ‘pay as you use’ system. This means that there is no large

upfront payment as there would be with the purchase of a licence in the orthodox

software licence model. Although there may be an initial setup or configuration

fee, this is usually very low by comparison.

The monthly subscription charges will also usually include support and mainte-

nance fees, which would be significantly higher in the orthodox software licence

model. Also, customers do not need to invest in secure servers because hosting is

provided by third-party data centres and is included in the subscription charge.

12

The ‘pay as you use’ system is of particular benefit to an organisation with peaks

and troughs in its demand for computing resources. It is cheaper than paying for

exclusive use of enough resources to meet peak demand when it is not required,

as is the case where all computation is carried out by an organisation in-house.

Additionally, cloud services reduce the need for an organisation to maintain in-

house expertise in their own technological infrastructure, which reduces IT costs.

Finally, cloud computing services do not represent a capital expenditure, so

customers lose less if they switch suppliers.

• Maintenance and support

The supplier will usually offer ongoing support services. However, remote

hosting of the services makes the process of maintaining and supporting the

services less intrusive for the customer. The supplier can handle backups,

updates and upgrades automatically and remotely without visiting a customer’s

site. This will generally mean that maintenance and support can be carried out

more quickly. In addition, customers are able to piggy-back on their suppliers’

upgrades in computing resources and are not locked into using infrastructure

purchased at great cost 10 years previously.

• Environmentally friendly

It has been suggested that data centres are a ‘green’ alternative to in-house

computing and this is a hotly debated topic. This is because servers in very large

data centres typically run at around 80 per cent capacity, while an in-house server

might run at five per cent capacity, to allow for peaks in resource demand; and a

server running at five per cent capacity uses only slightly less energy per hour

than one running at 80 per cent, while doing 16 times less computation.

Nevertheless, it is probable that the existence of cheap and more easily accessible

cloud computing architectures has increased the overall demand for computation,

outstripping the energy-efficiency gains that have been made in data centres. One

option is to choose a supplier that uses a data centre that makes use of solar

technology or wind cooling, or a data centre that is based in an area where local

electricity comes from a renewable energy resource.

13

• Free trials

Some suppliers offer the opportunity to trial their product for a period without

charge. This is made easier by the supplier’s ability to terminate access at the end

of the period and provides them with the opportunity to ‘hook’ the customer.

This business model is sometimes referred to as a ‘freemium’.

3.5.2 Disadvantages

• Internet reliability

Clearly where IT services are provided over the internet, lack of internet access

or slow connections will hinder access to those services. Where those services

are business-critical this can be a major problem. However, as internet access

improves, this should be a diminishing concern. Also, it should be remembered

that there is no guarantee of uninterrupted service even with locally hosted

software applications or data storage, which can be rendered inoperable by

defects or bugs.

• Dependence on the supplier

With cloud computing the customer is dependent on the supplier for day-to-day

access to the IT services rather than just for support and maintenance. If the

supplier is in financial trouble, is reliant on an unstable subcontractor or is

involved in litigation, its ability to provide the services may be affected. These

issues could leave the customer without access to business-critical systems.

However, dependence on a supplier is a common concept for most organisations

and the usual risk assessment can be carried out to mitigate that risk. Due

diligence checks on the supplier may disclose whether it is, for example, in

financial trouble and references can be sought from existing or past customers to

establish whether the supplier has a history of reliability. The customer can

always seek to include certain measures in the contract to provide protection

from the risks mentioned. Ultimately, if in too much doubt, the customer may

need to choose an alternative supplier.

As part of supplier selection, the customer should consider what steps will be

required to switch suppliers if this proves necessary. For example, what termi-

nation notice periods apply, how the customer’s data will be retrieved from the

14

supplier-controlled servers (including in what format) and what level of

migration assistance is available from the supplier. Furthermore, it is prudent to

establish what level of interruption to operations would be caused by switching

suppliers; in other words, identifying how long it would take to get up and

running with an alternative supplier.

Some cloud computing suppliers also provide IT services in the orthodox licence

model. Where this is the case, it may be possible to agree that failure of the cloud

computing service would trigger an orthodox licence of the software to be hosted on

the premises by the customer.

Finally, there are also data protection and security concerns associated with cloud

computing and these are discussed in more depth in Section 5, Security in the cloud.

3.6 Cloud Service Models

Figure 3.1 shows the layered design of Cloud computing architecture. Physical Cloud

resources along with core middleware capabilities form the basis for delivering IaaS

and PaaS. The user-level middleware aims at providing SaaS capabilities. The top

layer focuses on application services (SaaS) by making use of services provided by the

lower-layer services. PaaS/SaaS services are often developed and provided by third-

party service providers, who are different from the IaaS providers [3].

Cloud applications: This layer includes applications that are directly available to end-

users. We define end-users as the active entity that utilizes the SaaS applications over

the Internet. These applications may be supplied by the Cloud provider (SaaS

providers) and accessed by end-users either via a subscription model or on a pay-per-

use basis. Alternatively, in this layer, users deploy their own applications. In the

former case, there are applications such as Salesforce.com that supply business process

models on clouds (namely, customer relationship management software) and social

networks. In the latter, there are e-Science and e-Research applications, and Content-

Delivery Networks.

15

Figure 3.1 Cloud Service Models

User-Level middleware: This layer includes the software frameworks, such asWeb 2.0

Interfaces (Ajax, IBM Workplace), that help developers in creating rich, cost-effective

user-interfaces for browser-based applications. The layer also provides those

programming environments and composition tools that ease the creation, deployment,

and execution of applications in clouds. Finally, in this layer several frameworks that

support multi-layer applications development, such as Spring and Hibernate, can be

deployed to support applications running in the upper level.

Core middleware: This layer implements the platform-level services that provide run-

time environment for hosting and managing User-Level application services. The core

services at this layer include Dynamic SLA Management, Accounting, Billing,

Execution monitoring and management, and Pricing (are all the services to be

capitalized?). The well-known examples of services operating at this layer are Amazon

EC2, Google App Engine, and Aneka. The functionalities exposed by this layer are

accessed by both SaaS (the services represented at the top-most layer in Figure 3.1)

and IaaS (services shown at the bottom-most layer in Figure 3.1) services. Critical

functionalities that need to be realized at this layer include messaging, service

discovery, and load-balancing. These functionalities are usually implemented by

16

Cloud providers and offered to application developers at an additional premium. For

instance, Amazon offers a load-balancer and a monitoring service (Cloudwatch) for

the Amazon EC2 developers/consumers. Similarly, developers building applications

on Microsoft Azure clouds can use the .NET Service Bus for implementing message

passing mechanism.

System Level: The computing power in Cloud environments is supplied by a collection

of data centers that are typically installed with hundreds to thousands of hosts. At the

System-Level layer, there exist massive physical resources (storage servers and

application servers) that power the data centers. These servers are transparently

managed by the higher-level virtualization services and toolkits that allow sharing of

their capacity among virtual instances of servers. These VMs are isolated from each

other, thereby making fault tolerant behavior and isolated security context possible. [3]

17

4. DATA STORAGE AS A SERVICE

Like Cloud Computing, Data Storage as a service (STaaS) is a specialization of IaaS.

The term storage with respect to STaaS means non-volatile (permanent) memory with

read and write possibilities via network, which can be offered in different forms by a

Cloud provider. Most STaaS solutions offer on-line secondary storage, but tertiary off-

line or near-line solutions do exist (for example Amazon Glacier). This work focuses

on an on-line secondary storage.

Storage can be analyzed by the following characteristics:

 Random vs. sequential access: Jump between specific positions in a file or

access in consecutive manner

 Minimum, maximum and average read/write latency: Delay, introduced by

storage devices, that occurs before data transfer can be achieved between user

and storage medium

 read/write throughput : Maximum transfer rate

 Granularity: Size of accessible chunks

 Reliability: Probability of spontaneous bit value change by mistake

 Energy use: Power consumption during standby and performance

 Storage density: Required space per megabyte

The cost per storage depends on the energy use and storage density. Many different

factors have to be considered, before building and configuring a storage system, for

example:

 Geographic backups: Encounter loss of whole data centers or deletion by

mistake

 Replication systems: Encounter disk failure and serve many consecutive read

requests of the same content

 Anti-bit-rot mechanisms: Detect data inconsistency, caused by storage devices

or write/read operations

 Total costs: Based on energy usage and storage density

18

 Scalability: Prevent bottlenecks and single-points-of-failures

 Encryption: Secure stored data and/or transfer between the client and the Cloud

Companies that do not have the required knowledge or money to invest in such a

storage facility, become STaaS customers. Providers guarantee certain SLAs (Service

Level Agreements, see 4.3.3), like the costs per gigabyte, the number of replicas or the

geographic availability. STaaS solutions scale-out, like the Cloud Computing

solutions, which save customers high investment costs, for example if, less storage

capacity is required than beeing bought.

Providers on the other side do not know what kind of data is stored by their customer

and how the data will be accessed. One possible scenario would be a popular website:

Very few write operations, a high burst on a specific content. Another scenario would

be a document management system: Ratio between read and write operations is close

to 1. There is no prediction, which content could be requested in the future, is

available and therefore no good caching possibilities are known. Providers can reduce

the amount of actual used space by using compression and deduplication [11]. One

infrastructure has to serve these and other possible scenarios.

4.1 STaaS Storage Types

There are basically three known types of storage types: structured, block and object

storage. Every type has different characteristics and is therefore preferred in different

use-cases.

4.1.1 Structured storage

Structured storage systems are also known as Databases. Content (or entries) follow a

schema and have a defined structure (field A of type a, followed byfield B of type b,

...). Database systems follow the client-server pattern (both can be on same machine),

which means that the server stores and manages the content. The client requests or

writes content via a specific interface (for example SQL). The biggest advantage of

this kind of storage over other storage systems is, that the server can use the content

schema to fiter, sort or compute outputs. DBMSs (database management systems) hide

the physical organization of the data, are responsible for avoiding mutual overwrites

and perform optimizations in order to retrieve data as fast as possible.

19

4.1.2 Block storage

Block storage is the kind of storage that is typically used on every personal computer:

hard disks, optical disks or magnetic tape. Devices can be only read or written on

blocks (also known as chunks of data). Except for the magnetic tape, block devices are

accessed via a file system in order to achieve random access to content. Optionally a

DBMS can provide a convenient way to organize data on the storage device.

File systems define the logical unit file that combines one or multiple blocks on a

storage device to one entity. Files can be organized hierarchically in directories. While

the mapping from file to blocks on the storage device is done by the file system, the

organization and retrieval of files from different directories, replication, backups, etc.

has to be done by the user or programs that run on top of the operating system and use

the file system. Security is enforced by the operation system in cooperation with the

file system via ags, access control lists or similar mechanisms.

Virtual file systems allow to access remote storage devices via network, for example

NAS (network attached storage), or pool multiple devices to one logical device, like

SAN (storage area network). SAN offers only block-based storage which leaves the

file system concerns to the client.

4.1.3 Object storage

The concept of object storage was introduced in the early 1990's and gains an

increasing interest in the Cloud computing community.

Object storage pools multiple physical devices together and provides one logical

medium to store and retrieve many different pieces of information (called objects).

According to [12], SAN lacks in three important aspects: “security and protection,

end-to-end management at a meaningful semantic level, and scalability (in particular

for allocation)”.

In contrast to conventional file systems, the physical location of an object is

determined by the storage controller. Like structured storage, object storage follows

the client-server pattern. Every operation has an attached credential in order to enforce

security[12]. Object storage systems can usually handle multiple users: Their stored

objects are separated from each other on the logical representation layer [11].

20

Besides user data, an object contains so called metadata [12], like timestamps,

information about the content (for example via MIME type) or number of replicas.

Objects can be accessed by their server-wide unique ID and can be created, updated,

read (complete or partially) by all authorized clients [12]. Objects may have a name,

like a filename in conventional file systems, to achieve a more convenient way for the

user to identify files.

These file names must be unique in a specified scope: This scope is either the set of all

files of one user or all objects within the same container. Containers are virtual

organization units for objects and may be hierarchical like folders on conventional file

systems. Metadata can even be attached to containers (like number of replica of every

stored object in that container) [11].

Object storage systems provide a set of capabilities (like versioning, replication, user

groups, ...), which can usually be queried by customers. [11]

Table 4.1 compares block storage to object storage, according to [13].

Table 4.1: Comparison between Block Storage and Object Storage

 Block Storage Object Storage

Operations

Read block,

write block

Read object offset,

write object offset,

create object,

delete object

Security
Weak,

full disk

Strong,

per object

Allocation External Internal

21

4.2 Example STaaS Provider – Amazon S3

One of the most popular object storage providers is Amazon S3.

“Amazon S3 provides a simple web services interface that can be used to store and

retrieve any amount of data, at any time, from anywhere on the web. It gives any

developer access to the same highly scalable, reliable, secure, fast, inexpensive

infrastructure that Amazon uses to run its own global network of web sites.”[14]

Developers (the users) create so-called buckets (which are equivalent to the object

containers of CDMI), which isolates the stored objects from different users. Objects

are then stored in those buckets without any additional hierarchy (no nested buckets

possible). The number of objects is not limited, but the size of one object cannot

exceed 5 petabyte. Objects are stored in three different facilities (replication) and the

backup mechanisms are designed for 99.999999999% durability and 99.99%

availability of objects over a given year.

Table 4.2: Storage Prices for Amazon S3 standart storage in US

Used storage / month Price in $/ GB

First 1 TB $0.095

Next 49 TB $0.080

Next 450 TB $0.070

Next 500 TB $0.065

Next 4000 TB $0.060

Next 5000 TB $0.055

22

Table 4.3: Costs per request for Amazon S3 in US

Operation Pricing

PUT, COPY, POST, LIST $0.005 per 1K requests

GET and all others $0.004 per 10K requests

DELETE free

All operations are passed via REST / SOAP interfaces. Object downloads can be done

via HTTP or BitTorrent. Objects can be made public so they can be accessed via

HTTP by end users without any authentication, which means that in fact the object

storage can serve as a CDN (content distribution network). Amazon calls this feature

CloudFront. Pricing depends on the region. Amazon offers currently two locations in

the US, one in the EU, three in Asia Pacific, and one in South Africa. Data will never

be transfered between regions, except the developer transfers them by himself. [14].

The total costs for a bucket depend on the region, the used space per month, amount of

transfered data and the number of different operations according to [14] are shown in

Table 4.2, 4.3 and 4.4:

Table 4.4: Traffic cost for Amazon S3 in US

Operation Type Pricing

Uploads free

Transfer out from S3 to same region free

Transfer out from S3 to different region $0.02 per GB

Transfer out from S3 to CloudFront $0.02 per GB

Transfer out from S3 to the internet $0.00 up to $0.12 per GB

23

4.3 Example STaaS Middleware – OpenStack Swift

OpenStack [15] is an open source initiative, founded in 2010 by NASA (project

Nebula) and Rackspace Hosting (Cloud Files platform). OpenStack is very popular for

developing private or community Clouds. Organizations like eBay, CERN and

Deutsche Telekom use the projects 12. One of the OpenStack projects is called Swift,

which is a STaaS system that offers basic features (storage, retrieve, deletion, updates

of objects) as well as replication, integrity audits and statistics.

Swift was designed to have no single point of failure and scale horizontally.

4.4 Example STaaS API - CDMI

The Cloud Data Management Interface (CDMI) is a standard, defined by the SNIA

(Storage Networking Industry Association). CDMI defines a RESTful HTTP interface

to access an object storage system. Export capabilities to CIFS, NFS, iSCSI, WebDav

and OCCI are generally possible, but optional. Besides objects and containers, more

advanced features like Domains and Queues are provided. The offered features can be

expressed via capabilities.

Containers are being used as simple grouping of objects for convenience and may be

hierarchical [11] as depicted in figure 4.1. The provider creates exactly one root

container for every customer (user). Users can only access their own root containers,

but can create multiple credentials for different access levels for objects inside their

root container via Domains.

24

Figure 4.1: CDMI root container wirh multiple containers

Metadata is being used to keep the storage system simple, but empowers the provider

to build quality services (like automatic, selective backups) on top of an object storage

system. The schema of metadata can be defined by the user. Containers as well as

objects do have metadata. If a new object is created, it inherits some metadata from the

container it is located in (and containers inherit metadata from the parent containers).

Metadata of an instance (container or object) may then be changed at any further time

in order to overwrite the inherited metadata. There are different types of metadata, like

HTTP (content length, content type, ...), user and storage system metadata. Such

information are key-value pairs, that are encoded as JSON strings.[11]

Queue objects are used to store values like containers, but offer access in a first-in-

first-out manner. Domain objects can be used for administrative groupings and

accounting [11]. Both kind of those objects will not be discussed or further used in this

thesis.

Every object and every container must have an URI, which is unique in scope of the

Cloud and is generated by the Cloud itself. Users then can change names of objects or

containers to assign a more expressive identifier.

In contrast to the Amazon S3 own API, CDMI offers the four HTTP request verbs

(GET, PUT, POST, DELETE).

25

CDMI was chosen for this work, because it provides all core features of a Cloud

service interface, but is not limited to a single provider (like Amazon S3). In addition,

it is a fact that CDMI is an open standard, leads to an open environment for

interoperability between different Cloud Providers. Customers can use one interface

definition to access many different Clouds. There is also a CDMI implementation for

OpenStack.

4.5 CloudSim

CloudSim is a time discrete simulation framework for Cloud computing. The

framework consists of three layers as shown in Figure 4.2 (from bottom to top):

Figure 4.2: CloudSim Overview

26

1. Core Simulation Engine: Queuing and processing of events, management of

Cloud system entities such as host, VMs, brokers, etc.

2. CloudSim: Representation of network topology, delay of messages, VM

provisioning, CPU, storage and memory allocation, etc.

3. User code: General configuration such as Cloud scenarios and user

requirements, User Broker

Users of the framework can either modify the top layer to change the scenarios to

simulate, or extend the second layer, to test different allocation policies in a Cloud

system. The user code layer defines so-called cloudlets that define a specific amount

of computation requirements (like a Cloud job). These jobs are then dispatched on

available VMs by the CloudSim layer. Communication between the entities is done

via messages that are represented as events that are sent to the core simulation engine,

which handles all events in the correct order and manages the simulated time. Events

between two remote entities are automatically delayed, if the network topology is

represented.[3]

CloudSim can simulate SAN storage, hard drives and files, that are stored on hard

drives directly or via SAN storage. But the modeling of those lacks for object storage:

 File size magnitude: CloudSim models the file size in megabyte, but 90% of all

web objects fit within 16KB

 Hard drive models: The hard drive models do not provide all metrics that are

required to model the read and write durations accurately.

 No storage controller: CloudSim does not offer a controller that determines the

storage location of objects.

 No appropriate object storage interface: No model for any STaaS interface, as

for example CDMI.

27

5. STORAGE CLOUDSIM

5.1 Architecture

The following section provides an outlook, how the existing architecture of CloudSim

will be extended, to provide a simulation environment for STaaS Clouds. Some classes

are shared with CloudSim, some are completely independent. Therefore contents of

figure 5.1, which represents the overall architecture of the modeled StaaS Cloud, will

be discussed in the following sections. Blue boxes represent components of

CloudSim, green boxes are components that are described in this work and purple

boxes are components that have to be provided by the user of the simulation

framework. [2]

5.1.1 User code and user interface structures

The user code describes the general Cloud scenario: What kind of requests shall be

simulated in which order? For classical usage of CloudSim, the user creates different

parameters, that are then converted into cloudlets and sent to the Cloud. One cloudlet

represents a single job, that cannot be divided into two jobs and is independent of

other jobs.

The similar concept for STaaS is the UsageSequence. Instances of this class define the

requirements that are demanded of the Cloud (e.g. pricing, capabilities, ...). After that,

a series of User-Cloud interactions follows (see 5.3.2.7). Possible interactions are:

Creation or deletion of a container, upload or modification or deletion or download of

an object and idle operations (see more in section 5.3.2.6). All operations within one

UsageSequence depend on each other in their given order (a download of an object

can only succeed, if it was uploaded previously to the very same Cloud).

UsageSequences are brought to a MetaStorageBroker (see 5.3.2.4), which chooses one

Cloud that matches the SLA requirements the best. For this process the

MetaStorageBroker starts multiple Cloud discovery requests (see 5.3.2.6.1) that

retrieve current capacities and capabilities of the Clouds. After all Clouds have been

discovered, the best one is chosen. The UsageSequence is then forwarded to the

28

StorageBroker (see 5.3.2.1), which then creates further CDMI requests and interacts

with the Cloud. A more detailed description of the different interactions can be found

in section 5.3.2.5. [2]

Figure 5.1: StorageCloudSim Architecture

5.1.2 Provided storage services

The services that are provided by the modeled STaaS Cloud are:

 Object Storage: Storage, organization and retrieval of objects as described in

4.4.

 Replica: Objects are stored multiple times on different locations. The number

of required replica can be adjusted per container. Store operations only succeed

if there is suffcient storage for all replicas of the object.

29

 Storage Accounting: Every operation in the Cloud is logged. One purpose is

billing, the other is general monitoring of delay and duration of operations.

 Storage Policy Enforcement: Object Replicas are stored as remotely distributed

from each other as possible to reduce the possibility of failure. Limits like the

maximum number of children or maximum object size are enforced as well. [2]

5.1.3 Resources, resource usage and network

There are two resources that are limited in the STaaS Cloud: Number of bytes that can

be stored at a given time and the available bandwidth (user to Cloud, Cloud interface

to storage server, server interface to hard disk). The total used storage capacity

changes only when an object is uploaded, deleted, modified. In contrast, the available

bandwidth changes very often during the simulation. Whenever an object is uploaded,

downloaded, modified or moved the used bandwidth will increase when the operation

starts and then decrease when the operation is finished. Multiple operations can be

executed at the same time, so the available bandwidths of the different operations

depend on each other. This is modeled with the TimawareResourceUtilization. Storage

servers and hard disks model the hardware that is used by the Cloud provider. They

model the technical details like maximum read/write throughput or the total available

capacity. Network links are modeled via BRITE topology. Messages are delayed,

depending on some fixed delay that is defined in this topology. Another crucial factor

is the size of a network transmission (upload and download of objects). This delay is

calculated based on the currently available bandwidth (timeaware resource utilization)

and the size of the message. [2]

5.2 Sequence Diagram

The sequence diagram depicted in figure 5.2 shows an example of interaction from the

User Code down to the hard disks and will be discussed in the following paragraphs.

30

Figure 5.2: Sequence diagram for Storage CloudSim

31

As described in 5.1.1 all commands have to be encapsulated in a UsageSequence. In

this case, there is only one available Cloud provider, so there is only one broker and no

need to do a cloud discovery process. This UsageSequence consists of only two

commands: The creation of a container and the upload of one object into that

container.

The broker acts on behalf of the user and is identified via the ID that is defined by the

CloudSim core simulation framework. The Cloud instance checks on every request, if

the user is already known and either rejects the request or creates a new user account

(with a new root container). On the case of a PUT container request, a new user is

created. Every other request will fail (PUT object requests require an existing

container, GET and DELETE request does not make sense at all, because there are no

container or objects of a new created user). Every container that is created by the user

is a direct child of the user's root container. Policy enforcement mechanisms will

ensure, that the user is able to create the container. The creation of a child container

requires virtually zero time, so the Cloud instance can send a success response

immediately after the container was created.

It can be seen that the PUT container request was blocking, so the broker waits until

the operation succeeds before proceeding with the next operation. This is required,

because the object shall be put into the newly created container. The Cloud instance

checks all prerequisites (does the user exist, does the target container exist, ...).

Every container in the Cloud is virtually attached to several storage servers.

Containers control where to store objects by choosing one of the attached servers. In

the simplest case, every container is attached to all servers. Another possibility would

be some regional limitations (e.g. one container can only access servers in one

geographical region). As soon as all prerequisites are met (sufficient storage and no

policy violation), the Cloud will send an acknowledgment to the broker, which

signals that the operation will succeed, but is not finished yet.

The PUT operation may be delayed, because some resources are totally occupied at

that time. In addition, the duration of the operation is calculated, which depends on the

maximum bandwidth and workload of the hard disks, server and cloud network

interface.

32

The lowermost bandwidth and longest delay specify the total delay, before the SUCC

response is sent back to the broker.

Depending on the scenario and user code, it might be useful to retrieve some statistics

and reports from the brokers and the Cloud providers. The broker can provide

information on the user level, like total duration of operations (where delay and

duration can not be distinguished) or the number of succeeded operations for the user.

The information that can be pulled from the Cloud is more detailed. There are logs

available, describing which resource was used for which purpose and how long

operations were delayed for which reason. In addition, the Cloud instance provides

these information for all users. The total costs are available per user and aggregated for

all users as well. [2]

5.3 Implementation

The previous chapter gave a brief outlook over the architecture and the interactions of

different components inside the storage cloud simulation framework, which extends

CloudSim. Storage CloudSim work extends CloudSim version 3.0.3. This chapter

covers the detailed description of the implementation of single classes and their

interaction with each other.

Figure 5.3 gives a broad overview over all important classes in this work. Green

classes represent the CDMI implementation, yellow ones the internal storage model,

blue classes represent user models and purple classes are for monitoring purposes. A

more detailed description of the single components will follow.

5.3.1 STaaS provider models

This section is about the models that are required to simulate all states, processes and

policies that are 'inside' the Cloud and invisible to the Cloud user.

STaaS Clouds do have different capabilities and characteristics that differ from each

other. Some providers might be cheaper than others, but offer less services (for

example the number of replica) by regarding CDMI Metadata features.

As described in section 4.4 the CDMI interfaced Cloud is accessed via a RESTful

interface that is based on HTTP.

33

Figure 5.3: StorageCloudSim Class Diagram

34

5.3.1.1 Internal storage models

The last section describes containers, objects and metadata, which are classes that can

be used to model requests and responses between the user and the Cloud. Models that

are required to simulate the processes inside the Cloud are described in the followed

subsections.

5.3.1.1.1 Blob and blobLocators

One blob can be seen as a file - information that is written on a physical medium. One

object has one or multiple blobs (depending on the number of replicas). Two blobs

that belong to the same object can not be stored on the same disk. Instances of

BlobLocator map one location (server and disk ID) to one object ID. Object containers

manage the locations of one object: one list of BlobLocator s are stored for each object

in a container.

5.3.1.1.2 Servers and hard drives

Every hard drive (disk) has to be attached to exactly one server. Hard drives have to

implement the interface IObjectStorageDrive, that models storage drives more

accurately than CloudSim. Capacity, used storage and blob sizes are modeled as Long,

which allows a modeling of file sizes from 1 byte to 8 Exabyte. Every disk has a

device name that has to be unique within a server system (e.g. /dev/sda1). Write

latency and read latency (in ms) as well as the maximal write and read throughput (in

byte / ms) can be modeled independently.

Figure 5.4: CDMI Object, Blob and Blob Locators

35

Servers manage disks and can either decide where to store a blob or store a blob to a

given disk. Therefore ObjectStorageServer provides a method to probe disks. This

operation returns all disk names that have enough capacity left to store a blob. The

method takes optionally a list of drives, that will be excluded from the disk probe, in

order to enforce the policy that no two blobs of a single object can be stored on the

same disk.

Hard drives and Servers are time-aware resources. The connection from the hard drive

to the system bus is an independent instance of the IO limitation between server and

network controller, because internal copy operations from one disk to another, within

the same server, will not use any network bandwidth.

Figure 5.5: Server and Disk IO Limitations

5.3.1.2 Object storage cloud model

This model is the the central coordination entity of the STaaS simulation. Incoming

requests from brokers are checked and executed. Every server, container and object is

coordinated by this class.

The StorageCloud enforces all policies, such as number of required replications per

object or available capabilities. Every operation can be delayed for a certain time if

any involved resource (server, hard drive, Cloud bandwidth) is not available at the

moment. Operations like GET and PUT do have a certain duration, depending on the

current workload of all involved hardware.

36

Operations are billed, depending on a pricing model, which is updated every time a

user performs an action (start request, upload object, download object, delete object).

Price models can be the one of Amazon S3 (see section 4.2) or more complex price

functions are possible. This work will focus on linear price models. Every broker (see

5.3.2.1) represents one user, whereas the ID of SimEntity is used for user

identification. The Cloud checks for each incoming request if the requesting user is

already known. If this is not the case, a new root container is created. Every other type

of request requires an existing root container. Root containers are strictly separated

from each other, and do not interfere with each other. Users can only access their own

root container.

5.3.2 User models

After describing the most important classes, which are required to model the states and

processes \inside" the Cloud, the next section will give an outlook of the classes that

represent the behavior of the user of the Cloud. [2]

5.3.2.1 StorageBroker class

The class StorageBroker represents a single user that is connected to exactly one

Cloud. The main purpose is to generate CDMI requests that are then sent as simulation

events via the CloudSim core simulation framework. The UsageSequence (5.3.2.2)

defines the order and type of the requests to be generated. Lists of all created requests

and their states (acknowledged, failed, succeeded) as well as the responses are stored

in the broker for detailed analysis after the simulation. All UserRequest s are stored in

a queue and enqueued at the end by default. Another method allows to enqueue

requests at the beginning of the queue as well. New User Request s can be generated

during runtime. The broker is able to send CDMI requests asynchronously or

synchronously (waits for response of request, before sending the next one). Another

synchronization mechanism is the barrier UserRequest. This request forces the broker

to wait until all running operations either failed of succeeded.

5.3.2.2 UsageSequence class

One UsageSequence represents a series of UserRequest s in a defined order plus an

instance of StorageCloudSLARequest. Each request may depend on previous requests.

Thus the order of the UserRequest s inside the UsageSequence is critical. No

37

dependencies between two instances of UsageSequence are allowed, therefore the

order of execution between UsageSequence s is irrelevant.

5.3.2.3 Service level aggrements

The StorageCloudSLARequest class defines requirements that have to be considered,

when the MetaStorageBroker chooses a Cloud provider. Service level agreements

(SLA) are therefore modeled as a set of predicates (SLARequirement) that can be

combined via and and or operations. Each SLARequirement provides the method

match which takes an instance of StorageCloudCharacteristics and returns either true if

the requirements are fulfilled or false otherwise. There are some predefined

SLARequirement subclasses like

 SupportsCapability

 DoesNotSupportCapability

 MaximumCharacteristicsValue : Checks if a numeric characteristics property

(e.g. upload price per GB) does not exceed a given threshold.

 MinimumCharacteristicsValue

 CharacteristicMatchesString : Checks if a characteristics property matches a

given string.

5.3.2.4 MetaStorageBroker class

The meta broker can be used to run multiple UsageSequence s on different Clouds.

Therefore the MetaStorageBroker chooses the best matching Cloud for every

UsageSequence by using the SLARequirement which is attached to every

UsageSequence. Before rolling out all UserRequest s, the meta broker starts one new

instance of StorageCloudBroker for every known Cloud provider and enqueues a

UserRequest with the operation code DISCOVER_CLOUD which prompts brokers to

retrieve and store the latest available Cloud characteristics from their associated

clouds. After all discovery requests returned successfully, the StorageMetaBroker can

choose the best matching Cloud.

For this purpose, the meta broker calls the already described match function of the

StorageCloudSLARequest instance for every received cloud characeristic (see

5.3.2.3). Usually the SLA requirement are composed with and and/or or statements, so

that only a single method call of the meta broker is necessary. All Clouds that matched

38

the SLA requirement predicates are then scored, using the previously described

SLACloudRater. Scores of different rating policies are summed up for each Cloud

characteristics and then sorted by the overall score. The Cloud with the highest score

is the best matching and therefore chosen Cloud for the sequence. All brokers that are

not connected with the chosen cloud are shutdown. The UserRequest s in the

UsageSequence are then forwarded to the remaining StorageBroker instance. The meta

broker stores mappings from the ID of the UsageSequence s to the chosen Cloud ID

and associated broker ID.

5.3.2.5 Request layers

Messages between different types of entities are modeled with different classes as

shown in figure 5.6.

Figure 5.6: Request Layers

The user of the simulation creates a set of UserRequest instances and one instance of

StorageCloudSLARequest which is wrapped in a UsageSequence and sent to the

StorageCloudMetaBroker. This entity will create an instance of UserMetaRequest to

retrieve the latest Cloud characteristics such as price and available capacity. As soon

as the broker has received more UserRequest instances out of the UsageSequence it

will start to generate CDMIRequest instances that are sent towards the Cloud. The

39

Cloud itself will create multiple ScheduleEntry instances in order to store the state for

each request.

The cloud-internal messaging is done via method invokes only. The ScheduleEntry

will generate the according CDMIResponse which is then sent back to the broker.

5.3.2.6 CDMI requests

This section deals with the messages that are transmitted between StorageCloudBroker

and StorageCloud. For every kind of request there exist one class that inherits from

CdmiRequest. Requests are modeled with the generic class CdmiResponse that takes

<T extends CdmiRequest> as generic parameter.

5.3.2.6.1 Cloud discovery request

The CloudDicoveryRequest is used to request the latest instance of

StorageCloudCharacteristics in order to choose the best matching Cloud among

multiple Cloud providers. The request has no parameters. The response contains a

deep-copy of the StorageCloudCharacterstics instance of the cloud, which is

completed with the maximum available bandwidth and latency between the requesting

entity and the Cloud. The currently remaining capacity is calculated and included in

the response. This operation never fails and returns immediately. It does not trigger

any accounting mechanisms.

5.3.2.6.2 GET container request

The GetContainerRequest takes the name of the requested container as the only

parameter. The response contains the metadata of the container and the CdmiID s of

all objects that are inside the container.

5.3.2.6.3 GET object request

This request takes either the CdmiId of the object that is to be retrieved or a name of a

container plus the name of the requested object. The corresponding response contains

a deep copy of the instance of the CDMI object that is stored in the Cloud and thus

provides access to the metadata. Internal information like the location of the blobs, is

not included in the response. Thus StorageCloudSim is a simulation environment, no

real data is stored in objects. The content is reduced to the information about the

number of bytes that are required to store the object on disk.

40

5.3.2.6.4 Put container request

The PutContainerRequest takes a name and an instance of CdmiMetadata as

parameter. The metadata may be ignored, depending on the capabilities of the Cloud

by regarding CDMI Metadata features. The new container is created with a new

CdmiId, if there is no other container in the rootContainer with the same name. Some

or all servers are assigned to the new CDMI container. After that, the new created

container is returned in the response. The response is sent immediately.

5.3.2.6.5 Put object request – creation

Figure 5.7 shows the different states during the creation of a new object.

Figure 5.7: PutObject State Diagram

The PUT operation can either perform the creation of a new object, or start an update

process of an existing object. In both cases, the request carries data, that is uploaded

41

from the user to the Cloud and then stored in blobs (see 5.3.1.1.1). As for every other

operation, checks are performed before the operation starts, for example:

 Existence of user

 Compliance of limits (number of objects, max. size of objects), if any

 Existence of container to put the object into

If either the object name that is included in the request is empty, or the name is not

given to any existing object in the target container, the request is considered as a

creation request for a new object. Otherwise it is an update of an existing object. Both

cases require sufficient storage capacities on n different disks in order to create n

replica (n is determined by the metadata of the CDMI container). If enough storage

targets could be identified, the Cloud instance will send an acknowledgement to the

user and schedule the transfer process by choosing the target devices by sorting them

according to some policy that can be defined. The default policy will sort the

StorageServer instances by the lowest number of stored blobs on the object.

The operation can fail while choosing those targets, even if there is enough storage

space left, but it is not distributed enough to store n different replica versions.

After all storage targets could be found, the delay and duration of every single transfer

operation from Cloud to server and from server to hard drive is calculated. The

slowest one determines the maximum possible speed of the upload from the user to the

Cloud. The operation is checked against the IO-limitations of the Cloud by regarding

latency models of CloudSim. The response that indicates the success of the operation

is then being sent delayed. A delete operation for objects exists, but is not described in

further detail here.

5.3.2.6.6 Put object request – update

The update of an existing object is exactly the same as the creation of an object, except

the old storage blobs are being removed, as soon as the new storage blobs have been

stored successfully. Depending on the capabilities of the Cloud, the CDMI metadata

that are included in the PUT operation, are merged into the metadata of the objects.

5.3.2.7 UserRequest and UserMetaRequest class

The previous section covered the different types of messages that are being used to

communicate between a StorageBroker and a Cloud instance. The following section is

42

about the requests that are generated by the user code and forwarded to the

StorageMetaBroker, and to the StorageBroker to model the sequence of requests

independently of any Cloud interface.

For every CloudRequest (as alredy described) exists a UserRequest operation field that

distinguishes between different requests (PUT OBJECT, PUT CONTAINER, GET

OBJECT, GET CONTAINER, DELETE CONTAINER, DELETE OBJECT, PAUSE,

WAIT).

Aside from the operation field, the UserRequest class provides fields for objectName,

containerName, objectID, rootURL, metadata, delay (in ms) and a size field.

Static methods allow the convenient creation of UserRequest instances, for example:

List<UserRequest> request = new ArrayList<>() ;

request add(UserRequest.blocking(UserRequest.putContainer("someContainer"))) ;

request.add(UserRequest.blocking(UserRequest.putObject("someContainer",

 "objectName",1024)));

request.add(UserRequest.downloadObject("someContainer","objectName"));

Figure 5.8: Creating user request from JAVA code

As described in 5.3.2.2 multiple instances of UserRequest are enqueued in a

UsageSequence in addition to a SLARequest which is then forwarded to the

StorageMetaBroker.

The MetaRequest class inherits from the UserRequest class and introduces a new

operation field that prompts StorageBroker s to retrieve the latest characteristics of

their associated Cloud. By this, the StorageMetaBroker can choose the best matching

Cloud regarding specific SLA requests. The MetaRequest s are only created by the

StorageMetaBroker and then inserted at the very beginning of the UsageSequence as a

blocking request.

5.3.3 Scenario generation

In order to make simulations significant, scenarios need to include many different

requests in order to benchmark the performance of the Cloud under heavy load. To

fulfill this requirement, scenarios can be generated automatically and stored as XML

43

files (simulations are repeatable on these input data). The class

UsageSequenceGenerator creates one valid sequence of UserRequest instances.

Three statistical distributions are used, to make the UserRequest realistic:

 fileSizeDistribution determines the size of objects that are created (1KB .. 1GB

uniform)

 intervalDistribution determines the idle time between two requests - (5ms ..

5min uniform)

 downloadProbability determines whether to download an object or not. If

sampled value exceeds 0.5, a download is started. Otherwise, an upload is

initialized - (0 .. 0.6 uniform)

SequenceFileGenerator provides a command line interface (CLI) to create XML files

of UsageSequences (see listing Figure 5.9 and 5.10). Generated sequences are put

together with matching SLAs.

<SLA>
 <requirements class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SLARequirementAND">
 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SLARequirementAND">
 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SupportsCapability"
description="cdmi_create_container!"
 capability_key="cdmi_create_container"/>
 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SupportsCapability"
description="cdmi_delete_container!"
 capability_key="cdmi_delete_container"/>

 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.MinimumCharactersisticValue" description="SLA available
 capacity>=2.9446190051E10" key="SLA available capacity"
 min="2.9446190051E10"/>
 </requirements>
 <ratings class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 ratingSLA.RateByPrice">
 <description>rate 1/price for up and download and storage
 costs</description>
 </ratings>
</SLA>

Figure 5.9: XML representation of SLA of normal sequence

44

<usageSequence sequenceID="0">
 <SLA>
 <requirements class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND">
 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND">
 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SupportsCapability" description="cdmi_create_container!"
capability_key="cdmi_create_container"/>
 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SupportsCapability" description="cdmi_delete_container!"
capability_key="cdmi_delete_container"/>

 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.MinimumCharactersisticValue" description="SLA available
capacity>=2.9446190051E10" key="SLA available capacity"
min="2.9446190051E10"/>
 </requirements>
 <ratings class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
ratingSLA.RateByPrice">
 <description>rate 1/price for up and download and storage
costs</description>
 </ratings>
 </SLA>
 <request class="java.util.ArrayList">
 <userRequest delay="0" blockingCall="true" opCode="1" size="0">
 <containerName>files</containerName>
 <objectID>UNKNOWN</objectID>
 <metadata>
 <metadata/>
 </metadata>
 </userRequest>
 <userRequest delay="0" blockingCall="false" opCode="0"
size="475731841">
 <objectName>tr-w5co9yrb0d84s8</objectName>
 <containerName>files</containerName>
 <objectID>UNKNOWN</objectID>
 <metadata>
 <metadata>
 <entry>
 <string>cdmi_size</string>
 <string>475731841</string>
 </entry>
 </metadata>
 </metadata>
 </userRequest>
 <userRequest delay="8927" blockingCall="false" opCode="6" size="0">
 <objectID>UNKNOWN</objectID>
 </userRequest>
 </request></usageSequence>

Figure 5.10: XML representation of a complete sequence

45

6. SYSTEM ARCHITECTURE

Replica placement is critical to storage system for data availability and fault tolerance.

A good data placement policy should improve data reliability, availability and network

bandwidth utilization. Therefore, we are interested in replica placement strategy to

achieve these goals. Below, we will describe our system model and algorithms to

describe our strategy. We implemented our strategy by implementing developments on

Storage CloudSim.

6.1 System Model

The cloud storage system has lots of servers containing disks with various

configurations. Disks store replicas of different objects and do not store the replicas of

the same object. We added a new tag for disk configuration to define failure

probabilities of disks of servers in cloud xml files which represent any cloud

environment.

<disks class="java.util.ArrayList">

 <objectStorageDiskModel>

 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.

 GenericDrive" name="/dev/sda0">

 <capacity>1099511627776</capacity>

 <reserverdSpace>0</reserverdSpace>

 <usedSpace>0</usedSpace>

 <readRate>2.2020096E8</readRate>

 <writeRate>2.2020096E8</writeRate>

 <readLatency>8.5</readLatency>

 <writeLatency>9.5</writeLatency>

 <failureProbability>0.2</failureProbability>

 <ioLimits class="edu.kit.cloudSimStorage.storageModel.

 resourceUtilization.FirstFitAllocation"

 maxRate="2.2020096E11"/>

 </drive>

 <name>/dev/sda0</name>

 </objectStorageDiskModel>

 ...

</disks>

Figure 6.1: Failure probability definition for disk in cloud model xml

46

In our system, the availability which cloud system can provide is given as metadata in

cloud model files. When system processes a user request, it compares that value with

the user expected availability like the other SLA requirements and chooses the best

cloud model to dispatch the request. This cloud configuration parameter is given in

cloud xml files as shown below.

<cloudModel name="Examplecloud" location="de" rootUrl="rainy.org">

 <characteristics>

 <metadata>

 <entry>

 <string>SLA minimum availability</string>

 <string>0.99</string>

 </entry>

 ...

 </metadata>

 </characteristics>

 ...

</cloudModel >

Figure 6.2: Minimum availability definition in cloud model xml

In addition, we define location information as X and Y coordinator for server

configuration in cloud model files. We use server and user location information to

calculate the distance between cloud servers and user, so that we can choose the

closest servers to reduce bandwith usage. Server coordinate information is given in

cloud model files as seen in the following.

<servers class="java.util.ArrayList">

 <objectStorageServerModel>

 <name>server0</name>

 <locationName>Turkey</locationName>

 <coordinateX>10.0</coordinateX>

 <coordinateY>12.0</coordinateY>

 <ioLimitations class="edu.kit.cloudSimStorage.storageModel.

 resourceUtilization.FirstFitAllocation" maxRate="1.34217728E11"/>

 <disks class="java.util.ArrayList"

 ...

 </disks>

 </objecStorageServerModel>

 ...

</servers>

Figure 6.3: Servers location definition in cloud model xml

47

We also defined three weight parameters for our algorithm used for sorting candidates

disks to place replica. These are disk failure probability, distance and disk load rate

weights which will be described in the following section. To be able to get these

weights, we created a new tag for cloud xml files named

“weightParamsToChooseBestDisk” as shown below.

<cloudModel name="Examplecloud" location="de" rootUrl="rainy.org">

<characteristics>

...

 </characteristics>

...

<weightParamsToChooseBestDisk>

 <failureProbabilityWeight>0.5</failureProbabilityWeight>

 <distanceWeight>0.3</distanceWeight>

 <diskLoadRateWeight>0.2</diskLoadRateWeight>

</weightParamsToChooseBestDisk>

 ...

</cloudModel >

Figure 6.4: Minimum availability definition in cloud model xml

The expected minimum availability of the system, α is given as a SLA requirement of

user sequence and defined as the fraction of time that system is available for serving

user requests. This parameter is given in usage sequence files as AND SLA

Requirement as seen in the following.

<usageSequence sequenceID="4">
 <SLA>
 <requirements class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SLARequirementAND">
 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SLARequirementAND">
 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SLARequirementAND">
 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SupportsCapability"
 description="cdmi_create_container!"
 capability_key="cdmi_create_container"/>
 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SupportsCapability"
 description="cdmi_delete_container!"
 capability_key="cdmi_delete_container"/>

 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.MinimumCharactersisticValue"
 description="SLA minimum availability>=0.99"
 key="SLA minimum availability" min="0.99"/>

 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.MinimumCharactersisticValue" description="SLA

48

available capacity>=2.8443936932E10" key="SLA available capacity"
 min="2.8443936932E10"/>
 </requirements>
 <ratings class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 ratingSLA.RateByPrice">
 <description>rate 1/price for up and download and storage
 costs
 </description>
 </ratings>

 </SLA>

Figure 6.5: User SLA minimum availability definition in user sequence xml

Users give their location information as X and Y coordinators in sequence files. They

also define their desired read latency time to read their data from the disks of the

cloud. To be able to get user coordinates and read latency value, we created a new tag

for usage sequence files named “CommonRequestParams”.

<usageSequence sequenceID="4">

<SLA>

...

</SLA>

<CommonRequestParams>

 <readLatency>10.0</readLatency>

 <coordinateX>10.0</coordinateX>

 <coordinateY>12.0</coordinateY>

 </CommonRequestParams>

<request>

...

 </request>

</usageSequence>

Figure 6.6: User location definition in user sequence xml

While considering the disks to place the replicas, if the read latency of the disk is

smaller than the desired read latency time, this disk is discarded and not included to

candidate disks to host replicas.

6.2 Disk Weighting

In our proposed system, when an update or insert object request is processed, in order

to find the optimum replica number, all available disks are choosen as a candidate to

host the replicas at first. Then, disks are sorted by their weights. Each disk has its own

weight which is the function of the percentage of current disk usage load rate (DLR),

disk failure probability (Dfp) and the distance between server containing the disk and

user requesting (Ddis).

49

The function to describe the weight of disk is shown below;

Dweight = Dfp x θ + DLR x β + Ddis x γ (1)

While θ represents the failure probability weight, β indicates the disk load rate weight

and γ is represented by distance weight defined in the cloud model files. These weights

should provide the following equation;

θ + β + γ = 1 (2)

And disk load rate (DLR) is defined as follows;

DLR =

 (3)

6.3 Optimum Replica Number and Replica Placement Algorithm

The goal of replication is to increase reliability and availability by keeping the data

accessible even when failures occur in the system. It is clear that the reliability of a

system will generally increase as the number of replicas increases since more replicas

will be able to mask more failures. However, it is a key issue how the number of

replicas will affect system availability.

With replica number increasing, the management cost including storage and network

bandwidth will significantly increase. In a cloud storage system, the network

bandwidth resource is very limited and crucial to overall performance. Too much

replicas may not significantly improve availability, but bring unnecessary spending

instead.

With attention to this, we developed a model to express availability as function of

replica number which is adapted from the study described in [6]. This model is used to

determine how much minimal replica should be maintained to satisfy availability

requirement. Since the availability of the system is the complementary of the idle state

of the system, we obtain

α = 1 – P0 (4)

50

where P0 meaning that all disks have failed with failure probability fpi. Namely, it is

equal to the multiplication of all disks getting failure at any time. Thus,

 P0 = fp1 x fp2 x fp3 x ….… x fpn =

nR

i
ifp

1
 (5)

Therefore, if the probability of system availability (α) and failure probability of disks

(fpi) are known, we get the optimum replica number Ropt by using the following

equation such as

 α ≤ min(1-

1

1

R

i
ifp , 1 -

2

1

R

i
ifp , …. , 1-

nR

i
ifp

1
) (6)

According to this equation, our system calculates the optimum replica number Ropt to

satisfy expected availability with disk failure probability fpi. Our algorithm continues

until the minimum value bigger than expected availability is found. If the best disk

meets the expected availability, then replica count is determined as 1 and the best disk

is choosen to place the replica. If the best disk doesn’t meet the expected availability,

then the second best disk is included to multiplication, as well. If it is bigger than

expected availability, then the replica count is presented as 2 and the first best and the

second best disks are choosen to place the replicas. The algorithm repeats in this way.

The problem here is how to find the best disks sequentially. We give weights to the

disks as described in the former section. The weight of a disk is composed of a

function of its failure probability, its disk load rate and the distance between user

requesting and the server containing the disk. Before the algorithm starts, all disks are

sorted by their weights. However, in the beginning of the system processing, after the

sorting the disks, the initial disks belong to the same server. It means that first replicas

will be placed into the disks of the same server. We think that this is a crucial problem

since when server is down or has an issue, all replicas of the object are invalid or

unavailable. Furthermore, the best disks will be full for a while since the new replicas

will be always placed into the best disks of the cloud environment. To solve this issue,

after sorting the disks, we use the best disk of each server for each iteration. For

example; suppose that four replicas are enough to provide expected availability and

also suppose that we have available server-disk pairs as follows after sorting;

51

Table 6.1: Server-Disk pairs after sorting with sequence numbers

1.Server 1 – Disk1 4.Server 1 – Disk4 7.Server 2 – Disk3 10.Server 4 – Disk1

2.Server 1 – Disk2 5.Server 2 – Disk1 8.Server 3 – Disk1 11.Server 4 – Disk2

3.Server 1 – Disk3 6.Server 2 – Disk2 9.Server 3 – Disk2

If we didn’t pay attention to same server configuration problem, the algorithm would

choose Server 1-Disk1, Server 1-Disk2, Server 1-Disk3 and Server 1-Disk4

respectively. It means that the system always uses the best disks of the cloud system.

And, if we always choose the best disks of the cloud system, the replica number will

be good firstly. However, when their capacites are full, the disks which have worse

failure probabilities will be free to host replicas and the replica number will increment

continuously. So, with our optimization, our algorithm will firstly choose Server 1-

Disk1, then Server 2-Disk1, then Server 3-Disk1 and then finally Server 4-Disk1.

Whereby, we prevent the replica number from incrementing sharply or continuously.

In order to provide this solution, after sorting the disks, we create different queues for

each server. We are traversing the disks, put them into the queue of the server which

the disk is related to and we calculate a rank number (Rd) for each disk. The rank

number of a disk in queues is calculated with its sequence number (Sn) and its index in

the queue (Qi) which will be inserted into.

 Rd = Sn + 10000 x Qi (7)

For example; when we get the server-disk pairs above after sorting, the first one is

Server 1 - Disk1. Its sequence number is 1 and this disk will be the first element of the

Server 1 Queue. So its index will be 1, as well. Hence, its rank number is calculated by

adding (10000 x 1) value to 1 and we get the result of 10001.

When needed any disk to place replica, we traverse the queues and we get the lowest

rank number of each queue for each iteration. For example; suppose that we have

available server-disk pairs as shown above after sorting. For this example, the queues

will be as shown;

52

Table 6.2: Each Queue and its disks

S1 Queue → Disk1,Rd:10001 Disk2,Rd:20002 Disk3,Rd:30003 Disk4,Rd:40004

S2 Queue → Disk1,Rd:10005 Disk2,Rd:20006 Disk3,Rd:30007

S3 Queue → Disk1,Rd:10008 Disk2,Rd:20009

S4 Queue → Disk1,Rd:10010 Disk2,Rd:20011

When needed an available disk to place replica, the queues are traversed respectively.

If one disk is required, then the disk with lowest rank is removed from server 1 queue

and replica is placed into it. If one disk is not enough to provide system availability

and two disks are required, then the disk with lowest rank is removed from server 2

queue to place the second replica. As we described above, the disks from the same

server are not preferred. However, sometimes the disks from only one server may be

left to store the object replicas. In such situation, if there are enough disks to put

replicas of the object, those disks are used.

The algorithm will continue in this way until the system availability expected by user

is satistfied. The steps of our algorithm to find the replica count and the disks to place

replica are shown as follows.

Inputs: disk failure probability (fpi) and read latency, server locations, read latency

expected by user, system availability expected by user (α), failure prob. weight,

distance weight, disk load rate weight.

Outputs: Replica count (RC) and disk list to place replicas (DL)

begin

Collect all disks with enough capacity to store object.

Remove disks with read latency which is smaller than read latency expected by user.

Calculate weights of disks.

Sort disks with their weights.

Create and fill queues with respect to disks.

Actual → 0, RC → 0, DL → {}

53

while (actual < α)

 RC++

 DL → {}

 multiplication → 1

 for (i=0; i< RC; i++)

 Get the best disk Dbest from queues

 Add it to DL

 Multiplication * = fp of Dbest

 end

 Actual = 1 - multiplication

end

Return DL

end

Figure 6.7: Algorithm: Our strategy for replica placement

54

55

7. PERFORMANCE EVALUATION

While evaluating the system design performance, we developed three graphical user

interface to create inputs and to run main program in an easily way. These screens are

respectively shown as below.

7.1 Generate Cloud GUI

When you run Generate Cloud GUI, the screen will be opened with default parameters

as shown below. You can edit any parameters you want.

Figure 7.1: Generate Cloud GUI Screen

You can give your cloud name which will be name of the cloud file, location name

which will be the location of the cloud system. You can provide your failure

probability, distance and disk load rate weights which will be used for sorting

56

available disks to put the replica of an object. You can also set Minimum provided

availability which matches an SLA requirement of a user request. It determines that

this cloud can accept user requests or not.

When you click “Add New Server” button, a new row will be created on the table

shown below with default parameters. You can click any column of the row and set

your own parameters. You can add servers as much as you wish which will belong to

this cloud definition.

Figure 7.2: Adding servers and their configuration screen

You can define server names, their x and y coordinates, number of disks that they have

and failure probabilities of each disk in the server by giving your own parameters for

server.

When you click Generate button, model file representing the cloud environment is

generated on the location which is output file path given by user on the screen. For this

given parameters, the cloud model file is generated as shown in Appendix A.

7.2 Sequence Generator GUI

As explained in Storage CloudSim section, user requirements and requests are defined

in usage sequence files. In order to evaluate our system architecture, as it is diffucult to

create each sequence file manually, we developed a GUI to create automatically usage

sequence files as much as you wish to make our test easier.

When you run Usage Sequence Generator GUI, the screen will be opened with default

parameters as shown below. You can edit any parameters you want.

57

Figure 7.3: Sequence Generator GUI Screen

You can set user location as x and y coordinators. You can also set desired read

latency which represents the minimum read latency of a candidate disk to contain

user’s objects. If disk’s read latency is higher than this value given by user, the disk

will be ignored and wont be able to store the requesting user’s object.

You can also give the expected minimum availability. This is an SLA requirement

which matches the availability defined in the cloud model file. The cloud model which

meets this SLA requirement will get the requests of a user sequence file.

Number of Sequences parameter defines the number of usage sequence file with the

same parameters.

For these sample parameters, when you click Generate Sequences button, 300 usage

sequence files will be generated with the same parameters given by the screen.

An example of usage sequence files is shown below.

<usageSequence sequenceID="1">
 <SLA>
 <requirements class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SLARequirementAND">
 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SLARequirementAND">
 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SLARequirementAND">

58

 <a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SupportsCapability"
description="cdmi_create_container!"
 capability_key="cdmi_create_container"/>
 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.SupportsCapability"
description="cdmi_delete_container!"
 capability_key="cdmi_delete_container"/>

 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.MinimumCharactersisticValue" description="SLA
minimum availability>=0.99" key="SLA minimum availability" min="0.99"/>

 <b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 matchingSLA.MinimumCharactersisticValue" description="SLA
available capacity>=2.8443936932E10" key="SLA available
capacity" min="2.8443936932E10"/>
 </requirements>
 <ratings class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
 ratingSLA.RateByPrice">
 <description>rate 1/price for up and download and storage
 costs</description>
 </ratings>
 </SLA>
 <CommonRequestParams>
 <readLatency>10.0</readLatency>
 <coordinateX>10.0</coordinateX>
 <coordinateY>12.0</coordinateY>
 </CommonRequestParams>
 <request class="java.util.ArrayList">
 <userRequest delay="0" blockingCall="true" opCode="1" size="0">
 <containerName>files</containerName>
 <objectID>UNKNOWN</objectID>
 <metadata>
 <metadata/>
 </metadata>
 </userRequest>
 <userRequest delay="0" blockingCall="false" opCode="0"
size="8821857212">
 <objectName>fa7wwt5ir8f9ncqxm</objectName>
 <containerName>files</containerName>
 <objectID>UNKNOWN</objectID>
 <metadata>
 <metadata>
 <entry>
 <string>cdmi_size</string>
 <string>8821857212</string>
 </entry>
 </metadata>
 </metadata>
 </userRequest>
 <userRequest delay="6994" blockingCall="false" opCode="6" size="0">
 <objectID>UNKNOWN</objectID>
 </userRequest>
 <userRequest delay="0" blockingCall="false" opCode="0"
size="3838355570">
 <objectName>b7tnya2jqk</objectName>
 <containerName>files</containerName>
 <objectID>UNKNOWN</objectID>

59

 <metadata>
 <metadata>
 <entry>
 <string>cdmi_size</string>
 <string>3838355570</string>
 </entry>
 </metadata>
 </metadata>
 </userRequest>
 <userRequest delay="8975" blockingCall="false" opCode="6" size="0">
 <objectID>UNKNOWN</objectID>
 </userRequest>
 <userRequest delay="0" blockingCall="false" opCode="0"
size="7222991320">
 <objectName>7xdwxdd41us</objectName>
 <containerName>files</containerName>
 <objectID>UNKNOWN</objectID>
 <metadata>
 <metadata>
 <entry>
 <string>cdmi_size</string>
 <string>7222991320</string>
 </entry>
 </metadata>
 </metadata>
 </userRequest>
 <userRequest delay="2334" blockingCall="false" opCode="6" size="0">
 <objectID>UNKNOWN</objectID>
 </userRequest>
 <userRequest delay="0" blockingCall="false" opCode="0"
size="10635145281">
 <objectName>46180f20hsh8chqhhx</objectName>
 <containerName>files</containerName>
 <objectID>UNKNOWN</objectID>
 <metadata>
 <metadata>
 <entry>
 <string>cdmi_size</string>
 <string>10635145281</string>
 </entry>
 </metadata>
 </metadata>
 </userRequest>
 <userRequest delay="7784" blockingCall="false" opCode="6" size="0">
 <objectID>UNKNOWN</objectID>
 </userRequest>
 </request>

</usageSequence>

Figure 7.4: Generated User Sequence file example

As you can see above, there are some requests with different object size and object

names. These are also different from the ones in another usage sequence files.

60

7.3 Main GUI

There is no screen to run Main class in Storage CloudSim framework. Also, it is

diffucult to test the algorithm with different weights to sort disks.

This screen gets the weights to sort candidate disks to place the replica of an object.

You can set failure probability, distance and disk load rate weights from the screen.

These parameters will replace the existing parameters in cloud model file shown under

the tag <weightParamsToChooseBestDisk> since it is diffucult to change the xml file

everytime we need a different test for users.

Figure 7.5: Main Screen

When you click “Run Program”, it will replace the parameters in the cloud model file

and start the program with the cloud having these new weight parameters.

7.4 Experiments

As our proposed cloud storage system is implemented with Storage CloudSim, in

order to test our works, we created sequence files which contain the requirements of

users and their requests by using the GUI as shown in section 7.3. We also defined a

cloud model file to simulate a real cloud environment by using the screen as described

in section 7.1. Our system processes the put or update requests until there is no enough

space in the disks of the cloud environment to place replicas. If there is not enough

space, the other requests are discarded.

61

We made our experiments with only one cloud environment (thus, we created only one

cloud model file) since our aim is mainly to show how replicas are distributed to the

disks of servers and how replica number changes for each request in one cloud, not

multiple clouds. Our test cloud environment includes five servers and three disks with

the same capacity in each server. The servers have the same location coordinators with

related to our aim although we use distance weight to sort disks. Thus, even if the

locations of servers were not the same, our system could choose the servers closer to

user.

The cloud model is modeled to be able to meet the system availability as percentage of

0.9999999. Three hundred of usage sequence files have been generated for the

experiment. All of them includes an SLA requirement with minimum expected

availability as 0.9999999, so all sequences can be processed with our cloud

environment since cloud model can meet this requirement.

The failure probabilities of the disks of servers were defined as 0.0001, 0.001, 0.009,

0.03 and 0.05, namely, the failure probabilities of the disks of Server 1 are defined as

0.0001, the ones for the disks of Server 5 are defined as 0.05. All disks have the same

capacity and the same read/write latency values.

We made two different experiments shown at the table below.

Table 7.1: Experiment Types

Experiment θ β γ Same server optimization

1 1 0 0 No

2 0.5 0.3 0.2 Yes

In the experiments, we give different weights for disk failure probability, distance

between user requesting and servers and current disk load rate to sort disks in our

cloud environment as described in section 1.2. The last column of the table, same

server optimization means our optimization described in section 1.3. Namely, for the

second and consecutive disk selections to place replicas, it prefers the disks from

different servers in each iteration. After running the tests, we showed our results with

some graphics to show the efficiency of our algorithm. One of the graphics is to show

62

the replica number found for each request. The second ones are to show the load rates

of each disk for each request, so that we can see the load balancing among servers in

our cloud environment. The last ones are to display the load rates of the disks as bar

graphic. Disk load rate graphic as bar presentation shows the load rates of all disks for

every 25
th

 requests.

With the first experiment, we give failure probability weight as 1, so that we can see

what happens if we don’t involve the distance and disk load rate optimizations. Also,

we don’t apply the optimization with related to disk selection from the same server.

Thus, for the user requests, many of the best disks to place the replicas may belong to

the same server.

Figure 7.6: Replica count graphic for experiment 1

63

As shown in replica count graphic for experiment 1, replica count firstly starts with

two replicas. When the bests disks are full, then it becomes three replicas. When the

bests ones of remaining disks are full, then it becomes four replicas. Finally, our

system couldnt find enough disks to put replicas since replica count will sharply

increment and stopped processing user requests on 158th request.

The disk load graphic for experiment 1 as seen below shows that disk load balancing

can not be supplied among candidate disks of servers. Always the same disks store the

replicas until they have not enough space since they have always the higher weights

among all candidate disks to store each object and the other ones dont store.

Figure 7.7: Load rate graphic for experiment 1

64

Figure 7.8: Graphic for disk load rates as bar representation in experiment 1

In figure 7.7 such as 7.8, it is seen that the same disk pairs host the replicas and the

balancing cannot be provided since the same server optimization is not applied. When

the best disks are full, then replicas are placed into the best ones of the remaining

disks. It continues in this way. And there are still disks which dont have any object

replicas although some of the disks are full when the system stops processing on 158th

request. The reason why there are still empty disks which dont have any object replica

is that the system needs much more replicas after 158th request; however there are not

sufficient number of disks to place the replicas. If there were enough of disks to place

the replicas after 158th request, we could see that the replica number would sharply

increment.

65

With the second experiment, by using our all improvements, we see the difference

from the first experiment. It is observed that replica count doesn’t increment sharply as

the time goes. The system always prevents the replica number increments intensely

and adjust the disk load rates by keeping the replica number in an optimum state. The

reason why the replica number always changes is that the system doesnt use always

the same best disks to place replicas. However, in first experiment, replica number is

sometimes stable since the system use always the same best disks to place replicas

until the best disks are full.

Figure 7.9: Replica count graphic for experiment 2

66

Furthermore, the system could process more user requests in experiment 1 than in

experiment 2 since the replica number didnt get high value and the disks could place

much more replicas in experiment 1.

Figure 7.10: Graphic for disk load rates in experiment 2

Also, the disk usage is balanced among server disks on a large scale as shown both in

figure 7.10 and 7.11. All disks get the replicas in a balanced way from the beginning

to the end of the user requests during the experiment. It is obviously seen that we

could prevent the usage of always the same bests disks when we needed to place a

replica.

67

Figure 7.11: Graphic for disk load rates as bar representation in experiment 2

68

69

8. CONCLUSION

In this thesis, we proposed a new design for dynamic replication strategy for cloud

storage systems. Different replica placement and replica count strategies are proposed

by researchers. As our study is interested in not only system availability, but also

bandwidth usage and load balancing among servers, we performed different

optimizations which are not included in other studies. Most of the techniques proposed

are based on simulation, not on real time implementation. Implementing these

replication techniques, testing and evaluating the actual efficiency is an interesting

open problem. In future, we intent to move our works into a real cloud environment

and see how it works in real life.

70

71

REFERENCES

[1] Chang, G.R., Gao, S., Jin, L.Z., Sun, D.W., and Wang, X.W. (2012).

“Modelling a Dynamic Replication Strategy to Increase System

Availability in Cloud Environments”, Journal of Computer Science

and Technology, 27(2), pp. 256-272

[2] Jrad, F., Sturm, T., and Streit, A. (2014). “Storage CloudSim: A Simulation

Environment for Cloud Object Storage Infrastructures”, In

Proceedings of the 4th International Conference on Cloud Computing

and Services Science, pp. 186-192

[3] Beloglazov, A., Buyya, R., Calheiros, R.N., De Rose, C.A.F., and Ranjan, R.

(2011). “CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning

algorithms”, Software Practice and Experience, 41(1), pp.23-50

[4] Ghemawat, S., Gobio, H. and Leung, S.T. (2003). “The Google File system,

ACM SIGOPS Operating Systems Review”, 37(5), pp. 29-43

[5] Chansler, R., Hairong, K., Radia, S., and Shvachko, K. (2010). “The Hadoop

distributed file system, In: Proc. the 26th Symposium on Mass

Storage Systems and Technologies”, pp. 1-10, Incline Village, NV,

USA,

[6] Myint, J., and Naing, T.T. (2011). “Management of Data Replication for PC

Cluster Based Cloud Storage System”, International Journal on Cloud

Computing: Services and Architecture(IJCCSA), Vol.1. No.3

[7] Grace, R.K., and Manimegalai, R. (2013). R., “Dynamic Replica Placement

and Selection Strategies in Data Grids, A Comprehensive Survey”,

Journal of Parallel and Distributed Computing,

[8] Hussein, M.K., and Mousa, M.H. (2012). “A Light-weight Data Replication for

Cloud Data Centers Environment”, International Journal of

Engineering and Innovative Technology(IJEIT), Volume 1, Issue 6

[9] BCS (2012). “Cloud Computing: Moving IT Out of the Office”, The Chartered

Institute for IT(Editor)

[10] Sturm, T. (2013). “Implementation of a Simulation Environment for Cloud

Object Storage Infrastructures”, Department of Informatics, Steinbuch

Centre for Computing, Karlsruhe Institute of Technology

[11] Cloud Data Management Interface (CDMI) Version 1.0.2.

[12] Azagury, A., Dreizin, V., Factor, M., Henis, E., Naor, D., Rinetzky, N.,

 Rodeh, O., Satran, J., Tavory, A., and Yerushalmi, L. (2003).

 “Towards an object store”, pp. 165-176.

[13] Factor, M., Meth, K., Naor, D., Rodeh, O., and Satran, J. (2005). “Object

 storage: the future building block for storage systems”, pp. 119-123,.

72

[14] Amazon Inc. Amazon s3 (2013),Cloud computing storage for files, images,

 videos,.[Online; accessed 17-July-2013].

[15] OpenStack Foundation (2013), Openstack open source cloud computing

 software, [Online; accessed 19-Aug-2013].

73

APPENDICES

APPENDIX A: Generated Cloud File Example

74

APPENDIX A

<cloudModel name="Examplecloud" location="de" rootUrl="rainy.org">
 <characteristics>
 <metadata>
 <entry>
 <string>cdmi_export_iscsi</string>
 <string>false</string>
 </entry>
 <entry>
 <string>location</string>
 <string>de</string>
 </entry>
 <entry>
 <string>cdmi_delete_container</string>
 <string>true</string>
 </entry>
 <entry>
 <string>cdmi_export_webdav</string>
 <string>false</string>
 </entry>
 <entry>
 <string>cdmi_modify_metadata</string>
 <string>true</string>
 </entry>
 <entry>
 <string>cdmi_list_children</string>
 <string>true</string>
 </entry>
 <entry>
 <string>cdmi_read_metadata</string>
 <string>true</string>
 </entry>
 <entry>
 <string>cdmi_export_nfs</string>
 <string>false</string>
 </entry>
 <entry>
 <string>SLA minimum availability</string>
 <string>0.99</string>
 </entry>
 <entry>
 <string>cdmi_metadata_maxitems</string>
 <string>1024</string>
 </entry>
 <entry>
 <string>cdmi_query</string>
 <string>false</string>
 </entry>
 <entry>
 <string>cdmi_metadata_maxsize</string>
 <string>4096</string>
 </entry>
 <entry>
 <string>cdmi_create_container</string>
 <string>true</string>
 </entry>
 <entry>
 <string>number_replicas</string>

75

 <string>3</string>
 </entry>
 <entry>
 <string>cdmi_notification</string>
 <string>false</string>
 </entry>
 <entry>
 <string>cdmi_queues</string>
 <string>false</string>
 </entry>
 <entry>
 <string>SLA download costs</string>
 <string>0.1</string>
 </entry>
 <entry>
 <string>keep_n_versions</string>
 <string>1</string>
 </entry>
 <entry>
 <string>SLA storage costs</string>
 <string>0.1</string>
 </entry>
 <entry>
 <string>cdmi_domains</string>
 <string>false</string>
 </entry>
 <entry>
 <string>SLA upload costs</string>
 <string>0.1</string>
 </entry>
 </metadata>
 </characteristics>
 <pricingPolicy class="edu.kit.cloudSimStorage.pricing.SimplePricing">
 <centsPerUploadedGB>0.1</centsPerUploadedGB>
 <centsPerDownloadedGB>0.1</centsPerDownloadedGB>
 <centsPerStoredGBperPeriod>0.1</centsPerStoredGBperPeriod>
 </pricingPolicy>
 <weightParamsToChooseBestDisk>
 <failureProbabilityWeight>0.5</failureProbabilityWeight>
 <distanceWeight>0.3</distanceWeight>
 <diskLoadRateWeight>0.2</diskLoadRateWeight>
 </weightParamsToChooseBestDisk>
 <servers class="java.util.ArrayList">
 <objectStorageServerModel>
 <name>server0</name>
 <locationName>Turkey</locationName>
 <coordinateX>10.0</coordinateX>
 <coordinateY>12.0</coordinateY>
 <ioLimitations class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="1.34217728E11"/>
 <disks class="java.util.ArrayList">
 <objectStorageDiskModel>
 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
 GenericDrive" name="/dev/sda0">
 <capacity>1099511627776</capacity>
 <reserverdSpace>0</reserverdSpace>
 <usedSpace>0</usedSpace>
 <readRate>2.2020096E8</readRate>

76

 <writeRate>2.2020096E8</writeRate>
 <readLatency>8.5</readLatency>
 <writeLatency>9.5</writeLatency>
 <failureProbability>0.2</failureProbability>
 <ioLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11"/>
 </drive>
 <name>/dev/sda0</name>
 </objectStorageDiskModel>
 <objectStorageDiskModel>
 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
 GenericDrive" name="/dev/sda1">
 <capacity>1099511627776</capacity>
 <reserverdSpace>0</reserverdSpace>
 <usedSpace>0</usedSpace>
 <readRate>2.2020096E8</readRate>
 <writeRate>2.2020096E8</writeRate>
 <readLatency>8.5</readLatency>
 <writeLatency>9.5</writeLatency>
 <failureProbability>0.2</failureProbability>
 <ioLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11"/>
 </drive>
 <name>/dev/sda1</name>
 </objectStorageDiskModel>
 <objectStorageDiskModel>
 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
 GenericDrive" name="/dev/sda2">
 <capacity>1099511627776</capacity>
 <reserverdSpace>0</reserverdSpace>
 <usedSpace>0</usedSpace>
 <readRate>2.2020096E8</readRate>
 <writeRate>2.2020096E8</writeRate>
 <readLatency>8.5</readLatency>
 <writeLatency>9.5</writeLatency>
 <failureProbability>0.2</failureProbability>
 <ioLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11"/>
 </drive>
 <name>/dev/sda2</name>
 </objectStorageDiskModel>
 </disks>
 </objectStorageServerModel>
 <objectStorageServerModel>
 <name>server1</name>
 <locationName>Turkey</locationName>
 <coordinateX>10.0</coordinateX>
 <coordinateY>12.0</coordinateY>
 <ioLimitations class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="1.34217728E11"/>
 <disks class="java.util.ArrayList">
 <objectStorageDiskModel>
 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
 GenericDrive" name="/dev/sda0">
 <capacity>1099511627776</capacity>

77

 <reserverdSpace>0</reserverdSpace>
 <usedSpace>0</usedSpace>
 <readRate>2.2020096E8</readRate>
 <writeRate>2.2020096E8</writeRate>
 <readLatency>8.5</readLatency>
 <writeLatency>9.5</writeLatency>
 <failureProbability>0.2</failureProbability>
 <ioLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11"/>
 </drive>
 <name>/dev/sda0</name>
 </objectStorageDiskModel>
 <objectStorageDiskModel>
 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
 GenericDrive" name="/dev/sda1">
 <capacity>1099511627776</capacity>
 <reserverdSpace>0</reserverdSpace>
 <usedSpace>0</usedSpace>
 <readRate>2.2020096E8</readRate>
 <writeRate>2.2020096E8</writeRate>
 <readLatency>8.5</readLatency>
 <writeLatency>9.5</writeLatency>
 <failureProbability>0.2</failureProbability>
 <ioLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11"/>
 </drive>
 <name>/dev/sda1</name>
 </objectStorageDiskModel>
 <objectStorageDiskModel>
 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
 GenericDrive" name="/dev/sda2">
 <capacity>1099511627776</capacity>
 <reserverdSpace>0</reserverdSpace>
 <usedSpace>0</usedSpace>
 <readRate>2.2020096E8</readRate>
 <writeRate>2.2020096E8</writeRate>
 <readLatency>8.5</readLatency>
 <writeLatency>9.5</writeLatency>
 <failureProbability>0.2</failureProbability>
 <ioLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11"/>
 </drive>
 <name>/dev/sda2</name>
 </objectStorageDiskModel>
 </disks>
 </objectStorageServerModel>
 <objectStorageServerModel>
 <name>server2</name>
 <locationName>Turkey</locationName>
 <coordinateX>10.0</coordinateX>
 <coordinateY>12.0</coordinateY>
 <ioLimitations class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="1.34217728E11"/>
 <disks class="java.util.ArrayList">
 <objectStorageDiskModel>

78

 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
 GenericDrive" name="/dev/sda0">
 <capacity>1099511627776</capacity>
 <reserverdSpace>0</reserverdSpace>
 <usedSpace>0</usedSpace>
 <readRate>2.2020096E8</readRate>
 <writeRate>2.2020096E8</writeRate>
 <readLatency>8.5</readLatency>
 <writeLatency>9.5</writeLatency>
 <failureProbability>0.2</failureProbability>
 <ioLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11"/>
 </drive>
 <name>/dev/sda0</name>
 </objectStorageDiskModel>
 <objectStorageDiskModel>
 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
 GenericDrive" name="/dev/sda1">
 <capacity>1099511627776</capacity>
 <reserverdSpace>0</reserverdSpace>
 <usedSpace>0</usedSpace>
 <readRate>2.2020096E8</readRate>
 <writeRate>2.2020096E8</writeRate>
 <readLatency>8.5</readLatency>
 <writeLatency>9.5</writeLatency>
 <failureProbability>0.2</failureProbability>
 <ioLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11"/>
 </drive>
 <name>/dev/sda1</name>
 </objectStorageDiskModel>
 <objectStorageDiskModel>
 <drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
 GenericDrive" name="/dev/sda2">
 <capacity>1099511627776</capacity>
 <reserverdSpace>0</reserverdSpace>
 <usedSpace>0</usedSpace>
 <readRate>2.2020096E8</readRate>
 <writeRate>2.2020096E8</writeRate>
 <readLatency>8.5</readLatency>
 <writeLatency>9.5</writeLatency>
 <failureProbability>0.2</failureProbability>
 <ioLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11"/>
 </drive>
 <name>/dev/sda2</name>
 </objectStorageDiskModel>
 </disks>
 </objectStorageServerModel>
 </servers>
 <cloudIOLimits class="edu.kit.cloudSimStorage.storageModel.
 resourceUtilization.UnlimitedResource"/>

</cloudModel>

Figure A.1: Generated Cloud file example

79

CURRICULUM VITAE

Name Surname: Murat ÖZTÜRK

Place and Date of Birth: Denizli, 17.11.1987

E-Mail: muratozturk1987@gmail.com

EDUCATION:

B.Sc.: Computer Engineering, Ege University

PROFESSIONAL EXPERIENCE AND REWARDS:

TAİ (06.2009 – 07.2009) Intern Software Engineer

IBTEch (07.2009 – 08.2009) Intern Software Engineer

Turkcell PAF Team (08.2009 – 10.2009) Intern Software Engineer

NETSİS (04.2010 – 06.2010) PartTime Software Engineer

Vodafone (2010- 2013) Software Development Engineer

IBTech (2013 - …) Designer

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

 Öztürk M., and Erdoğan N., 2015: A Data Replication Strategy To Improve System

Availability For Cloud Storage Systems. International Conference on

Communication and Computing(ICC-2015) – July 9-11, 2015 Bangalore, India.

80

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS :

 Öztürk M., Yenigün Y., Tunalı A.Ç., and Yaycıoğlu O.T., 2015: RESTful

Konfigurasyon Yönetimi Web Arayüzü. 6
th

 National Software Engineering

Symposium of Turkey – July 20, 2012 Ankara, Turkey.

