-

View metadata, citation and similar papers at core.ac.uk brought to you by .i CORE

ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

A DATA REPLICATION STRATEGY TO IMPROVE SYSTEM AVAILABILITY
FOR CLOUD STORAGE SYSTEMS

M.Sc. THESIS

Murat OZTURK

Faculty of Computer and Informatics

Computer Engineering Programme

Thesis Advisor: Prof. Dr. Nadia ERDOGAN

JUNE 2015

https://core.ac.uk/display/76124816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

A DATA REPLICATION STRATEGY TO IMPROVE SYSTEM AVAILABILITY
FOR CLOUD STORAGE SYSTEMS

M.Sc. THESIS

Murat OZTURK
504111552

Faculty of Computer and Informatics

Computer Engineering Programme

Thesis Advisor: Prof. Dr. Nadia ERDOGAN

JUNE 2015

ISTANBUL TEKNIiK UNIiVERSITESi % FEN BIiLIMLERI ENSTITUSU

BULUT DEPOLAMA SiSTEMLERI iCiN SiSTEM ERIiSILEBILIRLIGINi
ARTIRAN VERI KOPYALAMA STRATEJISI

YUKSEK LiSANS TEZI

Murat OZTURK
504111552

Bilgisayar Miihendisligi Anabilim Dah

Bilgisayar Miihendisligi Programm

Tez Damismani: Prof. Dr. Nadia ERDOGAN

HAZIRAN 2015

Murat Oztiirk, a M.Sc student of ITU Institute of / Graduate School of Science
Engineering and Technology student ID 504111552, successfully defended the
thesis/dissertation entitled “A DATA REPLICATION STRATEGY TO
IMPROVE SYSTEM AVAILABILITY FOR CLOUD STORAGE SYSTEMS?”,
which he prepared after fulfilling the requirements specified in the associated

legislations, before the jury whose signatures are below.

Thesis Advisor : Prof. Dr. Nadia ERDOGAN e,

Istanbul Technical University

Jury Members : Prof. Dr. Biillent ORENCIK ...,
Beykent University
Asst. Prof. Deniz Turgay ALTILAR e

Istanbul Technical University

Date of Submission: 4 May 2015
iii
Date of Defense: 01 June 2015

To my family,

Vi

FOREWORD

I would like to thank to my advisor Prof. Dr. Nadia Erdogan for her technical and
intangible support during my thesis study. She was always very helpful and patient to
me. Almost every week, we had meetings on this study. Besides her
technical/theoratical knowledge, personally she is really constructive, creative and
kind person. | am extremely happy that | had a chance to work with her. I also would

like to thank to my family keeping my motivation high during this period.

May 2015 Murat Oztiirk

Computer Engineer

vii

viii

TABLE OF CONTENTS

Page

FOREWORD......cciitiiiieieee ettt bbbttt vii
TABLE OF CONTENTSooiii ettt iX
ABBREVIATIONSottt Xi
LIST OF TABLES ...ttt Xiii
SUMMARY et XVii
OZET ..ottt ettt ettt XiX
1. INTRODUCTION. ...ttt sttt st st 1
1.1 PUIPOSE OF the TRESISocuiiiiiiicce s 3

2. RELATED WORKSottt 5
3. CLOUD COMPUTINGccct ittt sttt sneana e 7
3.1 What is Cloud COMPULING ?....eeiviiiiiiiiiiecie st 7
3.2 The Services iN ClOUdcooiiiiiieiee e 8
3.3 The Evolution of Cloud COMPULING........cccccieiiiiiieere e 8
3.4 Cloud FOIMAtIONS......c..iiiiiieeiieie ettt sre e e 9
3.5 Silver Linings and Thunder Cloudsccccevvveiiiiieiiecece e, 10
3.5 1 AUVANTAGEScuviieeeiteite ittt bbb 10
3.5.2 DiSAUVANTAYGESveiveerieieieiieeiie et e et sra et nreas 13

3.6 Cloud Service MOEISc.ccoeiieiiiieiiee e 14
4. DATA STORAGE AS A SERVICE ..ottt 17
4.1 STaaS StOrage TYPES ...c.veiieeiieieiee e 18
4.1.1 StruCtured StOTAgE........ccveiveeieeie it ecte et e ste et sre e ene 18
4.1.2 BIOCK STOTAQE.c.eiieiieiiiteitisieeiee et 19
G T O o =Tt) (0] - Vo =TSSR 19

4.2 Example STaaS Provider — Amazon S3..........ccoceveiiieneieneseseseeeeeee 21
4.3 Example STaaS Middleware — OpenStack Swift.............c.cccoevviiieiiiiennn, 23
4.4 Example STaaS APl - CDMI ..o 23
O O [0 1110 15714 o S UTPRPR 25
5. STORAGE CLOUDSIMcotiiiieiesece ettt 27
5.1 ATCRITECIUIE ... e 27
5.1.1 User code and user interface StrUCTUIES...........ccvvvereriererenenesieeeiee 27
5.1.2 Provided StOrage SEIVICESccueiiveiueiiieieerieeeeseeste e sreesre e sae e sneas 28
5.1.3 Resources, resource usage and NEtWOrkK...........cccccvevevvevecieiiececienn, 29

52 SEQUENCE DIAGIAM ..ooviiiiiiiisieeieeee ettt 29
5.3 IMPIEMENTALION ... 32
5.3.1 STaaS provider MOdelsScooieriiiiiiiiiieeeee e 32
5.3.1.1 Internal storage ModelScccoveiiiiiieiiieiie e 34
5.3.1.1.1 Blob and blobLOCALOIScccueiveiieieiieie e 34

5.3.1.1.2 Servers and hard drivescccccceeeiiieniiienee e 34

iX

5.3.1.2 Object storage cloud model..........cccoeiveiiiiiiieiie e, 35

5.3.2 USEI MOGEIS.....eiiiieiiiie ettt 36
5.3.2.1 StorageBroKer Class.........ccccueiiiiieieeie i 36
5.3.2.2 UsSageSequeNCE ClaSS........cccoeereriririeiinieieese e 36
5.3.2.3 Service level aggrements..........cccoevverveiieeineiesiese e 37
5.3.2.4 MetaStorageBroker Class.........ccccuovieiieieiiieiiene e 37
5.3.25 REQUESE TAYEISceeeiecece e 38
5.3.2.6 CDMI FEQUESESocvviiiiiieiciiesieee e 39
5.3.2.6.1 Cloud diSCOVEIY FEQUESLceervreierrieieeieseesieesee e e saesneesreas 39

5.3.2.6.2 GET CONtAINET FEQUESLeveviiviriirieeiieieie et 39

5.3.2.6.3 GET ODJECE FEQUESLeeveieeecieeciece e 39

5.3.2.6.4 PUL CONLAINET TEQUESTevvirtiiiiiiiicsieeee e 40

5.3.2.6.5 Put object request — Creation..........c.ccocveveieerveiesie e 40

5.3.2.6.6 Put object request — update...........cooviieiiiieienc e 41

5.3.2.7 UserRequest and UserMetaRequest Classcccccevvvevveiveieennnnn, 41

5.3.3 SCENArio GENEIAtIONccuiiviiiieiieieieste et 42

6. SYSTEM ARCHITECTURE.......ccoiiiiiie s 45
6.1 SYSIEM MOGEL......oeiiiiee e 45
6.2 DiSK WEIGNTING ...oovieiveeie ettt 48
6.3 Optimum Replica Number and Replica Placement Algorithm.................. 49
7. PERFORMANCE EVALUATION ..ottt 55
7.1 Generate Cloud GUIL.......ooiiiieiieieee e 55
7.2 Sequence Generator GUIccooiiiiiiiiii e 56
7.3 1 T 11 1 TSR 60
7.4 EXPEIIMENES. ...t e 60
8. CONCLUSION... ..ottt sre e enaenes 69
REFERENCES. ..ottt bbb 71
APPENDICES ...ttt sttt ne e nes 73
APPENDIX A oottt et 74
CURRICULUM VITAE ...ttt 79

ABBREVIATIONS

SLA : Service Level Aggrements

CDMI : Cloud Data Managementinterface
STaaS : Storage as a Service

PaaS : Platform as a Service

laaS - Infrastructure as a Service

SaaS : Software as a Service

API : Application Programming Interface
VM - Virtual Machine

DBMS : Database Management Systems
SAN : Storage Area Network

Xi

Xii

LIST OF TABLES

Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:

Table 6.1:
Table 6.2:

Table 7.1:

Sayfa
Comparison between Block Storage and Object Storage 20
Storage Prices for Amazon S3 standart storage in US........................ 21
Costs per request for Amazon S3 i US.........cccooviiiiininiiicieee, 22
Traffic cost for Amazon S3iN US........cocviiiiiene e 22
Server-Disk pairs after sorting with sequence numbers..................... 51
Each Queue and itS diSKS.......ccccvveivieeiiiiie et 52
EXPErIMENT TYPES ..ottt 61

Xiii

Xiv

LIST OF FIGURES

Figure 3.1

Figure 4.1:
Figure 4.2:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10:

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:

Figure 7.1:
Figure 7.2:
Figure 7.3:

Sayfa

Cloud Service MOGEIS........cooveiiiiieie e 15
CDMI root container wirh multiple containers............cc.ccooveeveerene, 24
CloUdSIM OVEIVIEW......cvviiiiiieiie sttt 25
StorageCloudSim ArchiteCtureccovveveiiee v 28
Sequence diagram for Storage CloudSimccocvvvvvieiiviinieeniee 30
StorageCloudSim Class Diagram..........cccceeveeeveeiesiieseere e e 33
CDMI Object, Blob and Blob LOCALOrSccceevveveiieiieie e 34
Server and Disk 10 LImitationsccocuevvvereneienenesesiseseeens 35
REQUESE LAYETS ... 38
PutObject State Diagram..........cccveeeieereiie e 40
Creating user request from JAVA COUEccceeeieiiiininiiiecee, 42
XML representation of SLA of normal sequence............cccceeveevennee. 43
XML representation of a complete SequeNCe..........ccevvvvvveeenne 44
Failure probability definition for disk in cloud model xml................ 45
Minimum availability definition in cloud model xml...................... 46
Servers location definition in cloud model xml..............ccocooiinn, 46
Minimum availability definition in cloud model xml....................... 47
User SLA minimum availability definition in user sequence xml..... 48
User location definition in user sequence Xml..........cccccoeeeivevieenenne. 48
Algorithm: Our strategy for replica placement...........ccccoovvirirnennn, 53
Generate Cloud GUI SCIeeN..........cooviiiiiiiiiese e 55
Adding servers and their configuration SCreen............cccceevvvevvevneenne. 56
Sequence Generator GUI SCreencoocvevviieiieiisieseec e 57

XV

Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7.7:
Figure 7.8:
Figure 7.9:
Figure 7.10:
Figure 7.11:

Figure A.1:

Generated User Sequence file example.........ccoccvvevveveiienicceiiennnn 59
IMAIN SCIBEN......itieitieie ettt ettt enes 60
Replica count graphic for experiment 1..........ccccoevviieieeincicceenn, 62
Load rate graphic for experiment 1...........ccooeveieneninenienisieieee, 63
Graphic for disk load rates as bar representation in experiment 1.....64
Replica count graphic for eXperiment 2..........cccooeviieneninenieienenns 65

Graphic for disk load rates in experiment 2............cccceeevveviesiennnn. 66

Graphic for disk load rates as bar representation in experiment 2.67

Generated Cloud file example..........cccoovevieiiiieiie e 78

XVi

A DATA REPLICATION STRATEGY TO IMPROVE SYSTEM
AVAILABILITY FOR CLOUD STORAGE SYSTEMS

SUMMARY

The Cloud environment constitutes a heterogeneous and a highly dynamic
environment. The Cloud Computing provides the software and hardware
infrastructure as services using large-scale data centers. As a result, Cloud
Computing moved away the computation and data storage from the end user and
onto servers located in data centers, thereby relieving users of the burdens of
application provisioning and management and enabling them to focus on managing
of their application logic. However, failures on the data center storage nodes often
take place in cloud computing environments. As a result, the cloud environment
requires some capability for an adaptive data replication management in order to
cope with the inherent characteristic of the Cloud environment. To improve system
availability and get high fault tolerance, replicating data is a good choice. Replication
is the process of providing different replicas of the same service at different nodes. In
most of the real cloud, data replication is achieved through data resource pool, the
number of data replicas is statistically set based on history experience and is usually
less than 3. This strategy works well at most time, but it will fail at inclement times.
Replicating the data with a fixed number of its copies to multiple suitable locations
should not be an advisable choice. How to decide a reasonable number and
right/suitable locations for replicas has become a challenge in the cloud computing.

In this thesis, we present a new dynamic data replication strategy suitable for cloud
environments. Our technique provides optimum replica number and prevents the
replica number from incrementing in time. In addition, it enables the replicas to be
placed to all data center nodes in a balanced way depending on the available disk
space for a disk, expected availability of requesting cloud users, failure probability of
each node in data center servers. We also conclude that bandwidth usage can be
reduced by considering the distance between user and data center servers and
locating the replicas nearby users who requests for.

Xvii

Xviii

BULUT DEPOLAMA SiSTEMLERI iCiN SISTEM ERiSILEBILIRLiGINi
ARTIRAN VERI KOPYALAMA STRATEJISI

OZET

Bulut Bilisim ortamu farkli 6zelliklerde olan ve olduk¢a dinamik bir ortamdan olusur.
Bulut Bilisim, biiyiikk olgekli veri merkezlerini kullanarak yazilim ve donanim
altyapisin1 servisler olarak digsariya kullanima ag¢maktadir. Sonu¢ olarak, Bulut
Bilisim iglem ve veri depolama isini son kullanicidan veri merkezlerindeki
sunuculara tagimaktadir, bu sayede kullanicilar1 uygulama kurulumu ve yonetimi
yiiklerinden kurtarip, kullanicilarin sadece kendi uygulamalarmmin mantigini
yonetmelerine odaklanmalarini saglamaktadir. Ancak, bulut bilisim ortamlarinda,
veri merkezlerinin depolama diigiimlerinde siklikla hatalar olusmaktadir. Sistemin
erisilebilirligini artirmak ve yliksek oranda hata toleransi saglamak igin, verilerin
kopyasini olusturmak iyi bir segenektir. Kopyalama, ayni servisin farkli diigtimlerde
farkli kopyalarinin olmasini saglama siirecidir. Gergek diinyadaki bulut ortamlarin
cogunda, veri kopyalama veri kaynak havuzlariyla gergeklestirilir, veri kopyalarinin
sayist geemis deneyimlere bakilarak statik olarak karar verilir ve genellikle 3’den
kiigliktiir. Bu strateji ¢ogunlukla iyi ¢alisir, ancak zorlu durumlarda hata verecektir.
Verilerin sabit sayida kopyasini olusturmak ve bunlart farkli uygun lokasyonlara
koymanin tercih edilen bir yaklasim olmamasi gerekir. Mantikli ve uygun bir sayida
kopya olusturmak ve bu kopyalar1 yerlestirmek i¢in dogru/uygun yerleri se¢gmek,
bulut bilisim ¢evreleri i¢in ¢oziilmesi gereken bir sorun haline gelmistir.

Bu tez kapsaminda, bulut ortamlari i¢in gelistirdigimiz yeni bir dinamik veri
kopyalama teknigini sunuyoruz. Teknigimiz, optimum Kkopya sayisini
saglayabilmektedir ve zamanla kopya sayisinin artmasini engellemektedir. Ayrica,
bir disk i¢in miisait durumdaki disk boslugu durumu, istekte bulunan bulut ortam
kullanicilarinin talep ettikleri erisilebilirlik degeri ve ver merkezi sunucularindaki her
bir diiglimiin hata alma olasiliklarina bagli olacak sekilde, kopyalar1 tiim veri
merkezi diiglimlerine dengeli bir sekilde yerlestirilmesine imkan saglamaktadir.
Ayrica bu ¢alismayla, bulut kullanicilart ve veri merkezleri arasindaki uzaklhigr da
g0z Onilinde bulundurarak, ve verilerin kopyalarini istegi yapan kullanicilara yakin
olan veri merkezlerine sunucularna yerlestirerek veri genigligi kullanimini da
azaltabilecegimiz sonucunu ¢ikardik.

Optimum kopya sayisini saglayabilmek ve bu degerin zamanla artmasini engellemek
amaciyla kullandigimiz yaklagimlar genel olarak su sekildedir;

e Oncelikle yeni bir nesne depolama istegi geldiginde, onu depolayabilecek
kadar yeri olan aday diskler ¢ikartilir.

XiX

Aday diskler igerisinden, kullanici tarafindan girilen istek dosyalarinda
verilen readLatency degerinden daha yiiksek read latency konfigiirasyonuna
sahip olan diskler ¢ikartilir.

Bu aday diskler agirliklarina gore siralanir. Her bir diskin agirligi, o diskin
hata verme olasiliginin, i¢inde bulundugu sunucunun istegi yapan kullaniciya
uzakliginin ve diskin o andaki doluluk oranmin belirlik katsayilarla carpilip
toplanmasindan olusan ve 1’den kii¢iik olan bir degerdir.

Istegi yapan kullanictya uzakligin agirlik hesaplamasma dahil edilmesinin
sebebi; kullanicinin depolamak istedigi nesnelerin kendisine yakin olan
sunuculardaki disklerde tutularak, bu nesnelere erismek istendiginde daha
yakininda olan sunuculardan getirilerek veri genisliginin daha etkin bir
sekilde kullanilmasidir.

Diskin o andaki doluluk oranmnin agirlik hesaplamasina dahil edilmesinin
sebebi ise; hata verme olasiligi daha diisiik olan disklerin hep en iyi disk
olarak secilerek hep ayni disklerin dolmasinin engellenmek istemesidir.
Ciinkii, bulut sistemlerde dinamik kopyalama stratejileri konusundaki diger
calismalarda oldugu gibi, sadece diskin hata verme olasiligina bakilarak
diskler igerisinde siralama yapilirsa, her nesne depolama istegi geldiginde,
hep hata verme olasiligi diisiik olan ayni diskler segilecektir. Boylece, iyi
disklerde yeterince yer var iken bulunan optimum kopya sayisi, iyi disklerde
yer kalmadik¢a ve daha yiiksek hata verme olasilifi olan diskler
kullanildiginda, keskin bir artis gosterecektir.

Disklerin agirliklarina goére siralanmasindan sonra, nesnenin depolanacagi
diskler sirasiyla gezilir ve depolamak amaciyla segilir. Ancak bu esnada,
dogrudan siralamaya gore disklere kopyalari yerlestirmek yerine, her bir
kopya i¢in ilk olarak farkli sunucularin diskleri aranir. Ciinkii, gercek
diinyadaki sistemlerde, sunucularin diskleri homojendir , yani bir sunucunun
biitiin disklerinin hata verme olasiliklar1 birbirinin aynisidir. Boyle bir
sistemde, diskleri agirliklarina gore siraladigimizda, ayni sunucunun farkli
diskleri en 1yi diskler olarak agirlik siralamasinda onlerde gelecektir ve diger
sunucularin disklerinin kopyay1 tutma olasilig1 azalacaktir. Bu durumun iKki
yonden dezavantaji bulunur; Bu dezavantajlardan biri; bir nesnenin
kopyalarini igeren disklerin sunucusu ¢oktiigii takdirde, o sunucu icerisindeki
biitlin disklere erigsim imkansiz hale gelecektir, bu nedenle farkli sunucularda
kopyalar1 bulundurmak system erisilebilirligini artiracaktir. Diger dezavantaj
ise, yine ayni sunucunun disklerinin se¢ildigi durumda, nesne depolama
istekleri i¢in hep daha iyi diskler secilecektir, diger sunucularin daha diistik
agirhikli diskleri bos kalacaktir. Zamanla, bir sunucudaki agirligi iyi olan
diskler doldugunda, baska sunucudaki daha diisiik agirlikli diskler tercih
edilmesi zorunlu hale gelecektir ve optimum kopya sayisinin keskin bir artis
gostermesi kaginilmaz olacaktir.

Eger bir nesneyi depolamak i¢in farkli sunuculardaki diskler uygun durumda
ise, her sunucudaki disk yukarida anlatildig1 gibi kullanilacaktir. Ancak, bir
nesneyi depolamak icin, belli bir anda sadece bir sunucuya ait diskler uygun
durumda ise, bu durumda erisilebilirligi bozmamak adina o sunucudaki diger
diskler de degerlendirilir.

Nesnenin depolanacagi diskler belirlendikten sonra, bu disklere nesneler
yerlestirilir. Bu esnada belirlenen kisitlamalardan biri de, ayn1 diske ayni

XX

nesnenin birden fazla kopyasinin yerlestirilmemesidir. Ciinkii, disk erisilemez
duruma geldigi takdirde, ayni nesneye ait iki kopyada erisilemez hale
gelecektir ve sistem erisilebilirlginin artmasi saglanamayacaktir.

e Kaullanicilar tarafindan diskler {izerinde kopyalari bulunan mevcut bir nesneyi
giincellemek istegi geldiginde, oncelikle o nesneye ait olan biitiin kopyalar
disklerden silinecektir. Daha sonra tekrar, sanki sisteme gelen yeni bir nesne
depolama istegiymis gibi isleme konulur. Bunun yapilmasindaki amag; bir
nesne depolama istegi geldiginde, diisiik agirliklara sahip diskler uygun
durumda olabilir ve o nesnenin yiiksek sayida kopyasi olusturulmus olabilir.
Mevcut nesneyi gilincelleme istegi geldiginde ise, sistemde daha yiiksek
agirlikl diskler miisait duruma gelmis olabilir ve belki de o nesne i¢in daha
az sayida kopya olusturmak yetebilir. Bu sekilde, bir nesneye giincelleme
istegiyle beraber, o nesneye iliskin tutulacak olan kopya sayisinin azalabilme
olasiligim1 diistinerek, giincelleme istegi geldiginde mevcut kopyalar
silinmekte ve 0 nesneye sisteme yeni gelen bir depolama istegi gibi
davranilmaktadir.

Sistemi test etmek ve farkli senaryolar1 kolayca test edebilmek amaciyla, 3 farkli
arayliz gelistirilmistir. Ayrica, Sistemin c¢alismast siiresince, gelen kullanici
isteklerine karsilik belirlenen optimum kopya sayilar1 ve sunuculardaki disklerin
durumlari, gelistirilen grafikler ile gosterilerek, kolay karsilastirma yapabilme ve
sistemi genel ¢ergeveden gérme imkani saglanmustir.

XXi

xXxii

1. INTRODUCTION

Cloud computing is one of the most emerging technologies of the past few years. It
has become a significant technology trend, and many experts expect that cloud
computing will reshape information technology (IT) processes and IT marketplace. It
consists of a collection of interconnected and virtualized computing resources that are

managed to be one or more unified computing resources.

Cloud computing is a network of data centers. In a cloud environment, applications are
accessible anywhere, anytime and storage becomes available for all intents and
purposes in cloud environment. High availability, high fault tolerance and high
efficiency access to cloud data centers where failures are so normal rather than
exceptional are significant issues. Data replication allows reducing user waiting time,
speeding up access time and increasing data availability by providing the user with

different replicas of the same service, all of them with a coherent state. [1]

There are two types of data replication techniques, namely, static and dynamic. In
static data replication, the number of replicas to be created and the nodes where
replicas should be placed are decided statically during cloud system setup time. The
static replication strategies are simple to implement but not frequently used. This
strategy works well at most time, but it fails at increment times. In order to meet the
high availability, high fault tolerance and high efficiency requirement, it is necessary
to adapt changes based on user requests, storage capacity and bandwidth. And it
means that the number of data replicas and the sites to place the new replicas should
be dynamically determined according to features of the current cloud environment.

There are two important problems that must be solved in order to achieve the dynamic

data replication.

o How many suitable new replicas should be created in the cloud to meet a
reasonable system availability requirement is another important issue. With the

number of new replicas increasing, the system maintanance cost will significantly

increase, and too many replicas may not increase availability, but bring unnecessary
spending instead.

o Where the new replicas should be placed to meet the system task successfull
execution rate and bandwith consumption requirements is also an important issue to be

explored in detail.

In our proposed replication strategy, there are some factors to dynamically determine
the replica number and the places which replicas are put into. The replica number of
an object is mainly determined by the minimum expected data availability which user
requires. Another factor to decide the replica number is failure probability of disks
contained in data center servers since disks do have the different configuration
(capacity, read latency, failure probability, etc.) in data centers of a cloud environment.
In addition, we considered the disk usage during runtime while placing the replicas so

that replicas can be distributed to all data center servers in a well-balanced way.

To meet the bandwidth consumption requirements, where the new replicas should be
placed is also an important issue to be explored in detail. New replicas should be
created on near-by locations for users who generate the requests for the data. Thus, we
also considered the distance between the cloud servers and the user who generates the
request while determining the replica placement to provide minimum bandwidth

consumption.

To model cloud environments and to create user requests and requirements, Storage
CloudSim framework[2] which is a storage extension of CloudSim[3] has been used in
this study. Each cloud environment is illustrated with a cloud model file. The data
availability which cloud can provide, and server&disk configurations(such as disk
count, disk capacity/read latency/disk failure probabilities in servers, server location)
is modeled in these files. Users define their SLA requirements such as minimum
expected data availability and also object operations in request files. According to their
requirements, the best cloud model is selected and used for each requirement of user.
Our proposed algorithm works for only put and update object operations.

1.1 Purpose of the Thesis

In this thesis, we aim to develop a new dynamic data replication strategy for cloud
environments to increase system availability and reduce bandwidth usage by
regarding the failure probabilities and the current usage of disks and also the distance
between user requesting the data and the data center servers. We aim to find an
optimum replica number and prevent the replica number from increasing as time goes
by.

2. RELATED WORKS

There are lots of researches in the design of cloud storage. Many of these researches
are file system based storage system such as GFS[4] and HDFS[5]. These
architectures are master-slave routing paradigm. In those storage systems, replication
management is performed by using default replica number. Moreover, the load
balancing is achieved by data migration in these systems. It can cause to more

bandwidth utilization cost to the whole system.

Julia Myint and Thinn Thu Naing[6] proposed a management of data replication for pc
cluster based cloud storage system. As they think that cloud service providers use high
performance storage server as datacenter which is very expensive and reliable and
storing informating and managing its storage in a limited budget is a critical issue for a
small business as well as for large enterprises, they propose the design of cloud
storage system which utilizes a PC cluster consisting of computer machines (PCs)
operating in their university. This solution is very cost effective because any
organization or university can utilize this system over their existing desktop machines
without purchasing any extra hardware or software components. They developed a
formula to determine optimum replica number and the places which replicas are put.
The designed storage system is based on PC cluster for cloud. PC cluster is used for
data storage. Data on cloud computing is stored in PC cluster. Their system is
composed of N independent heterogeneous nodes which have different failure
probabilities and store of M different blocks. The availability of a system, o is defined
as the fraction of time that the system is available for serving user requests. For a

given o value, they calculated the optimum replica number of a data block.

R. Kingsy Grace and R. Manimegalai[13] discussed various replica replacement and
selection strategies along with their merits and demerits in data grid environment.
They also analysed the performance of these strategies with respect to different
parameters such as bandwidth consumption, access cost, scalability, execution time
and storage consumption. They evaluated the trategies based on the following aspects;

parameters used to evaluate the grid performance, architectural models (such as

hierarchical architecture or graph topology), assumptions made during replication and
simulation tools used. According to their summary, any replica placement and
selection strategy tries to improve one or more of the following parameters; reliability,

scalability, fault tolerance, load balancing and bandwidth conversation.

D.W. Sun et al[1] analyzed and modeled the relationship between system availability
and the number of replicas. They formulated a mathematical model to describe the
relationship among them. They also evaluated and identified the popular data. The
popular data is identified according to the temporal locality. When the popularity of a
data file passes a dynamic threshold, the replication operation is triggered. Their
formula placed replicas among data nodes in a balanced way, as well. They could
minimized cloud system bandwidth consumption and reduced bandwith consumption
by placing the popular data files closer to the users who generate the most requests for
the data. Their strategy is also developed on simulation framework and they didnt

deploy and test it on a real cloud computing.

M.K. Hussein[8] made a similar study as D.W. Sun. Their proposed strategy selects
the data files which require replication in order to improve the availability of system.
It also decides dynamically the number of replicas as well as the effective data nodes

for replication.

3. CLOUD COMPUTING

3.1 Whatis Cloud computing ?

Cloud computing is best described as ‘a model for enabling convenient, on-demand
network access to a shared pool of configurable computing resources |[...] that can be
rapidly provisioned and released with minimal management effort or service provider

interaction’. National Institute of Standards and Technology (NIST).

Cloud computing consists of three different types of service provision. In each case the
services are hosted remotely and accessed over a network (usually the internet)
through a customer’s web browser, rather than being installed locally on a customer’s
computer. Firstly, SaaS (software as a service) refers to the provision of software
applications in the cloud. Secondly, PaaS (platform as a service) refers to the provision
of services that enable customers to deploy, in the cloud, applications created using
programming languages and tools supported by the supplier. Thirdly, laaS
(infrastructure as a service) refers to services providing computer processing power,
storage space and network capacity, which enable customers to run arbitrary software
(including operating systems and applications) in the cloud. These three elements are
together referred to as the cloud computing ‘stack’. This article concentrates on the

issues surrounding the provision of SaaS.

The supply of IT services in the cloud has been enabled both by the evolution of
sophisticated data centres and widespread access to improved bandwidth. These
technical advances mean that services may be hosted on machines across a wide range

of locations but, from the customer’s perspective, they simply originate in the ‘cloud’.

The cloud model enables customers to access, from any computer connected to the
internet (whether a desktop PC or a mobile device), a multitude of IT services rather
than being limited to using locally installed software and being dependent on the

storage capacity of their local computer network.

This model of IT service provision is one that is growing exponentially. It is estimated

that one third of all revenue generated in the software market today relates to the

delivery of cloud computing services, and that the value of the UK cloud computing
market could reach around £10.5 billion in 2014, up from £6 billion in 2010. [9]

3.2 The Services in Cloud

The multitude of IT services available in the cloud include familiar web-based email
services such as Windows Live Hotmail (Microsoft), Yahoo! Mail, Gmail (Google),
and the search engine facilities Google, Bing (Microsoft), Yahoo! and AltaVista. They
also include the social networking services of Facebook, Twitter, Friends Reunited,
Bebo, Flickr, YouTube, MySpace and LinkedIn, which provide chat, instant
messaging and file sharing services. But there are a growing number of other services
available. Two examples from different ends of the spectrum are Zynga, which
provides online gaming services, and Wikileaks, which publishes and comments on
leaked documents alleging government and corporate misconduct. These services are

often provided free of charge to the user.

There are also a range of paid-for business-orientated IT services. These are provided
by suppliers including Google, Microsoft, Amazon, Salesforce.com and Tempora.
They offer a suite of services to assist with business management. Google offers
Google Docs for word processing, Business Gmail for emails, Google Calendar for
diary management and Google Sites for website management, and it even offers
different editions of its applications for different sectors (education, governmental and
‘not for profit’). Microsoft offers Windows Azure that allows users to build and host

applications on Microsoft servers (PaaS).

Amazon Web Services (AWS) offers its Elastic Compute Cloud (Amazon EC2),
enabling customers to rent space on Amazon’s own computers from which they can
run their own applications. Tempora provides a time recording and profitability
analysis system for creative agencies and professional service firms, and

Salesforce.com provides customer relationship management solutions. [9]

3.3 The Evolution of Cloud Computing

Long before the term cloud computing was coined, software suppliers were providing
services to their customers from remote servers via internet-enabled computers. This

was called Application Service Provision (ASP) and was the original platform of IT

service delivery to emerge from the convergence of computing and communications in
the mid-1990s. However, the ASP model ultimately was an experiment that failed.
Firstly, it involved more complicated initial installation and configuration (at the
customer end) than is involved with today’s on-demand cloud services. Secondly, it
originated as a means of providing software on a one-to-one basis rather than on the
one-to-many (multi-tenant) basis of cloud computing, where one supplier has many
customers. Consequently, ASP lacked the huge advantage that cloud computing enjoys

of being very scalable.

The emergence of software as a service (SaaS) in around 2001 signified the beginning
of software delivery based on multi-tenant architecture involving network-based
access to software managed from a central location and removing the need for

customers to install patches or upgrades.

The term SaaS is useful because it highlights the principal difference between the
internet-based model of software provision and the more orthodox licence and
installation-based model. The latter involves a customer being granted a licence to use
a software package, while the former involves the provision of a web-based service
under a contract for services. There are considerable differences between a software
licence and a contract for services. [9]

3.4 Cloud Formations
The cloud environment is subdivided into public, private, hybrid and community
clouds. [9]

» Public clouds

They are those in which services are available to the public at large over the

internet in the manner already described in this chapter.
e A private cloud

This is essentially a private network used by one customer for whom data
security and privacy is usually the primary concern. The downside of this type of
cloud is that the customer will have to bear the significant cost of setting up and

then maintaining the network alone.

3.5

Hybrid cloud

Environments are often used where a customer has requirements for a mix of
dedicated server and cloud hosting, for example if some of the data that is being
stored is of a very sensitive nature. In such circumstances the organisation may
choose to store some data on its dedicated server and less sensitive data in the
cloud. Another common reason for using hybrid clouds is where an organisation
needs more processing power than is available in-house and obtains the extra
requirement in the cloud. This is referred to as ‘cloud bursting’. Additionally,
hybrid cloud environments are often found in situations where a customer is

moving from an entirely private to an entirely public cloud setup.
Community clouds

Usually exist where a limited number of customers with similar IT requirements
share an infrastructure provided by a single supplier. The costs of the services are
spread between the customers so this model is better, from an economic point of
view, than a single tenant arrangement. Although the cost savings are likely to be
greater in a public cloud environment, community cloud users generally benefit

from greater security and privacy, which may be important for policy reasons.

Silver Linings and Thunder Clouds

The main benefits and drawbacks of cloud computing are as follows. [9]

3.5.1 Advantages

Access to resources

The greatest advantage of cloud computing is the access it provides to the
processing power of multiple remote computers. This enables customers to take
advantage of greater computation speed and larger storage capacity than most

organisations can provide on their premises and at a fraction of the cost.
Mobility

Customers can access the services from almost any location in the world because
the services are web-based (and because of the advent of mobile devices). This

can enable employees to access important business tools while they are on the

10

move. For example, the employee can fill in a Tempora online timesheet whilst

on a train, providing the rest of the business with access to that data in real time.
Easily scalable

Both the monthly subscription and ‘pay as you use’ charging models make it
easy for the amount of service being provided to be increased or decreased.
Should a customer want to increase the number of ‘seats’ included in its
subscription to Tempora or the amount of megabytes of storage space rented
from AWS, this can be done easily. The supplier simply provides access to
additional users or increases the storage space available in exchange for higher
monthly payments by the customer. The scalability of the cloud computing
model makes it especially attractive to growing organisations with varying levels
of demand for computer resources (e.g. where an organisation’s website receives

higher volumes of visitors at certain times of year).
Data security and storage capacity

Data security is of particular importance as lapses in procedure can cause severe
financial and reputational damage. For the majority of organisations, the data
security and data storage capacity offered by data centres is far superior to that
which can be afforded in-house. This is because they specialise in the secure

storage of data.
Cost savings

Most business-orientated cloud computing services are paid for and the payment
model is usually a rental arrangement based on monthly subscription charges
(per user or ‘seat’) or a ‘pay as you use’ system. This means that there is no large
upfront payment as there would be with the purchase of a licence in the orthodox
software licence model. Although there may be an initial setup or configuration

fee, this is usually very low by comparison.

The monthly subscription charges will also usually include support and mainte-
nance fees, which would be significantly higher in the orthodox software licence
model. Also, customers do not need to invest in secure servers because hosting is

provided by third-party data centres and is included in the subscription charge.

11

The ‘pay as you use’ system is of particular benefit to an organisation with peaks
and troughs in its demand for computing resources. It is cheaper than paying for
exclusive use of enough resources to meet peak demand when it is not required,

as is the case where all computation is carried out by an organisation in-house.

Additionally, cloud services reduce the need for an organisation to maintain in-
house expertise in their own technological infrastructure, which reduces IT costs.

Finally, cloud computing services do not represent a capital expenditure, so

customers lose less if they switch suppliers.
Maintenance and support

The supplier will usually offer ongoing support services. However, remote
hosting of the services makes the process of maintaining and supporting the
services less intrusive for the customer. The supplier can handle backups,
updates and upgrades automatically and remotely without visiting a customer’s
site. This will generally mean that maintenance and support can be carried out
more quickly. In addition, customers are able to piggy-back on their suppliers’
upgrades in computing resources and are not locked into using infrastructure

purchased at great cost 10 years previously.
Environmentally friendly

It has been suggested that data centres are a ‘green’ alternative to in-house
computing and this is a hotly debated topic. This is because servers in very large
data centres typically run at around 80 per cent capacity, while an in-house server
might run at five per cent capacity, to allow for peaks in resource demand; and a
server running at five per cent capacity uses only slightly less energy per hour
than one running at 80 per cent, while doing 16 times less computation.
Nevertheless, it is probable that the existence of cheap and more easily accessible
cloud computing architectures has increased the overall demand for computation,
outstripping the energy-efficiency gains that have been made in data centres. One
option is to choose a supplier that uses a data centre that makes use of solar
technology or wind cooling, or a data centre that is based in an area where local

electricity comes from a renewable energy resource.

12

Free trials

Some suppliers offer the opportunity to trial their product for a period without
charge. This is made easier by the supplier’s ability to terminate access at the end
of the period and provides them with the opportunity to ‘hook’ the customer.

This business model is sometimes referred to as a ‘freemium’.

3.5.2 Disadvantages

Internet reliability

Clearly where IT services are provided over the internet, lack of internet access
or slow connections will hinder access to those services. Where those services
are business-critical this can be a major problem. However, as internet access
improves, this should be a diminishing concern. Also, it should be remembered
that there is no guarantee of uninterrupted service even with locally hosted
software applications or data storage, which can be rendered inoperable by
defects or bugs.

Dependence on the supplier

With cloud computing the customer is dependent on the supplier for day-to-day
access to the IT services rather than just for support and maintenance. If the
supplier is in financial trouble, is reliant on an unstable subcontractor or is
involved in litigation, its ability to provide the services may be affected. These

issues could leave the customer without access to business-critical systems.

However, dependence on a supplier is a common concept for most organisations
and the usual risk assessment can be carried out to mitigate that risk. Due
diligence checks on the supplier may disclose whether it is, for example, in
financial trouble and references can be sought from existing or past customers to
establish whether the supplier has a history of reliability. The customer can
always seek to include certain measures in the contract to provide protection
from the risks mentioned. Ultimately, if in too much doubt, the customer may

need to choose an alternative supplier.

As part of supplier selection, the customer should consider what steps will be
required to switch suppliers if this proves necessary. For example, what termi-

nation notice periods apply, how the customer’s data will be retrieved from the

13

supplier-controlled servers (including in what format) and what level of
migration assistance is available from the supplier. Furthermore, it is prudent to
establish what level of interruption to operations would be caused by switching
suppliers; in other words, identifying how long it would take to get up and

running with an alternative supplier.

Some cloud computing suppliers also provide IT services in the orthodox licence
model. Where this is the case, it may be possible to agree that failure of the cloud
computing service would trigger an orthodox licence of the software to be hosted on

the premises by the customer.

Finally, there are also data protection and security concerns associated with cloud

computing and these are discussed in more depth in Section 5, Security in the cloud.

3.6 Cloud Service Models

Figure 3.1 shows the layered design of Cloud computing architecture. Physical Cloud
resources along with core middleware capabilities form the basis for delivering laaS
and PaaS. The user-level middleware aims at providing SaaS capabilities. The top
layer focuses on application services (SaaS) by making use of services provided by the
lower-layer services. PaaS/SaaS services are often developed and provided by third-
party service providers, who are different from the laaS providers [3].

Cloud applications: This layer includes applications that are directly available to end-
users. We define end-users as the active entity that utilizes the SaaS applications over
the Internet. These applications may be supplied by the Cloud provider (SaaS
providers) and accessed by end-users either via a subscription model or on a pay-per-
use basis. Alternatively, in this layer, users deploy their own applications. In the
former case, there are applications such as Salesforce.com that supply business process
models on clouds (namely, customer relationship management software) and social
networks. In the latter, there are e-Science and e-Research applications, and Content-
Delivery Networks.

14

Userlevel |
i '
User-Level Cloud programming: environments and tools 'g'
Middleware Web 2.0 Interfaces, Mashups, Concurrent and Distributed
(SaaS) Programming, Workflows, Libraries, Scripting ' E
\ ¢ w
Apps Hosting Platforms . 3
i h, (i)
QoS Negotiation, Admission Control, Pricing, SLA Management, g Q
Core Monitoring, Execution Management, Metering, Accounting, Billing =
Middleware | - | e
(Paas) : : 3 &
Virtual Machine (VM), VM Management and Deployment] E
e
T
System level
(laaS)

Figure 3.1 Cloud Service Models

User-Level middleware: This layer includes the software frameworks, such aswWeb 2.0
Interfaces (Ajax, IBM Workplace), that help developers in creating rich, cost-effective
user-interfaces for browser-based applications. The layer also provides those
programming environments and composition tools that ease the creation, deployment,
and execution of applications in clouds. Finally, in this layer several frameworks that
support multi-layer applications development, such as Spring and Hibernate, can be
deployed to support applications running in the upper level.

Core middleware: This layer implements the platform-level services that provide run-
time environment for hosting and managing User-Level application services. The core
services at this layer include Dynamic SLA Management, Accounting, Billing,
Execution monitoring and management, and Pricing (are all the services to be
capitalized?). The well-known examples of services operating at this layer are Amazon
EC2, Google App Engine, and Aneka. The functionalities exposed by this layer are
accessed by both SaaS (the services represented at the top-most layer in Figure 3.1)
and laaS (services shown at the bottom-most layer in Figure 3.1) services. Critical
functionalities that need to be realized at this layer include messaging, service

discovery, and load-balancing. These functionalities are usually implemented by

15

Cloud providers and offered to application developers at an additional premium. For
instance, Amazon offers a load-balancer and a monitoring service (Cloudwatch) for
the Amazon EC2 developers/consumers. Similarly, developers building applications
on Microsoft Azure clouds can use the .NET Service Bus for implementing message

passing mechanism.

System Level: The computing power in Cloud environments is supplied by a collection
of data centers that are typically installed with hundreds to thousands of hosts. At the
System-Level layer, there exist massive physical resources (storage servers and
application servers) that power the data centers. These servers are transparently
managed by the higher-level virtualization services and toolkits that allow sharing of
their capacity among virtual instances of servers. These VMs are isolated from each

other, thereby making fault tolerant behavior and isolated security context possible. [3]

16

4.

DATA STORAGE AS A SERVICE

Like Cloud Computing, Data Storage as a service (STaaS) is a specialization of laaS.

The term storage with respect to STaaS means non-volatile (permanent) memory with

read and write possibilities via network, which can be offered in different forms by a

Cloud provider. Most STaaS solutions offer on-line secondary storage, but tertiary off-

line or near-line solutions do exist (for example Amazon Glacier). This work focuses

on an on-line secondary storage.

Storage can be analyzed by the following characteristics:

Random vs. sequential access: Jump between specific positions in a file or
access in consecutive manner

Minimum, maximum and average read/write latency: Delay, introduced by
storage devices, that occurs before data transfer can be achieved between user
and storage medium

read/write throughput : Maximum transfer rate

Granularity: Size of accessible chunks

Reliability: Probability of spontaneous bit value change by mistake

Energy use: Power consumption during standby and performance

Storage density: Required space per megabyte

The cost per storage depends on the energy use and storage density. Many different

factors have to be considered, before building and configuring a storage system, for

example:

Geographic backups: Encounter loss of whole data centers or deletion by
mistake

Replication systems: Encounter disk failure and serve many consecutive read
requests of the same content

Anti-bit-rot mechanisms: Detect data inconsistency, caused by storage devices
or write/read operations

Total costs: Based on energy usage and storage density

17

e Scalability: Prevent bottlenecks and single-points-of-failures

e Encryption: Secure stored data and/or transfer between the client and the Cloud

Companies that do not have the required knowledge or money to invest in such a
storage facility, become STaaS customers. Providers guarantee certain SLAs (Service
Level Agreements, see 4.3.3), like the costs per gigabyte, the number of replicas or the
geographic availability. STaaS solutions scale-out, like the Cloud Computing
solutions, which save customers high investment costs, for example if, less storage

capacity is required than beeing bought.

Providers on the other side do not know what kind of data is stored by their customer

and how the data will be accessed. One possible scenario would be a popular website:

Very few write operations, a high burst on a specific content. Another scenario would
be a document management system: Ratio between read and write operations is close
to 1. There is no prediction, which content could be requested in the future, is
available and therefore no good caching possibilities are known. Providers can reduce
the amount of actual used space by using compression and deduplication [11]. One

infrastructure has to serve these and other possible scenarios.

4.1 STaaS Storage Types

There are basically three known types of storage types: structured, block and object
storage. Every type has different characteristics and is therefore preferred in different

use-cases.

4.1.1 Structured storage

Structured storage systems are also known as Databases. Content (or entries) follow a
schema and have a defined structure (field A of type a, followed byfield B of type b,
...). Database systems follow the client-server pattern (both can be on same machine),
which means that the server stores and manages the content. The client requests or
writes content via a specific interface (for example SQL). The biggest advantage of
this kind of storage over other storage systems is, that the server can use the content
schema to fiter, sort or compute outputs. DBMSs (database management systems) hide
the physical organization of the data, are responsible for avoiding mutual overwrites

and perform optimizations in order to retrieve data as fast as possible.

18

4.1.2 Block storage

Block storage is the kind of storage that is typically used on every personal computer:
hard disks, optical disks or magnetic tape. Devices can be only read or written on
blocks (also known as chunks of data). Except for the magnetic tape, block devices are
accessed via a file system in order to achieve random access to content. Optionally a
DBMS can provide a convenient way to organize data on the storage device.

File systems define the logical unit file that combines one or multiple blocks on a
storage device to one entity. Files can be organized hierarchically in directories. While
the mapping from file to blocks on the storage device is done by the file system, the
organization and retrieval of files from different directories, replication, backups, etc.
has to be done by the user or programs that run on top of the operating system and use
the file system. Security is enforced by the operation system in cooperation with the

file system via ags, access control lists or similar mechanisms.

Virtual file systems allow to access remote storage devices via network, for example
NAS (network attached storage), or pool multiple devices to one logical device, like
SAN (storage area network). SAN offers only block-based storage which leaves the
file system concerns to the client.

4.1.3 Object storage

The concept of object storage was introduced in the early 1990's and gains an

increasing interest in the Cloud computing community.

Object storage pools multiple physical devices together and provides one logical
medium to store and retrieve many different pieces of information (called objects).
According to [12], SAN lacks in three important aspects: “security and protection,
end-to-end management at a meaningful semantic level, and scalability (in particular

for allocation)”.

In contrast to conventional file systems, the physical location of an object is
determined by the storage controller. Like structured storage, object storage follows
the client-server pattern. Every operation has an attached credential in order to enforce
security[12]. Object storage systems can usually handle multiple users: Their stored

objects are separated from each other on the logical representation layer [11].

19

Besides user data, an object contains so called metadata [12], like timestamps,
information about the content (for example via MIME type) or number of replicas.
Obijects can be accessed by their server-wide unique ID and can be created, updated,
read (complete or partially) by all authorized clients [12]. Objects may have a name,
like a filename in conventional file systems, to achieve a more convenient way for the

user to identify files.

These file names must be unique in a specified scope: This scope is either the set of all
files of one user or all objects within the same container. Containers are virtual
organization units for objects and may be hierarchical like folders on conventional file
systems. Metadata can even be attached to containers (like number of replica of every

stored object in that container) [11].

Obiject storage systems provide a set of capabilities (like versioning, replication, user

groups, ...), which can usually be queried by customers. [11]

Table 4.1 compares block storage to object storage, according to [13].

Table 4.1: Comparison between Block Storage and Object Storage

Block Storage Obiject Storage
Read object offset,
Read block, write object offset,
Operations
write block create object,
delete object
Weak, Strong,
Security
full disk per object
Allocation External Internal

20

4.2 Example STaaS Provider — Amazon S3

One of the most popular object storage providers is Amazon S3.

“Amazon S3 provides a simple web services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the web. It gives any
developer access to the same highly scalable, reliable, secure, fast, inexpensive

infrastructure that Amazon uses to run its own global network of web sites.”[14]

Developers (the users) create so-called buckets (which are equivalent to the object
containers of CDMI), which isolates the stored objects from different users. Objects
are then stored in those buckets without any additional hierarchy (no nested buckets
possible). The number of objects is not limited, but the size of one object cannot
exceed 5 petabyte. Objects are stored in three different facilities (replication) and the
backup mechanisms are designed for 99.999999999% durability and 99.99%

availability of objects over a given year.

Table 4.2: Storage Prices for Amazon S3 standart storage in US

Used storage / month Price in $/ GB
First1 TB $0.095
Next 49 TB $0.080
Next 450 TB $0.070
Next 500 TB $0.065
Next 4000 TB $0.060
Next 5000 TB $0.055

21

Table 4.3: Costs per request for Amazon S3 in US

Operation

Pricing

PUT, COPY, POST, LIST

$0.005 per 1K requests

GET and all others

$0.004 per 10K requests

DELETE

free

All operations are passed via REST / SOAP interfaces. Object downloads can be done
via HTTP or BitTorrent. Objects can be made public so they can be accessed via
HTTP by end users without any authentication, which means that in fact the object
storage can serve as a CDN (content distribution network). Amazon calls this feature
CloudFront. Pricing depends on the region. Amazon offers currently two locations in
the US, one in the EU, three in Asia Pacific, and one in South Africa. Data will never
be transfered between regions, except the developer transfers them by himself. [14].
The total costs for a bucket depend on the region, the used space per month, amount of

transfered data and the number of different operations according to [14] are shown in

Table 4.2, 4.3 and 4.4:

Table 4.4: Traffic cost for Amazon S3 in US

Operation Type Pricing
Uploads free

Transfer out from S3 to same region free

Transfer out from S3 to different region | $0.02 per GB
Transfer out from S3 to CloudFront $0.02 per GB

Transfer out from S3 to the internet

$0.00 up to $0.12 per GB

22

4.3 Example STaaS Middleware — OpenStack Swift

OpenStack [15] is an open source initiative, founded in 2010 by NASA (project
Nebula) and Rackspace Hosting (Cloud Files platform). OpenStack is very popular for
developing private or community Clouds. Organizations like eBay, CERN and
Deutsche Telekom use the projects 12. One of the OpenStack projects is called Swift,
which is a STaaS system that offers basic features (storage, retrieve, deletion, updates

of objects) as well as replication, integrity audits and statistics.

Swift was designed to have no single point of failure and scale horizontally.

4.4 Example STaaS API - CDMI

The Cloud Data Management Interface (CDMI) is a standard, defined by the SNIA
(Storage Networking Industry Association). CDMI defines a RESTful HTTP interface
to access an object storage system. Export capabilities to CIFS, NFS, iSCSI, WebDav
and OCCI are generally possible, but optional. Besides objects and containers, more
advanced features like Domains and Queues are provided. The offered features can be

expressed via capabilities.

Containers are being used as simple grouping of objects for convenience and may be
hierarchical [11] as depicted in figure 4.1. The provider creates exactly one root
container for every customer (user). Users can only access their own root containers,
but can create multiple credentials for different access levels for objects inside their

root container via Domains.

23

COMI Cloud

~ Root Container .
- User A - <
_ Container foo Root Container
Container bor User B

™ Wested Contminer

—_— Root Container

Figure 4.1: CDMI root container wirh multiple containers

Metadata is being used to keep the storage system simple, but empowers the provider
to build quality services (like automatic, selective backups) on top of an object storage
system. The schema of metadata can be defined by the user. Containers as well as
objects do have metadata. If a new object is created, it inherits some metadata from the
container it is located in (and containers inherit metadata from the parent containers).
Metadata of an instance (container or object) may then be changed at any further time
in order to overwrite the inherited metadata. There are different types of metadata, like
HTTP (content length, content type, ...), user and storage system metadata. Such

information are key-value pairs, that are encoded as JSON strings.[11]

Queue objects are used to store values like containers, but offer access in a first-in-
first-out manner. Domain objects can be used for administrative groupings and
accounting [11]. Both kind of those objects will not be discussed or further used in this

thesis.

Every object and every container must have an URI, which is unique in scope of the
Cloud and is generated by the Cloud itself. Users then can change names of objects or

containers to assign a more expressive identifier.

In contrast to the Amazon S3 own API, CDMI offers the four HTTP request verbs
(GET, PUT, POST, DELETE).

24

CDMI was chosen for this work, because it provides all core features of a Cloud
service interface, but is not limited to a single provider (like Amazon S3). In addition,
it is a fact that CDMI is an open standard, leads to an open environment for
interoperability between different Cloud Providers. Customers can use one interface
definition to access many different Clouds. There is also a CDMI implementation for
OpenStack.

45 CloudSim

CloudSim is a time discrete simulation framework for Cloud computing. The

framework consists of three layers as shown in Figure 4.2 (from bottom to top):

User

Cloud Scenario

Requirements

Data Center User Broker

User Code

Broker

Cloudlet Virtual Machine Cloud Coordinator

VM Provisioning CPU Allocation RAM Allocation

Bandwidth

Data Center Allocation

Storage Allocation

Message Delay

Calculation SRS

Network Topology

,_
I
i
]
]
]
1
I
i
]
]
]
]
I
i
]
]
]
]
]
]
I
i
]
]

CloudSim

CloudSim Core Simulation Engine

Figure 4.2: CloudSim Overview

25

1. Core Simulation Engine: Queuing and processing of events, management of
Cloud system entities such as host, VMs, brokers, etc.

2. CloudSim: Representation of network topology, delay of messages, VM
provisioning, CPU, storage and memory allocation, etc.

3. User code: General configuration such as Cloud scenarios and user
requirements, User Broker

Users of the framework can either modify the top layer to change the scenarios to
simulate, or extend the second layer, to test different allocation policies in a Cloud
system. The user code layer defines so-called cloudlets that define a specific amount
of computation requirements (like a Cloud job). These jobs are then dispatched on
available VMs by the CloudSim layer. Communication between the entities is done
via messages that are represented as events that are sent to the core simulation engine,
which handles all events in the correct order and manages the simulated time. Events
between two remote entities are automatically delayed, if the network topology is
represented.[3]

CloudSim can simulate SAN storage, hard drives and files, that are stored on hard

drives directly or via SAN storage. But the modeling of those lacks for object storage:

¢ File size magnitude: CloudSim models the file size in megabyte, but 90% of all
web objects fit within 16KB

e Hard drive models: The hard drive models do not provide all metrics that are
required to model the read and write durations accurately.

¢ No storage controller: CloudSim does not offer a controller that determines the
storage location of objects.

e No appropriate object storage interface: No model for any STaaS interface, as
for example CDMI.

26

5. STORAGE CLOUDSIM

5.1 Architecture

The following section provides an outlook, how the existing architecture of CloudSim
will be extended, to provide a simulation environment for STaaS Clouds. Some classes
are shared with CloudSim, some are completely independent. Therefore contents of
figure 5.1, which represents the overall architecture of the modeled StaaS Cloud, will
be discussed in the following sections. Blue boxes represent components of
CloudSim, green boxes are components that are described in this work and purple
boxes are components that have to be provided by the user of the simulation
framework. [2]

5.1.1 User code and user interface structures

The user code describes the general Cloud scenario: What kind of requests shall be
simulated in which order? For classical usage of CloudSim, the user creates different
parameters, that are then converted into cloudlets and sent to the Cloud. One cloudlet
represents a single job, that cannot be divided into two jobs and is independent of

other jobs.

The similar concept for STaaS is the UsageSequence. Instances of this class define the
requirements that are demanded of the Cloud (e.g. pricing, capabilities, ...). After that,
a series of User-Cloud interactions follows (see 5.3.2.7). Possible interactions are:
Creation or deletion of a container, upload or modification or deletion or download of
an object and idle operations (see more in section 5.3.2.6). All operations within one
UsageSequence depend on each other in their given order (a download of an object

can only succeed, if it was uploaded previously to the very same Cloud).

UsageSequences are brought to a MetaStorageBroker (see 5.3.2.4), which chooses one
Cloud that matches the SLA requirements the best. For this process the
MetaStorageBroker starts multiple Cloud discovery requests (see 5.3.2.6.1) that
retrieve current capacities and capabilities of the Clouds. After all Clouds have been

discovered, the best one is chosen. The UsageSequence is then forwarded to the

27

StorageBroker (see 5.3.2.1), which then creates further CDMI requests and interacts
with the Cloud. A more detailed description of the different interactions can be found
in section 5.3.2.5. [2]

User Code MCloudSim [Simulation Settings [StorageCloudSim

Simulation Cloud Scenario User Sequence- Usage- Storage SLA
7 P B lequirements enerator guence egues
Specification R t G t e R t

Brokering T Data Center Storage Meta Storage
Policy Broker Broker Broker
CDMI
Request / Response

CloudSim/StorageCloudSim

User

achine
Structures .
Cloudlet VM
Execution Management

Services

: Storage Storage
VM Accounting Policy Enforcement
Bandwidth Storage
Allocation Allocation

Resource VM cPU RAM
Usage Provisioning Allocation Allocation
Storage Server

Netwaork Message dela
Network ; E_ el
Topology Calculation

CloudSim Core Simulation Engine

Timeaware
Resource

Utilization

Figure 5.1: StorageCloudSim Architecture
5.1.2 Provided storage services
The services that are provided by the modeled STaaS Cloud are:

e Object Storage: Storage, organization and retrieval of objects as described in
4.4,

e Replica: Objects are stored multiple times on different locations. The number
of required replica can be adjusted per container. Store operations only succeed

if there is suffcient storage for all replicas of the object.

28

e Storage Accounting: Every operation in the Cloud is logged. One purpose is
billing, the other is general monitoring of delay and duration of operations.

e Storage Policy Enforcement: Object Replicas are stored as remotely distributed
from each other as possible to reduce the possibility of failure. Limits like the

maximum number of children or maximum object size are enforced as well. [2]

5.1.3 Resources, resource usage and network

There are two resources that are limited in the STaaS Cloud: Number of bytes that can
be stored at a given time and the available bandwidth (user to Cloud, Cloud interface
to storage server, server interface to hard disk). The total used storage capacity
changes only when an object is uploaded, deleted, modified. In contrast, the available
bandwidth changes very often during the simulation. Whenever an object is uploaded,
downloaded, modified or moved the used bandwidth will increase when the operation
starts and then decrease when the operation is finished. Multiple operations can be
executed at the same time, so the available bandwidths of the different operations
depend on each other. This is modeled with the TimawareResourceUtilization. Storage
servers and hard disks model the hardware that is used by the Cloud provider. They
model the technical details like maximum read/write throughput or the total available
capacity. Network links are modeled via BRITE topology. Messages are delayed,
depending on some fixed delay that is defined in this topology. Another crucial factor
is the size of a network transmission (upload and download of objects). This delay is
calculated based on the currently available bandwidth (timeaware resource utilization)
and the size of the message. [2]

5.2 Sequence Diagram

The sequence diagram depicted in figure 5.2 shows an example of interaction from the

User Code down to the hard disks and will be discussed in the following paragraphs.

29

Storag
n_o_..n_

cEmm

mmn_..m_..nm ——PUT Conta ._._mT'.J

checkUser
!

Tm..hnﬁs_mmmﬂu:wml.l
—FPLUI Chject——
checkUser

—p—————————-

k= — -COMIACK— — o
_
| delay re

k= — COMISUCC— —
_

nnl”_o__:m_un:mmau.'

i

_|_un_ ?E:mwsm\'._

T

il —
__| create child '.,_I

|___cmate i root
I set Mets

Container
I

— —expeded delay and duration ™

object

L— pro be———
probe
————prabe——M
e sufficient dorage
bk — — suffident storag— — -
IllEﬁwﬁ_.IIIl_ _
—rEserve Space |T“ _
- | |
mEHEE

Container

- __

- __ ______

|

Sequence diagram for Storage CloudSim

Figure 5.2:

30

As described in 5.1.1 all commands have to be encapsulated in a UsageSequence. In
this case, there is only one available Cloud provider, so there is only one broker and no
need to do a cloud discovery process. This UsageSequence consists of only two
commands: The creation of a container and the upload of one object into that

container.

The broker acts on behalf of the user and is identified via the ID that is defined by the
CloudSim core simulation framework. The Cloud instance checks on every request, if
the user is already known and either rejects the request or creates a new user account
(with a new root container). On the case of a PUT container request, a new user is
created. Every other request will fail (PUT object requests require an existing
container, GET and DELETE request does not make sense at all, because there are no
container or objects of a new created user). Every container that is created by the user
is a direct child of the user's root container. Policy enforcement mechanisms will
ensure, that the user is able to create the container. The creation of a child container
requires virtually zero time, so the Cloud instance can send a success response

immediately after the container was created.

It can be seen that the PUT container request was blocking, so the broker waits until
the operation succeeds before proceeding with the next operation. This is required,
because the object shall be put into the newly created container. The Cloud instance

checks all prerequisites (does the user exist, does the target container exist, ...).

Every container in the Cloud is virtually attached to several storage servers.
Containers control where to store objects by choosing one of the attached servers. In
the simplest case, every container is attached to all servers. Another possibility would
be some regional limitations (e.g. one container can only access servers in one
geographical region). As soon as all prerequisites are met (sufficient storage and no
policy violation), the Cloud will send an acknowledgment to the broker, which
signals that the operation will succeed, but is not finished yet.

The PUT operation may be delayed, because some resources are totally occupied at
that time. In addition, the duration of the operation is calculated, which depends on the
maximum bandwidth and workload of the hard disks, server and cloud network

interface.

31

The lowermost bandwidth and longest delay specify the total delay, before the SUCC
response is sent back to the broker.

Depending on the scenario and user code, it might be useful to retrieve some statistics
and reports from the brokers and the Cloud providers. The broker can provide
information on the user level, like total duration of operations (where delay and
duration can not be distinguished) or the number of succeeded operations for the user.
The information that can be pulled from the Cloud is more detailed. There are logs
available, describing which resource was used for which purpose and how long
operations were delayed for which reason. In addition, the Cloud instance provides
these information for all users. The total costs are available per user and aggregated for

all users as well. [2]

5.3 Implementation

The previous chapter gave a brief outlook over the architecture and the interactions of
different components inside the storage cloud simulation framework, which extends
CloudSim. Storage CloudSim work extends CloudSim version 3.0.3. This chapter
covers the detailed description of the implementation of single classes and their

interaction with each other.

Figure 5.3 gives a broad overview over all important classes in this work. Green
classes represent the CDMI implementation, yellow ones the internal storage model,
blue classes represent user models and purple classes are for monitoring purposes. A

more detailed description of the single components will follow.

5.3.1 STaasS provider models

This section is about the models that are required to simulate all states, processes and

policies that are 'inside' the Cloud and invisible to the Cloud user.

STaaS Clouds do have different capabilities and characteristics that differ from each
other. Some providers might be cheaper than others, but offer less services (for
example the number of replica) by regarding CDMI Metadata features.

As described in section 4.4 the CDMI interfaced Cloud is accessed via a RESTful
interface that is based on HTTP.

32

EventTracker

UsageHistory

ReportGen erator

<= 3..“ (o

T T SEpr0 e £
1

E

ObjectStorageServer

UsageSequenceFile-
Generator

StorageCloudSim Class Diagram
33

SLARequirement

Figure 5.3:

5.3.1.1Internal storage models

The last section describes containers, objects and metadata, which are classes that can
be used to model requests and responses between the user and the Cloud. Models that
are required to simulate the processes inside the Cloud are described in the followed

subsections.

53.1.1.1 Blob and blobLocators

One blob can be seen as a file - information that is written on a physical medium. One
object has one or multiple blobs (depending on the number of replicas). Two blobs
that belong to the same object can not be stored on the same disk. Instances of
BlobLocator map one location (server and disk ID) to one object ID. Object containers
manage the locations of one object: one list of BlobLocator s are stored for each object

in a container.

53.1.1.2 Servers and hard drives

Every hard drive (disk) has to be attached to exactly one server. Hard drives have to
implement the interface IObjectStorageDrive, that models storage drives more
accurately than CloudSim. Capacity, used storage and blob sizes are modeled as Long,
which allows a modeling of file sizes from 1 byte to 8 Exabyte. Every disk has a
device name that has to be unique within a server system (e.g. /dev/sdal). Write
latency and read latency (in ms) as well as the maximal write and read throughput (in

byte / ms) can be modeled independently.

ObjectstoragaServer

1

&

ObjectStorageBlab- | * 1
D]EEL:.;EFE U Objectitoragelnive
1
1
1
ObjectitorageBlob CdmiDataObject

Figure 5.4: CDMI Object, Blob and Blob Locators

34

Servers manage disks and can either decide where to store a blob or store a blob to a
given disk. Therefore ObjectStorageServer provides a method to probe disks. This
operation returns all disk names that have enough capacity left to store a blob. The
method takes optionally a list of drives, that will be excluded from the disk probe, in
order to enforce the policy that no two blobs of a single object can be stored on the
same disk.

Hard drives and Servers are time-aware resources. The connection from the hard drive
to the system bus is an independent instance of the 10 limitation between server and
network controller, because internal copy operations from one disk to another, within
the same server, will not use any network bandwidth.

Server . System Bus

Cloud internal

Disk Interface -)
network interface

Cloud internal | ge—

network Cloud-internet
connection

Figure 5.5: Server and Disk 10 Limitations
5.3.1.2 Object storage cloud model

This model is the the central coordination entity of the STaaS simulation. Incoming
requests from brokers are checked and executed. Every server, container and object is

coordinated by this class.

The StorageCloud enforces all policies, such as number of required replications per
object or available capabilities. Every operation can be delayed for a certain time if
any involved resource (server, hard drive, Cloud bandwidth) is not available at the
moment. Operations like GET and PUT do have a certain duration, depending on the

current workload of all involved hardware.

35

Operations are billed, depending on a pricing model, which is updated every time a
user performs an action (start request, upload object, download object, delete object).
Price models can be the one of Amazon S3 (see section 4.2) or more complex price
functions are possible. This work will focus on linear price models. Every broker (see
5.3.2.1) represents one user, whereas the ID of SimEntity is used for user
identification. The Cloud checks for each incoming request if the requesting user is
already known. If this is not the case, a new root container is created. Every other type
of request requires an existing root container. Root containers are strictly separated
from each other, and do not interfere with each other. Users can only access their own

root container.

5.3.2 User models

After describing the most important classes, which are required to model the states and
processes \inside" the Cloud, the next section will give an outlook of the classes that
represent the behavior of the user of the Cloud. [2]

5.3.2.1 StorageBroker class

The class StorageBroker represents a single user that is connected to exactly one
Cloud. The main purpose is to generate CDMI requests that are then sent as simulation
events via the CloudSim core simulation framework. The UsageSequence (5.3.2.2)
defines the order and type of the requests to be generated. Lists of all created requests
and their states (acknowledged, failed, succeeded) as well as the responses are stored
in the broker for detailed analysis after the simulation. All UserRequest s are stored in
a queue and enqueued at the end by default. Another method allows to enqueue
requests at the beginning of the queue as well. New User Request s can be generated
during runtime. The broker is able to send CDMI requests asynchronously or
synchronously (waits for response of request, before sending the next one). Another
synchronization mechanism is the barrier UserRequest. This request forces the broker
to wait until all running operations either failed of succeeded.

5.3.2.2 UsageSequence class

One UsageSequence represents a series of UserRequest s in a defined order plus an
instance of StorageCloudSLARequest. Each request may depend on previous requests.
Thus the order of the UserRequest s inside the UsageSequence is critical. No

36

dependencies between two instances of UsageSequence are allowed, therefore the
order of execution between UsageSequence s is irrelevant.

5.3.2.3 Service level aggrements

The StorageCloudSLARequest class defines requirements that have to be considered,
when the MetaStorageBroker chooses a Cloud provider. Service level agreements
(SLA) are therefore modeled as a set of predicates (SLARequirement) that can be
combined via and and or operations. Each SLARequirement provides the method
match which takes an instance of StorageCloudCharacteristics and returns either true if
the requirements are fulfilled or false otherwise. There are some predefined
SLARequirement subclasses like

e SupportsCapability

e DoesNotSupportCapability

e MaximumCharacteristicsValue : Checks if a numeric characteristics property
(e.g. upload price per GB) does not exceed a given threshold.

e MinimumCharacteristicsValue

e CharacteristicMatchesString : Checks if a characteristics property matches a

given string.

5.3.2.4 MetaStorageBroker class

The meta broker can be used to run multiple UsageSequence s on different Clouds.
Therefore the MetaStorageBroker chooses the best matching Cloud for every
UsageSequence by using the SLARequirement which is attached to every
UsageSequence. Before rolling out all UserRequest s, the meta broker starts one new
instance of StorageCloudBroker for every known Cloud provider and enqueues a
UserRequest with the operation code DISCOVER_CLOUD which prompts brokers to
retrieve and store the latest available Cloud characteristics from their associated
clouds. After all discovery requests returned successfully, the StorageMetaBroker can
choose the best matching Cloud.

For this purpose, the meta broker calls the already described match function of the
StorageCloudSLARequest instance for every received cloud characeristic (see
5.3.2.3). Usually the SLA requirement are composed with and and/or or statements, so
that only a single method call of the meta broker is necessary. All Clouds that matched

37

the SLA requirement predicates are then scored, using the previously described
SLACIloudRater. Scores of different rating policies are summed up for each Cloud
characteristics and then sorted by the overall score. The Cloud with the highest score
is the best matching and therefore chosen Cloud for the sequence. All brokers that are
not connected with the chosen cloud are shutdown. The UserRequest s in the
UsageSequence are then forwarded to the remaining StorageBroker instance. The meta
broker stores mappings from the ID of the UsageSequence s to the chosen Cloud 1D

and associated broker ID.

5.3.2.5 Request layers

Messages between different types of entities are modeled with different classes as

shown in figure 5.6.

DeleteObject-
Request

GetContainer-
Request

CDMIRequest [StorageCloud PutObject-
ScheduleEntry

StorageCloud- GetContainer
MetaBroker ScheduleEntry

CDMIResponse |
<I>)

GetContainer-

Response
I UserRequest i

GetObject-
Response
Usage-
Sequence

Figure 5.6: Request Layers

The user of the simulation creates a set of UserRequest instances and one instance of
StorageCloudSLARequest which is wrapped in a UsageSequence and sent to the
StorageCloudMetaBroker. This entity will create an instance of UserMetaRequest to
retrieve the latest Cloud characteristics such as price and available capacity. As soon
as the broker has received more UserRequest instances out of the UsageSequence it

will start to generate CDMIRequest instances that are sent towards the Cloud. The

38

Cloud itself will create multiple ScheduleEntry instances in order to store the state for
each request.

The cloud-internal messaging is done via method invokes only. The ScheduleEntry

will generate the according CDMIResponse which is then sent back to the broker.

5.3.2.6 CDMI requests

This section deals with the messages that are transmitted between StorageCloudBroker
and StorageCloud. For every kind of request there exist one class that inherits from
CdmiRequest. Requests are modeled with the generic class CdmiResponse that takes

<T extends CdmiRequest> as generic parameter.

53.2.6.1 Cloud discovery request

The CloudDicoveryRequest is wused to request the latest instance of
StorageCloudCharacteristics in order to choose the best matching Cloud among
multiple Cloud providers. The request has no parameters. The response contains a
deep-copy of the StorageCloudCharacterstics instance of the cloud, which is
completed with the maximum available bandwidth and latency between the requesting
entity and the Cloud. The currently remaining capacity is calculated and included in
the response. This operation never fails and returns immediately. It does not trigger

any accounting mechanisms.

5.3.2.6.2 GET container request

The GetContainerRequest takes the name of the requested container as the only
parameter. The response contains the metadata of the container and the CdmilD s of
all objects that are inside the container.

5.3.2.6.3 GET object request

This request takes either the Cdmild of the object that is to be retrieved or a name of a
container plus the name of the requested object. The corresponding response contains
a deep copy of the instance of the CDMI object that is stored in the Cloud and thus
provides access to the metadata. Internal information like the location of the blobs, is
not included in the response. Thus StorageCloudSim is a simulation environment, no
real data is stored in objects. The content is reduced to the information about the

number of bytes that are required to store the object on disk.

39

5.3.2.6.4 Put container request

The PutContainerRequest takes a name and an instance of CdmiMetadata as
parameter. The metadata may be ignored, depending on the capabilities of the Cloud
by regarding CDMI Metadata features. The new container is created with a new
Cdmild, if there is no other container in the rootContainer with the same name. Some
or all servers are assigned to the new CDMI container. After that, the new created

container is returned in the response. The response is sent immediately.

5.3.2.6.5 Put object request — creation

Figure 5.7 shows the different states during the creation of a new object.

Accounting 1—1,'95—’4—.

user exists?

retrieve user's root

no——*

—yes—*> :
Y 51z7e

container exists? exceeds limits?

name provided?
yes—. ’ create Object
| 4
no no
¥ I
0 ¢

name #children limit storage limit
already taken? exceeded? exceeded?

retrieve container)
obj

choose storage

locations

store on next
location

succepded?
calculate slowest [
/.- delay & duration

required
#blobs reached?

Figure 5.7: PutObject State Diagram

The PUT operation can either perform the creation of a new object, or start an update

process of an existing object. In both cases, the request carries data, that is uploaded

40

from the user to the Cloud and then stored in blobs (see 5.3.1.1.1). As for every other
operation, checks are performed before the operation starts, for example:

e Existence of user
e Compliance of limits (number of objects, max. size of objects), if any

e Existence of container to put the object into

If either the object name that is included in the request is empty, or the name is not
given to any existing object in the target container, the request is considered as a
creation request for a new object. Otherwise it is an update of an existing object. Both
cases require sufficient storage capacities on n different disks in order to create n
replica (n is determined by the metadata of the CDMI container). If enough storage
targets could be identified, the Cloud instance will send an acknowledgement to the
user and schedule the transfer process by choosing the target devices by sorting them
according to some policy that can be defined. The default policy will sort the

StorageServer instances by the lowest number of stored blobs on the object.

The operation can fail while choosing those targets, even if there is enough storage

space left, but it is not distributed enough to store n different replica versions.

After all storage targets could be found, the delay and duration of every single transfer
operation from Cloud to server and from server to hard drive is calculated. The
slowest one determines the maximum possible speed of the upload from the user to the
Cloud. The operation is checked against the 10-limitations of the Cloud by regarding
latency models of CloudSim. The response that indicates the success of the operation
is then being sent delayed. A delete operation for objects exists, but is not described in
further detail here.

5.3.2.6.6 Put object request — update

The update of an existing object is exactly the same as the creation of an object, except
the old storage blobs are being removed, as soon as the new storage blobs have been
stored successfully. Depending on the capabilities of the Cloud, the CDMI metadata
that are included in the PUT operation, are merged into the metadata of the objects.

5.3.2.7 UserRequest and UserMetaRequest class

The previous section covered the different types of messages that are being used to

communicate between a StorageBroker and a Cloud instance. The following section is

41

about the requests that are generated by the user code and forwarded to the
StorageMetaBroker, and to the StorageBroker to model the sequence of requests

independently of any Cloud interface.

For every CloudRequest (as alredy described) exists a UserRequest operation field that
distinguishes between different requests (PUT OBJECT, PUT CONTAINER, GET
OBJECT, GET CONTAINER, DELETE CONTAINER, DELETE OBJECT, PAUSE,
WAIT).

Aside from the operation field, the UserRequest class provides fields for objectName,

containerName, objectID, rootURL, metadata, delay (in ms) and a size field.

Static methods allow the convenient creation of UserRequest instances, for example:

List<UserRequest> request = new ArrayList<>() ;

request add(UserRequest.blocking(UserRequest.putContainer("someContainer"))) ;

request.add(UserRequest.blocking(UserRequest.putObject("someContainer",
"objectName",1024)));

request.add(UserRequest.downloadObject(*'someContainer”,"objectName™));

Figure 5.8: Creating user request from JAVA code

As described in 5.3.2.2 multiple instances of UserRequest are enqueued in a
UsageSequence in addition to a SLARequest which is then forwarded to the

StorageMetaBroker.

The MetaRequest class inherits from the UserRequest class and introduces a new
operation field that prompts StorageBroker s to retrieve the latest characteristics of
their associated Cloud. By this, the StorageMetaBroker can choose the best matching
Cloud regarding specific SLA requests. The MetaRequest s are only created by the
StorageMetaBroker and then inserted at the very beginning of the UsageSequence as a
blocking request.

5.3.3 Scenario generation

In order to make simulations significant, scenarios need to include many different
requests in order to benchmark the performance of the Cloud under heavy load. To
fulfill this requirement, scenarios can be generated automatically and stored as XML

42

files (simulations are repeatable on these input data). The class
UsageSequenceGenerator creates one valid sequence of UserRequest instances.

Three statistical distributions are used, to make the UserRequest realistic:

o fileSizeDistribution determines the size of objects that are created (1KB .. 1GB
uniform)

e intervalDistribution determines the idle time between two requests - (5ms ..
5min uniform)

e downloadProbability determines whether to download an object or not. If
sampled value exceeds 0.5, a download is started. Otherwise, an upload is

initialized - (0 .. 0.6 uniform)

SequenceFileGenerator provides a command line interface (CLI) to create XML files
of UsageSequences (see listing Figure 5.9 and 5.10). Generated sequences are put

together with matching SLAs.

<SLA>
<requirements class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND" >
<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND" >
<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SupportsCapability"
description="cdmi_create_container!"
capability key="cdmi_create_container"/>
<b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SupportsCapability"
description="cdmi_delete_container!"
capability_key="cdmi_delete_container"/>

<b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.MinimumCharactersisticValue" description="SLA available
capacity>=2.9446190051E10" key="SLA available capacity"
min="2.9446190051E10" />
</requirements>
<ratings class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
ratingSLA.RateByPrice">
<description>rate 1/price for up and download and storage
costs</description>
</ratings>
</SLA>

Figure 5.9: XML representation of SLA of normal sequence

43

<usageSequence sequencelID="0">
<SLA>
<requirements class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND">
<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.

matchingSLA.SLARequirementAND" >

<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SupportsCapability” description="cdmi_create_container!"
capability_ key="cdmi_create_container"/>

<b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.

matchingSLA.SupportsCapability" description="cdmi_delete_container!"
capability_ key="cdmi_delete container"/>

<b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.MinimumCharactersisticValue" description="SLA available
capacity>=2.9446190051E10" key="SLA available capacity"
min="2.9446190051E10" />

</requirements>

<ratings class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
ratingSLA.RateByPrice">
<description>rate 1/price for up and download and storage
costs</description>
</ratings>
</SLA>
<request class="java.util.ArraylList">
<userRequest delay="0" blockingCall="true" opCode="1" size="0">
<containerName>files</containerName>
<objectID>UNKNOWN</objectID>
<metadata>
<metadata/>
</metadata>
</userRequest>
<userRequest delay="0" blockingCall="false" opCode="0"
size="475731841">
<objectName>tr-w5co9yrb0d84s8</objectName>
<containerName>files</containerName>
<objectID>UNKNOWN</objectID>
<metadata>
<metadata>
<entry>
<string>cdmi_size</string>
<string>475731841</string>
</entry>
</metadata>
</metadata>
</userRequest>
<userRequest delay="8927" blockingCall="false" opCode="6" size="0">
<objectID>UNKNOWN</objectID>
</userRequest>
</request></usageSequence>

Figure 5.10: XML representation of a complete sequence

44

6. SYSTEM ARCHITECTURE

Replica placement is critical to storage system for data availability and fault tolerance.
A good data placement policy should improve data reliability, availability and network
bandwidth utilization. Therefore, we are interested in replica placement strategy to
achieve these goals. Below, we will describe our system model and algorithms to
describe our strategy. We implemented our strategy by implementing developments on

Storage CloudSim.

6.1 System Model

The cloud storage system has lots of servers containing disks with various
configurations. Disks store replicas of different objects and do not store the replicas of
the same object. We added a new tag for disk configuration to define failure
probabilities of disks of servers in cloud xml files which represent any cloud

environment.

<disks class="java.util.ArrayList">
<objectStorageDiskModel>
<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sda0">
<capacity>1099511627776</capacity>
<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>
<writeRate>2.2020096E8</writeRate>
<readLatency>8.5</readLatency>
<writeLatency>9.5</writeLatency>
<failureProbability>0.2</failureProbability>
<ioLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation™
maxRate="2.2020096E11"/>
</drive>
<name>/dev/sda0</name>
</objectStorageDiskModel>

</disks>

Figure 6.1: Failure probability definition for disk in cloud model xml

45

In our system, the availability which cloud system can provide is given as metadata in
cloud model files. When system processes a user request, it compares that value with
the user expected availability like the other SLA requirements and chooses the best
cloud model to dispatch the request. This cloud configuration parameter is given in

cloud xml files as shown below.

<cloudModel name="Examplecloud" location="de" rootUrl="rainy.org">
<characteristics>
<metadata>
<entry>
<string>SLA minimum availability</string>
<string>0.99</string>
</entry>

</metadata>
</characteristics>

</éioudl\/|odel >

Figure 6.2: Minimum availability definition in cloud model xml

In addition, we define location information as X and Y coordinator for server
configuration in cloud model files. We use server and user location information to
calculate the distance between cloud servers and user, so that we can choose the
closest servers to reduce bandwith usage. Server coordinate information is given in

cloud model files as seen in the following.

<servers class="java.util. ArrayList">

<objectStorageServerModel>
<name>server0</name>
<locationName>Turkey</locationName>
<coordinateX>10.0</coordinateXx>
<coordinateY>12.0</coordinate >
<ioLimitations class="edu.kit.cloudSimStorage.storageModel.

resourceUtilization.FirstFitAllocation” maxRate="1.34217728E11"/>

<disks class="java.util.ArrayL.ist"

</disks>
</objecStorageServerModel>

</servers>

Figure 6.3: Servers location definition in cloud model xml

46

We also defined three weight parameters for our algorithm used for sorting candidates
disks to place replica. These are disk failure probability, distance and disk load rate
weights which will be described in the following section. To be able to get these
weights, we created a new tag for cloud xml files named

“weightParamsToChooseBestDisk™ as shown below.

<cloudModel name="Examplecloud" location="de" rootUrl="rainy.org">
<characteristics>

</characteristics>

<weightParamsToChooseBestDisk>
<failureProbabilityWeight>0.5</failureProbabilityWeight>
<distanceWeight>0.3</distanceWeight>
<diskLoadRateWeight>0.2</diskLoadRateWeight>

</weightParamsToChooseBestDisk>

</cloudModel >

Figure 6.4: Minimum availability definition in cloud model xml

The expected minimum availability of the system, a is given as a SLA requirement of
user sequence and defined as the fraction of time that system is available for serving
user requests. This parameter is given in usage sequence files as AND SLA

Requirement as seen in the following.

<usageSequence sequencelID="4">
<SLA>
<requirements class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND" >
<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND" >
<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND" >
<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SupportsCapability"
description="cdmi_create_container!"
capability key="cdmi_create_container"/>
<b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SupportsCapability"
description="cdmi_delete_container!"
capability key="cdmi_delete_container"/>

<b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.MinimumCharactersisticValue"
description="SLA minimum availability>=0.99"
key="SLA minimum availability" min="©.99"/>

<b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.MinimumCharactersisticValue" description="SLA

47

available capacity>=2.8443936932E10" key="SLA available capacity"
min="2.8443936932E10" />
</requirements>
<ratings class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
ratingSLA.RateByPrice">
<description>rate 1/price for up and download and storage
costs
</description>
</ratings>

</SLA>

Figure 6.5: User SLA minimum availability definition in user sequence xml

Users give their location information as X and Y coordinators in sequence files. They
also define their desired read latency time to read their data from the disks of the
cloud. To be able to get user coordinates and read latency value, we created a new tag

for usage sequence files named “CommonRequestParams ™.

<usageSequence sequencelD="4">
<SLA>

</SLA>
<CommonRequestParams>
<readLatency>10.0</readLatency>
<coordinateX>10.0</coordinate x>
<coordinateY>12.0</coordinate’y >
</CommonRequestParams>
<request>

</request>
</usageSequence>

Figure 6.6: User location definition in user sequence xml

While considering the disks to place the replicas, if the read latency of the disk is
smaller than the desired read latency time, this disk is discarded and not included to

candidate disks to host replicas.

6.2 Disk Weighting

In our proposed system, when an update or insert object request is processed, in order
to find the optimum replica number, all available disks are choosen as a candidate to
host the replicas at first. Then, disks are sorted by their weights. Each disk has its own
weight which is the function of the percentage of current disk usage load rate (D.g),
disk failure probability (D) and the distance between server containing the disk and

user requesting (D).

48

The function to describe the weight of disk is shown below;
Dweight: Dfp X 9 + DLR X B + Ddis XY (1)

While 6 represents the failure probability weight, g indicates the disk load rate weight
and vy is represented by distance weight defined in the cloud model files. These weights

should provide the following equation;

O+p+y=1 (2)

And disk load rate (D.g) is defined as follows;

Disk current size

Dr= 3
LR ™ Disk total capacity ()

6.3 Optimum Replica Number and Replica Placement Algorithm

The goal of replication is to increase reliability and availability by keeping the data
accessible even when failures occur in the system. It is clear that the reliability of a
system will generally increase as the number of replicas increases since more replicas
will be able to mask more failures. However, it is a key issue how the number of

replicas will affect system availability.

With replica number increasing, the management cost including storage and network
bandwidth will significantly increase. In a cloud storage system, the network
bandwidth resource is very limited and crucial to overall performance. Too much
replicas may not significantly improve availability, but bring unnecessary spending
instead.

With attention to this, we developed a model to express availability as function of
replica number which is adapted from the study described in [6]. This model is used to
determine how much minimal replica should be maintained to satisfy availability
requirement. Since the availability of the system is the complementary of the idle state

of the system, we obtain

OC:]—PO (4)

49

where Py meaning that all disks have failed with failure probability fp;. Namely, it is
equal to the multiplication of all disks getting failure at any time. Thus,

Po=Tfpy X fpo X fpsx X fpn= 17, fmi ()

Therefore, if the probability of system availability (o) and failure probability of disks
(fpi) are known, we get the optimum replica number Ry by using the following

equation such as

o <min(I-TT" fp, L-TT" fpis wooe s =TT 00) (6)

According to this equation, our system calculates the optimum replica number Ropt to
satisfy expected availability with disk failure probability fpi. Our algorithm continues
until the minimum value bigger than expected availability is found. If the best disk
meets the expected availability, then replica count is determined as 1 and the best disk
is choosen to place the replica. If the best disk doesn’t meet the expected availability,
then the second best disk is included to multiplication, as well. If it is bigger than
expected availability, then the replica count is presented as 2 and the first best and the

second best disks are choosen to place the replicas. The algorithm repeats in this way.

The problem here is how to find the best disks sequentially. We give weights to the
disks as described in the former section. The weight of a disk is composed of a
function of its failure probability, its disk load rate and the distance between user
requesting and the server containing the disk. Before the algorithm starts, all disks are
sorted by their weights. However, in the beginning of the system processing, after the
sorting the disks, the initial disks belong to the same server. It means that first replicas
will be placed into the disks of the same server. We think that this is a crucial problem
since when server is down or has an issue, all replicas of the object are invalid or
unavailable. Furthermore, the best disks will be full for a while since the new replicas
will be always placed into the best disks of the cloud environment. To solve this issue,
after sorting the disks, we use the best disk of each server for each iteration. For
example; suppose that four replicas are enough to provide expected availability and

also suppose that we have available server-disk pairs as follows after sorting;

50

Table 6.1: Server-Disk pairs after sorting with sequence numbers

1.Server 1 — Diskl #4.Server 1 —Disk4 |7.Server 2 — Disk3 | 10.Server 4 — Disk1
2.Server 1 — Disk2 5.Server 2 — Diskl [8.Server 3 — Diskl | 11.Server 4 — Disk2
3.Server 1 — Disk3 |6.Server 2 — Disk2 9.Server 3 — Disk2

If we didn’t pay attention to same server configuration problem, the algorithm would
choose Server 1-Diskl, Server 1-Disk2, Server 1-Disk3 and Server 1-Disk4
respectively. It means that the system always uses the best disks of the cloud system.
And, if we always choose the best disks of the cloud system, the replica number will
be good firstly. However, when their capacites are full, the disks which have worse
failure probabilities will be free to host replicas and the replica number will increment
continuously. So, with our optimization, our algorithm will firstly choose Server 1-
Diskl, then Server 2-Diskl, then Server 3-Diskl and then finally Server 4-Disk1.

Whereby, we prevent the replica number from incrementing sharply or continuously.

In order to provide this solution, after sorting the disks, we create different queues for
each server. We are traversing the disks, put them into the queue of the server which
the disk is related to and we calculate a rank number (Ry) for each disk. The rank
number of a disk in queues is calculated with its sequence number (S,) and its index in

the queue (Q;) which will be inserted into.
Rg =S, + 10000 x Q 7

For example; when we get the server-disk pairs above after sorting, the first one is
Server 1 - Disk1. Its sequence number is 1 and this disk will be the first element of the
Server 1 Queue. So its index will be 1, as well. Hence, its rank number is calculated by
adding (10000 x 1) value to 1 and we get the result of 10001.

When needed any disk to place replica, we traverse the queues and we get the lowest
rank number of each queue for each iteration. For example; suppose that we have
available server-disk pairs as shown above after sorting. For this example, the queues

will be as shown;

51

Table 6.2: Each Queue and its disks

S1 Queue | — Disk1,R¢:10001 Disk2,R4:20002 |Disk3,R4:30003 |Disk4,R4:40004
S2 Queue | — |Disk1,R4:10005 Disk2,R4:20006 |Disk3,R4:30007

S3 Queue | — |Disk1,R4:10008 Disk2,R4:20009

S4 Queue | — |Disk1,R4:10010 Disk2,R4:20011

When needed an available disk to place replica, the queues are traversed respectively.
If one disk is required, then the disk with lowest rank is removed from server 1 queue
and replica is placed into it. If one disk is not enough to provide system availability
and two disks are required, then the disk with lowest rank is removed from server 2
queue to place the second replica. As we described above, the disks from the same
server are not preferred. However, sometimes the disks from only one server may be
left to store the object replicas. In such situation, if there are enough disks to put

replicas of the object, those disks are used.

The algorithm will continue in this way until the system availability expected by user
is satistfied. The steps of our algorithm to find the replica count and the disks to place

replica are shown as follows.

Inputs: disk failure probability (fp;) and read latency, server locations, read latency
expected by user, system availability expected by user (a), failure prob. weight,

distance weight, disk load rate weight.

Outputs: Replica count (RC) and disk list to place replicas (DL)

begin

Collect all disks with enough capacity to store object.

Remove disks with read latency which is smaller than read latency expected by user.
Calculate weights of disks.

Sort disks with their weights.

Create and fill queues with respect to disks.

Actual - 0, RC — 0, DL — {}

52

while (actual < a)
RC++
DL — {}
multiplication — 1
for (i=0; i< RC; i++)
Get the best disk Dyest from queues
Add it to DL
Multiplication * = fp of Dpest
end
Actual = 1 - multiplication
end
Return DL

end

Figure 6.7: Algorithm: Our strategy for replica placement

53

54

1. PERFORMANCE EVALUATION

While evaluating the system design performance, we developed three graphical user
interface to create inputs and to run main program in an easily way. These screens are

respectively shown as below.

7.1 Generate Cloud GUI

When you run Generate Cloud GUI, the screen will be opened with default parameters

as shown below. You can edit any parameters you want.

Generate Cloud File = B

Ik

Cloud Name Examplecloud

Location Name W

Failure Probability weight 05
Distance weight ’D
DiskLoad Rateweight oo |
Minimum provided Availability M

OutputFile Path |cloudSim_githubcheckoutioutput] | Browse..

Add New Server |

Server Coordinate X Coordinate Y Mumber of disks Failure Probability of its disks
Serverd 10 12 3 0.2
Server 10 12 3 0.2
Senver? 10 12 3 02

Figure 7.1: Generate Cloud GUI Screen

You can give your cloud name which will be name of the cloud file, location name
which will be the location of the cloud system. You can provide your failure

probability, distance and disk load rate weights which will be used for sorting

55

available disks to put the replica of an object. You can also set Minimum provided
availability which matches an SLA requirement of a user request. It determines that

this cloud can accept user requests or not.

When you click “Add New Server” button, a new row will be created on the table
shown below with default parameters. You can click any column of the row and set
your own parameters. You can add servers as much as you wish which will belong to

this cloud definition.

Add New Server

Server Coordinate X Coordinate Y Wumber of disks Failure Probability of its disks
Serverd 10 12 3 0.2
Serverl 10 12 3 02
Senver2 10 12 3 0.2
Serverd 10 12 3 0.2

Figure 7.2: Adding servers and their configuration screen

You can define server names, their x and y coordinates, number of disks that they have
and failure probabilities of each disk in the server by giving your own parameters for

Server.

When you click Generate button, model file representing the cloud environment is
generated on the location which is output file path given by user on the screen. For this

given parameters, the cloud model file is generated as shown in Appendix A.

7.2 Sequence Generator GUI

As explained in Storage CloudSim section, user requirements and requests are defined
in usage sequence files. In order to evaluate our system architecture, as it is diffucult to
create each sequence file manually, we developed a GUI to create automatically usage

sequence files as much as you wish to make our test easier.

When you run Usage Sequence Generator GUI, the screen will be opened with default

parameters as shown below. You can edit any parameters you want.

56

4 Frame Title - B

User Coordinate X

User Coordinate Y

Desired Minimum Availability |;ag

|

2 |
Desired Read Latency |4

1]

300 |

Number of Sequences |3np

Output File Path | | | Browse.

| Generate Sequences |

Figure 7.3: Sequence Generator GUI Screen

You can set user location as x and y coordinators. You can also set desired read
latency which represents the minimum read latency of a candidate disk to contain
user’s objects. If disk’s read latency is higher than this value given by user, the disk

will be ignored and wont be able to store the requesting user’s object.

You can also give the expected minimum availability. This is an SLA requirement
which matches the availability defined in the cloud model file. The cloud model which

meets this SLA requirement will get the requests of a user sequence file.

Number of Sequences parameter defines the number of usage sequence file with the

same parameters.

For these sample parameters, when you click Generate Sequences button, 300 usage

sequence files will be generated with the same parameters given by the screen.

An example of usage sequence files is shown below.

<usageSequence sequenceID="1">
<SLA>
<requirements class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND" >
<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND" >
<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SLARequirementAND" >

57

<a class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SupportsCapability”
description="cdmi_create_container!"”
capability key="cdmi_create_container"/>
<b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.SupportsCapability"
description="cdmi_delete_container!"”
capability key="cdmi_delete_container"/>

<b class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
matchingSLA.MinimumCharactersisticValue" description="SLA
available capacity>=2.8443936932E10" key="SLA available
capacity” min="2.8443936932E10" />
</requirements>

<ratings class="edu.kit.cloudSimStorage.ObjectStorageSLAs.
ratingSLA.RateByPrice">
<description>rate 1/price for up and download and storage
costs</description>

</ratings>
</SLA>

<request class="java.util.ArraylList">
<userRequest delay="0" blockingCall="true" opCode="1" size="0">
<containerName>files</containerName>
<objectID>UNKNOWN</objectID>
<metadata>
<metadata/>
</metadata>
</userRequest>
<userRequest delay="0" blockingCall="false" opCode="0"
size="8821857212">
<objectName>fa7wwt5ir8f9ncqgxm</objectName>
<containerName>files</containerName>
<objectID>UNKNOWN</objectID>
<metadata>
<metadata>
<entry>
<string>cdmi_size</string>
<string>8821857212</string>
</entry>
</metadata>
</metadata>
</userRequest>
<userRequest delay="6994" blockingCall="false" opCode="6
<objectID>UNKNOWN</objectID>
</userRequest>
<userRequest delay="0" blockingCall="false" opCode="0"
size="3838355570">
<objectName>b7tnya2jgk</objectName>
<containerName>files</containerName>
<objectID>UNKNOWN</objectID>

size="0">

58

<metadata>
<metadata>
<entry>
<string>cdmi_size</string>
<string>3838355570</string>

</entry>
</metadata>
</metadata>
</userRequest>
<userRequest delay="8975" blockingCall="false" opCode="6" size="0">
<objectID>UNKNOWN</objectID>
</userRequest>
<userRequest delay="0" blockingCall="false" opCode="0"
size="7222991320">
<objectName>7xdwxdd41lus</objectName>
<containerName>files</containerName>
<objectID>UNKNOWN</objectID>
<metadata>
<metadata>
<entry>
<string>cdmi_size</string>
<string>7222991320</string>
</entry>
</metadata>
</metadata>
</userRequest>
<userRequest delay="2334" blockingCall="false" opCode="6" size="0">
<objectID>UNKNOWN</objectID>
</userRequest>
<userRequest delay="0" blockingCall="false" opCode="0"
size="10635145281">
<objectName>46180f20hsh8chghhx</objectName>
<containerName>files</containerName>
<objectID>UNKNOWN</objectID>
<metadata>
<metadata>
<entry>
<string>cdmi_size</string>
<string>10635145281</string>
</entry>
</metadata>
</metadata>
</userRequest>
<userRequest delay="7784" blockingCall="false" opCode="6" size="0">

<objectID>UNKNOWN</objectID>
</userRequest>
</request>

</usageSequence>

Figure 7.4: Generated User Sequence file example

As you can see above, there are some requests with different object size and object

names. These are also different from the ones in another usage sequence files.

59

7.3 Main GUI

There is no screen to run Main class in Storage CloudSim framework. Also, it is

diffucult to test the algorithm with different weights to sort disks.

This screen gets the weights to sort candidate disks to place the replica of an object.
You can set failure probability, distance and disk load rate weights from the screen.
These parameters will replace the existing parameters in cloud model file shown under
the tag <weightParamsToChooseBestDisk> since it is diffucult to change the xml file

everytime we need a different test for users.

|5 Main Screen = =

Failure Probability weight ns
Distance weight 0.3
Disk load rate weight 0z

| Run Program |

Figure 7.5: Main Screen

When you click “Run Program”, it will replace the parameters in the cloud model file

and start the program with the cloud having these new weight parameters.

7.4 Experiments

As our proposed cloud storage system is implemented with Storage CloudSim, in
order to test our works, we created sequence files which contain the requirements of
users and their requests by using the GUI as shown in section 7.3. We also defined a
cloud model file to simulate a real cloud environment by using the screen as described
in section 7.1. Our system processes the put or update requests until there is no enough
space in the disks of the cloud environment to place replicas. If there is not enough

space, the other requests are discarded.

60

We made our experiments with only one cloud environment (thus, we created only one
cloud model file) since our aim is mainly to show how replicas are distributed to the
disks of servers and how replica number changes for each request in one cloud, not
multiple clouds. Our test cloud environment includes five servers and three disks with
the same capacity in each server. The servers have the same location coordinators with
related to our aim although we use distance weight to sort disks. Thus, even if the
locations of servers were not the same, our system could choose the servers closer to

user.

The cloud model is modeled to be able to meet the system availability as percentage of
0.9999999. Three hundred of usage sequence files have been generated for the
experiment. All of them includes an SLA requirement with minimum expected
availability as 0.9999999, so all sequences can be processed with our cloud

environment since cloud model can meet this requirement.

The failure probabilities of the disks of servers were defined as 0.0001, 0.001, 0.009,
0.03 and 0.05, namely, the failure probabilities of the disks of Server 1 are defined as
0.0001, the ones for the disks of Server 5 are defined as 0.05. All disks have the same

capacity and the same read/write latency values.

We made two different experiments shown at the table below.

Table 7.1: Experiment Types

Experiment 0 B Y Same server optimization
1 1 0 0 No
2 05| 03 0.2 Yes

In the experiments, we give different weights for disk failure probability, distance
between user requesting and servers and current disk load rate to sort disks in our
cloud environment as described in section 1.2. The last column of the table, same
server optimization means our optimization described in section 1.3. Namely, for the
second and consecutive disk selections to place replicas, it prefers the disks from
different servers in each iteration. After running the tests, we showed our results with

some graphics to show the efficiency of our algorithm. One of the graphics is to show

61

the replica number found for each request. The second ones are to show the load rates
of each disk for each request, so that we can see the load balancing among servers in
our cloud environment. The last ones are to display the load rates of the disks as bar
graphic. Disk load rate graphic as bar presentation shows the load rates of all disks for

every 25" requests.

With the first experiment, we give failure probability weight as 1, so that we can see
what happens if we don’t involve the distance and disk load rate optimizations. Also,
we don’t apply the optimization with related to disk selection from the same server.
Thus, for the user requests, many of the best disks to place the replicas may belong to

the same server.

Replica Count / Which Put Request?

10

Replica Count

(58]

o] 10 20 30 40 50 60 70 B0 90 100 110 120 130 140 150 1580
Which Put Request?

——Replica Count

Figure 7.6: Replica count graphic for experiment 1

62

As shown in replica count graphic for experiment 1, replica count firstly starts with

two replicas. When the bests disks are full, then it becomes three replicas. When the

bests ones of remaining disks are full, then it becomes four replicas. Finally, our

system couldnt find enough disks to put replicas since replica count will sharply

increment and stopped processing user requests on 158th request.

The disk load graphic for experiment 1 as seen below shows that disk load balancing

can not be supplied among candidate disks of servers. Always the same disks store the

replicas until they have not enough space since they have always the higher weights

among all candidate disks to store each object and the other ones dont store.

Disk Load Rate

1,00
0,95
0,20
0,85
0,80
0,75
0,70
0,65
0,60
0,55
0,50
0,45
0,40
0,35
0,30
0,25
0,20
0,15
0,10
0,05
0,00

Disk Load Rate / Which Put Request?

20 40 50 60 70 20 90 100 110 120 130 140 150 160
Which Put Request?

B serverl_fdev/sdaZ - serverl_jdev/sdal & serverl_jdev/sdal server0_jdev/sdal = server2_jdev/sdald
“oserverZ_jdevisdaz o server2_jdev(sdal - server0_fdev/sdal - server0_jdev/sdaZ - server2_jdev/sdal
B server3_fdev/sdal # server3_jdev/sdaz - serverd_fdev/sdaz - serverd_jdev/sdal = serverd_/dev/sda0

Figure 7.7:

Load rate graphic for experiment 1

63

Disk Load Rate / Which Put Request?

1,00
0,951
0,901
0,85 1
0,80 -
0,751
0,704
0,65 1
0,60 -
0,55 1
0,501
0,45 1

Disk Load Rate

0,40 1
0,351
0,301
0,251
0,201
0,15
0,101

0,05 | ‘
0,00 i

o] 25 S0 75 100 125 150 153
Which Put Request?

W serverl_(dev/sdaZ M serverl_fdev/sdal @ serverl_jdev/sdal server0_fdev/sdal ™ server2_fdev/sdad
server2_jdev/sdaZ o server?_jdev/sdal M server0_fdev/sdal M serverd_fdev/sdaZ M server3_[devfsdal
W server3_(dev/sdal ™ server3_fdev(sdaz M serverd_jdev/sdaz Mserverd _(dev/sdal M serverd_f(dev/sdad

Figure 7.8: Graphic for disk load rates as bar representation in experiment 1

In figure 7.7 such as 7.8, it is seen that the same disk pairs host the replicas and the
balancing cannot be provided since the same server optimization is not applied. When
the best disks are full, then replicas are placed into the best ones of the remaining
disks. It continues in this way. And there are still disks which dont have any object
replicas although some of the disks are full when the system stops processing on 158th
request. The reason why there are still empty disks which dont have any object replica
is that the system needs much more replicas after 158th request; however there are not
sufficient number of disks to place the replicas. If there were enough of disks to place
the replicas after 158th request, we could see that the replica number would sharply

increment.

64

With the second experiment, by using our all improvements, we see the difference
from the first experiment. It is observed that replica count doesn’t increment sharply as
the time goes. The system always prevents the replica number increments intensely
and adjust the disk load rates by keeping the replica number in an optimum state. The
reason why the replica number always changes is that the system doesnt use always
the same best disks to place replicas. However, in first experiment, replica number is
sometimes stable since the system use always the same best disks to place replicas

until the best disks are full.

Replica Count / Which Put Request?

10

Replica Count
U

o 1o 20 30 40 50 60 70 80 90 100 110 120 130 140 150 180 170 180 190
Which Put Request?

——Replica Count

Figure 7.9: Replica count graphic for experiment 2

65

Furthermore, the system could process more user requests in experiment 1 than in
experiment 2 since the replica number didnt get high value and the disks could place

much more replicas in experiment 1.

Disk Load Rate / Which Put Request?

1,00
0,95
0,20
0,85
0,80
0,75
0,70
0,65
0,60
0,55
0,50

Disk Load Rate

045
0,40
0,35
0,30
0,25
0,20
0,15
0,10

0,05

0,00

0 10 20 30 40 50 A0 7O 8O 90 100 110 120 130 140 150 160 170 180 190
Which Put Request?

-# serverl fdev/sda? & serverl_jdev/sdal & serverl_fdev/sdal serverl_Jfdev/sdal = server2_fdev/sdad
v oserver?_jdevisdaz o server2_jdev/sdal = serverD_jdev/sdal 4 server0_jdev/sdaZ - server2 fdev/sdal
B server3_fdev/sdal ® server3_jdev/sdaZ & serverd_fdevfsdaZ -+ serverd (dev/sdal -= serverd [dev/sdal

Figure 7.10: Graphic for disk load rates in experiment 2

Also, the disk usage is balanced among server disks on a large scale as shown both in
figure 7.10 and 7.11. All disks get the replicas in a balanced way from the beginning
to the end of the user requests during the experiment. It is obviously seen that we
could prevent the usage of always the same bests disks when we needed to place a

replica.

66

Disk Load Rate / Which Put Request?

1,004
0,951
0,901
0,851
0,801
0,751
0,704
0,65 1
0,601
0,551
0,501
0451
0,401

Disk Load Rate

0,351
0,304
0,25 1
0,201
0,15
0,101
0,051
0,00

0 25 S0 75 100 125 150 175 187
Which Put Request?

W serverl_(dev/sdaz Mserverl_fdev/sdal ¥ serverl_jdev/sdal server0_fdev/sdal ™ serverZ_fdev/sdad
serverZ_fdev/sda2 o server?_fdev/sdal Mserver0_fdev/sdal M serverD_fdev/sda2 Mserver3_jdev/sdal
W server3_(dev/sdal ™ server3_fdev/sda2 Mserverd_jdev/sdaz M serverd_fdev/sdal M serverd_dev/sdad

Figure 7.11: Graphic for disk load rates as bar representation in experiment 2

67

68

8. CONCLUSION

In this thesis, we proposed a new design for dynamic replication strategy for cloud
storage systems. Different replica placement and replica count strategies are proposed
by researchers. As our study is interested in not only system availability, but also
bandwidth usage and load balancing among servers, we performed different
optimizations which are not included in other studies. Most of the techniques proposed
are based on simulation, not on real time implementation. Implementing these
replication techniques, testing and evaluating the actual efficiency is an interesting
open problem. In future, we intent to move our works into a real cloud environment

and see how it works in real life.

69

70

REFERENCES

[1] Chang, G.R., Gao, S., Jin, L.Z., Sun, D.W., and Wang, X.W. (2012).
“Modelling a Dynamic Replication Strategy to Increase System
Availability in Cloud Environments”, Journal of Computer Science
and Technology, 27(2), pp. 256-272

[2] Jrad, F., Sturm, T., and Streit, A. (2014). “Storage CloudSim: A Simulation
Environment for Cloud Object Storage Infrastructures”, In
Proceedings of the 4th International Conference on Cloud Computing
and Services Science, pp. 186-192

[3] Beloglazov, A., Buyya, R., Calheiros, R.N., De Rose, C.A.F., and Ranjan, R.
(2011). “CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms”, Software Practice and Experience, 41(1), pp.23-50

[4] Ghemawat, S., Gobio, H. and Leung, S.T. (2003). “The Google File system,
ACM SIGOPS Operating Systems Review”, 37(5), pp. 29-43

[5] Chansler, R., Hairong, K., Radia, S., and Shvachko, K. (2010). “The Hadoop
distributed file system, In: Proc. the 26th Symposium on Mass
Storage Systems and Technologies™, pp. 1-10, Incline Village, NV,
USA,

[6] Myint, J., and Naing, T.T. (2011). “Management of Data Replication for PC
Cluster Based Cloud Storage System”, International Journal on Cloud
Computing: Services and Architecture(lJCCSA), Vol.1. No.3

[7] Grace, R.K., and Manimegalai, R. (2013). R., “Dynamic Replica Placement
and Selection Strategies in Data Grids, A Comprehensive Survey”,
Journal of Parallel and Distributed Computing,

[8] Hussein, M.K., and Mousa, M.H. (2012). “A Light-weight Data Replication for
Cloud Data Centers Environment”, International Journal of
Engineering and Innovative Technology(lJEIT), Volume 1, Issue 6

[9] BCS (2012). “Cloud Computing: Moving IT Out of the Office”, The Chartered
Institute for IT(Editor)

[10] Sturm, T. (2013). “Implementation of a Simulation Environment for Cloud
Obiject Storage Infrastructures”, Department of Informatics, Steinbuch
Centre for Computing, Karlsruhe Institute of Technology

[11] Cloud Data Management Interface (CDMI) Version 1.0.2.

[12] Azagury, A., Dreizin, V., Factor, M., Henis, E., Naor, D., Rinetzky, N.,
Rodeh, O., Satran, J., Tavory, A., and Yerushalmi, L. (2003).
“Towards an object store”, pp. 165-176.

[13] Factor, M., Meth, K., Naor, D., Rodeh, O., and Satran, J. (2005). “Object
storage: the future building block for storage systems”, pp. 119-123,.

71

[14] Amazon Inc. Amazon s3 (2013),Cloud computing storage for files, images,
videos,.[Online; accessed 17-July-2013].

[15] OpenStack Foundation (2013), Openstack open source cloud computing
software, [Online; accessed 19-Aug-2013].

72

APPENDICES

APPENDIX A: Generated Cloud File Example

73

APPENDIX A

<cloudModel name="Examplecloud" location="de" rootUrl="rainy.org">
<characteristics>
<metadata>

<entry>
<string>cdmi_export_iscsi</string>
<string>false</string>

</entry>

<entry>
<string>location</string>
<string>de</string>

</entry>

<entry>
<string>cdmi_delete_container</string>
<string>true</string>

</entry>

<entry>
<string>cdmi_export_webdav</string>
<string>false</string>

</entry>

<entry>
<string>cdmi_modify_metadata</string>
<string>true</string>

</entry>

<entry>
<string>cdmi_list_children</string>
<string>true</string>

</entry>

<entry>
<string>cdmi_read_metadata</string>
<string>true</string>

</entry>

<entry>
<string>cdmi_export_nfs</string>
<string>false</string>

</entry>

<entry>
<string>SLA minimum availability</string>
<string>0.99</string>

</entry>

<entry>
<string>cdmi_metadata_maxitems</string>
<string>1024</string>

</entry>

<entry>
<string>cdmi_query</string>
<string>false</string>

</entry>

<entry>
<string>cdmi_metadata_maxsize</string>
<string>4096</string>

</entry>

<entry>
<string>cdmi_create_container</string>
<string>true</string>

</entry>

<entry>
<string>number_replicas</string>

74

<string>3</string>
</entry>
<entry>
<string>cdmi_notification</string>
<string>false</string>
</entry>
<entry>
<string>cdmi_queues</string>
<string>false</string>
</entry>
<entry>
<string>SLA download costs</string>
<string>@.1</string>
</entry>
<entry>
<string>keep_n_versions</string>
<string>1</string>
</entry>
<entry>
<string>SLA storage costs</string>
<string>@.1</string>
</entry>
<entry>
<string>cdmi_domains</string>
<string>false</string>
</entry>
<entry>
<string>SLA upload costs</string>
<string>0.1</string>
</entry>
</metadata>
</characteristics>
<pricingPolicy class="edu.kit.cloudSimStorage.pricing.SimplePricing">
<centsPerUploadedGB>0.1</centsPerUploadedGB>
<centsPerDownloadedGB>0.1</centsPerDownloadedGB>
<centsPerStoredGBperPeriod>0.1</centsPerStoredGBperPeriod>
</pricingPolicy>

<servers class="java.util.ArraylList">
<objectStorageServerModel>

<ioLimitations class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation”
maxRate="1.34217728E11"/>
<disks class="java.util.ArraylList">
<objectStorageDiskModel>
<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sda@">
<capacity>1099511627776</capacity>
<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>

75

<writeRate>2.2020096E8</writeRate>
<readLatency>8.5</readLatency>
<writelatency>9.5</writelLatency>
<
<ioLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11" />
</drive>
<name>/dev/sda®</name>
</objectStorageDiskModel>
<objectStorageDiskModel>
<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sdal">
<capacity>1099511627776</capacity>
<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>
<writeRate>2.2020096E8</writeRate>
<readLatency>8.5</readLatency>
<writelLatency>9.5</writeLatency>

<iolLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation”
maxRate="2.2020096E11" />
</drive>
<name>/dev/sdal</name>
</objectStorageDiskModel>
<objectStorageDiskModel>
<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sda2">
<capacity>1099511627776</capacity>
<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>
<writeRate>2.2020096E8</writeRate>
<readLatency>8.5</readLatency>
<writelatency>9.5</writelLatency>

<ioLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation™
maxRate="2.2020096E11" />
</drive>
<name>/dev/sda2</name>
</objectStorageDiskModel>
</disks>
</objectStorageServerModel>
<objectStorageServerModel>

<iolLimitations class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation"
maxRate="1.34217728E11"/>
<disks class="java.util.ArraylList">
<objectStorageDiskModel>
<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sda®">
<capacity>1099511627776</capacity>

76

<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>
<writeRate>2.2020096E8</writeRate>
<readLatency>8.5</readLatency>
<writelLatency>9.5</writeLatency>

<iolLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation”
maxRate="2.2020096E11" />
</drive>
<name>/dev/sda®</name>
</objectStorageDiskModel>
<objectStorageDiskModel>
<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sdal">
<capacity>1099511627776</capacity>
<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>
<writeRate>2.2020096E8</writeRate>
<readlLatency>8.5</readLatency>
<writelLatency>9.5</writeLatency>

<ioLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation”
maxRate="2.2020096E11" />
</drive>
<name>/dev/sdal</name>
</objectStorageDiskModel>
<objectStorageDiskModel>
<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sda2">
<capacity»>1099511627776</capacity>
<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>
<writeRate>2.2020096E8</writeRate>
<readLatency>8.5</readLatency>
<writelatency>9.5</writelLatency>

<iolLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11" />
</drive>
<name>/dev/sda2</name>
</objectStorageDiskModel>
</disks>
</objectStorageServerModel>
<objectStorageServerModel>

<iolLimitations class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation”
maxRate="1.34217728E11" />
<disks class="java.util.ArraylList">
<objectStorageDiskModel>

77

<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sda0®">
<capacity>1099511627776</capacity>
<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>
<writeRate>2.2020096E8</writeRate>
<readLatency>8.5</readLatency>
<writelatency>9.5</writelLatency>
<failureProbability>@.2</failureProbability>
<ioLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11" />
</drive>
<name>/dev/sda@</name>
</objectStorageDiskModel>
<objectStorageDiskModel>
<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sdal">
<capacity»>1099511627776</capacity>
<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>
<writeRate>2.2020096E8</writeRate>
<readLatency>8.5</readLatency>
<writelatency>9.5</writelLatency>
<failureProbability>@.2</failureProbability>
<iolLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation"
maxRate="2.2020096E11" />
</drive>
<name>/dev/sdal</name>
</objectStorageDiskModel>
<objectStorageDiskModel>
<drive class="edu.kit.cloudSimStorage.cloudScenarioModels.
GenericDrive" name="/dev/sda2">
<capacity>1099511627776</capacity>
<reserverdSpace>0</reserverdSpace>
<usedSpace>0</usedSpace>
<readRate>2.2020096E8</readRate>
<writeRate>2.2020096E8</writeRate>
<readlLatency>8.5</readLatency>
<writelatency>9.5</writeLatency>
<failureProbability>0.2</failureProbability>
<iolLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.FirstFitAllocation™
maxRate="2.2020096E11" />
</drive>
<name>/dev/sda2</name>
</objectStorageDiskModel>
</disks>
</objectStorageServerModel>
</servers>
<cloudIOLimits class="edu.kit.cloudSimStorage.storageModel.
resourceUtilization.UnlimitedResource"/>

</cloudModel>

Figure A.1: Generated Cloud file example

78

CURRICULUM VITAE

Name Surname: Murat OZTURK

Place and Date of Birth: Denizli, 17.11.1987

E-Mail: muratozturk1987@gmail.com
EDUCATION:
B.Sc.: Computer Engineering, Ege University

PROFESSIONAL EXPERIENCE AND REWARDS:

TAI (06.2009 — 07.2009) Intern Software Engineer

IBTEch (07.2009 — 08.2009) Intern Software Engineer

Turkcell PAF Team (08.2009 — 10.2009) Intern Software Engineer
NETSIS (04.2010 — 06.2010) PartTime Software Engineer
Vodafone (2010- 2013) Software Development Engineer

IBTech (2013 - ...) Designer

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:
= Oztiirk M., and Erdogan N., 2015: A Data Replication Strategy To Improve System

Availability For Cloud Storage Systems. International Conference on
Communication and Computing(ICC-2015) — July 9-11, 2015 Bangalore, India.

79

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS :

» Oztitk M., Yenigiin Y., Tunali A.C., and Yaycioglu O.T., 2015: RESTful
Konfigurasyon YoOnetimi Web Arayiizii. 6" National Software Engineering
Symposium of Turkey — July 20, 2012 Ankara, Turkey.

80

