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ABSTRACT

This study aims to investigate the linkage between precipitation variability in
Turkey and sea surface temperature variability in surrounding seas through
sensitivity experiments using a state-of-the-art regional climate model, RegCM3.
Sea surface temperatures of five regions including Aegean Sea, Eastern
Mediterranean Sea, western half of Black Sea, eastern half of Black Sea, and
Central Mediterranean Sea are individually modified by ±2K in the model
sensitivity simulations, and the results from these simulations are compared
with a control simulation to quantify how these changes affect the Turkish
precipitation. 10-year sensitivity experiments for all seas are completed and
in general, the results of the sensitivity experiments show that the response of
Turkish precipitation to sea surface temperature changes in the surrounding seas
is limited and mostly confined to the coastal areas in Turkey. Increasing the sea
surface temperature usually increases rainfall in the vicinity of the perturbation,
and similarly, decreasing it reduces rainfall. Monthly results indicate that
Turkish precipitation is mostly affected from perturbations especially in Eastern
Mediterranean Sea and Aegean Sea in December which may be related to cyclone
tracks and frequency in this month.

ÖZET

Bu çalışmanın amacı, Türkiye yağışlarındaki değişimin etrafındaki denizlerin
yüzey sıcaklığındaki değişimle olan ilişkisini, duyarlılık testleri vasıtasıyla
güncel bir bölgesel iklim modeli, RegCM3, kullanarak araştırmaktır. Model
simülasyonlarında Ege Denizi, Doğu Akdeniz, Batı Karadeniz, Doğu Karadeniz
ve Orta Akdeniz’i kapsayan beş bölgenin deniz yüzey sıcaklıkları ±2K değiştirildi
ve bu değişikliklerin Türkiye yağışlarını nasıl etkilediğini belirlemek için elde
edilen sonuçlar kontrol simülasyonu ile karşılaştırıldı. Bütün bölgeler için
10 yıllık duyarlılık testi tamamlandı ve genel olarak, duyarlılık testlerinin
sonuçları göstermektedir ki Türkiye yağışlarının etrafındaki denizlerin yüzey
sıcaklıklarındaki değişime olan mukabelesi sınırlı olup çoğunlukla kıyı kesimlerde
sınırlanmıştır. Deniz yüzey sıcaklığını arttırmak genellikle değişimin yakınındaki
yerlerde yağışın artmasına sebep olmaktadır. Tersi durumda ise yağışın azalması
sözkonusudur. Aylık sonuçlar göstermektedir ki, Türkiye yağışları en çok
Aralık ayında ve özellikle Ege Denizi ve Doğu Akdeniz’deki değişimlerden
etkilenmektedir ve bu sonuç bu aydaki siklon yolları ve frekansları ile
ilişkilendirilebilir.

xiii



1. INTRODUCTION

1.1. Introduction

The Third Assessment Report of IPCC (2001) stated that a regional scale

describing the range of 104 to 107 km2, a temporal scale from sub-daily to multi

decadal, and interaction of forcings and circulations are the main components of

the process that is used to determine the climate of a given region. Planetary

scale (greater than 107 km2) forcings are responsible for the global atmosphere

while regional and local scale forcings modulate the spatial and temporal

structure of the regional climate signal. Interactions between planetary scale

forcings and regional and local scale forcings constitute fundementals of climatic

processes.

In fact, climate models have been used in numerous studies to dynamically

downscale atmospheric fields at resolution, from which it is difficult to infer

detailed information (Leung et al., 1999; Roads et al., 2003; Takle et al., 1999).

It is important to emphasize that general circulation models (GCMs) are not

utilizable in order to describe small-scale atmospheric circulations especially

occur in land surface in which complex terrain remains in possession. Since

demonstrating impacts of climate change especially in mesoscale and small-scale

regions crucial for the assessment of climate variability studies, alternative

methods have been developed in order to remedy deficiency of GCMs. Nesting a

limited-area model (LAM) within a global GCM, or within observational analysis

is an alternative process to study mesoscale climate processes (McGregor, 1997).

Dickinson et al.(1989) and Giorgi et al.(1993b) came up with an idea that limited

area models (LAMs) could be used for regional studies. Since then, regional and

mesoscale climate studies with the aid of regional climate models have become

widespread.

Regional climate changes in Mediterranean region has been of interest to

researchers for many years since it is located in a transitional zone in which

mid-latitude and tropical variability play a key role in determining climate

characteristics of this region. In addition to this, it has many morphologic,

geographical, historical, and societal characteristics that make its climate

interesting per se. (Bolle, 2003). Although much of the coastal states have a
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Mediterranean climate type, there are also regions that have different climate

characteristics due to complex topography, elevation differences, and latitudinal

positions.

1.2. Purpose

Turkey, a country in the Eastern Mediterranean, is surrounded by three seas:

Black Sea in the north, Aegean Sea in the west, and Mediterranean Sea in the

south (Fig. 1.1).

Fig. 1.1. Geographical position of Turkey and surrounding seas.

Complex topography, elevation differences, and geographical position of Turkey

make its climate interesting where significant differences from one region to

the other take place. The Mediterranean and Aegean coasts have a typical

Mediterranean climate with mild, rainy winter and hot, dry summers. Amount

of annual average rainfall in these regions varies from 580 to 1300 mm. The

inland Anatolian Plateu has limited rainfall, cold winters, and hot summers.

Black Sea coasts and northwest regions of Turkey have a moderate climate with

colder winters than the Mediterranean and Aegean coasts. Annual average

rainfall amount in eastern part of the Black Sea coasts is about 2000-2200 mm

and the highest rainfall amount in Turkey.
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Long-term winter precipitation records from stations show a decreasing trend in

the western provinces of Turkey that constitutes our initial motivation to this

study (Fig. 1.2). Changes in cyclone tracks and their frequency and intensity,

variations in the sea surface temperature (SST) of surrounding seas of Turkey,

and variabilities of the atmospheric teleconnections may be some of the factors

that are causing this change in precipitation.

Fig. 1.2. Results of trend analysis for winter precipitation of Turkey between the
years of 1951 and 2004.

It is well known that in the cold half of the year, cyclones originating from the

North Atlantic region bring over moisture-laden air to Turkey and cause a lot

of rainfall, especially in the coastal areas of Turkey due to orographic effects.

Cyclones that affect Turkey usually follow four different tracks as identified

by Karaca et al. (2000) (Fig. 1.3). There is no doubt that any variation

in the intensity and frequency of these cyclones will cause variation in the

precipitation in Turkey. Because, the cyclones pass through the surrounding

seas before reaching to Turkey, SSTs may play a role in the amount of rainfall in

Turkey as they modify the overpassing air masses to some degree. The present

study, therefore, investigates whether/how the variations in the SST of the

surrounding seas affect the rain falling in Turkey using a state-of-the-art regional

climate model, RegCM3. Before defining the model and experiment design it is

necessary to present some informations for surrounding seas of Turkey and their

long-term annual average SSTs with previous studies concerning with SST and

precipitation variability.

Aegean Sea constitutes an arm of Mediterranean Sea off southeast Europe.
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Fig. 1.3. Paths of cyclones influencing Turkey (adapted from Karaca et al.
(2000)).

It lies between Greece and Turkey. It has a total area of some 214,000 km2

and a maximum depth of 3,543 m. It has about 610 km length and 300 km width.

The average SST of Aegean Sea is a few degree lower than those in eastern

Mediterranean. There are some reasons that are accounted for this: reduced

solar irradiance in North, upwelling of cooler waters due to internal circulations,

run-off of cooler river water into the sea, and the intrusion of cold water from

the Black Sea through the Marmara Sea and the strait of the Dardanelles (Bolle,

2003).

Long-term ONDJFM and DJF average SST of Aegean Sea is presented in Fig.

1.4. It can be said that there is a decreasing trend in both seasons especially

between the years of 1960 and 1990. Increasing trend has taken place after 1990.
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Fig. 1.4. ONDJFM and DJF average SST of Aegean Sea between the years of
1949 and 2000.

Long-term DJF average precipitation trend between 1950 and 2004 from Aegean

Region stations indicates the decreasing trend of the precipitation in that region

(Fig. 1.5).
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Fig. 1.5. Long-term DJF average precipitation of Aegean Region between the
years of 1950 and 2004.

Mediterranean Sea is an inland sea surrounded by Asia to the east, Europe to

the north, and Africa to the south. It has an approximate area of 2.5 million

km2 and it is connected to the Atlantic Ocean to the west with Gibraltor Strait.

It has an important climatic effect on European-African Mediterranean climate.

Surrounding areas of the Mediterranean Sea have negative net radiative flux

while the sea itself has positive radiation budget and it behaves as a heat source

for surrounding areas that require an influx of heat to compensate for their

negative energy budget (Bolle, 2003).

Eastern Mediterranean is surrounded by Turkey to the north, Syria, Lebanon,

Israel to the east, and Egypt to the south. High evaporation causes decrease in

water level and increase in salinity in eastern Mediterranean (Pinet, 1996).

Long-term ONDJFM and DJF average SST of eastern Mediterranean Sea is

presented in Fig. 1.6. A decreasing trend is also seen in here between the years

of 1960 and 1990 as same as Aegean Sea. An increasing trend is seen after the

year of 1990.
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Fig. 1.6. ONDJFM and DJF average SST of eastern Mediterranean Sea between
the years of 1949 and 2000.

Black Sea is an inland sea surrounded by Turkey to the south, Bulgaria,

Romania, Ukraine to the west, Georgia to the east, and Russia to the north.

It has an area of 422,000 km2 with a maximum depth of 2,210 m. It is

connected with Aegean Sea through the Bosphorus, the Sea of Marmara, and

the Dardanelles. Oxygen level in Black Sea below 200 meters is very low so

marine life is very limited below this depth. It has a low salinity around 0,18%

since it receives freshwater from rivers in the surrounding areas.
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Long-term ONDJFM and DJF average SST of western Black Sea and eastern

Black Sea is presented in Fig. 1.7 and Fig. 1.8 respectively.

Fig. 1.7. ONDJFM and DJF average SST of western Black Sea between the
years of 1949 and 2000.
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Fig. 1.8. ONDJFM and DJF average SST of eastern Black Sea between the years
of 1949 and 2000.

1.3. Previous studies of SST and precipitation variability

Previous and recent studies concerning with regional climate changes, which

especially pointing out precipitation variability in Mediterranean region,

are mostly focused on large-scale circulation patterns and atmospheric

teleconnections (Maheras et al., 2001; Trigo et al., 2000; Trigo and 21 coauthors,

2006; Xoplaki et al., 2004).

Studies concerning with the relationship between SST and precipitation

variability have mostly focused on the tropical oceans (Arpe et al., 1998;

Janicot et al., 1998; Messager et al., 2004). Arpe et al. (1998) investigated

the variability of Indian monsoon in the ECHAM3 model. Sensitivity of

Indian monsoon to SST is one of the subject that they investigated. They

confirmed that due to El-Nino effect surface winds over the Arabian Sea is

reduced and causing an increase in the SST of the Arabian Sea as there is

less mixing and upwelling in the ocean. Higher SST causes more precipitation

over India and they performed sensitivity experiment in order to demonstrate

effect of North Indian Ocean SST on precipitation variability. They found that
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all experiments with increased SST give more precipitation than those with

reduced SST. More precipiation over India due to increased SST counteracts the

expected decrease from the direct El-Nino effect. They also stated that changes

in the SST there within the range of uncertainty (0.5 K) can lead to clear impacts.

Messager et al. (2004) investigated sensitivity of precipitation to regional SST

by using a regional climate model, MAR, during the West African monsoon for

two dry years. In addition to simulations for model performance for the years of

1983 and 1984, they performed a hybrid simulation of 1983 in which the SST

field is the 1984 SST. They revealed precipitation sensitivity to SST anomalies

especially during the high rainy period. They also showed that effect of regional

SST on West African monsoon over the inland is modulated by other factors

such as orography or surface interactions. According to their results, regional

SST is a major factor that determines the rainfall regime during monsoon in dry

years over West Africa. They stated that a warmer SST leads to an increase in

meridional moisture transport in the lower troposphere resulted in increase in

precipitation along the coast.

It is only recently that studies for the relationship between SST and climate

variability have been done for the Mediterranean region. Li (2006) studied the

atmospheric response to an idealized 2 K cooling of the Mediterranean Sea

with a GCM and he demonstrated large-scale atmospheric responses to this

cooling. He hypothesized that the Mediterranean Sea could initiate atmospheric

teleconnections and thus influence the weather and the climate for remote

regions. Rowell (2003) also studied the role of the Mediterranean Sea in the

Sahelian rainfall season with a GCM. He found that an increase in moisture

transport in the eastern part of the Sahara due to warmer Mediterranean Sea

resulting in an increase in the Sahelian summer rainfal.

Maracchi et al. (2000) investigated how SST of Thyrrenian Sea triggered

convective precipitation in Tuscany, Italy. They analysed, four local-scale

extreme convective events in Tuscany region resulted in flash floods, gusts, and

tornado-like systems. According to their results, there is a positive correlation

between SST anomalies of the Ligurian Gulf and frequency and intensity of

extreme convective events in Tuscany region. They showed the triggering of

convective storms in Tuscany has been enhanced by warm moist air from the

Thyrrenian Sea due to increased sea surface temperature. It is also stated

that relationship between SST anomalies and extreme weather events in

Mediterranean region are becoming more evident.
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Barret (2006) sought the relationship between SST anomalies in the

Mediterranean and Black Seas and rainfall in selected sites across Turkey.

He computed Pearson correlations coefficients and tested for significance. He

revealed that there is an unrelated relationship between SST anomalies in both

the Black and Mediterranean Seas and precipitation across Turkey. He also

indicated that correlation coefficients were not randomly dispersed throughout

the year. Another result of his study presented possible forcings of positive

SST anomalies for increased summer precipitation over the central and eastern

interior of Turkey due to enhanced convective precipitation resulted from local

orography and the greater boundary layer relative humidity.

In this study, we investigate whether/how the variations in the SST of the

surrounding seas affect the rain falling in Turkey. In order to achive our goal,

using a state-of-the-art regional climate model, RegCM3, we have conducted

sensitivity experiments involving ±2K perturbations in SSTs at preselected five

regions that fourth of them are in the three seas surrounding Turkey. We have

also investigated Central Mediterranean region since it is the intersection point

of most cyclones influencing on Turkey. Long-term ONDJFM and DJF average

SST of Central Mediterranean Sea is presented in Fig. 1.9.

Section 2 presents the model used in this study and experimental design of the

simulations. Model performance is provided in Section 2. Simulation results for

sensitivity experiments are presented in Section 3. Finally, summary and some

conclusions are given in Section 4.
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Fig. 1.9. ONDJFM and DJF average SST of Central Mediterranean Sea between
the years of 1949 and 2000.
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2. MODEL DESCRIPTION AND EXPERIMENT DESIGN

2.1. Regional Climate Model

RegCM3 is the regional model used in this study and it is the third version of

a regional climate model developed by and is maintained at the International

Centre for Theoretical Physics (ICTP), in Trieste, Italy. The first generation of

RegCM included the Biosphere-Atmosphere Transfer Scheme, BATS, (Dickinson

et al., 1986) for surface process representation, the radiative transfer scheme

of the Community Climate Model version 1 (CCM1), a medium resolution

local planetary boundary layer scheme, the Kuo-type cumulus convection

scheme of (Anthes, 1977) and the explicit moisture scheme of (Hsie et al.,

1984). RegCM was originally built upon the National Center for Atmospheric

Research-Pennsylvania State University (NCAR-PSU) Mesoscale Model version

MM4, which is a compressible, finite difference model with hydrostatic balance

and vertical σ-coordinates in the late 1980s. The model physics and numerical

schemes were then upgraded resulting in a second generation of RegCM called

as RegCM2 originally developed by Giorgi et al. (1993a,b). The physics of

RegCM2 was based on that of the NCAR Community Climate Model version 2

(CCM2) (Hack et al., 1993), and the mesoscale model MM5 (Grell et al., 1994b).

Since then, there has been major improvement in the physics of the model

and associated software system, including a large-scale cloud and precipitation

scheme which accounts for the subgrid-scale variability of clouds (Pal et al.,

2000), new parameterizations for ocean surface fluxes (Zeng et al., 1998), and a

cumulus convection scheme (Emanuel, 1991; Emanuel and Zivkovic-Rothman,

1999). The main physical parameterizations contained in the RegCM3 used

in this study are: radiation scheme of the NCAR Community Climate Model

(CCM3) (Kiehl et al., 1996), Biosphere-Atmosphere Transfer Scheme version 1e

(BATS1e) (Dickinson et al., 1993), planetary boundary layer scheme (Holtslag

et al., 1990), Grell’s cumulus convective precipitation scheme (Grell, 1993), and

large-scale cloud and precipitation scheme.

13



2.2. Model Description

Informtations describing the model dynamic and physics are based on RegCM3

User’s Guide that is avaliable at http://www.ictp.trieste.it/RegCNET/model.html.

2.2.1. The RegCM Model Vertical and Horizontal Grid

Vertical grid configuration of the model is based on a dimensionless σ coordinate

that is used to define the model levels

σ =
p− pt

ps − pt
(2.1)

where p is the pressure, pt is a specified constant top pressure, and ps is the

surface pressure. Since the lower grid levels are under the influence of topography,

they are not as flatten as upper grid levels. As the pressure decreases toward

the top of the model, intermediate levels progressively flatten (Fig. 2.1).

Fig. 2.1. Schematic representation of the vertical structure of the model. This
example is for 16 vertical layers. Dashed lines denote half-sigma levels,
solid lines denote full-sigma levels. (Adapted from the PSU/NCAR
Mesoscale Modeling System Tutorial Class Notes and User’s Guide.)

The horizontal grid has an Arakawa-Lamb B-staggering grid with scalar variables

such as temperature, mixing ratio, and pressure that are defined at the center of
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the grid box referred as cross points, while the eastward (u) and northward (v)

components of the velocity vector are defined at the corners of each grid square

referred as dot points (Fig. 2.2).

Fig. 2.2. Schematic representation of the horizontal grid structure of RegCM3
(Adapted from the PSU/NCAR Mesoscale Modeling System Tutorial
Class Notes and User’s Guide.)

2.2.2. Map Projections and Map-Scale Factors

According to studied region, RegCM3 offers four map projections: Lambert

Conformal for mid-latitudes, Polar Stereographic for high latitudes, Normal

Mercator for low latitudes, and Rotated Mercator for extra choice. The observed

wind generally has to be rotated to the model grid since the x and y directions in

the model do not correspond to west-east and north-south except for the Normal

Mercator projection. In addition to this, the model u and v components need

to be rotated before comparison with observations. The map scale factor, m, is

defined by ratio of distance on grid to actual distance on earth and its value is

usually close to one, varying with latitude.

2.3. Model Dynamics

The model dynamic equations and numerical discretization are described by

Grell et al. (1994b).
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2.3.1. Horizontal Momentum Equations

∂p∗u

∂t
= −m2

(
∂p∗uu/m

∂x
+

∂p∗vu/m

∂y

)
− ∂p∗uσ̇

∂σ
(2.2a)

−mp∗
[

RTv

(p∗ + pt/σ)

∂p∗

∂x
+

∂φ

∂x

]
+ fp∗v + FHu + FV u

∂p∗v

∂t
= −m2

(
∂p∗uv/m

∂x
+

∂p∗vv/m

∂y

)
− ∂p∗vσ̇

∂σ

−mp∗
[

RTv

(p∗ + pt/σ)

∂p∗

∂y
+

∂φ

∂y

]
+ fp∗u + FHv + FV v, (2.2b)

where u and v are the eastward and northward components of velocity, Tv is

virtual temperature, φ is geopotential height, f is the coriolis parameter, R is

the gas constant for dry air, m is the map scale factor for either the Polar

Stereographic, Lambert Conformal, or Mercator map projections, σ̇ = dσ
dt

, and FH

and FV represent the effects of horizontal and vertical diffusion, and p∗ = ps−pt.

2.3.2. Continuity and Sigmadot(σ̇) Equations

Continuity equation is defined by

∂p∗

∂t
= −m2

(
∂p∗u/m

∂x
+

∂p∗v/m

∂y

)
− ∂p∗σ̇

∂σ
(2.3)

and in order to compute temporal variation of the surface pressure in the model

the vertical integral of Equation 2.3 is used,

∂p∗

∂t
= −m2

∫ 1

0

(
∂p∗u/m

∂x
+

∂p∗v/m

∂y

)
dσ (2.4)

then the vertical velocity in sigma coordinates(σ̇) is computed at each level in

the model by vertical integral of Equation 2.3,

σ̇ = − 1

p∗

∫ σ

0

[
∂p∗

∂t
+ m2

(
∂p∗u/m

∂x
+

∂p∗v/m

∂y

)]
dσ′ (2.5)

where σ′ is a dummy variable of integration and σ̇(σ=0)=0.
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2.3.3. Thermodynamic and Omega(ω) Equations

The thermodynamic equation is

∂p∗T

∂t
= −m2

(
∂p∗uT/m

∂x
+

∂p∗vT/m

∂y

)
−∂p∗T σ̇

∂σ
+

RTvω

cpm(σ + Pt/past)
+

p∗Q

cpm

+FHT+FV T,

(2.6)

where Q is the diabatic heating, FHT represents the effect of horizontal diffusion,

FV T represents the effect of vertical mixing and dry convective adjustment, and

cpm is

cpm = cp(1 + 0.8qv) (2.7)

where cp is the specific heat at constant pressure for dry air and qv is the mixing

ratio of water vapor. Omega(ω) equation is

ω = p∗σ̇ + σ
dp∗

dt
, (2.8)

and dp∗

dt
is computed by

dp∗

dt
=

∂p∗

∂t
+ m

(
u
∂p∗

∂x
+ v

∂p∗

∂y

)
(2.9)

2.3.4. Hydrostatic Equation

Geopotential heights from the virtual temperature Tv is computed by using the

hydrostatic equation,

∂φ

∂ln(σ + pt/p∗)
= −RTv

[
1 +

qc + qr

1 + qv

]−1

, (2.10)

where qv, qc, and qr are the water vapor, cloud water or ice, and rain water or

snow, mixing ratios. Tv is computed by

Tv = T (1 + 0.608qv) (2.11)

2.4. Model Physics

The main physical parameterizations contained in the RegCM3 used in this

study are: radiation scheme of the NCAR Community Climate Model (CCM3)

(Kiehl et al., 1996), Biosphere-Atmosphere Transfer Scheme version 1e (BATS1e)

(Dickinson et al., 1993), planetary boundary layer scheme (Holtslag et al., 1990),

Grell’s cumulus convective precipitation scheme (Grell, 1993), and large-scale

cloud and precipitation scheme. Brief description of these schemes are given
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below. Detailed informations and other physical parameterizations are available

at www.ictp.trieste.it/RegCNET/model.html.

2.4.1. Radiation Scheme

The radiation scheme of the RegCM3 is the same as that of the NCAR

Community Climate Model (CCM3). δ-Eddington approximation (Kiehl et al.,

1996) is used for solar radiation component that accounts for the effect of O3,

H2O, CO2, and O2. The cloud scattering and absorption parameterizations

are also included in order to determine cloud influence on solar radiation. The

infrared calculation accounts for effect of CO2, H2O, O3 gases.

2.4.2. Land Surface Model

The interactions between the soil, vegetation, and atmosphere are parameterized

using Biosphere-Atmosphere Transfer Scheme version 1e (BATS1e) which is

described in detail by Dickinson et al. (1993). BATS describe the role of

vegetation and interactive soil moisture in modifying the surface-atmosphere

exchanges of momentum, energy, and water vapor. 20 vegetation types are

avaliable in the present version.

For the water content of the soil layers the soil hydrology calculations are

performed. The soil hydrology calculations include predictive equations

accounted for precipitation, snowmelt, canopy foliage drip, evapotranspiration,

surface runoff, infiltration below the root zone, and diffusive exchange of water

between soil layers for the water content of the soil layers. The near surface

turbulent fluxes of sensible heat, moisture, and momentum are calculated using

a standard surface drag coefficient formulation based on surface-layer similarity

theory. The atmospheric stability in the surface layer and the surface roughness

length are the factors that affect the drag coefficient.

2.4.3. Planetary Boundary Layer Scheme

The planetary boundary layer (PBL) scheme of the (Holtslag et al., 1990) is

the scheme used in the RegCM3 model. The scheme is used for calculation

of turbulent transports of sensible heat, momentum, and water vapor in the

PBL over land and ocean. The PBL scheme is based on non-local diffusion that

takes into account countergradient fluxes resulting from large-scale eddies in an

unstable, well-mixed atmosphere. Refer to (Holtslag et al., 1990), (Holtslag and

Boville, 1993), and RegCM3 User’s Guide for a more detailed description.
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2.4.4. Convective Precipitation Scheme

There are three convective schemes in order to compute convective precipitation:

Grell scheme (Grell, 1993), Modified-Kuo scheme (Anthes, 1977), and

MIT-Emanuel scheme ((Emanuel, 1991), (Emanuel and Zivkovic-Rothman,

1999)). Grell’s cumulus convection parameterization is used as convective

precipitation scheme in this study. In this scheme, clouds are defined as two

steady state circulations; an updraft and a downdraft. There is no direct mixing

between the cloudy air and the environmental air except at the top and bottom

of the circulations.

The Grell scheme convective closure assumption can be of two typess. In

the (Fritsch and Chappell, 1980) closure assumption (FC80) convection

removes the avaliable buoyant energy at a given time scale. It is designed to

represent convections which typically occur in mid-latitudes. In the (Arakawa

and Schubert, 1974) closure assumption (AS74) convection stabilizes the

environment as fast as the large-scale destabilizes it. It is designed to represent

convections which tend to be the most common form of convection.

2.4.5. Large-Scale Precipitation Scheme

The subgrid explicit moisture scheme (SUBEX) developed by Pal et al. (2000)

is used as large-scale precipitation scheme in RegCM3. SUBEX considers the

subgrid variability in clouds by linking the average grid cell relative humidity to

the cloud fraction and cloud water following the work of Sundqvist (1989). For a

more detailed description and formulation of SUBEX refer to Pal et al. (2000).

2.5. Experiment Design

Before performing the model it is necessary to complete two pre-processing steps

in Terrain and ICBC sub-directory (Fig. 2.3).

In the Terrain sub-directory, the domain with grid intervals is defined and landuse

and elevation data are interpolated to the model grid. In the ICBC sub-directory,

files used for the initial and boundary conditions are generated. The input data

used by the Terrain and ICBC programs are stored in the DATA sub-directory

Fig. 2.4.
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Fig. 2.3. Brief schematic description of RegCM3 modeling system used in this
study.

2.5.1. Terrain

The landuse and elevation data from a latitude-longitude grid to the cartesian

grid of the chosen domain are horizontally interpolated by the Terrain program.

The elevation data used is from the United States Geological Survey (USGS).

Both the landuse and elevation data files are avaliable at 60, 30, 10, 5, 3, and 2

minute resolutions. In this study the topography and land use are interpolated

to the model grid points from a global dataset at 10 minute resolution.

In regional climate studies, the choice of model domain play a key role in

simulation results. The model domain should capture global patterns while it

is able to demonstrate small-scale changes. Parameters such as domain size,

input data, and length of simulation are defined by the user. There are some

important factors when selecting a domain:

1. Choose the map projection most suitable for the studied region.

2. Boundaries should be placed where driving data is trusted.

3. Boundaries should avoid complex topography.
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Fig. 2.4. RegCM3 directory tree. Adapted from workshops on RegCM3 that
avaliable at RegCM3 website.

In this study, RegCM3 has been set up for a domain centered at 40oN, 32oE

with 135x85 grid cells, which have 30 km spatial resolution, using a Lambert

Conformal projection (Fig. 2.5).

For each of the five different regions depicted Fig. 2.5, we have devised to carry

out three simulations including a control, an SST+2K perturbation and an

SST-2K perturbation. Control simulations involve no change to SST, however,

the perturbation simulations involve changes in SST at these regions. The

simulations are planned to cover the 6-month period from October to March

between the years of 1990 and 2000.

We firstly treated Aegean Sea (1st region) and completed the 10-year simulations

for all three cases (control, SST-2K, SST+2K). In addition to surrounding

seas of Turkey, we also investigated Central Mediterranean Sea since it is the

intersection point of most cyclones influencing on Turkey. One of the results

of Aegean Sea sensitivity experiment is that there is a quasi-linear relationship

between change in precipitation due to SST-2K perturbation and SST+2K

perturbation. For that reason and due to inadequate hardware, just SST-2K

perturbations and control simulations were performed for the other seas.

The latitude and longitude of each five region and domain parameters are given

in Table 2.1 and Table 2.2.
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Fig. 2.5. The domain and topography used in the RegCM3 simulations. The
five rectangles show the regions where SSTs are changed in sensitivity
simulations.

Table 2.1. Latitude and longitude of each five region in the domain
Latitude Longitude

Region 1 36oN -42oN 22oE-28oE
Region 2 32oN -37oN 28oE-36oE
Region 3 41oN -46oN 28oE-35oE
Region 4 41oN -46oN 35oE-42oE
Region 5 30oN -40oN 15oE-22oE

Land cover and vegetation classes of the domain is important for determinig

atmospheric properties of the domain. Atmospheric parameters such as

temperature, precipitation and moisture are affected by not only the topography

of the domain but also land cover of the domain. The Global Land Cover

Characterization (GLCC) datasets are used for the vegetation/landuse data.

The GLCC dataset is derived from 1 km Advanced Very High Resolution

Radiometer (AVHRR) data spanning April 1992 through March 1993, and is

based on the vegetation/land cover types defined by Biosphere Atmosphere

Transfer Scheme (BATS). Fig. 2.6 shows landuse pattern over the domain. The

land use type of the domain consists of 20 classes (Table 2.3).
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Table 2.2. Domain parameters
Parameter Value Description

iy 85 number of grid points in y direction (i)
jx 135 number of grid points in x direction (j)
kz 18 number of vertical levels (k)
ds 30 grid point separation in km

ptop 5.0 pressure of model top in cb
clat 40.00 central latitude of model domain in degrees
clon 32.00 central longitude of model domain in degrees

ntypec 10 resolution of the global terrain and land-use data
iproj ’LAMCON’ map projection

igrads 1 true=output GrADS control file
SSTTYP ’OI WK’ SST dataset
DATTYP ’NNRP2’ global analysis dataset
NPROC ’1’ number of processors

Fig. 2.6. Land cover and vegetation classes of the domain.

2.5.2. ICBC

The ICBC program interpolates global reanalysis and SST data to the model

grid. These files are used for the inital and boundary conditions during the

simulation.

The initial and boundary conditions are prescribed using the National Center

for Environmental Prediction (NCEP) Reanalysis datasets with 2.5o x 2.5o grid

resolution and 17 pressure levels. The pressure levels begin from 1000mb for

surface and exist for the levels of 925, 850, 700, 600, 500, 400, 300, 250, 200, 150,

100, 70, 50, 30, and 10mb. Model inputs at these pressure levels are geopotential

heights (m), temperature (K), u and v components of wind (m/s), relative

humidity, specific humidity (kg/kg), and vertical velocity (Pa/s). Model inputs

at surface are surface pressure (Pa) and surface geopotential (m2 s2). Model

23



Table 2.3. Land Cover/Vegetation classes
1. Crop/mixed farming
2. Short grass
3. Evergreen needleleaf tree
4. Deciduous needleleaf tree
5. Deciduous broadleaf tree
6. Evergreen broadleaf tree
7. Tall grass
8. Desert
9. Tundra

10. Irrigated Crop
11. Semi-desert
12. Ice cap/glacier
13. Bog or marsh
14. Inland water
15. Ocean
16. Evergreen shrub
17. Deciduous shrub
18. Mixed Woodland
19. Forest/Field mosaic
20. Water and Land mixture

inputs cover the periods of October to March from of 1990 and 2000.

There are several options for SST data that are defined by the user in the

Pre-processing. The Global Sea Surface Temperature (GISST) one-degree

monthly gridded data (1871-2002) and the Optimum Interpolation Sea Surface

Temperature (OISST) one-degree (1981-2005) at both weekly and monthly time

scales are the data used for SST. In this study, OISST with weekly time scales

is used as SST data.

2.5.3. Running the model and Outputs

Domain file from the Terrain process and ICBC outputs from the ICBC process

are used in main model in order to start simulations. The model is started by

selecting start/end dates of simulation, time steps, model output frequencies,

and modifying physics options. At that point, selecting the model time step is

very important. If the time step is too small, the simulation will take longer.

If the time step is too large, the model will crash. Commonly, the timestep in

seconds should be approximately three times the spatial resolution of the model.

In addition, all of the physics timesteps must be a multiple of the main model

time step. The necessary modifications are done in regcm.in file (Table 2.4).

The model generates three main outputs files in binary format

from atmosphere (ATM.YYYYMMDDHH) (Table 2.5), surface model
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Table 2.4. List of time step variables to be modified in regcm.in file
Parameter Value Description

idate0 YYYYMMDDHH start date of first simulation
idate1 YYYYMMDDHH restart date
idate2 YYYYMMDDHH end date of simulation
radfrq 30 time step for radiation model, min
abemh 18 LW absorption/emissivity time step, hr
abatm 270 Land surface time step, sec

dt 90 Main model time step, sec
ibdyfrq 6 Lateral boundary condition time step, hr

(SRF.YYYYMMDDHH)(Table 2.6), and radiation model (RAD.YYYYMMDDHH)

(Table 2.7).

The RegCM postprocessor converts these model output files to new output files

of averaged variables in commonly used formats such as NetCDF or GrADS.
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Table 2.5. List of output variables from atmosphere
Variables Description

u Zonal wind (m/s)
v Meridional wind (m/s)
w Omega (hPa)p-velocity
t Temperature (K)

qv Mixing ratio (g/kg)
qc Cloud mixing raito (kg/kg)

psa Surface pressure (hPa)
tpr Total precipitation (mm/day)
tgb Ground temperature (K)
swt Total soil water (mm)
rno Base flow (mm/day)
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Table 2.6. List of output variables from surface model
Variables Description

u10m Westerly wind at 10m (m/s)
v10m Southerly wind at 10m(m/s)

uvdrag Surface drag stress
tgb Ground temperature (K)
tlef Foliage temperature (K)
t2m Air temperature at 2m (K)
q2m Specific humidity at 2m (kg/kg)
ssw Upper layer soil water (mm)
rsw Root zone soil water (mm)
tpr Total precipitation (mm/day)
evp Evapotranspiration (mm/day)
scv Snow water equivalent (mm)

sena Sensible heat flux (W/m2)
flw Net infrared energy flux (W/m2)
fsw Net absorbed solar energy flux (W/m2)

flwd Downward infrared energy flux (W/m2)
sina Incident solar energy fluw (W/m2)
prcv Convective precipitation (mm/day)
psb Surface Pressure (hPa)
zpbl Planetary Boundary Layer height (m)

tgmax Maximum ground temperature (K)
tgmin Minimum ground temperature (K)
t2max Maximum 2m air temperature (K)
t2min Minimum 2m air temperature (K)

w10max Maximum 10m wind speed (m/s)
psmin Minimum surface pressure (hPa)

Table 2.7. List of output variables from radiation model
Variables Description

cld Cloud fractinal cover (fraction)
clwp Cloud liquid water path (g/m−2)

qrs Solar heating rate (K/s)
qrl Longwave cooling rate (K/s)

frsa Surface absorbed solar flux (W/m2)
frla Longwave cooling of surface (W/m2)

clrst Clearsky total column absorbed solar flux (W/m2)
clrss Clearsky surface absorbed solar flux (W/m2)
clrlt Clearsky net upward LW flux at top(W/m2)
clrls Clearsky LW cooling at surface (W/m2)
solin Instantaneous incident solar (W/m2)

sabtp Total column absorbed solar flux (W/m2)
firtp Net upward LW flux at top (W/m2)
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2.6. Model Performance

Before demonstrating the sensitivity experiment results, it is important to

present model performance in simulating large-scale circulation and precipitation

patterns.

Fig. 2.7 and Fig. 2.8 show 10-year December-January-February (DJF) and

October-November-December-January-February-March (ONDJFM) average of

850hPa and 500hPa geopotential height maps from NCEP/NCAR Reanalysis

and RegCM3 model output. It seems that the model is able to reproduce 850hPa

and 500hPa geopotential height fairly well.

Fig. 2.7. 10-year ONDJFM (a),(b) and DJF (c),(d) average of 850hPa
geopotential height maps from NCEP/NCAR Reanalysis (a),(c) and
RegCM3 model output (b),(d).
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Fig. 2.8. 10-year ONDJFM (a),(b) and DJF (c),(d) average of 500hPa
geopotential height maps from NCEP/NCAR Reanalysis (a),(c) and
RegCM3 model output (b),(d).

Fig. 2.9 shows 10-year average precipitation values (mm/day) for ONDJFM

and DJF from gridded observations (CRU data) and model output. In general

the model captures the primary features of the rainfall distribution across the

domain. It seems that the CRU data are somehow missing the high precipitation

amounts at the mountaneous eastern Black Sea region. The model on the other

hand gives more reasonable estimations of precipitation in these areas.

Fig. 2.10 shows 10-year average sea level pressure (SLP) (hPa) values for

ONDJFM and DJF from NCEP/NCAR Reanalysis and RegCM3 model output.

Both seasons of simulation period are characterized by influence of high pressure

that is well simulated in model output.

After comparing model outputs with observed and reanalysis data, it is deemed

that the model performance is adequate to carry out sensitivity experiments that

investigate the effects of SST perturbations in the surrounding seas of Turkey on

its precipitation.
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Fig. 2.9. 10-year average precipitation values (mm/day) for ONDJFM and DJF
from gridded observations (CRU data) (a),(c) and from RegCM3 model
output (b),(d).

Fig. 2.10. 10-year average SLP values (hPa) for ONDJFM and DJF from
NCEP/NCAR Reanalysis (a),(c) and from RegCM3 model output
(b),(d).
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3. SIMULATION RESULTS

3.1. Aegean Sea Sensitivity Experiment

Fig. 3.1 shows the 10-year average DJF difference in precipitation between

perturbation simulations and control simulations with 850hPa wind vectors from

the 10-year average control simulations. In addition to this, Student’s T-test

was applied and if any values that are less than p<0.1 (90% confidence level)

were hatched.

Fig. 3.1. 10-year average DJF difference of precipitation between perturbations
and control simulation with 850hPa wind vectors of control simulation.
(a) (SST-2K)-Control, and (b) (SST+2K)-Control.
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It can be said that decreasing or increasing Aegean Sea surface temperature by 2K

affect mostly the precipitation falling or increasing at Aegean Sea and the coastal

areas surrounding this sea in winter. Highest changes occur in the westernmost

coasts of Turkey. It is also important to emphasize that a decreased SST results

in reductions in precipitation and and increased SST results in increases in

precipitation, a somewhat quasi-linear relationship.

3.1.1. Changes in surface parameters

In order to explain how the SST perturbations effect precipitation change, some

figures depicting other surface variables such as 2m-temperature, sensible heat

flux, and latent heat flux are presented.
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SST perturbations in Aegean Sea causes changes in 2m-temperature as it is

shown in Fig. 3.2. 2m-temperature is decreased when SST of Aegean Sea is

decreased by 2K and it is increased when SST is increased by 2K. Changes in

2m-temperature mostly occured in the Aegean Sea itself and confined to the

coastal areas of both Turkey and Greece.

Fig. 3.2. 10-year average DJF difference of 2m-temperature between
perturbations and control simulation. (a) (SST-2K)-Control, and
(b) (SST+2K)-Control.
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Changes in SST also cause changes in sensible heat flux and latent heat flux.

Both sensible heat and latent heat fluxes are increased or decreased as the SST

of Aegean Sea is increased or decreased (Fig. 3.3,Fig. 3.4).

Fig. 3.3. 10-year average DJF difference of sensible heat flux between
perturbations and control simulation. (a) (SST-2K)-Control, and (b)
(SST+2K)-Control.
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Fig. 3.4. 10-year average DJF difference of latent heat flux between
perturbations and control simulation. (a) (SST-2K)-Control, and (b)
(SST+2K)-Control.

3.1.2. Changes in upper level parameters

When we look at effect of SST perturbations on air temperature and specific

moisture at 925hPa, it is observed that when the SST of Aegean Sea is decreased

by 2K, air temperature at 925hPa is decreased especially in Aegean Sea itself

and coastal areas of Turkey and Greece. Decrease in air temperature is spreaded

to the eastern Mediterranean Sea, region of Marmara and Black Sea with the

direction of prevailing wind at 850hPa. When the SST of Aegean Sea is increased

by 2K, air temperature at 925hPa is increased in similar regions and spreaded

with the direction of prevailing wind as in SST-2K (Fig. 3.5).
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Fig. 3.5. 10-year average DJF difference of air temperature at 925hPa between
perturbations and control simulation. (a) (SST-2K)-Control, and (b)
(SST+2K)-Control.

Similar changes occur in specific moisture at 925hPa, as SST of Aegean Sea

increases it increases too, and as SST of Aegean Sea decreases it decreases too.

However, the most striking difference in changes between the air temperature

and specific moisture at 925hPa is that changes in specific moisture are mostly

confined to the Aegean Sea itself and coastal areas (Fig. 3.6).
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Fig. 3.6. 10-year average DJF difference of specific moisture at 925hPa between
perturbations and control simulation. (a) (SST-2K)-Control, and (b)
(SST+2K)-Control.

At 850hPa, less changes are occured in air temperature and specific moisture due

to SST perturbations and changes in air temperature cover more regions than of

those in specific moisture with the direction of prevailing wind at 850hPa (Fig.

3.7,Fig. 3.8). Especially increase in SST by 2K causes remarkable increase in air

temperature in the central part of Turkey (Fig. 3.7(b)).
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Fig. 3.7. 10-year average DJF difference of air temperature at 925hPa between
perturbations and control simulation. (a) (SST-2K)-Control, and (b)
(SST+2K)-Control.
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Fig. 3.8. 10-year average DJF difference of specific moisture at 925hPa between
perturbations and control simulation. (a) (SST-2K)-Control, and (b)
(SST+2K)-Control.

3.1.3. Changes in monthly precipitations

When we look at the individual months for SST-2K perturbation (Fig. 3.9), we

can see that the changes in precipitation occur in Aegean Sea and immediate

surrounding lands. One of the most striking change takes place in December

when reduced SST in Aegean Sea causes substantial declines in rainfall along

the westernmost coastal areas of Turkey (Fig. 3.9c). Similar inferences could be

stated for SST+2K perturbation (Fig. 3.10). Highest changes in precipitation

occur in December in that experiment too (Fig. 3.10c).
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Fig. 3.9. 10-year average monthly difference of precipitation between SST-2K
perturbation and control simulation with 850hPa wind vectors of
control simulation.
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Fig. 3.10. 10-year average monthly difference of precipitation between SST+2K
perturbation and control simulation with 850hPa wind vectors of
control simulation.

It is also important to emphasize that increase in precipitation by SST+2K

perturbation for December months between the years of 1990-2000 is significance

when Student’s T-test is applied with a 90% confidence level (Fig. 3.11b) while

there is no significance reduction in precipitation by SST-2K perturbation (Fig.

3.11a).
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Fig. 3.11. 10-year average December precipitation change with 90% confidence
level for both SST-2K (a) and SST+2K (b) perturbations.

Monthly precipitation change of each run indicates that highest precipitation

amount occurs in December months between the years of 1990-2000 (Fig. 3.12).

Therefore it is accepted as comprehensible reason why the December month has

the highest changes. However, when we look at relative changes, percentage

changes of each months is close to each other in SST-2K experiment while

differences between the each months take place in SST+2K experiment (Fig.

3.13).
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Fig. 3.12. 10-year average monthly precipitation amounts of SST perturbations
and control simulation.

Fig. 3.13. 10-year average relative changes in each month for precipitation.

3.1.4. Wet and dry years comparison

10-year simulation experiment for Aegean Sea take dry and wet as well as

normal years into account, thus getting closer to, what’s called, climatology. It

is necessary to analyze precipitation variability with SST changes in conjuction

with climatic phenomenon such as North Atlantic Oscillation (NAO). NAO is

a major disturbance of the atmospheric circulation and climate of the North

Atlantic-European region. It is defined as fluctuations in the difference of

sea level pressure between the Icelandic Low and the Azores High. Pressure

difference between various stations on the Iceland and Azores is used to

constitute NAO index. If the difference between Icelandic Low and the Azores

High is big, then NAO index positive and southern Europe tends to be colder
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and drier while northern Europe warmer and wetter (Fig. 3.14). If the NAO

index is negative, the opposite occurs (Fig. 3.15).

Fig. 3.14. Effects of positive NAO index on North Atlantic and Eurpoean
(http://www.ldeo.columbia.edu/NAO/).

Fig. 3.15. Effects of negative NAO index on North Atlantic and Eurpoean
(http://www.ldeo.columbia.edu/NAO/).
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In order to demonstrate sensitivity experiment of Aegean Sea for wet and dry

years, we choosed three wet and three dry years according to both DJF and

ONDJFM index of the NAO (Fig. 3.16). For wet years we took 1995-1996,

1996-1997, and 1997-1998 for dry years we took 1992-1993, 1993-1994, and

1994-1995 (Fig. 3.17).

Fig. 3.16. DJF and ONDJFM index of the NAO 1951-2006.

Fig. 3.17. DJF and ONDJFM index of the NAO 1990-2000.
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Fig. 3.18 and Fig. 3.19 show precipitation response to SST perturbations for

average of three wet and dry years. It is seen that there is no striking differences

in response of precipitation change between wet and dry years. However, in wet

years, major precipitation change occurs in northern regions of Aegean while it

moves to central coastal regions of Aegean in dry years.

Fig. 3.18. Average wet years (1995-1996, 1996-1997, and 1997-1998) difference
of precipitation between perturbations and control simulation. (a)
(SST-2K)-Control, and (b) (SST+2K)-Control.
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Fig. 3.19. Average dry years (1992-1993, 1993-1994, and 1994-1995) difference
of precipitation between perturbations and control simulation. (a)
(SST-2oC)-Control, and (b) (SST+2oC)-Control.

3.2. Eastern Mediterranean Sea Sensitivity Experiment

One of the results of Aegean Sea sensitivty experiment is that there is a

quasi-linear relationship between change in precipitation due to SST-2K

perturbation and SST+2K perturbation. For that reason and due to inadequate

hardware, just SST-2K perturbations were performed for the other seas.
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Fig. 3.20 shows the DJF precipitation difference between SST-2K perturbation

and control for the second region that covers eastern Mediterranean Sea (Fig.

2.5). Results from sensitivity experiment for eastern Mediterranean indicate

reductions in rainfall at the region itself, however, highest reductions occur

towards eastern and northern boundaries of the region. Reductions take place in

the central parts of eastern Turkey too.

Fig. 3.20. 10-year average DJF precipitation differences between SST-2K
perturbation and control for the region of East Mediterranean.

As it is presented in Aegean Sea sensitivty experiment, changes in SST result

in changes in surface parameters. Similar results are valid for other seas and

changes in surface paramters are confined to the sea itself same as in Aegean Sea

sensitivity experiment.

3.2.1. Changes in upper level paramaters

Air temperature at 925hPa is mostly decreased at eastern Mediterranean Sea

itself when the SST is decreased by 2K. Southern coastal regions of Turkey are

also affected from decreasing of SST by 2K. Since the direction of prevailing

wind is west to east, decrease in air temperature is spreaded to the Middle East

regions. Due to higher topography of Turkey, we are not able to state the regions

in which air temperature at 925hPa is changed due to decrease in SST by 2K

(Fig. 3.21).
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Fig. 3.21. 10-year average DJF difference of air temperature at 925hPa between
SST-2K and control simulation.

Decrease in specific moisture at 925hPa is major on eastern Mediterranean Sea

itself and it is not able to spread as in air temperature (Fig. 3.22).

Fig. 3.22. 10-year average DJF difference of specific moisture at 925hPa between
SST-2K and control simulation.

At 850hPa, decrease in air temperature and specific moisture due to decrease

in SST by 2K is less and changes in air temperature cover more regions than

of those in specific moisture with the direction of prevailing wind at 850hPa

(Fig. 3.23,Fig. 3.24). Especially decrease in SST by 2K causes more remarkable

decrease in air temperature in the southern coastal regions of Turkey and

decrease in air temperature can be spreaded to central parts of eastern Turkey.
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Fig. 3.23. 10-year average DJF difference of air temperature at 850hPa between
SST-2K and control simulation.

Fig. 3.24. 10-year average DJF difference of specific moisture at 850hPa between
SST-2K and control simulation.

3.2.2. Changes in monthly precipitation

When we look at the individual months for SST-2K perturbation (Fig. 3.25), it

can be seen that reduced SST in eastern Mediterranean Sea causes substantial

declines in rainfall along the southernmost coastal areas and central parts of

eastern Turkey especially in December and January. The major reductions in

precipitation take places in Antalya, Adana, and Çukurova basin. Especially,

reduction in precipitation in Çukurova basin is statistically significant with 90%

confidence level in November (Fig. 3.25b). In addition, reduction in precipitation

spreads to the eastern parts of Turkey in December and January (Fig. 3.25c).
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Fig. 3.25. 10-year average monthly difference of precipitation between SST-2K
perturbation and control simulation with 850hPa wind vectors of
control simulation.

3.2.3. Wet and dry years comparison

As in Aegean Sea sensitivity experiment, changes in precipitation in wet and dry

years according to NAO index were performed for Eastern Mediterranean Sea

(Fig. 3.26).

In dry years, reductions in precipitation are mostly occured in southern coastal

regions of Turkey and eastern coastal regions of Mediterranean Sea. It is seen

that precipitation in central parts of eastern Turkey and eastern coastal regions of

Black Sea are also is also reduced. In wet years, the regions in which precipitation

reductions occured are mostly confined to the eastern Mediterranean Sea itself

and southern coastal regions of Turkey especially to Antalya.
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Fig. 3.26. Average dry years (1992-1993, 1993-1994, and 1994-1995) (a) and
wet years (1995-1996, 1996-1997, and 1997-1998) (b) difference of
precipitation between (SST-2K)-Control and control simulation.
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3.3. Western Black Sea Sensitivity Experiment

Fig. 3.27 shows the DJF precipitation difference between SST-2K perturbation

and control for the third region that covers western Black Sea (Fig. 2.5). Results

indicate that SST perturbation in the western half of Black Sea has little or no

effect on Turkish precipitation.

Fig. 3.27. 10-year average DJF precipitation differences between SST-2K
perturbation and control for western Black Sea.

3.3.1. Changes in upper level paramaters

Air temperature at 925hPa is mostly decreased at western Black Sea itself and

coastal regions of it when the SST is decreased by 2K. Since the direction of

prevailing wind is north to south and west to east, decrease in air temperature

is spreaded to the northwest regions of Turkey, northern parts of Aegean Sea,

and eastern Black Sea (Fig. 3.28).
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Fig. 3.28. 10-year average DJF difference of air temperature at 925hPa between
SST-2K and control simulation.

Decrease in specific moisture at 925hPa is major on eastern Mediterranean Sea

itself and it is not able to spread as in air temperature (Fig. 3.29).

Fig. 3.29. 10-year average DJF difference of specific moisture at 925hPa between
SST-2K and control simulation.
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At 850hPa, decrease in air temperature and specific moisture due to decrease

in SST by 2K is less and changes in air temperature cover more regions than

of those in specific moisture with the direction of prevailing wind at 850hPa

(Fig. 3.30,Fig. 3.31). Especially decrease in SST by 2K causes more remarkable

decrease in air temperature in the southern coastal regions of Turkey and

decrease in air temperature can be spreaded to central parts of eastern Turkey.

Fig. 3.30. 10-year average DJF difference of air temperature at 850hPa between
SST-2K and control simulation.

Fig. 3.31. 10-year average DJF difference of specific moisture at 850hPa between
SST-2K and control simulation.
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3.3.2. Changes in monthly precipitation

When we look at the individual months for SST-2K perturbation (Fig. 3.32), it

can be seen that there is no remarkable reduction in Turkish precipitation when

the SST of western Black Sea is decreased by 2K. Reductions are mostly occured

in sea itself especially in October.

Fig. 3.32. 10-year average monthly difference of precipitation between SST-2K
perturbation and control simulation with 850hPa wind vectors of
control simulation.
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3.3.3. Wet and dry years comparison

Precipitation reduction in both dry and wet years is almost similar and is confined

to the western coastal regions of Black Sea (Fig. 3.33).

Fig. 3.33. Average dry years (1992-1993, 1993-1994, and 1994-1995) (a) and
wet years (1995-1996, 1996-1997, and 1997-1998) (b) difference of
precipitation between (SST-2K)-Control and control simulation.
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3.4. Eastern Black Sea Sensitivity Experiment

Fig. 3.34 shows the DJF precipitation difference between SST-2K perturbation

and control for the fourth region that covers eastern Black Sea (Fig. 2.5). Results

indicate that SST perturbation in the eastern half of Black Sea has little or no

effect on Turkish precipitation. Eastern and northeastern coastal regions of Black

Sea are the regions in which reduction in precipitation takes place.

Fig. 3.34. 10-year average DJF precipitation differences between SST-2K
perturbation and control for eastern Black Sea.

3.4.1. Changes in upper level paramaters

Air temperature at 925hPa is mostly decreased at eastern Black Sea itself and

spreaded from west to east with the direction of prevailing wind at 925hPa (Fig.

3.35).

Decrease in specific moisture at 925hPa is occured on eastern Black Sea itself

(Fig. 3.36).
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Fig. 3.35. 10-year average DJF difference of air temperature at 925hPa between
SST-2K and control simulation.

Fig. 3.36. 10-year average DJF difference of specific moisture at 925hPa between
SST-2K and control simulation.
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At 850hPa, decrease in air temperature is less and spreaded with the direction of

prevailing wind at 850hPa (Fig. 3.37). There is no or very little change in specific

moisture at 850hPa (Fig. 3.38).

Fig. 3.37. 10-year average DJF difference of air temperature at 850hPa between
SST-2K and control simulation.

Fig. 3.38. 10-year average DJF difference of specific moisture at 850hPa between
SST-2K and control simulation.

3.4.2. Changes in monthly precipitation

When we look at the individual months for SST-2K perturbation (Fig. 3.39), it

can be seen that there is no remarkable reduction in Turkish precipitation as it

is in western Black Sea experimen. Reductions are mostly occured in sea itself

especially in October and take place in the coastal regions of eastern Black Sea

in other months.
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Fig. 3.39. 10-year average monthly difference of precipitation between SST-2K
perturbation and control simulation with 850hPa wind vectors of
control simulation.
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3.4.3. Wet and dry years comparison

Precipitation reduction in both dry and wet years is almost similar and is confined

to the coastal regions of eastern Black Sea (Fig. 3.40).

Fig. 3.40. Average dry years (1992-1993, 1993-1994, and 1994-1995) (a) and
wet years (1995-1996, 1996-1997, and 1997-1998) (b) difference of
precipitation between (SST-2K)-Control and control simulation.
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3.5. Central Mediterranean Sea Sensitivity Experiment

Fig. 3.41 shows the DJF precipitation difference between SST-2K perturbation

and control for the fifth region that covers central Mediterranean Sea (Fig.

2.5). Results indicate that SST perturbation in the central Mediterranean Sea

causes precipitation reduction in mostly sea itself and Greece. It has little effect

on precipitation in western parts of Turkey and there is almost no change in

precipititation in other parts of Turkey.

Fig. 3.41. 10-year average DJF precipitation differences between SST-2K
perturbation and control for central Mediterranean Sea.

63



3.5.1. Changes in upper level paramaters

Air temperature at 925hPa is mostly decreased in central Mediterranean itself

and spreaded from west to east with the direction of prevailing wind at 925hPa

(Fig. 3.42). It can be seen that change in air temperature has also effect on

Turkey.

Fig. 3.42. 10-year average DJF difference of air temperature at 925hPa between
SST-2K and control simulation.

Decrease in specific moisture at 925hPa is mostly occured on central

Mediterranean Sea itself and there is no effect on Turkey (Fig. 3.43).

Fig. 3.43. 10-year average DJF difference of specific moisture at 925hPa between
SST-2K and control simulation.

At 850hPa, decrease in air temperature is ranged over a wide field covering
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western and northern parts of Turkey (Fig. 3.44). As it is in 925hPa, change in

specific moisture at 850hPa is confined to the central Mediterranean Sea (Fig.

3.45).

Fig. 3.44. 10-year average DJF difference of air temperature at 850hPa between
SST-2K and control simulation.

Fig. 3.45. 10-year average DJF difference of specific moisture at 850hPa between
SST-2K and control simulation.
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3.5.2. Changes in monthly precipitation

When we look at the individual months for SST-2K perturbation (Fig. 3.46),

major reductions in precipitation occur in sea itself especially October, November,

and December months. Precipitation in certain regions of Turkey such as Antalya,

Muğla, and Çanakkale is reduced especially in December.

Fig. 3.46. 10-year average monthly difference of precipitation between SST-2K
perturbation and control simulation with 850hPa wind vectors of
control simulation.
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3.5.3. Wet and dry years comparison

Precipitation reduction in both dry and wet years is almost similar,however, since

three years are used to analyze wet and dry years it is highly possible to encounter

noises (Fig. 3.47).

Fig. 3.47. Average dry years (1992-1993, 1993-1994, and 1994-1995) (a) and
wet years (1995-1996, 1996-1997, and 1997-1998) (b) difference of
precipitation between (SST-2K)-Control and control simulation.
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4. CONCLUSIONS and DISCUSSION

Previous studies have investigated precipitation variabilities of Turkey

in conjunction with large-scale circulation patterns and atmospheric

teleconnections. This study investigates the linkage between precipitation

variability in Turkey and sea surface temperature variability in surrounding seas

through sensitivity experiments using a state-of-the-art regional climate model.

In general, the results of the sensitivity experiments show that the response of

Turkish precipitation to SST changes in the surrounding seas is limited and

mostly confined to the coastal areas in Turkey. In addition to this precipitation

response to SST perturbations is statistically insignificant. Aegean Sea

perturbation experiments indicate that rainfall changes mostly in Aegean Sea

and westernmost areas of Turkey in winter. Increasing SST, in general, increases

rainfall in these areas, and reducing it decreases rainfall. SST perturbations

in the eastern Mediterranean regions affect immediate sea and land areas in

winter. Winter precipitation in Turkey seems to be not affected by the SST

perturbations in Black Sea. SST perturbation in the central Mediterranean

region has more influence on precipitation in Greece than those of in Turkey.

According to monthly results Turkish precipitation is mostly affected from

perturbations especially in Eastern Mediterranean Sea and Aegean Sea in

December which may be related to cyclone tracks and frequency in this month.

Monthly results also indicate that there are a few areas where SST changes may

have potentially more impact on precipitation. These results are more or less

related to the climatology, but the picture for the response of precipitation to

SST in cases of individual precipitation events could be very different.

For the future, we are planning to look into how the individual severe precipitation

events in Turkey are affected by these SST perturbations. In addition to this, we

are also planning to construct a cyclone tracking algorithm in order to understand

and demonstrate changes in cyclone tracks, frequency, and density by explaining

the interactions between the SST and cyclones.
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and precipitation across Turkey. In Ünal, Y., Kahya, C., Barı, D. D. (Eds.),
Proceedings of the International Conference on Climate Change and the Middle
East: Past, Present and Future. Istanbul Technical University, Istanbul.

Bolle, H. J. (Editor), 2003. Mediterranean Climate - Variability and Trends.
Springer Verlag, Berlin, Heidelberg, New York, 372pp.

Dickinson, R. E., Kennedy, P. J., Hendersen-Sellers, A., Wilson,
M., 1986. Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR
Community Climate Model. NCAR Technical Note, NCAR / TN-275+STR,
National Center for Atmospheric Research.

Dickinson, R. E., Errico, R., Giorgi, F., and Bates, G., 1989. A regional
climate model for the western united states. Climate Change, 15, 383–422.

Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P., 1986.
Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the
NCAR Community Climate Model. NCAR Technical Report, National Center
for Atmospheric Research.

Emanuel, K. A., 1991. A scheme for representing cumulus convection in
large-scale models. Quart. J. Roy. Meteor. Soc, 48, 2313–2335.

Emanuel, K. A. and Zivkovic-Rothman, M., 1999. Development and
evaluation of a convection scheme for use in climate models. J. Atmos. Sci.,
56, 1766–1782.

Fritsch, J. M, and Chappell, C. F., 1980. Numerical prediction
of convectively driven mesoscale pressure systems. part i: Convective
parameterization. Journal of Atmospheric Sciences,37, 1722–1733.

69



Giorgi, F., Marinucci, M. R., and Bates, G. T., 1993a. Development of
a second generation regional climate model (RegCM2), I, Boundary layer and
radiative transfer processes. Mon. Weather Rev., 121, 2794–2813.

Giorgi, F., Marinucci, M. R., De Canio, G., and Bates, G. T., 1993b.
Development of a second generation regional climate model (RegCM2), II,
Convective processes and assimilation of lateral boundary conditions. Mon.
Weather Rev., 121, 2814–2832.

Goodess, C. M., Jones, P. D., 2002. Links between circulation and changes
in the characteristics of Iberian rainfall. Int. J. Climatol., 22, 1593–1615.

Grell, G. A., 1993. Prognostic evaluation of assumptions used by cumulus
parameterizations. Monthly Weather Review, 121, 764–787.

Grell, G. A., Dudhia, J., and Stauffer, D. R., 1994b. A description of the
fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical
Note, NCAR / TN-398+STR, 121pp.

Hack, J. J., Boville, B. A., Briegleb, B. P., Kiehl, J. T., Rasch, P. J.,
Williamson, D. L., 1993. Description of the NCAR Community Climate
Model (CCM2). NCAR Technical Note, NCAR / TN-382+STR, National
Center for Atmospheric Research, Boulder, Colorado., 108pp.

Holtslag, A., de Bruijn, E., and Pan., H. L., 1990. A high resolution
air mass transformation model for short-range weather forecasting. Monthly
Weather Review, 118, 1561–1575.

Holtslag, A., Boville, B. A., 1993. Local versus nonlocal boundary-layer
diffusion in a global climate model. Journal of Climate, 6, 1825–1842

Hsie, E. Y., Anthes, R. A., and Keyser, D., 1984. Numerical simulation of
frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 2581–2594.

Janicot, S., Harzallah, A., Fontaine, B., Moron, V., 1998. West
African Monsoon Dynamics and Eastern Equatorial Atlantic and Pacific SST
Anomalies (1970-88). Journal of Climate, 11, 1874–1882.
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