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DIRAC SYSTEMS IN TERMS OF THE BERRY GAUGE FIELDS
AND EFFECTIVE FIELD THEORY OF A TOPOLOGICAL INSULATOR

SUMMARY

Dirac systems in terms the of Berry gauge fields and the effective field theory of
a time-reversal invariant topological insulator are investigated. Dirac systems or
Dirac-like systems are non-relativistic systems, e.g. condensed matter systems, where
the description of the physical system is given by either the massive or massless
Dirac Hamiltonian. The Dirac systems investigated in this thesis are the time-reversal
invariant topological insulators. A topological insulator is a bulk insulator with
conducting edge states characterized by a topological number. The first theoretical
model of the time-reversal invariant topological insulators is the Kane-Mele model
of graphene where the intrinsic spin-orbit interaction and time-reversal symmetry is
predicted to cause a quantized spin Hall current at the edges , leading to a quantized
spin Hall conductivity given by the the topological Chern number.

As the theoretical background, the explicit derivation of 2 4 1 dimensional massless
Dirac Hamiltonian on graphene is given. The Berry gauge field and the corresponding
Berry curvature are defined for massive free Dirac Hamiltonian in arbitrary dimensions
employing the Foldy-Wouthuysen transformation of the Dirac Hamiltonian. The
definitions of the first and second Chern numbers in terms of Berry curvature are given.
In the first part of the thesis, a semiclassical formulation of the quantum spin Hall
effect for physical systems satisfying Dirac-like equation is introduced. Quantum
spin Hall effect is essentially a phenomenon in two space dimensions. In the
semiclassical formulation adopted in the thesis, the position and momenta are classical
phase space variables, and spin is not considered as a dynamical degree of freedom.
The derivation of the matrix-valued one-form lying at the heart of the semiclassical
formulation adopted is made explictly using a wave-packet constructed from the
positive energy eigenstates of free Dirac equation. Defining the symplectic two-form
and employing Liouville equation, the semiclassical matrix-valued equations of motion
are obtained. The phase space measure, Wy, and time evolutions of phase space
variables, W, /2 and Piwy /2, are obtained in terms of the phase space variables. As an
introductory example, the formalism is displayed through the anamolous Hall effect.
The anamolous Hall conductivity is established from the term linear in the electric
field and the Berry curvature in W, /2- The semiclassical formulation adopted is then
illustrated within the Kane-Mele model of graphene in the absence and in the presence
of the Rashba spin-orbit coupling term. The spin Hall current is defined with the aid
of the equations for the time evolutions of phase space variables in terms of phase
space variables. The spin Hall conductivity is established from the term linear in
the elctric field and the Berry curvature in X;w; /2. It is shown that if one adopts the
correct definition of the spin current in two space dimensions, the essential part of
the spin Hall conductivity is always given by the spin Chern number whether the
spin is conserved or not at the quantum level. In the absence of Rashba spin-orbit
coupling, the third component of spin is conserved, and the definition of the spin Hall
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current is straightforward. In the presence of Rashba spin-orbit coupling, the third
component of spin is not conserved so that a suitable base of spin eigenstates need
to be employed to define spin Hall current. The anomalous velocity term survives in
any d + 1 spacetime dimension, since independent of the spacetime dimension and the
origin of the Berry curvature in the time evolution of the coordinates there is always
a term which is linear in both electric field and the Berry field strength. In the basis
where a certain component of spin is diagonal this term will be diagonal.

In the second part of the thesis, a field theoretic investigation of topological insulators
in 2+ 1 and 4 4 1 dimensions is presented using Chern-Simons theory and a method
of dimensional reduction. Chern-Simons actions emerge as the effective field theories
from the actions describing Dirac fermions in the presence of external gauge fields. A
time-reversal invariant topological insulator model in 24 1 dimensions is discussed and
by means of a dimensional reduction the 1 4 1 dimensional descendant is presented.
The field strength of the Berry gauge field corresponding to the 4 4+ 1 dimensional
Dirac theory is explicitly derived through the Foldy-Wouthuysen transformation.
Acquainted with it, the second Chern number is calculated for specific choices of
the integration domain. The Foldy-Wouthuysen transformation which diagonalizes
the Dirac Hamiltonian is proven to be a powerful tool to perform calculations in
the effective field theory of the 4 + 1 dimensional time-reversal invariant topological
insulator. A method is proposed to obtain 3+ 1 and 2+ 1 dimensional descendants of
the effective field theory of the 4 + 1 dimensional time reversal invariant topological
insulator. Inspired by the spin Hall effect in graphene, a hypothetical model of the time
reversal invariant spin Hall insulator leading to a dissipationless spin current in 3 4 1
dimensions is proposed. In terms of the explicit constructions presented in this thesis,
one can discuss Z, topological classification of TRI insulators in a tractable fashion.
In principle, the approach presented can be generalized to interacting Dirac particles
where the related Foldy-Wouthuysen transformation at least perturbatively exists.
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BERRY AYAR ALANLARI CINSINDEN DIRAC SISTEMLERI
VE BiR TOPOLOJiK YALITKANIN ETKIN ALAN KURAMI

OZET

Berry ayar alanlar1 cinsinden Dirac sistemleri ve zaman tersinmesi altinda defismez
bir topolojik yalitkanin etkin alan kurami incelenmistir. Dirac sistemleri ya da diger
bir ismi ile Dirac-benzeri sistemler, kiitleli ve ya kiitlesiz Dirac Hamilton fonksiyonu
ile betimlenen yogun madde sistemleridir. Tezde incelenen Dirac sistemleri zaman
tersinmesi altinda degismez kalan topolojik yalitkanlardir. Topolojik yalitkanlar, i¢
kisimlarinda yalitkan olmalarina ragmen iletken kenar durumlarina sahip olan ve
topolojik degismezler ile karakterize edilen sistemlerdir.

Maddenin simetri kirilmasi ile siniflandirilmasi bilinmektedir. Kati-sivi- gaz sistemleri
Oteleme simetrisinin kirilmasi ile, manyetik malzemeler, donme simetrisinin kirilmasi
ile ve siiperiletkenlik ayar simetrisinin kirilmasi ile betimlenmektedir. Topolojik
yalitkanin betimlemesi simetri kirilmasi ile verilememektir ve bdylece topolojik
yalitkan, topolojik olarak betimlenen maddenin yeni bir faz1 olarak ortaya ¢cikmustir.
Siradan yalitkan topolojik olarak bakildiginda trivial bir yapida olmasina ragmen
topolojik yalitkan trivial olmayan bir yapidadir. Topolojik yalitkan kavraminin ortaya
cikmasi esas olarak kuantum Hall olayinin topolojik bir faz oldugunun anlasilmasi ile
basglamistir.

Klasik Hall olayinda dis bir manyetik alan icerisinde ilerleyen yiiklii parcaciklar,
manyetik alana ve ilerleme yoniine dik bir elektrik alan ve yiik akimi olustururlar.
Olusan yiik akimi ile dik elektrik alanin orami Hall iletkenligi ile verilir. Hall
iletkenligi, dis manyetik alan ile siirekli ve dogru orantili olarak artar. iki boyutlu

etkilesmeyen elektron sisteminde diisiik sicaklik ve yiiksek manyetik alan altinda

meydana gelen kuantum Hall olayinda ise kuantum Hall iletkenligi % ' nin tamsay1

katlar1 olacak sekilde kuantize degerler almaktadir. Enine iletkenlikteki bu kuan-
tizasyon 10° mertebesinde hassastir. Safsizliklardan etkilenmemektedir. Kuantum
Hall sisteminin olusumu herhangi bir simetri kirilmasi ilkesi ile verilememistir.
Kuantum Hall iletkenligini betimleyen kuantize tamsayimin topolojik bir degismez
oldugunun gosterilmesi ile beraber kuantum Hall sistemi topolojik fazlarin ilk 6rnegi
olarak ortaya ¢ikmistir. Topolojik degismezler, ilgili topolojik uzaya ait olan ve
siirekli deformasyonlar altinda degismez kalan sayilardir. Kuantum Hall olayinin,
topolojik fazlarin ilk Ornegi olarak ortaya cikmasi ile yogun madde sistemlerinin
incelenmesinde geometri ve topoloji 6nem kazanmaya baslamistir. Iki boyutlu
bir sistem olan grafen yapraklarinda yiik tasiyicilarin etkin olarak kiitlesiz Dirac
denklemini sagladiginin gosterilmesi de bu gelismede 6nemli bir agama olmustur. Zira,
Dirac Hamilton fonksiyonunun topolojik 6zellikleri, yanki uyandiran bu gelismeler
oldugunda halihazirda 6nemli bir arastirma konusuydu. Berry ayar alanlari, Dirac
Hamilton fonksiyonu ile betimlenen yogun madde sistemlerinin topolojik yapisini
incelemek i¢in kullanilmistir. Berry ayar alanindan elde edilen Berry egriligi topolojik
bir degismez olan Chern sayisinin hesaplanmasini saglar. Zaman tersinmesine sahip
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bir topolojik yalitkanin Chern sayist sifirdan farklh ¢ikmaktadir.

Teorik altyapiy1 olusturmak icin 6ncelikle graphene iizerindeki kiitlesiz 2 4 1 boyutlu
Dirac Hamilton fonksiyonunun ¢ikarimi verilmistir. En yakin komsu etkilesmesi
iceren siki baglanma Hamilton yogunlugundan baglayarak, Dirac noktalar1 etrafinda
ve siirekli limitte kiitlesiz 2 + 1 boyutlu Dirac Hamilton fonksiyonu elde edilir. Grafen,
karbon atomlarindan olusan iki boyutlu altigen bir 6rgii yapisina sahiptir. Altigen
Brillouin bolgesinin kenar noktalar1 Dirac noktalar1 olarak adlandirilir. Grafenin
kuramsal acidan onemi, enerji dagimim bagintisinin Dirac noktalari civarinda lineer
olmas1 ve bu noktalar civarinda yapilan yaklagiklik ile elektronlarin grafen iizerinde
etkin olarak 2 4 1 boyutlu kiitlesiz Dirac denklemini saglamasidir. Foldy-Wouthuysen
doniisiimii, Dirac Hamilton fonksiyonunu kdsegenlestirmeye yarayan bir doniisiimdiir.
Foldy-Wouthuysen doniisiimii kullanilarak bir ayar alam1 tanimlanabilir. Bu saf bir
ayar alanidir ve ilgili egrilik 6zdes olarak sifirdir. Foldy- Wouthuysen doniisiimii ile
edilen ayar alaninin pozitif enerji 6zdurumlar iizerine izdiistimii alinirak Berry ayar
alanm1 ve Berry ayar alani kullanilarak ilgili Berry egriligi tammmlanir. Bu sekilde Berry
ayar alan1 ve Berry egriligi herhangi bir boyutta tanimlanabilir. 2 + 1 boyutta Berry
egriliginin entegrali birinci Chern sayisini verir. 4 + 1 boyutta Berry egriligi uygun bir
sekilde entegre edilerek ikinci Chern sayis1 elde edilir.

Dirac-benzeri denklem saglayan fiziksel sistemler icin kuantum spin Hall etkisinin
incelemesi yar1 klasik bir formulasyon ile yapilmistir. Bu incelemede diferansiyel
formlar kullanmilmistir.  Kullamilan yar1 klasik formulasyonda, klasik faz uzayi
degiskenleri olan konum ve momentum dinamik serbestlik degiskenleri iken spin
dinamik bir serbestlik derecesi olarak alinmamustir. Spin, kullanilan yar1 klasik
formulasyonun matris degerli biiyiikliikkler icermesinde kendini gostermektedir.
Herhangi bir boyutta Dirac denkleminin pozitif enerji ¢oziimleri kullanilarak kurulan
dalga paketi yoluyla dalga paketinin dinamigini betimleyen 1-form elde edilmistir.
Bu I-form kullanilarak herhangi bir boyuttaki simplektik 2-form elde edilmistir.
2+ 1 boyutlu simplektik 2-form ve Liouville denklemi kullanilarak, yari klasik
hareket denklemleri elde edilmistir. Bu hareket denklemlerinin yardimiyla, faz uzay:
Olciisli, konum ve momentumun zaman evrimleri i¢in klasik faz uzayi degiskenleri
konum ve momentum cinsinden yar1 klasik denklemler elde edilmistir. Spin Hall
akimi faz uzayi Olciisii ve konumun zaman evrimi ile tanimlanmistir. Formulasyon,
anomal kuantum Hall etkisi, Rashba spin yoriinge etkilesmesi iceren ve icermeyen
Kane-Mele modeli iizerinden 6rneklenmistir. Rashba spin yoriinge etkilesmesi i¢eren
ve icermeyen Kane-Mele modeli 6rneklerinde kuantum seviyesinde spinin korunup
korunmadigindan bagimsiz olarak spin Hall iletkenligine gelen temel katkinin spin
Chern sayis1 ile verildigi gosterilmigtir. Spin Chern sayisi, yukari spin tasiyicilar ile
ilgili Chern sayisi ile aga81 spin tagtyicilart ile ilgili Chern sayisinin farkinin yarisi
olark tanimlanir.

Kane-Mele modeli, zaman tersinmesi simetrisine sahip 2 + 1 boyutlu icsel spin
yoriinge etkilesmesi iceren grafen modelidir. Bu teorik model, grafende spin
yoriinge etkilesmesi sayesinde spin Hall olayimin gerceklesebilecegini 6ngérmektedir.
Kane-Mele modeli, zaman tersinmesi simetrisine sahip topolojik yalitkanlarin
ilk ornegidir.  Matematiksel olarak, spin yoriinge etkilesmesi Dirac Hamilton
yogunlugunda kiitle benzeri bir terim olarak ortaya ¢ikmistir. Bu kiitle benzeri
terim Dirac noktalar1 icin ters isaretli olarak gelmektedir.  Ayrica her Dirac
noktasinda, yukari spin tasiyicilart ve asagi spin tastyicilart i¢in iki ayr1 Hamilton
fonksiyonu mevcuttur. Spin y0riinge teriminin yol agtif1 enerji araligini gecen
kenar durumlari kuantum spin Hall olaymin olugsmasini saglar. Kuantum spin
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Hall iletkenligi, topolojik olarak korunan kenar durumlart vasitasiyla tasinan ters
spin akimlarinin zit yonli ilerlemesi ile gerceklesmektedir ve sistemin Hamilton
yogunlugunun zaman tersinmesi simetrisine sahip olmasimi gerektirmektedir. Bu
model, grafendeki i¢sel spin yoriinge etkilesmesinin ¢ok kiiciik olmasindan dolay1
fiziksel olarak gerceklenebilir olmamasina ragmen, zaman tersinmesi altinda degismez
kalan topolojik yalitkanlarin teorisinin olugsmasini saglamistir. Kane-Mele modeli
icin Foldy-Wouthuysen doniisiimleri kullanilarak Berry ayar alani ve ilgili Berry
egriligi hesab1 yapilmistir. Ayrica Rashba spin yoriinge etkilesmesi iceren Kane-Mele
modeli incelenmigtir. Rashba spin yoriinge etkilesmesi ilgilenilen spin yoniindeki
korunumunu bozar. Sadece i¢sel spin yoriinge etkilesmeli Kane-Mele modelinden
en biiylik farki budur. Rashba spin yoriinge etkilesmesi iceren Kane-Mele modeli
icin hem enerji 6zdurumlar1 bazinda hem de ilgilenilen spin bileseninin 6zdurumlari
bazinda Berry ayar alani hesabi ve ilgili Berry egriligi hesabi yapilmistir. Bu
model i¢in, ilgilenilen spin bileseninin kogsegen oldugu bazda Berry egriligi de
kosegendir. Dolayisiyla spin Hall iletkenligi hesaplanabilmistir. Kullanilan yar1 klasik
formulasyon ile, 2 4+ 1 boyutta spin Hall iletkenligi hem elektrik alanda hem Berry
egriliginde lineer olan konumun zaman evriminden elde edilmigtir. Bu anomal hiz
terimi herhangi bir d + 1 boyutta mevcuttur.

Ayrica, 2+ 1 ve 4+ 1 boyutta Chern-Simons kurami ve bir boyut indirgeme yontemi
ile topolojik yalitkanlarin alan kuramsal bir incelemesi sunulmustur. Chern-Simons
eylemleri, dis ayar alanlar1 iceren Dirac eylemlerinin etkin alan kuramlari olarak ortaya
cikar. Etkin alan kuramu, ilgili yol entegralinde fermiyon serbestlik dereceleri entegre
edilerek elde edilir. Oncellikle, 2 + 1 boyutta zaman tersinme simetrisi icermeyen
kuantum Hall olaymin topolojik alan kurami incelenmistir. 2+ 1 boyutlu zaman
tersinmesi simetrisine sahip bir topolojik yalitkanin etkin alan kurami 2 4 1 boyutlu
Chern-Simons kurami ile verilmigtir. 2 + 1 boyutlu Chern-Simons kurami birinci
Chern sayisi ile orantilidir ve 2 + 1 boyutlu Chern-Simons eyleminden elde edilen
akim ifadesinde birinci Chern sayisi yer alir. Boyutsal indirgeme yontemi kullanilarak
ve yiik kutuplanmasi acikca elde edilerek 2 + 1 boyutlu Chern-Simons kuramindan
elde edilen 1 + 1 boyutlu bir kuram sunulmustur. Daha sonra temel topolojik yalitkani
betimledigi gosterilen 4 + 1 boyutlu Chern-Simons kurami incelenmigtir. 4 4 1
boyutlu kiitle benzeri terim igceren Dirac kuraminin Foldy-Wouthuysen doniisiimii
kullanilarak elde edilen Berry ayar alani ve ilgili Berry egriliginin hesab1 ayrintili
olarak sunulmustur. Bu Berry ayar alam1 Abelyen olmayan bir ayar alanidir.
Ilgili Berry egriligi kullanilarak ikinci Chern sayis1 hesaplanmustir. 4 + 1 boyutlu
zaman tersinmesi simetrisine sahip bir topolojik yalitkanin etkin alan kurami 4 +
1 boyutlu Chern-Simons kurami ile verilmigti. 4 4 1 boyutlu Chern-Simons
kuraminin katsayisi ikinci Chern sayisi ile orantilidir ve 4 + 1 boyutlu Chern-Simons
eyleminden elde edilen akim ifadesinde ikinci Chern sayist yer alir. Bu etkin alan
kuramindan boyut indirgeme yontemi kullanilarak 3 + 1 ve 2+ 1 boyutlu kuramlar
elde edilmistir. Grafendeki kuantum spin Hall olayindan esinlenerek, 3 + 1 boyutta
yitimsiz spin Hall akimina yol agan, zaman tersinme simetrisine sahip kuramsal
bir topolojik yalitkan modeli 6ne siiriilmiigtiir. 2 + 1 boyutlu indirgenmis eylemde
yer alan ayar alanlarinin acik formu elde edilmistir. Modelin zaman tersinme
simetrisi acikca gosterilmigtir. Sunulan ayrintili ¢ikarimlar topolojik yalitkanlarin Z,
siniflandirilmasini takip edilebilir bir sekilde tartisilmasini saglamaktadir. Bu boliimde
sunulan yaklasimin Foldy-Wouthuysen doniisiimiiniin pertiirbatif olarak gecerli oldugu
etkilesim iceren Dirac sistemlerine de genellestirilmesi prensipte miimkiindiir.

Xix



XX



1. INTRODUCTION

Dirac-like systems in terms of Berry gauge fields and the effective field theory of a
time-reversal invariant topological insulator is investigated in this thesis. Dirac-like
systems (Dirac systems) arise in non-relativistic condensed matter systems, where
charge carriers effectively obey either the massless or the massive Dirac-like equation.
Polyacetylene is one of the first examples of such systems [1-3], where Dirac
Hamiltonian in 1 4 1 dimensions arises. Graphene, with its honeycomb structure
of carbon atoms, is an example of Dirac systems in 2 + 1 spacetime dimensions
[4]. The Dirac Hamiltonian in two space dimensions was derived starting from the
tight-binding model with on-site and nearest neighbor interactions for electrons in a
planar honeycomb lattice in [5]. The on-site interaction was chosen such that it led to
masses with opposite signs for the two sublattices of the hexagonal lattice. Inspecting
the energy band structure, one finds that there are two inequivalent degeneracy points
in the Brilliuon zone where the conduction and valance bands meet. These points
are named Dirac points because by an expansion around these points and dealing
with the the low-energy or the continuum limit, the massive Dirac Hamiltonian is
obtained. However, considering only the nearest neighbor interaction, massless Dirac
Hamiltonian is obtained, yielding a linear energy dispersion. The Dirac equation was
shown to emerge for the electrons on planar graphene also in [6]. In section 2 of
the thesis, derivation of Dirac Hamiltonian on graphene for three different choices of
lattice vectors are given based on [4,5,7].

The Kane-Mele model of graphene [8] is a quantum mechanical model of the electrons
on graphene which comprises of all the contributions coming from the sublattices, the
Dirac points and the spin degrees of freedom by introducing an intrinsic spin-orbit
interaction which acts as a mass term in the Dirac-like Hamiltonian. The time-reversal
invariant intrinsic spin orbit interaction introduced by Kane-Mele induces masses
with opposite signs on the two Dirac points. The model predicts the formation of
dissipationless quantized spin current perpendicular to an external in-plane electric

field, namely the quantum spin Hall effect. The model also predicts that the
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quantum spin Hall insulator state, characterized by the quantum spin Hall current, is
topologically distinct from a band insulator state. Quantum spin Hall effect, introduced
by Kane-Mele is based on Haldane’s model of quantum Hall effect without Landau
levels [9], where a periodic magnetic field with zero net flux through the unit cell
of the honeycomb lattice was introduced. Thus, this spinless model of Haldane
necessarily breaks time reversal symmetry. Haldane’s model takes into consideration
on-site interaction, nearest neighbor and the next nearest neighbor interactions on the
honeycomb lattice, the last of which violates particle-hole symmetry.

The topological nature of the quantum Hall effect was first pointed out by Thouless
et al in [10] using linear response theory where it was shown that the quantum Hall
conductivity, calculated by the Kubo formula, is characterized by an integer. Then,
in [11] the connection between the Berry phase and the quantized integer of the
quantum Hall conductivity was discovered. In [12], it was explictly demonstrated
that this integer is the first Chern number within differential geometry employing fiber
bundle theory. Since the wavefunctions in the magnetic Brillouin zone (reciprocal
crystal momentum space) have non-trival topological character, the associated gauge
field induces a non-zero topological number.

Topological nature of the Hall effect is well exhibited in terms of the Berry phases.
In [13], Berry describes how a quantum mechanical system which has a parameter
evolving adiabatically around a cyclic path acquires a geometrical phase besides the
dynamical phase. The concept of geometrical phase was already discussed in the
context of classical mechanics using parallel transport and holonomy. Some of the
prominent examples from classical mechanics are Hannay’s angle and Foucault’s
pendulum and Pancharatnam’s angle in optics. A brief review of geometrical phases
in physics can be found in [14]. In section 2 of the thesis, the Berry gauge fields and
field strengths obtained through the Foldy-Wouthuysen transformation of the Dirac
Hamiltonian are introduced.

The semiclassical equations of motion are altered drastically in the presence of the
Berry gauge fields. For a formulation, see [15] and the references therein. For
electrons, the semiclassical equations yield an anomalous velocity term which leads
to the anomalous Hall conductivity. In fact, ignoring the spin of electrons the Hall
conductivity can be written in terms of the Berry curvature on the Fermi surface

as described in [16, 17]. A complete list of references for the Berry phase effects
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in this context can be found in the review [18]. Considering the electrons with
spin, a generalization to the spin Hall effect was discussed in [19]. The spin Chern
number was introduced in [20]. In [21,22], the Berry gauge field was derived using a
wavepacket constructed from Bloch wavefunctions.

In Section 3, a semiclassical formulation of the quantum spin Hall effect for
physical systems satisfying a Dirac-like equation is presented [23]. The semiclassical
formulation is carried out using differential forms. Quantum spin Hall effect is
essentially a phenomena in two space dimensions. In the semiclassical formulation
adopted, the position and momenta are classical phase space variables. Spin is
not considered as a dynamical degree of freedom, however it shows up in the
matrix-valuedness of the equations of motion. The derivation of the matrix-valued
one-form lying at the heart of our semiclassical formulation is established by a
wave-packet constructed from the positive energy eigenstates of free Dirac equation.
Then, we define the symplectic two-form and employ the Liouville equation to derive
the semiclassical matrix-valued equations of motions in arbitrary dimensions. The
investigation of chiral kinetic theory within this semiclassical approximation was given
in [24]. We define the spin current with the aid of these equations and obtain the
spin Hall conductivity. It is demonstrated that the main contribution to the spin Hall
conductivity is given by the spin Chern number whether the related spin component
is conserved or not at the quantum level. The formulation is illustrated within the
Kane-Mele model of graphene in the absence and presence of the Rashba spin-orbit
coupling term. The presence of the Rashba spin-orbit coupling term depicts itself in
the non-conservation of the third component of spin which is conserved in its absence.
The Kane-Mele model of spin Hall effect in 2 4 1 dimensions is the first theoretical
model of time-reversal invariant topological insulators. A time-reversal invariant
topological insulator is a bulk insulator with conducting edge states characterized by
topological numbers [25-27]. In the Kane-Mele model of graphene, a quantized spin
Hall current at the edges is predicted due to the intrinsic spin-orbit coupling and the
time-reversal symmetry. It furnishes a quantized spin Hall conductivity given by the
topological Chern number. The Kane-Mele model paved the way to the theoretical
prediction of the topological insulator phase in 3d materials [28] which was observed
for the first time in [29]. They can be classified by a new topological invariant called

Z, [30]. As discussed, the role of topological invariants were already investigated
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in the context of quantum Hall effect. Moreover, in 24 1 dimensions a topological
gauge theory is generated by integrating out the massive Dirac fermion fields coupled
to Abelian gauge fields in the related path integral [31-33]. It is described by the
2 4+ 1 dimensional Chern-Simons action whose coefficient is the winding number
of the noninteracting massive fermion propagator which is equal to the first Chern
number resulting from the Berry gauge field [13, 18] of the quantum Hall states. One
can also derive the time reversal invariant spin Hall current of the Kane-Mele model
by calculating the related first Chern numbers [34]. Therefore, the Hall current can
be acquired from a topological field theory which manifestly violates time reversal
symmetry [35, 36].

In 4 4- 1 dimensions, Chern-Simons action generated by the massive fermions coupled
to Abelian gauge fields, is manifestly time-reversal invariant. Qi-Hughes-Zhang [37]
designated it as the effective topological field theory of the fundamental time-reversal
invariant topological insulator in 4 4+ 1 dimensions. They demonstrated that for
the band insulators which can be deformed adiabatically to a flat band model, the
coefficient of the effective action is equal to the second Chern number given by
the related non-Abelian Berry vector fields. The equivalence of the coefficients
of the induced Chern-Simons actions with the Chern numbers is presented in [38]
in a straightforward manner by employing the Foldy-Wouthuysen transformation.
The 3+ 1 and 2 4 1 dimensional descendant theories are generated by dimensional
reduction from the 4 4+ 1 dimensional action of the massive Dirac fields coupled to
external gauge fields.

In Section 4, a field theoretic investigation of topological insulators in 2 + 1 and
4 + 1 dimensions is provided by employing Chern-Simons theory. It is based on
the approach of [37] but applied to the continuous Dirac theory and also a slightly
modified method is proposed to introduce the descendant theories which permits
us to derive explicitly the related physical objects like polarizations. Moreover, a
hypothetical model of time-reversal invariant spin Hall effect in 3 + 1 dimensions is
positted which may be useful to understand some aspects of physically realizable three
dimensional topological insulators described in [39—41]. We introduce the Berry gauge
fields corresponding to Dirac fermions through the Foldy-Wouthuysen transformation.
The 2 4+ 1 dimensional topological field theory of the integer quantum Hall effect is

recalled. It guides us to construct the time-reversal invariant spin quantum Hall effect
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in graphene which is a model of 2 + 1 dimensional topological insulator. Then, the
dimensional reduction to 1+ 1 dimensions by obtaining the one dimensional charge
polarization is presented explicitly. The 4 + 1 dimensional Chern-Simons field theory
which was shown to describe the fundamental topological insulator is introduced. The
field strengths of the related Berry gauge fields needed to provide the second Chern
number are derived and dimensional reduction to 3 4+ 1 dimensions is discussed. By
imitating the approach of [8], a hypothetical model in 4 4+ 1 dimensions is theorized
which yields a time reversal invariant spin Hall current in 3 4 1 dimensions by means
of the dimensional reduction. A dimensional reduction procedure to 2+ 1 dimensions
which provides explicit forms of the gauge field components which take part in the
descendant action is presented. In the last section, the results which we obtained are

discussed.






2. DIRAC HAMILTONIAN, FOLDY-WOUTHUYSEN TRANSFORMATION,
AND THE BERRY GAUGE FIELDS IN D-DIMENSIONS

Graphene is a single layer of graphite. Its structure consists of hexagons arranged as
a honeycomb with carbon atoms sitting at every corner of the hexagonal structure.
The honeycomb lattice is a superposition of two triangular sublattices . The carbon
atoms in the first sublattice are named type A atoms and the carbon atoms in the
second sublattice are named type B atoms. In the following discussion, the sublattices
will be briefly refered to as sublattice A and sublattice B. The derivation of the Dirac
Hamiltonian will be presented for three different choices of the unit cell basis vectors.
Starting from the tight-binding Hamiltonian which has only the nearest-neighbor
hopping term, the massless Dirac-like Hamiltonian will be derived. The bonds
formed by 2p, orbital electrons are called & bonds. They occur perpendicular to the
two-dimensional graphene plane. The hopping in the tight-binding Hamiltonian results
from the overlap of 2p, orbital wavefunctions of spinless electrons in the hexagonal
lattice. The nearest-hopping term refers to hopping between nearest atoms in the
hexagonal lattice, therefore it actually relates the two sublattices of the graphene sheet.
Passing to the reciprocal momentum space (k-space), the energy dispersion is obtained.
The roots of the energy dispersion relation are where the conduction and valence bands
meet. These points in k-space are called degenarcy points. They occur at the corners
of the hexagonal Brillouin zone. Two of these points are inequivalent and their choice
depends on the choice of unit cell basis vectors. In the continuum limit, only states
around the degenarcy points contribute to the dynamics and an expansion around these
points yields the Dirac-like Hamiltonians. Therefore, these degenarcy points are also
refered to as Dirac points. The energy dispersion is linear around the Dirac points
and is usually referred to as the Dirac cone. As will be apparent in the derivation,
the Dirac-like Hamiltonians do not actually incorporate spin like the relativistic Dirac
Hamiltonian. It incorporates sublattice degrees of freedom in the context of graphene.

The sublattice degrees of freedom are therefore refered to as pseudo-spin.



2.1 Derivation of Dirac Hamiltonian on graphene a la Semenoff

The basis vectors for A lattice are chosen as
a
a =2 (\/5,—1> Lar=al(0,1).
Here a is distance between two atoms in the same lattice as shown in Figure 2.1.

® A sublattice
O B sublattice

Figure 2.1: Honeycomb lattice 1.

Type A sites are generated by linear combinations of a; and a; . The position of the

three nearest neighbors of A, i.e. the type B atoms, are

a1 a1 a

Type B sites are genarated by linear combinations of aj, a, and b; with i=1, 2, 3.
The Brillouin zone is defined through the reciprocal lattice vectors, which are related
to the basis vectors via the relation a; - R; = 276;;. The reciprocal lattice vectors are

4w 27
Rl_m(l,o),Rg_mO,\/g). 2.2)

The Brillouin zone is a hexagon in the reciprocal space as depicted in the Figure 2.2.

The tight-binding Hamiltonian with only the nearest-neighbor hopping term is
Hry =) (ay basp,+by,, an). 2.3)
A,j
« is the nearest-neighbor hopping energy, which is given by overlap integrals of &
orbital electron wavefunctions. a;g and a4 are creation and annihilation operators

. T . e
for electrons at site A. b, b and bA+bj are creation and annihilation operators for

electrons at site B. A designates the position of electrons in the A lattice, and the
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Figure 2.2: Brillouin zone 1 and degeneracy points.

position of electrons in the B lattice are given by A 4 b;. The Fourier transformations

of these operators are

d’k 2k .
aj{ :/ eilk'Aaz, bT ._/ e*tk~(A+bj)bl: (2.4)
BZ

Using these Fourier transformations, the tight-binding Hamiltonian in k-space

becomes

d*k . 0 ay e\ (a
= Fopt . J k
Sy =0 /B L (2 (a, b)) (azje—’k'bf 0 ) (bk>' (2.5)

The energy eigenvalues are obtained as

E(k) — j:a2 ‘eﬁé'g] _{_eﬁ(}'z;z _*_61%@3

. (2.6)

The negative energy states corresponds to states in the valence band and the positive
energy states correspond to states in the conduction band. Degenarcy points
correspond to the roots of (2.6) where the conduction and valence bands meet. There
are two inequivalent degenarcy points, named most commonly as K and K’ points.
The degenarcy points of graphene occur at corners of the Brillouin zone. These two
inequivalent points can be chosen following [5] as

27 1
K=—"|(1,—), K'=-K. 2.7
ﬁa(,ﬁ), @)

In Figure 2.2, the Brillouin zone and the degeneracy points are shown.
The continuum limit is where a, the distance between two atoms in the same lattice,

goes to zero. In this limit, only states around the degeneracy points contribute to

the dynamics. Hence, in the continuum limit, one is interested in the off-diagonal



componens of the Hamiltonian density for the K and K’ valleys:

. 3 T . 3 T
lim ¢/ k+K)Bj - — \/_a(ilq —ko)e's, lim e {kHK)b) — Q(—ikl —ka)e '3,
a—0 2 a—0 2

; 3 g ; 3 .
lim ¢/ k—K)b; — \/_a(ilq +ky)e™5, lim e i kK)b; — Q(—ﬂq +ky)e's.
a—0 2 a—0 2

For the K valley, (2.5) becomes

21

3a [ d*k —iky —kp)é'
HE = o e ) (O ) ()
2 J (2m) (iky — kp)e '3 0 br_x
2 ) 2r)2 kK "k-K iky — ky 0 br-x
V3a d’k
o0———=VYi(—iork; —ioc2ky)¥. 2.8
2(2ﬂ)21(l11122)1 (2.8)
Thus, the Dirac Hamiltonian density for the K valley is
HY = vpy'ky, (2.9)
with the following definition of the spinor and its Dirac conjugate:

V3aa _ior (ar g\ ¢ V3ao ;037
Y= (b’;_@,wl: o (dh b)) THe @10)

The gamma matrices are chosen as y* = (03,i07,i07), with g = 0, 1,2. They satisfy

the Clifford algebra with the anti-commutation relation {y*,y"} = 2g"*Y. The metric is
Minkowski with signature (4, —, —). Here k, = (0, —k), since in this derivation on-site
interaction which would give rise to a mass is not included in the initial tight-binding
Hamiltonian. v, is the effective velocity with which electrons on graphene travel and

is givenin terms of @ and a as vy = & @ For the K’ valley, (2.5) becomes

K’ \/ga d’k + + 0 (—ikl + kz)e_i%ﬂ ax+x
Hy = 0‘_/—2 <ak+K bk+K) - 22
2 (2m) (iky +kp)e's 0 brik

2 ) 2r)2 kK "k-K iky — ky 0 br-x

b4

. 7 i
It is observed that o1 3% 07 = €393,

2 .
HzKl = Ot—\/ga/—d k < ! bz_K) G163 ( 0 ik +k2) e 3% (ZkK
k—K

2 (277:)2 Y-k —ik1 + ko 0
V3a [ &’k - . .
= OCT/W‘PQ(ZGNQ—FIGQ]Q)\PZ

Thus, the Dirac Hamiltonian density for the K’ valley is

HY = —yp'ky, (2.11)
10
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with the following definition of the spinor and its Dirac conjugate:

v, = ﬁaae*i%m (akK/) P, — V3ao ( s

a bl Ge"g
2 by x 2 kK Vk-k') O1€ 00

Hence, the Dirac-like Hamiltonian on graphene in the continuum limit takes the form

d’k I
H= / G+ ot (2.12)

2.2 Derivation of Dirac Hamiltonian on graphene a la Novoselov et al

The basis vectors for A lattice are

0 =2 (). =2 ()

Here q; is distance between two carbon atoms in the hexagonal lattice, e.g. lattice
spacing. For graphene, this lattice spacing is approximately 1.42 A in literature. Type
A sites are generated by linear combinations of a; and a, . The position of the three
nearest neighbors of A, i.e. the type B atoms, are

a1 a1 _
b1_2<1,\/§),b2_2(1, \/§>,b3—a1( 1,0). (2.13)

The basis vectors are depicted in Figure 2.3. Type A sites are generated by linear

@ A sublattice
O B sublattice

Figure 2.3: Honeycomb lattice 2.

combinations of the basis vectors aj, a;. Type B sites are genarated by linear
combinations of ajy, a, and b; with i=1,2,3. The extended Brillouin zone defined

via the reciprocal lattice vectors

R, 2—”(1,\/5),&:2—”(1,—\@) (2.14)

- 3(1[ 3al
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is a hexagon. The extended Brillouin zone is a rhombus. The degeneracy points reside

at the corners of the hexagonal Brillouin zone, and can be chosen following [4] as

27 1 ,  2m _L
K= (%) K= (l’ ﬁ)' @19

The Brillouin zone and the degeneracy points are depicted in Figure 2.4.

ky
Ry

K
ko

K/
Ry

Figure 2.4: Brillouin zone 2 and degeneracy points.

The tight-binding Hamiltonian with the only the nearest-neighbor hopping term is
Hry=—0Y (ay basp;+by,, aa). (2.16)
A,j
« is the nearest-neighbor hopping energy. The k-space Hamiltonian is obtained

through the Fourier transformations (2.4).

d*k 0 ay e\ (a
_ Al , j k
Hp = —l /B , (2n)? (a;, b)) (azje—lk'bf 0 ) (bk)' (2.17)

The off-diagonal componens of the Hamiltonian density for the K and K’ valleys in the

continuum limit yield

. 3 . . 3 T
lim e Kbi — 2 ip)els lim e Kb = TN (k) 4k )e T,
a;—0 2 a;—0 2

. ’ 3 . . ' 3 T
lim ¢ ® K8 — 2 L iko)eit, lim e i* Kb = 2N )i
a;—0 2 a;—0 2

For the K valley, (2.17) becomes

3aqo0 [ d*k T 0 ki — ik 1o (ag_
K _ ! t t iLos 1 2\ —iZo; [ Ak—K
Hy = 2 (271-)2 (ak—K bk—K) e (kl + iky 0 > er (bk—K) ’

3q0 [ d’k
21 W‘P;_K(lel + 02k2 )Wy _k-

Then, the Dirac-like Hamiltonian density for the K valley is

H,_g = VF(lel + szz) (2.18)
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with v, = 4% and the spinor

lPk—K — efi%og ag—K )
bi_xk

For the K’ valley, (2.17) becomes

3aa [ d’k (T

Ak’

bt /) 50 ( 0k +ik2) S50 (ak—K’> 7
2 (271')2 k-K kl — lk2 0 bka/
3a,00 [ d*k

T
T Wlpk—K/<le1 —szz)lyk_K/.

!
Hy

Then, the Dirac-like Hamiltonian density for the K’ valley is

Hy_ g = vp(01k) — 02k2) (2.19)

with vy = 4% and the spinor

Yk = ¢'1203 (ak_K/) .
b

vy is the Fermi velocity which is estimated to be on the order 10%mn/s. The interesting
feature about this Fermi velocity is that it is a constant like the velocity of light, it
does not depend on momentum or energy. It is given in terms of the lattice spacing
and the nearest-neighbor hopping parameter. As a result, the effective Hamiltonian on

graphene takes the form

d*k
_ / G W He k% k +Y)_ o He Vg (2.20)

2.3 Derivation of Dirac Hamiltonian on graphene a la Gusynin et al

The basis vectors for A lattice are chosen as [7]
a =2 (1V3) 4= £ (1.-v3).

Here a is distance between two carbon atoms in the same lattice. It is v/3 times the
lattice spacing, a,. Type A sites are generated by linear combinations of a; and a; .

The position of the three nearest neighbors of A, i.e. the type B atoms, are

1 a 1 a 1
blza(O,ﬁ>,b2:—§ (_1’ﬁ),b3:_§ (17ﬁ) (2.21)

Type B sites are genarated by linear combinations of aj, a; and b; with i=1, 2, 3. The

basis vectors are depicted in the Figure 2.5.
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@ A sublattice
O B sublattice

Figure 2.5: Honeycomb lattice 3.

The extended Brillouin zone defined via the reciprocal lattice vectors

2 1 2n 1
Ri=—|(1,— ), Rb=—{(1,—— 2.22
=2 () =T () 222
is a rhombus. The Brillouin zone is a hexagon.

The degeneracy points reside at the corners of the hexagonal Brillouin zone, and can

be chosen following [7] as

4 A1
K=-—"-"(1,0), K'=—-—-(1,0). 2.23
3a(7)7 361(,) ( )

The Brillouin zone and the choice of degeneracy points are depicted in the Figure 2.6.

The tight-binding Hamiltonian in momentum space is

ky
Ry

VarLos
S

Ry

Figure 2.6: Brillouin zone 3 and degeneracy points.

d*k 0 ) etkb; a
— I %) T J k

where the nearest-neigbor hopping parameter t comes with a minus sign. The

off-diagonal componens of the Hamiltonian density for the K and K’ valleys yield
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in the continuum limit

~ 3
lim ¢/ kKb — a\/_( —ky +iky), lim e k+K)b; — M(—161 —ikp),
a—0 2 a—0 2
. ’ 3 . ! 3
lim /KK b — a\/—(kl +iky), lim ¢ kKb i(kl —iky).
a—0 2 a—0 2

For the K valley, (2.24) becomes

t a’2k i
Hex — a \/_ aT bi 0. ki —iky\ (arix ’
k+K k+K ) \ ki + iky 0 brik

- CW_/ dzkz Wl (1K1 + 02ka) P -
Then, the Dirac-like Hamiltonian density for the K valley is
Hy. g = vi(01k1 4+ 02k2) (2.25)
with vy, = 4 \[ and the spinor

a
Trx= (bﬁﬁ) '

For the K’ valley, (2.24) becomes

He v = at\/_ de at bt 0 —hi—ik) (g
kK = k+K’ k+K’> —k1 +iky 0 bex)
at\/— dzk
= /27:2 W) o (—01ki + 02k Wy g

Then, the Dirac-like Hamiltonian density for the K’ valley is

Hy g :vp(—lel—l-szz), (2.26)

with v, = % f and the spinor

a 4
\Pk K= ( k+K ) )
- bk
As a result, the effective Hamiltonian on graphene takes the form

d’k
_ / G’ L kHi krik +Y o He o Prok)- (2.27)

Investigating the Hamiltonian densities (2.25) and (2.26), one can observe that they

can elegantly be treated in one Hamiltonian density in the form

Hg = VF(Gl Rk + 0o ® lsz), (2.28)
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incorporating all degrees of freedom discussed in this section. The Pauli matrices o;
describe the two sublattices A and B and 73 = diag(1,—1) describes the K and K’

valleys. Then, the corresponding Hamiltonian is
(27?)2 G ’ *

T

with four-component spinors ‘Pg = (ak LK b,t LK al b!

k+K' k+K’) .

There are numerous articles on graphene, where the derivation of the Dirac-like
Hamiltonian is presented. In this section, three of the most prominent ones were
presented. The point is that the choice of unit cell basis vectors determines the position
of Dirac points in the k-space and therefore affects the representation of Dirac matrices.
Semenoff’s derivation was originally done to comment on the parity anomaly in 2 + 1
quantum field theory, therefore it is relativistic. The derivation of Novoselov et al was
discussed in this section to present another perspective and because of the fact that the
discussion of electronic properties of graphene usually is based on this derivation. The
result of the derivation of Gusynin et al enables one to smoothly relate to Kane-Mele

model on graphene, which will be broadly investigated in the rest of the thesis.

2.4 Foldy-Wouthuysen transformation and Berry gauge fields

In this section, the Foldy-Wouthuysen transformation of the Dirac Hamiltonian and
Berry gauge field in terms of Foldy-Wouthuysen transformation will be presented.
Relativistic electrons of charge e > 0 with a characteristic velocity like the velocity
of light ¢ or the effective velocity v, as in graphene will be considered. To retain the
formulation general, i =c =v; = 1, as well as e = 1. The constants will be recuperated

when needed. The free, massive electrons are described by the Dirac Hamiltonian
H=a k+pm. (2.30)

In this section vectors are d-dimensional, like the momentum k whose components are

denoted k;; I = 1,--- ,d. The Hamiltonian (2.30) can be diagonalized as
UHU" =EB, (2.31)

where E is the total energy

E=VK+m, (2.32)
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and U is the unitary Foldy-Wouthuysen transformation
BH+E

V2E(E +m)

Through the transformation U a pure gauge field can be introduced as
U (k)
ok

Pure gauge field is a gauge field whose curvature vanishes. The Berry gauge field

oY = iU (k)

(2.33)

</ is obtained by projecting (2.33) onto the positive energy eigenstates of the Dirac
Hamiltonian (2.30). One can be convinced that eliminating the negative energy states
is equivalent to the adiabatic approximation by revoking its similarity to suppression
of the interband interactions in molecular problems [42]. Thus, we define the Berry
gauge field as

A=PdP, (2.34)

where P is the projection operator onto the positive energy subspace. This definition of
the Berry gauge field is valid irrespective of the dimensions of the Hamiltonian (2.30).
In order to derive A explicitly let us adopt the following 2V x 2V; N = [%], dimensional

realizations of & and 8

(0 p (1 0
(5 2) 8-( %) -

2N71

Here p and the unit matrix 1 are x 2V=1 dimensional. In the representation (2.35)

the gauge field (2.33) becomes

U I '
9= 2E2(E +m) [E(E+m)ou + Ba-kk;—iEGyk], (2.36)

where 677 = —5[0y, ay]. Therefore, the Berry gauge field (2.34) results to be

l
Al=—— (pip" —p;0k;. 2.37
I 4E<E+m)(pzp, pip; ks (2.37)

Although the field strength of (2.36) vanishes because of being a pure gauge field, the
Berry curvature

Gy = 8_kI - 8_kj - l[AluAJ]u (2.38)

is non-vanishing in general.

When in 2n + 1 dimensional space-time where n = 1,2--- | the Berry curvature (2.38)
can be employed to define the Chern number which is the integrated Chern character,
as [43]

1

N, —
" (47.[)”” ! %211

dan LD tr {G]1]2 cee G]2n7112n} . (2.39)
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For 2 4+ 1 dimensional systems the Berry gauge field is Abelian, so that G, =

dAy/dk, — A,/ Ik, where a,b = 1,2, and the first Chern number is

1
N1 = —/dzké‘abtrGab.
4r

In 4 + 1 dimensions one introduces the second Chern number as

1

Ny=—
27 32

/ d*ke;jutr{Gi Gy},

where i, j,k,[ =1,2,3,4.
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3. RELATION BETWEEN THE SPIN HALL CONDUCTIVITY AND THE
SPIN CHERN NUMBER FOR DIRAC-LIKE SYSTEMS

In ferromagnets, in response to the electric field a spontaneous Hall current can be
generated. A semiclassical formulation of this anomalous Hall effect was given in [16]
within the Fermi liquid theory. There, the anomalous Hall conductivity was calculated
considering the equations of motion in the presence of the Berry gauge fields derived
from the Bloch wave function. When this system is subjected to an external magnetic
field, the definition of the particle density and the electric current should be made
appropriately. Nevertheless, the computed value of the anomalous Hall conductivity
remains unaltered [17,44,45]. Hall currents without a magnetic field can be generated
also in fermionic systems described by Dirac-like Hamiltonians [9]. Taking into
account the spin of electrons, these systems yield Hall currents due to the spin transport
which is known as the spin Hall effect [8] or Chern insulator. We would like to
present a semiclassical formulation of the spin Hall conductivity using a differential
form formalism for fermions which are described by Dirac-like Hamiltonians.

In semiclassical kinetic theory, the spin degrees of freedom can be considered by
treating them as dynamical variables. However to calculate the spin Hall conductivities
it would be more appropriate to keep the Hamiltonian and the related Berry gauge
fields as matrices in “spin indices". In this respect a differential form formalism
was presented in [24]. Dynamical variables in this semiclasical formalism are the
usual space coordinates and momenta but the symplectic form is matrix valued. We
will show that this formalism is suitable to calculate the spin Hall conductivity for
Dirac-like systems. We deal with electrons, so that without loss of generality we
consider the third component of spin denoted by S, whose explicit form depends on
the details of the underlying Dirac-like Hamiltonian. When the third component of
spin is conserved at the quantum level, constructing the spin current is straightforward.
However, spin Hall effect can persist even if the third component of spin is not
conserved. In the latter case semiclassical definition of the spin Hall conductivity is not

very clear. Within the Kane-Mele model of graphene (2 4+ 1 dimensional topological
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insulator) [8] it was argued that one cannot anymore use the Berry curvature to obtain
the main contribution to the spin Hall effect when the spin nonconserving Rashba
term is present [46]. We will show that even for the systems where the spin is not
a good quantum number, it is always possible to establish the leading contribution
to the spin Hall effect in terms of the Berry field strength derived in the appropriate
basis. Moreover, we will demonstrate that it is always given in terms of the spin Chern
number which is defined to be one half the difference of the Chern numbers of spin-up
and spin-down sectors [20]. A similar claim was made in [47] by employing the Green
function within the Kubo formalism.

The formulation will be illustrated within the Kane-Mele model of graphene:
When only the intrinsic spin-orbit coupling is present, the third component of the
spin is a good quantum number and the spin Hall conductivity can be acquired
straightforwardly in terms of the Berry curvature [34]. When the Rashba term is
switched on, the third component of spin ceases to be conserved. Nevertheless, we will
show that by choosing the correct basis one can still establish the leading contribution
to the spin Hall conductivity by the Berry curvature. It is given by the spin Chern
number calculated in [48].

The starting point of the method is the matrix valued symplectic form [15, 24]. We
will show that it can be obtained in terms of the wave packets formed by the positive
energy solutions of Dirac-like equations adapting the formalism of [21, 22]. The
formalism of deriving the velocities of phase space variables in terms of the phase
space variables themselves will be presented in Section 3.2. It leads to the anomalous
Hall effect straightforwardly as we will discuss briefly in Section 3.3. Definition of
the spin current is presented in Section 3.4. It is shown that if one adopts the correct
definition of the spin current in two space dimensions the essential part of the spin Hall
conductivity is always given by the spin Chern number. We will illustrate the method
by applying it to the Kane-Mele model first in the absence and then in the presence of

Rashba coupling.
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3.1 Wave-packet dynamics

Dirac equation possesses negative and positive energy solutions. Obviously one
can form a wave packet by superposing only positive energy solutions. However,
relativistic invariance of the Dirac theory demands to superpose both positive and
negative solutions. Nevertheless by ignoring the relativistic momenta one can deal
with only a wave packet composed of positive energy solutions. Indeed this is the
starting point of the semiclassical approximation. We denote the spinor corresponding
to a positive energy solution of Dirac equation by u(®)(p, x.), which is a function of

the momentum p, and the position of the wave packet center in coordinate space x :
Ho(p)u'” (p,x.) = Equ'®) (p,xc); Eq > 0.

The normalization is
" (p,xe)ulP)(p,xc) = Sgp. (3.1)

Let us consider the following wave packet obtained by superposing only positive

energy solutions labeled by the superscript o,
Wi =Walpex) = [ldplla(pn)le P Léari®(px), ()
o

where [dp| denotes the measure of the d dimensional momentum space. The
distribution |a(p,?)[e~""(P*) has a peak at the wave packet center p, and satisfies
[|al*[dp] = 1. The expansion coefficients &, are also normalized, ¥ |Eq|? = 1.

()

Yy (p,x.) is composed of two parts

Wi (p,xe) = ul® (p,x.)6x(p), (3.3)
with
1 —ip-x
¢x(p): (zn)d/ze P :

The normalization is
[1dp16:(p)oy(p) = 6(x ).
When the position operator, X acts on ¢x(p) we get
20(p) = i+ 0u(p) = x0x(p).
ap
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and the completeness relation is [[dx]@}(p)dx(q) = 6(p —q). As a result of these

definitions, (3.3) has the following normalization

J1axd b2 v (0.5 = 8ap5(p— a). 34

We would like to calculate the expectation value of the position operator over the wave
packet (3.2). The calculation proceeds as follows; we first calculate ¥, in which we

use

(24 a o a a . J
2yi® = U (p,x)%0:(p) = ul® (p,x.)xx(p) = ul )(p,xc)(lﬁ)%(p)

Integrating by parts, we obtain

#re = =i [lap 2P Y p.x ol )
-/ [dpﬂa(p,rﬂa%’;”e”W)Zéau<a><p,xc>¢x<p>

— i flaplatpaie 1P Y e M2 g ),

Then we reach the following result

[aseiew, = —i [ [dpna(p,m%’l’;”‘ as)
W) (p x.
S L e LD T R

The first term vanishes since [|a|*[dp] = 1. The second and the third terms are

obtained using (3.4). The distribution has the mean momentum, p,. defined through

pe= [laplplatp.0)P

Thus, for any function f(p), we get

£pe) = [ldplf(p)latp.o)P (36

Using the definition (3.6) in (3.5), and observing that the expectation value of the
position operator over the wave packet (3.2) is x., which is the center of the wave

packet in coordinate space, X, = [[dx]¥L2W,, we obtain

9% I (@
X = —1 (PerXe)=— 1 Xc)Sa- 3.7)
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We define ¥, = y(p.,t). We would like to define the one-form 7 through d.&,

45 = /a’x‘I” (id — Hodr) Wy = dy.+ Y Eim ™ Eg.
o

We start by computing

AL +dx %
ot < ox,

= af dp] 2 o 1a(p.0)]e” TPV Y Eau'® (p,xe) 0x(p)

d¥Yy = dt

— idi / [dp]]a(p,t)|weW(p’t)Zéau(a)(l’axc)‘f’x(l’)

o

+ dx. [ldplla(p.nle 7P “ (px)6x(p).
So that we obtain
/[dx]‘PTid‘P dta  +idx Zé )(p,,x )iu(“)(p. x)Eqy.
X 8 C crvC axc crvC

To transform the first term, we use dy, = dt aa’f +d P, a% and (3.7). Then

d
E o+ idxe Z éguf(ﬁ) - u®E,
of ¢

/ (] Wid W = dy. +dp,-x.+idp, Y Eu P
o

This is a convenient point to define the following matrix valued Berry gauge fields

iuf(a) (pc’xc)%

C

uP(p.x) = a*, (3.8)

iu*(a)(Pcyxc)%u(ﬁ)(pc,xc) — A%, (3.9)

c
The Dirac-like free Hamiltonian only depends on the derivatives with respect to x, so

that we get

[ w = Y &ika(p)5% 5
op

Thus, by defining Hg h_ Eq8%P we obtain

d.s = / [dx]W} (id — Hodr) x_dyc+2§a<dpc %6 +dx.a® +dp AP — Haﬁdt)é_‘,ﬁ
ap

Then we can define the matrix valued one-form no‘ﬁ as,
N = 5%x..dp.+a"P -dx.+ A% .ap,— H P at, (3.10)

which governs dynamics of the wave-packet.

Before moving onto the semiclassical formalism stemming from the matrix valued
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one-form, n"‘ﬁ . Here, an alternative derivation will be presented. The derivation starts

from the following wave-packet

(Px = ‘i]x(pwxcvt) = Zéa(pc’t)u(a) (pmxc)e—ipr, (3‘11)

o

The normalization of u(®)(p_, x,) is given by (3.1). The one-form 7 is defined through
ds,

4 = /[dx]S(x—xC) Pl (id — Hodt) By = i Y EidEn+ Y EiPEp.
a op

The exact derivative of (3.11) yields

~ - alilx a\ilx a‘i‘x
d\Px = dt o1 +dxc8_xc+dpca_pc
aga (a) ,—ip.x au(a) —ip.-x a506 (a) ,—ip.-x
dt; 5, e +dxcza:§a . e —I—dpc§8pcu e
Ju'®) —ip.x (@) __:\ ,—iDq X
+ dpcgéa apce ¢ —|—dpc§§au (—ix)e P,
Thus,
it ng . *8 o . * T(a)&u(ﬁ)
/ 053 x ) Wi = idr L&, 5+ zdxCZﬁgau S Gyt dpx,
o (4
&, ouB)

+ idp, Y E552% +idp, Y Egut@ ——&p
o al}

Ip,

C

Using the definitions of Berry gauge fields given in (3.8), (3.9), and defining Héx b _
Eq 8% | the following expression is obtained
ds =iy Endla+) &y (5“/31'0,’ +dp, - x.6% +dx.a* +dp AP — Héxﬁdt) p-
o (xl}
Ignoring the time dependence, (3.10) is obtained straightforwardly.

3.2 Semiclassical formalism

In the previous section, the semiclassical theory established in terms of the wave
packet composed of positive energy solutions is presented. It yields a semiclassical
description of the system whose dynamics is governed by gauge fields which are
matrices labeled by “spin indices". It is so called because the basis of the wave packets
are solutions of a Dirac-like Hamiltonian. Obviously range of this index depends on

the spacetime dimension as well as on the intrinsic properties of the system considered.
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In d+1 dimensions, the following matrix valued one-form is dealt with,
Nu = Padxa +[eag” (x,1) +aq(x, p)|dxa +Aa(x, p)dpa — H(x, p)dt.

(Xa,Pa); @ =1,2,....d, denote the classical phase space variables and e > 0, is the
electron charge. a,(x, p,t) and A,(x, p,t) are the matrix-valued Berry gauge potentials.
H(x,p) = Ho(p) — eaf" (x) comprises of Hy, which is the diagonalized Dirac-like free
Hamiltonian projected on positive energies, and the electromagnetic scalar field a§".

We suppress the unit matrices. The related symplectic two-form is defined by

Wy = dNy—iNg ANy

a ext aH
= dp,Ndx;+F+G+M— (e a +—=—— —i[H,a,] | dx, Ndt
ot ox,
oH
—( +i[H,Au]) dpa Ndt. (3.12)
dPpa

For a, = 0, this coincides with the matrix-valued two form considered in [24]. F =
%Fabdxa Ndxp, G = %Gabd pa/Ndpp, and M = %Mabd pa \dxy, are the two-forms with

the following components,

Fo = G2 +e (G -5,
My = gZZ — ‘3;12 — i[Ag,ap),
Gy = g?i - 3—?’; — i[Ag,Ap).
In order to obtain the equations of motion, we introduce the matrix valued vector field
e ”%aipa' (3.13)

Here, (X, p,) are the matrix-valued time evolutions of the phase space variables
(xq, Pa)- This is analogous to the situation in the canonical formulation of the Dirac
particle where the velocities are matrices though the phase space variables are ordinary
vectors. The equations of motion are derived by demanding that the interior product

of wy, (3.12), with the matrix-valued vector field ¥, (3.13), vanish:
iywy = 0.

The resulting equations are

Pa = XcFactea—Meape,

Xa = Gcap;c_fa_fcMaw
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where we defined

eq = eb,+ilHy,a,l,

_ _JHp
fa = _8Pa

in terms of the external electric field &, = daf" /dx, — da" /dt.

+i[Ho, Ad),

(=1l

i wd Adt can be used to attain

The Lie derivative of the volume form Q.| =

the matrix-valued velocities (X, p,) in terms of the phase space variables (x,, py). It
will be illustrated for d = 2, due to the fact that basically we are interested in 2 + 1
spacetime dimensional Dirac-like systems. In 2 4 1 dimensions, where the extended

phase space is 5 dimensional, the volume form reads
1
Qoyy = Wi Awy Adt. 3.149)
We express it through the canonical volume element of the phase space dV/, as
Qy 1 =Wy pdV Adt, (3.15)

where Wy /; is the Pfaffian of the following 4 x 4 matrix,

Fj  —6;—M;
6j+My;  —Gij )

We do not treat the spin indices on the same footing with the phase space indices
(xi,pi); i =1,2. Thus the Pfaffian W,  is a matrix in spin indices. The Lie derivative
associated with the vector field (3.13) of the volume form (3.15) can be expressed
formally as

. N Jd d .. o . .
L,Qy = (lvd-l-dlv)(wl/zd‘//\dt) = (EWI/Z + a—x(xiwl/z) + a_p'(wl/zpi)> dV Ndt.
3.16)

Actually, to obtain it explicitly one should employ the definition (3.14) yielding
1. 5
LV92+1 = —EdWH
Comparing the exterior derivative of

wy Awy = dpiNdx;NdpjNdxj+2M Ndp; \Ndx; +2e;dx; Ndt Ndp; Ndx;
+ (Ffi+ fiF) NdpiNdt+ (Me; + e;M) Ndx; \dt
+ 2fidpiNdt NdpjNdxj+F NG+ GANF + (Mfi+ fiM) Ndp; \dt
+ (Gei+e,G)Ndx;Ndt,
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with the formal expression (3.16) one obtains the solutions

1
Wip = 1_Mii_Z(E'jGij+GijE'j)a (3.17)
. 1
Wi = —fit (Mijfj+ fiMij) = (M fi+ fiMjj) = 5 (Gijej + ¢;Gij), (3.18)
. 1
Wb = ei— (Mjiej+e;Mji) + (Mjjei+eiMjj) + 5 (Fiifj+ fiFji). - (3.19)

These solutions are useful even for Schrodinger type Hamiltonian systems where the
origin of the Berry gauge fields will be different. Indeed, to illustrate the power of the
differential form method in general we would like to deal briefly with the anomalous

Hall effect in two dimensions.

3.3 Anomalous Hall effect

The intrinsic anomalous Hall effect in ferromagnetic materials arise from the Berry
curvature in the crystal momentum space of Bloch electrons either in the absence or
in the presence of an external magnetic field [16, 17,44, 45]. In the latter case one
should define the electric current by taking corrections to the path integral measure
into account. The anomalous Hall conductivity can be derived within the formalism
of Section 3.2. Obviously, in this case the Berry gauge fields are derived from the
occupied Bloch states. Consider the electrons which are constrained to move in the
xy-plane in the presence of the constant magnetic field in the z-direction Fy, = B, and

the Berry curvature Gy,. The equations of motion (3.17)-(3.19) become

Vw = 1—BGy, (3.20)
oH
\/V_VX,' = —— —e§j&Gyy, 3.21)
api
JH
Vwpi = ebi+&ij5 —B.
Dj

(3.20) is the correction to the path integral measure. Hence, the correct definition of

electric current is

d2
ji = e/ﬁ\/wxif(xvpvt%

where f(x, p,t) is the ground state distribution (occupation) function. Plugging (3.21)

into this definition one obtains the total electric current as

, d’p (0H
Ji= e/W (9_pz —egij@(dexy) f(x,p,t).
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The term proportional to the electric field yields the anomalous Hall current
. d’p
Jji' = —ezsijé‘}/Wnyf(x,p,t) = Oun€ijéj,

where ©,; denotes the anomalous Hall conductivity.  For electrons obeying
Fermi-Dirac distribution at zero temperature, the ground state distribution is given by
the theta-function at the Fermi energy Er : f = 8(E — EF). Thus, the anamolous Hall

conductivity reads
2 d’p
AH e /E>EF (Zﬁh)z Xy
On the other hand the first Chern number, which is a topological invariant, is defined

by
1 2
Nl:%/d PGiy.

Therefore, one concludes that the anomalous Hall conductivity

&2

Oan = —=—NMNy,

2mh

is a topological invariant.

3.4 Spin Hall conductivity vs spin Chern number

The semiclassical currents of the electrons obeying Dirac-like equations should be
defined in terms of the velocities which are weighted with the correct measure X,W, /2
which are matrices in spin indices. We only deal with the spin current generated by the

third component of spin S, though any spin component can be studied similarly. The

I 0
S, = <0 _1), (3.22)

where the dimension of the unit matrix / depends on the system considered. To

most convenient representation is

define the spin current one also needs to introduce the ground state distribution
functions fT(x,p,t) and f*(x,p,t) for the electrons with spin-up and spin-down. In

the representation (3.22) we can define the distribution matrix by

_(fP 0

where the unit matrix / is suppressed. Now, the appropriate choice for the semiclassical

spin current seems to be
. _ P

d? .
=5 / ﬁn (25001 10 f] (3.23)

28



Basis of the matrix representation are the positive energy solutions of the underlying
Dirac-like equation (see Appendix A). If they are not eigenfunctions of the spin matrix
S,, simultaneously definition (3.23) does not make sense. Hence, to adopt (3.23) as
the definition of the spin current we should choose the basis functions with a definite
spin. Once this is done we can set the ground state distribution functions to unity by
restricting our integrals to energies higher than the ground state energy. However, this
is already the case because we deal with the wave packet composed of the positive
energy solutions. Now, in d = 2, let us consider the spin Hall current which results

from the last term in (3.18):
. ho[ d*p
];SH = _eéaji/WTr [SZGlJf] = GSHgijéaj.

We are obliged to choose the basis which are spin eigenvalues so that spin Hall

conductivity can be expressed as
osy = ——C, 3.24)
T

where the spin Chern number

1
Cy = 5(NT—Ni),

is one half of the difference of the spin-up and spin-down first Chern numbers defined
by
N = ﬁ / d*p TrGl;.

We demonstrated that the spin Hall conductivity is given by the spin Chern number
(3.24), which is a topological invariant characterizing the spin Hall effect. Hence, it
will be the main contribution to the spin Hall conductivity if the spin Hall phase exists.
This is the main conclusion of this work. In the following section we will illustrate this
formalism by applying it to the Kane-Mele model of graphene which is also known as

Chern insulator in 2 + 1 dimensions.

3.5 Kane-Mele Model

Time reversal invariant 2 4+ 1 dimensional topological insulator can be formulated
as the spin Hall effect in graphene within the Kane-Mele model described by the

Hamiltonian

H = v Oy T, px + Vi Oy py + Aso O, T8, + A (04 T25y — Oysy). (3.25)
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It is the effective theory of electrons on graphene with the Fermi velocity vp.
The intrinsic and Rashba spin-orbit coupling constants are denoted by Ay, and A,
respectively. Oy, ; are the Pauli matrices in the representation o, = diag(1,—1), which
act on the states of sublattices. 7, = diag(1,—1), labels the states at the Dirac points
(valleys) K and K’, and the Pauli matrices, sy, act on the real spin space in the

representation where the third component is diagonal s, = diag(1,—1).

The main difference between the Kane-Mele model with and without the Rashba
spin-orbit coupling term lies in whether the third component of spin is a good quantum
number or not. In the former case s, is conserved and application of the semiclassical
approach is straightforward. However, also in the latter case the spin Hall conductivity
is non-vanishing with the condition Agy > Az. We will illustrate how the semiclassical
formulation can be applied in both cases and demonstrate that main contribution to the

spin Hall conductivity is always given by the spin Chern number defined in [20].

3.6 Kane-Mele model without the Rashba spin-orbit interaction term

In this case the Hamiltonian is
H?® = vp Oy T, py + Vi Oy Py + Aso O, T8 3.26)

In fact, there are four different two dimensional Hamiltonians stemming from (3.26):

H'T 0 0 0
0 H'™ 0 0
SO __
H™ = 0 0 H 0
0 0 0 HY“

These two dimensional Hamiltonians corresponding to the 1, | spin and the K, K’

valley are

H' = VF(prx + Gypy) +As007, H™ = VF(_prx + Gypy) — A0y, (3.27)

HY = VF(prX + Gypy) — A5 0y, HY™ = VF(_prx + Gypy) + Aso 0. (3.28)

The effect of the spin-orbit term is to create a gap in the energy band structure of the
Hamiltonians. In terms of the eigenvalues of the momenta 7k, (3.27) and (3.28) yield

the same energy distribution

E = +4/v2i2k2 + A2, (3.29)
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corresponding to particle and antiparticle (hole) states.

Note that in this section p is not a quantum operator but denotes the classical phase

space variable.

We deal with four different two dimensional Dirac-like theories (3.27), (3.28), thus
we should take into account the contributions arising from each of them separately.
We adopt the formulation of [42] to derive the Berry gauge fields arising from
each one of the two dimensional Hamiltonians (3.27), (3.28). Therefore, we should
start with giving the unitary Foldy-Wouthuysen transformations (U'+, U1, U+* U+7)
corresponding to the Dirac-like Hamiltonians (H1+ H'~ H'* H'~). We would like

to present them in the unified notation:
U =diag(U™, U, Ut ut).

The unitary Foldy-Wouthuysen transformation U can be engaged to define the gauge
field [42,50]

U (p)

o = diag( ", A1, VT V) = inU (p) 5p

Exploring the Dirac-like Hamiltonians (3.27), (3.28), we introduce the following

Foldy-Wouthuysen transformation

o.H't +E 0 0 0
U 1 0 —0.H'"+E 0 0
2E(E + Aso) 0 0 —oH"" +E 0 ’
0 0 0 o.HY™ +E

(3.30)
where E is the positive energy depending on p as E = +/vzp? +AZ,. Observe that
(3.30) is defined to satisfy

H* =UHU' = Eo.ts.. (3.31)

One can study each entry of (3.30) as in [42] and show that they lead to the gauge
potential

B ih

~ 2E2(E+As)

U

[VFE(E + Aso) @O, T, + Viczfzsz(a p)p+ V%E(a p)o— V%I’E] .

Its components can be written explicitly as [34]

h(vrE(E + ASO)GySz - V%(Gypx - Gxszy)ssz + V%EGZTZPQ

U 32
g 2E2(E + Ag) -

g 1(—vrE(E + Aso) OxTo5: — v (Oypx — OxTepy)s:py — ViEG:T:ps) (3.33)
y 2E2(E + Aso)
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Because of being a pure gauge potential the field strength of =7V vanishes. However,
one can consider the adiabatic approximation by projecting on the positive energy

states:

A=Ps"P. 3.34)

By inspecting the positive eigenvalues of the (3.31) one can deduce that the projection

operator P is
P=diag(P},P" P ,P") = diag(1,0,0,1,0,1,1,0).

It should be noted that when projected on positive energy states only the last terms in
(3.32) and (3.33) make nonvanishing contributions, so that the Abelian Berry gauge

field is
A= L
2E(E + Ago)

where the unit matrix 1; in the 7, space is exhibited explicitly. It is worth emphasizing

gijpjlerZ, (335)

that in .o/ negative energy states are present, thus it possesses twice the matrix elements

of &7®. The nonvanishing component of the Berry curvature is given as

JA, JA , hAv2A
G=h (api - ap§> = diag(G",G" ,G*,G") = —#jolfsz. (3.36)
The spin Hall effect in graphene can be given as [19] as
(2) 2
e (5 AP [t Loy iGh gt
ow=—5]" Gty [(G+ +G1)—(G" + G_)] . (3.37)

E,gz) denotes the highest energy level occupied in the two dimensional system. Thus,

inserting (3.36) into the definition (3.37) leads to

o e /Eé” d*p [ 2W2Ag
T 2 ) (27h)2 E3
e Ago
= -2 3.38

This in accord with the calculation of the spin Hall conductivity obtained by employing

the Kubo formula which is presented in Appendix B.

We let the Fermi energy level of graphene lie in the gap, so that in (3.38) we set

E 9) = Ay and obtain the spin Hall conductivity as

o e
SH — — ~ _-
g 27
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This is the value established in [8]. Based on the above derivation of spin Hall
conductivity, in the rest of the section the semiclassical treatment presented before

will be employed. U can be employed to acquire the eigenfunctions of (3.26) as
u ) (p) =UH),

where v(!) = (1,0---,0)7,-.. v = (0,0---,1)7. The Hamiltonian projected on

positive energy eigenstates in the presence of the external electric field & is
Hgo - (E —|—€é‘7 ‘x)l»pls.

In the rest of this section we will keep the unit matrices explicit. The Berry gauge field
is given by (3.35). Hence, the corresponding Berry curvature is given by (3.36). In the
absence of a magnetic field the phase space measure (3.17) is trivial: Wy, = 1. Thus,

the equations of motion (3.18)-(3.19) yield

2
. \% 1
X = — %Pz T8, — e(:‘,'j(gaijy,
ﬁi = eé“;;lfls.

In the representation which we adopted the third component of spin becomes
S, =1gs;. (3.39)

Note that (%) are also the eigenstates of the spin matrix (3.39). Therefore, the

distribution matrix f = 1.diag(fT, f*) is adequate to define the spin current by

ji= 2/ Tr [Sv/wkif] .

It yields the spin Hall current ji" = oy ¢ jéaj, where the spin Hall conductivity is given

by
eh d’p
2/ (2mh)?

Let us decompose (3.40) such that the contributions arising from spin subspace and X,

GSH - — Tr [S ny] (3.40)

K’ valleys become apparent. One can easily observe that

eh dzp

_ _¢h 1K _ GIK | GIK _ GIK'
e / !
= —E(N?K—N%KﬂLNlTK —Ny).

Each contribution is associated with the first Chern number of the related subspace.

This has been observed in [34] where the related Chern numbers were calculated. We

33



conclude that the spin Hall conductivity is proportional to the sum of the spin Chern
number of the K valley, CX and the spin Chern number of the K’ valley, CsK/ :

e

! e e
kel = o=

Osy = — T Tog
In the absence of Rashba term we defined the spin current straightforwardly since the

Hamiltonian (3.26) commutes with s,.

3.7 Kane-Mele model with Rashba spin-orbit interaction term

Although, in the presence of the Rashba term s, does not commute with the
Hamiltonian (3.25), the spin Hall effect still exists for Ag, > Az [8,49,51]. However,
the semiclassical calculation is not clear as we discussed in Section 3.4. There we also
discussed the correct definition of spin current. Nevertheless, before proceeding as
indicated in Section 3.4 let us carry on with the computation of the Berry gauge field

naively using the positive energy eigenfunctions of (3.25).

The K and K’ subspaces corresponding to T, = +1 yield the same energy eigenvalues
and eigenstates which are presented in Appendix B. Thus, it is sufficient to consider

only the 4 x 4 Hamiltonian in K subspace denoted by H :
Hy®y = Eq®Pq,

where a = 1, ..,4 and the energy eigenvalues E, are

E = k+\/<Aso—7t)2+v%p2, Ez:—/1+\/<Aso+A)2+v%p2,

By = A= \/(Aw— A2+ v3p? Es = —A— /(Ao + A2 +12p%  (341)

We deal with the coupling constants satisfing Ag, > 2, so that E|,E, and E3,E,4 are

positive and negative, respectively.

The diagonalized Hamiltonian is 77> = diag(E1, E», E3, E4). When we project on the
positive energy eigenstates and take both of the contributions coming from the K and

K’ subspaces, the Hamiltonian becomes

HE =1, (% E02> +e& - xlly.

The Berry gauge field turns out to be Abelian:

Afp = hgij%lf ( -1 2N1N2> .

NN, —1
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The corresponding Berry curvature Gfg = (8XA$ — %Af), can easily be computed as

21
Go=1:( ° ) :
Y —Fap(N1N2> O

According to (3.17)-(3.19) the equations of motion calculated in the energy

eigenfunction basis are

. S o NiNs @

X = _l,L_val. 10 1 —}—2—28,'jpj(E1—Ez)lrsy—eSijéajlchxy,
E>+A p

ﬁi = egilflb

where we set Wy, = 1.

The spin current cannot be defined by (3.23) with a diagonal f. Choosing it diagonal

would lead to a vanishing spin Hall current due to the fact that
Tr [S.Gyy] =0.

The difficulty stems from the fact that energy eigenfunctions are not simultaneously
eigenstates of the spin operator S, = diag(s;,s;). In K subspace eigenstates of the spin

operator S;, constructed from the energy eigenstates @, are

1 1
W o= (D D), Wr = (D) — D),
| ﬁ(1 2), ¥ \/5(1 2)
1 1
Wy = (D3 Dy), W= —— (D5 — Dy).
3 \/5(3 4), W4 \/5(3 4)

W¥i,¥; and W3,¥, correspond to positive and negative energy sectors, respectively.
They satisfy
S W13 =Y13, S;¥o4=—-¥24.

The Hamiltonian in W, basis is obtained by the transformation
Y = UgH U,

where U\I, = (‘Pl ¥, Y¥; lI’4). Notice that Uy is related to the unitary

transformation that diagonalizes Hy, denoted by Ug, via Uy = RUgp, where R =

R 0\ .

(O R)wuh
- 1 /1 1
R:ﬁ(l —1)'
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Thus we acquired

Y = (1;R)A®(R1,)

Ei\+E, E\—E> 0 0
- l E\—E, E\+E; 0 0 1
2 0 0 Es+Ey E;—Ey T
0 0 Es—E4; E;+Ey

The Hamiltonian in W, basis projected on positive energy eigenstates in the presence

of external electric field &, is
HY = (Ey + E) 1y + (E; — Ex) sy +e& - x1. 1.

The basis transformation R sustains the connection between AY and A® via the relation

AY = (1,R)A®(R1,), so that

. T
Dj —1+2N|N, 0 B A0
AY =ne 2 =1 ! :
i = ’( 0 —1+2NN,) T\ o A

The corresponding Berry curvature G;I; = (lTI?)G;I; (R1;) is calculated as

Gv_ 2mONINy) G, ©
e !
P p 0 Gy

Hence, the equations of motion are

< 2 El 7T E2+)L Ell T E21+/1 NN,
X = —lovepi A U B o &p;(E1 — Ex) sy — e€i;65Gy,
E1 —A Ez-i-l Ei—A Er)+A p

pi = ebilels.

The spin Hall current can now be written as

-SH__ ¥
Ji = ”@@/Zh SGf]

where f = 1.diag(f, f*). Therefore, f restricts the integral to positive energies and

the spin Hall conductivity becomes

eh [ d* : :
Oy = —— _p{(GgT_G)IC(yL)_i_(G)IC(yT_Ggi)} —

e K K/ e
—(C Ccr)=——2~C;,.
2 ) (2#h)? (G +6) $

2 2
In [48] this spin Chern number is calculated as Cy = 1. Therefore, we conclude that

G e
SH — — 5 -
2n

Indeed, in [8] it was argued that the value of the spin Hall conductivity sligtly differs
from this value which is confirmed either in terms of numerical methods [49] or

deriving the related effective theory [51].
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4. EFFECTIVE FIELD THEORY OF TIME-REVERSAL INVARIANT
TOPOLOGICAL INSULATORS

The 2 + 1 dimensional topological field theory of the integer quantum Hall effect is
considered in Section 4.1 in order to recall how to construct the TRI spin quantum
Hall effect in graphene which is a model of 2 4+ 1 dimensional topological insulator.
Then, the dimensional reduction to 1+ 1 dimensions by obtaining the one dimensional
charge polarization explicitly is presented. In Section 4.2, the 4 + 1 dimensional
Chern-Simons field theory which was shown to describe the fundamental topological
insulator is considered. The field strengths of the related Berry gauge fields are derived
to obtain the second Chern number and dimensional reduction to 3 4 1 dimensions is
studied. By imitating the approach of [8] a hypothetical model is theorized in 4 + 1
dimensions which yields a TRI spin Hall current in 3 + 1 dimensions by means of
the dimensional reduction. Slightly modifying the approach of [37], a dimensional
reduction procedure to 2+ 1 dimensions is proposed which provides explicit forms of

the gauge field components which take part in the descendant action.

4.1 2+1 Dimensional topological insulator and dimensional reduction to 1+1

dimension

Field theory of electrons interacting with the external Abelian gauge field Ay is given

by the Dirac Lagrangian density

g (Wv l/_/?A) = W[ya (pa +AOC) - m] W7 (4-1)

where @ =0, 1---d. By integrating out the fermionic degrees of freedom in the related

path integral one formally gets the action of the external fields as

SIA] = —ilndet[iy*(dy — iAg) — m). 4.2)

For d = 2n one of the terms which it gives rise to is [38]

T[A™] :/[dql]"'[dan]Aal (q1) - A% (gny 1) oy 0y (91 Gny1)-
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[dq] denotes the integral over the related phase space. At the order of first loop

d2n+1k
nal...a,,+1(611"'61n+1)=/m—antr{G(k)lal (k,k—q1)G(k—q1) - Aa,,, (k+Gns1,k)},
where G(k) is the one particle Green function of the free Dirac field and A is the

photon vertex. T[A""'] generates the 2n + 1 dimensional Chern-Simons term

Sinf}l [A] =Gy /d2n+1x£al maanAal aazA% e aaznAaan ) 4.3)

which can be taken as the effective topological action in the low energy limit.

In 2 + 1 dimensions integration of the massive Dirac fermions in the related path

integral with the Lagrangian density (4.1) leads to the effective topological action
Silal=C1 [ dxen*Pa,0,a,, (44)

where u,v,p =0,1,2.

On the other hand, plugging the field strength (2.38) of the Abelian Berry gauge field
(2.34) into (2.40) leads to

Ny = ﬁ / d*keptr{PA,U U P}.

Therefore, we conclude that
Ny

= 4.5)

C

One can observe that by employing (4.5) in (4.4) the effective topological action of
external gauge fields coupled to massive Dirac electrons living in 2+ 1 dimensions

becomes

Ny
241
Seff = 1z

/ PrehPAL A, (4.6)
To calculate the related first Chern number (2.40), let us choose the representation
a = (0, 0,), where 0, are the Pauli spin matrices. This corresponds to set p, = (1, —i)

in (2.37). Thus, the Abelian Berry gauge field can be written as

S bkb
oy = — 272 4.7
" 2E(E+m) @.7)
It yields the Berry curvature
d0ah 0. m
Fp==——5—|=—5=- 4.8
12 ( dk; ok > 2E3 (4.8)
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We plug (4.8) into (2.40) and perform the change of variable by (3.41) to express the

m [ dE
Ni=— | — 4.9
1 ) /D E2 ) ( )

where the domain of integration D will be specified according to the model considered.

related first Chern number as

If it is required to treat the £ > 0 and E < 0 domains on the same footing, we can deal
with
m (MdE m [~ dE

N o= _m (e mo[mdEk 4.10
! 2 ) wE2 2) . E? (4.10)

4.1.1 A model for 2 + 1-dimensional topological insulator

Before presenting the graphene model of [8], let us briefly recall the interconnection
between the quantum Hall effect and the Chern-Simons action in 2 + 1 dimensions.
For electrons moving on a surface in the presence of the external in-plane electric field
E = (E,,E,,0) and the perpendicular magnetic field % = (0,0, %,) the Hall current is
given by

Ja = Ou€wEp. (4.11)

Ignoring the spin of electrons the Hall conductivity is a topological invariant [10, 60]:
2

Gy = %Nl. (4.12)

Here N is the first Chern number resulting from the field strength .%; of the Berry
gauge field obtained from the single particle Bloch wave functions which are solutions
of the Schrodinger equation in the presence of the external magnetic field 4,,
integrated over the states up to the Fermi level Er as

Er d%k
Ny = T 4.13
=/ G (4.13)

A field theoretic description is possible in terms of the Chern-Simons action (4.6) with
the definition (4.13). In fact, the current obtained from the topological field theory
(4.6),

Ju= iv—jlre”v,)&VAP,
gives for E, = d,Ag — doA, the Hall current (4.11). It also leads to the charge density
Jjo = oyB, where the induced magnetic field is B = d.A, — dyA,. Note that B would
also be generated by the Hall current (4.11) through the current conservation condition

duja = —0:jo. We would like to emphasize the fact that the field theory (4.6) is not
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aware of the external magnetic field %,. External magnetic field is responsible of
creating the energy spectrum whose consequences are encoded in the calculation of

the first Chern number (4.13).

By employing the Berry gauge field derived from the Dirac equation (4.7), we can
still get the Hall conductivity as in (4.12) by an appropriate choice of the domain of
integration D in (4.9). This construction does not necessitate an external magnetic
field. For the first time in [9] Haldane described how to obtain the quantum Hall
effect without a magnetic field (vanishing in the average) through a Dirac like theory.
To calculate the Hall conductivity following from the Dirac equation we let all the

negative energy levels be occupied up to the Fermi level Er = m in (4.9), so that

2 m (" dE &2
N =) =_. 4.14
o= < 2 /w E2) 2h @.14)

In [8] Kane and Mele incorporated the spin of electrons into the Haldane model [9]

and proposed the following Hamiltonian for graphene
Hg = 0,7k, + Oyky +mo, T;5,, (4.15)

which leads to a TRI spin current. The mass term is generated by a spin-orbit
coupling. The Pauli spin matrices Oy, act on the states of sublattices. The matrix
7, = diag(1,—1) denotes the Dirac points K, K’ which should be interchanged under
the time reversal transformation. The other Pauli matrix s, = diag(1,—1) describes
the third component of the spin of electrons which should also be inverted under time
reversal transformation. Thus the time reversal operator is given by T = UK where
we can take U = 7,5, and K takes the complex conjugation as well as maps k — —k.
Therefore (4.15) is TRI:
TH;T ' =Hg.

The Abelian Berry gauge field obtained from the Hamiltonian (4.15) can be written
as [34]

Ay = msabkblfsz, (4.16)

where 1; is the unit matrix in the 7, space. The corresponding field strength is

m
—ﬁlfsz. (4.17)

The indices 1] and =+ label, respectively, the third component of the spin and 7,. The

§125d13g<§1,§I,y_‘¢_,y£) =

spin current defined as

P=it it =it -,
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leads to the spin Hall current

Jo = Osu€apEp.

The difference of the related first Chern numbers

AN, = E/ Pk[(FL+ 70— (FL+ 7
1 1 I 1
— (4 ) (———)Y=2 4.1
gives the spin Hall conductivity oy as
e e
=—AN; = —. 4.19
Osu an 1 o ( )

4.1.2 Dimensional reduction to 1 + 1 dimensions

We would like to discuss dimensional reduction from 2+ 1 to 1 + 1 dimensions by
slightly modifying the procedure described in [37]. The dimensionally reduced theory

can be defined through the 1+ 1 dimensional Lagrangian density

i’ﬂl-&-l (lllv ll_lvA) = ll_/['yr (pV+AV) +YZCy _m] II/7

where  =¢,x and the external field {,(z,x) is the reminiscent of the gauge field A,. We
define {, = k,+ {, where k, is a parameter which permits us to deal with one particle
Green function of the 2 4 1 dimensional theory to derive the effective action of the
external fields. In fact, integrating out the spinor fields y, ¥ in the related path integral

yields the effective action
St = Gin(k,) / dxdil (x,1)€rs0,A,.
The coefficient Gp(ky) is required to satisfy
/ Gip(ky)dky = Ny, (4.20)

where the first Chern number N is given by (4.9). Instead of the Cartesian coordinates
we prefer to work with the polar coordinates k, 6, where k, = kcos @, ky, = ksin6.

Similar to (4.20) we would like to introduce G(0) satisfying
2n
/ G(6)d6 = N, 4.21)
0
and define the (1 + 1)-dimensional effective action as

S, = G(6) / dxdtE (x,1)€,50,A;. 4.22)
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Although it can be deduced directly from the definition (4.21), we can also obtain G(6)

by writing the components of the Abelian Berry gauge field (4.16) in polar coordinates:

k

%:_2E(E+m)’

o = 0.

The Berry curvature remains the same

1[d(kety) dch]  m
ok 96

Fio = -
kO k

- 2E¥

and allows us to calculate explicitly G(0) as

1
GO) = — [ kdk7,
(0) = 5 [kdkFig
. m [dE N
4mt /o E2  2m’
Now, one can define the one dimensional charge polarization [52,53] P(6) by

oP(6)

26

G(0). (4.23)

Adopting the first Chern number calculated in (4.10), Ny = 1, we solve (4.23) by

_9
o

P(6) (4.24)

The physical observable is not directly the charge polarization given by P(0) but the

adiabatic change in P(0) along a loop, which is equal to
AP =P(2m)—P(0) = 1.
The (1 + 1)-dimensional action (4.22) becomes
S = %/a’xthre,sasC(x,t), (4.25)

for N; = 1. The action (4.25) leads to the current

. 1
Jr= gersasg(x»t)a

known as the Goldstone-Wilczek formula [54] and gives the charge

L dlxy), 1
Q_Zn/ ox dx_ZEAC'

In fact, it corresponds to solitons on polyacetylene with charge Q = 1/2 for { changing

from 0 to w and Q = 1/3 for Al = 27/3 as it was obtained in [54].
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4.2 4+1 Dimensional topological insulator and dimensional reduction to 3+1 and

2+1 dimensions

The topological field theory

N
StiLIA] = T;Z / dxe"PE A, IgAcOpAg, (4.26)

is designated as the effective action of the 4 4+ 1 dimensional TRI topological insulators
in [37]. It follows from (4.3). To derive the related second Chern number N, we
deal with the 4 + 1 dimensional realization of the Dirac Hamiltonian (2.30) which is

provided by

. 0 l'617273 . 0 —1 . 1 0
(X17273 - ( —i61’2’3 O )v oy = ( _1 0 )7 ﬁ - ( 0 _1 ) . (4'27)

Observing that p; = (i0},i02,i03,—1), the non-Abelian Berry gauge fields can be
obtained from (2.37) as

_ O3kp — O0k3 — O1ky _ —03k) + 01ks — O2ky

A = o = 4.28
! 2E(E+m)  * 2E(E+m) (4.28)
ork) — O1ky — O3ky o1k; + ok + 03k3
3= , 4= (4.29)
2E(E +m) 2E(E +m)

By definition the Berry gauge field corresponding to the 4 + 1 dimensional Dirac
Hamiltonian can also be derived by considering the explicit solutions of the Dirac
equation as it was done in [55]. They work in the chiral representation, so that the

Berry gauge field components which they obtain differ from (4.28),(4.29).

One can show that the field strength components .%;; = d.o/;j/dk; — d.«7;/dk; —
it o). axe

Fin = m [05(—E(E +m) + ki +K3) + 02 (kiks — koks) — 01 (koka + k1 K3)]
F1i3 = m [G2(E(E +m) — ki —k3) + 01 (kika — kska) + 03 (kika + koks) ]
Fis = m (1 (E(E +m) — ki — k3) — 02 (kika + kska) — 03 (kiks — kaka)]
Fo3 = m [61(—E(E +m) + k3 +k3) — 02 (kika + kska) — 03 (kiks — koka)]
Ty = m [G2(E(E +m) — k5 — k3) — 01 (kika — kska) — 03 (kika + koks) ]
Fyy = m [03(E(E +m) — k3 — k3) + 02 (kika — koks) — 01 (koka + ki K3)] -
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Plugging them into (2.41) and taking the trace yield

Ny = % / (— 5k (4.30)
To calculate it explicitly, we would like to deal with the four dimensional polar
coordinates given by k| = kcos @y, ko = ksin ¢ cos ¢,, k3 = ksin @y sin ¢, cos ¢3 and
k4 = ksin ¢; sin ¢, sin @3, where the angles @1, @2, @3, respectively, take values in the in-
tervals [0, 7], [0, ], [0,27]. The volume element is d*k = k3 sin? ¢y sin podkd ¢1d drd §3.
Hence, after the change of variable by (3.41), one can show that (4.30) can be written

as
3m [ m?—E?

No=— | ———dE. 4.31
2= |, T (4.31)

When D is taken to be an overlap of the £ > 0 and E < 0 domains, we may deal with

3m (™ m?—E? 3m [ m?—E?
— dE + —

N> —
2T ) EA 4 )., E*

dE =1. 4.32)

4.2.1 Dimensional reduction to 3 + 1 dimensions

Dimensional reduction of the 4 4 1 dimensional effective action given by (4.1) to 3+ 1

dimensions can be described by the Lagrangian density

LW, WA =W [v* (pa+Ax) + 10 —m] y, (4.33)

where o = 0,---,3. The external field 6(x,) is the reminiscent of the gauge field
A4. v, Y fields can be integrated out through the one particle Green function of 4 + 1
dimensional theory introducing the parameter k4 by setting 8 = k4 + 6 (x4). By keeping
track of the phase space volume one can obtain the 3 + 1 dimensional effective action

as

_ Gip(ks)
ff T 4Am

/ d*x0e*P 19,50, A, (4.34)
where the coefficient is given through the condition

/ Gsp(ks)dks = Ny (4.35)

We would like to modify this construction by working with the four dimensional polar

coordinates and proposing that the action describing the descendant theory is given by

G
S3+l = %/dz‘.xesaﬁynaaAﬁayAn,
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whose coefficient, like (4.35), is required to satisfy the condition

2

G3(93)d¢3 = N>.

Thus, the coefficient G3(¢3) can be obtained as

G3(¢3) =

N,

324 V2

o2 / €t (Fij 7 )k sin” 1 sin grdkdprdr = >, (4.36)
with the definition (4.31) of the second Chern number N,.

Similar to the one-dimensional charge polarization (4.23) one can associate the

coefficient G3(¢3) to P3(¢3) through the relation [37]

/27[ Md% = o G3(¢3)d¢3 :Nz.
o Jdfs 0

Hence the “magnetoelectric polarization" can be obtained as

N-
Py(¢3) = ﬁ%. (4.37)

Observe that like the one-dimensional case, for A¢3 = 27 it changes by APz = 1 if
we choose N, = 1 as it is calculated in (4.32). P;(¢3) depends linearly on ¢3 due to
the fact that the second Chern character corresponding to free Dirac particle depends
only on k. Interacting Dirac particles may give rise to polarizations which would not

be linearly dependent on ¢3.

By inserting the definition (4.36) into (4.34) the effective action becomes
S = 22 [ 06 P13, 450, (4.38)
) x0E€ adpOyAn. .
It can be written equivalently as
Sy = [d*ep (6)e* M9 A50,A
Ly XL3 adpgoyin,

where P3(0) = N,6 /2. This describes the axion electrodynamics which is invariant

under the shift 8 — 0 +2x [3,56].
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4.2.2 A hypothetical model for 3 + 1 dimensional topological insulators

In spite of the fact that the underlying topological gauge theory (4.26) is manifestly
TRI, the theory given by the descendant action (4.38) is TRB except for the values
0 = 0, . Nevertheless, we may deal with the TRB action (4.38) but introduce a TRI
hypothetical model generalizing the spin Hall effect for graphene [8]. The current
following from the action (4.38) is

o N,

Assuming 6 = 0(z) and considering the in-plane electric field E,(x,y); a = 1,2, we

obtain the current [57]
. M

The Hall current can be introduced by integrating (4.39) along the coordinate z as

9.0 (2)€apEp (x,y). (4.39)

Jo(x,y) = / jadz = GueaEp(x.y). (4.40)

It leads to the surface Hall conductivity oy [27,37]

2 2
ee N e~ N
=——— [0,0dz=——"A6. 4.41
=5 2n)e / P an)? (@.41)
Obviously we defined A@ = 0(e0) — 6(—oo), which is non-vanishing for an adequate

domain wall or at an interface plane between two samples.

Now we should define the second Chern number (4.31) appropriately. We suppose that
all negative energy states are occupied till the Fermi level taken as the first positive
energy value E = m, so that we get

N_3m m m? _ g2
2T 4 ). E*

dE =1/2. (4.42)

Considering a plane of interface which yields A@ = 27 the Hall conductivity becomes

In the representation (4.27) the 4 4+ 1 dimensional Dirac Hamiltonian (2.30) is TRI
where the time reversal operator can be taken as 7,,, = ax0uK. However, the

Hamiltonian corresponding to the action (4.33) for Ay, =0,

Hy =a k+0,6+mp, (4.43)
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violates time reversal symmetry. We will present a hypothetical model which is time
reversal invariant emulating the spin Hall effect for graphene. Let ¢; act on sublattices
with two Dirac points. Assume that around these points which are interchanged under
time reversal transformation, electrons are described by the Hamiltonians as in (4.43).
Moreover the third component of the spin given by the Pauli matrix s, = diag(1,—1)

is included and conserved. Thus, we propose to consider the Hamiltonian
Hy = 0 -k+ 040 + T.5.fm, (4.44)
where 7, = diag(1,—1) and in terms of ¢; and 3 given by (4.27) we defined
o; = (o, T,00,06,04).

Now, as in Section 4.1.1, the time reversal operator interchanging the Dirac points and
the third components of the spin can be defined by T = 7,s5,K, so that (4.44) is TRL
Obviously, we can obtain (4.44) through the dimensional reduction from the 4 + 1

dimensional action corresponding to the following free Hamiltonian
H =0 ki+T.s.fm = diag(H'" H'= H*" H'"). (4.45)

As we show in Appendix B, the four dimensional Hamiltonians defined by (4.45)

correspond to the second Chern numbers
Nt =N =Nt =—NJ =N,

where N, is given by (4.31). Repeating the procedure yielding (4.40)-(4.42) in the

presence of a domain wall we can obtain the dissipationless spin current as
Jo= I+ I =07 =0 = osutaEp(x.y),

with the spin Hall conductivity

N ) = €

e

Ost = 1z

for A = 2m. It is equal to the spin Hall conductivity for graphene (4.19).
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4.2.3 Dimensional reduction to 2 + 1-dimensions

The 2 4 1 dimensional Lagrangian density

a%ﬂ[W? ll_lvA] =y [f}/li (pl.t —|—A”) + ')/3{:3 + ')/4C4 — m} v,

describes the dimensionally reduced theory. The fields {3(xy),Cs(xy) are the
reminiscent of the gauge fields A3, A4, of the 4 + 1 dimensionally theory whose action
is given by (4.1) for d = 4. By setting {3(xy) = k3 + @ (xy) and Ca(xy) = ka + 0(xy),
where k3,ks are parameters playing the role of the momentum components in one

particle Green functions. 2 4 1 dimensional effective action is derived as as
S5 = Gap ks, ka) / dxeh P AL, 6, 6.
Its coefficient should fulfill the condition
/GZD(k3,k4)dk3dk4 =N,. (4.46)

As in Section 4.2.1, we consider the four dimensional polar coordinates and propose

that the action

$21= Ga(92.03) [ 5" 4,0,$0, . (4.47)
describes the 2 4 1 dimensional descendant theory. Obviously, like (4.46) we pose the
condition

T 2%
| [ d0xd0:Ga(62,00) = e
This can be solved by
2 .
Ga(¢2,¢3) = 5 _singn.

Proceeding as in [37] we introduce the vector field

however by adopting the definitions

N>

Qp =
0 4

N,
cos, Qy = —720 sing.
The field strength of the field Q, is

N
uQy — 0y Qy = 72 sing (9090 — 09y 9) .
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Let us define ¢ = ¢» + ¢ and 6 = ¢3 + 0 as slowly varying fields, so that at the first
order in derivatives we can write G(¢,0)0d,00y¢ ~ G1(¢s, ¢3)8ué<9v¢~). Therefore,

the action (4.47) can be written in the form
1
S =0 / dxe""PAL0,Q,p. (4.48)

The current generated by the field Q,, a = 1,2, is

e

= EgabEba

where the electric field is given by E, = d,Ag — doA,. It can be interpreted as the
spin current yielding the spin Hall conductivity oy, = e/2m. Hence, by attributing
the adequate time reversal transformation properties to the gauge field Q,,, the action
(4.48) corresponds to the TRI 2 + 1 dimensional model of [8] which we discussed in

Section 4.1.1,

The action (4.48) generates the electric current

i 1
J“ - ES”vPanp.

For fields satisfying ¢ = ¢(x), 8 = 0(y) it gives the total charge
N N b 2
0=e /dxdysin(b&xq)&ye - eﬁ/o singdg [ do =N
On the other hand the three dimensional Skyrmion field n coupled to Dirac fermion in

2+ 1 dimensions yields the current [58]

, 1
J‘E - gguvpn’ avn X apn

The Skyrmion field configuration discussed in [59] satisfying n?> = 1 possesses the
charge Q" = 2e. Hence, if we deal with N, = 1, the Skyrmion theory can be described

for the field configurations satisfying
1
sing (9y09u¢ — 9 00v¢) = i dvn X dyn,
which leads to jL = 2jy. In principle this condition can be solved to obtain n in terms
of the fields ¢ and 6.

Observe also that for the field configurations ¢ = ¢(r), 6 = 6(y) the net charge flow

in x direction is
/ dtdyj, = —N,. (4.49)
4

9



Moreover, we can introduce the magnetoelectric polarization in the form given (4.37)
by defining it as
Py(6) ——/ﬂdm im=2g
SR oI am
Then the pumped charge (4.49) can also be written as AQ = [ dP; = N, which gives
AQ = 1/2 for N = 1/2, as it is given for the Hall effect (4.42).
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S. CONCLUSIONS

One of the main topics addressed was the consequences of incorporating spin into the
semiclassical formalism which is described in Section 3. A differential form formalism
was employed. In our semiclassical formalism, acting in the classical phase space
where position and momentum are dynamical variables, but spin comes into play
in the matrix-valuedness of the symplectic 1-form and the Berry gauge fields. This
leads to matrix-valued time evolutions of position and momentum variables. It was
demonstrated that our formalism is suitable to calculate the spin Hall conductivity
for Dirac-like systems. The spin Hall current, thus the spin Hall conductivity was
defined through the time evolutions of position and momentum variables. Dealing with
electrons, without loss of generality the third component of spin was considered whose
explicit matrix form depends on the details of the underlying Dirac-like Hamiltonian.
When the third component of spin is conserved at the quantum level, constructing the
spin current is not intriguing. However, the spin Hall effect can persist even if the
third component of spin is not conserved. Within the Kane-Mele model of graphene, it
was shown in Section 3 that even for the systems where the spin is not a good quantum
number, it is always possible to establish the leading contribution to the spin Hall effect
in terms of the Berry field strength derived in the appropriate basis. Moreover, it was
demonstrated that it is always given in terms of the spin Chern number which is defined
to be one half the difference of the Chern numbers of spin-up and spin-down sectors.

To investigate the Kane-Mele model in 2 + 1 dimensions and topological insulators
in 4 + 1 dimensions, we mainly employ the Foldy-Wouthuysen transformation of the
Dirac Hamiltonian. The Foldy-Wouthuysen transformation diagonalizes the Dirac
Hamiltonian. In order to define the Berry gauge field, the adiabaticity condition
dictates that one should operate within either the positive energy eigenstate states or the
negative energy eigenstates. Thus, the Foldy-Wouthuysen transformation turns out to
be a powerful tool in the investigation of a physical system with topological properties
related to a Dirac-like Hamiltonian. Topological properties are characterized through

the related Chern numbers: The first Chern number in 2 + 1 dimensions and the second
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Chern number in 4 4- 1 dimensions acquired by the Berry field strengths.

In Section 4, we deal with the effective field theory of the 4 + 1 dimensional
time-reversal invariant topological insulator. The Foldy-Wouthuysen transformation
was employed to obtain the Berry gauge fields of Dirac Hamiltonian and the first
and second Chern numbers were derived explicitly. In the line of the Kane-Mele
model, a hypothetical model was introduced that yields a dissipationless spin current
in 3 + 1-dimensions. This can be helpful in understanding some aspects of the
three dimensional time-reversal invariant topological insulators if its relation to some
realistic models can be demonstrated. Moreover, in terms of our explicit constructions
one can discuss Z; topological classification of time-reversal invariant insulators in a
tractable fashion.

In principle our approach can be generalized to the interacting Dirac particles where
the related Foldy-Wouthuysen transformation at least perturbatively exists, where the
inverse of rest energy of the particle is the perturbation parameter. However, it is also
possible to employ 7 as the perturbation parameter [61]. Recently, the latter approach
attracted considerable interest in the kinetic theory of the chiral particles [62,63]. We
believe that it suits well in developing our approach to more complicated interacting
Dirac-like systems which can be useful in either condensed matter or high energy

systems.
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APPENDIX A : Kubo Formula Derivation of Spin Hall Conductivity

Introducing the label I = (14-,1—, |4, ]—) corresponding to each of the two dimensional
Dirac-like Hamiltonians given in (3.27), (3.28),

|p') and |a') denote, respectively, the positive energy E = 1/vZh?k2 + A2, and the
negative energy —E eigenspinors of the related Dirac-like Hamiltonians. For instance,
let us consider the Hamiltonian for the spin up carriers in the K valley, H'T, whose
eigenspinors can be written in the chiral basis as

Pt = ( c OS(g), ) (A1)

sin(2)e'?
) = (e ) 2

—Cos
where cos 0 = AEﬁ and tan¢ = ]3 When the Fermi level of graphene is in the gap
generated by the spin orbit 1nteract10n we should set k = 0, hence cos 8 = 1

] CD[\JICD

we need to consider their eigenspinors. In fact, for the spin up carriers in the K’ valley
described with H'~ the eigenspinors are

sin(2
p'7) = (_COS((%Z‘)l_i¢ ) (A.3)
a'") = (S;@fzq) ) (Ad)

Similarly, for the spin down carriers in the K valley, we can show that the eigenspinors
of the Hamiltonian H+* are

1+ . Sln(Q)
7 = (tithe ) (A8)
I+ cos(Q)
) = (e ) o

The eigenspinors of the Hamiltonian H'~ corresponding to the spin down carriers in
the K’ valley are

2]

Py = <_Sf§(sé§2_,~¢ ) (A7)
sin(¢

at7) = (COS(%()’;)@ ) (A.8)

Kubo formula corresponding to the Hamiltonians (3.27), (3.28) can be written in the
notation introduced as [10]

() . .
(o3 = [ A% 2Im [(d'|y|p") {p"¥]a")]
W =7 (2n)2 4E? ’
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where X, y are the related velocity operators which can be read from (??) and

E® = \[v21212 + A2,

For H'™ the velocity operators are x = v;Gy, y = vy oy and the eigenspinors | p'*) and
laT*) are given in (A.1) and (A.2). Employing them in (A.9) leads to [?]

e Aso
(o) = -5 (A.10)
1 8T E,gz)
For the spin up carriers in the K’ valley, we set X = —v;0y, y = v»0, and deal with the

eigenspinors (A.3),(A.4). We obtain the same conductivity

e Ay

(o)1 = — =22
87 Eﬁz)

(A.11)

The contributions arising from the spin down carriers in the K and K’ valleys are also
equal but differ in sign with the spin up contributions:

S\ _ g8y = & Aso
(GH) - (GH) - 877:E£2) (A.12)

To obtain the spin Hall conductivity we should take the difference of the spin up and
spin down contributions as

0 = (o)™ + (o)1) = (G +(a3)*). (A.13)
Inserting (A.10), (A.11) and (A.12) into (A.13) leads to the spin Hall conductivity

s_ ¢ Ao
o

Oy =

This is the same with the result obtained in terms of the Berry phase (3.38).
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APPENDIX B : Berry Gauge Field and Curvature in 4 + 1 Dimensions

The Hamiltonian (4.45) which comprises 7, and spin degrees of freedom denoted +
and T, respectively, yields the 4 4 1 dimensional Dirac Hamiltonians

Ht = o ki + apky + ozks + ouks +mp, H' = ok — ks + azks + otgky —mp,
(A.14)

Itﬂ—i_ = ok + ks + 03ks + Olgky —mﬁ, I‘NIJ’_ = oqk; — ks + 03k3 + Otaky —I—mﬁ.
(A.15)

Let us first consider the two spin up Hamiltonians (A.14). They yield slightly different
non-Abelian Berry gauge fields

A= (tosky— ks F O1ks), Ay =~ (F O3k £ Ok — Ok

1 2E(E+m)( O3ky — O2k3 F O1ka), A, 2E(E—|—m)(:FG3 | £ 61k3 — Orky),
1

3 2E(E+m)(02 1 F O1ka F 03ka), 4 2E(E—|—m)( o1k1 + ooky + O3k3).

The corresponding field strengths can be calculated as

Zlh = m [FO3(E(E +m) — ki — k3) + 02 (kiks — koks) F 01 (koks + k1k3) ]
FhE = m [02(E(E +m) — k3 —13) + 01 (kiky — kskg) & 03 (ki ks + kak3) ]
FhE = m [£01(E(E +m) — k} — k3) — 02 (kik + ksks) T 03 (kiks — kaks)] ,
T = m [FO1(E(E +m) — k3 — k3) — 0a(kika + kks) T 03(kiks — koky)]
T = m [62(E(E +m) — k3 —I3) F 01 (kiks — kska) T 03 (ki ks + kak3) ] ,
Tl = m [£03(E(E +m) — k3 — k3) + 02 (kiks — kaks) F 01 (koks + k1k3)] -

Although they are different, they generate the same second Chern number equal to
(4.30):

S ! t+ ] 3 m . 4
N2 - 3271_2 /d keijkltr [’2] ykl :| = m/(—ﬁ)d k. (A.16)

The non-Abelian Berry gauge fields corresponding to the two spin down Hamiltonians
(A.15) can be shown to satisfy

ﬂfiii(kl,kz,kmkét) = (—1)84i%Ti(k1,k2,k3,—k4),

without summation over the repeated indices. Thus, the components of the related
Berry curvature are

f%ﬁi(kl,kz,k&kzt) = (—1)64i+54j§i3i(k1’kz’k3’ —ka).

They yield the same second Chern number which is given by (A.16) up to a minus
fome NYE iE=
sign: Ny©~ = —N, .
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APPENDIX C : Eigenstates of Kane-Mele Hamiltonian in the Presence of
Spin-orbit Coupling

The Hamiltonian for the K subspace is obtained from (3.25) by setting 7, =1 :

H. — AsoS; Lyve(px —ipy) + Ar(sy + isx))
K 1ve (Px + ipy) + Ax (Sy - isx) —AsoS; '

The eigenstates of Hy corresponding to the energy eigenvalues (3.41) can be shown to

. px—ipy _ .Dx—ipy
Pxtipy Pxtipy
E&] —Aso ) E&27ASO )
b =N VE(Pxtipy b, = N VF(Pxtipy
PN L Eiase [T TR L A
vr(pxtipy) vr (pxtipy)
1 1
. Px—ipy _.Dx—ipy
Pxtipy Pxtipy
(E3—Aso) (E4—As0)
b =N vF (px+ipy) b, =N, ve(px+ipy)
3T (B-as) [T T (Eaas) |
vr (px+ipy) vr(px+ipy)
1 1

_ vEPp
V202 P2 +(Ea—As0)?)

When 7, = —1 is taken in (3.25), the Hamiltonian for the K’ valley is obtained:

where the normalizations are Ny (p)

H., — —Aso5; —1vp (px + ipy) — A (Sy - isx))
K —1vr(px — ipy) — Ar(sy +isy) Asos, '

The eigenstates of Hys are as follows,

_j_Ei-As0 _E2—Aso
VF (px+lpy) VF (Perlpy)
1 1
D5 =N, . px—ipy ;P =N, _ipx*ipy )
Pxtipy Pxtipy
__Ei-Aso __Er-Aso
Vi (pxtipy) Vi (pxtipy)
—j-Ei-bs0 j_Ea=lso
VF (Px'HPy) VF (Px‘HPy)
1
CI>7 =N3 l.px—ipy ,(Dg =Ny . Dx—ipy
Px+ipy Pxtipy
__E3—Aso _ _Es—Aso
VF (Px+lpy) VF (Px+lpy)

The corresponding energy eigenvalues are given by (3.41) since E5 = E;, Eg = E,
E7 =E3, E3 = E4.
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