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DETECTION OF URBAN EXPANSION IN TURKEY BY USING
SPECTRALLY UNMIXED LANDSAT IMAGES AND NIGHTTIME
DMSP-OLS IMAGES

SUMMARY

One of the main impacts of globalization has been the rapid expansion of urban areas.
Urban areas are dynamic, with the potential to continually increase in size as
horizantally and/or vertically. Over the last few decades, urbanization have increased
in Turkey and it gained momentum after 1980s. Immigration from rural areas to cities
due to the limited agriculture economy, and insufficient job and education
opportunities played a fundamental role in this increase. Sometimes urban growth
cannot be controlled; in such cases, expanding urban areas may damage natural
resources and instigate land cover and land use change. Therefore, urban areas should
be monitored periodically. Remote sensing is a reliable tool to monitor urban growth.

In this study, Istanbul, Ankara, 1zmir, Izmit, Bursa, Kayseri and Manisa which are
developed and developing cities of Turkey, were selected as the study areas. As a
method, the study areas were valuated for urban growth using spectral mixture analysis
method. Remotely sensed images provide a fundamental tool of land cover and land
use maps. However, this source lacks spatial detail because each pixel contains only
one value for the denoted area. Heterogeneous areas, including urban areas, may
therefore result in misclassifications. By unmixing a pixel into its components, it is
possible to enable a more accurate classification of the area. Spectral mixture analysis
uses linear mixture models to provide physical representations of land surface
reflectance. In this study, spectral mixture analysis method was applied to Landsat
images for three different dates (1984 or 1987, 1999 and 2009 or 2010). This method
also was applied to determine and analyse seismic hazard and effects of it in Istanbul
and Izmit. In this study, nighttime images acquired by Defense Meteorological
Satellites Program/Operational Linescan System have been also used. Especially these
images have provided important assistance to determine urban areas. The results of the
study show changes in land cover and urban growth areas, which were determined
using spectral mixture analysis as an alternative method.

XXi



xxii



TURKIYE’DE KENTSEL YAYILMANIN, SPEKTRAL UNMIXED
LANDSAT GORUNTULERINDEN VE DMSP-OLS GECE
GORUNTULERINDEN SAPTANMASI

OZET

Kentlesme 1950’lerden beri diinyada hizla artmaktadir. Tiirkiye’de ise kentlesme
1980’lerden sonra ivme kazanmistir. Tarim ekonomisinin sinirli olmasi, is ve egitim
firsatlarinin yetersiz olmasi1 vb. nedenlerden dolay1 kirsal alanlardan kentlere olan
gdcler bu artista temel rol oynamistir. Bu gogler, basta Istanbul olmak iizere, Ankara,
Izmir, Bursa ve Antalya gibi sanayilesmenin ve/veya turizmin 6n planda oldugu biiyiik
kentlere dogru olmustur. Ozellikle de gelismekte olan iilkeler i¢in kentlesme, kentsel
biiylimenin siirdiiriilebilmesi ve tilke kalkinmasi agisindan gerekli bir olgudur. Fakat
bu biiylime kontrollii ve planli bir sekilde olmalidir, aksi durumda kentlerin
kontrolsiiz biiylimesi, plansiz alt yapilasma ve dogal kaynaklarin yanlis kullanilmasi
bir¢cok ¢evresel soruna sebep olabilir. Bu yiizden, dinamik yapiya sahip olan kentsel
alanlarin periyodik olarak izlenmesi gerekir.

Uydu ve bilgi teknolojilerindeki ilerlemeler sayesinde uzaktan algilama verileri ve
teknikleri birgok alanda kullanilmaktadir. Bu veriler, sagladiklari giincel mekansal
bilgi nedeniyle kentsel ¢evrenin izlenmesinde karar vericiler ve yoneticiler i¢in
vazgecilmez bir kaynak olmaktadir. Kentsel c¢evredeki degisimlerin izlenmesi,
‘maximum likelihood’ ve ‘Isodata’ tekniklerini kullanan piksel tabanli siniflandirma
yontemleriyle elde edilen arazi Ortiisii ve arazi kullanimi haritalartyla da
saglanabilmektedir. Fakat elde edilen bu tematik haritalar, 6zellikle de diisiik mekansal
¢oziinlintlirliikli uydu verilerinin kullanildig1 heterojen alanlarda hatali siniflandirma
sonuclarina yol agabilmektedir, ¢linkii bu yaklasimlarda her bir piksel yalnizca bir sinif
degeriyle temsil edilmektedir. Bu yiizden alt piksel seviyesinde arazi oOrtiisii ve arazi
kullanim1 haritalamasimin daha dogru sonuclar ve analizler ortaya ¢ikaracagi
benimsenmistir.

Bu ¢alismada kullanilan spektral karisim analizi (Spectral mixture analysis) ile her bir
piksel, kendisini olusturan ug iiyeler (endmember) tarafindan temsil edilmektedir.
Lineer karistm modeli iizerine kurgulu bu analiz ile yerylizii, ’substrate’, ‘green
vegetation’ ve ‘dark surfaces’ spektral endmember yansitimlari cinsinden daha hassas
bir bigimde temsil edilmektedir. Alternatif bir yontem olarak benimsenen bu analiz ile
elde edilen arazi Ortiisii ve arazi kullanim1 haritalarinda her sinif daha kapsamli bilgi
verecektir. Bu yontem sayesinde Ozellikle de heterojen alanlara ait haritalarda,
belirlenen siiflara ait yogunluk degerleri daha hassas bir bicimde belirlenecektir.

‘Substrate’ endmember yansitimi yeryiiziinde bulunan toprak, tag ve beton yiizeylere
ait spektral yansitimlar1 kapsamaktadir. ‘Green vegetation’ endmember yansitimlari
ise yesil bitki Ortiistiniin hakim oldugu alanlara karsilik gelmektedir. ‘Dark surfaces’
endmember yansitimi, diger iki endmember yansitimiina gore daha karmasik bir
yaptya sahiptir. Yeryliziinde su ile Ortiilii yiizeylerin tamaminda veya biiyiik bir
kisminda ‘dark surfaces’ endmember yansitimi baskindir. Bu yansitim degeri ayrica
dogal ve yapay objelerin golgelerine karsilik gelen koyu ylizeylerin tanimlanmasinda
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da kullanilmaktadir. Harita tizerinde karmasik piksellerin yogun oldugu alanlar
yeryiiziinde heterojen yapinin hakim oldugu alanlara karsilik gelmektedir. Boyle
durumlarda spektral karisim analizi yontemine ihtiyag duyulmaktadir. Bu yontem
farkli tarihlere ait atmosferik kalibre edilmis Landsat goriintiilerine uygulanarak
‘substrate-green vegetation-dark surfaces’ haritalar elde edilmistir. Farkli tarihlere ait
bu haritalarin birbirlerinden farki alinarak endmember yansitiminda degisimleri
gosteren fark haritalar1 elde edilmistir.

Calismada elde edilecek temel smiflar1 belirlemek amaciyla global endmember
degerler kullanilmistir. Bu degerler diinya iizerindeki farkli cografi bolgelere ait
Landsat alt goriintiilerinden elde edilmistir. Genel anlamda arazi Ortiisii ve arazi
kullaniminin belirlenmesi i¢in bircok iilkede kullanilmis olan bu endmember
degerleriyle Tiirkiye’de ilk kez kullanilmig olacaktir.

Bu caligsmada, kentsel gelisim alanlarinin belirlenebilmesi amaciyla uydulardan elde
edilen gece zamanl goriintiiler de kullanilmigtir. ‘Defense Meteorological Satellites
Program/Operational Linescan System’ tarafindan yeryiiziiniin biiylik bir kism1 gece
1siklarini kaydetmektedir. 1992 yilindan itibaren dijital olarak yillik bazda mevcut olan
bu veriler biiylik kentlerin, kentsel gelisim siireci konusunda bilgi vermektedir.
Spektral karisim analizi sonucunda ‘substrate’ alan olarak belirlenen her alan
yeryliziinde kentsel alana karsilik gelmeyebilir. Boyle durumlarda uydulardan elde
edilen gece zamanli goriintiiler degerlendirme asamasinda kullanilmaktadir. Ayrica
gece zamanl diisiik mekansal ¢oziiniirliiklii bu uydu verileri 6zellikle de biiytik
kentlere ait kentsel biiyiime akslar1 ve yonleri hakkinda bilgi vermektedir.

Tiirkiye’nin en ¢ok gelismis ve gelismekte olan kentleri; Istanbul, Ankara, Izmir,
Izmit, Bursa, Kayseri ve Manisa ¢alisma alan1 olarak segilmistir. Calismada spektral
karisim analizi, 1984-1987, 1999-2000 ve 2009-2010 yillarmma ait Landsat
goriintiilerine uygulanmistir. Ayrica 1992, 1999 ve 2009 yillarina ait ‘Defense
Meteorological Satellites Program/Operational Linescan System’ verileri de
kullanilmistir. Elde edilen sonuglara gore, arazi Ortiistindeki ve arazi kullanimindaki
degisimler ve ozellikle de kentsel biiylime alanlar1 spektral karigim analizi yontemi
kullanilarak saptanmistir.

Spektal karisim analizi yonteminin uygulanmasi sonucunda elde edilen kentsel gelisim
bolgelerinin dogrulugunu tespit etmek amaciyla yiiksek mekansal ¢oziintirliiklii uydu
goriintlileri  kullanmigtir. Bu c¢alismada elde edilen sonuclarin dogrulugunun
karsilastirilmasinda kullanilan yiiksek mekansal ¢oziiniirliiklii bu goriintiiler sadece
Istanbul calisma alani icin kullanilmistir. Genellikle 2002 ve 2011 yillarina ait bu
goriintiiler, spektral karisim analizi sonucunda elde edilen kentsel biiylime alanlarinin
dogrulugunun test edilmesinde kullanilmistir. Yiiksek mekansal ¢oziiniirlikli uydu
verileri 2000°1i yillardan sonra yayginlasmaya baslamistir. Bu nedenle ¢aligma alanini
olusturan cogu sehir i¢in 2000-2002 zaman dilimine ait yiiksek ¢oziiniirliikli veri
bulunamamistir. Fakat kentlesme, diger arazi Ortlisii ve arazi kullanimi agisindan
kompleks bir yapiya sahip olan Istanbul i¢in yeterince dogrulama yapilmistir. Ayni
sekilde Istanbul igin, 2000 yil1 sonrasinda olusan kentsel alanlar1 gdsteren ‘substrate’
harita i¢in dogruluk analizi yapilmistir.

Calisma sonucunda kentsel biiyiime alanlarmin yani sira spektral karigim analizi
metotunun dogal afetlerin zararlarinin belirlenmesi ve analizinde de kullanilabilirligi
test edilmistir. Bu amag¢ dogrultusunda 1999 yilinda izmit’te meydana gelen deprem
Oncesi ve sonrasi analiz edilmistir. Depremde zarar goren ve su altinda kalan alanlar
spektral karigim analizi yontemi kullanilarak belirlenmistir.
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Ozellikle de ‘dark surfaces’ degerinin degisimi dogal afet zararlarmin tespitinde etkin
rol oynadigi tespit edilmistir. Arazi iizerinde spektral 6rnek alan toplamaksizin, sadece
global endmember seti kullanilarak spektral karigim analizi metotu farkli ¢alisma
alanlarina uygulanabilmektedir.
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1. INTRODUCTION

Maintaining the urban growth is an essential feature for developing countries.
However, this growth should be in a controlled and planned manner, or otherwise it
may cause many environmental problems. In Turkey, population living in cities was
25% in 1950, and this ratio increased to 43% in 1980 and to 76% in 2010 (TurkStat,
2014). Therefore, Turkey is among the leading countries of the world with its urban
population and urban population increase ratio. Turkey has big cities like primarily
Istanbul, Ankara, Izmir, Adana, Bursa and Antalya which allow immigrants and where
urban change is being experienced (Maktav and Erbek, 2005). Especially in Istanbul,
the most crowded city of Turkey, the population increased by almost three times during
the last 30 years. Compared to other cities, Istanbul has more population, and industrial
and trade areas. Immigration to Istanbul continues because it provides better economic

opportunities than most of the other cities in Turkey (Geymen and Baz, 2008).

This rapid increase in urbanization usually causes problems such as unplanned
infrastructure and uncontrolled urban growth. This unplanned and uncontrolled
urbanization may also lead the misusage of and damage to green areas, cultivated areas
and natural resources like water sources (Al-Rawashdeh and Saleh, 2006). Therefore,
the urban environment and especially natural resources should be constantly monitored
and kept under control. Remote sensing data and techniques are indispensable
resources for decision makers and rulers to monitor urban environment thanks to the

current spatial information they provide (Maktav et al., 2005).

In obtaining the land cover and land use (LCLU) maps with these data and
technologies, generally “iterative self-organizing data analysis technique algorithm
(isodata)” and "maximum likelihood" classification techniques are used. However,
each pixel is only represented by one class value in such techniques. This may result
in low accuracy classification results for mixed pixels corresponding to some
heterogeneous areas like urban areas, whereas it is accurate for pure pixels which are
corresponding to homogeneous areas on earth (Jensen, 1996; Palanisamy et al., 2006).
Because of the low spatial resolution of the remote sensing satellite data used to map



the LCLU in global scale, accuracy of these maps are also limited. Thus, there are
various approaches for LCLU mapping at lower pixel level. Among these, the linear
spectral unmixing (LSU) model is adopted as the most common and well performed
approach (Adams et al., 1995; Quarmby et al., 1992; Settle and Drake, 1993). The
spectral mixture analysis (SMA) method is built on linear spectral unmixing model
and mixed pixels are represented as they are calculated in percentages in determined
endmember projections (Adams et al., 1993; Gillespie et al., 1990). In this model,
substrate (S) endmember represents a variety of soil, rock and impervious surfaces,
vegetation (V) endmember represents green vegetation areas. Dark surface (D)

endmember represents water covered, shadowing and nonreflective areas.

By applying radiometric calibration to Landsat Thematic Mapper (TM) and Enhanced
Thematic Mapper (ETM) images, digital number (DN) values were first converted to
radiance and then to reflectance values. The SMA method was applied to these images
calibrated radiometrically using the global endmember reflectances. Substrate-
vegetation-dark surfaces (SVD), difference SVD (DSVD) and tri-temporal substrate
maps were prepared using Landsat data from 1984 or 1987, 1999 or 2000 and 2009 or
2010 and urban change areas were determined. To determine urban areas, night-time
images have been acquired Defense Meteorological Satellites Program/Operational
Linescan System (DMSP/OLS) were used for the study. Also, image pairs with high

spatial resolution were used to test accuracy of DSVD maps generated.

1.1 Purpose of Thesis

The purpose of this study is to map and analyze the LCLU changes and urban growth
areas in selected study areas using the multitemporal spectral mixture analysis method.
Some cities like 1zmit and Istanbul which have a strategical location, urbanization has
been increasing, although they have been on seismic zone. Therefore, urbanization in
these cities should be monitored and controlled using reliable data and methods. In this
study, apart from the other usual methods SMA method was used first time for the
study areas. This method was applied to the study areas and provided faster results not
only urban growth but also the other LCLU changes. As an alternative method, SMA

was also used for natural disaster applications in the study.



1.2 Literature Review

Although challenged by the spectral and spatial heterogeneity of urban regions (Jensen
and Cowen 1999; Herold et al., 2004), remote sensing seems to be a suitable source of
urban data to support studies which are related to analysis of urban growth and sprawl
(Donnay et al., 2001). In terms of analyzing urban growth, Batty and Howes (2001)
stated that remote sensing technology can provide a unique perspective on growth,
land cover and land use change processes. Data acquired through remote sensing are
consistent over large regions and over time, and can provide detailed information at a
great variety of geographic scales. The information derived from this technology can
help to model the urban environment, leading to developed understanding that benefits
applied urban planning and management (Longley and Mesev 2000; Longley et al.,
2001). In the recent years, remote sensing data and geographic information system
(GIS) techniques are widely being used for mapping, monitoring, analysing and
modeling the urban growth, land cover and land use change (Parker et al., 2003).
Taragi and Pundir (1997) analyzed the urban growth and expansion of Lucknow city
for the period between 1972 and 1992. They had nine major land cover and land use
classes from four temporal remote sensing images via visual interpretation and manual
mapping. Finally, they generated a built-up change map and computed built-up growth
rate. Using these land cover and land use maps, they tried to determine the expansion
intuitively. Nevertheless, their sprawl-map is really a built-up change map and this
research did not quantify the urban sprawl so their characterization of sprawl was
limited to rapid growth. Sudhira et al. (2004) carried out a research to identify the
dynamics of urban sprawl and they wanted to model the future sprawl using remote
sensing and other dataset. They considered a study area of 434.2 km? in Mangalore-
Udupi region in Karnataka state between 1972 and 1999. They classified satellite
images to detect built-up information for the year 1999. Also, built-up information of
1972 had been extracted from Survey of India topographical maps. They had analyzed
the urban sprawl via built-up growth versus population growth, Shannon’s entropy,
population density, built-up density, annual population growth rate, distance from
Mangalore and Udupi. In the study, metrics analysis had been performed using a 3x3
kernel window. Finally, they had estimated the built-up area for the years 2020 and
2050 by using regression analysis. Nevertheless, although the title claimed for the

modeling of urban sprawl, ultimately it caused a sum increase of built-up area for



future. Actually it is difficult to map urban sprawl and growth accurately because
urban areas are usually heterogenous areas and they cover mixed classess. There have
been many examples in recent literature of procedures to overcome the
misclassification issues. For instance, the VIS (vegetation-impervious surface-soil)
index developed for urban classification in Salt Lake City (Ridd, 1995) and the use of
the combination of multiple sensors like that of the ERS-1 SAR and Landsat TM
described by Kuplich et al. (2000).

As the SMA is very popular and accurate sub-pixel classification technique, many
researchers have used it to classify remote sensing data and estimate the class
proportions for various applications. Linear SMA technique was first proposed by
Adams and Smith (1986) to compare image spectra with laboratory spectra and they
calculated the proportion of the classes in the image. Tompkins et al. (1997) stated that
each pixel is a mixture of different endmembers and it is a linear combination of
endmember spectra. According to Lunetta (1998), SMA was developed for
interpreting high spectral resolution Advanced Visible/Infrared Image Spectrometer
(AVIRIS) data and was later expanded to be used with Landsat data. Lelong et al.
(1998) have studied a LSU model integrated with principal component analysis (PCA)
for crop monitoring and they proved that a significant amount of information can be
collected with a limited number of spectral bands by using LSU method. A research
was done by Gong and Zhang (1999) on Linear SMA and it was related to address the
validity and noise sensitivity of the LSU algorithm. They used two different algorithms
of LSU: Unconstrained method based on singular value decomposition and the other
method, constrained method, based on nonnegative least squares, to test their
sensitivity to noise. According to the result, both methods were very sensitive to noise.
Zhu and Tateishi (2001) investigated the possibility of using LSU to generate fraction
images using normalized difference vegetation index (NDVI) time series data. They
compared the result of a linear spectral unmixing method with usual methods like
maximum likelihood and minimum distance on multitemporal Landsat TM data and
National Oceanic and Atmospheric Administration-Advanced Very High Resolution
Radiometer (NOAA-AVHRR) monthly composite NDVI data. They acquired that
LSU method gives better results than the usual methods because SMA method based
on LSU covers physical information as the fraction of each component within a pixel.
Haertel and Shimabukuro (2005) used the Linear Spectral Mixture Model for low



spatial resolution data to evaluate the class proportion. They concluded the method is
reliable for the low spatial resolution images and the method is appropriate for regional
and global studies as well. There have been many researches using LSU method in
different applications. Small (2001a) used Landsat TM images to estimate urban
vegetation abundance in New York City and monitor changes over one year Small
(2002) by using LSU and pseudoinvariant endmembers. A research done by Small
(2004) showed that a SMA of global composite of 30 spectrally diverse LANDSAT
ETM subscenes provides that a wide variety reflectance spectra can be accurately
represented as linear combinations of S, V and D endmembers. Small and Milesi
(2013) investigated global endmembers provided the basis for a standardized spectral
model. They also compared LANDSAT and WorldView-2 endmember fractions and

they concluded that endmember fractions shows strong linear scaling.

1.3 Hypothesis

Remote sensing technologies provide important analyses tools for urban applications.
Accurate image analysis and interpretation are very important for urban areas, which
are generally heterogeneous areas. However, traditional classification methods have
some challenges like spectral mixing. Standardized multitemporal spectral mixture
model has provided better image process and analysis for urban applications. Urban
growth was analysed first time using SMA method with DMSP/OLS images.
Moreover, global endmembers have been used and tested first time for Turkey. This
alternative method apart from other usual analysis methods has provide faster, more
detailed information about urban growth.






2. DIGITAL IMAGE PROCESSING

2.1 Digital Image

An image can be defined as two dimensional representation of objects from a three
dimensional space. Digital image consists of picture elements called pixels which
includes brightness value and address. For passive sensing, the obtained table of
numbers in the rows and columns of a digital image are unique brightness or gray
values. In active sensing, the traditional presentation of echo signals after processing
results in an image are the intensity values, by which a measured radar cross section is

generated as a gray tone (Buiten and Clevers, 1993).

For both sensing, a digital image is composed of a finite number of elements, each of
which has a particular location and value. These elements are called picture elements,
image, and pixels. Pixel is the term used most common to denote the elements of a
digital image (Gonzalez and Woods, 2007). Each pixel is a number represented as
‘digital number’ (DN), which is about the average radiance of the pixel area

and contains values between 0 and 255 for 8 bit optical images (Figure 2.1).
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Figure 2.1 : Digital image (Campell, 2007).



2.2 Image Resolution

Image resolution can be explained as the ability of an imaging system to record and
extract details in a distinguishable manner (NRC, 2014). There are four types of
resolution categories in remote sensing. These are spatial, spectral, radiometric and

temporal resolutions.

Spatial resolution is relevant to the size of the smallest object that can be resolved on
the ground. In other words, it specifies the size of the pixel of the image acquired by
remote sensing techniques. However, the resolution in a digital image is sometimes
restricted by the pixel size. Spatial resolution is based on many factors, such as the
field of view, altitude of the sensor, the number of detectors etc. Also, the spatial
resolutions of the sensors can change with the viewing angle, and influenced by the
terrain  structure on the ground (Navulur, 2007). In target recognition and
identification, spatial resolution has taken an important role. Especially after 2000’s,
commercial and private satellites have been increased and they have provided images
with various spatial resolutions in a wide range. Spatial resolutions can be categorized
as low resolution which is defined as pixels with ground sampling distance of 30 m or
greater resolution, medium resolution which has a resolution between 4 and 30 m and

high resolution which has pixel sizes 4 m or smaller pixel sizes.

Radiometric Resolution is the sensitivity to small differences in the radiation of the
observed target or object (Campbell, 2007). In other words, it refers to the number of
gray levels available for image analysis. The value range can be computed using

equation below:
N =2R

where N is the range and R is the radiometric depth. For instance, when a sensor use
8 bits to record the data, there will be 28 - 256 digital numbers which are ranging from
0 to 255.

Spectral resolution refers to the number of bands in the electromagnetic spectrum
where the instrument can take measurements. In other words, it is an ability of a sensor
regarding to the wavelength intervals. The narrower the wavelength range for a special
channel or band, the finer the spectral resolution is. Moreover, the spectral resolution

increases by the number of bands.



In remote sensing, related to the number of bands, there have been some basic terms
such as multispectral and hyperspectral to categorize the sensors. While multispectral
sensors usually have less than ten bands, hyperspectral sensors generally have bands
in hundreds (Navulur, 2007). An illustration of a hyperspectral image cube has been
shown in Figure 2.2. The hyperspectral image generally includes over a hundred
contiguous spectral bands, forming a 3D image cube which covers one spectral
dimension and two spatial dimensions. Every pixel is associated with a complete
spectrum of of the imaged area. Hyperspectral images have provided detailed
identificaiton of the land covers (CRISP, 2014).
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Figure 2.2 : Hyperspectral image cube (CRISP, 2014).

Especially hyperspectral sensors have detected hundreds of very narrow spectral
bands around the visible, NIR and mid-IR regions of the electromagnetic spectrum.
The images obtained by these sensors have been used for various target detection

applications (Manolakis et al., 2003).

Temporal resolution refers to precision of a measurement related to time. Temporal
resolution represents the time frequency with which the system can obtain an image
of the same region of interest on the Earth. Also, the revisit capability depends on
some parameters like the instrument’s field of view, satellite orbit and the platform
movement etc. (Campell, 2007). Different satellites have generally different revisit

time. For instance, while Landsat TM has revisited same area in 16 days, IKONOS has



revisited between 3 and 5 days with off-nadir angle. Especially in disaster monitoring

and management applications, temporal resolution has taken an important role.

2.3 Image Processing

Digital image processing is relevant to a detailed processing procedure of digital
images by way of a digital computer (Gonzalez and Woods, 2007). There have been
many digital image processing and analysis techniques to assist the interpretation of
digital images and to extract as much information as possible from the images. The
particular techniques can be chosen with respect to aim of individual project. The
processing procedures can be classified in three broad categories: ‘Image
Preprocessing’, ‘Image Enhancement’, and ‘Information Extraction and Image

Interpretation’ (Bernstein and Ferneyhough, 1975).
2.3.1 Image preprocessing

Image preprocessing is also known image restoration and rectification. In this basic
step, DN values are recalculated for the digital image. Preprocessing, which is initial
processing on the raw data, is applied to correct for any distortion caused by the
characteristics of the imaging system and conditions. These distortions could be data
errors, noise, atmospheric effects, sun illumination geometry and geometric distortions
introduced during the scanning, recording, and playback processes. Specific correction
methods have been applied to minimize these problems in image restoration or

preprocessing.

Radiometric and geometric corrections have been applied as most common
preprocessing procedures in digital image processing. Radiometric correction is
used to correct for uneven sensor response over the entire image and geometric
correction is used to correct for geometric distortion caused by Earth's rotation and
other imaging conditions like oblique viewing. Also, the image could also be

transformed to conform to a suitable map projection system (Pons et al., 2014).

In order to have a better geometrically corrected image, image resampling procedures
have been applied to digital images. Image resampling is a basic process by which
new pixel values are interpolated from existing pixel values and this procedure has

been applied whenever the raster's structure is changed such as during datum and
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projection transformations, and cell resizing operations (Wade and Sommer, 2006).
There are three main resampling algorithms: Nearest Neighbor, Bilinear Interpolation
and Cubic Convolution which are all commonly used in image editing softwares
(Studley and Weber, 2011). Each resampling method has strengths and weaknesses

and they must be considered carefully with respect to aim of the application.

Nearest Neighbor (NN) resampling is very frequently used in remote sensing and it
functions by matching a pixel from the original image to its corresponding position in
the resized image. When there is no corresponding pixel is available, the pixel nearest
is used instead (Figure 2.3). This method works well with horizontal or vertical lines
(Goldsmith, 2014), however, it introduces outstanding error along other linear features
in which pixel rearrangement into lines is obvious (eXtension, 2014) and for that
reason is usually known the least accurate method. NN is widely used due to the speed
of implementation and simplicity (Dodgson, 1992). Recently, computers have become
more powerful and it is easy to decline a less computationally intensive process for
one with more accurate results. However, some remotely sensed images computation
time can still a concern if the images are very large (>1 GB). Also, it is noted that NN
IS a unique resampling process in that it is the only method that does not interpolate
new values into the dataset, and is therefore the only method that should be used for
categorical data (ESRI, 2009; Verbyla, 2002). In this method, there is only one value
(orange dot) used to generate the new output value, which is derived from the cell

nearest the target (Figure 2.3).

Bilinear interpolation has used the arithmetic mean of the four pixels nearest the
concerning cell to calculate a new pixel value (Figure 2.3). This resampling method
is an image smoothing method and when the image is displayed larger or smaller than
it actually is (Goldsmith, 2014). Also, this method retains better positional accuracy
than nearest neighbor resampling (Verbyla, 2002), however it could introduce new
values never found in the original image with some blurred edges introduced as well
(Goldsmith, 2014).

Cubic convolution (CC) is a method used to determine the gray levels in an image
through a weighted average of the 16 closest pixels to the input coordinates (Figure
2.3). This method produces the smoothest and most continuous image compared to

the other two methods (Huber, 2014). However, CC resampling takes longer time
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longer (about 10 times) to process the computation than nearest neighbor (eXtension,
2014; Huber, 2014).

oooooo
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Figure 2.3 : Nearest Neighbor resampling (left), Bilinear interpolation (mid) and
Cubic Convolution (right). The gray dots represent the centers of the input raster
cells and the green grid represents the output raster. The target cell is yellow with the
red dot showing the center. Note: Figure obtained from ESRI.

2.3.2 Image enhancement

Image enhancement is done to make it easier for visual interpretation and
understanding of digital images. It also applied images to alter its impact on the viewer.
After preprocessing procedures are completed on the raw data, image enhancement
operations can be applied. There have been specific techniques such as grey level
stretching to improve the contrast and spatial filtering for enhancing the edges.
Moreover, contrast stretching, density slicing, principal components analysis and
rationing are other basic tools that provide better scene quality and can be categorized
as an image enhancement methods for digital images (Balaselvakumar and Saravanan,
2006).

2.3.3 Information extraction and image interpretation

Image preprocessing and enhancement procedures generally utilize computers to
provide corrected and improved images for applications by human interpreters. In
these two steps, the computer systems can not make decisions about the images.
Nevertheless, processes which identify and extract information do utilize the
computer's decision-making capability to identify and extract specific parts of
information. In this procedure, a human operator must manage the computer and must

evaluate the significance of the extracted information (Sabins, 1987).
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The aim of feature extraction is to obtain the most relevant information from the
original data. There are various methods used as information extraction methods. One
of them is image transformations like principal components analysis, which are
mathematical techniques that use statistical methods to decorrelate data and reduce
redundancy. Also, some arithmetic operations such as rationing are image
manipulation techniques, to highlight certain features. Moreover, there have been other
methods such as change detection, pattern recognition and classification which are
used commonly as image extraction methods in remote sensing (Berni et al., 2009).
Classification is the most used traditional method to generate LCLU maps in remote
sensing applications. Digital classification is the process of sorting pixels into a finite
number of individual classes, or categories, of data based on their brightness values
(Al-Bakri et al., 2013). There are two types image classification techniques:
Unsupervised and supervised classification.

In unsupervised classification, the processing program automatically groups the pixels
in the image into separate clusters, depending on their spectral features. Each cluster
will then be assigned a land cover type by the analyst. In other words, unsupervised
classification is the process of grouping multispectral images and assigning colors
which represent either clusters of statistically different sets in correlation with
separable classes. The unsupervised classification image classification technique is
commonly used when no sample sites exist. In this technique, after the user determines
the number of clusters to generate and which bands to use, the image classification
software generates clusters. There have been different image clustering algorithms
such as K-means and ISODATA (lterative Self-Organizing Data Analysis Technique).
ISODATA algorithm has provided grouping of pixels with similar spectral
characteristics by deriving statistics (mean and standard deviation) of groups and
assigning a class to each pixel according to its distance from mean (Al-Tamimi and
Al-Bakri, 2005). The ISODATA algorithm is similar to the K-means algorithm with
the distinct difference that the ISODATA algorithm enables for different number of
clusters while the k-means assumes that the number of clusters is known a priori.
(Yale, 2014).

Supervised classification is based on that a user can select and decide sample pixels in
an image which are representative of decided classes and then direct the image
processing software to use these training sites as references for the classification of all
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other pixels in the image (Figure 2.4). Training sites, which are selected based on the
knowledge of the user, have been recorded as a spectral signature file. Each pixel was
then assigned to the most likely class based on the maximum likelihood algorithm, the
most commonly used classification algorithm. Maximum likelihood algorithm has
uses the statistics of the training sets and the pixels are assigned to the class with the
highest probability. In this classification method, the user also determines the number
of classes that the image is classified into. Although this algorithm is slower than the
the other classifiers, it theoretically offers the best classification technique (Jensen,
1996; Schowengerdt, 1997).

Image Data Set ) Pixel Land Cover Classified
(4 channels per pixel) Grey  Signatures Image
Value (based on Result
Signature  training
areas)
™ R L TR T
0] TR ELR] L] ]
T RERU U E
: L RUUUU
River URUUUUU HE
1211992 FIUUIRIU UUU 6
Channel:1 | | = FTUUR TUE[F
2 Forest FIUUR UUAE
3 37 6; 5077 3% FEUURUUTOF
4 3 j REENERRR
Lcomparc classify —

Figure 2.4 : Steps in supervised classification (Url-1).

After information has been extracted from previous procedures, it can be used as an
input to other information systems. Remote sensing products are used with generally
integrated into a Geographical Information System. GIS is known that a data-handling
technology, while remote sensing is a data retrieval and analysis technology. GIS
integrates data for capturing, managing, analyzing, and displaying all forms of
geographical. GIS allows to view, understand, interpret, and visualize data in many
ways that reveal relationships in the form of maps and reports. In this respect, remote
sensing provides a very important source of spatial data for GIS. Integration of remote
sensing and GIS technologies significantly promote the ability to handle geo-

information (Balaselvakumar and Saravanan, 2006 ; Weng, 2009).
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3. REMOTE SENSING SATELLITE SYSTEMS

In spaceborne remote sensing, sensors are mounted on-board a space shuttle or satellite
orbiting the earth. There have been many remote sensing satellites which provide
images for research and operational applications. The satellite technology was initially
used for military purposes and then it has improved rapidly in various fields. As
spaceborne remote sensing provides synoptic view, wide area coverage is possible.
Spaceborne remote sensing also provides frequent and repetitive coverage ability of a
region of interest. In general, satellite image has a lower spatial resolution compared
to aerial photography. However, very high resolution images (up to 30 cm resolution
from WorldView-3) are now commercially available to civilian users and they have

been used in many applications (CRISP, 2014).

3.1 Satellite Orbits

Satellites move in a path around the Earth named an orbit. All satellites must have an
orbital path and the kind of path it takes is determined by the physics included. A
satellite’s orbit works due to a balance between two main forces. The orbit is a
combination of the satellite's speed and the force of the Earth's gravitational pull on
the satellite. That gravitational pull is the related to the mass of the Earth and satellite.
It is known that gravity keeps the satellite's velocity from sending the satellite flying
out in a straight line away from the Earth, and the satellite's speed keeps the force of

gravity from pulling the satellite back to Earth.

Most satellites follow a generally elliptical orbit around the earth. The time taken to
complete one revolution of the orbit is named the orbital period. Generally, Remote
sensing satellites are launched into special orbits such that the satellite repeats its path
after a fixed time interval. This time interval is named the repeat cycle of the satellite.
There have been three types of orbits which are geostationary, near polar and sun

synchronous (Rutgers, 2015).
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The satellites which have used geostationary orbits stay right over the same spot all
the time and this stationary has been above a specific point on the Earth (Figure 3.1).
Geostationary orbits allow the satellites to observe almost a full hemisphere of the
Earth and these satellites generally are used to study large scale phenomenon. These
orbits are ideal for weather satellites and communications satellites. These orbits are
commonly used for weather monitoring since satellites in this orbit provide a constant
view of the same area. Geostationary satellites such as the Geostationary Operational
Environmental Satellite (GOES) satellites send information about clouds, water vapor,
and wind. After, this near constant stream of information serves as the basis for most
weather monitoring and forecasting (NASA, 2015). However, there have been some
disadvantages of this type of orbit. As these satellites are very far away, they have low
spatial resolution. The other disadvantage is that these satellites sometimes have

trouble monitoring activities near the poles (Rutgers, 2015).

Figure 3.1 : Geostationary orbit (CRISP, 2014).

A near polar orbit is one with the orbital plane inclined at a small angle in respect of
the earth's rotation axis (Figure 3.2). A satellite using near polar orbit passes close to
the poles and is able to include almost the whole earth surface in a repeat cycle. It takes
about 90 minutes for the satellite to complete one orbit. These satellites have many
uses like measuring ozone concentrations in the stratosphere and also measuring

temperatures in the atmosphere.
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Figure 3.2 : Near polar orbit (CRISP, 2014)

Sun synchronous orbits allow a satellite to pass over a location at a given latitude at
the same local solar time (Figure 3.3). The satellites which use sun synchronous orbits
have to shift their orbits about one degree per day and they orbit at an altitude between
700 to 800 km. These orbits are generally used for satellites that need a constant
amount of sunlight. Earth observation satellites usually follow the sun synchronous
orbits (Rutgers, 2015).

Sun Synchronous Orbits

0 ( ) o

Bl

¢

Figure 3.3 : Sun synchronous orbits (Rutgers, 2015).
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3.2 Earth Observation Satellite System

Earth mapping is one of the basic use of Earth-orbiting satellites. Generally, civilian
satellites in the Landsat and SPOT series have provided Earth images which have been
applied for a wide spectrum of applications in forestry, agriculture, hydrology, urban
planning and geology. Satellite remote sensing systems are also a critical key in
strategic and tactical planning for the countries in the defence sector. Military missions
have required some important characteristics such as very high spatial resolution and
orbital agility (Fouquet and Ward, 1998). Normally, all satellite-sensor platforms are
characterised by the wavelength bands employed in image obtainment, spatial
resolution of the sensor, the coverage area and the temporal resolution. In relation to

the spatial resolution, the satellite imaging systems usually can be classified into:
« Low resolution systems (about 1 km or more)
« Medium resolution systems (about 100 m to 1 km)
« High resolution systems (about 5 m to 100 m)
« Very high resolution systems (about. 5 m or less)

Concerning the spectral regions used in data acquisition, the satellite imaging systems

can be classified as:

o Optical imaging systems (cover visible, NIR, and SWIR systems)
o Thermal imaging systems

o Synthetic aperture radar (SAR) imaging systems

Optical/thermal imaging systems can be categorized according to the number of
spectral bands used: Monospectral or panchromatic systems, multispectral systems,
superspectral (tens of spectral bands) systems and hyperspectral systems which consist
of hundreds of spectral bands. SAR imaging systems can be classified related to the
combination of frequency bands and polarization modes used in data obtainment, e.g.:
(CRISP, 2014).

« Single frequency (L-band, or C-band, or X-band)
e Multiple frequency (Combination of two or more frequency bands)
« Single polarization (VV, or HH, or HV)

o Multiple polarization (Combination of two or more polarization modes)
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3.2.1 LANDSAT Earth observation satellites
3.2.1.1 History

Landsat satellites have collected images of the Earth's surface for more than thirty
years. Instruments onboard the satellites have obtained millions of images of the Earth.
These images have provided a valid resource for researchers who work in forestry,
urban and regional planning, agriculture, geology, and global change research. The
program was first started by The National Aeronautics and Space Administration
(NASA) in 1972, then turned over to the National Oceanic and Atmospheric
Administration (NOAA) after it became operational (CRISP, 2014). The first three
Landsat satellites were launched in 1972, 1975 and 1978 respectively (Figure 3.4).
These satellites were primarily designed to acquire detailed information about the
Earth’s natural resources, covering the condition of forests and farming areas. Also,
they were supplied to monitor atmospheric and oceanic conditions and to disclose
variations in pollution degree and other ecological changes. These three satellites had
different types of cameras, involving those with infrared sensors. Landsat cameras
provided images of interest areas (184 km) square; each such area could be acquired
at 18-day intervals (USGS, 2014).

The fourth and fifth Landsat satellites were launched in 1982 in 1984 respectively. In
1985, Landsat was transferred to a private commercial company,
the Earth Observation Satellite Company (EOSAT) and in 1992 the U.S. government
again took control of the program. In these newer models, there were two sensors like
a multispectral scanner and a thematic mapper, which provides 30 m spatial resolution
in its spectral bands. Landsat 6 failed to achieve orbit after its launch in 1993. In 1999,
Landsat 7 was launched successfully. As Landsat 5 and 7 were nearing the end of their
operational lifetimes, a new satellite, the Landsat Data Continuity Mission, was
planned for launch in 2012. The most recent, Landsat 8, was eventually launched on
February 11, 2013 (USGS, 2015).
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Figure 3.4 : LANDSAT missions timeline.

3.2.1.2 Orbit and scanning system

The Landsat 7 and Landsat 8 satellites, which have still been used, have a near-polar,
sun-synchronous orbit, following the World Reference System (WRS-2). They obtain
images between 81° N and 81°S. They make an orbit in approximately 99 minutes,
complete over 14 orbits per day, and enable complete coverage of the Earth every 16
days. However, there have been 8 days offset between the two satellites. The
descending node from north to south passses the equator between 10:00 am and 10:15
am as local time (USGS, 2014).

There have been used different scanning systems in Landsat satellite series.
Multispectral scanner (MSS) was used on Landsat-1 to 5. It had 4 spectral bands which
change between 0.5 and 1.1 microns. Although it was one of the older generation
sensors, data obtainment for MSS was completed in late 1992. The resolution of this
sensor was about 80 m with radiometric coverage in four spectral bands. Table 3.1
shows some spectral and spatial characteristics of MSS sensor (NASA, 2015).

Table 3.1 : Landsat MSS characteristics.

Landsat 1-2-3 Landsat 4-5 Spectral Range Electromagnetic | Swath
Bands Bands (Microns) Region width
4 1 0.5-0.6 Green (Visible) 185x185
km
5 2 0.6-0.7 Red (Visible) 185x185
km
6 3 0.7-08 NIR 185x185
km
7 4 0.8-1.1 NIR 185x185
km

The Thematic Mapper (TM) is a developed sensor designed to obtain higher image
resolution, sharper spectral separation, improved geometric fidelity and better
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radiometric accuracy and resolution than the MSS sensor. They was first introduced
with Landsat-4 in 1982. They have seven spectral bands simultaneously. As band 6
senses thermal infrared radiation (TIR), Landsat can obtain night scenes using band
6. TM scenes have 30m spatial resolution in bands 1-5 and 7 while band 6 has an 120
m spatial resolution (Table 3.2). When they are compared to MSS, bands of TM are
more sensitive to observe spectral variations (NASA, 2015).

Table 3.2 : Landsat TM characteristics.

Band Band Spectral Range Spatial Swath | Temporal
Name (Microns) Resolution(m)| width | Resolution
1 (V?!;Jb?e) 0.45 - 0.52 30 18?(’:;85 16 days
2 (Sirs‘:slz) 0.52- 0.60 30 18?(’;;85 16 days
3 Red (Visible) 0.63-0.69 30 18?();:85 16 days
4 NIR 0.76-0.90 30 18?():;85 16 days
5 SWIR-1 1.55-1.75 30 18?():;85 16 days
6 TIR 10.04 -12.5 120 18?():85 16 days
7 SWIR-2 2.08 -2.35 30 18?()::85 16 days

ETM+ (Enhanced Thematic Mapper Plus) scanning system was made for Landsat-7
in 1999. The ETM+ instrument has an eight band multispectral scanning radiometer
which is capable of providing high resolution image information about target surface.
Spectral bands are similar to those of TM, except that the thermal band (band 6) has a
higher resolution of 60 m (120 m in TM). There has been also an additional
panchromatic band at 15 m spatial resolution (Table 3.3), (USGS, 2014).
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Table 3.3 : Landsat ETM characteristics.

Spectral Range Spa'FiaI Swath | Temporal

Band Band Name (Microns) Resolution(m) | (km) Resolution
1 Blue (Visible) 0.45 - 0.515 30 183 16 days
2 Green 0.525 - 0.605 30 183 16 days

(Visible) ' ' y

3 Red (Visible) 0.63 - 0.69 30 183 16 days
4 NIR 0.75 - 0.90 30 183 16 days
5 SWIR-1 1.55-1.75 30 183 16 days
6 TIR 10.04 - 12.5 60 183 16 days
7 SWIR-2 2.09-2.35 30 183 16 days
8 PAN 0.52-0.90 15 183 16 days

The Operational Land Imager (OLI), which is a scanning system used in Landsat 8,
measures in the visible, nir, and swir portions of the spectrum. It provides images
which have 15 m panchromatic and 30 m multispectral spatial resolutions along a 185
km wide swath. OLI has used long detector arrays, with more than 7,000 detectors per
spectral band, aligned across its focal plane to view along the swath. This is known as
‘push-broom’ design cause to a more sensitive instrument having improved land cover
information with less moving parts. With the improved signal-to-noise ratio compared
to previous Landsat instruments, it has been expected from this new OLI design to
be more reliable and to provide better performance. Apart from the other scanning
systems, it has coastal/aerosol band for water quality applications and cirrus band for
cloud detection (NASA, 2015). TIR sensor which has been as second sensor in Landsat
8 has also two bands with respect to quantum physics applications (NASA, 2015).
Both OLI and TIR system specifications have been given in Table 3.4.
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Table 3.4 : Landsat 8 characteristics.

s | nanan [ spesltonee || Soud | [owat] Tervors
1 Coastal/Aerosol 0.433 -0.453 30 185 16 days
2 Blue (Visible) 0.450 - 0.515 30 185 16 days
3 Green (Visible) 0.525-0.600 30 185 16 days
4 Red (Visible) 0.630 - 0.680 30 185 16 days
5 NIR 0.845 - 0.885 30 185 16 days
6 SWIR-1 1.560 - 1.660 30 185 16 days
7 SWIR-2 2.100-2.300 30 185 16 days
8 PAN 0.500 - 0.680 15 185 16 days
9 Cirrus 1.360 - 1.390 30 185 16 days

10 TIR-1 10.60-11.20 100 185 16 days
11 TIR-2 11.50-12.50 100 185 16 days

3.2.2 Defense meteorological satellite program

The Defense Meteorological Satellite Program (DMSP) satellites have observed
environmental features like clouds, bodies of water, snow, fire and pollution, and they
have recorded information (Kramer, 1994). DMSP is also used in planning and
managing U.S. military operations worldwide. NOAA, the Navy and the Air Force
have shared responsibility for processing the data from NOAA and DMSP satellites
(U.S. Congress, 1994). Moreover, some of DMSP satellites have night visual sensors
with a valid capability to measure low levels of visible and NIR radiance at night
(Figure 3.5). Therefore, it is possible to detect and measure clouds illuminated by

moonlight, lights from cities and motorway, fires and gas flares. The data acquired

from these satellites has been used in many scientific and military applications.
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Figure 3.5 : DMSP-OLS image (Url-2).

3.2.2.1 History of DMSP

The Department of Defense started the DMSP in the mid-1960s. This program has low
earth-orbiting satellites and they have provided important military and environmental
information. The ground systems development and operation of the satellites has been
managed by NOAA. The Defense Satellite Application Program Block-1 satellites
series, also known as P-35, was the first series of military meteorological satellites of
the USA. There have been many block satellite series since 1962 and the latest launch
of a DMSP satellite, which is DMSP-F19, occurred on April 3, 2014, from Vandenberg
aboard an Atlas V rocket (Hall, 2001).

3.2.2.2 Orbit system of DMSP

The DMSP satellites have a 101 minute, sun-synchronous near-polar orbit at an
altitude of 830 km above the surface of the Earth. The visible and infrared sensors
obtain images through a 3000 km swath and they also have enabled global coverage
twice per day. It is possible to obtain global information such as clouds every 6 hours
with combination of day-night and dawn-dusk satellites. These satellites generally
involve polar regions at least twice and the equatorial region once per day (NOAA,
2014). DMSP specifications has been given Table 3.5.
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Table 3.5 : DMSP technical specifications.

Orbit Sun synchronous near polar orbit
Altitude 830 km
Revisit 101 minutes

oLs (Operational Linescan System)

SSM/I  (Microwave Imager)

SSM/T (Atmospheric Temperature Profiler)

SSMT/2 (Atmospheric Water Vapor Profiler)

SSJ/4  (Precipitating Electron & lon Spectrometer)
SSIES  (lon Scintillation Monitor)

Sensors

3.2.2.3 DMSP operational linescan system

The DMSP has operated since 1970s the Operational Linescan System (OLS). The
DMSP programme has been upgraded over time since declassification, and the latest
series (Block-5D) include the OLS which is an oscillating scan radiometer capable of
measuring the visible and thermal-infrared emissions. The DMSP satellite (Figure 3.6)
has been in a sun synchronous low earth orbit, which is about 833km altitude, and
makes a nighttime pass usually between 20.30 and 21.30 each night (Elvidge et al.,
2001). OLS has a nominal resolution of 2.7 km and about 3000 km swath width. It has
also 1 km spatial resolution data, which is resampled from the fine mode resolution
which has 0.55 km resolution. This data has been distributed by National Geophysical
Data Center (NGDC) of NOAA. The OLS sensor's main mission was the detection of
nighttime moonlit cloud cover for regional and global meteorological forecasting for
the Air Force. For this purpose, the visible spectral band (VI1S) signal, which covers
the visible near infrared region of the spectrum (VNIR), is intensified at night with a
photomultiplier tube. This has made the sensor four orders of magnitude more
sensitive and it provides to detect faint VNIR emission sources (Elvidge et al., 1997).
When sunlight is eliminated, the light intensification cause to a valid data set where
city lights, lightning illuminated clouds and fires can be observed. The OLS
specifications has been given Table 3.6 (Yagi et al., 2010).
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Table 3.6 : OLS technical specifications.

Band Name | Spectral Range | Spatial Resolution(km) Swath | Radiometric
(Microns) (fine - smooth) width | Resolution
Visible (day) 0.40-1.10 0.55-2.7 3000 km 6 bit
VNIR (night) 0.47 - 0.95 0.55-2.7 3000 km 6 bit
Thermal-IR 10.0-13.4 0.55-2.7 3000km | 8bit

Figure 3.6 : Conception of the DMSP Block 5-2 satellites, which covers DSMP-8,
DSMP-9, DSMP-10, DSMP-11, DSMP-12, DSMP-13, and DSMP-14 (NASA,

A pixel value is represented digital number denoting the average light intensity
measured over the year ranging from 1-63. The OLS data has been projected to

UTM/WGS84 projection system. Moreover, the pixels are resampled from the fine

2015).

mode to 1 km spatial resolution (Doll, 2008).
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Table 3.7 : Version 4 DMSP-OLS nighttime lights time series (Url-3).

Average Visible, Stable Lights, & Cloud Free Coverages
Year\Sat. F10 F12 F14 F15 F16 F18
1992 F101992 |-------  ||-------  ||--==—-  ||-=m—- [
1993 F101993 |------- ||-------  |----—-- |- |[------
1994 F101994 |[F121994 |------=  |=======  |sccemee |emeeeee
1995  |------- F121995 |---=--=  |-==m===  memmeee|eeeeeeo
1996 |- F121996 |------- |- |- |-
1997 |- F121997 |F141997 |-------  |--===—=  |-=-----
1998 |------- F121998 |F141998 |-------  |--==---=  |-------
1999  |------- F121999 |F141999 |-------  |-==---=  |--m----
2000 |- |------- F142000 |[F152000 |-------  |-------
2001 @« |- [eeeee- F142001 |F152001 |-------  |-------
2002 |- |- F142002 |[F152002 |-------  |-------
2003 |- |- F142003 |[F152003 |-------  |-------
2004 |- |- |- F152004 |[F162004 |-------
2005 |- |emmemem e F152005 |[F162005 |-------
2006 |- |--meem |- F152006 |F162006 |-------
2007  |------- memmmem|emmeee- F152007 |F162007 |-------
2008 |- [-emmeem|mmemmem - F162008 |-------
2009 |- mmmmmem|mmmemem |- F162009 |-------
2010 |------ |mmmeem[mmmmmem |emmmeem [ F182010
1} I R e T T S e F182011
2012 |- |emmmmem[mmmmmem|emmmeem [ F182012
b1+ i B S e e e F182013
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http://ngdc.noaa.gov/eog/data/web_data/v4composites/F142000.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152000.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F142001.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152001.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F142002.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152002.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F142003.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152003.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152004.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162004.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152005.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162005.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152006.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162006.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152007.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162007.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162008.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162009.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F182010.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F182011.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F182012.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F182013.v4.tar
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4. SPECTRAL MIXTURE ANALYSIS

Especially low resolution images involve mixed pixels which are covered with more
than one land use classes. This restriction can be overcome using subpixel
classification procedures (Tompkins et al., 1997). Spectral unmixing approaches are
the most widely used methods for extracting information from mixed pixels (Lu et al.,
2003). These approaches have been used for providing information to monitor
different natural resources such as agricultural, forest, geological and environmental
problems like rapid urbanization, deforestation, plagues and disease, forest fires
(Quintano et al., 2012). Spectral mixture analysis (SMA) was first developed to
analyse High Spectral Resolution Advanced Visible/Infrared Image Spectrometer
(HSR AVIRIS) data. It was later applied to be used with Landsat and other data
(Lunetta, 1998). Before the spectral mixture model is applied, the calibration process

must be applied to the satellite images.

4.1 Radiometric Calibration

In this part, the calibration procedure has been explained over Landsat data, which
have been used widespread in remote sensing applications. It is known that the spectral
radiance sensed by each Landsat detector is stored as an 8 bit digital number. These
DN values should be converted to radiance (units: W m=2sr ! um™), to reduce changes
in the instrument radiometric calibration, and then converted to top of atmosphere
(ToA) reflectance to decrease remote sensing variations caused by changes in the sun—
earth distance, the solar geometry, and exoatmospheric solar irradiance arising from
spectral band differences (Figure 4.1). In other words, the aim of ToA reflectance,
which is also called as exoatmospheric reflectance, is to find surface reflactance at the
satellite (SERDP, 2012). Also, the radiometric parameters and sun angle values are
required to calibrate radiometrically for satellite differences (Singh, 1985; Teillet,
1986; Moran et al., 1992). This is especially important for applications that use Landsat
data acquired over large areas and long time periods. The conversion of the radiance
values sensed at the Landsat reflective and thermal wavelengths to reflectance, which
is unitless, and brightness temperature as kelvin respectively enables data that has
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physical meaning. For instance, It can be also compared with laboratory and fieldwork
measurements, model results, data acquired by other satellite sensors , and importantly
enables data that can be used to obtain geophysical and biophysical products (Masek
et al., 2006; Justice et al., 2002).
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Figure 4.1 : Atmospheric interference (Url-4).

For all bands of the satellite image, 8 bit digital numbers are converted to spectral
radiance using sensor calibration gain and bias coefficients obtained from the Landsat
file metadata. The radiance sensed in the Landsat reflective wavelength bands the blue,
green, red, near-infrared, and the two mid-infrared bands, are converted to ToA

reflectance using the standard formula as:

. m.L.d>?
P= Esun .cos(S2)

= top of atmosphere (TOA) reflectance (unitless), (0-1)

7= 3.141593

L = the TOA spectral radiance (W m— 2 sr— 1 pm— 1)

d = the Earth—Sun distance in astronomical units

ESUN = the mean TOA solar spectral irradiance (W m— 2 pm— 1)
SZ = solar zenith angle
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The quantities ESUN and d are tabulated and sz is calculated from the solar elevation
angle stored in the Landsat L1T file metadata (Table 4.1), (NASA, 2015). The TOA
reflectance computed as 1 is the TOA bi-directional reflectance factor and can be
greater than 1, for example, because of specular reflectance over snow or water under

certain solar and viewing geometries (YCEO, 2010).

Table 4.1 : Earth-Sun distance in astronomical units.

E:'grﬂf Distance E:'grﬂf Distance E:'grﬂf Distance E:'grﬂf Distance Ef :r Distance
1 88331 |74 a9445 | 182 1.01403 [ 227 1.01281 | 305 [.992583
15 88365 |91 89926 | 166 1.01577 | 242 1.00969 | 319 [.98916
32 B8535 | 106 1.00353 | 182 1.01667 [ 258 1.00566 | 335 |[.98608
46 A87T4 (121 1.00756 | 196 1.01646 [ 274 1.00119 | 349 [ 98425
60 89084 | 138 1.01087 | 213 1.014497 | 288 99718 | 365 [.98333

Recently, some of digital image processing softwares convert DN values of an image
to ToA reflectance values easily using its parameters in formula 4.1 Figure 4.2 shows

that Envi software has calibrated images using ‘MTL’ metadata files of Landsat.

.
(5} ENVI Landsat Calibration [

Y [

Landsat Satelite Sensor Landsat 5 TM

Data Acquisition Morth : | August -

Data Acquision Day : 18 =

Data Acquistion Year: 2009 &
Sun Blevation (deg) : 54.82

Calibration Type Radiance (@ Reflectance

Edit Calibration Parameters

Cutput Result to @) File Memory

Enter Output Flename | Choose Compress i

|[0K ] [[Quewe ] [(Cancal |

Figure 4.2 : Landsat calibration dialog.
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4.2 Spectral Unmixing

After the calibration procedure has been applied to the satellite images, spectral
unmixing process can be applied to the images. There have been many spectral linear

and nonlinear unmixing methods which have been described recently.

4.2.1 Non-linear spectral unmixing

Non-linear mixing processes are quite difficult to perform and physical models usually
do not easily provide themselves to simple mathematical solutions. The most difficult
part is how to model these non-linearities when much of the required information is
not available. Despite such difficulties, there have been some noticeable approaches.
Hapke (1981) proposed a two-stream method which includes multiple scattering into
the expression for the bidirectional reflectance technique. A multilayer perceptron
(MLP) is one of the most common non-linear unmixing model which is based on
neural network models for mixed pixel classification (Foody, 1996; Atkinson et al.,
1997).

Non-linear methods have not been widely applied to remote sensing data because they
are quite difficult to carry out. Also, the linear methods have been demonstrated in
many applications to be a useful approach to analyse the variability in the data. They
have provided powerful means for converting spectral information into data products
with physical meaning like abundance of materials on the ground surface (Keshava
and Mustard 2002).

4.2.2 Linear spectral unmixing

The spectral mixture analysis has been widely used to divide mixed pixels into its
components. In other words, linear SMA is described that the spectral response of a
pixel is a linear combination of all the endmembers present in the pixel. Endmembers,
which can be defined as spectrally pure features, can be obtained from the image itself
(called image endmembers), or measured in field conditions (Lunetta, 1998). The
linear SMA has so far been the most popular technique among the SMA family (Wu
and Murray, 2002).

It is known that the dimensionality of the mixing space, which is based on principal
component transformations, plays a significant role when selecting accurate

endmembers. A spectral mixing space can be described as a coordinate system so that
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a pixel at any location can be described as a mixture of spectral endmembers. The
location within the mixing space is determined by the relative abundance of spectral
endmembers contributing to the mixed pixel reflectance. Linear combinations of
spectral endmembers can thus be used to describe spectra that occur within a convex
hull prescribed by the distribution of mixed pixels and endmembers (Boardman, 1993).
To understand the topology of the mixing space, proper selection of endmembers is
essential, because it determines how accurately the mixture model can represent the
reflectances. The endmember collection must accommodate the dimensionality of the
mixing space. The true dimensionality of the mixing space is determined by the
number of spectrally different endmembers present in the target. The apparent
dimensionality of the mixing space is defined by the number of spectral endmembers
which can be distinguished by the sensor. The apparent dimensionality is therefore
limited by the number of spectral bands available, as well as the wavelengths spanned
by the bands. The limited spatial and spectral resolution of the sensor results in a
projection of the true high dimensional mixing space onto a lower dimensional
representation that is constrained by the ability of the sensor to discriminate different
surface reflectances at GIFOV scales (Small, 2001b).

Principal component (PC) transformations have been used to quantify the
dimensionality and topology of the spectral mixing space. This rotation reduces the
correlations among dimensions so that the resulting PC bands (PCs) represent
orthogonal components of diminishing variance. The accompanying eigenvalue
distribution enables a quantitative estimate of the variance partition between the signal
and noise-dominated PCs of the image. The mixing space may be represented with
scatter plots of the unrotated bands. However, using scatter plots of the PCs has
provided an ideal projection of the mixing space since the PC rotation orders the
projections related to the variance they contribute to the scene. This explains that two
or three PCs can usually provide a first order representation of the mixing space that
covers the majority of image variance (Small, 2004; Price, 1997). The dimensionality
of a image has determined the diversity of spectra that it involves and it is ultimately
restricted by the number of spectral bands. However, noise and redundancies in the
bands’ information content may lead to an apparent dimensionality which is less than
the full potential dimensionality implied by the number of bands. For multispectral
images, eigenvalues are used as indicators of the apparent dimensionality of the image.
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The eigenvalues compute how much variance is related to each rotated dimension
(PC). However, they do not necessarily provide an obvious threshold to differentiate
between noise and spectral information. When noise is accepted to be uncorrelated and
of lower variance than the signal, the higher order PCs are expected to represent the
difference between inherent dimensionality of the image and the potential
dimensionality. Although higher order PCs can have low variance, they still represent
spatially coherent information which is not represented by the lower order PCs. The
Landsat ETM+ has enough low noise that the inherent dimensionality of spectrally
diverse images is usually equal to the full six dimensions. The eigenvectors and
eigenvalues of the PC transformation have given the contribution of each ETM+ band

to each PC and the variance with respect to it (Small, 2004).

Figure 4.3 shows eigenvectors and eigenvalues for the PCs of the global composite
dataset. Eigenvalues (left) have indicated that >90% of the variance of the global
composite (circles) is related to the two primary PCs and that >98% can be defined
with three low order PCs. Eigenvectors (right) have indicated that the first PC is most
strongly influenced by the two SWIR bands (5,7), while the second component
corresponds to VNIR band 4 with some contribution from visible red band 3. The third

component has significant contributions from all six bands.

Small (2004) applied PCs to 30 subscenes of Landsat images. In Figure 4.4, gray
shading has indicated scatterplot pixel density. The side view shows the two primary
dimensions accounting for >90% of the variance with a triangular mixing space
bounded by vegetation (V), substrate (S) and dark (D) spectral endmembers. The
prominent spur extending from the low albedo endmember corresponds to reefs (R)
and shallow seafloor. Figure 4.5 shows exoatmospheric or ToA reflectance vectors
for the three basic endmembers related to the apexes of the primary 2D mixing space
of the global composite and the corresponding local endmembers from the mixing
spaces of the different subscenes. The dark surface and vegetation endmembers of the
distinct subscenes are quite consistent. The high albedo substrate endmember is
variable in amplitude, however, it is usually convex upward with a peak at SWIR
wavelengths. The variability is related to the diversity of rock and soil reflectances
represented by the substrate endmember.
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Figure 4.3 : Eigenvectors and eigenvalues for the PCs of the global composite

Figure 4.5 : Endmember spectra boundingthe composite and 2D mixing spaces

After endmembers are collected from scatter plots, a linear mixture model is applied

to images. The consistency of the spectral mixing space for a variety of environments
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suggests that a simple three component linear mixture model may provide a consistent,
general characterization of land surface reflectance. The three component linear
mixture model is based on SVD endmembers. Once the dimensionality of the mixing
space is determined and endmembers are selected, it is straightforward to invert the
linear mixture model for endmember fraction estimates. Inversion of the linear mixing
model for each image pixel yields fraction estimates for each endmember. The linear

three-component mixing model is given in continuous form by:

R(}) =f5Es(%) +~NEv(4) + foEb(L)

where R(1) is the observed reflectance profile, a continuous function of wavelength A,
E(A) are the spectra corresponding to the (S), (V) and (D) endmembers, and the
corresponding endmember fraction estimates we seek are fs, fv, and fp. The discrete

implementation of the model, applicable to Landsat ETM+ reflectance is given by

fsern + fverz+ foez=r1

fsea1 + fvezz + fo€23 =12

fsesr + fvesz + foess = r3

fseqr + fvesz + focaz =14

fses1 + fvesz + foesza =I5

fsee1 + fvesz + foees = I6

where r; is the observed reflectance vector obtained from discrete estimates of
integrated radiance within the six ETM+ bands, ej; are the endmember reflectance
vectors corresponding to SVD endmembers, and indices i and j indicate the spectral
band and endmember of each element respectively. An additional unity sum constraint
equation can be incorporated to urge the fractions to sum to 1. With six or less
endmembers, the system has more equations than unknowns and can be inverted for
an optimal set of endmember fraction estimates chosen to minimize misfit to the
observed reflectance vector. The overdetermined linear mixing problem, incorporating
measurement error, can be written in matrix notation as:

r = Ef+e

where € is an error vector which must be reduced to have the fraction vector f which
gives the best fit to the observed reflectance vector r (Small, 2004; Settle and Drake,

1993).
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5. APPLICATION

The aim of this thesis is to determine urban growth using both spectrally unmixing
data and nighttime satellite data in cities selected as study area. First, potential Landsat
images cover study areas have been selected and listed. These images have covered
most of developed and developing cities of Turkey. Then, calendar plots were
generated using Landsat filenames for main six path and row. Moreover, the
calibration procedure has been applied to all Landsat data and ToA reflectance values
have been obtained. After calibration process had been completed, SMA method has
been applied to calibrated images. This process has been applied for three different
dates which were usually selected as 1987, 1999 and 2010. SVD maps and substrate
fraction maps have been generated and analysed for these years. Urban growth areas
for the cities have been determined using both SMA method and nighttime satellite

images.

5.1 Study Area

The study area was selected the cities developed and developing in Turkey. These
cities are Istanbul, Ankara, 1zmir, Bursa, Kayseri, 1zmit and Manisa (Figure 5.1). As
each Landsat scene is about 185 km long and 185 km wide, sometimes one scene may
cover more cities and districts. For instance, Landsat scene covers lzmir covers also
Manisa province in this study and these cities have been investigated together. Path
and row of these cities for Landsat were determined as 180 31, 180 32, 180 33,
179 32,177_32and 175_33. Table 5.1 shows that population and area information for
the cities (TurkStat, 2014).
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Figure 5.1 : The study area.

Table 5.1 : The census data and surface areas.

Population
Province P Surface area (km?)
(2013)
1985 2000 2010
Ankara 3306327 4007860 4771716 25437
Bursa 1324015 2125140 2605495 10882
Istanbul 5842985 10018735 13255685 5313
lzmir 2317829 3370866 3948848 12007
Kayseri 864060 1060432 1234651 17170
Kocaell 742245 1206085 1560138 3623
(Izmit)
Manisa 1050130 1260169 1379484 13269
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5.2 Datasets

After potantial study areas were determined, Landsat data archieve has been
investigated using website of ‘http://glovisusgs.gov/ which is managed by the United
States Geological Survey (USGS, 2012). Most of Landsat data are available from 1984
to now but some of them have clouds. For this study, data have high quality without
cloud have been selected. At the first step, 165 Landsat 5 (TM) and Landsat 7 (ETM)
data have 180 31, 180 32, 180 33, 179 32, 177 _32 and 175_33 Landsat paths and

rows have been downloaded in geotiff format (Figure 5.2).

@ UsGS Global Visualization Vie: R\
€ C ft O glovi.usgs.gov TR
USGS Home

Contact USGS
Search USGS

USGS Global Visualization Viewer System Notices (1), 1 Critical

Max Cloud:
[o%_|=] L 3
Scene Information:

ID: LT51800312011254MOR00

CC:0% Date: 2011/9/11
aity: 9

Sep |2011 | Go

PrevScene | MextScene

L4-7 Combined Scene List

Add =l
[7Baslat| | & usGs Global Visualiza... (W] Ghan_Uysal_Tez_Oneri... RiZBES®T S a1 6318

Figure 5.2 : Landsat data download.

5.2.1 Generation of calendar plots

Calendar plots were generated using Landsat filenames in unix media for six
paths&rows. These plots have been used to select available and most suitable data for
applications. They provide distribution of data visually and give information about
acquired dates of data. Also, sensor type of Landsat data is seen apparently on these
plots. The figures below, with respect to six paths and rows, demonstrate available
data distribution for both Landsat 5 (TM) and 7 (ETM) images (Figures 5.3, 5.4, 5.5,
5.6, 5.7 and 5.8). While Landsat 5 (TM) images were represented with a point (¢),
Landsat 7 (ETM) images were represented with a star (*).
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Figure 5.3 : Calendar plot of 175 _33.
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Figure 5.5 : Calendar plot of 179 32.
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Figure 5.7 : Calendar plot of 180_32.
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Figure 5.6 : Calendar plot of 180 31.
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5.3 Preprocessing

5.3.1 Image resampling tests

Image resampling is a process used to interpolate the new cell values of a raster image
during a resizing operation. There are many resampling methods available and each
resampling method has strengths and weaknesses. In this study, all Landsat images
have been obtained using Cubic convolution (CC). It is a method used to determine
the gray levels in an image through a weighted average of the 16 closest pixels to the
input coordinates.

Nearest neighbor (NN) is also a resampling method used in remote sensing. The
approach assigns a value to each corrected pixel from the nearest uncorrected pixel.
The advantages of nearest neighbor include simplicity and the ability to preserve
original values in the unaltered scene.

To test effects of both resampling methods, a reference Landsat image,
“LT51800332009618MOR” has been selected and SVD model applied to the image.
When statistics of them was investigated, they had quite close results (Figure 5.9).
Also, there have not been any significant differences for images used the both
methods (Figures 5.10 and 5.11).

& -|o ﬂ. # Stats File:C:\Users\UZAL\Desktop =10l =
File Options

Select Plok > Clear Plot Select Pok ~|  Clear Plot
i =or:F= 0 sl : 4

ane: C: s Users UZAL~Desktop~F5S_L1TI4906~FS_1518003 J ame: C:5I=er="TZAT \De=ktop~LT518003320091A8HORO J

Full Scene (41,558,155 points) Full Scene (56,468,451 points)

Stats Min Max Hean Stdev Stats Min Hax Mean Stdev
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Band 3 0.411109 1.045750 0.829427 0.061287 Band 3 0.420933 1.045517 0.878401 0.097242
Band 4 0.001462 0.124B62 0.026059 0.007907 Band 4 0.000813 0.124882 0.027032 0.006941

K | ;I_‘ 4 | ;IJ

Figure 5.9 : Effects of resampling methods on full image (left image:
NearestNeighbor, right image: Cubic Convolution).
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Figure 5.11 : CC method.
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The test has been applied to the substrate area generated by both ‘NN’ and ‘CC’
resampling methods. Statistic value belong to first band, substrate, for both images
had close results (Figures 5.12 and 5.13). Therore, resampling methods effects are
negligible for this application so Landsat images downloaded as ‘CC’ has been used

and analysed in the study.
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Figure 5.13 : Effects of CC method for substrate area.
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The test has also been applied to the vegetation area generated by both ‘NN’ and ‘CC’
resampling methods. Statistic value belong to second band, which is related to
vegetation, for both images had quite close results (Figures 5.14 and 5.15). Figure

5.16 shows that how to select pure vegetation area over the screen using scatter plot.
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Figure 5.15 : Effects of CC method for vegetation area.
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Figure 5.16 : Pure vegetation area selection.

In addition, the test has been applied to dark surface generated by both ‘NN’ and ‘CC’
resampling methods. Statistic value with respect to third band, which is related to water
covered surface, for both images had almost same results (Figures 5.17 and 5.18).
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Figure 5.17 : Effects of NN method for dark surface.
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Figure 5.18 : Effects of CC method for dark surface.

5.3.2 Calibration of Landsat data

Most of Landsat data are processed as Level 1 terrain corrected (L1T) data. The L1T
data are available in GeoTIFF format in the Universal Transverse Mercator (UTM)
map projection with World Geodetic System 84 (WGS84) datum. The Level 1T
processing involves radiometric correction, systematic geometric correction, precision
correction using ground control points, and the use of a digital elevation model to

correct parallax error due to local topographic relief.

In this study all the Landsat bands were used, except the panchromatic band, the bands
used were the 30 m blue (0.45-0.52 um), green (0.53-0.61 pum), red (0.63—0.69 pum),
NIR (0.78-0.90 um), and the two mid-infrared (1.55-1.75 pum and 2.09-2.35 pm)
bands, and the 60 m thermal (10.40-12.50 um) low and high gain bands. The L1T 8
bit digital numbers were converted to spectral radiance using sensor calibration gain
and bias coefficients derived from the Landsat file metadata. The radiance sensed in
the Landsat reflective wavelength bands the blue, green, red, near-infrared, and the
two mid-infrared bands, were converted to top of atmosphere reflectance using the

standard formula in chapter 4.



5.4 Method

Firstly, potential Landsat data were selected and downloaded from USGS-Glovis in
this study. Images from 1984, 2000 and 2011 were chosen among the Landsat data to
monitor and analyze the urban change areas within the study area. Special attention
was paid for cloudlessness or cloudy ratio to be less than 10% while choosing these
data. Radiometric calibration process was applied before applying the SMA method to
selected images. Under normal conditions, spectral radiance sensed by Landsat sensors
is stored as 8 byte DN. But these values should be converted to radiance and then to
ToA reflectance values to minimize the changes arising from the sun - earth distance,
solar geometry and spectral band differences. This process is important for Landsat
data which are used for long time periods or wide areas. As in this study the changes
during a period of approximately 30 years will be monitored, ToA reflectance values

were calculated.

SMA method was applied to these atmospherically calibrated images. At this stage,
the principle is to place the mixed space appropriately into a coordinate system. PC
conversions are used to determine the size and topology of the mixed space
quantitatively. These transformations have minimized the correlation between axes. In
this study, PC band of the first two lowest order with the highest variance was used in
creating the mixed space. This mixed space topology can be represented accurately
only through the spectral endmembers to be selected (Small, 2001 and 2004). The
endmembers used in this study consists of global SVD endmembers acquired by the
assessment of images which may be applied for the worldwide study area and which
are selected from different geographical regions (Small and Milesi, 2013). These SVD
endmembers which are being used in global scale and mixed pixels are represented in
percentages and linear spectral mixed model was obtained. DSVD maps were also
prepared by taking the differences of SVD layers obtained for different dates. These
difference maps obtained are important in terms of determining the changes occurring
on LCLU in long time periods. Finally, analyses were conducted using the ‘S’ layers
from the three different years selected especially for the assessment of changes in
urbanization. The general flowchart which shows the method used has been seen in
Figure 5.19. Also, to detect new urban areas derived from substrate maps, DMSP-OLS
data has been used. In addition, images from Google Earth with high spatial resolution
were used to validate the SMA results.
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Figure 5.19 : Flowchart of the method.

5.5 Results

Analyses and results especially in Istanbul have been carried out detailed due to rapid
urbanization and complexity of the city. LCLU changes in both sides of Istanbul were
mapped and analysed and generating SVD and tri-temporal substrate map were
explained detailed for the city. Moreover, color composites of fraction maps were
generated only for Istanbul. For the other cities, only substrate fraction maps were used
to analyse urban expansion. Also, some analyses were done with respect to seismic
hazard in Istanbul and Izmit study areas. For the other cities, general urban LCLU

changes were determined.

Istanbul

Figures 5.20, 5.21 and 5.22 have shown Landsat false color images using 7-4-2 band
combination. Substrate, vegetation and dark surface fraction images was generated
using SMA method for 1984, 2000 and 2011. Figures 5.23, 5.24 and 5.25 have shown
substrate fraction since 1984. Fraction values range from 0 to 1 and 0 value

corresponds to 0% substrate cover, while 1 value corresponds to 100% substrate cover.
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According to these substrate fraction maps, substrate fraction has increased
dramatically from 1984 to 2000. Especially new urban area needs have resulted in to
increase of substrate in the city. Also, there has been slightly increase in substrate

fraction from 2000 to 2011 and this increase has been detected towads out of the city.

Figures 5.26, 5.27 and 5.28 have shown vegetation fraction since 1984. The fraction
of vegetation cover corresponds to the fraction of ground covered by green vegetation
and it quantifies the spatial extent of the vegetation. Because it is independent from
the illumination direction and it is sensitive to the vegetation amount. According to
these maps, there has not been significantly changes in vegetation fraction except
seasonal changes. In addition, these vegetation fraction maps have revealed
considerable information about urban areas. In these maps, dark regions without
surface covered by water have correspond to urban areas and their fraction values are

very close to 0. Urban expansion in the city has been seen using these fraction maps.

Figures 5.29, 5.30 and 5.31 have shown dark surface fraction from 1984 to 2011.
Changes in water covered surfaces have been detected from 1984 to 2000 using these
fraction maps. Observing the changes in dark surface projection, changes on
Buyukcekmece Lake and Sazlidere Dam were detected. Water covered surfaces show
high values (very close to 1) in dark surface fraction maps. These fraction maps also
give information about mixed pixels, which correspond to built-up areas such as urban
areas. These figures have verified that urban areas have increased in the city since
1984.

Also, color composites of the fraction maps have been generated (Figures 5.32, 5.33
and 5.34). These maps have shown changes in substrate, vegetation and dark surface
fraction for the selected years. Similarly, these maps have verified that urban

expansion have increased in the city since 1984.

SVD linear mixture model was applied and SVD maps were generated using the
global endmembers (Figures 5.35, 5.36 and 5.37). DSVD fraction maps were obtained
by taking the differences of SVD values from selected different years. These maps

have shown the changes in -S-, -V- and -D- values (Figures 5.38, 5.39 and 5.40).
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Figure 5.21 : Calibrated Landsat ETM (02.07.2000).

Figure 5.22 : Calibrated Landsat ETM (23.06.2011).
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Figure 5.23 : Substrate fraction map of Istanbul (1984).
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Figure 5.24 : Substrate fraction map of Istanbul (2000).
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Figure 5.25 : Substrate fraction map of Istanbul (2011).
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1984 Vegetation Fraction Map

N
km
5250 5 10 15 A

Figure 5.26 : Vegetation fraction map of Istanbul (1984).
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Figure 5.27 : Vegetation fraction map of Istanbul (2000).
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Figure 5.28 : Vegetation fraction map of Istanbul (2011).
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Figure 5.29 : Dark surface fraction map of Istanbul (1984).
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Figure 5.30 : Dark surface fraction map of Istanbul (2000).
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Figure 5.31 : Dark surface fraction map of Istanbul (2011).

53



Substrate Fraction Maps N
- 2000 - A
. 1984 5250 5 10 15

Figure 5.32 : Color composite of substrate fractions.
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Figure 5.33 : Color composite of vegetation fractions.
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Figure 5.34 : Color composite of dark surface fractions.
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Figure 5.35 : SVD map of Istanbul (1984).

Figure 5.36 : SVD map of Istanbul (2000).
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Figure 5.37 : SVD map of Istanbul (2011).
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According to Figures 5.35, 5.36 and 5.37, it can be stated that S areas have increased
from 1984 to 2011. This expansion has shown that the urban areas in the city spread
along the north coasts of the Sea of Marmara and suburban regions towards outside of
the city. Moreover, it is detected that the urban growth was more on the European side.
Also, population of the European side is more than the Asian side. As the European
side has more trade regions, immigrations have gained momentum especially in 1990s
(Kaya and Curran, 2006). Figures 5.38 and 5.40 show the LCLU changes between
1984-2000 and 1984-2011, respectively. Particularly the increase in S values which
refers to the recently built urban regions towards the west of the city is clearly seen.
Figure 5.39 has shown that the rapid increase in S values from 1984 to 2000 has slowed
down during the period between 2000 and 2011. The main cause of this is the reduce
in the immigration rate from rural areas during that period (TurkStat, 2015). Again in
Figures 5.35 and 5.36, S-D mixture is dominant especially in inner parts of the city
and it has been observed that the D values increased much more between 2000 and
2011. In this situation, S values a little decreased and D values increased in the built-
up areas of the city, it is consistent with an increase of shadow fraction from increasing
urban growth. D values have increased due to shadow effect of the changeable height
of buildings. High buildings have increased after 2000 especially in built-up areas and

suburban regions of the city.
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Figure 5.38 : DSVD map (shows the changes in S, V and D values between 1984
and 2000).
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Figure 5.39 : DSVD map (shows the changes in S, V and D values between 2000
and 2011).
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Figure 5.40 : DSVD map (shows the changes in S, V and D values between 1984
and 2011).

Apart from the SVD maps, tri-temporal (color composite of substrate fractions)
substrate maps that shows substrate changes using only the S layers were also
generated (Figure 5.41). According to this map, regions in which urbanization
increased after 1984 have spread towards west and east of the city across the coasts
of Marmara Sea. This zone is also known as risky seismic activity zone and it has
been potential risk for densely populated areas (Fichtner et al., 2013).
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Figure 5.41 : Tri-temporal substrate map (Regions changed and remained unchanged
according to the substrate values in 1984, 2000 and 2011).

The tri-temporal substrate map has shown that the increase in S values are observed in
the region between Kucukcekmece and Buyukcekmece Lakes. It is determined that the
new urban areas in Kucukcekmece, Buyukcekmece, Beylikduzu, Esenyurt, Basaksehir
and Awvcilar districts located in this region have expanded (Figure 5.41). The region
between two lakes and Ikitelli Industrial zone in Basaksehir district to the northeast of
Kucukcekmece Lake and areas around which were opened to settlement played a
major role in the increase of S values (Sunar, 1998; Maktav et al., 2000). On the

European side, new urban growth areas about 190 km?.

On the tri-temporal substrate map, Sabiha Gokcen Airport and the region developed
near it can be seen. The airport which was opened in 2001, industry zones and
settlement areas are the regions in which the S increase is the most on the Asian side.
There have been more than 110 km? urban growth areas on the Asian side in

Sancaktepe, Sultanbeyli, Atasehir, Pendik and Tuzla districts (Figure 5.41).

Moreover, core areas in which were not subjected to any significant changes were
detected. On the tri-temporal substrate map which shows the changes in the substrate
values on 1984, 2000 and 2011, the change in S values and SVD values on LCLU
determined in previous figures on the European side (Historical Peninsula) is very
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small. However, there have been various historical buildings in this area which remain
unchanged and in 1995, the area was declared as a first degree archaeological and
urban-historical protected area (Dincer et al., 2011). Existence of dense settlement and
refusing new settlements for the protection of the historic fabric prevented the product
of new urban areas here. Also, many areas which do not show a significant change in
years in S value are within the borders of core districts of Beyoglu, Fatih and Besiktas
on the European side and Kadikoy and Uskudar on the Asian side (Figure 5.41). In
addition, population densities in these districts did not change significantly and the did

reduce even in some historical districts, such as Fatih and Beyoglu.

Also, water covered surfaces have been analysed from 1984 to 2000 in the study.
Observing the changes in dark surface projection, changes on Buyukcekmece Lake
and Sazlidere Dam, which have provided drinking and utility water to the city, were
detected. Sazlidere Dam, which is not visible in the 1984 SVD and Landsat images,
was constructed in 1996. Therefore, while being represented mainly by S and V values
on the SVD map of 1984, this area is represented mainly by D value on the maps from
2000 and 2011. In 1984-2000 and 1984-2011 DSVD maps, this dam area with 10 km?
surface area can be clearly seen as the change area (Figures 5.38 and 5.39). As a result
of a dam constructed on the Buyukcekmece Lake in 1988, the lake area was enlarged

and caused an increase in the D value in this area (Figures 5.38 and 5.39).

On the tri-temporal substrate map (Figure 5.41), another LCLU change is observed.
On the Asian side, the increase in S values in the mining area located between the
Omerli Dam and the Black Sea started in 1984 continues after 2000. Likewise, the
change in mining areas lying along the coast of Black Sea on the European side is seen
on SVD maps. These areas which are mainly represented by S value on Figure 5a are
represented with S and D values between 2000 and 2011. This is caused by the water
filled in gaps on the ground which occurred due to the mine searches. The decrease in
S value around most mining areas in this region is replaced by the increase in D values.
In the areas to the north and northeast of Arnavutkoy which are used as mining areas
and quarry, and in the areas in Durusu, Yenikoy, Akpinar, Ciftalan and Kumkoy which
lie parallel to the coast of Black Sea; some artificial ponds of varying sizes are located.
New mining fields on these areas are the locations where S projection increases (Figure

5.41). Figure 5.41 shows quarries opened to the northwest of Buyukcekmece as
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substrate area. This substrate area is not related to urban area because interannual

changes in agricultural and mining phenology resulted in increase in substrate values.

All the results above derived from the tri-temporal substrate maps are not satisfactory
enough. They mostly show substrate areas very well between 1984 and 2000. If there
has been any constructions on these substrate areas after 2000, it would be difficult to
determine them using usual methods and even tri-temporal substrate maps particular
in small spaces of the city. Therefore, in this study DSVD maps were used to map
vertical urban growth in the inner side of the city. In these small inner parts of the city,
the areas were mostly involving S values in 2000, then the areas had mixture of S and
mostly D values in 2011 so these increasing urban growth areas were determined
using DSVD maps. According to DSVD maps, new urban growth areas after 2000
Basaksehir, Avcilar, Esenyurt, Beylikduzu and Arnavutkoy were determined on the
European side of the city. Districts of Pendik, Umraniye, Cekmekoy, Atasehir,
Sancaktepe and Tuzla were determined as urban growth areas on the Asian side of the
city.

Figure 5.42 shows that the nighttime lights acquired by DMSP/OLS in 1992, 1999,
2012. The figure shows that the night lights have expanded since 1992 and it verifies
the results acquired by SMA method.

Figure 5.42 : Nighttime DMSP image for Istanbul (1992(B), 1999(G), 2009(R)).
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Izmit

Three Landsat data sets which cover Izmit were selected for 1984, 1999 and 2009 ,
and Landsat images were then calibrated using their parameters in their filenames.
After these processes, SVD models were generated using a linear mixture model. In
the study area, both settlement and industrial areas have been developed for these
years. Figures 5.43, 5.44 and 5.45 show the original Landsat images with 30 m spatial
resolution for the selected years, with RGB layers matched to 7-4-2 bands respectively.
Figures 5.46, 5.47 and 5.48 show substrate fraction maps with respect to the selected
years. Urban areas have shown high substrate fraction values. According to these

maps, urban areas have grown towards east and south of the city.

Figures 5.49, 5.50 and 5.51 show SVD models for the same years. After SVD models
for the years 1984, 1999 and 2009 were generated, SVD layers were subtracted from
each other, generating DSVD models. Figures 5.52, 5.53 and 5.54 show differences in
SVD models for the three years. Figure 5.52 represents DSVD between 1999 and 1984,
Figure 5.53 shows differences between 2009 and 1999. In this duration, dark surface
increased more than the others, and this result can be analyzed as an increase of the
city’s density. Figure 5.54 represents differences for SVD models between 2009 and
1984. SVD models acquired from linear mixture models and generated difference
models both give more information about growth and density of urban areas. These
results provide information not only for urban areas but also potentially for other
LCLU changes. Substrate values increased from 1984 to 1999 and after 2009 dark
surface values have increased. Dark surfaces (excluding water) represent density value
for built up areas in cities. Vegetation has decreased from 1984 to 2011 in that duration,

while substrate areas have increased.
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Figure 5.45 : Landsat ETM (30.09.2009).
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Figure 5.47 : Substrate fraction map of 1zmit (1999).

2009 Substrate Fraction Map

Figure 5.48 : Substrate fraction map of 1zmit (2009).
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Figure 5.49 : SVD map of Izmit (1984).
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Figure 5.50 : SVD map of Izmit (1999).
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Figure 5.51 : SVD map of Izmit (2009).
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DSVD maps may also be helpful to determine damages from natural disasters, like
earthquakes. Both the Izmit and Golcuk were damaged by a magnitude 7.4 earthquake
on August 17, 1999, that resulted in over 17,000 fatalities. The earthquake occurred
along the North Anatolian strike slip fault that extends roughly east-west beneath the
Gulf of I1zmit (Aydoner, 2005).

Figure 5.52 shows the SVD differences between 1999 and 1984. The south shoreline
of the Gulf appears dark blue, indicating that the dark surface value has increased
dramatically from 1984 to 1999. The 1999 Landsat image was acquired 10 days after
the Marmara Earthquake. Golcuk on the southern shoreline of the Gulf is the location
of a Turkish naval facility and another automobile factory. Both areas were severely
damaged by the earthquake, and the majority of the area was under water. Therefore,
while dark surface reflectance value has increased, substrate and vegetation values
have also decreased. A similar situation occurred for the Tupras petroleum refineries
northwest of the Gulf of Izmit. The earthquake sparked a disastrous fire at
the Tupras petroleum refinery. Breakage in water pipelines, resulting from the quake,
nullified attempts at extinguishing the fire. Aircraft were called in to douse the flames
with foam. The fire spread over the next few days, warranting the evacuation of the
area within three miles of the refinery. The fire was declared under control five days
later, after claiming at least seventeen tanks and untold amounts of complex piping
(Scawthorn et al., 2005). The refinery area in Figure 5.52 appears dark because the
area was under water and some chemical liquids were used to put out the fire, so dark
surface reflectance is much higher than substrate reflectance. Figure 5.53 shows that
substrate values have increased in both areas (Golcuk shoreline and Tupras refinery)
because these areas have been built and repaired after the earthquake (Uysal and
Maktav, 2015).
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Figure 5.52 : DSVD map (between 1999 and 1984).
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Figure 5.53 : DSVD map (between 2009 and 1999).
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Figure 5.54 : DSVD map (between 2009 and 1984).
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However, the main focus in this research was urban development. Therefore, S layers
were more important than the others. All substrate images for three different years
(1984, 1999, 2009) have been generated for the study area. These substrate images
have been matched with RGB layers; red represented 2009 substrate image, green
represented 1999 substrate image and blue represented 1984 substrate image.
Therefore, new substrate areas (soil and settlement areas) after 2009 appear in red and
similar tones. Substrate areas that have expanded after 1999 appear yellow or similar
tones. Figure 5.55 shows a tri-temporal substrate map of the vicinity of the Gulf of
Izmit. However, there are some large red areas towards the northern-central side of the
study area, which is a forest region (cut forest area). Although they are not new urban
areas, they have substrate reflection. DMSP data has been used to determine the forest

region is not urban area (Figure 5.56).
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Figure 5.55 : Tri-temporal substrate map of Izmit.
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Figure 5.56 : Tri-temporal substrate map (left) and DMSP image.

Ankara

Figures 5.57, 5.58 and 5.59 show orginal Landsat images with 30 m spatial resolution
for 1987, 2003, 2010 and RGB layers were matched 7-4-2 bands respectively.
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Figure 5.57 : Landsat TM image (20.08.1987).
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Figure 5.59 : Landsat TM image (18.08.2010).

Figures 5.60, 5.61 and 5.62 show substrate fractions for 1987, 2003 and 2010
respectively. Figures 5.63, 5.64 and 5.65 show SVD models for the selected years. In
this study area, SVD maps have shown that there have been large areas with respect to
substrate areas. The intensive substrate content, which shows high albedo, has not
given meaningful results for the urban growth using only SVD maps. Also, green
vegetation has rarely been seen in the study area. Therefore, especially the other DSVD

and Tri-temporal substrate maps have been used for the analysis.
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Figure 5.62 : Substrate fraction map of Ankara (2010).
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Figure 5.63 : SVD map of Ankara (1987).
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Figure 5.64 : SVD map of Ankara (2003).
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Figure 5.65 : SVD map of Ankara (2010).
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When SVD layers were subtracted from each other, DSVD maps were generated
(Figures 5.66, 5.67, 5.68).
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Figure 5.66 : DSVD map (2003-1987).
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Figure 5.67 : DSVD map (2010-2003).
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Figure 5.68 : DSVD map (2010-1987).
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Figures 5.69 and 5.70 have shown urban growth in Ankara, especially north and west
of the city has been growing in both maps. Although there has been very high substrate
reflectance in the study area, tri-temporal substrate map has provided useful analyses
related to urban growth. According to these analyses, the city has expanded towards
to outside of the city. Especially new urban areas have increased out of the city
especially in districts such as Etimegut,Sincan and Yenimahalle which have been in
the west side of the city. Moreover, there have been another urban growth region in
the north and this region has covered many districts like Kecioren, Altindag and

Pursaklar.
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Figure 5.69 : Tri-temporal substrate map of Ankara.
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Figure 5.70 : Nighttime DMSP image for Ankara (1992(B), 1999(G), 2009(R)).

Bursa

Similarly, SMA method have been applied to Bursa and urban growth areas have been
acquired clearly. Years were selected as 1984, 2000 and 2011 from the calendar plots
related to Bursa. Figures 5.71, 5.72 and 5.73 have shown Landsat false color images
using 7-4-2 band combination. Figure 5.74, 5.75 and 5.76 show substrate fractions for
1984, 2000 and 2011 respectively. According to these substrate fraction images, the
city has grown and expanded towards west and north of the city since 1984. SVD linear
mixture model was applied and SVD maps were generated using the global
endmembers (Figures 5.77, 5.78 and 5.79). DSVD fraction maps were obtained by
taking the differences of SVD values from the selected years. These maps have shown
the changes in -S-, -V- and -D- values (Figures 5.80, 5.81 and 5.82).
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Figure 5.71 : Landsat TM image (12.06.1984).
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Figure 5.72 : Landsat ETM image (02.07.2000).

Figure 5.73 : Landsat TM image (23.06.2011).
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Figure 5.76 : Substrate fraction map of Bursa (2011).

In Figure 5.77 , the image has more substrate areas than the other two SVD maps
(Figures 5.78 and 5.79) because this image has included agricultural area on the
northeastern side of the it. Some seasonal varibility or harvest type or time may result
in to this effect. But DSVD fraction maps have provided to solve this problem.
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Figure 5.77 : SVD map of Bursa (1984).
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Figure 5.78 : SVD map of Bursa (2000).
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Figure 5.79 : SVD map of Bursa (2011).

The DSVD maps show that most new urban areas have increased towards to the west
side due to industrial activities in this region. However, there have been densely
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populated areas in the east of the city in which Osmangazi, Yildirim and Gursu districts
have been. In the east side, there have been slightly growth towards to out of the city.
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Figure 5.80 : DSVD map (2000-1984).

B substate DSVD Map (2011-2000)

[ Vegetation 0 2 4 8 12 16
_- Dark Surface N km

Figure 5.81 : DSVD map (2011-2000).
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Figure 5.82 : DSVD map (2011-1984).
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Not only DSVD maps but also tri-temporal substrate map have shown that the city has
expanded to the west side of Bursa (Figure 5.83). Also Figure 5.84 which shows night

lights since 1992 has almost provided same results. Increasing industrial region in the

west have caused to densely urban areas especially in Nilufer district of the city.

J

e _- : A : A
-2000 Tri-Temporal Substrate Map 02 4 8 12 18
- 1984 O km

Figure 5.83 : Tri-temporal substrate map of Bursa.

Figure 5.84 : Nighttime DMSP image for Bursa (1992(B), 1999(G), 2009(R)).
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Kayseri

The Landsat data sets which include Kayseri were selected for 1987, 1998 and 2010 ,
and these images were then calibrated using their parameters in their filenames. After
this procedure, SVD models were generated using a linear mixture model. Figures
5.85, 5.86 and 5.87 show the original Landsat images with 30 m spatial resolution for
the selected years, with RGB layers matched to 7-4-2 bands respectively. Figures 5.88,
5.89 and 5.90 show substrate fractions for the selected years. These fraction maps has
revealed that the organized industrial site has expanded in the west of the city since
1987. Figures 5.91, 5.92 and 5.93 show SVD models for the same years. There has
been high substrate albedo in the study area like in Ankara study area. Therefore,

DSVD maps with respect to the study area have been analysed.

-:_:—:—km
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Figure 5.85 : Landsat TM image (20.07.1987).
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Figure 5.86 : Landsat TM image (18.07.1998).
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Figure 5.89 : Substrate fraction map of Kayseri (1998).
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Figure 5.91 : SVD map of Kayseri (1987).
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Figure 5.92 : SVD map of Kayseri (1998).
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Figure 5.93 : SVD map of Kayseri (2010).

Figure 5.94 shows the SVD differences between 1998 and 1987. According to this
map, some areas, where the organized industrial site has been in the west of the city,
have as urban growth areas have increased in the west related to commercial activities.
Also, new settlement areas in the south of the city has been detected. Figure 5.95 has
shown the differences between 2010 and 1998 and this map has shown that there have
been increasing some urban areas showing magenta (increased S+D) post 1998

especially in west side of the city.
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Figure 5.94 : DSVD map (1998-1987).
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Figure 5.95 : DSVD map (2010-1998).

B suwstate DSVD Map (2010-1987)
- Vegetation 0 2 4

8 12 16
| I Dark Surface O S —

Figure 5.96 : DSVD map (2010-1987).

The SVD maps have not given enough information about urban growth and LCLU
changes in the study area due to high substrate albedo. However, using tri-temporal
substrate maps, which consist of only substrate layers for the selected years, has
provided that new urban growth areas have been in the west and east limitedly (Figure
5.97). Also, the nightlight data and tri-temporal substrate maps have brought out
similar results for the urban growth regions. However, SMA has indicated that there
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has not been densely urban growth especially in the city center and surrounding of it
(Figure 5.98).
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Figure 5.97 : Tri-temporal substrate map of Kayseri.

Figure 5.98 : Nighttime DMSP image for Kayseri (1992(B), 1999(G), 2009(R)).
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Izmir

Figures 5.99, 5.100 and 5.101 have shown Landsat false color and SVD linear mixture
model was applied to these calibrated images (Figures 5.105, 5.106 and 5.107).
Substrate fraction maps have been generated for the selected years (Figures 5.102, 5.
103 and 5.104). The SVD maps were generated using the global endmembers. DSVD
fraction maps were acquired by taking the differences of SVD values from the selected
years. These maps have shown the changes in -S-, -V- and -D- values (Figures 5.108,

5.109 and 5.110).
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Figure 5.100 : Landsat ETM map (16.06.2000).
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Figure 5.101 : Landsat TM map (17.06.2009).
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Figure 5.102 : Substrate fraction map of Izmir (1984).
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Figure 5.103 : Substrate fraction map of 1zmir (2000).
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Figure 5.104 : Substrate fraction map of 1zmir (2009).

SVD maps has shown that substrate areas were increased considerably between 1984
and 2000. Increase of urban growth areas towards to east of the city has resulted in S
values between 1984 and 2000. Also, some mining areas in which have been mostly
in Bornova district have caused to expansion of substrate values. In addition,
vegetation values were decreased between 1984 and 2000 because of expansion of
urban areas.
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Figure 5.105 : SVD map of Izmir (1984).
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Figure 5.106 : SVD map of Izmir (2000).

89



Substrate §\/D Map (2009)
[ vegetation 4 -:—8 12 L
B Dark Surface il

Figure 5.107 : SVD map of Izmir (2009).

DSVD maps in Figures 5.108, 5.109 and 5.110 have revealed not only new urban areas
but also other land cover changes. According to this map, changes related to the
coastline has been determined and also new breakwaters and port constructions have
been detected in the Gulf of Izmir. DSVD maps also have indicated that S areas have
increased in and surrounding of Kemalpasa district. This axis covers an important
industrial region along the highways and agricultural areas have been changed to
industrial areas in this region. This situation has caused to urbanization and other
LCLU changes for outside of the city (Ozen et al., 2014).
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Figure 5.108 : DSVD map (2000-1984).
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Figure 5.109 : DSVD map (2009-2000).
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Figure 5.110 : DSVD map (2009-1984).

DSVD maps and tri-temporal substrate map have indicated that the city has grown
towards to east along the highways which pass through Bornova and Kemalpasa
districts (Figure 5.111). In the north of the city, Karsiyaka, Cigli and Bayrakli districts
are the other growth areas. The other urban growth axis has been in the south of the
city and this region has covered districts such as Balcova, Narlidere and Buca.
Gaziemir is the other growing region due to the fact that Adnan Menderes Airport has
been in this district. The DMSP-OLS image related to Izmir has shown that growing

regions have been especially in the east and south of the city (Figure 5.112).
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Figure 5.111 : Tri-temporal substrate map of Izmir.

Figure 5.112 : Night-time DMSP image for Izmir (1992(B), 1999(G), 2009(R)).

92



Manisa

As Manisa and Izmir cities have been same Landsat path/row, Landsat data sets were
selected same with Izmir which were acquired by 1984, 2000 and 2009. These Landsat
images were then calibrated using their parameters in their filenames. After these
processes, SVD models were generated using a linear mixture model. Figures 5.113,
5.114 and 5.115 show the original Landsat images with 30 m spatial resolution for the
selected years, with RGB layers matched to 7-4-2 bands respectively. Figures 5.116,
5.117 and 5.118 show substrate fraction images for the selected years. Figures 5.119,
5.120 and 5.121 show SVD models for the same years.

Figure 5.113 : Landsat TM map (12.06.1984).
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Figure 5.114 : Landsat ETM map (16.06.2000).

Figure 5.115 : Landsat TM map (17.06.2009).
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Figure 5.118 : Substrate fraction map of Manisa (2009).
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According to SVD maps, substrate areas have increased since 1984. Figure 5.122
shows that substrate areas have increased especially west of the city due to organized
industrial site. Also, there has been considerable increase towards to east side of the
city. DSVD maps verifiy that the industrial region has increased dramatically after
2000 (Figure 5.123). Manisa is one of the cities showing industrial development and
urban growth rapidly in Turkey (Gulersoy, 2013).
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Figure 5.119 : SVD map of Manisa (1984).
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Figure 5.120 : SVD map of Manisa (2000).
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Figure 5.121 : SVD map of Manisa (2009).
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Figure 5.122 : DSVD map (2000-1984).
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Figure 5.123 : DSVD map (2009-2000).
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Figure 5.124 : DSVD map (2009-1984).

Apart from the DSVD maps, tri-temporal substrate maps that shows substrate changes
using only the S layers were also generated (Figure 5.125). According to this map,
regions in which urbanization increased after 1984 have spread towards west of the
city across the highway which goes to Izmir. Also, DMSP-OLS image verifies the
SMA results and they have indicated parallel results with respect to urban growth

direction in Manisa (Figure 5.126).

99



2 AR g Ry T T

B 2009 Tri-Temporal Substrate Map

2000

— 012 4 6 8

Figure 5.125 : Tri-temporal substrate map of Manisa.

Figure 5.126 : Night-time DMSP image for Manisa (1992(B), 1999(G), 2009(R)).

5.6 Validation

In this study, vicarous validation has been applied to Istanbul which is one of the fastest
growing cities in Europe and is the most densely populated city of Turkey. As there
have not been enough high resolution images related to selected years for the other
study areas, vicarous validation has not been applied to them. According to DSVD
maps, new urban growth areas after 2000 Basaksehir, Avcilar, Esenyurt, Beylikduzu
and Arnavutkoy were determined on the European side of the city (Figure 5.128). To
provide accuracy of these results, high resolution Google Earth images of 2002 and
2011 were used and tested in districts of Basaksehir, Avcilar, Esenyurt (Figure 5.127).
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These test areas showed that both results have strong correlation and these results are
verified image pairs with high spatial resolution acquired in 2002 and 2011.

S

Figure 5.127 : The high resolution images taken from Google Earth show urban
growth between 2002 and 2011 on the Europen side of the city. The images have
been named as a, b, ¢ and d from the top to bottom. While a and b show urban
growth in Basaksehir district, urban growth changes in Esenyurt and Avcilar districts
have been showed as ¢ and d respectively in Figures 5.127 and 5.128.
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Figure 5.128 : The base map shows change areas where there has been conspicuous
increases in both Substrate & Dark fractions on the DSVD maps between 2000 and
2011 years for the European side of the city.

Accuracy Assessment for urban areas in Istanbul has been applied in the study. 50
random points were created over the substrate fraction image using ArcMap 10.1
software (Figure 5.129). As a reference map, Google Earth images, which have high
spatial resolution, have been used in the accuracy assessment (Figure 5.130). There
have not been enough high resolution images in 2000 therefore, Google Earth images,
which are 2001 and 2000 images, have been used to check new urban areas in
Istanbul. Accuracy assessment was calculated as 90 % for the urban test area (Table
5.2).
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Figure 5.129 : Result map of urban change areas (substrate map).

3

Figure 5.130 : Reference map (Google Earth).
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Table 5.2 : Accuracy Assessment.

points Result Map Reference map points Result Map Reference map

1 u u 26 u u
2 u u 27 u u
3 u u 28 u u
4 u u 29 u u
5 u u 30 u u
6 u u 31 u u
7 U NU 32 U NU
8 u u 33 u u
9 u u 34 u

10 u u 35 u NU
11 u u 36 u

12 u u 37 u

13 U U 38 U U
14 U U 39 U NU
15 U U 40 U U
16 U U 41 U U
17 U U 42 U U
18 U U 43 U U
19 u u 44 u u
20 u u 45 u NU
21 u u 46 u u
22 u u 47 u u
23 u u 48 u u
24 u u 49 u u
25 U U 50 U U

Overall accuracy (%) =90 U: Urban, NU: Non-Urban
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6. CONCLUSIONS AND RECOMMENDATIONS

Using the SMA method which is applied to determine the spatial and temporal
changes in LCLU. In this study, urban growth was determined by monitoring and
analyzing the different LCLU changes that occur in developed or developing cities of
Turkey by applying SMA method to LANDSAT images usually from 1984, 2000 and
2011. The results showed that most of the cities entered into a rapid urban growth
process from since 1984. Also, unchanged areas and LCLU changes with limited urban
growth were detected in some study areas. Apart from urban growth, changes in areas
covered with water and in mining areas were also observed. Thanks to the rapid
applicability provided by this method, this was determined to be a suitable method to
determine the changes in land use in other cities using the global endmember values.
This method also can be used in many disaster monitoring and management
applications.

Also, SMA method is not only limited to the horizontal urban growth different from
other standard classification methods, but it may also provide useful information
regarding the vertical urban growth. In this study, in inner parts in densely populated
districts of cities especially in Istanbul, it is observed that S value decreases and D
value increases when SVD maps from 1984 to 2011 are examined. This shows that the
city reached a built-up position and that there are more complex pixels on the image.
Also, dark surface fraction maps have supported that Istanbul has reached a built-up
position and the city has grown vertically since 2000. For cities in such situation, it is
only possible to talk about vertical growth in the form of inner city. The data
approximately belonging to the same period of time and where the atmospheric impact
is minimum, should be used to be able to mention such a vertical urban growth.
However, such analyses are generally expected to produce trustable results only in
well planned cities. In 2013, the digital surface model of Istanbul was obtained using
the Lidar technology which will enable precise determination of the vertical growth of
the city. Thus, the ability of SMA method to determine the areas where vertical urban
growth occur will be revealed in a sounder manner. Detailed studies related to vertical

urban growth for some test areas of Istanbul will be done in future studies.
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In addition, spectral mixture model is used with integration of nighttime satellite
images, they both provide more meaningful results in urban growth analysis. However,
nighttime satellite images have provide limited information in small study areas. They

should be used in big cities, regional and global applications.
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APPENDICES

APPENDIX A.1: Global Endmember Table.

Table A.1 : Global Endmember Table.

A S \Y D
0.479 0.265 0.095 0.074
0.561 0.351 0.088 0.045
0.661 0.403 0.048 0.023
0.835 0.518 0.619 0.015
1.651 0.561 0.193 0.003
2.208 0.477 0.065 0.001
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