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DETECTION OF URBAN EXPANSION IN TURKEY BY USING 

SPECTRALLY UNMIXED LANDSAT  IMAGES AND NIGHTTIME  

DMSP-OLS IMAGES 

SUMMARY 

One of the main impacts of globalization has been the rapid expansion of urban areas. 

Urban areas are dynamic, with the potential to continually increase in size as 

horizantally and/or vertically. Over the last few decades, urbanization have increased 

in Turkey and it gained momentum after 1980s. Immigration from rural areas to cities 

due to the limited agriculture economy, and insufficient job and education 

opportunities played a fundamental role in this increase. Sometimes urban growth 

cannot be controlled; in such cases, expanding urban areas may damage natural 

resources and instigate land cover and land use change. Therefore, urban areas should 

be monitored periodically. Remote sensing is a reliable tool to monitor urban growth.  

In this study, Istanbul, Ankara, Izmir, Izmit, Bursa, Kayseri and Manisa which are 

developed and developing cities of Turkey, were selected as the study areas. As a 

method, the study areas were valuated for urban growth using spectral mixture analysis 

method. Remotely sensed images provide a fundamental tool of land cover and land 

use maps. However, this source lacks spatial detail because each pixel contains only 

one value for the denoted area. Heterogeneous areas, including urban areas, may 

therefore result in misclassifications. By unmixing a pixel into its components, it is 

possible to enable a more accurate classification of the area. Spectral mixture analysis 

uses linear mixture models to provide physical representations of land surface 

reflectance. In this study, spectral mixture analysis method was applied to Landsat 

images for three different dates (1984 or 1987, 1999 and 2009 or 2010). This method 

also was applied to determine and analyse seismic hazard and effects of it in Istanbul 

and Izmit. In this study, nighttime images acquired by Defense Meteorological 

Satellites Program/Operational Linescan System have been also used. Especially these 

images have provided important assistance to determine urban areas. The results of the 

study show changes in land cover and urban growth areas, which were determined 

using spectral mixture analysis as an alternative method. 
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TÜRKİYE’DE KENTSEL YAYILMANIN, SPEKTRAL UNMIXED 

LANDSAT GÖRÜNTÜLERİNDEN VE DMSP-OLS GECE 

GÖRÜNTÜLERİNDEN SAPTANMASI 

ÖZET 

Kentleşme 1950’lerden beri dünyada hızla artmaktadır. Türkiye’de ise kentleşme 

1980’lerden sonra ivme kazanmıştır. Tarım ekonomisinin sınırlı olması, iş ve eğitim 

fırsatlarının yetersiz olması vb. nedenlerden dolayı kırsal alanlardan kentlere olan 

göçler bu artışta temel rol oynamıştır. Bu göçler, başta İstanbul olmak üzere, Ankara, 

İzmir, Bursa ve Antalya gibi sanayileşmenin ve/veya turizmin ön planda olduğu büyük 

kentlere doğru olmuştur. Özellikle de gelişmekte olan ülkeler için kentleşme, kentsel 

büyümenin sürdürülebilmesi ve ülke kalkınması açısından gerekli bir olgudur. Fakat 

bu büyüme kontrollü ve planlı bir şekilde olmalıdır, aksi durumda    kentlerin 

kontrolsüz büyümesi, plansız alt yapılaşma ve doğal kaynakların yanlış kullanılması 

birçok çevresel soruna sebep olabilir. Bu yüzden, dinamik yapıya sahip olan kentsel 

alanların periyodik olarak izlenmesi gerekir.  

Uydu ve bilgi teknolojilerindeki ilerlemeler sayesinde uzaktan algılama verileri ve 

teknikleri birçok alanda kullanılmaktadır. Bu veriler, sağladıkları güncel mekansal 

bilgi nedeniyle  kentsel çevrenin izlenmesinde karar vericiler ve yöneticiler için  

vazgeçilmez bir kaynak olmaktadır. Kentsel çevredeki değişimlerin izlenmesi, 

‘maximum likelihood’ ve ‘Isodata’ tekniklerini kullanan piksel tabanlı sınıflandırma 

yöntemleriyle elde edilen arazi örtüsü ve arazi kullanımı haritalarıyla da 

sağlanabilmektedir. Fakat elde edilen bu tematik haritalar, özellikle de düşük mekansal 

çözününürlüklü uydu verilerinin kullanıldığı heterojen alanlarda hatalı sınıflandırma 

sonuçlarına yol açabilmektedir, çünkü bu yaklaşımlarda her bir piksel yalnızca bir sınıf 

değeriyle temsil edilmektedir. Bu yüzden alt piksel seviyesinde arazi örtüsü ve arazi 

kullanımı haritalamasının daha doğru sonuçlar ve analizler ortaya çıkaracağı 

benimsenmiştir.  

Bu çalışmada kullanılan spektral karışım analizi (spectral mixture analysis) ile her bir 

piksel, kendisini oluşturan uç üyeler (endmember) tarafından  temsil edilmektedir. 

Lineer karışım modeli üzerine kurgulu bu analiz ile yeryüzü, ’substrate’, ‘green 

vegetation’ ve ‘dark surfaces’ spektral endmember yansıtımları cinsinden daha hassas  

bir biçimde temsil edilmektedir. Alternatif bir yöntem olarak benimsenen bu analiz ile 

elde edilen arazi örtüsü ve arazi kullanımı haritalarında her sınıf daha kapsamlı bilgi 

verecektir. Bu yöntem sayesinde özellikle de heterojen alanlara ait haritalarda, 

belirlenen sınıflara ait yoğunluk değerleri daha hassas bir biçimde belirlenecektir. 

‘Substrate’ endmember yansıtımı yeryüzünde bulunan toprak, taş ve beton yüzeylere 

ait spektral yansıtımları kapsamaktadır. ‘Green vegetation’ endmember yansıtımları 

ise yeşil bitki örtüsünün hakim olduğu alanlara karşılık gelmektedir. ‘Dark surfaces’ 

endmember yansıtımı, diğer iki endmember yansıtımınına göre daha karmaşık bir 

yapıya sahiptir. Yeryüzünde su ile örtülü yüzeylerin tamamında veya büyük bir 

kısmında ‘dark surfaces’ endmember yansıtımı baskındır. Bu yansıtım değeri ayrıca 

doğal ve yapay objelerin gölgelerine karşılık gelen koyu yüzeylerin tanımlanmasında 
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da kullanılmaktadır. Harita üzerinde karmaşık piksellerin yoğun olduğu alanlar 

yeryüzünde heterojen yapının hakim olduğu alanlara karşılık gelmektedir. Böyle 

durumlarda spektral karışım analizi yöntemine ihtiyaç duyulmaktadır. Bu yöntem 

farklı tarihlere ait atmosferik kalibre edilmiş Landsat görüntülerine uygulanarak 

‘substrate-green vegetation-dark surfaces’  haritalar elde edilmiştir. Farklı tarihlere ait 

bu haritaların birbirlerinden farkı alınarak endmember yansıtımında değişimleri 

gösteren fark haritaları elde edilmiştir. 

Çalışmada elde edilecek temel sınıfları belirlemek amacıyla global endmember 

değerler kullanılmıştır. Bu değerler dünya üzerindeki farklı coğrafi bölgelere ait 

Landsat alt görüntülerinden elde edilmiştir. Genel anlamda arazi örtüsü ve arazi 

kullanımının belirlenmesi için birçok  ülkede kullanılmış olan bu endmember 

değerleriyle Türkiye’de ilk kez kullanılmış olacaktır. 

Bu çalışmada, kentsel gelişim alanlarının belirlenebilmesi amacıyla uydulardan elde 

edilen gece zamanlı görüntüler de kullanılmıştır. ‘Defense Meteorological Satellites 

Program/Operational Linescan System’ tarafından yeryüzünün büyük bir kısmı gece 

ışıklarını kaydetmektedir. 1992 yılından itibaren dijital olarak yıllık bazda mevcut olan 

bu veriler büyük kentlerin, kentsel gelişim süreci konusunda bilgi vermektedir. 

Spektral karışım analizi sonucunda ‘substrate’ alan olarak belirlenen her alan 

yeryüzünde kentsel alana karşılık gelmeyebilir. Böyle durumlarda uydulardan elde 

edilen gece zamanlı görüntüler değerlendirme aşamasında kullanılmaktadır. Ayrıca 

gece zamanlı düşük mekansal çözünürlüklü bu uydu verileri özellikle de büyük 

kentlere ait kentsel büyüme aksları ve yönleri hakkında bilgi vermektedir. 

Türkiye’nin en çok gelişmiş ve gelişmekte olan kentleri; İstanbul, Ankara, İzmir, 

İzmit, Bursa, Kayseri ve Manisa çalışma alanı olarak seçilmiştir. Çalışmada spektral 

karışım analizi, 1984-1987, 1999-2000 ve 2009-2010 yıllarına ait Landsat 

görüntülerine uygulanmıştır. Ayrıca 1992, 1999 ve 2009 yıllarına  ait  ‘Defense 

Meteorological Satellites Program/Operational Linescan System’ verileri de 

kullanılmıştır. Elde edilen sonuçlara göre, arazi örtüsündeki ve arazi kullanımındaki 

değişimler ve özellikle de kentsel büyüme alanları spektral karışım analizi yöntemi 

kullanılarak saptanmıştır. 

Spektal karışım analizi yönteminin uygulanması sonucunda elde edilen kentsel gelişim 

bölgelerinin doğruluğunu tespit etmek amacıyla yüksek mekansal çözünürlüklü uydu 

görüntüleri kullanmıştır. Bu çalışmada elde edilen sonuçların doğruluğunun 

karşılaştırılmasında kullanılan yüksek mekansal çözünürlüklü bu görüntüler sadece 

İstanbul çalışma alanı için kullanılmıştır. Genellikle 2002  ve 2011 yıllarına ait bu 

görüntüler, spektral karışım analizi sonucunda elde edilen kentsel büyüme alanlarının 

doğruluğunun test edilmesinde kullanılmıştır. Yüksek mekansal çözünürlüklü uydu 

verileri 2000’li yıllardan sonra yaygınlaşmaya başlamıştır. Bu nedenle çalışma alanını 

oluşturan çoğu şehir için 2000-2002 zaman dilimine ait yüksek çözünürlüklü veri 

bulunamamıştır. Fakat kentleşme, diğer arazi örtüsü ve arazi kullanımı açısından 

kompleks bir yapıya sahip olan İstanbul için yeterince doğrulama yapılmıştır. Aynı 

şekilde İstanbul için, 2000 yılı sonrasında oluşan kentsel alanları gösteren ‘substrate’ 

harita için doğruluk analizi yapılmıştır.  

Çalışma sonucunda kentsel büyüme alanlarının yanı sıra spektral karışım analizi 

metotunun doğal afetlerin zararlarının belirlenmesi ve analizinde de kullanılabilirliği 

test edilmiştir. Bu amaç doğrultusunda 1999 yılında İzmit’te meydana gelen deprem 

öncesi ve sonrası analiz edilmiştir. Depremde zarar gören ve su altında kalan alanlar 

spektral karışım analizi yöntemi kullanılarak belirlenmiştir.  
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Özellikle de ‘dark surfaces’ değerinin değişimi doğal afet zararlarının tespitinde etkin 

rol oynadığı tespit edilmiştir. Arazi üzerinde spektral örnek alan toplamaksızın, sadece 

global endmember seti  kullanılarak spektral karışım analizi metotu farklı çalışma 

alanlarına uygulanabilmektedir. 
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1.  INTRODUCTION 

Maintaining the urban growth is an essential feature for developing countries. 

However, this growth should be in a controlled and planned manner, or otherwise it 

may cause many environmental problems. In Turkey, population living in cities was 

25% in 1950, and this ratio increased to 43% in 1980 and to 76% in 2010 (TurkStat, 

2014). Therefore, Turkey is among the leading countries of the world with its urban 

population and urban population increase ratio. Turkey has big cities like primarily 

Istanbul, Ankara, Izmir, Adana, Bursa and Antalya which allow immigrants and where 

urban change is being experienced (Maktav and Erbek, 2005). Especially in Istanbul, 

the most crowded city of Turkey, the population increased by almost three times during 

the last 30 years. Compared to other cities, Istanbul has more population, and industrial 

and trade areas. Immigration to Istanbul continues because it provides better economic 

opportunities than most of the other cities in Turkey (Geymen and Baz, 2008).  

This rapid increase in urbanization usually causes problems such as unplanned 

infrastructure and uncontrolled urban growth. This unplanned and uncontrolled 

urbanization may also lead the misusage of and damage to green areas, cultivated areas 

and natural resources like water sources (Al-Rawashdeh and Saleh, 2006). Therefore, 

the urban environment and especially natural resources should be constantly monitored 

and kept under control. Remote sensing data and techniques are indispensable 

resources for decision makers and rulers to monitor urban environment thanks to the 

current spatial information they provide (Maktav et al., 2005).  

In obtaining the land cover and land use (LCLU) maps with these data and 

technologies, generally “iterative self-organizing data analysis technique algorithm 

(isodata)” and "maximum likelihood" classification techniques are used. However, 

each pixel is only represented by one class value in such techniques. This may result 

in low accuracy classification results for mixed pixels corresponding to some 

heterogeneous areas like urban areas, whereas it is accurate for pure pixels which are 

corresponding to homogeneous areas on earth (Jensen, 1996; Palanisamy et al., 2006). 

Because of the low spatial resolution of the remote sensing satellite data used to map 
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the LCLU in global scale, accuracy of these maps are also limited. Thus, there are 

various approaches for LCLU mapping at lower pixel level. Among these, the linear 

spectral unmixing (LSU) model is adopted as the most common and well performed 

approach (Adams et al., 1995; Quarmby et al., 1992; Settle and Drake, 1993). The 

spectral mixture analysis (SMA) method is built on linear spectral unmixing model 

and mixed pixels are represented as they are calculated in percentages in determined 

endmember projections (Adams et al., 1993; Gillespie et al., 1990). In this model, 

substrate (S) endmember represents a variety of soil, rock and impervious surfaces, 

vegetation (V) endmember represents green vegetation areas. Dark surface (D) 

endmember represents water covered, shadowing and nonreflective areas.  

By applying radiometric calibration to Landsat Thematic Mapper (TM) and  Enhanced 

Thematic Mapper (ETM) images, digital number (DN) values were first converted to 

radiance and then to reflectance values. The SMA method was applied to these images 

calibrated radiometrically using the global endmember reflectances. Substrate-

vegetation-dark surfaces (SVD), difference SVD (DSVD)  and tri-temporal substrate 

maps were prepared using Landsat data from 1984 or 1987, 1999 or 2000 and 2009 or 

2010 and urban change areas were determined. To determine  urban areas, night-time 

images have been acquired  Defense Meteorological Satellites Program/Operational 

Linescan System (DMSP/OLS) were used for the study. Also, image pairs with high 

spatial resolution were used to test  accuracy of DSVD maps generated. 

1.1 Purpose of Thesis 

The purpose of this study is to map and analyze the LCLU changes and urban growth 

areas in selected study areas using the multitemporal spectral mixture analysis method. 

Some cities like Izmit and Istanbul which have a strategical location, urbanization has 

been increasing, although they have been on seismic zone. Therefore, urbanization in 

these cities should be monitored and controlled using reliable data and methods. In this 

study, apart from the other usual methods SMA method was used first time for the 

study areas. This method was applied to the study areas and provided faster results not 

only urban growth but also the other LCLU changes. As an alternative method, SMA 

was also used for natural disaster applications in the study.  
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1.2 Literature Review 

Although challenged by the spectral and spatial heterogeneity of urban regions (Jensen 

and Cowen 1999; Herold et al., 2004), remote sensing seems to be a suitable source of 

urban data to support studies which are related to analysis of urban growth and sprawl 

(Donnay et al., 2001). In terms of analyzing urban growth, Batty and Howes (2001) 

stated that remote sensing technology can provide a unique perspective on growth, 

land cover and land use change processes. Data acquired through remote sensing are 

consistent over large regions and over time, and can provide detailed information at a 

great variety of geographic scales. The information derived from this technology can 

help to model the urban environment, leading to developed understanding that benefits 

applied urban planning and management (Longley and Mesev 2000; Longley et al., 

2001). In the recent years, remote sensing data and geographic information system 

(GIS) techniques are widely being used for mapping, monitoring, analysing and 

modeling the urban growth, land cover and land use change (Parker et al., 2003). 

Taragi and Pundir (1997) analyzed the urban growth and expansion of Lucknow city 

for the period between 1972 and 1992. They had nine major land cover and land use 

classes from four temporal remote sensing images via visual interpretation and manual 

mapping. Finally, they generated a built-up change map and computed built-up growth 

rate. Using these land cover and land use maps, they tried to determine the expansion 

intuitively. Nevertheless, their sprawl-map is really a built-up change map and this 

research did not quantify the urban sprawl so their characterization of sprawl was 

limited to rapid growth. Sudhira et al. (2004) carried out a research to identify the 

dynamics of  urban sprawl and they wanted to model the future sprawl using remote 

sensing and other dataset. They considered a study area of 434.2 km2 in Mangalore-

Udupi region in Karnataka state between 1972 and 1999. They classified satellite 

images to detect  built-up information for the year 1999. Also, built-up information of 

1972 had been extracted from Survey of India topographical maps. They had analyzed 

the  urban sprawl via built-up growth versus population growth, Shannon’s entropy, 

population density, built-up density, annual population growth rate, distance from 

Mangalore and  Udupi. In the study, metrics analysis had been performed using a  3x3 

kernel window. Finally, they had estimated the built-up area for the years 2020 and 

2050 by using regression analysis. Nevertheless, although the title claimed for the 

modeling of urban sprawl, ultimately it caused a sum increase of built-up area for 
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future. Actually it is difficult to map urban sprawl and growth accurately  because 

urban areas are usually heterogenous areas and they cover mixed classess. There have 

been many examples in recent literature of procedures to overcome the 

misclassification issues. For instance, the VIS (vegetation-impervious surface-soil) 

index developed for urban classification in Salt Lake City (Ridd, 1995) and  the use of 

the combination of multiple sensors like that of the ERS-1 SAR and Landsat TM 

described by Kuplich et al. (2000). 

As the SMA is very popular and accurate sub-pixel classification technique, many 

researchers have used it to classify remote sensing data and estimate the class 

proportions for various applications. Linear SMA technique was first proposed by 

Adams and Smith (1986) to compare image spectra with laboratory spectra and they 

calculated the proportion of the classes in the image. Tompkins et al. (1997) stated that 

each pixel is a mixture of different endmembers and it is a linear combination of 

endmember spectra. According to Lunetta (1998), SMA was developed for 

interpreting high spectral resolution Advanced Visible/Infrared Image Spectrometer 

(AVIRIS) data and was later expanded to be used with Landsat data. Lelong et al. 

(1998) have studied a LSU model integrated with principal component analysis (PCA) 

for crop monitoring and they proved that a significant amount of information can be 

collected with a limited number of spectral bands by using LSU method. A research 

was done by Gong and Zhang (1999) on Linear SMA and it was  related to address the 

validity and noise sensitivity of the LSU algorithm. They used two different algorithms 

of LSU: Unconstrained method based on singular value decomposition and the other 

method, constrained method, based on nonnegative least squares, to test their 

sensitivity to noise. According to the result, both methods were very sensitive to noise. 

Zhu and Tateishi (2001) investigated  the possibility of using LSU to generate fraction 

images using normalized difference vegetation index (NDVI) time series data. They 

compared the result of a linear spectral unmixing method with usual methods  like 

maximum likelihood and minimum distance on multitemporal Landsat TM data and 

National Oceanic and Atmospheric Administration-Advanced Very High Resolution 

Radiometer (NOAA-AVHRR) monthly composite NDVI data. They acquired that 

LSU method gives better results than the usual methods because SMA method based 

on LSU covers physical information as the fraction of each component within a pixel. 

Haertel and Shimabukuro (2005) used the Linear Spectral Mixture Model for low 
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spatial resolution data to evaluate the class proportion. They concluded the method is 

reliable for the low spatial resolution images and the method is appropriate for regional 

and global studies as well. There have been many researches using LSU method in 

different applications. Small (2001a) used Landsat TM images to estimate urban 

vegetation abundance in New York City and monitor changes over one year Small 

(2002) by using LSU and pseudoinvariant endmembers. A research done by Small 

(2004) showed that a SMA of global composite of 30 spectrally diverse LANDSAT 

ETM subscenes provides that a wide variety reflectance spectra can be accurately 

represented as linear combinations of  S, V and D endmembers. Small and Milesi 

(2013) investigated global endmembers provided the basis for a standardized spectral 

model. They also compared LANDSAT and WorldView-2 endmember fractions  and 

they  concluded that endmember fractions shows strong linear scaling. 

1.3 Hypothesis 

Remote sensing technologies provide important analyses tools for urban applications. 

Accurate image analysis and interpretation are very important for urban areas, which 

are generally heterogeneous areas. However, traditional classification methods have 

some challenges like spectral mixing. Standardized multitemporal spectral mixture 

model has provided better image process and analysis for urban applications. Urban 

growth was analysed first time using SMA method with DMSP/OLS images. 

Moreover, global endmembers have been used and tested first time for Turkey. This 

alternative method apart from other usual analysis methods has provide faster, more 

detailed information about urban growth.  
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2.  DIGITAL IMAGE PROCESSING 

2.1 Digital Image   

An image can be defined as two dimensional representation of objects from a three 

dimensional space. Digital image consists of picture elements called pixels which 

includes brightness value and address. For passive sensing, the obtained table of 

numbers in the rows and columns of a digital image are unique brightness or gray 

values. In active sensing, the traditional presentation of echo signals after processing 

results in an image are the intensity values, by which a measured radar cross section is 

generated as a gray tone (Buiten and Clevers, 1993). 

For both sensing, a digital image is composed of a finite number of elements, each of 

which has a particular location and value. These elements are called picture elements, 

image, and pixels. Pixel is the term used most common to denote the elements of a 

digital image (Gonzalez and Woods, 2007).  Each pixel is a number represented as 

‘digital number’ (DN), which is about the average radiance of the pixel area 

and   contains values between 0 and 255  for 8 bit optical images (Figure 2.1). 

 

 

 

 

 

 

 

 

 

Figure 2.1 : Digital image (Campell, 2007). 
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2.2 Image Resolution  

Image resolution can be explained as the ability of an imaging system to record and 

extract details in a distinguishable manner (NRC, 2014). There are four types of 

resolution categories in remote sensing. These are spatial, spectral, radiometric and 

temporal resolutions. 

Spatial resolution is relevant to the size of the smallest object that can be resolved on 

the ground. In other words, it specifies the size of the pixel of the image acquired by 

remote sensing techniques. However, the resolution in a digital image is sometimes 

restricted by the pixel size. Spatial resolution is based on many factors, such as the 

field of view, altitude of the sensor, the number of detectors etc. Also, the spatial 

resolutions of the sensors can change with the viewing angle, and influenced by the 

terrain  structure on the ground (Navulur, 2007). In target recognition and 

identification, spatial resolution has taken an important role. Especially after 2000’s, 

commercial and private satellites have been increased and they have provided images 

with various spatial resolutions in a wide range. Spatial resolutions can be categorized 

as low resolution which is defined as pixels with ground sampling distance of 30 m or 

greater resolution, medium resolution which has a resolution between  4 and 30 m and 

high resolution which has pixel sizes 4 m or smaller pixel sizes. 

Radiometric Resolution is the sensitivity to small differences in the radiation of the 

observed target or  object (Campbell, 2007). In other words, it refers to the number of 

gray levels available for image analysis. The value range can be computed using 

equation below:  

N = 2R                                               

where N is the range and R is the radiometric depth. For instance, when a sensor use 

8 bits to record the data, there will be 28 
= 256 digital numbers which are ranging from 

0 to 255.  

Spectral resolution refers to the number of bands in the electromagnetic spectrum 

where the instrument can take measurements. In other words, it is an ability of a sensor 

regarding to the wavelength intervals. The narrower the wavelength range for a special 

channel or band, the finer the spectral resolution is. Moreover, the spectral resolution 

increases by the number of bands.   



9 

In remote sensing, related to the number of bands, there have been some basic  terms  

such as multispectral and hyperspectral to categorize the sensors. While multispectral 

sensors usually have less than ten bands,   hyperspectral sensors generally have bands 

in hundreds (Navulur, 2007). An illustration of a hyperspectral image cube has been 

shown in Figure 2.2. The hyperspectral image generally includes over a hundred 

contiguous spectral bands, forming a 3D image cube which covers one spectral 

dimension and two spatial dimensions. Every pixel  is associated with a complete 

spectrum of of the imaged area. Hyperspectral images have provided detailed 

identificaiton of the land covers (CRISP, 2014). 

 
Figure 2.2 :  Hyperspectral image cube (CRISP, 2014). 

 Especially hyperspectral sensors have detected  hundreds of very narrow spectral 

bands around the visible, NIR and mid-IR regions of the electromagnetic spectrum. 

The images obtained by these sensors have been used for various target detection 

applications (Manolakis et al., 2003).   

Temporal resolution refers to precision of a measurement related to time.  Temporal 

resolution represents  the time frequency with which the system can obtain an image 

of the same region of interest  on the Earth. Also, the revisit capability depends on 

some parameters like the instrument’s field of view, satellite orbit and the platform 

movement etc. (Campell, 2007). Different satellites have generally  different revisit 

time. For instance, while Landsat TM has revisited same area in 16 days, IKONOS has 
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revisited between 3 and 5 days with off-nadir angle. Especially in disaster monitoring 

and management applications, temporal resolution has taken an important role.  

2.3 Image Processing  

Digital image processing is relevant to a detailed processing procedure of digital 

images by way of a digital computer (Gonzalez and Woods, 2007). There have been 

many digital image processing and analysis techniques to assist the interpretation of 

digital images and to extract as much information as possible from the images. The 

particular techniques can be chosen with respect to aim of individual project. The 

processing procedures can be classified in three broad categories: ‘Image 

Preprocessing’, ‘Image Enhancement’, and ‘Information Extraction and Image 

Interpretation’ (Bernstein and Ferneyhough, 1975). 

2.3.1 Image preprocessing   

Image preprocessing is also known image restoration and rectification. In this basic 

step, DN values are recalculated for the digital image. Preprocessing, which is  initial 

processing on the raw data, is  applied to correct for any distortion caused by the 

characteristics of the imaging system and conditions. These distortions could be data 

errors, noise, atmospheric effects, sun illumination geometry and geometric distortions 

introduced during the scanning, recording, and playback processes. Specific correction 

methods have been applied to minimize these problems in image restoration or 

preprocessing.  

Radiometric and geometric corrections have been applied as  most common 

preprocessing procedures in digital image processing. Radiometric correction is 

used  to correct for uneven sensor response over the entire image and geometric 

correction is used to correct for geometric distortion caused by Earth's rotation and 

other imaging conditions like oblique viewing. Also, the image could also be 

transformed to conform to a suitable map projection system (Pons et al., 2014). 

In order to have a better geometrically corrected image, image resampling  procedures 

have been applied to digital images. Image resampling is a  basic process by which 

new pixel values are interpolated from existing pixel values and this procedure has 

been applied whenever the raster's structure is changed such as during datum and 
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projection transformations, and cell resizing operations (Wade and Sommer, 2006). 

There are three main resampling algorithms: Nearest Neighbor, Bilinear Interpolation 

and Cubic Convolution which are all commonly used in image editing softwares 

(Studley and Weber, 2011). Each resampling method has strengths and weaknesses 

and they must be considered carefully with respect to aim of the application. 

Nearest Neighbor (NN) resampling is very frequently used in remote sensing and it 

functions by matching a pixel from the original image to its corresponding position in 

the resized image. When there is no corresponding pixel is available, the pixel nearest 

is used instead (Figure 2.3). This method works well with horizontal or vertical lines 

(Goldsmith, 2014), however, it introduces outstanding error along other linear features 

in which pixel rearrangement into lines is obvious (eXtension, 2014) and for that 

reason is usually known the least accurate method. NN is widely used due to the speed 

of implementation and simplicity (Dodgson, 1992). Recently, computers have become 

more powerful and it is easy to decline a less computationally intensive process for 

one with more accurate results. However,  some remotely sensed images computation 

time can still a concern if the  images are very large (>1 GB). Also, it is noted that NN 

is a unique resampling process in that it is the only method that does not interpolate 

new values into the dataset, and is therefore the only method that should be used for 

categorical data (ESRI, 2009; Verbyla, 2002). In this method, there is only one value 

(orange dot) used to generate the new output value, which is derived from the cell 

nearest the target (Figure 2.3). 

Bilinear interpolation has used the arithmetic mean of the four pixels nearest the 

concerning cell to calculate a new pixel value (Figure 2.3).  This resampling method 

is an image smoothing method and when the image is displayed larger or smaller than 

it actually is (Goldsmith, 2014). Also, this method retains better positional accuracy  

than nearest neighbor resampling (Verbyla, 2002), however it could introduce new 

values never found in the original image with some blurred edges introduced as well 

(Goldsmith, 2014).  

Cubic convolution (CC) is a method used to determine the gray levels in an image 

through a weighted average of the 16 closest pixels to the input coordinates (Figure 

2.3).  This method produces the smoothest and  most continuous image compared to 

the other two methods (Huber, 2014). However, CC resampling takes longer time 
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longer (about 10 times)  to process the computation than nearest neighbor (eXtension, 

2014; Huber, 2014). 

 

 

Figure 2.3 : Nearest Neighbor resampling (left), Bilinear interpolation (mid) and 

Cubic Convolution (right). The gray dots represent the centers of the input raster 

cells and the green grid represents the output raster. The target cell is yellow with the 

red dot showing the center. Note: Figure obtained from  ESRI. 

2.3.2 Image enhancement  

Image enhancement is done to make it easier for visual interpretation and 

understanding of digital images. It also applied images to alter its impact on the viewer. 

After preprocessing procedures are completed on the raw data, image enhancement 

operations can be applied. There have been specific techniques such as grey level 

stretching to improve the contrast and spatial filtering for enhancing the edges. 

Moreover, contrast stretching, density slicing, principal components analysis and 

rationing are  other basic tools that provide better scene quality and can be categorized 

as an image enhancement methods for digital images (Balaselvakumar and Saravanan, 

2006).           

2.3.3 Information extraction and image interpretation 

Image preprocessing and enhancement procedures generally utilize computers to 

provide corrected and improved images for applications by human interpreters. In 

these two steps, the computer systems can not make decisions about the images. 

Nevertheless, processes which identify and extract information do utilize the 

computer's decision-making capability to identify and extract specific parts of 

information. In this procedure, a human operator must manage the computer and must 

evaluate the significance of the extracted information (Sabins, 1987). 
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The aim of feature extraction is to obtain the most relevant information from the 

original data. There are various methods used as information extraction methods. One 

of them is  image transformations like principal components analysis, which are 

mathematical techniques that use statistical methods to decorrelate data and reduce 

redundancy. Also, some arithmetic operations such as rationing are image 

manipulation techniques, to highlight certain features. Moreover, there have been other 

methods such as change detection, pattern recognition and classification which are 

used commonly as image extraction methods in remote sensing (Berni et al., 2009). 

Classification is the most used traditional method to generate LCLU maps in remote 

sensing applications. Digital classification is the process of sorting pixels into a finite 

number of individual classes, or categories, of data based on their brightness values 

(Al-Bakri et al., 2013). There are two types image classification techniques: 

Unsupervised and supervised classification. 

In unsupervised classification, the processing program automatically groups the pixels 

in the image into separate clusters, depending on their spectral features. Each cluster 

will then be assigned a land cover type by the analyst. In other words, unsupervised 

classification is the process of grouping multispectral images and assigning colors 

which represent either clusters of statistically different sets in correlation with 

separable classes. The unsupervised classification image classification technique is 

commonly used when no sample sites exist.  In this technique, after the user determines 

the number of clusters to generate and which bands to use,  the image classification 

software generates clusters. There have been different image clustering algorithms 

such as K-means and ISODATA (Iterative Self-Organizing Data Analysis Technique).  

ISODATA algorithm has provided grouping of pixels with similar spectral 

characteristics by deriving statistics (mean and standard deviation) of groups and 

assigning a class to each pixel according to its distance from mean (Al-Tamimi and  

Al-Bakri, 2005). The ISODATA algorithm is similar to the K-means algorithm with 

the distinct difference that the ISODATA algorithm enables for different number of 

clusters while the k-means assumes that the number of clusters is known a priori. 

(Yale, 2014). 

Supervised classification is based on that a user can select and decide sample pixels in 

an image which are representative of decided classes and then direct the image 

processing software to use these training sites as references for the classification of all 
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other pixels in the image (Figure 2.4). Training sites, which are selected based on the 

knowledge of the user, have been recorded as a spectral signature file. Each pixel was 

then assigned to the most likely class based on the maximum likelihood algorithm, the 

most commonly used classification algorithm. Maximum likelihood algorithm has  

uses the statistics of the training sets and the pixels are assigned to the class with the 

highest probability. In this classification method, the user also determines the number 

of classes that the image is classified into. Although this algorithm is slower than the 

the other classifiers,  it theoretically offers the best classification technique (Jensen, 

1996; Schowengerdt, 1997).   

 

Figure 2.4 : Steps in supervised classification (Url-1). 

After information has been extracted from previous procedures, it can be used as an 

input to other information systems. Remote sensing products are used with  generally 

integrated into a Geographical Information System. GIS is known that a data-handling 

technology, while remote sensing is a data retrieval and analysis  technology.  GIS 

integrates data for capturing, managing, analyzing, and displaying all forms of 

geographical. GIS allows to view, understand, interpret, and visualize data in many 

ways that reveal relationships in the form of maps and reports. In this respect, remote 

sensing provides a very important source of spatial data for GIS. Integration of remote 

sensing and GIS technologies significantly promote the ability to handle geo-

information (Balaselvakumar and Saravanan, 2006 ; Weng, 2009). 
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3. REMOTE SENSING SATELLITE SYSTEMS 

In spaceborne remote sensing, sensors are mounted on-board a space shuttle or satellite 

orbiting the earth. There have been many  remote sensing satellites  which provide 

images for research and operational applications. The satellite technology was initially 

used for military purposes and then it has improved rapidly in various fields.  As 

spaceborne remote sensing provides synoptic view, wide area coverage is possible. 

Spaceborne remote sensing also provides frequent and repetitive coverage ability of a 

region of interest. In general, satellite image has a lower spatial resolution compared 

to aerial photography. However, very high resolution images (up to 30 cm resolution 

from WorldView-3) are now commercially available to civilian users and they have 

been used in many applications (CRISP, 2014).  

3.1 Satellite Orbits 

Satellites move in a path around the Earth named an orbit. All satellites must have an 

orbital path  and the kind of path it takes is determined by the physics included. A 

satellite's orbit works due to a balance between two main forces. The orbit is a 

combination of the satellite's speed and the force of the Earth's gravitational pull on 

the satellite. That gravitational pull is the related to  the mass of the  Earth and satellite. 

It is known that gravity keeps the satellite's velocity from sending the satellite flying 

out in a straight line away from the Earth, and the satellite's speed keeps the force of 

gravity from pulling the satellite back to Earth.  

Most satellites follow a generally elliptical orbit around the earth. The time taken to 

complete one revolution of the orbit is named the orbital period. Generally, Remote 

sensing satellites are launched into special orbits such that the satellite repeats its path 

after a fixed time interval. This time interval is named the repeat cycle of the satellite. 

There have been three types of orbits which are geostationary, near polar and sun 

synchronous (Rutgers, 2015). 

http://www.crisp.nus.edu.sg/~research/tutorial/spacebrn.htm#satellites
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The satellites which have used geostationary orbits stay right over the same spot all 

the time  and this stationary has been above a specific point on the Earth (Figure 3.1). 

Geostationary orbits allow the satellites to observe almost a full hemisphere of the 

Earth and these satellites generally are used to study large scale phenomenon. These 

orbits are ideal for weather satellites and communications satellites. These orbits are 

commonly used for weather monitoring since satellites in this orbit provide a constant 

view of the same area. Geostationary satellites such as the Geostationary Operational 

Environmental Satellite (GOES) satellites send information about clouds, water vapor, 

and wind. After, this near constant stream of information serves as the basis for most 

weather monitoring and forecasting (NASA, 2015). However, there have been some 

disadvantages of this type of orbit. As these satellites are very far away, they have low 

spatial resolution. The other disadvantage is that these satellites sometimes have 

trouble monitoring activities near the poles (Rutgers, 2015). 

 

Figure 3.1 : Geostationary orbit (CRISP, 2014). 

A near polar orbit is one with the orbital plane inclined at a small angle in respect of 

the earth's rotation axis (Figure 3.2). A satellite using near polar orbit passes close to 

the poles and is able to include almost the whole earth surface in a repeat cycle. It takes 

about 90 minutes for the satellite to complete one orbit. These satellites have many 

uses like measuring ozone concentrations in the stratosphere and also  measuring 

temperatures in the atmosphere.  

 

http://goes.gsfc.nasa.gov/
http://goes.gsfc.nasa.gov/
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Figure 3.2 : Near polar orbit (CRISP, 2014) 

Sun synchronous orbits allow a satellite to pass over a location at a given latitude at 

the same local solar time (Figure 3.3). The satellites which use sun synchronous orbits 

have to shift their orbits about one degree per day and they orbit at an altitude between 

700 to 800 km. These orbits are generally used for satellites that need a constant 

amount of sunlight. Earth observation satellites usually follow the sun synchronous 

orbits (Rutgers, 2015). 

 

Figure 3.3 : Sun synchronous orbits (Rutgers, 2015). 
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3.2 Earth Observation Satellite System 

Earth mapping is one of the basic use of Earth-orbiting satellites. Generally, civilian 

satellites in the Landsat and SPOT series have provided Earth images which have been 

applied for a wide spectrum of applications in forestry, agriculture, hydrology, urban 

planning and geology. Satellite remote sensing systems are also a critical key in 

strategic and tactical planning for the countries in the defence sector. Military missions 

have required some important characteristics such as very high spatial resolution and 

orbital agility (Fouquet and Ward, 1998). Normally, all satellite-sensor platforms are 

characterised by the wavelength bands employed in image obtainment, spatial 

resolution of the sensor, the coverage area and the temporal resolution. In relation to 

the spatial resolution, the satellite imaging systems usually can be classified into: 

 Low resolution systems (about 1 km or more) 

 Medium resolution systems (about 100 m to 1 km) 

 High resolution systems (about 5 m to 100 m) 

 Very high resolution systems (about. 5 m or less) 

Concerning the spectral regions used in data acquisition, the satellite imaging systems 

can be classified as: 

 Optical imaging systems (cover visible, NIR, and SWIR systems) 

 Thermal imaging systems 

 Synthetic aperture radar (SAR) imaging systems 

Optical/thermal imaging systems can be categorized according to the number of 

spectral bands used: Monospectral or panchromatic systems, multispectral systems, 

superspectral (tens of spectral bands) systems and hyperspectral systems which consist 

of hundreds of spectral bands. SAR imaging systems can be classified related to the 

combination of frequency bands and polarization modes used in data obtainment, e.g.: 

(CRISP, 2014). 

 Single frequency (L-band, or C-band, or X-band) 

 Multiple frequency (Combination of two or more frequency bands) 

 Single polarization (VV, or HH, or HV) 

 Multiple polarization (Combination of two or more polarization modes)  
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3.2.1 LANDSAT Earth observation satellites 

3.2.1.1 History 

Landsat satellites have collected images of the Earth's surface for more than thirty 

years. Instruments onboard the satellites have obtained millions of images of the Earth. 

These images have provided a valid resource for researchers who work in forestry, 

urban and regional planning, agriculture, geology,  and global change research. The 

program was first started by The National Aeronautics and Space Administration 

(NASA) in 1972,  then turned over to the National Oceanic and Atmospheric 

Administration (NOAA) after it became operational (CRISP, 2014). The first three 

Landsat satellites were launched in 1972, 1975 and 1978 respectively (Figure 3.4). 

These satellites were primarily designed to acquire detailed information about the 

Earth’s natural resources, covering the condition of forests and farming areas. Also, 

they were supplied to monitor atmospheric and oceanic conditions and to disclose 

variations in pollution degree and other ecological changes. These three satellites had 

different types of cameras, involving those with infrared sensors. Landsat cameras 

provided images of interest areas (184 km) square; each such area could be acquired  

at 18-day intervals (USGS, 2014).  

The fourth and  fifth Landsat satellites were launched in 1982 in 1984 respectively. In 

1985, Landsat was transferred to a private commercial company, 

the Earth Observation Satellite Company (EOSAT) and in 1992 the U.S. government 

again took control of the program. In these newer models, there were two sensors like 

a multispectral scanner and a thematic mapper, which provides 30 m spatial resolution 

in its spectral bands. Landsat 6 failed to achieve orbit after its launch in 1993. In 1999, 

Landsat 7 was launched successfully. As Landsat 5 and 7 were nearing the end of their 

operational lifetimes, a new satellite, the Landsat Data Continuity Mission, was 

planned for launch in 2012. The most recent, Landsat 8, was  eventually launched on 

February 11, 2013 (USGS, 2015). 

http://global.britannica.com/EBchecked/topic/175962/Earth
http://global.britannica.com/EBchecked/topic/397262/multispectral-scanner
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Figure 3.4 : LANDSAT missions timeline. 

3.2.1.2 Orbit and scanning system 

The  Landsat 7 and Landsat 8 satellites, which have  still been used, have a near-polar, 

sun-synchronous orbit, following the World Reference System (WRS-2). They obtain 

images between 810 N and 810 S. They make an orbit in approximately 99 minutes, 

complete over 14 orbits per day, and enable complete coverage of the Earth every 16 

days. However, there have been 8 days offset between the two satellites. The 

descending node from north to south passses the equator between 10:00 am and 10:15 

am as local time (USGS, 2014). 

There have been used  different scanning systems in Landsat satellite series. 

Multispectral scanner (MSS) was used on Landsat-1 to 5. It had 4 spectral bands which 

change between 0.5 and 1.1 microns. Although it was one of the older generation 

sensors, data obtainment for MSS was completed in late 1992. The resolution of this 

sensor was about 80 m with radiometric coverage in four spectral bands. Table 3.1 

shows some spectral and spatial characteristics of MSS sensor (NASA, 2015). 

Table 3.1 : Landsat MSS characteristics. 

Landsat 1-2-3    
Bands 

Landsat 4-5      
Bands 

    Spectral Range                
(Microns) 

Electromagnetic   
Region 

Swath 
width 

4 1 0.5 - 0.6 Green (Visible) 
185x185 

km 

5 2 0.6 - 0.7 Red (Visible) 
185x185 

km 

6 3 0.7 - 0.8 NIR 
185x185 

km 

7 4 0.8 - 1.1 NIR 
185x185 

km 

The Thematic Mapper (TM) is a developed  sensor designed to obtain higher image 

resolution, sharper spectral separation, improved geometric fidelity and better 

http://landsat.usgs.gov/worldwide_reference_system_WRS.php
http://landsat.usgs.gov/orbit_path.php
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radiometric accuracy and resolution than the MSS sensor. They was first introduced 

with Landsat-4 in 1982. They have seven spectral bands simultaneously. As band 6 

senses thermal infrared radiation (TIR), Landsat can obtain night scenes using  band 

6. TM scenes have 30m spatial resolution in bands 1-5 and 7 while band 6 has an 120 

m spatial resolution (Table 3.2). When they are compared to MSS, bands of TM are 

more sensitive to observe spectral variations (NASA, 2015).  

Table 3.2 : Landsat TM characteristics. 

Band 
  Band 
Name 

Spectral Range                
(Microns) 

Spatial 
Resolution(m) 

Swath 
width 

Temporal 
Resolution 

1 
Blue 

(Visible) 
0.45 - 0.52 30 

185x185 
km 

16 days 

2 
Green 

(Visible) 
0.52 - 0.60 30 

185x185 
km 

16 days 

3 Red (Visible) 0.63 - 0.69 30 
185x185 

km 
16 days 

4 NIR 0.76 - 0.90 30 
185x185 

km 
16 days 

5 SWIR-1 1.55 - 1.75 30 
185x185 

km 
16 days 

6 TIR 10.04 - 12.5 120 
185x185 

km 
16 days 

7 SWIR-2 2.08 - 2.35 30 
185x185 

km 
16 days 

ETM+ (Enhanced Thematic Mapper Plus) scanning system was made for Landsat-7 

in 1999. The ETM+ instrument has an eight band multispectral scanning radiometer 

which is capable of providing high resolution image information about target surface.  

Spectral bands are similar to those of TM, except that the thermal band (band 6) has a 

higher resolution of 60 m  (120 m in TM). There has been  also an additional 

panchromatic band at 15 m spatial resolution (Table 3.3), (USGS, 2014). 
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Table 3.3 : Landsat ETM characteristics. 

Band   Band Name Spectral Range                 
(Microns) 

Spatial 
Resolution(m) 

Swath 
(km) 

Temporal 
Resolution 

1 Blue (Visible) 0.45 - 0.515 30 183 16 days 

2 
Green 

(Visible) 
0.525 - 0.605 30 183 16 days 

3 Red (Visible) 0.63 - 0.69 30 183 16 days 

4 NIR 0.75 - 0.90 30 183 16 days 

5 SWIR-1 1.55 - 1.75 30 183 16 days 

6 TIR 10.04 - 12.5 60 183 16 days 

7 SWIR-2 2.09 - 2.35 30 183 16 days 

8 PAN 0.52 - 0.90 15 183 16 days 

The Operational Land Imager (OLI), which is a scanning system  used in Landsat 8, 

measures in the visible, nir, and swir portions of the spectrum. It provides images 

which have 15 m panchromatic and 30 m multispectral spatial resolutions along a 185 

km  wide swath. OLI has used long detector arrays, with more than 7,000 detectors per 

spectral band, aligned across its focal plane to view along  the swath. This is known as 

‘push-broom’ design cause to a more sensitive instrument having improved land cover 

information with less moving parts. With the improved signal-to-noise ratio compared 

to previous Landsat instruments, it has been  expected  from  this new OLI design to 

be more reliable and to provide better performance. Apart from the other scanning 

systems, it has coastal/aerosol band for water quality applications and cirrus band for 

cloud detection (NASA, 2015). TIR sensor which has been as second sensor in Landsat 

8 has also two bands  with respect to quantum physics applications (NASA, 2015). 

Both OLI and TIR system specifications have been given in Table 3.4. 
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Table 3.4 : Landsat 8 characteristics. 

Band   Band Name 
    Spectral Range                
(Microns) 

Spatial 
Resolution(m) 

Swath 
(km) 

Temporal 
Resolution 

1 Coastal/Aerosol 0.433 - 0.453 30 185 16 days 

2 Blue (Visible) 0.450 - 0.515 30 185 16 days 

3 Green (Visible) 0.525 - 0.600 30 185 16 days 

4 Red (Visible) 0.630 - 0.680 30 185 16 days 

5 NIR 0.845 - 0.885 30 185 16 days 

6 SWIR-1 1.560 - 1.660 30 185 16 days 

7 SWIR-2 2.100 - 2.300 30 185 16 days 

8 PAN 0.500 - 0.680 15 185 16 days 

9 Cirrus 1.360 - 1.390 30 185 16 days 

10 TIR-1 10.60 - 11.20 100 185 16 days 

11 TIR-2 11.50 - 12.50 100 185 16 days 

 

3.2.2 Defense meteorological satellite program  

The Defense Meteorological Satellite Program (DMSP) satellites have observed 

environmental features  like clouds, bodies of water, snow, fire and pollution, and  they 

have recorded information (Kramer, 1994). DMSP is also used in planning and 

managing U.S. military operations worldwide. NOAA, the Navy and the Air Force 

have shared responsibility for processing the data from NOAA and DMSP satellites 

(U.S. Congress, 1994). Moreover, some of DMSP satellites have night visual sensors 

with a valid capability to measure low levels of visible and NIR radiance at night 

(Figure 3.5). Therefore, it is possible to detect and measure clouds illuminated by 

moonlight, lights from cities and motorway, fires and gas flares. The data acquired 

from these satellites has been used in many scientific and military applications. 
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Figure 3.5 : DMSP-OLS image (Url-2). 

3.2.2.1 History of DMSP 

The Department of Defense started the DMSP in the mid-1960s. This program has low 

earth-orbiting satellites and they have provided important military and environmental 

information. The ground systems development and operation of the satellites has been 

managed by NOAA. The Defense Satellite Application Program Block-1 satellites 

series, also known as P-35, was the first series of military meteorological satellites of 

the USA. There have been many block satellite series since 1962 and the latest launch 

of a DMSP satellite, which is DMSP-F19, occurred on April 3, 2014, from Vandenberg 

aboard an Atlas V rocket (Hall, 2001). 

 

3.2.2.2 Orbit system of DMSP 

The DMSP satellites have a 101 minute, sun-synchronous near-polar orbit at an 

altitude of 830 km above the surface of the Earth. The visible and infrared sensors 

obtain images through a 3000 km swath and they also have enabled global coverage 

twice per day. It is possible to obtain global information such as  clouds every 6 hours 

with combination of day-night and dawn-dusk satellites. These satellites generally 

involve polar regions at least twice and the equatorial region once per day (NOAA, 

2014).  DMSP specifications has been given Table 3.5. 

 

 

http://en.wikipedia.org/wiki/Atlas_V
http://www.nesdis.noaa.gov/about_satellites.html
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Table 3.5 : DMSP technical specifications. 

Orbit Sun synchronous near polar orbit 

Altitude 830 km 

Revisit 101 minutes 

       Sensors 

OLS        (Operational Linescan System)                           
SSM/I    (Microwave Imager)                                              
SSM/T   (Atmospheric Temperature Profiler)          
SSMT/2 (Atmospheric Water Vapor Profiler)                
SSJ/4      (Precipitating Electron & Ion   Spectrometer)       
SSIES      (Ion Scintillation Monitor) 

 

3.2.2.3 DMSP operational linescan system 

The DMSP has operated since 1970s the Operational Linescan System (OLS). The 

DMSP programme has been upgraded over time since declassification, and the latest 

series (Block-5D) include the OLS which is an oscillating scan radiometer capable of 

measuring the visible and thermal-infrared emissions. The DMSP satellite (Figure 3.6) 

has been in a sun synchronous low earth orbit,  which is about 833km altitude, and 

makes a nighttime pass usually between 20.30 and 21.30 each night (Elvidge et al., 

2001). OLS has a nominal resolution of 2.7 km and about 3000 km swath width. It has 

also 1 km spatial resolution data, which is resampled from the fine mode resolution 

which has 0.55 km resolution. This data has been distributed by National Geophysical 

Data Center (NGDC) of NOAA. The OLS sensor's main mission was the detection of 

nighttime moonlit cloud cover for regional and global meteorological forecasting for 

the Air Force. For this purpose, the visible spectral band (VIS) signal, which covers 

the visible near infrared region of the spectrum (VNIR), is intensified at night with a 

photomultiplier tube. This has made the sensor four orders of magnitude more 

sensitive and it provides to detect faint VNIR emission sources (Elvidge et al., 1997). 

When sunlight is eliminated, the light intensification cause to a valid data set where 

city lights, lightning illuminated clouds and fires can be observed. The OLS 

specifications has been given Table 3.6 (Yagi et al., 2010). 
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Table 3.6 : OLS  technical specifications. 

  Band Name     Spectral Range                
(Microns) 

Spatial Resolution(km)   
(fine - smooth) 

Swath 
width 

Radiometric 
Resolution 

Visible (day) 0.40 - 1.10 0.55 - 2.7 3000 km 6 bit 

VNIR (night) 0.47 - 0.95 0.55 - 2.7 3000 km 6 bit 

Thermal-IR 10.0 - 13.4 0.55 - 2.7 3000 km 8 bit 

 

 

Figure 3.6 : Conception of the DMSP Block 5-2 satellites, which covers DSMP-8, 

DSMP-9, DSMP-10, DSMP-11, DSMP-12, DSMP-13, and DSMP-14 (NASA, 

2015). 

A  pixel value is represented digital number denoting the average light intensity 

measured  over the year ranging from 1-63. The OLS data has been  projected to 

UTM/WGS84 projection system. Moreover, the pixels are resampled from the fine 

mode  to 1 km spatial resolution (Doll, 2008). 
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Table 3.7 : Version 4 DMSP-OLS nighttime lights time series (Url-3). 

Average Visible, Stable Lights, & Cloud Free Coverages 

Year\Sat. F10 F12 F14 F15 F16 F18 

1992 F101992 ------- ------- ------- ------- ------- 

1993 F101993 ------- ------- ------- ------- ------- 

1994 F101994 F121994 ------- ------- ------- ------- 

1995 ------- F121995 ------- ------- ------- ------- 

1996 ------- F121996 ------- ------- ------- ------- 

1997 ------- F121997 F141997 ------- ------- ------- 

1998 ------- F121998 F141998 ------- ------- ------- 

1999 ------- F121999 F141999 ------- ------- ------- 

2000 ------- ------- F142000 F152000 ------- ------- 

2001 ------- ------- F142001 F152001 ------- ------- 

2002 ------- ------- F142002 F152002 ------- ------- 

2003 ------- ------- F142003 F152003 ------- ------- 

2004 ------- ------- ------- F152004 F162004 ------- 

2005 ------- ------- ------- F152005 F162005 ------- 

2006 ------- ------- ------- F152006 F162006 ------- 

2007 ------- ------- ------- F152007 F162007 ------- 

2008 ------- ------- ------- ------- F162008 ------- 

2009 ------- ------- ------- ------- F162009 ------- 

2010 ------- ------- ------- ------- ------- F182010 

2011 ------- ------- ------- ------- ------- F182011 

2012 ------- ------- ------- ------- ------- F182012 

2013 ------- ------- ------- ------- ------- F182013 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

http://ngdc.noaa.gov/eog/data/web_data/v4composites/F101992.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F101993.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F101994.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F121994.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F121995.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F121996.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F121997.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F141997.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F121998.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F141998.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F121999.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F141999.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F142000.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152000.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F142001.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152001.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F142002.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152002.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F142003.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152003.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152004.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162004.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152005.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162005.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152006.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162006.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F152007.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162007.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162008.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F162009.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F182010.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F182011.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F182012.v4.tar
http://ngdc.noaa.gov/eog/data/web_data/v4composites/F182013.v4.tar
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4. SPECTRAL MIXTURE ANALYSIS 

Especially low resolution images  involve mixed pixels which are covered with more 

than one land use classes. This restriction can be overcome using subpixel 

classification procedures (Tompkins et al., 1997). Spectral unmixing approaches  are 

the most widely used methods for extracting  information from mixed pixels (Lu et al., 

2003). These approaches have been used for providing information to monitor 

different natural resources such as agricultural, forest, geological and environmental 

problems like rapid urbanization, deforestation, plagues and disease, forest fires 

(Quintano et al., 2012). Spectral mixture analysis (SMA) was first developed  to  

analyse  High Spectral Resolution Advanced Visible/Infrared Image Spectrometer 

(HSR AVIRIS) data. It was later applied to be used with Landsat  and other data 

(Lunetta, 1998). Before the spectral mixture model is applied, the calibration process 

must be applied to the satellite images. 

4.1  Radiometric Calibration 

In this part, the calibration procedure has been explained over Landsat data, which 

have been used widespread  in remote sensing applications. It is known that the spectral 

radiance sensed by each Landsat detector is stored as an 8 bit digital number. These 

DN values should be converted to radiance (units: W m−2 sr−1 μm−1), to reduce changes 

in the instrument radiometric calibration, and then converted to top of atmosphere 

(ToA) reflectance to decrease remote sensing variations caused by changes in the sun–

earth distance, the solar geometry, and exoatmospheric solar irradiance arising from 

spectral band differences (Figure 4.1). In other words, the aim of ToA reflectance, 

which is also called as exoatmospheric reflectance, is to find surface reflactance at the 

satellite (SERDP, 2012). Also, the radiometric parameters and sun angle values are 

required to calibrate radiometrically for satellite differences (Singh, 1985; Teillet, 

1986; Moran et al., 1992). This is especially important for applications that use Landsat 

data acquired over large areas and long time periods. The conversion of the radiance 

values sensed at the Landsat reflective and thermal wavelengths to reflectance, which 

is unitless, and brightness temperature as kelvin respectively enables data that has 

file:///C:/Users/Ciesin/Desktop/calibration/ScienceDirect.com%20-%20Remote%20Sensing%20of%20Environment%20-%20Web-enabled%20Landsat%20Data%20(WELD)%20%20Landsat%20ETM+%20composited%20mosaics%20of%20the%20conterminous%20United%20States.htm%23bib8
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physical meaning. For instance,  It can be also compared with laboratory and fieldwork 

measurements, model results, data acquired by other satellite sensors , and importantly 

enables data that can be used to obtain geophysical and biophysical products (Masek 

et al., 2006; Justice et al., 2002). 

 

 
 

Figure 4.1 : Atmospheric interference (Url-4). 

For all bands of the satellite image, 8 bit digital numbers are converted to spectral 

radiance using sensor calibration gain and bias coefficients obtained from the Landsat 

file metadata. The radiance sensed in the Landsat reflective wavelength bands the blue, 

green, red, near-infrared, and the two mid-infrared bands, are converted to ToA 

reflectance using the standard formula as: 

=
𝜋.𝐿.𝑑2

𝐸𝑆𝑈𝑁 .𝑐𝑜𝑠(𝑆𝑍)
  

   

= top of atmosphere (TOA) reflectance (unitless), (0-1) 

= 3.141593 

L = the TOA spectral radiance (W m− 2 sr− 1 μm− 1) 

d = the Earth–Sun distance  in astronomical units 

ESUN = the mean TOA solar spectral irradiance (W m− 2 μm− 1) 

SZ = solar zenith angle  
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The quantities ESUN and d are tabulated and sz is calculated from the solar elevation 

angle stored in the Landsat  L1T file metadata (Table 4.1), (NASA, 2015). The TOA 

reflectance computed as 1 is the TOA bi-directional reflectance factor and can be 

greater than 1, for example, because of specular reflectance over snow or water under 

certain solar and viewing geometries (YCEO, 2010). 

Table 4.1 : Earth-Sun distance in astronomical units. 

 

Recently, some of digital image processing softwares convert DN values of an image 

to ToA reflectance values easily using its parameters in formula 4.1  Figure 4.2 shows 

that Envi software has calibrated images using ‘MTL’ metadata files of Landsat. 

 

     Figure 4.2 : Landsat calibration dialog. 
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4.2 Spectral Unmixing 

After the calibration procedure has been applied to the satellite images,  spectral 

unmixing process can be applied to the images. There have been many spectral linear 

and nonlinear unmixing methods which have been described  recently.  

4.2.1 Non-linear spectral unmixing 

Non-linear mixing processes are quite difficult to perform and physical models usually 

do not easily provide themselves to simple mathematical solutions. The most difficult 

part is how to model these non-linearities when much of the required information is 

not available. Despite such difficulties,  there have been some noticeable approaches. 

Hapke (1981) proposed a two-stream method which includes multiple scattering into 

the expression for the bidirectional reflectance technique. A multilayer perceptron 

(MLP) is one of the most common non-linear unmixing model which is based on 

neural network models  for mixed pixel classification (Foody, 1996; Atkinson et al., 

1997).  

Non-linear methods have not been widely applied to remote sensing data because they 

are quite difficult to carry out. Also, the linear methods have been demonstrated in 

many applications to be a useful approach to analyse the variability in the data. They 

have provided powerful means for converting spectral information into data products 

with physical meaning like abundance of materials on the ground surface (Keshava 

and Mustard 2002). 

4.2.2 Linear spectral unmixing 

The spectral mixture analysis has been widely used to divide mixed pixels into its 

components. In other words, linear SMA is described that the spectral response of a 

pixel is a linear combination of all the endmembers present in the pixel. Endmembers, 

which can be defined as spectrally pure features, can be obtained from the image itself 

(called image endmembers), or measured in field conditions (Lunetta, 1998). The 

linear SMA has so far been the most popular technique among the SMA family (Wu 

and Murray, 2002). 

It is known that the dimensionality of the mixing space, which is based on principal 

component transformations, plays a significant role when selecting accurate 

endmembers. A spectral mixing space can be described as a coordinate system so that 
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a pixel at any location can be described as a mixture of spectral endmembers. The 

location within the mixing space is determined by the relative abundance of spectral 

endmembers contributing to the mixed pixel reflectance. Linear combinations of 

spectral endmembers can thus be used to describe spectra that occur within a convex 

hull prescribed by the distribution of mixed pixels and endmembers (Boardman, 1993). 

To understand the topology of the mixing space, proper selection of endmembers is 

essential, because it determines how accurately the mixture model can represent the 

reflectances. The endmember collection must accommodate the dimensionality of the 

mixing space. The true dimensionality of the mixing space is determined by the 

number of spectrally different endmembers present in the target. The apparent 

dimensionality of the mixing space is defined by the number of spectral endmembers 

which can be distinguished by the sensor. The apparent dimensionality is therefore 

limited by the number of spectral bands available, as well as the wavelengths spanned 

by the bands. The limited spatial and spectral resolution of the sensor results in a 

projection of the true high dimensional mixing space onto a lower dimensional 

representation that is constrained by the ability of the sensor to discriminate different 

surface reflectances at GIFOV scales (Small, 2001b). 

Principal component (PC) transformations have been used to quantify the 

dimensionality and topology of the spectral mixing space. This rotation reduces the 

correlations among dimensions so that the resulting PC bands (PCs) represent 

orthogonal components of diminishing variance. The accompanying eigenvalue 

distribution enables a quantitative estimate of the variance partition between the signal 

and noise-dominated PCs of the image. The mixing space may be represented with 

scatter plots of the unrotated bands. However, using scatter plots of the PCs has 

provided an ideal projection of the mixing space since the PC rotation orders the 

projections related to the variance they contribute to the scene. This explains that two 

or three PCs can usually provide a first order representation of the mixing space that 

covers the majority of image variance (Small, 2004; Price, 1997). The dimensionality 

of a image has determined the diversity of spectra that it involves and it is ultimately 

restricted by the number of spectral bands. However, noise and redundancies in the 

bands’ information content may lead to an apparent dimensionality which is less than 

the full potential dimensionality implied by the number of bands. For multispectral 

images, eigenvalues are used as indicators of the apparent dimensionality of the image. 
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The eigenvalues compute how much variance is related to each rotated dimension 

(PC). However, they do not necessarily provide an obvious threshold to  differentiate 

between noise and spectral information. When noise is accepted to be uncorrelated and 

of lower variance than the signal, the higher order PCs are expected to represent the 

difference between inherent dimensionality of the image and the potential 

dimensionality. Although higher order PCs can have low variance, they still represent 

spatially coherent information which is not represented by the lower order PCs. The 

Landsat ETM+ has enough low noise that the inherent dimensionality of spectrally 

diverse images is usually equal to the full six dimensions. The eigenvectors and 

eigenvalues of the PC transformation have given the contribution of each ETM+ band 

to each PC and the variance with respect to it (Small, 2004). 

Figure 4.3 shows eigenvectors and eigenvalues for the PCs of the global composite 

dataset. Eigenvalues (left)  have indicated that >90% of the variance of the global 

composite (circles) is related to the two primary PCs and that >98% can be defined 

with three low order PCs. Eigenvectors (right) have indicated that the first PC is most 

strongly influenced by the two SWIR bands (5,7), while the second component 

corresponds to VNIR band 4 with some contribution from visible red band 3. The third 

component has significant contributions from all six bands.  

Small (2004)  applied PCs to 30 subscenes of Landsat images. In Figure 4.4, gray 

shading has indicated scatterplot pixel density. The side view shows the two primary 

dimensions accounting for >90% of the variance with a triangular mixing space 

bounded by vegetation (V), substrate (S) and dark (D) spectral endmembers. The 

prominent spur extending from the low albedo endmember corresponds to reefs (R) 

and shallow seafloor. Figure 4.5 shows exoatmospheric  or ToA reflectance vectors 

for the three basic endmembers related to the apexes of the primary 2D mixing space 

of the global composite and the corresponding local endmembers from the mixing 

spaces of the different subscenes. The dark surface and vegetation endmembers of the 

distinct subscenes are quite consistent. The high albedo substrate endmember is 

variable in amplitude, however, it is usually convex upward with a peak at SWIR 

wavelengths. The variability is related to the diversity of rock and soil reflectances 

represented by the substrate endmember. 
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Figure 4.3 : Eigenvectors and eigenvalues for the PCs of the global composite 

dataset (Small, 2004). 

   

 
Figure 4.4 : SVD spectral endmembers (Small, 2004). 

 

 
Figure 4.5 : Endmember spectra boundingthe composite and 2D mixing spaces 

(Small, 2004). 

 

 

After endmembers are collected from scatter plots, a linear mixture model is applied 

to images. The consistency of the spectral mixing space for a variety of environments 



36 

suggests that a simple three component linear mixture model may provide a consistent, 

general characterization of land surface reflectance. The three component linear 

mixture model is based on SVD endmembers. Once the dimensionality of the mixing 

space is determined and endmembers are selected, it is straightforward to invert the 

linear mixture model for endmember fraction estimates. Inversion of the linear mixing 

model for each image pixel yields fraction estimates for each endmember. The linear 

three-component mixing model is given in continuous form by: 

R(λ) = fSES(λ) +fVEV(λ) + fDED(λ) 

 

where R(λ) is the observed reflectance profile, a continuous function of wavelength λ, 

E(λ) are the spectra corresponding to the (S),  (V) and (D) endmembers, and the 

corresponding endmember fraction estimates we seek are fS, fV, and fD. The discrete 

implementation of the model, applicable to Landsat ETM+ reflectance is given by 

 

fSe11 + fVe12 + fDe13 = r1 

fSe21 + fVe22 + fDe23 = r2 

fSe31 + fVe32 + fDe33 = r3 

fSe41 + fVe42 + fDe43 = r4 

fSe51 + fVe52 + fDe53 = r5 

fSe61 + fVe62 + fDe63 = r6 

 

where ri  is the observed reflectance vector obtained from discrete estimates of 

integrated radiance within the six ETM+ bands, eij are the endmember reflectance 

vectors corresponding to SVD endmembers, and indices i and j indicate the spectral 

band and endmember of each element respectively. An additional unity sum constraint 

equation can be incorporated to urge the fractions to sum to 1. With six or less 

endmembers, the system has more equations than unknowns and can be inverted for 

an optimal set of endmember fraction estimates chosen to minimize misfit to the 

observed reflectance vector. The overdetermined linear mixing problem, incorporating 

measurement error, can be written in matrix notation as: 

r = Ef+ɛ 

where ε is an error vector which must be reduced to have the fraction vector f which 

gives the best fit to the observed reflectance vector r (Small, 2004;  Settle and Drake, 

1993). 
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5. APPLICATION 

 

The aim of this thesis is to determine urban growth using both spectrally unmixing 

data and nighttime satellite data in cities selected as study area. First, potential Landsat 

images  cover study areas have been selected and listed. These images have covered 

most of developed and developing cities of Turkey. Then, calendar plots were 

generated using Landsat filenames for main six path and row. Moreover, the 

calibration procedure has been applied to all Landsat data and ToA reflectance values 

have been obtained. After calibration process had been completed, SMA method has 

been applied to calibrated images. This process has been applied for three different 

dates which were usually selected as 1987, 1999 and 2010. SVD maps and substrate 

fraction maps  have been  generated  and analysed for these years. Urban growth areas 

for the cities have been determined using both SMA method and nighttime satellite 

images. 

5.1 Study Area 

The study area was selected the cities developed and developing  in Turkey. These 

cities are Istanbul, Ankara, Izmir, Bursa, Kayseri, Izmit and Manisa (Figure 5.1). As 

each Landsat scene is about 185 km long and 185 km wide, sometimes one scene may 

cover more cities and districts. For instance, Landsat scene covers Izmir covers also 

Manisa province in this study and these cities have been investigated together. Path 

and row of these cities for Landsat were determined as  180_31, 180_32, 180_33, 

179_32, 177_32 and 175_33. Table 5.1 shows that population and area information for 

the cities (TurkStat, 2014). 
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Figure 5.1 : The study area. 

 

Table 5.1 : The census data and surface areas. 

Province 

  Population 
Surface area (km2) 

(2013) 
1985 2000 2010 

Ankara 3306327 4007860 4771716 25437 

Bursa 1324015 2125140 2605495 10882 

Istanbul 5842985 10018735 13255685 5313 

Izmir 2317829 3370866 3948848 12007 

Kayseri 864060 1060432 1234651 17170 

Kocaeli 
(Izmit) 

742245 1206085 1560138 3623 

Manisa 1050130 1260169 1379484 13269 
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5.2 Datasets 

After potantial study areas were determined, Landsat data archieve has been 

investigated using website of ‘http://glovisusgs.gov/  which  is managed by  the United 

States Geological Survey (USGS, 2012). Most of Landsat data are available from 1984 

to now but some of them have clouds. For this study, data have high quality without 

cloud have been selected. At the first step, 165 Landsat  5 (TM) and Landsat 7 (ETM) 

data have 180_31, 180_32, 180_33, 179_32, 177_32 and 175_33 Landsat paths and 

rows  have been downloaded in geotiff format (Figure 5.2).  

Figure 5.2 :  Landsat data download. 

5.2.1  Generation of calendar plots  

Calendar  plots were generated using Landsat filenames in unix media for six 

paths&rows. These plots have been used to select available and most suitable data for 

applications. They provide  distribution of data visually and give information about 

acquired dates of data. Also, sensor type of Landsat data is seen apparently on these 

plots. The figures below, with respect to six paths and rows, demonstrate available 

data distribution for  both Landsat 5 (TM) and 7 (ETM) images (Figures 5.3, 5.4, 5.5, 

5.6, 5.7 and 5.8).  While Landsat 5 (TM) images were represented with  a point (•), 

Landsat 7 (ETM) images were represented with a star (*).    

 

http://glovis.usgs.gov/
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          Path/Row  &  Cities 

          180_31: Istanbul  

180_32: Istanbul - Bursa 

179_32: Kocaeli (Izmit) 

175_33: Kayseri 

177_32: Ankara 

180_33: Izmir-Manisa 

 

 
   Figure 5.3 : Calendar plot of 175_33.          Figure 5.4 : Calendar plot of177_32. 

 

   

Figure 5.5 : Calendar plot of 179_32.            Figure 5.6 : Calendar plot of 180_31. 

 

  

   
Figure 5.7 : Calendar plot of 180_32.           Figure 5.8 : Calendar plot of 180_33. 
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5.3 Preprocessing 

5.3.1 Image resampling tests 

 

Image resampling is a process used to interpolate the new cell values of a raster image 

during a resizing operation. There are many resampling methods available and each 

resampling method has strengths and weaknesses. In this study, all Landsat images 

have been obtained using Cubic convolution (CC). It is a method used to determine 

the gray levels in an image through a weighted average of the 16 closest pixels to the 

input coordinates.  

Nearest neighbor (NN) is also a resampling method used in remote sensing. The 

approach assigns a value to each corrected pixel from the nearest uncorrected pixel. 

The advantages of nearest neighbor include simplicity and the ability to preserve 

original values in the unaltered scene. 

To test effects of  both resampling methods, a reference Landsat image, 

“LT51800332009618MOR” has been selected and SVD model applied to the image. 

When statistics of them was investigated, they had quite close results (Figure 5.9). 

Also, there have not been any  significant differences for images used the  both 

methods (Figures 5.10 and 5.11). 

 

Figure 5.9 : Effects of resampling methods on full image (left image:    

NearestNeighbor, right image: Cubic Convolution). 
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Figure 5.10 : NN method. 
 

 

 

 

Figure 5.11 : CC method. 
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The test has been applied to the substrate area generated by both ‘NN’ and ‘CC’ 

resampling methods. Statistic value belong to first band, substrate, for both  images 

had close results (Figures 5.12 and 5.13). Therore, resampling methods effects are 

negligible for this application so Landsat images downloaded as ‘CC’  has been used 

and analysed in the study. 

 

Figure 5.12 : Effects of NN method for substrate area.  

 
 

 

Figure 5.13 : Effects of CC method for substrate area.  
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The test has also been applied to the vegetation area generated by both ‘NN’ and ‘CC’ 

resampling methods. Statistic value belong to second band, which is related to 

vegetation, for both  images had quite close results (Figures 5.14 and 5.15). Figure 

5.16 shows that how to select pure vegetation area over the screen using scatter plot. 

 

 

Figure 5.14 : Effects of NN method for vegetation area. 

 

 

Figure 5.15 : Effects of CC method for vegetation area. 
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Figure 5.16 : Pure vegetation area selection. 

 
In addition, the test has been applied to dark surface generated by both ‘NN’ and ‘CC’ 

resampling methods. Statistic value with respect to third band, which is related to water 

covered surface, for both  images had almost same results (Figures 5.17 and 5.18). 

 

Figure 5.17 : Effects of NN method for dark surface. 
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Figure 5.18 : Effects of CC method for dark surface. 

5.3.2 Calibration of Landsat data 

Most of Landsat data are processed as Level 1 terrain corrected (L1T) data. The L1T 

data are available in GeoTIFF format in the Universal Transverse Mercator (UTM) 

map projection with World Geodetic System 84 (WGS84) datum. The Level 1T 

processing involves radiometric correction, systematic geometric correction, precision 

correction using ground control points, and the use of a digital elevation model to 

correct parallax error due to local topographic relief. 

In this study all the Landsat bands were used, except the panchromatic band, the bands 

used were the 30 m blue (0.45–0.52 μm), green (0.53–0.61 μm), red (0.63–0.69 μm), 

NIR (0.78–0.90 μm), and the two mid-infrared (1.55–1.75 μm and 2.09–2.35 μm) 

bands, and the 60 m thermal (10.40–12.50 μm) low and high gain bands. The L1T 8 

bit digital numbers were converted to spectral radiance using sensor calibration gain 

and bias coefficients derived from the Landsat file metadata. The radiance sensed in 

the Landsat reflective wavelength bands the blue, green, red, near-infrared, and the 

two mid-infrared bands, were converted to top of atmosphere reflectance using the 

standard formula in chapter 4. 
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5.4 Method 

Firstly, potential Landsat data were selected and downloaded from USGS-Glovis in 

this study. Images from 1984, 2000 and 2011 were chosen among the Landsat data to 

monitor and analyze the urban change areas within the study area. Special attention 

was paid for cloudlessness or cloudy ratio to be less than 10% while choosing these 

data. Radiometric calibration process was applied before applying the SMA method to 

selected images. Under normal conditions, spectral radiance sensed by Landsat sensors 

is stored as 8 byte DN. But these values should be converted to radiance and then to 

ToA reflectance values to minimize the changes arising from the sun - earth distance, 

solar geometry and spectral band differences. This process is important for Landsat 

data which are used for long time periods or wide areas. As in this study the changes 

during a period of approximately 30 years will be monitored, ToA reflectance values 

were calculated. 

SMA method was applied to these atmospherically calibrated images. At this stage, 

the principle is to place the mixed space appropriately into a coordinate system. PC 

conversions are used to determine the size and topology of the mixed space 

quantitatively. These transformations have minimized the correlation between axes. In 

this study, PC band of the first two lowest order with the highest variance was used in 

creating the mixed space. This mixed space topology can be represented accurately 

only through the spectral endmembers to be selected (Small, 2001 and 2004). The 

endmembers used in this study consists of global SVD endmembers acquired by the 

assessment of images which may be applied for the worldwide study area and which 

are selected from different geographical regions (Small and Milesi, 2013). These SVD 

endmembers which are being used in global scale and mixed pixels are represented in 

percentages and linear spectral mixed model was obtained. DSVD maps were also 

prepared by taking the differences of SVD layers obtained for different dates. These 

difference maps obtained are important in terms of determining the changes occurring 

on LCLU in long time periods. Finally, analyses were conducted using the ‘S’ layers 

from the three different years selected especially for the assessment of changes in 

urbanization. The general flowchart  which shows the method used has been seen in 

Figure 5.19. Also, to detect new urban areas derived from substrate maps, DMSP-OLS 

data has been used. In addition, images from Google Earth with high spatial resolution 

were used to validate  the SMA results. 
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Figure 5.19 : Flowchart of the method. 

5.5 Results 

Analyses and results especially in Istanbul have been carried out detailed due to rapid 

urbanization and complexity of the city. LCLU changes in both sides of Istanbul were 

mapped and analysed and generating SVD and tri-temporal substrate map were 

explained detailed for the city. Moreover, color composites of fraction maps were 

generated only for Istanbul. For the other cities, only substrate fraction maps were used 

to analyse urban expansion. Also, some analyses were done with respect to seismic 

hazard in Istanbul and Izmit study areas. For the other cities, general urban LCLU 

changes were determined. 

 

Istanbul 

Figures 5.20, 5.21 and 5.22 have shown Landsat false color images using 7-4-2  band 

combination. Substrate, vegetation and dark surface fraction images was generated 

using SMA method for 1984, 2000 and 2011. Figures 5.23, 5.24 and 5.25 have shown 

substrate fraction since 1984. Fraction values range from 0 to 1 and 0 value 

corresponds to 0% substrate cover, while 1 value corresponds to 100% substrate cover. 
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According to these substrate fraction maps, substrate fraction has increased 

dramatically from 1984 to 2000. Especially new urban area needs have resulted in to 

increase of substrate in the city. Also, there has been slightly increase in substrate 

fraction from 2000 to 2011 and this increase has been detected  towads out of the city. 

Figures 5.26, 5.27 and 5.28 have shown vegetation fraction since 1984. The fraction 

of vegetation cover corresponds to the fraction of ground covered by green vegetation 

and it quantifies the spatial extent of the vegetation. Because it is independent from 

the illumination direction and it is sensitive to the vegetation amount. According to 

these maps, there has not been significantly changes  in vegetation fraction except 

seasonal changes. In addition, these vegetation fraction maps have revealed 

considerable information about urban areas. In these maps, dark regions without 

surface covered by water have correspond to urban areas and their fraction values are 

very close to 0. Urban expansion in the city has been seen using these fraction maps. 

Figures 5.29, 5.30 and 5.31 have shown dark surface fraction from 1984 to 2011. 

Changes in water covered surfaces have been detected  from 1984 to 2000 using these 

fraction maps. Observing the changes in dark surface projection, changes on 

Buyukcekmece Lake and Sazlidere Dam were detected. Water covered surfaces show 

high values (very close to 1) in dark surface fraction maps. These fraction maps also 

give information about mixed pixels, which correspond to built-up areas such as urban 

areas. These figures have verified that urban areas have increased in the city since 

1984. 

Also, color composites of the fraction maps have been generated (Figures 5.32, 5.33 

and 5.34). These maps have shown changes in substrate, vegetation and dark surface 

fraction for the selected years. Similarly, these maps have verified that urban 

expansion have increased in the city since 1984. 

SVD linear mixture model was applied and SVD maps were generated using  the 

global endmembers (Figures 5.35, 5.36 and 5.37). DSVD fraction maps were obtained 

by taking the differences of SVD values from selected different years. These maps 

have  shown the changes in -S-, -V- and -D- values (Figures 5.38, 5.39 and 5.40). 
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Figure 5.20 : Calibrated Landsat TM (12.06.1984). 

 

 

 

Figure 5.21 : Calibrated Landsat ETM (02.07.2000). 

 

 

 

Figure 5.22 : Calibrated Landsat ETM (23.06.2011). 
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Figure 5.23 : Substrate fraction map of Istanbul (1984). 

 

 
Figure 5.24 : Substrate fraction map of Istanbul (2000). 

 

 
Figure 5.25 : Substrate fraction map of Istanbul (2011). 
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Figure 5.26 : Vegetation fraction map of Istanbul (1984). 

 
Figure 5.27 : Vegetation fraction map of Istanbul (2000). 

 
Figure 5.28 : Vegetation fraction map of Istanbul (2011). 
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Figure 5.29 : Dark surface fraction map of Istanbul (1984). 

 
Figure 5.30 : Dark surface fraction map of Istanbul (2000). 

 
Figure 5.31 : Dark surface fraction map of Istanbul (2011). 
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Figure 5.32 : Color composite of substrate fractions. 

 
Figure 5.33 : Color composite of vegetation fractions. 

 
Figure 5.34 : Color composite of dark surface fractions. 
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Figure 5.35 : SVD map of Istanbul (1984). 

 

Figure 5.36 : SVD map of Istanbul (2000). 

                                        

 

Figure 5.37 : SVD map of Istanbul (2011). 
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According to Figures 5.35, 5.36 and 5.37, it can be stated that S areas have increased 

from 1984 to 2011. This expansion has shown that the urban areas in the city spread 

along the north coasts of the Sea of Marmara and suburban regions towards outside of 

the city. Moreover, it is detected that the urban growth was more on the European side. 

Also, population of the European side is more than the Asian side. As the European 

side has more trade regions, immigrations have gained momentum  especially in 1990s 

(Kaya and Curran, 2006). Figures 5.38 and 5.40 show the LCLU changes between 

1984-2000 and 1984-2011, respectively. Particularly the increase in S values which 

refers to the recently built urban regions towards the west of the city is clearly seen. 

Figure 5.39 has shown that the rapid increase in S values from 1984 to 2000 has slowed 

down during the period between 2000 and 2011. The main cause of this is the reduce 

in the immigration rate from rural areas during that period (TurkStat, 2015). Again in 

Figures 5.35 and 5.36, S-D mixture is dominant  especially in inner parts of the city 

and it has been observed that the D values increased much more between 2000 and 

2011. In this situation, S values a little decreased and D values increased in the built-

up areas of the city,  it is consistent with an increase of shadow fraction from increasing 

urban growth. D values have increased due to shadow effect of the changeable height 

of buildings. High buildings have increased  after 2000 especially in built-up areas and 

suburban regions of the city.  

 

Figure 5.38 : DSVD map (shows the changes in S, V and D values between 1984 

and 2000). 
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Figure 5.39 : DSVD map (shows the changes in S, V and D values between 2000 

and 2011). 

 

 

Figure 5.40 : DSVD map (shows the changes in S, V and D values between 1984 

and 2011). 

Apart from the SVD maps, tri-temporal (color composite of substrate fractions) 

substrate maps that shows substrate changes using only the S layers  were also 

generated (Figure 5.41). According to this map, regions in which urbanization 

increased after 1984 have spread towards west and east of the city  across the coasts 

of Marmara Sea. This zone is also known as risky  seismic activity zone and it has 

been potential risk for densely populated areas (Fichtner et al., 2013). 
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Figure 5.41 : Tri-temporal substrate map (Regions changed and remained unchanged 

according to the substrate values in 1984, 2000 and 2011). 

 

The tri-temporal substrate map has shown that the increase in S values are observed in 

the region between Kucukcekmece and Buyukcekmece Lakes. It is determined that the 

new urban areas in Kucukcekmece, Buyukcekmece, Beylikduzu, Esenyurt, Basaksehir 

and Avcilar districts located in this region have expanded (Figure 5.41). The region 

between two lakes and Ikitelli Industrial zone in Basaksehir district to the northeast of 

Kucukcekmece Lake and areas around which were opened to settlement played a 

major role in the increase of S values (Sunar, 1998; Maktav et al., 2000). On the 

European side, new urban growth areas about 190 km2.  

On the tri-temporal substrate map, Sabiha Gokcen Airport and the region developed 

near it can be seen. The airport  which was opened in 2001, industry zones and 

settlement areas are the regions in which  the S increase is the most on the Asian side. 

There have been more than 110 km2  urban growth areas on the Asian side in 

Sancaktepe, Sultanbeyli, Atasehir, Pendik and Tuzla districts (Figure 5.41).  

Moreover, core areas in which were not subjected to any significant changes were 

detected. On the tri-temporal substrate map which shows the changes in the substrate 

values on 1984, 2000 and 2011, the change in S values and SVD values on LCLU 

determined in previous figures on the European side (Historical Peninsula) is very 
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small. However, there have been  various historical buildings in this area which remain 

unchanged and in 1995, the area was declared as a first degree archaeological and 

urban-historical protected area (Dincer et al., 2011). Existence of dense settlement and 

refusing new settlements for the protection of the historic fabric prevented the product 

of new urban areas here. Also, many areas which do not show a significant change in 

years in S value are within the borders of core districts of Beyoglu,  Fatih and Besiktas 

on the European side and Kadikoy and Uskudar on the Asian side (Figure 5.41). In 

addition, population densities in these districts did not change significantly and the did 

reduce even in some historical districts, such as Fatih and Beyoglu.  

Also, water covered surfaces have been analysed  from 1984 to 2000 in the study. 

Observing the changes in dark surface projection, changes on Buyukcekmece Lake 

and Sazlidere Dam, which have provided drinking and utility water to the city, were 

detected. Sazlidere Dam, which is not visible in the 1984 SVD and Landsat images, 

was constructed in 1996. Therefore, while being represented mainly by S and V values 

on the SVD map of 1984, this area is represented mainly by D value on the maps from 

2000 and 2011. In 1984-2000 and 1984-2011 DSVD maps, this dam area with 10 km2 

surface area can be clearly seen as the change area (Figures 5.38 and 5.39). As a result 

of a dam constructed on the Buyukcekmece Lake in 1988, the lake area was enlarged 

and caused an increase in the D value in this area (Figures 5.38 and 5.39). 

On the tri-temporal substrate map (Figure 5.41), another LCLU change is observed. 

On the Asian side, the increase in S values in the mining area located between the 

Omerli Dam and the Black Sea started in 1984 continues after 2000. Likewise, the 

change in mining areas lying along the coast of Black Sea on the European side is seen 

on SVD maps. These areas which are mainly represented by S value on Figure 5a are 

represented with S and D values between 2000 and 2011. This is caused by the water 

filled in gaps on the ground which occurred due to the mine searches. The decrease in 

S value around most mining areas in this region is replaced by the increase in D values. 

In the areas to the north and northeast of Arnavutkoy which are used as mining areas 

and quarry, and in the areas in Durusu, Yenikoy, Akpinar, Ciftalan and Kumkoy which 

lie parallel to the coast of Black Sea; some artificial ponds of varying sizes are located. 

New mining fields on these areas are the locations where S projection increases (Figure 

5.41). Figure 5.41 shows quarries opened to the northwest of Buyukcekmece as 
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substrate area. This substrate area is not related to urban area because  interannual 

changes in agricultural and mining phenology resulted in increase in substrate values.   

All the results above derived from the tri-temporal substrate maps are not satisfactory 

enough. They mostly show substrate areas very well between 1984 and 2000. If there 

has been any constructions on these substrate areas after 2000, it would be difficult to 

determine them using usual methods and even tri-temporal substrate maps particular 

in small spaces of the city. Therefore, in this study DSVD maps were used to map 

vertical urban growth in the inner side of the city. In these small  inner parts of the city, 

the areas were mostly involving S values in 2000, then the areas had mixture of S and  

mostly D values  in 2011 so these increasing urban growth areas were determined 

using  DSVD maps. According to DSVD maps, new urban growth areas after 2000 

Basaksehir, Avcilar, Esenyurt, Beylikduzu and Arnavutkoy  were determined on the 

European side of the city. Districts of Pendik, Umraniye, Cekmekoy, Atasehir, 

Sancaktepe and Tuzla were determined as urban growth areas on the Asian side of the 

city. 

Figure 5.42 shows that the nighttime lights acquired by DMSP/OLS in 1992, 1999, 

2012. The figure shows that the night lights have expanded since 1992 and it verifies 

the results acquired by SMA method.  

 

Figure 5.42 : Nighttime DMSP image for Istanbul (1992(B), 1999(G), 2009(R)). 
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Izmit 

Three Landsat data sets which cover Izmit were selected for 1984, 1999 and 2009 , 

and Landsat images were then calibrated using their parameters in their filenames. 

After these processes, SVD models were generated using a linear mixture model. In 

the study area, both settlement and industrial areas have been developed for these 

years. Figures 5.43, 5.44 and 5.45 show the original Landsat images with 30 m spatial 

resolution for the selected years, with RGB layers matched to 7-4-2 bands respectively. 

Figures 5.46, 5.47 and 5.48 show substrate fraction maps with respect to the selected 

years. Urban areas have shown high substrate fraction values. According to these 

maps, urban areas have grown towards east and south of the city.  

Figures 5.49, 5.50 and 5.51 show SVD models for the same years. After SVD models 

for the years 1984, 1999 and 2009 were generated, SVD layers were subtracted from 

each other, generating DSVD models. Figures 5.52, 5.53 and 5.54 show differences in 

SVD models for the three years. Figure 5.52 represents DSVD between 1999 and 1984, 

Figure 5.53 shows differences between 2009 and 1999. In this duration, dark surface 

increased more than the others, and this result can be analyzed as an increase of the 

city’s density. Figure 5.54 represents differences for SVD models between 2009 and 

1984. SVD models acquired from linear mixture models and generated difference 

models both give more information about growth and density of urban areas. These 

results provide information not only for urban areas but also potentially for other 

LCLU changes. Substrate values increased from 1984 to 1999 and after 2009 dark 

surface values have increased. Dark surfaces (excluding water) represent density value 

for built up areas in cities. Vegetation has decreased from 1984 to 2011 in that duration, 

while substrate areas have increased.  
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Figure 5.43 : Landsat TM (25.09.1984). 

 

 

 

Figure 5.44 : Landsat ETM (27.09.1999). 

 

     

 

Figure 5.45 : Landsat ETM (30.09.2009). 
  

 

 

 

 

 

 

 

 



63 

 

Figure 5.46 : Substrate fraction map of Izmit (1984). 

 

 

Figure 5.47 : Substrate fraction map of Izmit (1999). 

 

 

 

Figure 5.48 : Substrate fraction map of Izmit (2009). 
 



64 

 

                                    Figure 5.49 : SVD map of Izmit (1984). 
 

 

 

Figure 5.50 : SVD map of Izmit (1999). 

 

 

 

Figure 5.51 : SVD map of Izmit (2009). 
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DSVD maps may also be helpful to determine damages from natural disasters, like 

earthquakes. Both the Izmit and Golcuk were damaged by a magnitude 7.4 earthquake 

on August 17, 1999, that resulted in over 17,000 fatalities. The earthquake occurred 

along the North Anatolian strike slip fault that extends roughly east-west beneath the 

Gulf of Izmit (Aydoner, 2005). 

Figure 5.52 shows the SVD differences between 1999 and 1984. The south shoreline 

of the Gulf appears dark blue, indicating that the dark surface value has increased 

dramatically from 1984 to 1999. The 1999 Landsat image was acquired 10 days after 

the Marmara Earthquake. Golcuk on the southern shoreline of the Gulf is the location 

of a Turkish naval facility and another automobile factory. Both areas were severely 

damaged by the earthquake, and the majority of the area was under water. Therefore, 

while dark surface reflectance value has increased, substrate and vegetation values 

have also decreased. A similar situation occurred for the Tupras petroleum refineries 

northwest of the Gulf of Izmit. The earthquake sparked a disastrous fire at 

the Tupras petroleum refinery. Breakage in water pipelines, resulting from the quake, 

nullified attempts at extinguishing the fire. Aircraft were called in to douse the flames 

with foam. The fire spread over the next few days, warranting the evacuation of the 

area within three miles of the refinery. The fire was declared under control five days 

later, after claiming at least seventeen tanks and untold amounts of complex piping 

(Scawthorn et al., 2005). The refinery area in Figure 5.52 appears dark because the 

area was under water and some chemical liquids were used to put out the fire, so dark 

surface reflectance is much higher than substrate reflectance. Figure 5.53 shows that 

substrate values have increased in both areas (Golcuk shoreline and Tupras refinery) 

because these areas have been built and repaired after the earthquake (Uysal and 

Maktav, 2015). 

 

http://earthquake.usgs.gov/research/geology/turkey/index.php
http://en.wikipedia.org/wiki/T%C3%BCpra%C5%9F
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Figure 5.52 : DSVD map (between 1999 and 1984). 

 

 

Figure 5.53 : DSVD map (between 2009 and 1999). 

 

 

 

 

Figure 5.54 : DSVD map (between 2009 and 1984). 
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However, the main focus in this research was urban development. Therefore, S layers 

were more important than the others. All substrate images for three different years 

(1984, 1999, 2009) have been generated for the study area. These substrate images 

have been matched with RGB layers; red represented 2009 substrate image, green 

represented 1999 substrate image and blue represented 1984 substrate image. 

Therefore, new substrate areas (soil and settlement areas) after 2009 appear in red and 

similar tones. Substrate areas that have expanded after 1999 appear yellow or similar 

tones. Figure 5.55 shows a tri-temporal substrate map of the vicinity of the Gulf of 

Izmit. However, there are some large red areas towards the northern-central side of the 

study area, which is a forest region (cut forest area). Although they are not new urban 

areas, they have substrate reflection. DMSP data has been used to determine the forest 

region is not urban area (Figure 5.56). 

 

 

 

Figure 5.55 : Tri-temporal substrate map of Izmit. 
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Figure 5.56 : Tri-temporal substrate map (left) and DMSP  image. 

 

Ankara 

Figures 5.57, 5.58 and 5.59 show orginal Landsat images with 30 m spatial resolution  

for 1987, 2003, 2010 and RGB layers were matched 7-4-2 bands respectively. 

 

Figure 5.57 : Landsat TM image (20.08.1987). 
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Figure 5.58 : Landsat TM image (15.08.2003). 

 

Figure 5.59 : Landsat TM image (18.08.2010). 

Figures 5.60, 5.61 and 5.62 show substrate fractions for 1987, 2003 and 2010 

respectively. Figures 5.63, 5.64  and 5.65 show SVD models for the selected years. In 

this study area, SVD maps have shown that there have been large areas with respect to 

substrate areas. The intensive substrate content, which shows high albedo, has not 

given meaningful results for the urban growth using only SVD maps. Also, green 

vegetation has rarely been seen in the study area. Therefore, especially the other DSVD 

and Tri-temporal substrate maps have been used for the analysis. 
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Figure 5.60 : Substrate fraction map of Ankara (1987). 

 

Figure 5.61 : Substrate fraction map of Ankara (2003). 

 

Figure 5.62 : Substrate fraction map of Ankara (2010). 
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Figure 5.63 : SVD map of Ankara (1987). 

 

Figure 5.64 : SVD map of Ankara (2003). 

 

Figure 5.65 : SVD map of Ankara (2010). 
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When SVD layers were subtracted from each other, DSVD maps were generated 

(Figures 5.66, 5.67, 5.68).  

 

Figure 5.66 : DSVD map (2003-1987). 

 

Figure 5.67 : DSVD map (2010-2003). 

 

Figure 5.68 : DSVD map (2010-1987). 
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Figures  5.69 and 5.70 have shown urban growth in Ankara, especially north and west 

of the city has been growing in both maps. Although there has been very high substrate 

reflectance in the study area, tri-temporal substrate map has provided useful analyses 

related to urban growth. According to these analyses, the city has expanded towards 

to outside of the city. Especially new urban areas have increased out of the city 

especially in districts such as  Etimegut,Sincan and Yenimahalle which have been in 

the west side of the city. Moreover, there have been another urban growth region in 

the north and this region has covered many districts like  Kecioren, Altindag and 

Pursaklar. 

 

 

Figure 5.69 : Tri-temporal substrate map of Ankara. 
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Figure 5.70 : Nighttime DMSP image for Ankara (1992(B), 1999(G), 2009(R)). 

 

Bursa 

Similarly, SMA method have been applied to Bursa and urban growth areas have been 

acquired clearly.  Years were selected as  1984, 2000 and 2011 from the calendar plots 

related to Bursa. Figures 5.71, 5.72 and 5.73 have shown Landsat false color images 

using 7-4-2  band combination. Figure 5.74, 5.75 and 5.76 show substrate fractions for 

1984, 2000 and 2011 respectively. According to these substrate fraction images, the 

city has grown and expanded towards west and north of the city since 1984. SVD linear 

mixture model was applied and SVD maps were generated using  the global 

endmembers (Figures 5.77, 5.78 and 5.79). DSVD fraction maps were obtained by 

taking the differences of SVD values from the selected years. These maps have  shown 

the changes in -S-, -V- and -D- values (Figures 5.80, 5.81 and 5.82). 
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Figure 5.71 : Landsat TM image (12.06.1984). 

 

Figure 5.72 : Landsat ETM image (02.07.2000). 

 

Figure 5.73 : Landsat TM image (23.06.2011). 
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Figure 5.74 : Substrate fraction map of Bursa (1984). 

 

Figure 5.75 : Substrate fraction map of Bursa (2000). 

 

Figure 5.76 : Substrate fraction map of Bursa (2011). 

In Figure 5.77 , the image has more substrate areas than the other two SVD maps 

(Figures 5.78 and 5.79) because this image has included agricultural area on the 

northeastern side of the it. Some seasonal varibility or harvest type or time may result 

in to this effect. But DSVD fraction maps have provided to solve this problem. 
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Figure 5.77 : SVD map of Bursa (1984). 

 

Figure 5.78 : SVD map of Bursa (2000). 

 

Figure 5.79 : SVD map of Bursa (2011). 

The DSVD maps show that most new urban areas have increased towards to the west 

side due to industrial activities in this region. However, there have been densely 
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populated areas in the east of the city in which Osmangazi, Yildirim and Gursu districts 

have been. In the east side, there have been slightly growth towards to out of the city. 

 

Figure 5.80 : DSVD map (2000-1984). 

 

Figure 5.81 : DSVD map (2011-2000). 

 

Figure 5.82 : DSVD map (2011-1984). 
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Not only DSVD maps but also tri-temporal substrate map have shown that the city has 

expanded to the west side of Bursa (Figure 5.83). Also Figure 5.84 which shows night 

lights since 1992 has almost provided same results. Increasing industrial region in the 

west have caused to densely urban areas especially in Nilufer district of the city. 

 

Figure 5.83 : Tri-temporal substrate map of Bursa. 

 
 

Figure 5.84 : Nighttime DMSP image for Bursa (1992(B), 1999(G), 2009(R)). 
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Kayseri 

The Landsat data sets which include Kayseri were selected for 1987, 1998 and 2010 , 

and these images were then calibrated using their parameters in their filenames. After 

this procedure, SVD models were generated using a linear mixture model. Figures 

5.85, 5.86 and 5.87 show the original Landsat images with 30 m spatial resolution for 

the selected years, with RGB layers matched to 7-4-2 bands respectively. Figures 5.88, 

5.89 and 5.90 show substrate fractions for the selected years. These fraction maps has 

revealed that the organized industrial site has expanded in the west of the city since 

1987. Figures 5.91, 5.92 and 5.93 show SVD models for the same years. There has 

been high substrate albedo in the study area like in Ankara study area. Therefore, 

DSVD maps with respect to the study area have been analysed. 

 

Figure 5.85 : Landsat TM image (20.07.1987). 

 

Figure 5.86 : Landsat TM image (18.07.1998). 
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Figure 5.87 : Landsat TM image (04.08.2010). 

 

Figure 5.88 : Substrate fraction map of  Kayseri (1987). 

 

Figure 5.89 : Substrate fraction map of Kayseri (1998). 



82 

 

Figure 5.90 : Substrate fraction map of Kayseri (2010). 

 

Figure 5.91 : SVD map of Kayseri (1987). 

 

 

Figure 5.92 : SVD map of Kayseri (1998). 
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Figure 5.93 : SVD map of Kayseri (2010). 

 
 
Figure 5.94 shows the SVD differences between 1998 and 1987. According to this 

map, some areas, where the organized industrial site has been in the west of the city, 

have as urban growth areas have increased in the west related to commercial activities. 

Also, new settlement areas in the south of the city has been detected. Figure 5.95 has 

shown the differences between 2010 and 1998 and this map has shown that there have 

been increasing some urban areas showing magenta (increased S+D) post 1998 

especially in west side of the city. 

 

 

Figure 5.94 : DSVD map (1998-1987). 
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Figure 5.95 : DSVD map (2010-1998). 

 

Figure 5.96 : DSVD map (2010-1987). 

The SVD maps have not given enough information about urban growth and LCLU 

changes in the study area due to high substrate albedo. However, using tri-temporal 

substrate maps, which consist of only substrate layers for the selected years, has 

provided that new urban growth areas have been in the west and east limitedly (Figure 

5.97). Also, the nightlight data and tri-temporal substrate maps have brought  out 

similar results for the urban growth regions. However, SMA has indicated that there 
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has not been densely urban growth especially in the city center and surrounding of it 

(Figure 5.98). 

 

Figure 5.97 : Tri-temporal substrate map of Kayseri. 

 

Figure 5.98 : Nighttime DMSP image for Kayseri (1992(B), 1999(G), 2009(R)). 
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Izmir 

Figures  5.99, 5.100 and 5.101 have shown Landsat false color  and SVD linear mixture 

model was applied to these calibrated images (Figures 5.105, 5.106 and 5.107). 

Substrate fraction maps have been generated for the selected years (Figures 5.102, 5. 

103 and 5.104). The SVD maps were generated using  the global endmembers. DSVD 

fraction maps were acquired by taking the differences of SVD values from the selected 

years. These maps have  shown the changes in -S-, -V- and -D- values (Figures 5.108, 

5.109 and 5.110). 

 

Figure 5.99 : Landsat TM map (12.06.1984). 

 

Figure 5.100 : Landsat ETM map (16.06.2000). 
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Figure 5.101 : Landsat TM map (17.06.2009). 

 

 

Figure 5.102 : Substrate fraction map of  Izmir (1984). 
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Figure 5.103 : Substrate fraction map of  Izmir (2000). 

 

Figure 5.104 : Substrate fraction map of  Izmir (2009). 

 

SVD maps has shown that substrate areas were increased considerably between 1984 

and 2000. Increase of urban growth areas towards to east of the city  has resulted in S 

values between 1984 and 2000. Also, some mining areas in which have been mostly 

in Bornova district have caused to expansion of substrate values. In addition, 

vegetation values were decreased between  1984 and 2000 because of expansion of 

urban areas. 
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Figure 5.105 : SVD map of Izmir (1984). 

 

Figure 5.106 : SVD map of Izmir (2000). 
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Figure 5.107 : SVD map of Izmir (2009). 

DSVD maps in Figures 5.108, 5.109 and 5.110 have revealed not only new urban areas 

but also other land cover changes. According to this map, changes related to the 

coastline has been determined and also new breakwaters and port constructions have 

been detected in the Gulf of Izmir. DSVD maps also have indicated that S areas have 

increased in and surrounding of Kemalpasa district. This axis covers an important 

industrial region along the highways and agricultural areas have been changed to 

industrial areas in this region. This situation has caused to urbanization and other 

LCLU changes for outside of the city (Ozen et al., 2014). 

 

Figure 5.108 : DSVD map (2000-1984). 
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Figure 5.109 : DSVD map (2009-2000). 

 

Figure 5.110 : DSVD map (2009-1984). 

DSVD maps and tri-temporal substrate map have indicated that the city has grown 

towards to east along the highways which pass through Bornova and Kemalpaşa 

districts (Figure 5.111). In the north of the city, Karsiyaka, Cigli and Bayrakli  districts 

are the other growth areas. The other urban growth axis has been in the south of the 

city and this region has covered districts such as Balcova, Narlidere and Buca. 

Gaziemir is the other growing region due to the fact that Adnan Menderes Airport has 

been in this district. The DMSP-OLS image related to Izmir has shown that growing 

regions have been especially in the east and south of the city (Figure 5.112). 
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Figure 5.111 : Tri-temporal substrate map of Izmir. 

 

 

Figure 5.112 : Night-time DMSP image for Izmir (1992(B), 1999(G), 2009(R)). 
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Manisa 

As Manisa and Izmir cities have been same Landsat path/row, Landsat data sets were 

selected same with Izmir which were acquired by 1984, 2000 and 2009.  These Landsat 

images were then calibrated using their parameters in their filenames. After these 

processes, SVD models were generated using a linear mixture model. Figures 5.113, 

5.114 and  5.115 show the original Landsat images with 30 m spatial resolution for the 

selected years, with RGB layers matched to 7-4-2 bands respectively. Figures 5.116, 

5.117 and 5.118 show substrate fraction images for the selected years. Figures 5.119, 

5.120 and 5.121 show SVD models for the same years. 

 

 

Figure 5.113 : Landsat TM map (12.06.1984). 
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Figure 5.114 : Landsat ETM map (16.06.2000). 

 

 

Figure 5.115 : Landsat TM map (17.06.2009). 
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Figure 5.116 : Substrate fraction map of  Manisa (1984). 

 

Figure 5.117 : Substrate fraction map of  Manisa (2000). 

 

Figure 5.118 : Substrate fraction map of  Manisa (2009). 
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According to SVD maps, substrate areas have increased since 1984. Figure 5.122 

shows that substrate areas have increased especially west of the city due to organized 

industrial site. Also, there has been considerable increase towards to east side of the 

city. DSVD maps verifiy that the industrial region has increased dramatically after 

2000 (Figure 5.123). Manisa is one of the cities showing industrial development and 

urban growth rapidly in Turkey (Gulersoy, 2013). 

 

Figure 5.119 : SVD map of Manisa (1984). 
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Figure 5.120 : SVD map of Manisa (2000). 

 

 

Figure 5.121 : SVD map of Manisa (2009). 



98 

 

Figure 5.122 : DSVD map (2000-1984). 

 

Figure 5.123 : DSVD map (2009-2000). 
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Figure 5.124 : DSVD map (2009-1984). 

Apart from the DSVD maps, tri-temporal substrate maps that shows substrate changes 

using only the S layers  were also generated (Figure 5.125).  According to this map, 

regions in which urbanization increased after 1984 have spread towards west of the 

city  across the highway which goes to Izmir. Also, DMSP-OLS image verifies the 

SMA results and they have indicated parallel results with respect to urban growth 

direction in Manisa (Figure 5.126). 
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Figure 5.125 : Tri-temporal substrate map of Manisa. 

 

 
 

Figure 5.126 : Night-time DMSP image for Manisa (1992(B), 1999(G), 2009(R)). 

 
 

5.6 Validation 

 

In this study, vicarous validation has been applied to Istanbul which is one of the fastest 

growing cities in Europe and is the most densely populated city of Turkey.  As there 

have not been enough high resolution images related to selected years for the other 

study areas,  vicarous validation has not been applied to them. According to DSVD 

maps, new urban growth areas after 2000 Basaksehir, Avcilar, Esenyurt, Beylikduzu 

and Arnavutkoy  were determined on the European side of the city (Figure 5.128). To 

provide accuracy of these results, high resolution Google Earth images of   2002 and 

2011 were used and tested in districts of Basaksehir, Avcilar, Esenyurt (Figure 5.127). 
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These test areas showed that both results have strong correlation and these results are 

verified image pairs with high spatial resolution acquired in 2002 and 2011.  

 

 

Figure 5.127 : The high resolution images taken from Google Earth show urban 

growth between 2002 and 2011 on the Europen side of the city. The  images have 

been named as a, b, c and d from the top to bottom. While a and b show urban 

growth in Basaksehir district, urban growth changes in Esenyurt and Avcilar districts 

have been showed as c and d respectively in Figures  5.127 and 5.128. 
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Figure 5.128 : The base map shows change areas where there has been conspicuous 

increases in both Substrate & Dark fractions on the DSVD maps between 2000 and 

2011 years for the European side of the city. 
 

 

 

Accuracy Assessment for urban areas in Istanbul has been applied in the study. 50  

random points were created over the substrate fraction  image using ArcMap 10.1 

software (Figure 5.129). As a reference map, Google Earth images, which have  high 

spatial resolution, have been used in the accuracy assessment (Figure 5.130). There 

have not been enough high resolution images in 2000 therefore, Google Earth images, 

which are 2001 and 2000  images, have been used to check  new urban areas in 

Istanbul. Accuracy assessment was calculated as 90 % for the urban test area (Table 

5.2).  

 

 

 

 

 

a1&a2 

a4 

a3 
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Figure 5.129 : Result map of urban change areas (substrate map). 

 

 

 

Figure 5.130 : Reference map (Google Earth). 
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Table 5.2 : Accuracy Assessment. 

 

points Result Map Reference map points Result Map Reference map 

1 U U 26 U U 

2 U U 27 U U 

3 U U 28 U U 

4 U U 29 U U 

5 U U 30 U U 

6 U U 31 U U 

7 U NU 32 U NU 

8 U U 33 U U 

9 U U 34 U U 

10 U U 35 U NU 

11 U U 36 U U 

12 U U 37 U U 

13 U U 38 U U 

14 U U 39 U NU 

15 U U 40 U U 

16 U U 41 U U 

17 U U 42 U U 

18 U U 43 U U 

19 U U 44 U U 

20 U U 45 U NU 

21 U U 46 U U 

22 U U 47 U U 

23 U U 48 U U 

24 U U 49 U U 

25 U U 50 U U 

  Overall accuracy (%) = 90 U: Urban, NU: Non-Urban 
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6. CONCLUSIONS AND RECOMMENDATIONS  

Using the SMA method which is applied to determine  the spatial and temporal 

changes in LCLU. In this study, urban growth was determined by monitoring and 

analyzing the different LCLU changes that occur in developed or developing cities of 

Turkey by applying SMA method to LANDSAT images  usually from 1984, 2000 and 

2011. The results showed that  most of the cities entered into a rapid urban growth 

process from since 1984. Also, unchanged areas and LCLU changes with limited urban 

growth were detected in some study areas. Apart from urban growth, changes in areas 

covered with water and in mining areas were also observed. Thanks to the rapid 

applicability provided by this method, this was determined to be a suitable method to 

determine the changes in land use in other cities using the global endmember values. 

This method also can be used in many disaster monitoring and management 

applications.   

Also, SMA method is not only limited to the horizontal urban growth different from 

other standard classification methods, but it may also provide useful information 

regarding the vertical urban growth. In this study, in inner parts in densely populated 

districts of cities especially in Istanbul, it is observed that S value decreases and D 

value increases when SVD maps from 1984 to 2011 are examined. This shows that the 

city reached a built-up position and that there are more complex pixels on the image. 

Also, dark surface fraction maps have supported that Istanbul has reached a built-up 

position and the city has grown vertically since 2000. For cities in such situation, it is 

only possible to talk about vertical growth in the form of inner city. The data 

approximately belonging to the same period of time and where the atmospheric impact 

is minimum, should be used to be able to mention such a vertical urban growth. 

However, such analyses are generally expected to produce trustable results only in 

well planned cities. In 2013, the digital surface model of Istanbul was obtained using 

the Lidar technology which will enable precise determination of the vertical growth of 

the city. Thus, the ability of SMA method to determine the areas where vertical urban 

growth occur will be revealed in a sounder manner. Detailed studies related to vertical 

urban growth for some test areas of Istanbul will be done in future studies. 
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In addition, spectral mixture model is used with integration of nighttime satellite 

images, they both provide more meaningful results in urban growth analysis. However, 

nighttime satellite images have provide limited information in small study areas. They 

should be used in big cities, regional and global applications. 
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APPENDIX A.1: Global Endmember Table. 

 

 

 

Table A.1 : Global Endmember Table. 

λ S V D 

0.479 0.265 0.095 0.074 

0.561 0.351 0.088 0.045 

0.661 0.403 0.048 0.023 

0.835 0.518 0.619 0.015 

1.651 0.561 0.193 0.003 

2.208 0.477 0.065 0.001 
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