

ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

HYPER-HEURISTICS IN DYNAMIC ENVIRONMENTS

Ph.D. THESIS

Berna KİRAZ

Computer Engineering Department

Computer Engineering Programme

APRIL 2014

ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

HYPER-HEURISTICS IN DYNAMIC ENVIRONMENTS

Ph.D. THESIS

Berna KİRAZ
(504082503)

Computer Engineering Department

Computer Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. A. Şima ETANER-UYAR

APRIL 2014

İSTANBUL TEKNİK ÜNİVERSİTESİ ⋆ FEN BİLİMLERİ ENSTİTÜSÜ

DİNAMİK ORTAMLARDA ÜST-SEZGİSELLER

DOKTORA TEZİ

Berna KİRAZ
(504082503)

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Tez Danışmanı: Doç. Dr. A. Şima ETANER-UYAR

NİSAN 2014

Berna KİRAZ, a Ph.D. student of ITU Graduate School of Science Engineering and
Technology 504082503 successfully defended the thesis entitled “HYPER-HEURIS-
TICS IN DYNAMIC ENVIRONMENTS”, which he/she prepared after fulfilling the
requirements specified in the associated legislations, before the jury whose signatures
are below.

Thesis Advisor : Assoc. Prof. Dr. A. Şima ETANER-UYAR
Istanbul Technical University

Co-advisor : Assoc. Prof. Dr. Ender ÖZCAN
University of Nottingham

Jury Members : Prof. Dr. H. Levent AKIN
Boğaziçi University

Prof. Dr. Ahmet Coşkun SÖNMEZ
Istanbul Technical University

Assoc. Prof. Dr. Ayşegül GENÇATA YAYIMLI
Istanbul Technical University

Asst. Prof. Dr. Ali Fuat ALKAYA
Marmara University

Asst. Prof. Dr. Sanem SARIEL-TALAY
Istanbul Technical University

Date of Submission : 21 March 2014
Date of Defense : 21 April 2014

v

vi

To Bihter and Emre

vii

viii

FOREWORD

I would like to express my special appreciation and thanks to my advisors, Assoc.
Prof. Dr. A. Şima Etaner-Uyar and Assoc. Prof. Dr. Ender ÖZCAN. I appreciate
all their encouragement, endless support and the contributions. Their advice on both
research as well as on my career is invaluable. The joy and enthusiasm they have for
their research was motivational for me, even during tough times in my PhD research. I
am especially grateful for weekly meeting with Assoc. Prof. Dr. A. Şima Etaner-Uyar.
She was always cheerful, patient and encouraging in these meetings.

I would like to thank my jury members, Prof. Dr. H. Levent Akın and Assoc. Prof. Dr.
Ayşegül Gençata Yayımlı for their time, interest, helpful comments and suggestions. I
would also like to thank the other three members of my oral defense committee, Prof.
Dr. Ahmet Coşkun Sönmez, Asst. Prof. Dr. Ali Fuat Alkaya, and Asst. Prof. Dr.
Sanem Sarıel-Talay for accepting to be a member of my defense committee and their
time.

I would especially like to thank Gönül Uludağ for her contributions in my thesis. We
worked together on the project, namely A Hybrid Multi-population Framework for
Dynamic Environments. I appreciated her enthusiasm, intensity, and willingness.

I am indebted to my many colleagues for providing a stimulating and fun filled
environment. My thanks go in particular to Asst. Prof. Dr. Fatma Corut Ergin for
her friendship and encouragement. I also thank to my officemate, Dr. Işıl Öz, for
support and help in Java.

I gratefully acknowledge the Scientific and Technological Research Council of Turkey
(TÜBİTAK) for providing scholarship during my PhD research. Our work was also
supported by İstanbul Technical University Scientific Research Project (İTÜ / BAP)
and supported in part by the EPSRC, grant EP/F033214/1 (The LANCS Initiative
Postdoctoral Training Scheme).

Lastly, I would like to thank my whole family for all of the sacrifices that you have
made on my behalf. I would like to express appreciation to my husband Alper Kiraz
whose love, support and encouragement allowed me to finish this PhD. At the end, a
special thanks to my daughter Bihter and my son Emre. I have appreciated their patient
and love. Thank you all.

April 2014 Berna KİRAZ

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
LIST OF TABLES .. xv
LIST OF FIGURES .. xix
SUMMARY ... xxi
ÖZET ...xxiii

1. INTRODUCTION .. 1
1.1 Contribution.. 4
1.2 Outline of the Thesis .. 5
1.3 Academic Publications ... 5

2. BACKGROUND AND RELATED WORK.. 7
2.1 Dynamic Environments .. 7

2.1.1 Dynamic optimization problems .. 9
2.1.1.1 The moving peaks benchmark ... 9
2.1.1.2 XOR generator... 12
2.1.1.3 Dynamic traveling salesman problem.. 13

2.1.2 Performance evaluation criteria.. 15
2.2 Hyper-heuristics.. 17

2.2.1 Selection hyper-heuristics... 19
2.2.1.1 Heuristic selection methods... 19
2.2.1.2 Move acceptance methods ... 21

2.2.2 Related literature .. 22
2.2.3 HyFlex and first cross-domain heuristic search challenge 24
2.2.4 Selection hyper-heuristics in dynamic environments 25

3. SELECTION HYPER-HEURISTICS IN DYNAMIC ENVIRONMENTS.. 27
3.1 Experimental Setting .. 28

3.1.1 Approaches used in comparisons ... 30
3.1.2 Parameter settings of hyper-heuristics.. 31

3.2 Results .. 32
3.2.1 Results for EXPSET1 ... 32
3.2.2 Results for EXPSET2 ... 34
3.2.3 Dynamic environment heuristic search challenge 34
3.2.4 Tracking ability of the approaches ... 37
3.2.5 Scalability results.. 40

3.3 Discussion... 43

xi

4. AN ANT-BASED SELECTION HYPER-HEURISTICS FOR DYNAMIC
ENVIRONMENTS.. 45

4.1 Proposed Ant-Based Selection Hyper-heuristic Methods 45
4.1.1 An illustrative example... 47

4.2 Performance Evaluation of Ant-based Hyper-heuristic.................................. 49
4.2.1 Experimental design ... 49
4.2.2 Results and discussion.. 51

4.3 Experiments using a Detection Mechanism ... 54
4.3.1 Experimental design ... 55
4.3.2 Results and discussion.. 56

4.4 Analysis of the Components of AbS ... 57
4.4.1 The behavior of ant-based selection ... 57
4.4.2 Max-Min ant-based selection hyper-heuristic .. 62
4.4.3 Re-initialization of pheromone trails with max-min AbS....................... 63
4.4.4 The influence of q0 ... 63
4.4.5 The influence of slow decreasing parameter .. 65
4.4.6 The influence of evaporation rate ... 66

5. APPLICATIONS OF THE ANT-BASED SELECTION
HYPER-HEURISTICS .. 69

5.1 Application I: Hyper-heuristics in A Hybrid Multi-population Framework .. 69
5.1.1 A hybrid framework for dynamic environments 70
5.1.2 Computational experiments.. 72

5.1.2.1 Experimental design .. 72
5.1.2.2 Results.. 75

Comparison of heuristic selection methods .. 75
Comparisons to selected approaches from literature............................... 78

5.1.2.3 Discussion.. 79
5.2 Application II: An Implementation on HyFlex .. 81

5.2.1 Experimental design ... 81
5.2.2 Results and discussion.. 82

5.3 Application III: Dynamic Traveling Salesman Problem 83
5.3.1 Comparisons of selection hyper-heuristics... 83

5.3.1.1 Results.. 87
5.3.2 Comparisons to problem specific approaches .. 91

5.3.2.1 Results.. 92

6. CONCLUSION AND FUTURE WORK .. 97

REFERENCES.. 101

APPENDICES... 111
APPENDIX : Results of Ant-Based Selection with Tournament Selection......... 113

CURRICULUM VITAE... 116

xii

ABBREVIATIONS

AM : All Moves
AbS : Ant-based Selection
AbSrw : Ant-based Selection with Roulette Wheel
AbSts : Ant-based Selection with Tournament Selection
ACO : Ant Colony Optimization
CF : Choice Function
CMAES : Covariance Matrix Adaptation Evolution Strategy
DTSP : Dynamic Traveling Salesman Problem
DUF : Decomposable Unitation-Based Function
EDA : Estimation of Distribution Algorithm
EIACO : Ant Colony Optimization with Elitism-based Immigrants
EMCQ : Exponential Monte Carlo With Counter
ES : Evolutionary Strategies
GD : Great Deluge
GR : Greedy
HH-EDA2 : Hyper-heuristic based dual population EDA
HM : Hyper-mutation
IE : Improving and Equal
MIACO : Ant Colony Optimization with Memory-based Immigrants
MM AbS : Max-Min Ant-based Selection with Roulette Wheel
MPB : Moving Peaks Benchmark
MPBILr : Memory-based PBIL with restart
MPBILr : Dual Population Memory-based PBIL with restart
OI : Only Improving
PBIL : Population Based Incremental Learning
PBIL2 : A Dual Population PBIL
PBILr : PBIL with restart
PBIL2r : PBIL2 with restart
RIACO : Ant Colony Optimization with Random Immigrants
RL : Reinforcement Learning
RPD : Random Permutation Descent
SA : Simulated Annealing
SA+RH : Simulated Annealing with Reheating
Sentinel8 : Sentinel-based Genetic Algorithm with 8 sentinels
Sentinel16 : Sentinel-based Genetic Algorithm with 16 sentinels
SR : Simple Random

xiii

xiv

LIST OF TABLES

Page

Table 2.1 : Example peak coordinate, height and width values of a
2-dimensional landscape with two peaks. ... 10

Table 2.2 : The number of low-level heuristics for each heuristic type for each
problem domain. .. 25

Table 3.1 : Parameter settings for the Moving Peaks Benchmark. 28
Table 3.2 : MPB parameter settings for each severity level. 29
Table 3.3 : The offline error generated by each approach during the EXPSET1

experiments for different combinations of change frequency and
severity settings... 35

Table 3.4 : The offline error generated by each approach during the EXPSET2
experiments for different combinations of change frequency and
severity settings... 36

Table 3.5 : The overall Formula 1 scores for the top fourteen approaches. 38
Table 3.6 : Offline error generated by each approach in the experiments for

analyzing the effect of number of dimensions for EXPSET2 for
different frequency and severity combinations. 41

Table 3.7 : Offline error generated by each approach in the experiments for
analyzing the effect of number of peaks for EXPSET2 for different
frequency and severity combinations.. 42

Table 4.1 : Final offline error results of various q0 settings for AbSrw and
sAbSrw under the tested change frequency-severity pairs. 51

Table 4.2 : Final offline error results of various q0 settings for AbSts and
sAbSts using random tournament size under the tested change
frequency-severity pairs. ... 52

Table 4.3 : Final offline error results for the proposed heuristic selection
schemes. Here, for both AbSrw and sAbSrw q0 = 0.5, for both
AbSts and sAbSts q0 = 0.5 with random tournament size settings. 53

Table 4.4 : Summary of statistical significance comparisons for AbS variants. ... 53
Table 4.5 : Final offline error results for the proposed heuristic selection

schemes and RL, CF and ICF. .. 53
Table 4.6 : Pair-wise comparison of algorithms for each dynamic environment

type determined by a given change frequency and severity. Given
A vs B, s+ (s−) denote that A (B) is performing statistically better
than B (A), while ≈ denotes that there is no statistically significant
performance variation between A and B. .. 54

Table 4.7 : The offline errors generated by each approach for different
combinations of change frequency and severity settings. 56

Table 4.8 : Summary of statistical significance comparisons between AbS-IE
and AbS-IEd. ... 57

xv

Table 4.9 : Summary of statistical significance comparisons between AbS, CF
and RL combined with IEd. .. 57

Table 4.10 : The offline errors generated by each individual low-level heuristic
for different combinations of change frequency and severity settings. 59

Table 4.11 : The offline errors generated by AbS with 7 and 4 low-level
heuristics for different combinations of change frequency and
severity settings... 59

Table 4.12 : Summary of statistical significance comparisons between AbS with
7 and 4 low-level heuristics... 62

Table 4.13 : The offline errors generated by AbS and Max-Min AbS for different
combinations of change frequency and severity settings. 62

Table 4.14 : Overall (s+, s−, ≥ and ≤) counts for AbS and Max-Min AbS. 62
Table 4.15 : The offline errors generated by MM AbS and MM AbS-R for

different combinations of change frequency and severity settings. 63
Table 4.16 : Final offline error results of various q0 settings for MM AbS under

the tested change frequency-severity pairs. .. 64
Table 4.17 : Overall (s+, s−, ≥ and ≤) counts various q0 settings for MM AbS. .. 64
Table 4.18 : Final offline error results of various sd settings for MM AbS under

the tested change frequency-severity pairs. .. 65
Table 4.19 : Overall (s+, s−, ≥ and ≤) counts various sd settings for MM AbS. .. 66
Table 4.20 : Final offline error results of various ρ settings for MM AbS under

the tested change frequency-severity pairs. .. 66
Table 5.1 : Parameter settings for PBILs. .. 72
Table 5.2 : The value of the change periods.. 73
Table 5.3 : Offline errors generated by different heuristic selection methods

averaged over 100 runs, on all DUFs for different change severity
and frequency settings in randomly changing environments. 76

Table 5.4 : Offline errors generated by different approaches averaged over 100
runs, on the DUF1 for different cycle length and change frequency
settings in different cyclic dynamic environments.............................. 77

Table 5.5 : Offline errors generated by different approaches averaged over 100
runs, on the DUF2 for different cycle length and change frequency
settings in different cyclic dynamic environments.............................. 78

Table 5.6 : Offline errors generated by different approaches averaged over 100
runs, on the DUF3 for different cycle length and change frequency
settings in different cyclic dynamic environments.............................. 79

Table 5.7 : Overall (s+, s−, ≥ and ≤) counts for the different heuristic
selection schemes.. 80

Table 5.8 : The overall score according to the Formula 1 ranking based on
median, best and average offline error values for the different
heuristic selection schemes. .. 80

Table 5.9 : Overall (s+, s−, ≥ and ≤) counts for the algorithms used. 80
Table 5.10 : The overall score according to the Formula 1 ranking based on

median, best and average offline error values for the algorithms
used. .. 81

Table 5.11 : The overall Formula 1 scores of our approaches compared to
competing hyper-heuristics in CHeSC2011.. 82

xvi

Table 5.12 : The overall Formula 1 scores of AbS variants for six problem
domains. .. 83

Table 5.13 : Offline performance generated by different approaches averaged
over 31 runs, on the kroA100 for random DTSP. 89

Table 5.14 : Offline performance generated by different approaches averaged
over 31 runs, on the kroA150 for random DTSP. 89

Table 5.15 : Offline performance generated by different approaches averaged
over 31 runs, on the kroA200 for random DTSP. 90

Table 5.16 : Offline performance generated by different approaches averaged
over 31 runs, on the u2152 for random DTSP..................................... 90

Table 5.17 : Parameter settings for ACO with immigrants. 92
Table 5.18 : Offline performance generated by different approaches averaged

over 31 runs, on the kroA100 for random and cyclic DTSP. 94
Table 5.19 : Offline performance generated by different approaches averaged

over 31 runs, on the kroA150 for random and cyclic DTSP. 95
Table 5.20 : Offline performance generated by different approaches averaged

over 31 runs, on the kroA200 for random and cyclic DTSP. 96
Table A.1 : Final offline error results of various q0 settings for AbSts under the

tested change frequency-severity pairs. .. 113
Table A.2 : Final offline error results of various q0 settings for sAbSts under

the tested change frequency-severity pairs. .. 114

xvii

xviii

LIST OF FIGURES

Page

Figure 2.1 : A 2-dimensional fitness-landscape with two peaks is given in (a).
The following changes are applied on this landscape: (b) the peaks
are shifted, i.e. their locations are changed, but their heights and
widths remain fixed, (c) the widths of the peaks are changed, but
their locations and heights remain fixed, (d) the heights of the
peaks are changed, but their locations and widths remain fixed,
(e) the heights, widths and locations of the peaks are changed. 11

Figure 2.2 : The heights of all the peaks given for each stationary environment
over 20 changes... 12

Figure 2.3 : Selection hyper-heuristic framework [1]. .. 18
Figure 3.1 : Average convergence plot generated by the best solution versus

fitness evaluation counts for Simple Random and Improving and
Equal. .. 29

Figure 3.2 : Histograms of Formula 1 scores for (a) CF–OI based on the
median, (b) CF–IE based on the best, and (c) CF-OI based on
average over 18 dynamic environment cases. 38

Figure 3.3 : Comparison of approaches (CF-IE, HM-AM, ES, and CMAES)
for the combinations of (a) Low, (b) Medium, (c) High frequencies
and severities of change based on the error values of the best
candidate solution versus evaluation counts for EXPSET2. 39

Figure 3.4 : A sample plot of the error values of the best candidate solution
versus evaluation counts based on medium change frequency and
medium severity combination for EXPSET2. The left and right
plots show the results for Choice Function–Improving and Equal
and Hypermutation–All Moves, respectively...................................... 39

Figure 3.5 : Box-plots of offline error values for a statistical comparison
of the approaches (CF-IE, HM-AM, ES, and CMAES) for the
combinations of (a) Low, (b) Medium, (c) High frequencies and
severities of change using EXPSET2. ... 40

Figure 4.1 : A sample plot of the error values of the best candidate solutions
versus the number of evaluations for the combinations of (a) Low,
(b) Medium, (c) High frequencies of change for AbS......................... 58

Figure 4.2 : A sample semilogarithmic plot for the pheromone trail values
versus fitness evaluations for each heuristic pair based on high
frequency and medium severity combination for AbS. 60

Figure 4.3 : A sample semilogarithmic plot for the pheromone trail values
versus fitness evaluations for each heuristic pair based on
high frequency and medium severity combination for AbS with
handling ties. ... 61

xix

Figure 4.4 : Final offline error versus of different q0 values for MM AbS for
different combination of change frequency and severity settings....... 64

Figure 4.5 : Final offline error versus of different sd values for MM AbS for
different combination of change frequency and severity settings....... 65

Figure 4.6 : Final offline error versus of different ρ values for MM AbS for
different combination of change frequency and severity settings....... 67

Figure 5.1 : The framework of HH-EDA2. ... 71
Figure 5.2 : A sample plot of the fitness values of the best candidate solutions

versus time for (a) AdapHH and (b) AbS.. 88

xx

HYPER-HEURISTICS IN DYNAMIC ENVIRONMENTS

SUMMARY

Current state-of-the-art methodologies are mostly developed for stationary optimiza-
tion problems. However, many real world problems are dynamic in nature. To
handle the complexity of dealing with the changes in the environment, an optimization
algorithm needs to be adaptive and hence capable of following the change dynamics.
From the point of view of an optimization algorithm, the problem environment consists
of the instance, the objectives and the constraints. The dynamism may arise due
to a change in any of the components of the problem environment. Existing search
methodologies have been modified suitably with respect to the change properties, in
order to tackle dynamic environment problems. Population based approaches, such as
evolutionary algorithms are frequently used for solving dynamic environment problem.

Hyper-heuristics are high-level methodologies that perform search over the space of
heuristics rather than solutions for solving computationally difficult problems. They
operate at a higher level, communicating with the problem domain through a domain
barrier. Any type of problem specific information is filtered through the domain barrier.
Due to this feature, a hyper-heuristic can be directly employed in various problem
domains without requiring any change, of course, through the use of appropriate
domain specific low-level heuristics.

Selection hyper-heuristics are highly adaptive search methodologies that aim to raise
the level of generality by providing solutions to a diverse set of problems having
different characteristics. In this thesis, we investigate single point search based
selection hyper-heuristics in dynamic environments. We first work on the applicability
of selection hyper-heuristics proposed in literature for dynamic environments. Then,
we propose a novel learning hyper-heuristic for dynamic environments and investigate
the performance of the proposed hyper-heuristic and its variants.

In the first phase, the performances of thirty-five single point search based selection
hyper-heuristics are investigated on continuous dynamic environments exhibiting
various change dynamics, produced by the Moving Peaks Benchmark generator.
Even though there are many successful applications of selection hyper-heuristics to
discrete optimization problems, to the best of our knowledge, this study is one of the
initial applications of selection hyper-heuristics to real-valued optimization as well
as being among the very few which address dynamic optimization issues using these
techniques. The empirical results indicate that learning selection hyper-heuristics
which incorporate compatible components can react to different types of changes in
the environment and are capable of tracking them. This study shows the suitability of
selection hyper-heuristics as solvers in dynamic environments.

In the second phase, we propose a new learning hyper-heuristic, called the Ant-based

Selection (AbS), for dynamic environments which is inspired from the ant colony

xxi

optimization algorithm components. The proposed hyper-heuristic maintains a matrix
of pheromone intensities (utility values) between all pairs of low-level heuristics. A
heuristic is selected based on the utility values between the previously invoked heuristic
and each heuristic from the set of low-level heuristics. For this study, we employ
the generic Improving and Equal acceptance scheme. We explore the performance of
the proposed hyper-heuristic and its variants using Moving Peaks Benchmark (MPB)
generator. The empirical results indicate that the proposed heuristic selection scheme
provides slightly better performance than the heuristic selection scheme that was
previously reported to be the best in dynamic environments.

The proposed approach does not require any special actions whenever a change occurs
in the environment. However, the first candidate solution generated after each change
is accepted regardless of its quality. Therefore, the move acceptance needs to detect
the change. In this study, we use a simple detection mechanism in which the current
solution is re-evaluated at each step. If there is a change in the fitness of the current
solution, a change is considered to be detected. We consider Ant-based selection,
Choice Function and Reinforcement Learning as the heuristic selection methods. The
results show that the re-evaluation process slightly deteriorates the performance of
approaches for especially high frequency changes, however, the approach is suitable
for cases where changes cannot be made known to the optimization algorithm. We
then investigate the effect of the parameters of the proposed algorithm on overall
performance. The results show that the settings of the parameters are not very sensitive
and similar results are obtained for a wide range of parameter values.

In the third phase, we explore the performance of the proposed hyper-heuristic through
three different applications. As the first application, the selection hyper-heuristics
are used in a hybrid multi-population framework. We use a hybridization of the
Estimation of Distribution Algorithm (EDA) with hyper-heuristics in the form of a
two-phase framework. We investigate the influence of different heuristic selection
methods. The empirical results show that a heuristic selection method that relies
on a fixed permutation of the underlying low-level heuristics is more successful
than the learning approaches across different dynamic environments produced by a
well-known benchmark generator. The proposed approach also outperforms some
of the top approaches in literature for dynamic environment problems. Ant-based
selection is proposed for dynamic environments. However, to see its performance in a
stationary environment, Ant-based Selection is applied to six stationary optimization
problems provided in HyFlex as the second application. The results are compared
with the results of participants in CHeSC2011 competition. Finally, we present the
performance of Ant-based Selection on a real-world optimization problem referred
to as the Dynamic Traveling Salesman Problem. The overall results show that the
proposed approach delivers good performance on the tested optimization problems.
These last set of experiments also emphasize the general nature of hyper-heuristics.
For all optimization problems in this study, all hyper-heuristics are applied without
requiring any modifications or parameter tuning.

xxii

DİNAMİK ORTAMLARDA ÜST-SEZGİSELLER

ÖZET

Son zamanlarda önerilen metotlar daha çok statik eniyileme problemleri için
geliştirilmişlerdir. Fakat gerçek hayatta karşılaşılan eniyileme problemlerinin pek
çoğu dinamik bir yapı göstermektedir. Dinamik bir ortamda, eniyileme yönteminin
üzerinde çalışmaya başladığı ortamda zaman içinde değişimler olabilir. Ancak bu
problemlerin çözümünde genelde bu dinamiklik göz ardı edilerek klasik eniyileme
yaklaşımları uygulanmaktadır. Halbuki bu dinamikliği de göz önüne alarak çalışan
bir eniyileme yaklaşımı, ortamdaki değişimleri hızlı bir şekilde izleyebilmeli ve
bunlara uyum sağlayabilmek için adaptif olmalıdır. Eniyileme algoritması açısından
bakıldığında problem ortamı, problemin tanımlı değerleri, eniyilemede kullanılan
amaç fonksiyonları ve kısıtlardan oluşur. Ortamdaki dinamiklik, problem ortamını
oluşturan bu parçalardan herhangi birisinde veya birkaçında meydana gelen tekil ya
da eş zamanlı değişimlerden kaynaklanabilir. Farklı problemlerde bu değişimler de
farklı özellikler göstermektedir. Bu özellikler genelde değişimlerin şiddetine, sıklığına,
periyodik olup olmamasına göre sınıflandırılırlar. Ortamdaki dinamizmin özelliklerine
göre farklı durumlarda farklı yaklaşımlar başarılı olmaktadır. Bu ise eniyileme
yaklaşımını seçerken ortamdaki değişimlerin özelliklerinin bilinmesi anlamına gelir.
Halbuki gerçek hayatta bu her zaman mümkün olmayabilir. Ayrıca ortamın gösterdiği
değişimin özellikleri de zaman içinde değişebilir. Bu durumda başta seçilen yaklaşım,
eniyilemenin ilerleyen aşamalarında başarılı olmayabilir.

Üst-sezgiseller problem uzayında problem ile etkileşim halinde olan ve aday çözümü
güncelleyen alt seviyedeki sezgiseller aracılığı ile arama yapar. Alt seviyede
kullanılan, probleme özel sezgiseller ise problemin çözüm uzayında arama yaparlar.
Bu nedenle alt seviyedeki sezgiseller, üst-sezgiseller ile problemin çözüm uzayı
arasında bir ara katman olarak düşünülebilir. Böylece problem uzayında aramayı alt
sezgiseller yapmış olur. Bu özellik sayesinde bir üst-sezgisel, uygun alt sezgisellerin
kullanılmasıyla, değiştirilmeden çeşitli problemlere uygulanabilir.

Sezgisel seçen üst-sezgiseller konusunda yapılan araştırmaların temel hedefi,
eniyilemenin genelleştirme seviyesini yükselterek pek çok farklı problem domeninde
ve farklı özellikler gösteren ortamlarda uygulanabilir bir yaklaşım geliştirmektir. Bu
nedenle üst-sezgiseller, doğaları gereği adaptif yapıdadırlar. Bu özellikleri sayesinde
dinamik ortamlardaki değişimlere, herhangi bir dış müdahale gerektirmeden hızla
uyum gösterip, etkin çözümler üretebilirler. Bu tezde öncelikle literatürde var olan
üst-sezgisellerin dinamik ortamlar için uygunluğu üzerinde çalışılmıştır. Elde edilen
bilgiler ışığında dinamik ortamlarda başarılı çözümler üretecek yeni üst-sezgisel
yaklaşım geliştirilmiş ve başarımı ölçülmüştür.

Tezin ilk aşamasında, otuz beş tek çözüm üreten sezgisel seçen üst-sezgisellerin
başarımını, farklı değişim dinamikleri sergileyen sürekli dinamik eniyileme problem-
leri için değerlendirdik. Deneylerde üzerinde çalışmak için yapay oluşturulmuş test

xxiii

problemi (Moving Peaks Benchmark) kullanılmıştır. Ayrık eniyileme problemleri
için sezgisel seçen üst-sezgisellerin birçok başarılı uygulamaları olmasına rağmen,
bilgimiz dahilinde, bu çalışma reel değerli (sürekli) eniyileme problemleri için sezgisel
seçen üst-sezgisellerin ilk uygulamalarından biridir. Bunun yanı sıra bu çalışma,
bu teknikleri kullanarak dinamik eniyileme problemlerini ele alan çok az çalışma
arasında yer almaktadır. Deneysel sonuçlar göstermiştir ki; uygun bileşenli öğrenme
tabanlı üst-sezgiseller ortamdaki farklı tipteki değişimlere hızlı bir şekilde tepki
gösterebilmekte ve onları takip edebilmektedir. Bu çalışma üst-sezgisellerin dinamik
eniyileme problemlerini çözmek için uygun olduğunu göstermektedir.

İkinci aşamada, karınca kolonisi algoritmasından esinlenerek yeni öğrenme tabanlı
üst-sezgisel yaklaşım, karınca tabanlı seçim, geliştirilmiştir. Önerilen üst-sezgisel
düşük seviyeli bütün sezgisel çiftleri arasındaki feromon yoğunluklarının bir matrisini
tutar. Her adımda bir sezgisel, önceden çağırılan sezgisel ile düşük seviyeli sezgisel
kümesinden her bir eleman arasındaki feromon değerlerine göre seçilir. Bu çalışmada
iyileştiren ve eşit hareket kabul yöntemi kullanılmıştır. Önerdiğimiz üst-sezgisel
yönteminin başarımı yapay oluşturulmuş test problemi (Moving Peaks Benchmark)
kullanılarak değerlendirilmiştir. Test sonuçlarına göre, önerilen yaklaşım daha
önceden dinamik ortamlar için en iyi olarak belirlenen sezgisel seçme yöntemleri ile
benzer sonuçlar vermiştir.

Önerilen yaklaşım ortam değiştiğinde herhangi bir özel eyleme gerek duymamaktadır.
Fakat hareket kabul yönteminin doğası gereği, her bir değişimden sonra üretilen
ilk çözüm adayı niteliğine bakılmaksızın kabul edilmektedir. Bundan dolayı
hareket kabul yöntemi ortamdaki değişikliği algılamak zorundadır. Bu çalışmada
ortamdaki değişimleri algılamak için basit bir yöntem kullanılmıştır. Bu yöntemde
şu anki çözümün başarım değeri her adımda tekrardan hesaplanmaktadır. Eğer
şu anki çözümün başarım değerinde bir değişiklik varsa ortam değişmiş demektir.
Sezgisel seçme yöntemi olarak seçin fonksiyonu, destekli öğrenme ve karınca tabanlı
seçim kullanılmıştır. Test sonuçlarına göre yeniden değerlendirme yöntemi bütün
yaklaşımların başarımını azaltmıştır.

Bu çalışmada ayrıca önerilen yaklaşımın kapsamlı bir analizi yapılmıştır. Bu amaçla
önerilen yaklaşımın adaptasyon yeteneği ve algoritmaların parametrelerinin başarıma
etkisi incelenmiştir. Deneysel sonuçlara göre, önerilen yaklaşım hızlı bir şekilde
değişimlere uyum sağlayabilmektedir. Önerilen yaklaşım parametre atamalarından
çok fazla etkilenmemekte ve geniş aralıklı parametre değerleri için benzer sonuçlar
vermektedir.

Tezin son aşamasında, önerilen yaklaşımın başarımı üç farklı uygulamada
değerlendirilmiştir. Öncelikle, sezgisel seçen üst-sezgiseller çok popülasyonlu
hibrid bir çerçeve içinde kullanılmışlardır. Bu çerçeve çevrimiçi ve çevrimdışı
öğrenme mekanizmalarına dayanan üst-sezgiseller ile dağılım tahmini algoritmasının
hibridleştirilmesine olanak sağlamaktadır. İyi çözümler üretmek için olasılık
vektörlerinin listesi ilk aşamada çevrimdışı olarak öğrenilir. İkinci aşamada iki
ayrı popülasyon ve her popülasyonun kendi olasılık vektörleri vardır. Bir alt
popülasyon dağılım tahmini algoritması kullanarak örneklendirilirken, diğer alt
popülasyon çevrimiçi olarak uygun olasılık vektörünü çevrimiçi aşamada öğrenilen
olasılık vektörleri listesinden örneklemek için üst-sezgiselleri kullanır. Önerilen
hidrid yöntemin başarımı farklı sezgisel seçme yöntemleri kullanılarak denenmiştir
ve Rastgele Permütasyon metodunun daha başarılı olduğu gözlemlenmiştir. Ayrıca bu

xxiv

hibrid yapı literatürde iyi bilinen benzer yaklaşımlarla karşılaştırılmış ve bunlara göre
daha iyi sonuç verdiği gözlemlenmiştir.

Önerilen yöntem dinamik ortamlar için önerilmiştir. Bununla birlikte, yöntemin statik
ortamlardaki başarımını gözlemlemek için, ikinci uygulama olarak, önerilen metot
HyFlex arayüzü üzerinde uygulanmıştır. HyFlex’in Java uygulaması CHeSC2011
yarışmasında kullanılmıştır. Bu uygulama altı statik problem domeni sağlamaktadır.
Önerilen yaklaşımın başarımı yarışmadaki katılımcılarla karşılaştırılmıştır. Son
uygulama olarak önerilen yaklaşımın başarısı gerçek dünya problemi kullanılarak
değerlendirilmiştir. Yapay oluşturulmuş test problemleri problem örneklerini yaratmak
için kullanılan önemli araştırma araçları olup verilen domende bu örneklerin
özelliklerini kontrol etmemizi sağlar. Bu problem örnekleri farklı algoritmaların
başarımını karşılaştırmak için çoğunlukla kullanılmaktadırlar. Öte yandan, gerçek
dünya problemleri yapay olarak oluşturulan örneklerden farklı olabilir. Yapay
örnekleri kullanarak yapılan algoritmaların test edilmesi verilen algoritmanın gerçek
dünya problemi üzerindeki asıl performansını yansıtmayabilir. Dolayısıyla, bu
çalışmada, Dinamik Gezgin Satıcı Problemi olarak bilinen gerçek dünya problemi
ele alınmış ve önerilen yaklaşımın başarımı değerlendirilmiştir. Dinamik Gezgin
Satıcı Problemi örneklerini oluşturmak için literatürde çokça kullanılan Gezgin Satıcı
Problemi’ nin örneklerine trafik faktörü eklenmiştir. Genel olarak, test edilen
problemler üzerinde önerilen metodun iyi sonuç verdiği gözlemlenmiştir. En son
yapılan testler üst-sezgisellerin genel bir yapı olduğunu vurgulamıştır. Üst-sezgiseller
hiçbir değişikliğe ya da parametre ayarlarına gerek duymadan bu çalışmada kullanılan
tüm eniyileme problemlerine uygulanmıştır.

xxv

xxvi

1. INTRODUCTION

A hyper-heuristic is a methodology which explores the space of heuristics for solving

complex computational problems [1–4]. Although the term hyper-heuristic was

introduced recently [5, 6], the initial ideas can be traced back to the 60s [7, 8].

There has been a growing interest in this field since then. A hyper-heuristic is

an alternative method to meta-heuristics, which operate on the problem directly by

using problem-specific information. For meta-heuristic methods, parameters must be

fine-tuned for different problems. On the other hand, hyper-heuristics can operate on

a problem indirectly by way of heuristics, which interact with the problem and modify

the solutions [9]. There are two main types of hyper-heuristics in literature [10]:

methodologies that select, or generate heuristics. This study focuses on the former

type of hyper-heuristics based on a single point search framework termed as a selection

hyper-heuristic. A selection hyper-heuristic controls a set of low-level heuristics and

adaptively chooses the most appropriate one to invoke at each step. This type of

hyper-heuristics has been successfully applied to many combinatorial optimization

problems ranging from timetabling to vehicle routing [11].

One of the challenges in combinatorial optimization is to develop a solution method

which is capable of solving different types of instances having different characteristics

for a given problem domain. There is a variety of heuristic search methodologies,

such as tabu search and evolutionary algorithms to choose from to solve static

combinatorial optimization problems [12]. If the environment changes over time

during the optimization/search process for a given problem, then this task becomes

even more challenging. Such problems are referred to as dynamic optimization

problems. When performing a search for the best solution in such environments, the

dynamism is often ignored and generic methodologies are utilized. However, the key

to success for a search algorithm in dynamic environments is its adaptation ability and

speed to react whenever a change occurs. There is a range of approaches in literature

proposed for solving dynamic environment problems [13–15]. Often, a given approach

1

performs better than some others for handling a particular type of dynamism in the

environment. This implies that the properties of the dynamism need to be known

beforehand, if the most appropriate approach is to be chosen. However, even this may

be impossible depending on the relevant dynamism associated with the problem.

A key goal in hyper-heuristic research is raising the level of generality. To this end,

approaches which generalize well and are applicable across a wide range of problem

domains or different problems with different characteristics, have been investigated.

Considering the adaptive nature of hyper-heuristics, they are expected to respond

to the changes in a dynamic environment rapidly and hence be effective solvers in

such environments regardless of the change properties. In this thesis, we study the

applicability of selection hyper-heuristics in dynamic environments.

In the first phase of this thesis, we investigate the performance of a set of selection

hyper-heuristics proposed in literature for dynamic environments to determine their

strengths and weaknesses and to analyze their behavior. In this study, selection

hyper-heuristics are applied to a set of real-valued optimization problems generated

using the Moving Peaks Benchmark (MPB) generator [16]. This benchmark generator

is preferred as a testbed for our investigations mainly because it is one of the most

commonly used benchmark generators in literature for creating dynamic optimization

environments in the continuous domain [14]. Based on the empirical results, the

learning selection hyper-heuristics with appropriate acceptance methods are applicable

approaches to solve dynamic optimization problems. They can react rapidly whenever

a change occurs and are capable of tracking the changing optima closely.

In the second phase of this thesis, we describe a new learning hyper-heuristic for

dynamic environments, which is designed based on the ant colony optimization

algorithm components. The proposed hyper-heuristic maintains a matrix of pheromone

intensities (utility values) between all pairs of low-level heuristics. A heuristic is

selected based on the utility values between the previously invoked heuristic and each

heuristic from the set of low-level heuristics. We investigate the performance of the

proposed hyper-heuristic controlling a set of parameterized mutation operators for

solving the dynamic environment problems produced by the Moving Peaks Benchmark

(MPB) generator. The empirical results show that the proposed heuristic selection

scheme provides slightly better performance than the heuristic selection scheme

2

previously reported to be the best in dynamic environments. The Ant-based selection

hyper-heuristic does not require any special actions when the environment changes.

However, due to the nature of the acceptance mechanism, the first solution candidate

generated after each environment change is accepted regardless of its solution quality.

This means that the algorithm needs to know when a change occurs in the environment.

In this thesis, we consider a simple change detection mechanism. To detect a change

in the environment, the current solution is re-evaluated at each step. A change occurs

in the environments when the fitness value of the current solution is changed. The

empirical results show that the re-evaluation slightly degrades the performance of the

algorithms. However, the approach is suitable for cases where changes cannot be

made known to the optimization algorithm. We further perform exhaustive tests to

empirically analyze and explain the behavior of our approach. The results indicate

that the parameter settings of the proposed approach are not very sensitive and similar

results are obtained for a wide range of parameter values.

In the final phase of this thesis, we present three applications of the pro-

posed hyper-heuristic, namely Ant-based selection hyper-heuristic. Firstly, the

hyper-heuristics are used in a hybrid multi-population framework. The framework

hybridizes selection hyper-heuristic and Estimation of Distribution Algorithm (EDA)

combining offline and online learning mechanisms. A list of probability vectors

for generating good solutions is learned in an offline manner in the first phase.

In the second phase, two sub-populations are maintained. A sub-population is

sampled using an Estimation of Distribution Algorithm, while the other one uses

a hyper-heuristic for sampling appropriate probability vectors from the previously

learned list in an online manner. The empirical results show that the proposed

approach using a particular hyper-heuristic outperforms some of the best known

approaches in literature on the dynamic environment problems dealt with. Even though

Ant-based selection is proposed for dynamic environments, to assess its performance in

a stationary environment, we implement the proposed approach on HyFlex [17] which

provides six stationary optimization problems. We then compare the performance of

proposed method with that of competitors in Cross-domain Heuristic Search Challenge

(CHeSC2011). Finally, we investigate the performance of the proposed approach,

on a real-world dynamic optimization problem referred to as the Dynamic Traveling

3

Salesman Problem (DTSP). The instances for the Dynamic Traveling Salesman

Problem are generated from the classic Traveling Salesman Problem instances by

introducing the traffic factor proposed in [18]. We compare the experimental results

with those obtained from well-known approaches in literature. Overall, the proposed

methods provide good performance on the tested problems.

1.1 Contribution

The contributions of this work can be stated as follows:

As the first contribution of this thesis, this study is the first study investigating

single point search based hyper-heuristics in dynamic environments. In dynamic

environments, different approaches are proposed to deal with different change

properties. However, hyper-heuristics do not depend on the change dynamics and

therefore hyper-heuristics can be directly employed in various dynamic optimization

problems without requiring any modifications.

As the second contribution of this thesis, this study provides a complete empirical

analysis of different hyper-heuristics coupling well-known heuristic selection and

move acceptance methods in dynamic environments. There is no such previous

study investigating a single point based search hyper-heuristic framework for solving

dynamic environment problems. Moreover, to the best of our knowledge, this is one of

the first studies which investigates the application of hyper-heuristics to a real-valued

optimization as well as being among the very few which address dynamic optimization

issues with these techniques. This study shows that learning selection hyper-heuristics

are sufficiently general. This yields them to be viable approaches in solving not only

dynamic problems regardless of the change dynamics in the environment, but also

continuous optimization problems.

The third contribution is the Ant-based selection hyper-heuristics. We propose a

new learning heuristic selection scheme for selection hyper-heuristics, especially for

use in dynamic environments. Although the existing hyper-heuristics are appropriate

for solving dynamic environment problems, they have some weaknesses. In these

methods, it is assumed that they are aware of the time when the environment changes

and they act on this. However, the proposed heuristic selection approaches do not

4

require any special actions when the environment changes. The experimental results

show that the proposed methods perform well on the tested problems.

1.2 Outline of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides background

information on hyper-heuristics and dynamic environments as well as a related

literature survey on the topic. Chapter 3 presents the empirical analysis of

a set of hyper-heuristics in dynamic environments exhibiting different change

characteristics. Chapter 4 describes the proposed Ant-based hyper-heuristics for

dynamic environment. The empirical analysis of the proposed methods are also

provided in Chapter 4. Then, Chapter 5 presents three applications of the proposed

hyper-heuristics as well as the experimental study for each application. Finally,

Chapter 6 discusses the conclusion and future work.

1.3 Academic Publications

The list of the publications produced during the PhD research are the following:

Journal publications

• Gönül Uludağ, Berna Kiraz, A. Şima Etaner-Uyar, and Ender Özcan, "A Hybrid

Multi-population Framework for Dynamic Environments Combining Online and

Offline Learning”, Soft Computing, Volume 17, Issue 12, pp. 2327-2348, 2013.

• Berna Kiraz, A. Şima Etaner-Uyar, and Ender Özcan, "Selection Hyper-heuristics

in Dynamic Environments”, Journal of the Operational Research Society, 64 (12),

pp. 1753-1769, DOI: 10.1057/jors.2013.24, 2013.

International conference publications

• Berna Kiraz, A. Şima Etaner-Uyar, and Ender Özcan,“An Ant-based Selection

Hyper-heuristic for Dynamic Environments”, EvoApplications 2013, LNCS vol.

7835, pp. 626-635, Springer, 2013.

5

• Gönül Uludağ, Berna Kiraz, A. Şima Etaner-Uyar, and Ender Özcan, “Heuristic

Selection in a Multi-phase Hybrid Approach for Dynamic Environments”, 12th

Annual Workshop on Computational Intelligence (UKCI 2012), pp. 1-8, 2012.

• Gönül Uludağ, Berna Kiraz, A. Şima Etaner-Uyar, and Ender Özcan, “A

Framework to Hybridise PBIL and a Hyper-heuristic for Dynamic Environments”,

PPSN 2012: 12th International Conference on Parallel Problem Solving from

Nature, LNCS vol. 7492, pp. 358-367, Springer, 2012.

• Berna Kiraz, A. Şima Etaner-Uyar, and Ender Özcan, “An Investigation of Selection

Hyper-heuristics in Dynamic Environments”, EvoApplications 2011, Part I, LNCS

vol. 6624, pp. 314-323, Springer, 2011

6

2. BACKGROUND AND RELATED WORK

2.1 Dynamic Environments

A dynamic environment is made up of components, such as, the problem instance,

the objectives and the constraints, each of which may change in time individually

or simultaneously. A change in a component can be categorized based on its

characteristics as given in [13]: (i) Frequency of change defines how often the

environment changes. (ii) Severity of change defines the magnitude of the change

in the environment. (iii) Predictability of change is a measure of correlation between

changes. (iv) Cycle length/cycle accuracy is a property that defines whether the optima

return exactly to previous locations or close to them.

When designing an optimization algorithm for dynamic environments, one of the main

issues for the algorithm to deal with is tracking the moving optima as closely as

possible after a change occurs. Another one is being able to react to a change in the

environment quickly and adapting to the new environment as fast as possible. Several

strategies have been proposed to be used as a part of existing search methodologies for

dynamic environments depending on the change properties. These strategies can be

grouped into four main categories [19]: (i) maintain diversity at all times, (ii) increase

diversity after a change, (iii) use memory, (iv) work with multiple populations.

For the approaches which maintain diversity at all times, e.g., as in the random

immigrants approach [20], achieving and preserving the right level of diversity is

crucial. In this method, a subset of population are replaced randomly generated

solutions at each step during the search. A high level of diversity which is more

than needed for a given problem may be detrimental to the search process during the

stationary periods. These approaches are generally more successful in environments

where the changes are severe and the change frequency is relatively high.

Approaches, such as hypermutation [21] and variable local search [22] increase

diversity by increasing the mutation rate when the environment changes. It has been

7

observed that too much diversity disrupts the search process, while too little may not

be sufficient to prevent premature convergence. These approaches are more suitable

for environments where changes are not too severe.

Some approaches make use of memory, as in [23–26], where the evolutionary

algorithm remembers solutions which have been successful in the previous

environments. These approaches are particularly more useful if a change occurs

periodically and a previous environment is re-encountered during the search process at

a later stage.

There are also other approaches with a good performance in dynamic environments,

which make use of multiple populations, such as [13, 27]. In these approaches,

the population is divided into subpopulations, where each subpopulation explores a

different part of the search space. Often, the focus of such an algorithm is tracking

several optima simultaneously in different regions of the search space.

The sentinel-based genetic algorithm (GA) [28] is another multi-population approach

to dynamic environments which makes use of solutions referred to as sentinels,

uniformly distributed over the search space for maintaining diversity. Sentinels are

fixed at the beginning of the search and in general, are not mutated or replaced during

the search. Sentinels can be selected for mating and used during crossover. Due to

having the sentinels distributed uniformly over the search space, the algorithm can

recover quickly when the environment changes and the optimum move to another

location in the search space. Sentinels are reported to be effective in detecting and

following the changes in the environment.

There is a growing interest in Statistical model-based optimization algorithms which

are adaptive and, thus, have the potential to react quickly to changes in the environment

and track them. For example, Estimation of Distribution Algorithms (EDAs), such as,

Univariate marginal distribution algorithm [29], Bayesian optimization algorithm [30],

and Population Based Incremental Learning (PBIL) [31], are among the most common

Statistical model-based optimization algorithms used in dynamic environments. There

are also some studies based on Statistical model-based optimization algorithms for

dynamic environments to estimate both time and direction (pattern) of changes [32–

35].

8

The standard PBIL algorithm is first introduced by [36]. PBIL builds a probability

distribution model based on a probability vector,
−→
P using a selected set of promising

solutions to estimate a new set of candidate solutions. Learning and sampling are

the key steps in PBIL. Several PBIL variants are presented in literature for dynamic

environment. One of them is a dual population PBIL (PBIL2) introduced in [31]. In

PBIL2, the population is divided into two sub-populations. Each sub-population has

its own probability vector. Both vectors are maintained in parallel.

2.1.1 Dynamic optimization problems

There are different benchmark generators in literature for dynamic environments. The

Moving Peaks Benchmark generator [16] is commonly used in continuous domains,

while in discrete domains the XOR dynamic problem generator [37, 38] is preferred.

In the case of permutation-encoded problems, such as Traveling Salesman Problems

(TSP) and Vehicle Routing Problems (VRP), different dynamic versions [18, 39–41]

and benchmark generators [41, 42] are proposed in literature.

2.1.1.1 The moving peaks benchmark

The Moving Peaks Benchmark (MPB) generator introduced by Branke [16], is used in

this study for analyzing and comparing the performance of different approaches. MPB

is a dynamic benchmark function generator which is not as simplified as most of the

toy problems in literature. Moreover, MPB exhibits similar properties to real world

problems, e.g. through the application of the measures proposed in [43], it has been

shown in [44] that the change dynamics generated by the MPB show a similar behavior

to those observed in a dynamic multi-dimensional knapsack problem.

The MPB generator provides multidimensional and multi-modal landscapes with a

variety of different peak shapes. In MPB, the most commonly used peak shape is the

cone. The height, width and the location of each peak is altered whenever a change in

the environment occurs. A dynamic benchmark function generated using MPB with

cone shaped peaks is formulated as follows:

F(~x, t) = max
i=1..m

{Hi(t)−Wi(t)∗

√

√

√

√

d

∑
j=1

(x j −Xi j(t))2} (2.1)

9

where m is the number of peaks, d is the number of dimensions, Xi j are the coordinates

of the peaks in each dimension, Hi and Wi are the heights and widths of the peaks

respectively. For example, assume that the current peak coordinates, height and width

values of two peaks in a 2-dimensional landscape at the given time tc are as given in

Table 2.1. The function value of a real-valued vector (candidate solution) located at

~x = (x1,x2) = (10.0,3.0) is calculated as follows:

F((10.0,3.0), tc) = max{50.0−0.1∗
√

((10.0−2.0)2+(3.0−2.0)2),

70.0−0.5∗
√

((10.0−20.0)2+(3.0−20.0)2)}

F((10.0,3.0), tc) = max{49.19,60.14}

F((10.0,3.0), tc) = 60.14

Table 2.1 : Example peak coordinate, height and width values of a 2-dimensional
landscape with two peaks.

Peak i Xi1(tc) Xi2(tc) Wi(tc) Hi(tc)
1 2.0 2.0 0.1 50.0
2 20.0 20.0 0.5 70.0

In some applications, a time-invariant base function B(~x) is used as part of the

benchmark function. In this case, the new MPB function, denoted as G(~x, t) becomes

G(~x, t) = max{B(~x),F(~x, t)}.

When working with the MPB, firstly, the coordinates, heights and widths of the peaks

are initialized. Then, every ∆e iterations, the heights and the widths of the peaks are

changed by adding a normally distributed random variable, while the location of the

peaks are also shifted by a vector ~v of fixed length vlength in a random direction.

During the search, the height, width and location of each peak are changed according

to the following equations:

ρ ∈ N(µ,σ 2) (2.2)

Hi(t) = Hi(t −1)+height_severity ·ρ (2.3)

Wi(t) = Wi(t −1)+width_severity ·ρ (2.4)

~Xi(t) = ~Xi(t −1)+~vi(t) (2.5)

where ρ is a random value drawn from a Gaussian distribution N(µ,σ 2), where µ and

σ 2 denote its mean and variance set to 0 and 1, respectively and vi(t) is the shift vector

10

which is the linear combination of the previous shift vector vi(t − 1) and a random

vector~r normalized to vlength. The height_severity, the width_severity and vlength

parameters determine the severity of the change in the heights, widths and locations

of the peaks respectively. ∆e determines the frequency of changes in the environment.

The shift vector at time t is calculated as:

~vi(t) =
vlength

|~r+~vi(t −1)|
((1−φ)~r+φ~vi(t −1)) (2.6)

where the random vector ~r is created by drawing uniformly distributed random

numbers for each dimension and normalizing its length to vlength, and φ is the

correlation coefficient. Higher values of φ indicate a higher correlation between the

current and previous shift vectors.

Figure 2.1 gives an example of an initial fitness landscape on which various types of

changes are applied. The fitness landscapes in the figure are generated using MPB

with a basis function of B(~x) = 0. Figure 2.1(a) shows the initial 2-dimensional fitness

landscape with 2 peaks (m = 2). Each of the rest of the sub-figures shows a specific

type of change applied on this initial fitness landscape.

(a) (b) (c)

(d) (e)

Figure 2.1 : A 2-dimensional fitness-landscape with two peaks is given in (a). The
following changes are applied on this landscape: (b) the peaks are shifted,
i.e. their locations are changed, but their heights and widths remain fixed,
(c) the widths of the peaks are changed, but their locations and heights
remain fixed, (d) the heights of the peaks are changed, but their locations
and widths remain fixed, (e) the heights, widths and locations of the peaks
are changed.

11

An initial landscape with five peaks is generated to demonstrate the effect of the

changes on the landscape further. 20 consecutive changes are applied to this initial

landscape. For simplicity, only the heights of the peaks are modified as a change, but

their locations and widths are fixed. Figure 2.2 gives the height of each peak including

the optimum after each change.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

30

35

40

45

50

55

60

65

70

Environment No

P
ea

k
H

ei
gh

ts

peak1
peak2
peak3
peak4
peak5
optimum

Figure 2.2 : The heights of all the peaks given for each stationary environment over
20 changes.

2.1.1.2 XOR generator

XOR dynamic problem generator [37, 38] creates dynamic environment problems

with various degrees of difficulty from any binary-encoded stationary problem using

a bitwise exclusive-or (XOR) operator. Given a function f (~x) in a stationary

environment and ~x ∈ {0,1}l, the fitness value of the ~x at a given generation g is

calculated as the following:

f (~x,g) = f (~x⊕mk) (2.7)

where mk is a binary mask for kth stationary environment and ⊕ is the XOR operator.

Firstly, the mask m is initialized with a zero vector. Then, every τ generations, the

mask mk is changed as

mk = mk−1 ⊕ tk (2.8)

where tk is a binary template.

12

In literature, Decomposable Unitation-Based Functions (DUFs) [25] are used within

the XOR generator. All Decomposable Unitation-Based Functions are composed of

25 copies of 4-bit building blocks. Each building block is denoted as a unitation-based

function u(x) which gives the number of ones in the corresponding building block.

Its maximum value is 4. The fitness of a bit string is calculated as the sum of the

u(x) values of the building blocks. The optimum fitness value for all Decomposable

Unitation-Based Functions is 100. DUF1 is the OneMax problem whose objective is

to maximize the number of ones in a bit string. DUF2 has a unique optimal solution

surrounded by four local optima and a wide plateau with eleven points having a

fitness of zero. DUF2 is more difficult than DUF1. DUF3 is fully deceptive. The

mathematical formulations of the Decomposable Unitation-Based Functions, as given

in [25], can be seen below.

fDUF1 = u(x) (2.9)

fDUF2 =







4 , if u(x) = 4
2 , if u(x) = 3
0 , if u(x)< 3

(2.10)

fDUF3 =

{

4 , if u(x) = 4
3−u(x) , if u(x)< 4

(2.11)

2.1.1.3 Dynamic traveling salesman problem

The Traveling Salesman Problem (TSP) is an NP-complete combinatorial optimization

problem and defined as the problem of finding the shortest path that visits each city

exactly once and then returns to the starting city. The problem can be represented by

a fully connected weighted graph, such that the cities are the vertices of the graph, the

connections between cities are the edges of the graph, the distance between two cities

is the length of the corresponding edge.

TSP is defined as follows:

f (x) = min
n

∑
i=0

n

∑
j=0

di jxi j (2.12)

subject to

13

xi j =

{

1 , if (i,j) is used in the path
0 , otherwise

(2.13)

where n is the number of cities, di j is the distance between city i and city j.

The Dynamic Traveling Salesman (DTSP) is more close to the real world than the

classic TSP. The dynamism can be introduced by changing the location of cities,

adding/deleting cities or changing the distance between the cities. In real world, for

example, traffic jam may change in time. In this case, the salesman needs to re-plan

his route with the minimum cost.

There are different variations of the DTSP in literature. Guntsch and Middendorf [39]

present a DTSP solved using Ant Colony Optimization. The dynamic environment

is constructed by exchanging a number of cities between the actual problem and

a spare pool of cities. This benchmark is adapted in [45, 46]. Eyckelhof and

Snoek [40] propose the DTSP where the travel times between the cities are changed.

They apply a new Ant System approach to the DTSP. Mavrovouniotis and Yang [47]

propose a similar benchmark which is solved using Ant Colony Optimization with

Memory-based Immigrants. Younes et al. [41] present a benchmark generator

to produce DTSP with three different modes and several Genetic Algorithms are

compared on the new benchmark. Mavrovouniotis and Yang [42] propose a benchmark

generator for dynamic permutation-encoded problems. They use the benchmark

generator to generate several dynamic instances from Traveling Salesman Problem

and Vehicle Routing Problem. Mavrovouniotis and Yang [18] propose two novel types

of Dynamic Traveling Salesman Problem with traffic factor in random and cyclic

environments. The change dynamics generated by DTSP represents a real world

problem called the traffic jam.

In this thesis, we consider the DTSP with traffic factor proposed in [18]. In DTSP, the

cost of the edge between two cities i and j is changed as follows:

ci j = di j ∗ ti j (2.14)

where di j is the traveled distance and ti j is the traffic factor between two cities i and

j. In randomly changing environment (random DTSP), every ∆e iterations, each

traffic factor between two cities is changed by adding a random number R with a

probability of m (ti j = 1+ R). Otherwise, the traffic factor is set to ti j = 1, which

14

means there is no traffic. For each edge, a different random number R ∈ [RL,RU]

is generated to reflect the traffic jam, where RL and RU are the lower and upper

bound of the traffic factor, respectively. In cyclic environment (cyclic DTSP), on

the other hand, the previous environments reappear in the future. To construct cyclic

environments, a predetermined number of base states are generated as in randomly

changing environments. Then, these base states repeat in a cycle. It should be note that

m and ∆e determine the severity of change and the frequency of change, respectively.

2.1.2 Performance evaluation criteria

Online and offline performance can be used to compare the performance of the

algorithms [13]. Online performance is calculated as the cumulative average of all

evaluations, as given below.

online_per f ormance =
1

Teval

Teval

∑
t=1

et (2.15)

where Teval is the total number of evaluations.

Offline performance is calculated as the cumulative average of the best values found

so far since the last change until a given time t, as provided in Equation 2.17

o f f line_per f ormance =
1

Teval

Teval

∑
t=1

et
∗ (2.16)

et
∗ = max{eτ ,eτ+1, . . . ,et} (2.17)

where Teval is the total number of evaluations, τ is the last time step (τ < t) when

change occurred, and e is the best solution found so far until the time step t since the

last change at time τ .

The overall offline performance [18, 38] is also used to compare the performance of

the algorithms. Given the best of generation fitness of generation i of run j (FBOGi j
),

the overall offline performance is calculated as given in Equation 2.18.

FBOG =
1

G

G

∑
i=1

(
1

N

N

∑
j=1

FBOGi j
) (2.18)

where G is the total number generations and N is the total number of runs.

If the optimum value is known at any point in time, offline error metric [13] can be used

to compare the performance of the algorithms. The error value of a candidate solution

15

~x at time t represents its distance to the optimum in terms of the objective/functional

value at a given time as given in Equation 2.19.

err(~x, t) = |optimum(t)−F(~x, t)| (2.19)

Here optimum(t) and F(~x, t) are the function values of the global optimum solution

and a given candidate solution~x at time t, respectively (MPB provides the location and

the function value of the current global optimum). The offline error is calculated as a

cumulative average of err(~xb, t)
∗ which denote the error values of the best candidate

solutions (~xb) found so far since the last change until a given time t, as provided in

Equation 2.21. An algorithm solving a dynamic environment problem aims to achieve

the least overall offline error value obtained at the end of a run.

o f f line_error =
1

Teval

Teval

∑
t=1

(err(~xb, t)
∗) (2.20)

err(~xb, t)
∗ = min{err(~xb,τ),err(~xb,τ +1), . . . ,err(~xb, t)} (2.21)

Here Teval is the total number of evaluations, τ is the last time step (τ < t) when

change occurred, and xb is the best solution found so far until the time step t since the

last change at time τ .

Moreover, the population diversity [18] can be used to evaluate the performance of the

algorithms. The total population diversity is calculated as provided in Equation 2.22.

T DIV =
1

G

G

∑
i=1

(
1

N

N

∑
j=1

DIVi j) (2.22)

where G is the total number generations, N is the total number of runs and DIVi j is the

diversity of the population of generation i of run j. DIVi j can be calculated as given in

Equation 2.23.

DIVi j =
1

µ(µ −1)

µ

∑
p=1

µ

∑
q6=p

M(p,q) (2.23)

where µ is the population size, M(p,q) is the similarity metric between the solution p

ans solution q.

Statistical significance tests can also be performed to compare the performance of the

approaches. The comparison based on these tests show whether the observed pairwise

performance variations are statistically significant or not. Some of the statistical tests

16

include t-test, Wilcoxon sum-rank test and One-way ANOVA and Tukey HSD test. In

this thesis, we perform One-way ANOVA and Tukey HSD tests at a confidence level of

95%. To provide a summary of the statistical comparison results, we count the number

of times an approach obtains a significance state over the others for different change

severity and frequency settings. In the tables providing the summary of statistical

comparisons, the values under s+ shows the total number of times the corresponding

approach performs statistically better than the others and s− shows the vice versa; ≥

shows the total number of times the corresponding approach performs slightly better

than the others, however, the performance difference is not statistically significant and

≤ shows the vice versa.

2.2 Hyper-heuristics

Heuristic and many meta-heuristic approaches operate directly on the solution space

and utilize problem domain specific information. Hyper-heuristics [48], on the other

hand, are described as more general methodologies as compared to such approaches,

since they are designed for solving a range of computationally difficult problems

without requiring any modification. They conduct search over the space formed by

a set of low-level heuristics which perturb or construct a (set of) candidate solution(s)

[6, 49]. Hyper-heuristics operate at a higher level, communicating with the problem

domain through a domain barrier as they perform search over the heuristics space.

Any type of problem specific information is filtered through the domain barrier. Due

to this feature, a hyper-heuristic can be directly employed in various problem domains

without requiring any change, of course, through the use of appropriate domain specific

low-level heuristics. This gives hyper-heuristics an increased level of generality.

Figure 2.3 shows the framework of the hyper-heuristics.

There are different categorizations of hyper-heuristics in literature. In [9],

hyper-heuristics are classified into two categories: (1) without learning and (2)

with learning. Hyper-heuristics without learning choose several low-level heuristics

randomly or a predetermined order. On the other hand, hyper-heuristics with learning

incorporate learning mechanism based on the historical performance of the low-level

heuristics.

17

Figure 2.3 : Selection hyper-heuristic framework [1].

In [50], hyper-heuristics are classified into two categories: constructive and

perturbative. A constructive hyper-heuristic approach starts with an empty solution;

then, it incrementally chooses and applies an appropriate constructive heuristic until a

complete solution has been obtained. A perturbative hyper-heuristic, on the other hand,

starts from a complete solution which are generated randomly or using a procedure.

It iteratively chooses and applies an appropriate perturbative heuristic to improve

the current solution. When a stopping condition defined by the user is met, the

hyper-heuristic outputs the best solution found during the search.

In [3], hyper-heuristics are classified into four groups: (1) hyper-heuristics based on

the random choice of low-level heuristics, (2) greedy and peckish hyper-heuristics,

which apply the all or a subset of heuristics and choose the best performing one.

(3) meta-heuristic based hyper-heuristics, and (4) hyper-heuristics employing learning

mechanisms.

In [10], hyper-heuristics are classified with respect to two dimensions: (1) nature of

heuristic search space, and (2) the source of feedback during learning. According

to the nature of heuristic search space, there are two main types of hyper-heuristics

in literature [10]: methodologies that select, or generate heuristics. A selection

hyper-heuristic controls a set of low-level heuristics and adaptively chooses the most

appropriate heuristic to invoke at each step. A generation hyper-heuristic generates

new heuristics using basic components of heuristics. Both selection and generation

heuristics use the constructions and perturbation low-level heuristics. According to the

source of feedback, on the other hand, hyper-heuristics are classified into three groups:

18

online learning hyper-heuristics, offline learning hyper-heuristics, and hyper-heuristics

without learning. Online learning hyper-heuristics get the feedback/guidance during

the search process while a problem instance is being solved. Offline learning

hyper-heuristics make use of a training session using a set of test instances to learn

how to deal with unseen instances.

2.2.1 Selection hyper-heuristics

A selection hyper-heuristic is a high-level heuristic that adaptively controls a set of

simple, low-level heuristics [1, 6, 9, 51]. Basically, at any given point during the

execution of a problem, a hyper-heuristic will decide the specific low-level heuristic to

apply.

In a selection hyper-heuristic framework, an initial candidate solution is iteratively

improved through two successive stages: heuristic selection and move acceptance [49].

Almost all selection hyper-heuristics in literature perform a single point based

search [11]. In the first stage, a heuristic is selected from a fixed set of low-level

perturbative heuristics and applied to the solution in hand, generating a new one. The

heuristic selection method does not use any problem domain specific knowledge while

making this decision. Then, the new solution is either accepted or rejected based on an

acceptance method. This process is repeated until the termination criteria are satisfied

and the best solution is returned. The general view of an selection hyper-heuristics in

pseudocode is given in Algorithm 1.

Algorithm 1 A Selection Hyper-heuristic Framework - Single-point Search.

generate initial candidate solution p

while (termination criteria not satisfied) do
select a heuristic h from H1, . . . ,Hn

generate a new solution s = h(p) by applying h to p

decide whether to accept s or not
if (s is accepted) then

p = s

end if
end while

2.2.1.1 Heuristic selection methods

Heuristic selection methods without learning include Simple Random (SR) and

Random Permutation (RP) [6, 9]. Simple Random heuristic selection chooses a

19

low-level heuristic at random, whereas Random Permutation uses all low-level

heuristics and chooses the one at the head of a queue in which heuristics are randomly

ordered.

On the other hand, an online learning hyper-heuristic gets feedback during the search

process in order to improve its performance. Some of these methods include Random

Descent (RD), Random Permutation Descent (RPD), Greedy (GR), Choice Function

(CF) [6, 9], and Reinforcement Learning (RL) [52].

Random Descent applies a randomly selected heuristic to the current solution

repeatedly as long as the solution improves, then another heuristic is selected randomly.

Random Permutation Descent selects a heuristic in the same way as Random

Permutation, but it applies the selected heuristic repeatedly as long as the solution

improves. The gradient heuristic selection operators can be considered as learning

hyper-heuristic components with a short term memory, since the same heuristic is used

as long as there is improvement which requires objective value of the solution from

the previous step. Greedy applies all low-level heuristics to the current solution and

selects the one which generates the largest improvement.

Choice Function maintains a utility score for each low-level heuristic Hi (Equa-

tion 2.24), measuring how well it has performed individually (u1(Hi) in Equation 2.25)

and as a successor of the previously selected heuristic (u2(Hi,Hselected) in

Equation 2.26), and the elapsed time since its last call (u3(Hi) in Equation 2.27). The

heuristic with the maximum score is selected at each iteration (Hselected). The score of

each heuristic denoted as score(Hi) gets updated after the heuristic selection process.

Given that ∆ fn(y) (∆ fn(x,y)) denotes the change in the solution quality and Timen(y)

(Timen(x,y)) denotes time spent, when the nth last time heuristic y was selected and

applied to the current solution (before the application of heuristic x):

∀i, score(Hi) = αu1(Hi)+βu2(Hi,Hselected)+δu3(Hi) (2.24)

∀i, u1(Hi) = ∑
n

αn−1 ∆ fn(Hi)

Timen(Hi)
(2.25)

∀i, u2(Hi,Hselected) = ∑
n

β n−1 ∆ fn(Hi,Hselected)

Timen(Hi,Hselected)
(2.26)

∀i, u3(Hi) = elapsedTime(Hi) (2.27)

20

Cowling et al. [51] provide a mechanism showing how the parameters α , β ∈ (0,1]

and δ can be adjusted dynamically.

Reinforcement Learning [52] maintains a utility score (weight) for each low-level

heuristic. Initially, all scores are the same for all heuristics, e.g., 0. If the selected

heuristic improves the solution, its score is increased; otherwise it is decreased, e.g.

by one. A heuristic is selected with the highest utility value (or based on some other

criteria) at each step. The scores for the low-level heuristics are restricted to vary

between certain lower and upper bounds.

2.2.1.2 Move acceptance methods

Move acceptance methods can be deterministic or non-deterministic. Several move

acceptance criteria are proposed in literature. All Moves (AM), Only Improving

(OI), and Improving and Equal (IE) are some examples for the deterministic

acceptance criteria in literature [6, 53]. There are other more sophisticated acceptance

mechanisms, such as Great Deluge (GD) [54], Exponential Monte Carlo With

Counter (EMCQ) [55], Simulated Annealing (SA) [56], and Simulated Annealing with

Reheating (SA+RH) [57].

All Moves accepts a solution in any case

Only Improving accepts a solution only if it is better than the previous solution

Improving and Equal accepts improving and equal moves.

Great Deluge accepts improving and equal moves. In addition, a worsening move is

accepted, if it is better than a dynamically changing threshold value which depends

on the current time and overall duration of the experiment. Linearly decreasing the

threshold value at each step is a common practice as illustrated in Equation 2.28 to

determine an acceptance range for a given worsening solution.

thresholdt = f f inal +∆F·(1−
t

maxIterations
) (2.28)

where f f inal is the expected objective value, maxIterations is the maximum number

of steps (or total time), t denotes the current step (time), ∆F is an expected range

for the maximum solution quality (fitness/cost) change.

21

Exponential Monte Carlo With Counter accepts all improving moves and a worsen-

ing move with a probability p given in Equation 2.29.

p = e
−∆ f ·m

Q , (2.29)

where Q is a counter for successive worsening moves and m is the unit time in

minutes that measures the duration of the heuristic execution, ∆ f is the difference

in the quality between new and current solutions. Q is reset if the quality of the

solution improves, otherwise it is incremented.

Simulated Annealing accepts all improving moves and a worsening move with a

probability p given in Equation 2.30.

p = e
− ∆ f

∆F(1− t
maxIterations

) , (2.30)

Simulated Annealing with Reheating accepts all improving moves. Additionally, the

following formula e−
∆ f
T is used while deciding whether or not to accept a worsening

move. The temperature (T) is reduced using the nonlinear formula, T = T
1+γT

[58],

where

γ =
(t0− t f inal)itertemp

maxIterations· t0· t f inal

, (2.31)

itertemp is the number of iterations at a temperature. During the reheating phase,

the temperature is increased using the formula T = T
1−γT

and the system reenters

the annealing phase.

2.2.2 Related literature

Cowling et al. [6] define hyper-heuristics as "heuristics to choose heuristics" and

investigate the performance of different heuristic selection methods on a real-world

scheduling problem. These methods include Simple Random, Random Descent,

Random Permutation, Random Permutation Descent, Greedy and a more elaborate

learning heuristic selection method, namely Choice Function. In [6, 59], the authors

combine all the above heuristic selection methods with the following deterministic

acceptance methods: All Move and Only Improving. The computational experiments

result with the success of the Choice Function–All Moves hyper-heuristic.

Nareyek [52] applies Reinforcement Learning (RL) heuristic selection to Orc Quest

and modified Logistics Domain problems. The author investigates different negative

22

and positive adaptation strategies as well as heuristic selection methods based on the

scores. All Moves is the acceptance method used in this study. The results show that

high negative and low positive adaptation rates are preferable and maximum strategy

performs better than soft max for choosing a low-level heuristic based on their scores.

Kendall and Mohamad [54] apply a Great Deluge move acceptance based

hyper-heuristic to a mobile telecommunications network problem.

Ayob and Kendall [55] propose a set of Monte Carlo move acceptance methods

inspired from the well-known simulated annealing meta-heuristic. The results show

that Simple Random heuristic selection combined with Exponential Monte Carlo With

Counter move acceptance (EMCQ) performs well.

Bai et al. [56] show that Simulated Annealing (SA) as a move acceptance is promising.

Bilgin et al. [53] compare the performances of many heuristic selection and move

acceptance combinations in hyper-heuristics. The results show that a standard

simulated annealing move acceptance performs the best, especially combined with

Choice Function.

Bai et al. [57] investigate the performance of a Reinforcement Learning – Simulated

Annealing with Reheating (SA+RH) hyper-heuristic on nurse rostering, university

course timetabling and one-dimensional bin packing problems. This hyper-heuristic

generates a better performance when compared to the other meta-heuristic solutions in

each problem domain. The same acceptance is also used by Dowsland et al. [60] as a

part of a hyper-heuristic which hybridized Tabu Search with Reinforcement Learning

as a heuristic selection method. This hyper-heuristic performs well on a shipper

rationalization problem.

Burke et al. [61] compare the performance of different Monte Carlo move acceptance

methods over a set of benchmark examination timetabling problems. Exponential

Monte Carlo with Counter as a move acceptance delivers a poor performance

as compared to Simulated Annealing based methods. Simulated Annealing with

Reheating turns out to be very promising as a move acceptance component of a

hyper-heuristic.

Özcan et al. [62] experiment with Great Deluge based hyper-heuristics on examination

timetabling. It is observed that Reinforcement Learning–Great Deluge delivers a

23

promising performance, when an additive/subtractive adaptation rate is used for

rewarding/punishing. Similarly, Gibbs et al. [63] report the success of Reinforcement

Learning–Great Deluge and Reinforcement Learning–Simulated Annealing for solving

sports scheduling problems.

Drake and Özcan [64] propose a modified version of Choice Function improving

its performance (ICF) in which weights dynamically change, enforcing the search

process to go into diversification faster than usual, when the successive moves are

non-improving.

2.2.3 HyFlex and first cross-domain heuristic search challenge

Hyper-heuristics are highly adaptive search methodologies that aim to raise the

level of generality by providing solutions to a diverse set of problems having

different characteristics. Hyper-heuristics Flexible framework (HyFlex) [110] is an

interface designed to develop, test and compare the hyper-heuristics. The interface

is referred as the domain barrier between low-level heuristics and a hyper-heuristic

in the hyper-heuristics. HyFlex consists of two parts: a general-purpose and the

problem-specific. The problem-specific part provided by the framework contains

a number of problem domain modules. The general-purpose part contains the

hyper-heuristics which need to be implemented by the user.

In [17], HyFlex is implemented as a modular framework in Java and used at the

CHeSC2011 – Cross-domain Heuristic Search Challenge [111], a competition on

hyper-heuristics held in 2011. In this competition, different hyper-heuristics compete

for solving problem instances from different problem domains. In the current version

of HyFlex, it provides six problem domains: maximum satisfiability (MAX-SAT),

one-dimensional bin packing (BP), personnel scheduling (PS), permutation flow shop

(FS), the traveling salesman problem (TSP) and the vehicle routing problem (VRP).

For each problem domain, four main heuristic types, namely mutational heuristics

(MU), crossover (OX), ruin-recreate heuristic (RC) and hill-climbing heuristics (HC),

are implemented. Table 2.2 summarizes the number of low-level heuristics for each

heuristic type for each problem domain. Further details about these problems and their

instances can be found in [65–68].

24

Table 2.2 : The number of low-level heuristics for each heuristic type for each problem
domain.

Problem Domain MU RC OX HC Total
MAX-SAT 6 1 2 2 11
BP 3 2 1 2 8
PS 1 3 3 5 12
FS 5 2 4 4 15
TSP 5 1 4 3 13
VRP 3 2 2 3 10

In the current implementation of HyFlex, all low-level heuristics are perturbative

heuristics and all crossover operators generate a single offspring. The parameters

of low-level heuristics, namely mutation density and depth of hill-climbing, can be

adjusted. The mutation density indicates the degree of the changes that the mutation

operators generate a solution. The depth of hill-climbing determines the number of

step completed by the hill-climbing heuristics.

In CHeSC2011, the algorithms are allowed to run with 4 test domains and 2 hidden

domains. Moreover, 5 instances are used for each problem domain. Each run is

repeated 31 times and is executed 600 seconds running time. As comparison and

ranking, the organizers adopted the Formula 1 scoring system used before 2010. The

top eight approaches are given a score of 10, 8, 6, 5, 4, 3, 2 and 1 points for each

problem instance from the best to the worst, successively. The rest of the approaches

receive a score of 0. The comparison and the ranking of the approaches are based

on the median result generated by each approach over a given number of runs for an

instance. The sum of scores over all problem instances determine the final ranking of

an approach.

2.2.4 Selection hyper-heuristics in dynamic environments

Özcan et al. [69] is the first study which proposed a hyper-heuristic for solving

dynamic environment problems to the best of our knowledge. The authors apply a

Greedy hyper-heuristic to five well known benchmark functions. The Greedy heuristic

selection method is chosen as a hyper-heuristic component with the hope that it would

respond to the changes in the environment quickly. The results indeed show that this

selection hyper-heuristic is capable of adapting itself to the changes.

25

In [70], the authors compare the performance of different heuristic selection

mechanisms within the selection hyper-heuristic framework. The hyper-heuristics

combine the Improving and Equal acceptance with five heuristic selection methods

controlling a set of mutational low-level heuristics in a very simple dynamic

environment. The landscape is only allowed to shift in this environment, and its

general features remained the same. The Moving Peaks Benchmark is used during

the experiments. Choice Function–Improving and Equal delivers the best average

performance.

Kiraz and Topcuoglu [71] propose a population based search framework embedding

a variety of hyper-heuristics which combine {Simple Random, Random Descent,

Random Permutation, Random Permutation Descent, Choice Function} with {All

Moves, Only Improving}. The behavior of these hyper-heuristics is investigated over

a set of dynamic generalized assignment problem instances. The authors use an

evolutionary algorithm operating on two subpopulations: search and memory. The

individuals in the search subpopulation are perturbed using a heuristic selected by a

hyper-heuristic and the other one is evolved using a standard evolutionary algorithm

updating the memory periodically. The results show that the Random Permutation

Descent–All Moves and Choice Function–All Moves hyper-heuristics performed well

in general.

26

3. SELECTION HYPER-HEURISTICS IN DYNAMIC ENVIRONMENTS

In this thesis, we explore the performance of a set of hyper-heuristics in dynamic

environments exhibiting different change characteristics, which are generated using

the MPB generator.

We experiment with thirty five hyper-heuristics composed of five heuristic selection

methods {Simple Random, Greedy, Choice Function, Reinforcement Learning,

Random Permutation Descent} combined with seven move acceptance methods

{All Moves, Only Improving, Improving and Equal, Exponential Monte Carlo with

Counter, Great Deluge, Simulated Annealing, Simulated Annealing with Reheating}.

All these hyper-heuristic components have different properties. Simple Random

uses no feedback. Greedy selects the best solution at each step. Choice Function

and Reinforcement Learning incorporate an online learning mechanism. Random

Permutation Descent makes a random choice, but converts the framework into a

hill climber, since the same heuristic is invoked repetitively as long as the solution

improves. Great Deluge, Exponential Monte Carlo with Counter, Simulated Annealing

and Simulated Annealing with Reheating are non-deterministic acceptance methods

for which the acceptance decision depends on a given step. On the other hand, All

Moves, Only Improving, Improving and Equal acceptance methods are deterministic.

The experiments consist of four parts. In the first part, a simple dynamic environment

scenario is investigated, where only the locations of the peaks are changed but their

heights and widths remain the same. We will refer to these set of experiments as

EXPSET1. In the second part, denoted as EXPSET2, the approaches are compared

in environments of different change frequencies and change severities, where peak

locations as well as peak heights and widths are changed. In the third part, we explore

the tracking ability of the approaches. In the last part their scalability is investigated

through experiments where the number of peaks and the number of dimensions are

increased.

27

3.1 Experimental Setting

The hyper-heuristics used in this study are applied to a set of real-valued dynamic

function optimization instances produced by the Moving Peaks Benchmark (MPB)

generator. A candidate solution is a real-valued vector representing the coordinates of a

point in the multidimensional search space for a given instance, for which the length of

the vector is the number of dimensions. In order to perturb a given candidate solution, a

parameterized Gaussian mutation, N(0,σ 2), where σ denotes the standard deviation, is

implemented. Seven mutation operators based on seven different standard deviations;

{0.5, 2, 7, 15, 20, 25, 30} are used as low-level heuristics within the hyper-heuristic

framework during the experiments. A low-level heuristic draws a random value from

the relevant Gaussian distribution for each dimension separately and this random value

is added to the corresponding dimension of a candidate solution to generate a new one.

Table 3.1 lists the fixed parameters of the Moving Peaks Benchmark used during the

experiments. These parameter settings are taken from [13, 16]. In the scalability

experiments (subsection 3.2.5), dimension and peak counts are changed while the rest

of the settings are kept the same.

Table 3.1 : Parameter settings for the Moving Peaks Benchmark.

Parameter Setting Parameter Setting
Number of peaks p 5 Number of dimensions d 5

Peak heights ∈ [30,70] Peak widths ∈ [0.8,7.0]
Peak function cone Basis function not used

Range in each dimension ∈ [0.0,100.0] Correlation coefficient φ 0

In this study, we experiment with combinations of two change characteristics, namely

the frequency and the severity of the changes. We performed some initial experiments

to determine the settings for various change frequencies and severities.

First, we utilize the Simple Random heuristic selection as a basis to determine change

frequency settings. We allow a Simple Random–Improving and Equal hyper-heuristic

to run for long periods without any change in the environment. Based on the resultant

convergence behavior given in Figure 3.1, we determine the change periods1 as 6006

fitness evaluations for low frequency (LF), 1001 for medium frequency (MF) and 126

1Since we have 7 low-level heuristics and the Greedy heuristic selection method evaluates all at each
step, these values are determined as multiples of 7 to give each method an equal number of evaluations
during each stationary period.

28

for high frequency (HF). In the convergence plot, 6006 fitness evaluations correspond

to a stage where the algorithm has been converged for some time, 1001 corresponds to

a time where the approach has not yet fully converged and 126 is very early on in the

search.

Figure 3.1 : Average convergence plot generated by the best solution versus fitness
evaluation counts for Simple Random and Improving and Equal.

In MPB, the severity of the changes in the locations of the peaks, their heights

and widths are controlled by three parameters, namely vlength, height_severity and

width_severity, respectively. We determine low severity (LS), medium severity (MS)

and high severity (HS) change settings based on the Moving Peaks Benchmark

formulation given in Equation 2.1. The parameter settings used in the experiments

for different levels of severity are provided in Table 3.2.

Table 3.2 : MPB parameter settings for each severity level.

Setting LS MS HS
vlength 1.0 5.0 10.0

height_severity 1.0 5.0 10.0
width_severity 0.1 0.5 1.0

Each run is repeated 100 times for a given setting. Each problem instance contains 20

changes in a given environment, i.e. there are 21 consecutive stationary periods. The

total number of iterations per run (maxIterations) is determined based on the change

period as given in Equation 3.1,

maxIterations= (NoO fChanges+1)∗ChangePeriod (3.1)

29

where there are (NoO fChanges+1) stationary periods with a length of ChangePeriod,

including the initial environment before the first change. The performance of the

approaches is compared based on the offline error metric (see Equation 2.17).

3.1.1 Approaches used in comparisons

The performances of different hyper-heuristics are compared to well known

techniques from literature including a Hypermutation [21] based approach (HM),

(1,λ)-Evolutionary Strategies (ES) [72] and (µ ,λ)-Covariance Matrix Adaptation

Evolution Strategy (CMAES) [73–75]. These techniques are chosen since they are

well known approaches to real-valued optimization and all use a different mutation

adaptation scheme to deal with the dynamics in the environment. Hypermutation

adapts the mutation rate whenever the environment changes. ES adapts the mutation

rate based on the success or failure of the ongoing search. In CMAES, adaptation is

based on the adaptation of the covariance matrix.

The parameter settings of HM, ES and CMAES are determined empirically as a result

of a series of preliminary experiments so that they achieve a good performance.

Hypermutation performs a Gaussian mutation with a fixed standard deviation of

2 during the stationary periods. When a change occurs, the standard deviation

is increased to 7 for 70 consecutive fitness evaluations. Afterwards, the standard

deviation is reset to 2.

In (1,λ)-ES, λ offspring (new candidate solutions) are generated from one parent

(current solution in hand) by a Gaussian mutation with zero mean and a standard

deviation of σ . The initial value for σ is set to 2. Whenever the environment changes,

σ is reset to this initial value. During the stationary period of the search, σ is adapted

according to the classical 1/5 success rule [72] as shown in Equation 3.2 at every k

iterations. If the percentage of successful mutations, denoted as ps is greater than 1/5,

σ is increased, otherwise it is decreased. After λ offspring are obtained, a solution is

selected from them to replace the parent. The value of k is set to 7. This evolutionary

process repeats until a maximum number of iterations is completed.

σ =







σ/c if ps > 1/5
σ .c if ps < 1/5
σ if ps = 1/5

(3.2)

30

During the experiments, the value of the parameter c is set to 0.9 ∈ [0.85,1) as

suggested in [72].

CMAES is the state-of-the-art algorithm for global optimization. It is based on the

adaptation of the covariance matrix. In CMAES, offspring at generation g+ 1 are

generated by sampling the multivariate normal distribution [73], i.e. k = 1, . . . ,λ

x
(g+1)
k

= 〈x〉
(g)
w +σ (g) ∼ N(0,C(g)) (3.3)

where 〈x〉
(g)
w is the weighted mean of the µ best individuals at generation g, σ is the

mutation step size, C(g) is the covariance matrix at generation g. The covariance matrix

C is adapted via the evolution path. The step size σ is initialized to σ = 0.3 and is then

updated using a cumulative step-size adaptation (CSA) approach, in which a conjugate

evolution path is constructed [73]. Further details on CMAES can be found in [73–75].

The initial value of µ is set to 1 for CMAES for a fair comparison with the other single

point search methods [73], while the value of λ for ES and CMAES is set to 7 for a fair

comparison with the Greedy hyper-heuristic which makes 7 evaluations at each step.

3.1.2 Parameter settings of hyper-heuristics

Some of the heuristic selection and acceptance methods have parameters which require

initial settings.

• In Reinforcement Learning, the initial scores of all heuristics are set to 15. Their

lower and upper bounds are set to 0 and 30, respectively as suggested in [62]. If

the current heuristic produces a better solution than the previous one, its score is

increased by 1, otherwise it is decreased by 1.

• In Choice Function, α , β , and δ are set to 0.5 and updated by ±0.01 at each

iteration.

• In Exponential Monte Carlo with Counter, the value of B is set to 60, 10, 2 for LF,

MF and HF changes, respectively.

• In Great Deluge, Simulated Annealing and Simulated Annealing with Reheating,

the expected range is calculated as ∆F = initialError − optimumError, where

initialError is the error value of initial candidate solution and optimumError = 0.

31

Also in Simulated Annealing with Reheating, the starting and final temperatures are

set to t0 =−∆F/log(0.1) and t f inal =−∆F/log(0.005), respectively.

It is assumed that all programs are aware of the time when a change occurs during the

experiments. As soon as the environment changes,

• the current solution is re-evaluated.

• the Exponential Monte Carlo with Counter parameters m and Q are reset to 1.

• the expected range (∆F) is recalculated for Great Deluge and Simulated Annealing.

• the system enters the reheating phase for Simulated Annealing with Reheating.

On the other hand, the parameters of the heuristic selection methods Choice Function

and Reinforcement Learning are not updated at all when the environment changes.

3.2 Results

All trials are repeated for 100 times using each approach for each test case. The results

are provided in terms of average offline error values in the tables. The performances

of the approaches are compared under a variety of change frequency-severity pair

settings where each setting generates a different dynamic environment. In the rows

of the tables, we can see the performance of each approach. Each column shows the

performance of all the approaches for the corresponding change frequency-severity

pair settings. In addition, the best performing approach is marked in bold in the result

tables. The comparisons based on One-way ANOVA and Tukey HSD tests at a 95%

confidence level are performed to show whether the observed pairwise performance

variations are statistically significant or not. We illustrate the tracking ability of the

approaches as well as their scalability, only using EXPSET2 in this section, since we

have observed the same behavior for EXPSET1 and EXPSET2.

3.2.1 Results for EXPSET1

Table 3.3 summarizes the results of EXPSET1 using MPB in which only the peak

locations change in time. This table shows the offline error generated by each approach

for different change frequency-severity combinations. The performance of all methods

32

degrades as the change frequency increases. Moreover, the offline error becomes

particularly high when the change frequency is high. Performance also degrades

for almost all methods as the severity of change increases. These observations are

somewhat expected, based on the fact that the methods are provided with a very limited

time to respond to the changes in the environment.

We performed statistical significance tests to determine the overall best heuristic

selection and best move acceptance methods. Considering all hyper-heuristic runs

where a different heuristic selection method is used, Only Improving and Improving

and Equal acceptance consistently perform the better over all frequency-severity

settings. However, when considering all hyper-heuristic runs where a different move

acceptance method is used, there is more variation among the best performing heuristic

selection methods for different frequency-severity settings:

• Greedy performs the best when combined with the All Moves acceptance.

• Choice Function is the best as a heuristic selection method to be combined with the

Improving and Equal, Only Improving and EMCQ acceptance methods.

• Greedy seems to perform the best for low frequency changes, while the heuristic

selection methods that rely on randomness, i.e., RPD and Simple Random perform

better for higher frequency changes when combined with Simulated Annealing and

Simulated Annealing with Reheating.

• Great Deluge based hyper-heuristics perform similarly regardless of the heuristic

selection.

Overall, considering the average offline error results given in Table 3.3 and the

statistical significance tests, Choice Function is the best performing hyper-heuristic

when combined with Only Improving and Improving and Equal for EXPSET1.

Hypermutation performs the best when combined with the Improving and Equal

and Only Improving acceptance methods. However, overall it is one of the

heuristic selection methods which delivers very poor performance. Evolutionary

Strategy performs well in the cases for which the change frequency is low. Its

performance deteriorates as the frequency increases. CMAES performs the best

only when both the change frequency and severity are low. For this particular case,

33

Evolutionary Strategy is the second best performing approach. For the remaining

severity settings with low frequency, Evolutionary Strategy performs best. For all

the remaining frequency-severity settings, Choice Function–Improving and Equal and

Choice Function–Only Improving give the better performance.

3.2.2 Results for EXPSET2

Table 3.4 summarizes the results of EXPSET2 using MPB in which peak locations,

their heights and widths are changed. This table shows the offline error generated

by each approach for different combinations of frequency and severity of change.

Similar phenomena as in the previous part (EXPSET1) are observed during this set

of experiments. The methods deteriorate in performance as the change frequency

increases.

We again performed statistical significance tests to determine the overall best heuristic

selection and best move acceptance methods. In this set of experiments, the Improving

and Equal, Only Improving and EMCQ acceptance methods all perform well. In most

cases, there is no statistically significant difference between them when applied in

combination with different heuristic selection method. Considering all hyper-heuristic

experiments for which a different move acceptance method is used, the Choice

function, Reinforcement Learning and Random Permutation Descent perform well.

For all cases, there is no statistically significant difference between them when

combined with Improving and Equal, Only Improving and EMCQ.

Hypermutation is again among the worst performing heuristic selection methods.

Evolutionary Strategy performs the best only when both the change frequency and

severity are low. Unlike in the previous experiments, in EXPSET2, CMAES does

not perform the best in any of the change frequency-severity settings. For most

cases, Evolutionary Strategy and CMAES are outperformed by the Choice Function,

Reinforcement Learning and Random Permutation Descent in combination with either

Improving and Equal, Only Improving or EMCQ acceptance methods.

3.2.3 Dynamic environment heuristic search challenge

In order to evaluate the performance of hyper-heuristics across different dynamic

environments and see their relative performance as compared to the state-of-the-art

34

Table 3.3 : The offline error generated by each approach during the EXPSET1
experiments for different combinations of change frequency and severity
settings.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

GR-AM 24.92 24.69 24.77 38.08 37.69 37.90 63.92 63.03 63.51
GR-OI 1.24 2.22 3.38 3.15 7.42 12.15 13.54 22.58 31.56
GR-IE 1.26 2.23 3.39 3.06 7.36 12.18 13.85 22.95 31.52
GR-GD 2.07 4.10 5.99 4.02 8.34 13.59 14.73 24.19 31.96
GR-EMCQ 2.69 3.67 4.76 4.89 8.20 12.96 14.16 22.72 31.72
GR-SA 3.52 7.28 13.20 11.47 18.50 23.71 38.49 43.33 46.48
GR-SA+RH 6.18 6.74 8.00 15.05 16.30 18.60 55.97 55.86 56.11

CF-AM 123.36 122.02 121.82 155.43 155.19 149.75 190.32 186.44 183.42
CF-OI 0.66 0.72 0.81 1.43 1.73 2.27 5.21 7.25 11.74
CF-IE 0.66 0.71 0.81 1.43 1.65 2.27 5.56 7.59 12.04
CF-GD 2.95 4.47 7.12 4.02 6.19 10.57 8.93 12.78 19.43
CF-EMCQ 0.86 0.91 1.03 1.57 1.92 2.58 5.99 8.12 12.21
CF-SA 5.88 11.39 19.77 30.97 32.45 54.03 131.49 134.67 130.75
CF-SA+RH 13.53 13.58 13.96 24.86 26.87 27.50 61.42 67.82 75.62

SR-AM 35.04 34.93 35.23 52.96 53.09 52.76 86.68 86.45 85.54
SR-OI 0.97 1.19 1.37 1.82 2.99 4.21 5.44 11.29 18.41
SR-IE 0.97 1.18 1.38 1.87 3.01 4.23 5.25 11.47 18.06
SR-GD 2.06 4.02 6.62 3.33 6.34 10.29 6.95 13.07 20.76
SR-EMCQ 1.68 2.08 2.31 2.77 4.06 5.19 6.47 12.13 18.51
SR-SA 3.70 9.72 15.96 6.79 15.01 24.01 40.63 42.19 48.23
SR-SA+RH 8.79 8.93 8.87 14.45 15.18 16.04 31.26 32.62 35.66

RL-AM 37.72 37.23 37.76 61.31 60.54 60.93 96.23 94.37 97.85
RL-OI 0.96 1.12 1.25 1.82 2.63 3.40 5.22 9.96 15.51
RL-IE 0.96 1.11 1.25 1.84 2.62 3.47 5.41 10.16 15.50
RL-GD 2.26 4.01 6.28 3.48 6.28 10.10 6.96 12.22 19.27
RL-EMCQ 1.43 1.66 1.81 2.41 3.24 4.13 6.55 10.22 15.46
RL-SA 3.63 8.95 15.65 7.43 15.33 25.40 55.90 65.70 68.59
RL-SA+RH 8.56 8.38 8.64 15.81 16.47 16.14 33.39 36.73 41.01

HM-AM 60.44 59.60 59.58 88.57 87.00 87.15 113.11 111.65 112.23
HM-OI 2.22 2.51 2.56 3.47 4.66 5.23 8.17 14.50 18.09
HM-IE 2.22 2.50 2.57 3.46 4.71 5.19 8.66 14.60 18.68
HM-GD 3.74 4.60 6.11 5.61 7.36 9.64 9.43 15.81 19.72
HM-EMCQ 2.57 2.78 2.86 3.92 4.95 5.50 9.37 14.76 18.49
HM-SA 5.14 9.14 14.87 9.79 15.51 23.90 56.10 65.38 70.23
HM-SA+RH 7.83 8.06 8.45 14.75 15.33 14.91 31.68 32.93 33.53

RPD-AM 36.60 36.90 36.43 54.86 54.28 54.40 88.81 88.96 89.45
RPD-OI 0.97 1.13 1.28 1.78 2.68 3.63 5.16 10.41 16.24
RPD-IE 0.96 1.13 1.28 1.78 2.68 3.70 5.09 10.27 16.36
RPD-GD 2.09 3.93 6.42 3.24 6.13 9.87 6.64 12.24 19.28
RPD-EMCQ 1.52 1.80 1.96 2.47 3.48 4.43 6.02 10.73 16.65
RPD-SA 3.56 9.19 15.04 6.27 14.16 23.00 39.40 42.66 48.91
RPD-SA+RH 8.14 8.07 8.50 13.83 14.19 14.96 30.75 32.66 35.28

ES 0.53 0.65 0.79 2.87 3.44 4.19 11.08 12.67 15.88
CMAES 0.42 1.59 3.14 1.96 5.60 10.06 9.66 13.57 19.97

35

Table 3.4 : The offline error generated by each approach during the EXPSET2
experiments for different combinations of change frequency and severity
settings.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

GR-AM 26.47 22.85 24.86 39.36 32.98 35.00 63.41 52.63 56.06
GR-OI 4.35 8.82 11.48 6.19 14.06 19.14 17.08 28.16 36.08
GR-IE 4.63 8.96 11.69 6.33 15.03 19.38 17.06 27.61 35.58
GR-GD 5.11 9.96 13.09 7.05 15.04 20.34 18.70 27.81 36.31
GR-EMCQ 5.35 8.52 11.47 8.34 13.37 19.50 17.60 28.80 36.47
GR-SA 5.52 11.10 17.17 15.88 20.18 25.86 43.31 40.30 45.14
GR-SA+RH 8.88 11.35 13.81 16.93 19.29 22.84 56.71 47.78 50.02

CF-AM 120.80 100.11 103.07 157.44 127.87 128.45 191.67 147.74 149.18
CF-OI 4.38 9.07 12.19 4.36 9.60 13.66 8.70 16.11 24.34
CF-IE 3.81 9.46 11.04 4.68 10.75 13.59 8.58 15.97 24.82
CF-GD 5.94 12.65 17.62 7.25 14.59 21.97 11.54 19.94 31.22
CF-EMCQ 4.16 9.76 11.72 4.79 9.54 13.22 9.27 15.85 24.60
CF-SA 9.79 16.80 30.05 33.59 50.68 76.72 127.10 120.53 120.31
CF-SA+RH 17.17 21.65 24.68 29.76 34.78 39.77 68.99 73.81 85.31

SR-AM 37.03 33.09 35.36 54.60 47.71 50.13 88.27 75.67 78.21
SR-OI 3.89 8.19 10.24 5.46 9.65 13.27 8.83 18.65 26.90
SR-IE 4.04 7.54 9.84 4.96 10.76 13.60 8.87 18.46 27.24
SR-GD 5.22 9.63 12.96 6.39 13.25 17.59 9.87 20.10 29.26
SR-EMCQ 4.78 7.84 10.23 5.79 10.04 14.04 10.03 18.83 28.16
SR-SA 5.36 12.79 19.78 9.06 18.05 27.41 44.63 41.90 50.21
SR-SA+RH 10.74 12.97 14.06 17.19 19.58 21.70 35.85 35.60 39.64

RL-AM 39.82 35.35 37.06 62.72 53.69 56.58 99.50 83.29 85.32
RL-OI 4.04 7.75 9.81 4.97 9.55 13.28 8.45 18.14 25.26
RL-IE 4.10 7.96 9.32 5.24 9.93 13.23 9.04 18.63 24.05
RL-GD 5.64 10.11 13.64 6.65 13.52 17.79 9.98 19.51 28.55
RL-EMCQ 4.37 7.58 9.96 5.46 10.03 13.22 9.36 18.51 26.18
RL-SA 5.26 12.85 20.49 9.79 21.40 34.07 65.18 65.29 73.03
RL-SA+RH 10.72 12.94 15.10 18.75 21.92 24.78 37.70 43.07 48.33

HM-AM 62.52 56.36 59.70 90.72 78.52 82.27 115.32 98.13 101.77
HM-OI 5.59 10.63 13.00 6.88 13.51 15.73 11.41 22.21 29.32
HM-IE 5.44 11.37 13.48 6.72 13.09 15.81 11.26 23.53 29.63
HM-GD 6.66 11.92 15.94 8.91 15.81 19.79 12.46 23.95 30.43
HM-EMCQ 5.80 9.90 12.49 7.09 12.95 15.48 12.59 22.39 29.49
HM-SA 7.50 13.82 22.14 12.10 20.13 32.12 62.87 72.03 81.57
HM-SA+RH 11.16 14.46 16.58 17.69 22.23 24.34 35.04 38.31 42.72

RPD-AM 38.80 33.99 36.77 56.75 48.90 51.39 90.22 76.93 80.70
RPD-OI 4.26 7.54 10.17 5.01 10.19 12.61 8.12 17.73 25.56
RPD-IE 4.14 8.12 10.28 5.00 9.67 12.54 8.31 16.65 26.20
RPD-GD 5.20 8.87 14.15 6.71 12.44 17.27 10.12 18.98 28.36
RPD-EMCQ 4.28 7.42 9.34 5.80 10.01 13.89 8.99 17.51 26.59
RPD-SA 5.16 12.32 19.30 8.51 17.44 26.67 42.81 42.63 51.06
RPD-SA+RH 10.26 12.30 13.78 16.50 19.09 21.29 33.40 34.82 39.29

ES 3.69 9.19 12.74 6.18 12.21 15.68 14.58 21.37 27.40
CMAES 6.20 13.78 17.01 7.86 17.25 21.28 15.53 24.17 31.73

36

techniques, all approaches are scored in the same way as in CHeSC (See Section 2.1.2).

The scoring system in CheSC are based on the median result generated by each

approach over the number of runs. In addition to that of the competition, best and

average values over all runs are used for the comparison and the ranking of the

approaches in this study. Considering both EXPSET1 and EXPSET2 with all change

frequency-severity combinations, there are 18 different problems. Therefore, 180 is

the maximum overall score an approach can get.

The results are summarized in Table 3.5, where the overall scores of the best fourteen

approaches are included. Based on the median and average, Choice Function–Only

Improving is the winner which is followed by the Choice Function–Improving and

Equal. However, Choice Function–Improving and Equal is the winner based on

the best. For all metrics, the top three hyper-heuristics use Choice Function as

the heuristic selection component. All hyper-heuristics using All Moves, Great

Deluge, Simulated Annealing or Simulated Annealing with Reheating as an acceptance

component perform poorly with an overall score of 0 regardless of the heuristic

selection component. Only when the best value is considered, Choice Function–Great

Deluge receives 7 points. Based on the median, ES ranks eighth with a score of

40, CMAES ranks thirteenth with a score of 10, while all the Hypermutation based

methods receive a score of 0 in all cases. Histograms of Formula 1 scores for

Choice Function–Only Improving based on the median, Choice Function–Improving

and Equal based on the best, and Choice Function–Only Improving based on average

are given in Figure 3.2. Choice Function–Improving and Equal ranks the first, second

and third among all approaches in all cases based on the best. Choice Function–Only

Improving ranks the first in a total of seven out of the eighteen cases based on median

and in a total of four out of the eighteen cases based on average, respectively.

3.2.4 Tracking ability of the approaches

The error values of the best candidate solutions calculated using Equation 2.19

versus the number of evaluations based on different change frequency and severity

combinations are plotted in Figure 3.3 for Choice Function–Improving and Equal,

Hypermutation–All Moves, ES and CMAES to illustrate and compare their tracking

ability when the environment changes. Choice Function–Improving and Equal is

37

Table 3.5 : The overall Formula 1 scores for the top fourteen approaches.

Approach Median Best Average

Choice Function–Only Improving 113 125 105
Choice Function–Improving and Equal 98 145 100
Choice Function–EMCQ 85 87 83
Reinforcement Learning–Only Improving 71 65 74
Reinforcement Learning–Improving and Equal 66 48 62
Random Permutation Descent–Only Improving 64 25 59
Random Permutation Descent–Improving and Equal 60 36 62
Evolutionary Strategies 40 50 40
Simple Random–Improving and Equal 27 23 28
Random Permutation Descent–EMCQ 23 12 25
Simple Random–Only Improving 22 11 23
Reinforcement Learning–EMCQ 21 19 26
CMAES 10 47 10
Simple Random–EMCQ 2 0 5

10 8 6 5 4 3 2 1 0
0

1

2

3

4

5

6

7

8

Score

N
um

be
r

of
 O

cc
ur

en
ce

s

(a) CF–OI based on median

10 8 6 5 4 3 2 1 0
0

1

2

3

4

5

6

7

8

Score

N
um

be
r

of
 O

cc
ur

en
ce

s

(b) CF–IE based on best

10 8 6 5 4 3 2 1 0
0

1

2

3

4

5

6

7

8

Score

N
um

be
r

of
 O

cc
ur

en
ce

s

(c) CF–OI based on average

Figure 3.2 : Histograms of Formula 1 scores for (a) CF–OI based on the median, (b)
CF–IE based on the best, and (c) CF-OI based on average over 18 dynamic
environment cases.

chosen as the best performing hyper-heuristic, while Hypermutation–All Moves is

chosen as a poor approach. ES and CMAES are included as they are known to be

among the best real-valued optimization approaches. Figure 3.5 shows the boxplots

for the final offline error values of the corresponding approaches. In the boxplot, the

minimum and maximum values obtained (excluding the outliers), the lower and upper

quartiles and the median are shown. The outlier points are also marked.

To be able to demonstrate the tracking behavior of the approaches more clearly, we

isolated the plots for a medium frequency and a medium severity change scenario

from Figure 3.3, and plotted them in Figure 3.4. From Figures 3.3 and 3.4, it

can be observed that when the environment changes, the error values of the best

candidate solutions produced by Choice Function–Improving and Equal, ES and

CMAES increase much less than that of Hypermutation–All Moves. Moreover,

these approaches are able to recover much more quickly, following the optimum.

This indicates that Choice Function–Improving and Equal, ES and CMAES display

38

0 2 4 6 8 10 12

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

CF−IE
HM−AM
ES
CMAES

0 2 4 6 8 10 12

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

CF−IE
HM−AM
ES
CMAES

0 2 4 6 8 10 12

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

CF−IE
HM−AM
ES
CMAES

(a) LF (-LS, MS and HS)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

CF−IE
HM−AM
ES
CMAES

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

CF−IE
HM−AM
ES
CMAES

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

CF−IE
HM−AM
ES
CMAES

(b) MF (-LS, MS and HS)

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

CF−IE
HM−AM
ES
CMAES

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

CF−IE
HM−AM
ES
CMAES

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

CF−IE
HM−AM
ES
CMAES

(c) HF (-LS, MS and HS)

Figure 3.3 : Comparison of approaches (CF-IE, HM-AM, ES, and CMAES) for the
combinations of (a) Low, (b) Medium, (c) High frequencies and severities
of change based on the error values of the best candidate solution versus
evaluation counts for EXPSET2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

MF−LS
MF−MS
MF−HS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

MF−LS
MF−MS
MF−HS

Figure 3.4 : A sample plot of the error values of the best candidate solution
versus evaluation counts based on medium change frequency and
medium severity combination for EXPSET2. The left and right
plots show the results for Choice Function–Improving and Equal and
Hypermutation–All Moves, respectively.

a good tracking behavior. However, the tracking behavior of Hypermutation–All

Moves is poor. Choice Function-Improving and Equal performs significantly better

39

0

20

40

60

80

100

120

140

160

CF−IE HM−AM ES CMAES

O
ffl

in
e

E
rr

or

0

20

40

60

80

100

120

140

160

CF−IE HM−AM ES CMAES

O
ffl

in
e

E
rr

or

0

20

40

60

80

100

120

140

160

CF−IE HM−AM ES CMAES

O
ffl

in
e

E
rr

or

(a) LF (-LS, MS and HS)

0

20

40

60

80

100

120

140

160

CF−IE HM−AM ES CMAES

O
ffl

in
e

E
rr

or

0

20

40

60

80

100

120

140

160

CF−IE HM−AM ES CMAES

O
ffl

in
e

E
rr

or

0

20

40

60

80

100

120

140

160

CF−IE HM−AM ES CMAES

O
ffl

in
e

E
rr

or

(b) MF (-LS, MS and HS)

0

20

40

60

80

100

120

140

160

CF−IE HM−AM ES CMAES

O
ffl

in
e

E
rr

or

0

20

40

60

80

100

120

140

160

CF−IE HM−AM ES CMAES

O
ffl

in
e

E
rr

or

0

20

40

60

80

100

120

140

160

CF−IE HM−AM ES CMAES

O
ffl

in
e

E
rr

or

(c) HF (-LS, MS and HS)

Figure 3.5 : Box-plots of offline error values for a statistical comparison of the
approaches (CF-IE, HM-AM, ES, and CMAES) for the combinations of
(a) Low, (b) Medium, (c) High frequencies and severities of change using
EXPSET2.

than the Hypermutation-All Moves, ES and CMAES on average during most of the

environment changes as illustrated in Figure 3.5. The average performance of an

approach reflects upon its tracking behavior as well.

3.2.5 Scalability results

In this part, we investigate the scalability of the approaches for different

frequency-severity settings. We perform experiments with different number of peaks

and dimensions. Table 3.6 summarizes the results for analyzing the effect of the

number of dimensions on performance using EXPSET2 for different change frequency

and severity combinations. In these experiments, only the best hyper-heuristics

{Choice Function–Improving and Equal, Choice Function–EMCQ} are considered

along with Hypermutation–Improving and Equal, Hypermutation–EMCQ, ES and

CMAES. As expected, the performance of the hyper-heuristics and ES worsens

40

as the number of dimensions increases. ES seems to be less affected from the

dimensionality increase for lower frequency and severity settings. CMAES improves

its performance when the number of dimensions is increased to 10. However, Choice

Function–Improving and Equal scales better and is the best performing approach for

most change frequency and severity settings.

Table 3.6 : Offline error generated by each approach in the experiments for analyzing
the effect of number of dimensions for EXPSET2 for different frequency
and severity combinations.

of dimensions CF-IE CF-EMCQ HM-IE HM-EMCQ ES CMAES

LF

LS 5 4.13 4.18 5.39 5.74 4.14 5.98
10 5.07 5.69 9.22 11.03 4.60 2.30
20 8.65 10.94 17.76 24.09 5.65 4.75

MS 5 8.52 9.61 12.40 10.06 9.73 12.05
10 11.03 13.23 15.91 15.03 9.88 7.08
20 14.76 16.24 26.22 25.76 13.73 11.94

HS 5 11.65 12.64 12.42 12.43 12.16 12.48
10 14.21 14.67 19.99 17.68 12.67 14.15
20 18.41 20.89 32.57 29.62 16.56 21.84

MF

LS 5 4.64 4.96 6.66 7.20 6.35 7.94
10 7.04 8.59 11.33 13.92 9.22 5.35
20 13.94 16.24 21.99 28.51 17.66 12.46

MS 5 11.29 11.01 13.11 13.07 13.10 17.94
10 13.75 14.43 19.89 21.26 17.68 12.31
20 22.83 23.03 33.63 36.96 30.54 22.83

HS 5 12.90 13.22 15.69 15.11 15.67 24.23
10 18.12 18.05 25.47 24.78 23.07 21.80
20 25.98 27.04 41.16 44.28 37.12 33.39

HF

LS 5 8.70 8.90 11.68 13.03 14.04 14.70
10 21.52 22.10 23.22 26.32 31.88 27.20
20 56.65 60.20 48.42 53.73 68.98 73.81

MS 5 16.34 16.36 22.62 23.33 21.26 23.18
10 29.43 32.85 36.73 36.70 40.03 34.87
20 66.53 70.05 64.35 63.72 78.68 86.49

HS 5 24.58 24.98 29.81 29.55 28.32 42.36
10 41.31 44.66 50.78 49.52 46.62 50.22
20 79.43 86.44 78.59 75.79 85.02 86.55

Table 3.7 provides the results for analyzing the effect of the number of

peaks in the environment on performance using EXPSET2 for different change

frequency and severity combinations. The same hyper-heuristics {Choice

Function–Improving and Equal, Choice Function–EMCQ, Hypermutation–Improving

and Equal, Hypermutation–EMCQ}, ES and CMAES are included in the experiments.

Again, the performance of the hyper-heuristics worsens as the number of peaks

41

increases. This time, ES performs similar to the hyper-heuristics. However, the

effect of the increase in the number of peaks is less than the effect of the increase

in dimensionality for ES. CMAES improves its performance as the number of peaks

increases for all frequencies combined with low and medium severities. However, in

almost all cases, it is no longer the best performing approach. All methods seem to

scale well with respect to the increase in the number of peaks in the environment.

Table 3.7 : Offline error generated by each approach in the experiments for analyzing
the effect of number of peaks for EXPSET2 for different frequency and
severity combinations.

of peaks CF-IE CF-EMCQ HM-IE HM-EMCQ ES CMAES

LF

LS 5 3.78 4.30 5.40 5.79 3.95 5.85
10 5.07 5.23 6.27 6.32 4.65 5.11
15 5.07 5.53 6.95 6.83 4.87 3.38

MS 5 8.73 8.74 9.90 10.16 9.07 13.88
10 11.03 11.11 12.72 10.53 10.95 13.14
15 10.69 11.56 12.26 9.73 11.36 11.06

HS 5 11.60 11.88 13.56 12.41 11.33 14.06
10 13.87 14.04 14.55 13.22 14.34 16.06
15 13.90 13.52 15.08 12.28 13.72 17.48

MF

LS 5 4.64 4.83 6.48 7.17 6.23 7.28
10 5.15 5.16 7.36 7.95 6.82 6.88
15 6.13 5.84 7.41 8.33 7.60 5.20

MS 5 10.59 10.84 12.31 11.14 11.46 17.53
10 12.08 11.63 14.45 12.57 13.62 17.36
15 13.16 11.50 14.31 12.31 13.50 16.28

HS 5 12.89 13.55 15.82 15.48 15.69 22.58
10 15.31 16.20 17.27 16.47 17.62 23.97
15 15.29 16.26 16.20 16.38 17.36 26.29

HF

LS 5 8.42 8.72 11.06 12.08 14.54 15.97
10 8.60 8.46 11.82 12.92 13.77 13.79
15 8.69 9.13 11.81 12.55 13.52 10.37

MS 5 16.11 16.77 21.93 23.49 21.77 28.37
10 16.87 17.52 23.62 22.38 21.63 23.64
15 17.12 17.29 21.97 21.89 21.82 23.35

HS 5 24.13 25.70 29.06 29.67 27.34 33.46
10 25.77 25.83 29.79 28.81 28.67 30.28
15 25.35 25.48 27.59 27.50 28.13 35.18

42

3.3 Discussion

The empirical results show that learning selection hyper-heuristics perform well in

dynamic environments, especially when combined with the proper acceptance method.

They can react rapidly to different types of changes in the environment and are capable

of tracking them closely. The acceptance criteria which rely on some algorithmic

parameter settings, such as Simulated Annealing, do not perform well as part of

a hyper-heuristic in dynamic environments. This is possibly because the relevant

parameters of such non-deterministic or stochastic acceptance methods often require

a search for tuning. In dynamic environments, as a result of the changes in the

environment, another level of complexity is added on top of the search process.

The overall results also show that accepting all moves is the worst strategy regardless

of the heuristic selection method for solving dynamic environment problems. As

an online learning approach which receives feedback during the search process, the

Choice Function–Only Improving hyper-heuristic ranks performance-wise the first

among all others based on the median and average values over all runs. Choice

Function–Improving and Equal ranks the first among all approaches based on the

best value over all runs. Evolutionary Strategies, Covariance Matrix Adaptation

Evolution Strategy and Hypermutation perform mostly worse than the learning

selection hyper-heuristics when compared across a range of dynamic environments

exhibiting a variety of change properties.

In this study, it is assumed that the learning heuristic selection methods are aware of

the time when the environment change occurs and acts on this. To this end, we focus

on the investigation of learning heuristic selection methods which are more suitable

for dynamic environments as selection hyper-heuristic components.

43

44

4. AN ANT-BASED SELECTION HYPER-HEURISTICS FOR DYNAMIC
ENVIRONMENTS

Dynamic environment problems require adaptive solution methodologies which can

deal with the changes in the environment during the solution process for a given

problem. A selection hyper-heuristic manages a set of low-level heuristics and decides

which one to apply at each iterative step. Recent studies [70, 71, 76–79] show that

selection hyper-heuristic methodologies are suitable for solving dynamic environment

problems with their ability of tracking the change dynamics in a given environment.

Among the tested selection hyper-heuristics, learning selection hyper-heuristics are

reported to perform especially well in dynamic environments. In this thesis, we

propose a novel learning selection hyper-heuristic for dynamic environments, which

is inspired from the ant colony optimization algorithm components. In this chapter, we

describe the proposed hyper-heuristic and its variants. We investigate the performance

of the proposed hyper-heuristic controlling a set of parameterised mutation operators

for solving dynamic environment problems produced by the Moving Peaks Benchmark

(MPB) generator. Then, we perform a comprehensive analysis of our approach.

4.1 Proposed Ant-Based Selection Hyper-heuristic Methods

In this thesis, we propose a selection hyper-heuristic incorporating a novel heuristic

selection method, called the Ant-based Selection (AbS), which is based on simple ant

colony optimization (ACO) algorithm components [80]. Most of the mechanisms used

in ACO are adapted within AbS. A distinct feature of AbS is that, unlike ACO, AbS is

based on a single point based search framework.

Ant Colony Optimization (ACO) [80] is a swarm intelligence technique for solving

optimization problems. Basic ACO consists of solution construction and pheromone

update stages. Each ant constructs a complete solution at each step. Each ant starts

from a random solution component and adds the next component to the solution. The

next component is determined through a stochastic local decision policy based on

45

the pheromone trail values and the heuristic information. Pheromone trail represents

the long-term memory about the search. Heuristic information, on the other hand,

represents the information on the problem instances. After all ants construct a complete

solution, pheromone trail values are modified. Firstly, pheromone values are decreased

by a constant factor (evaporation) for all pairs of components. Then, pheromone values

are increased by the amount of pheromone deposited by each ant.

Similar to Choice Function and Reinforcement Learning heuristic selection schemes,

AbS also incorporates an online learning mechanism using a matrix of utility values.

In AbS, each low-level heuristic pair is associated with a pheromone trail value (τhi,h j
)

which shows the desirability of selecting the jth (h j) low-level heuristic after the

application of the ith (hi) low-level heuristic. All pheromone trail values are initialized

to a small value τ0. AbS selects a random low-level heuristic at the first step. In

the following steps, the most appropriate low-level heuristic is selected based on the

pheromone trail value and is applied to the solution in hand .

AbS consists of heuristic selection and pheromone update stages. For the first stage,

we consider two variants of heuristic selection schemes. In both variants, the low-level

heuristic hs with the highest pheromone trail value (hs = argmaxi=1..N τhc,h j
) is selected

with a probability of q0 where hc is the previously selected low-level heuristic and

N is the number of low-level heuristics. Otherwise, methods inspired by two of the

mate selection techniques most commonly used in Evolutionary Algorithms [81] are

employed to determine the next low-level heuristic to select. In the first variant, like in

ACO, the next low-level heuristic is determined based on probabilities proportional to

the pheromone levels of each low-level heuristic pair. This is similar to the roulette

wheel mate selection in Evolutionary Algorithms. This method termed as AbSrw

selects the next low-level heuristic hs with a probability which is proportional to the

pheromone trail value of τhc,hs
as given in Eq 4.1.

phc,hs
=

τhc,hs

∑l=1...N τhc,hl

(4.1)

where N is the number of low-level heuristics. In the second variant (AbSts), the choice

of the next low-level heuristic is based on tournament selection. AbSts chooses the next

low-level heuristic hs with the highest pheromone trail (hs = argmaxi=1..k τhc,h j
).

46

After selecting a low-level heuristic, pheromone trails are updated. Unlike in ACO,

only the pheromone value between the previously selected heuristic (hc) and the last

selected heuristic (hs) is decreased by a constant value (evaporation) and then increased

by the amount of pheromone. If evaporation acted on all heuristic pairs (like in ACO),

this would have caused the pheromone values of unused heuristics to drop to very low

levels over time. This approach we have used has a similar effect to the one used in

Choice Function where selection probabilities of heuristics not used for a long time are

increased.

In the proposed method, the pheromone values are modified as follows: Firstly,

only pheromone value on the pheromone matrix is decreased by a constant factor

(evaporation) between hc and hs as given in Equation 4.2.

τhc,hs
= (1−ρ)τhc,hs

(4.2)

where 0 < ρ ≤ 1 is the pheromone evaporation rate.

After evaporation, only the pheromone value between hc and hs (τhc,hs
) is increased

using Equation 4.3.

τhc,hs
= τhc,hs

+∆τ (4.3)

where hc is the previously selected low-level heuristic and hs is the last selected

low-level heuristic. ∆τ is the amount of pheromone added and is defined as in

Equation 4.4.

∆τ = 1/(sd ∗ fc) (4.4)

where fc is the fitness value of the new solution generated by applying the selected

low-level heuristic hs and sd is the slow decreasing parameter which controls the step

size. The pseudocode of the proposed method is shown in Algorithm 2.

4.1.1 An illustrative example

Let us illustrate the working of AbS on the MPB. Assume that we have four low-level

heuristics. So, we have a 4-by-4 matrix of pheromone trail information. All pheromone

trail values are initialized to a small value τ0 = 1/ f0 = 1/214.13 = 0.004670 where

f0 = 214.13 is the fitness value of the initial solution. As a result, the initial pheromone

values are as follows:

47

Algorithm 2 Pseudocode of the proposed approach.
1: initialize τ0 = 1/ fc

2: initialize τhi,h j
= τ0,∀i, j

3: while (termination criteria not fulfilled) do
4: if (rand[0.0,1.0]< q0) then
5: Select hs = argmaxi=1..k τhc,h j

6: else
7: if (AbSrw is selected) then
8: the next low-level heuristic hs is determined based on roulette wheel
9: end if

10: if (AbSts is selected) then
11: the next low-level heuristic hs is determined based on tournament selection
12: end if
13: end if
14: τhc,hs

= (1−ρ)τhc,hs
(evaporation)

15: τhc,hs
= τhc,hs

+∆τ
16: end while

0.004670 0.004670 0.004670 0.004670

0.004670 0.004670 0.004670 0.004670

0.004670 0.004670 0.004670 0.004670

0.004670 0.004670 0.004670 0.004670

























After eighteen fitness evaluations, we have the following pheromone trail values:

0.004670 0.004670 0.004670 0.004670

0.004670 0.005024 0.004746 0.005376

0.004670 0.004764 0.004670 0.004905

0.004670 0.005505 0.004942 0.004670

























In addition, the last selected heuristic is the second low-level heuristic (h2). In that case,

we consider the second row of the matrix. AbS selects the fourth low-level heuristic

(h4) with a probability of q0 = 0.5 since h4 has the highest pheromone trail value.

0.004670 0.004670 0.004670 0.004670

0.004670 0.005024 0.004746 0.005376

0.004670 0.004764 0.004670 0.004905

0.004670 0.005505 0.004942 0.004670

























After selecting h4, only pheromone trail value between h2 and h4 is decreased by a

constant factor (τh2,h4 = (1− 0.1) ∗ τh2,h4 = 0.9 ∗ 0.005376 = 0.004838). Then, only

pheromone trail value between h2 and h4 is increased using τh2,h4 = τh2,h4 + ∆τ =

0.004838+0.00114 = 0.005978 where ∆τ = 1/(sd ∗ fs) = 1/(10∗87.72) = 0.00114.

The resulting pheromone trail values are the following:

48

0.004670 0.004670 0.004670 0.004670

0.004670 0.005024 0.004746 0.005978

0.004670 0.004764 0.004670 0.004905

0.004670 0.005505 0.004942 0.004670

























4.2 Performance Evaluation of Ant-based Hyper-heuristic

In this section, we perform experiments with our new hyper-heuristic for dynamic

environments, combining the Ant-based selection scheme and the Improving and Equal

acceptance technique. For comparison, we also experiment with previously used

selection mechanisms which incorporate some form of online learning and are shown

to be successful in dynamic environments [76], namely the Choice Function (CF) and

Reinforcement Learning (RL). We also include an improved version of the Choice

Function (ICF) proposed in [64]. These selection mechanisms are also used together

with the Improving and Equal acceptance technique.

4.2.1 Experimental design

In the experiments, we use the Moving Peaks Benchmark (MPB) generator [16] to

generate the various dynamic environments. For the parameter settings of MPB, we

use the ones given in Section 3.1 labeled as EXPSET2. Based on these settings, ∆e is

taken as 6000 fitness evaluations for low frequency (LF), 1000 for medium frequency

(MF) and 126 for high frequency (HF); the height_severity, the width_severity and

vlength parameters are taken as given in Table 3.2 which correspond to low severity

(LS), medium severity (MS) and high severity (HS) changes.

A real-valued vector corresponds to the coordinates of a point in the search space

generated by the MPB. The fitness of a candidate solution at a given time t is given by

its error, which is calculated as its distance to the optimum in terms of the objective

function value at time t. Therefore, the problem becomes that of minimizing the error

values.

The search algorithm searches through the landscape by perturbing these candidate

solutions at each step to obtain a new one using a parameterized Gaussian mutation,

N(0,σ 2), where σ denotes the standard deviation. We use the same settings for the

mutation operators as given in Section 3.1, which are implemented as seven different

49

standard deviations; {0.5, 2, 7, 15, 20, 25, 30}. These mutation operators are used as

the low-level heuristics in the hyper-heuristic framework.

The parameters of the proposed Ant-based selection scheme are chosen as follows:

ρ and sd are set to 0.1 and 1, respectively. Each entry in the pheromone matrix is

initialized to τ0 = 1/ fs where fs is the fitness value of the initial solution. We set

the lower bound as 0.00001 for each entry in the pheromone matrix. For AbSrw,

we experiment with seven q0 values: {0.0,0.1,0.3,0.5,0.7,0.9,1.0}. For AbSts, we

consider five tournament size values: k = {2,3,4,5,6} as well as the above given seven

q0 values. We also experiment with another sd value: sd = 10 for both approaches.

In the tables, AbSrw with slow decreasing (sd = 10) and AbSts with slow decreasing

(sd = 10) are denoted as sAbSrw and sAbSts, respectively.

For the parameter settings of the other heuristic selection methods, the following

settings taken from literature are used. In Reinforcement Learning, the scores of all

heuristics are initialized to 15 with lower and upper bounds as 0 and 30 respectively as

given in [62]. At each step, the score of a low-level heuristic that improves performance

is increased by 1 and otherwise it is decreased by 1. In Choice Function, α , β , and

δ are initialized to 0.5 with updates of ±0.01 at each iteration as given in [64]. In

the Improved Choice Function, φ andδ are initialized to 0.5. If the low-level heuristic

improves performance, the values of φ are set to 0.99. Otherwise, the values of φt at

time t are calculated as φt = max{φt−1 − 0.01,0.01}. In addition, δ is calculated as

δt = 1−φt

We assume that all programs are made aware when a change in the environment occurs.

For the Reinforcement Learning, Choice Function and the Improved Choice Function

selection methods, when a change occurs, the current solution is re-evaluated. For the

proposed Ant-based selection scheme, this is not required. The parameters of none

of the heuristic selection methods are reset when the environment changes. Due to the

nature of the acceptance mechanism, Improving-and-Equal, the first candidate solution

generated after each environment change is accepted regardless of its solution quality.

100 runs are performed for each setting where 20 changes occur in each run, i.e.

there are 21 consecutive stationary periods. For evaluating the performance of the

50

approaches, we use the offline error [13] metric. At the end of a run, a lower overall

offline error value is desired indicating a good performance.

4.2.2 Results and discussion

The results in the tables are provided in terms of average offline error values over

100 runs. The performances of the methods are compared under a variety of change

frequency-severity pair settings.

Table 4.1 shows the results of the q0 tests for both AbSrw and sAbSrw. In the table,

q0 = 0.0 means that the next low-level heuristic is chosen using only the roulette-wheel

selection. However, q0 = 1.0 means that roulette wheel selection is not used and

always the low-level heuristic with the best score (pheromone value) is chosen to

be applied. The results show that there are no statistically significant differences

between most cases, however, the best values are provided by different q0 values for

different frequency-severity pairs. Therefore, to avoid overtuning, we use a setting

which provides an acceptable performance in most of the cases for both approaches.

For the rest of the experiments we continue with a setting of q0 = 0.5 for both AbSrw

and sAbSrw.

Table 4.1 : Final offline error results of various q0 settings for AbSrw and sAbSrw

under the tested change frequency-severity pairs.

Algorithm q0
LF MF HF

LS MS HS LS MS HS LS MS HS

AbSrw

0.0 3.56 7.67 10.09 4.82 8.96 12.10 12.91 19.73 26.53
0.1 3.58 7.43 9.51 5.39 8.93 12.34 12.55 19.05 25.62
0.3 3.74 7.35 9.60 4.79 9.73 11.33 12.06 18.42 25.38
0.5 4.02 8.32 10.38 4.75 9.35 12.87 11.62 17.90 26.42
0.7 3.93 7.82 11.58 4.55 9.47 13.30 10.85 18.16 25.86
0.9 4.19 7.51 11.00 5.42 10.18 13.63 12.74 19.52 28.81
1.0 3.71 8.43 11.85 5.58 11.50 13.44 15.21 23.03 32.24

sAbSrw

0.0 3.80 7.82 10.07 5.22 8.87 12.41 15.13 20.60 28.09
0.1 3.66 7.03 9.77 5.24 9.04 12.63 14.18 20.22 27.24
0.3 3.77 8.20 10.07 5.38 10.64 12.39 12.78 18.60 26.18
0.5 3.74 7.91 10.18 5.18 8.79 11.98 11.60 17.60 25.81
0.7 3.58 8.44 9.95 4.27 9.71 12.71 10.95 17.58 25.19
0.9 3.94 8.13 11.48 4.97 10.21 13.10 10.93 18.16 26.63
1.0 4.30 9.08 11.88 5.35 11.18 14.54 15.62 22.26 30.26

Then, we performed experiments to set the q0 and tournament size values for the AbSts

and sAbSts variations. The experimental results are provided in Appendix A. The

best setting of these two parameters depends on the dynamics of the environment.

51

The best values are provided by different q0 and tournament size values for different

frequency-severity pairs. For this study, we choose a simpler approach. For those

cases where tournament selection is applied, each time we let the tournament size to

be determined randomly with equal probability from among the five pre-determined

tournament size levels. We performed the q0 analysis for AbSts and sAbSts based on

this scheme. Table 4.2 shows the final offline error results for various q0 settings for

AbSts and sAbSts when the tournament sizes are determined randomly. We choose q0 =

0.5 for both AbSts and sAbSts, since each approach delivers an acceptable performance

in most of the cases with this setting which are used for the rest of the experiments.

Table 4.2 : Final offline error results of various q0 settings for AbSts and sAbSts using
random tournament size under the tested change frequency-severity pairs.

Algorithm q0
LF MF HF

LS MS HS LS MS HS LS MS HS

AbSts

0.0 4.25 8.42 10.59 4.97 9.57 13.01 15.86 20.18 26.59
0.1 4.30 7.51 10.89 5.49 10.21 13.23 15.20 20.04 26.48
0.3 4.06 8.73 11.09 5.37 9.81 13.12 13.80 18.90 25.84
0.5 3.93 8.11 10.83 5.25 9.80 13.25 13.64 19.43 26.86
0.7 3.74 8.73 10.58 4.73 10.89 13.43 12.94 19.91 26.84
0.9 3.98 10.68 12.67 5.20 10.71 13.90 13.26 21.27 29.31
1.0 3.82 9.06 12.63 5.24 10.91 14.75 14.85 23.56 31.82

sAbSts

0.0 4.21 8.15 10.71 5.11 10.11 13.50 14.49 19.66 26.15
0.1 4.12 7.44 10.86 5.06 10.63 12.71 13.81 18.84 25.31
0.3 3.81 8.94 10.53 4.94 9.49 13.17 13.17 19.05 25.08
0.5 3.55 8.81 11.67 4.68 10.47 13.37 12.17 18.85 25.10
0.7 3.76 9.02 11.43 4.70 10.09 12.71 12.23 19.14 26.37
0.9 3.93 8.87 11.94 4.92 11.67 14.33 12.93 20.69 28.33
1.0 4.26 9.75 12.00 5.38 9.87 13.83 14.32 21.67 29.81

Table 4.3 summarizes the results of AbS variants with the proposed settings in the

previous part in which for both AbSrw and sAbSrw, q0 is set to 0.5, for both AbSts and

sAbSts, q0 is set to 0.5 with randomly determined tournament size settings. It can be

seen that sAbSrw provides the better results in most cases among the versions of the

proposed heuristic selection scheme. AbSts delivers poor performance in the cases for

which the change frequency is high.

Table 4.4 provides a summary of the statistical comparisons for AbS variants.

According to the results, there are no statistically significant differences between them

in most cases. The counts in the table show that sAbSrw has the same s+ counts as

AbSrw and it also has the most ≥ counts.

52

Table 4.3 : Final offline error results for the proposed heuristic selection schemes.
Here, for both AbSrw and sAbSrw q0 = 0.5, for both AbSts and sAbSts

q0 = 0.5 with random tournament size settings.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

AbSrw 4.02 8.32 10.38 4.75 9.35 12.87 11.62 17.90 26.42
sAbSrw 3.74 7.91 10.18 5.18 8.79 11.98 11.60 17.60 25.81
AbSts 3.93 8.11 10.83 5.25 9.80 13.25 13.64 19.43 26.86
sAbSts 3.55 8.81 11.67 4.68 10.47 13.37 12.17 18.85 25.10

Table 4.4 : Summary of statistical significance comparisons for AbS variants.

Algorithm s+ s− ≥ ≤
AbSrw 1 0 13 13
sAbSrw 1 0 22 4
AbSts 0 2 6 19
sAbSts 0 0 11 16

Finally, we compare sAbSrw with those obtained using the heuristic selection methods

taken from literature, namely Reinforcement Learning (RL), Choice Function (CF)

and the Improved Choice Function (ICF) selection methods. Table 4.5 shows the

results of these comparisons. The better results are marked in bold in the table. The

results show that sAbSrw performs well different combinations of change frequency

and severity settings. Choice Function is worse than the others for almost all

cases, however, the results are very close. Improved Choice Function also gives

better performance. Improved Choice Function aims to emphasize the intensification

component of the generic Choice Function by automatically increasing the weight of

relevant components as soon as there is improvement. Diversification, on the other

hand, is introduced at a gradually increasing rate. This property works in solving

stationary combinatorial optimization problems as shown in [64] as well as in dynamic

optimization problems.

Table 4.5 : Final offline error results for the proposed heuristic selection schemes and
RL, CF and ICF.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

sAbSrw 3.74 7.91 10.18 5.18 8.79 11.98 11.60 17.60 25.81
CF 3.95 9.57 11.91 4.58 10.30 14.20 8.48 15.38 24.83
ICF 3.88 9.24 11.24 4.70 10.63 13.01 8.19 15.84 24.35
RL 4.48 7.35 10.01 4.48 10.44 12.90 8.38 17.68 24.85

53

One-way ANOVA and Tukey HSD tests at a 95% confidence level are performed to

observe whether the pairwise performance variations between the approaches, namely

sAbSrw, Choice Function, Improved Choice Function, and Reinforcement Learning,

are statistically significant or not. The corresponding results are provided in Table 4.6.

As seen in the table, there are no statistically significant differences between them for

most cases. sAbSrw is significantly better than Choice Function for low frequency

and high severity and for medium frequency and high severity settings. However, the

differences between sAbSrw and the other methods are significantly significant for high

frequency and low severity setting.

Table 4.6 : Pair-wise comparison of algorithms for each dynamic environment type
determined by a given change frequency and severity. Given A vs B, s+
(s−) denote that A (B) is performing statistically better than B (A), while
≈ denotes that there is no statistically significant performance variation
between A and B.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

sAbSrw vs CF ≈ ≈ s+ ≈ ≈ s+ s− s− ≈
sAbSrw vs ICF ≈ ≈ ≈ ≈ ≈ ≈ s− ≈ ≈
sAbSrw vs RL ≈ ≈ ≈ ≈ ≈ ≈ s− ≈ ≈
CF vs ICF ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈
CF vs RL ≈ s− s− ≈ ≈ ≈ ≈ s+ ≈
ICF vs RL ≈ s− ≈ ≈ ≈ ≈ ≈ ≈ ≈

As can be seen, sAbSrw generates competitive results for different combinations of

change frequency and severity settings. However, the most important issue is the

fact that sAbSrw (and also all the other proposed variants) is more suitable to be

used in dynamic environments than Choice Function, Improved Choice Function,

and Reinforcement Learning because the proposed heuristic selection schemes do not

require any special actions to be performed when the environment changes, whereas

for the others, right after an environment change, the last candidate solution in the

previous environment needs to be re-evaluated. This is a drawback for two reasons: it

makes change detection necessary and it also wastes fitness evaluations, especially in

environments where change frequencies are very high.

4.3 Experiments using a Detection Mechanism

In our previous studies [70, 76], existing heuristic selection mechanisms are tested in

various types of dynamic environments and those that incorporate some form of online

54

learning are shown to be successful. One drawback of these approaches for dynamic

environments is that they require the re-evaluation of the last candidate solution in the

previous environment for score calculation. As well as wasting computing resources

for the re-evaluation, this also means that the algorithm needs to detect when the

environment changes. The Ant-based selection heuristic selection does not require

any special actions when the environment changes. However, due to the nature of

the acceptance mechanism, Improving and Equal (IE), the first solution candidate

generated after each environment change is accepted regardless of its solution quality.

This means that the algorithm needs to know when a change occurs in the environment.

In this study, we consider a simple change detection mechanism which is commonly

used in literature [18]. In this strategy, at each iteration the current solution is

re-evaluated. If the fitness value of the current solution changes, this means that a

change occurs. Thus, none of heuristic selection methods require the re-evaluation of

the last candidate solution in the previous environment for score calculation. It should

be noted that we assume that the environment is not noisy. Otherwise, a change in

the fitness value of a solution candidate cannot be taken to indicate a change in the

environment.

4.3.1 Experimental design

In this section, we investigate the performance of the heuristic selection methods

using the above explained change detection mechanism. We consider three heuristic

selection methods, namely Ant-based selection with roulette wheel, Choice Function

and Reinforcement Learning. For this study, we consider Ant-based selection with

roulette wheel since it performs better than tournament selection. In this section, from

this point on we will use Ant-based selection (AbS) to denote Ant-based selection

with roulette wheel selection. The selection mechanisms are used together with the

Improving and Equal acceptance technique. In the experiments, we investigate the

performance of all the algorithms using the same detection mechanism. It should be

noted that IEd denotes Improving and Equal with the detection mechanism.

In the experiments, we use the Moving Peaks Benchmark (MPB) generator [16] to

generate the various dynamic environments. For the parameter settings of MPB, we

use the ones given in Subsection 4.2.1.

55

Parameterized Gaussian mutations are used as the low-level heuristics in the

hyper-heuristic framework. We use the same settings for the mutation operators as

in [76], which are implemented as seven different standard deviations; {0.5, 2, 7, 15,

20, 25, 30}.

For AbS, q0, sd and ρ are set to 0.5, 10 and 0.1, respectively. These are the settings

chosen in the previous section. For the parameter settings of the other heuristic

selection methods, their proposed settings from literature [62, 76] are used.

To evaluate the performance of the approaches, we use the offline error [13] metric.

100 runs are performed for each setting where 20 changes occur, i.e. there are 21

consecutive stationary periods per run.

4.3.2 Results and discussion

Table 4.7 shows the offline errors generated by each approach for different

combinations of change frequency and severity settings. As can be seen, performance

degrades for all methods as the change frequency and severity values increase. IE and

IEd give competitive performance for low and medium frequency. However, for high

frequency IE outperforms the IEd. This observation is somewhat expected since the

IEd is provided with a very limited time to respond to the changes in the environment.

Table 4.7 : The offline errors generated by each approach for different combinations
of change frequency and severity settings.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

AbS - IE 3.76 7.72 10.63 5.00 10.04 12.25 11.36 17.86 25.18
AbS - IEd 3.98 7.87 10.77 4.96 10.35 14.42 14.43 23.33 34.44

CF - IE 3.56 9.89 11.69 4.47 10.57 13.28 9.02 16.80 25.46
CF - IEd 3.75 9.98 12.74 5.45 11.63 14.79 13.33 20.98 30.77

RL - IE 3.98 8.03 10.04 4.81 10.02 12.76 8.39 17.66 25.10
RL - IEd 4.20 8.08 10.92 5.84 11.68 15.85 21.85 26.18 35.79

First, the performance of IEd is compared to IE combined with AbS. The results of the

ANOVA and Tukey’s HSD tests for statistical significance are reported in Table 4.8.

In the table, each entry shows the total number of times the corresponding approach

achieves the corresponding significance state (s+, s−, ≥ and ≤) over the others for

56

different change severity and frequency settings. From the table, it can be seen that IE

is better than IEd.

Table 4.8 : Summary of statistical significance comparisons between AbS-IE and
AbS-IEd.

Algorithm s+ ≥
AbS - IE 4 4
AbS - IEd 0 1

Second, we investigate the performance of IEd used together with AbS, Choice

Function and Reinforcement Learning. The results of the ANOVA and Tukey’s HSD

tests for statistical significance are reported in Table 4.9. The results show that AbS

and Choice Function give better performance when combined with the IEd.

Table 4.9 : Summary of statistical significance comparisons between AbS, CF and RL
combined with IEd.

Algorithm s+ s− ≥ ≤
AbS - IEd 5 2 9 2
CF - IEd 5 4 6 3
RL - IEd 2 6 0 10

4.4 Analysis of the Components of AbS

In this section, we investigate the behavior of our approach on dynamic environment.

We also perform the sensitivity analysis of each component of AbS.

In the previous set of experiments, sAbSrw gives better performance than the other

variants. Therefore, we consider sAbSrw during the rest of the experiments in which

the pheromone values decrease more gradually, i.e. sd = 10. Unless stated otherwise,

the following setting is used for the rest of the experiments in this chapter: ρ and q0

are set to 0.1 and 0.5, respectively. From this point on, we use AbS to denote sAbSrw.

4.4.1 The behavior of ant-based selection

In this subsection, we perform exhaustive tests to empirically analyze the behavior

of our approach. Firstly, we examine the tracking ability of the proposed approach.

To illustrate its tracking ability when a change occurs, the error values of the best

candidate solutions versus the number of evaluations for low, medium and high

57

frequencies of change are plotted in Figure 4.1. It can be figured out that AbS display

a good tracking behavior and is able to recover quickly, following the optimum for all

change frequency and severity settings.

0 2 4 6 8 10 12

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

LF−LS
LF−MS
LF−HS

(a) LF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

MF−LS
MF−MS
MF−HS

(b) MF

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

HF−LS
HF−MS
HF−HS

(c) HF

Figure 4.1 : A sample plot of the error values of the best candidate solutions versus
the number of evaluations for the combinations of (a) Low, (b) Medium,
(c) High frequencies of change for AbS.

We investigate the change of pheromone trail value for each heuristic pair during

the search. Figure 4.2 illustrates the semilogarithmic plot with logarithmic scale for

y-axis for the pheromone trail values versus fitness evaluations for each heuristic

pair for the high frequency and medium severity setting. As seen in the figure, the

low-level heuristics with the smaller indexes are mostly selected while the others are

selected less. The plots for other frequencies are not provided here, however, similar

observations are made for low and medium frequency, too. In AbS, the heuristic with

the highest pheromone trail is selected with a probability of q0. If there are two or more

heuristics with the highest pheromone value, the low-level heuristic with the smallest

index is chosen. Therefore, AbS may tend to select the first heuristic at the beginning

of the search. To avoid this, we handle the ties as follows: If there are two or more

heuristics with the highest pheromone value, one is randomly selected among them.

The corresponding results are illustrated in Figure 4.3. It can be seen that similar

observations are made for this version, too.

As seen in Figure 4.3, mostly the low-level heuristics with the smaller indexes

are selected. Based on these results, to evaluate the performance of the low-level

heuristics, each low-level heuristic is allowed to run individually. The performance of

each individual heuristic is tested under a random mutation hill climbing framework,

which perturbs a solution using the corresponding individual parameter setting for the

Gaussian mutation and improving and equal moves are accepted. The results, reported

as the average offline error, can be seen in Table 4.10. According to the results in the

58

table, LLH1, which corresponds to using Gaussian mutation with a standard deviation

of 0.5 is the most successful approach for low and medium frequencies. However,

LLH2 is the best performing heuristic for high frequency.

Table 4.10 : The offline errors generated by each individual low-level heuristic for
different combinations of change frequency and severity settings.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

LLH1 4.26 9.39 11.35 5.45 12.67 13.77 15.66 22.82 33.31
LLH2 5.28 10.13 13.30 7.30 13.29 15.52 12.43 18.96 23.93
LLH3 10.56 14.66 16.80 15.39 18.61 20.56 25.08 27.63 31.60
LLH4 17.67 17.62 19.80 25.72 23.58 25.47 42.42 36.46 38.61
LLH5 21.32 19.27 21.40 30.60 26.00 28.29 50.61 41.11 44.15
LLH6 24.01 20.82 22.93 34.59 28.77 30.84 56.59 45.05 47.05
LLH7 26.49 22.35 24.25 38.19 31.16 33.26 60.97 48.39 50.92

In the experiments until now, we use seven Gaussian mutation operators as the

low-level heuristics based on seven different standard deviations. Based on the results

given in Table 4.10, the first two heuristics (LLH1 and LLH2) give better performance.

Our previous experiments showed that using the best performing low-level heuristics

does not provide good performance. Therefore, we further evaluate the proposed

approach using the first four heuristics as the low-level heuristics, namely LLH1,

LLH2, LLH3, and LLH4.

Table 4.11 shows the offline errors generated by AbS with 7 and 4 low-level heuristics

for different combinations of change frequency and severity settings. As seen in the

table, the results are very close. We perform statistical significance tests to determine

the number of low-level heuristics to be used. The corresponding results are provided

in Table 4.12. There are no statistically significant differences between them for

most cases. Since using four heuristics decreases the computational requirements, the

number of low-level heuristics is taken as four for the rest of the experiments.

Table 4.11 : The offline errors generated by AbS with 7 and 4 low-level heuristics for
different combinations of change frequency and severity settings.

of LLHs
LF MF HF

LS MS HS LS MS HS LS MS HS

7 3.95 8.05 10.22 4.57 9.02 12.39 11.42 17.88 24.48
4 4.26 8.46 10.82 4.20 9.71 13.07 10.07 17.90 24.34

59

0 1000 2000

10
0

1−1

0 1000 2000

10
0

1−2

0 1000 2000

10
0

1−3

0 1000 2000

10
0

1−4

0 1000 2000

10
0

1−5

0 1000 2000

10
0

1−6

0 1000 2000

10
0

1−7

0 1000 2000

10
0

2−1

0 1000 2000

10
0

2−2

0 1000 2000

10
0

2−3

0 1000 2000

10
0

2−4

0 1000 2000

10
0

2−5

0 1000 2000

10
0

2−6

0 1000 2000

10
0

2−7

0 1000 2000

10
0

3−1

0 1000 2000

10
0

3−2

0 1000 2000

10
0

3−3

0 1000 2000

10
0

3−4

0 1000 2000

10
0

3−5

0 1000 2000

10
0

3−6

0 1000 2000

10
0

3−7

0 1000 2000

10
0

4−1

0 1000 2000

10
0

4−2

0 1000 2000

10
0

4−3

0 1000 2000

10
0

4−4

0 1000 2000

10
0

4−5

0 1000 2000

10
0

4−6

0 1000 2000

10
0

4−7

0 1000 2000

10
0

5−1

0 1000 2000

10
0

5−2

0 1000 2000

10
0

5−3

0 1000 2000

10
0

5−4

0 1000 2000

10
0

5−5

0 1000 2000

10
0

5−6

0 1000 2000

10
0

5−7

0 1000 2000

10
0

6−1

0 1000 2000

10
0

6−2

0 1000 2000

10
0

6−3

0 1000 2000

10
0

6−4

0 1000 2000

10
0

6−5

0 1000 2000

10
0

6−6

0 1000 2000

10
0

6−7

0 1000 2000

10
0

7−1

0 1000 2000

10
0

7−2

0 1000 2000

10
0

7−3

0 1000 2000

10
0

7−4

0 1000 2000

10
0

7−5

0 1000 2000

10
0

7−6

0 1000 2000

10
0

7−7

Figure 4.2 : A sample semilogarithmic plot for the pheromone trail values versus fitness evaluations for each heuristic pair based on high frequency
and medium severity combination for AbS.

60

0 1000 2000

10
0

1−1

0 1000 2000

10
0

1−2

0 1000 2000

10
0

1−3

0 1000 2000

10
0

1−4

0 1000 2000

10
0

1−5

0 1000 2000

10
0

1−6

0 1000 2000

10
0

1−7

0 1000 2000

10
0

2−1

0 1000 2000

10
0

2−2

0 1000 2000

10
0

2−3

0 1000 2000

10
0

2−4

0 1000 2000

10
0

2−5

0 1000 2000

10
0

2−6

0 1000 2000

10
0

2−7

0 1000 2000

10
0

3−1

0 1000 2000

10
0

3−2

0 1000 2000

10
0

3−3

0 1000 2000

10
0

3−4

0 1000 2000

10
0

3−5

0 1000 2000

10
0

3−6

0 1000 2000

10
0

3−7

0 1000 2000

10
0

4−1

0 1000 2000

10
0

4−2

0 1000 2000

10
0

4−3

0 1000 2000

10
0

4−4

0 1000 2000

10
0

4−5

0 1000 2000

10
0

4−6

0 1000 2000

10
0

4−7

0 1000 2000

10
0

5−1

0 1000 2000

10
0

5−2

0 1000 2000

10
0

5−3

0 1000 2000

10
0

5−4

0 1000 2000

10
0

5−5

0 1000 2000

10
0

5−6

0 1000 2000

10
0

5−7

0 1000 2000

10
0

6−1

0 1000 2000

10
0

6−2

0 1000 2000

10
0

6−3

0 1000 2000

10
0

6−4

0 1000 2000

10
0

6−5

0 1000 2000

10
0

6−6

0 1000 2000

10
0

6−7

0 1000 2000

10
0

7−1

0 1000 2000

10
0

7−2

0 1000 2000

10
0

7−3

0 1000 2000

10
0

7−4

0 1000 2000

10
0

7−5

0 1000 2000

10
0

7−6

0 1000 2000

10
0

7−7

Figure 4.3 : A sample semilogarithmic plot for the pheromone trail values versus fitness evaluations for each heuristic pair based on high frequency
and medium severity combination for AbS with handling ties.

61

Table 4.12 : Summary of statistical significance comparisons between AbS with 7 and
4 low-level heuristics.

of LLHs s+ ≥
7 0 6
4 1 2

4.4.2 Max-Min ant-based selection hyper-heuristic

Ant-based selection utilizes a matrix of pheromone trail values. When looking into

the change of the values in the matrix during the search, we observe that while some

pheromone trail values increase considerably, the others remain around their initial

values. (See Figure 4.3). Therefore, we decide to experiment with another version of

AbS (Max-Min AbS) which is inspired by the Max-Min Ant Colony Optimization [80]

where the pheromone trail values are restricted to vary between certain lower and upper

bounds. Unlike Max-Min Ant Colony Optimization, the lower and upper bounds are

constant during the search in this method. This version of AbS is denoted as MM AbS.

Both AbS and MM AbS use 4 low-level heuristics. In MM AbS, the lower and upper

bounds are set to τ0/50 and τ0∗50 where τ0 is the initial value of the pheromone trails.

This setting is determined empirically as a result of a series of preliminary experiments

so that they achieve a good performance. The corresponding offline errors are given in

Table 4.13. It can be seen that MM AbS delivers good performance for most cases.

Table 4.13 : The offline errors generated by AbS and Max-Min AbS for different
combinations of change frequency and severity settings.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

AbS 3.89 9.05 11.07 5.21 10.06 13.31 9.04 16.39 24.22
MM AbS 3.85 8.75 10.36 5.18 10.30 13.27 8.69 16.83 23.48

Table 4.14 : Overall (s+, s−, ≥ and ≤) counts for AbS and Max-Min AbS.

Algorithm s+ s− ≥ ≤
AbS 0 0 2 7
MM AbS 0 0 7 2

An overall comparison of two approaches is provided in Table 4.14. It can be seen that

there are no statistically significant differences between them for all cases. However,

62

MM AbS performs slightly better than AbS for 7 instances. Therefore, we use MM AbS

as the heuristic selection method for the rest of the experiments.

4.4.3 Re-initialization of pheromone trails with max-min AbS

A simple approach to address dynamic optimization problems is to restart the

search algorithm when the environment changes. To this end, the pheromone trails

values are re-initialized with the same initial value τ0 whenever a change occurs.

Table 4.15 shows the offline errors generated by MM AbS and MM AbS-R for different

combinations of change frequency and severity settings. In this table, MM AbS-R

denotes the Max-Min AbS with re-initialization. It can be observed that MM AbS-R

gives better performance for medium frequency and high severity settings. On the

other hand, MM AbS outperforms MM AbS-R for all other cases. As expected, the

re-initialization of pheromone trails delivers very poor performance for high frequency

since it is provided with a limited time for search after re-initialization.

Table 4.15 : The offline errors generated by MM AbS and MM AbS-R for different
combinations of change frequency and severity settings.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

MM AbS 3.85 8.75 10.36 5.18 10.30 13.27 8.69 16.83 23.48
MM AbS-R 3.99 8.88 10.87 5.80 10.85 12.80 17.05 20.39 26.30

4.4.4 The influence of q0

In this part of the experiment, we explore the influence the settings of q0 which

may affect the performance of our approach. We experiment with seven q0 values:

{0.0,0.1,0.3,0.5,0.7,0.9,1.0}. For this experiment, we consider MM AbS with four

low-level heuristics and sd = 10.0 which are the good settings obtained in the previous

sets of experiments. Table 4.16 shows the results of various q0 settings for MM AbS.

It should be note that q0 = 0.0 means that the next heuristic is selected using only the

roulette wheel. On the other hand, q0 = 1.0 means that always the heuristic with the

best pheromone value is selected. The results show that the best values provided by

different q0 values for different frequency-severity settings. According to results, MM

AbS delivers very poor performance for q0 = 1.0. Figure 4.4 illustrates this observation

for different combination of change frequency and severity settings.

63

Table 4.16 : Final offline error results of various q0 settings for MM AbS under the
tested change frequency-severity pairs.

q0
LF MF HF

LS MS HS LS MS HS LS MS HS

0.0 3.74 8.30 10.58 4.96 10.38 12.67 10.93 18.18 24.80
0.1 4.21 8.18 10.93 5.01 10.67 13.06 10.33 17.69 25.45
0.3 3.58 8.55 11.47 4.86 9.04 12.83 9.50 17.07 24.86
0.5 3.84 8.35 11.47 4.67 9.32 13.35 9.14 16.02 23.41
0.7 3.97 9.56 11.28 4.56 9.61 12.99 9.31 17.43 22.80
0.9 4.31 10.09 10.84 4.34 10.29 13.58 9.47 16.59 24.27
1.0 7.05 12.06 13.80 9.37 13.21 16.02 18.25 22.37 27.36

LF−LS LF−MS LF−HS MF−LS MF−MS MF−HS HF−LS HF−MS HF−HS
0

5

10

15

20

25

30

A
ve

ra
ge

 O
ffl

in
e

E
rr

or

0.0
0.1
0.3
0.5
0.7
0.9
1.0

Figure 4.4 : Final offline error versus of different q0 values for MM AbS for different
combination of change frequency and severity settings.

We also perform statistical significance tests to determine the best setting of q0. The

statistical comparison summary is provided in Table 4.17. In this table, the results

for q0 = 1.0 is not included as it is significantly worse than the rest. Based on the

results, the differences between different q0 values are not statistically significant for

most cases

Table 4.17 : Overall (s+, s−, ≥ and ≤) counts various q0 settings for MM AbS.

q0 s+ s− ≥ ≤
0.0 0 4 22 19
0.1 0 1 13 31
0.3 1 0 23 21
0.5 1 0 28 16
0.7 2 0 24 19
0.9 1 0 20 24

To be able to decrease the number of parameters needing to be tuned, we try to develop

an adaptive version for q0. However, the results show that the differences between

64

different q0 values are not statistically significant for different frequency-severity

settings. Hence, we observe that an adaptive version of q0 is not required.

4.4.5 The influence of slow decreasing parameter

In this set of experiment, we look into effect the slow decreasing parameter. To this

end, different sd values are tested for MM AbS with four low-level heuristics. Here,

q0 is set to 0.5. For this set set of experiment, we experiment with seven sd values:

{1,10,30,50,75,100,150}. Table 4.18 shows the results of various sd settings for

MM AbS. The results show that the best offline error values provided by different sd

values for different frequency-severity settings. Figure 4.5 illustrates this observation

for different combination of change frequency and severity settings.

Table 4.18 : Final offline error results of various sd settings for MM AbS under the
tested change frequency-severity pairs.

sd
LF MF HF

LS MS HS LS MS HS LS MS HS

1 3.90 9.03 11.34 4.85 10.41 13.15 12.02 18.03 24.45
10 3.53 7.85 11.78 4.71 10.15 13.09 8.98 16.86 24.22
30 3.46 9.20 11.22 4.96 11.00 13.08 9.24 16.69 22.93
50 3.83 8.52 11.02 4.49 10.45 12.54 9.05 16.33 24.05
75 4.17 9.16 11.28 4.63 9.65 12.35 9.18 16.30 23.76
100 3.72 7.69 11.03 5.18 10.12 13.38 9.17 16.46 24.57
150 4.10 8.09 10.88 5.24 10.24 12.22 9.60 16.73 23.35

LF−LS LF−MS LF−HS MF−LS MF−MS MF−HS HF−LS HF−MS HF−HS
0

5

10

15

20

25

A
ve

ra
ge

 O
ffl

in
e

E
rr

or

1
10
30
50
75
100
150

Figure 4.5 : Final offline error versus of different sd values for MM AbS for different
combination of change frequency and severity settings.

The results of statistical significance tests are given in Table 4.19. As can be seen

from the results, there are no statistically significant differences between them for most

cases. However, sd = 1 is significantly worse than the others for 6 cases.

65

Table 4.19 : Overall (s+, s−, ≥ and ≤) counts various sd settings for MM AbS.

sd s+ s− ≥ ≤
1 0 6 12 36
10 1 0 28 25
30 1 0 24 29
50 1 0 34 19
75 1 0 31 22
100 1 0 27 26
150 1 0 27 26

Based on the results, the setting of slow decreasing parameter is not very critical.

There are no statistically significant differences between sd values for different

frequency-severity pairs. Therefore, we decide to choose a setting which produce

acceptable results instead of adaptive version of sd.

4.4.6 The influence of evaporation rate

Pheromone evaporation allows the algorithm to forget the bad decisions previously

made, which can be seen as exploration mechanism. The evaporation rate (ρ) is an

important parameter of Ant Colony Optimization. An approach with small evaporation

rate adapt slowly, whereas an approach with high evaporation adapt quickly. In this

set of experiment, we investigate the effect of the evaporation rate. To this end, we

experiment with four different ρ values: 0.10,0.15,0.2,0.25. Table 4.20 shows the

results of various ρ settings for MM AbS. The results show that the performance of MM

AbS is not much affected by the settings of rho. Figure 4.6 illustrates this observation

for different combination of change frequency and severity settings.

Table 4.20 : Final offline error results of various ρ settings for MM AbS under the
tested change frequency-severity pairs.

ρ
LF MF HF

LS MS HS LS MS HS LS MS HS

0.10 3.85 8.14 10.35 4.80 8.57 12.01 11.95 18.05 25.07
0.15 3.81 7.64 9.81 4.88 9.35 12.51 10.67 17.49 25.78
0.20 3.89 8.27 10.12 4.78 9.72 12.45 11.50 17.05 24.77
0.25 3.63 7.63 10.09 5.01 10.12 12.46 11.73 17.53 24.25

Mavrovouniotis and Yang [82] propose an adaptive version for the evaporation rate

parameter. In the adaptive approach, if the algorithm approaches the stagnation

situation, the evaporation rate is increased by a fixed step size; otherwise, it is

decreased by a fixed step size. To detect the stagnation behavior, they consider

66

LF−LS LF−MS LF−HS MF−LS MF−MS MF−HS HF−LS HF−MS HF−HS
0

5

10

15

20

25

30

A
ve

ra
ge

 O
ffl

in
e

E
rr

or

0.10
0.15
0.20
0.25

Figure 4.6 : Final offline error versus of different ρ values for MM AbS for different
combination of change frequency and severity settings.

λ -branching factor which measures the distribution of the pheromone trail values. The

λ -branching factor [80] for node i is defined as follows:

λi =
d

∑
j=1

Ii j (4.5)

where d is the number of arcs incident to node i and Ii j is defined as the following:

Ii j =

{

1 , if τi j ≥ τ i
min +λ (τ i

max − τ i
min)

0 , otherwise
(4.6)

where λ ∈ [0,1] is a constant parameter, τ i
min and τ i

max are the minimal and the maximal

pheromone trail values on the arcs incident to node i. The average λ -branching factor

(λ̄) is calculated as the average of the λ -branching factors of all nodes (given in

Eq. 4.7)

λ̄ =
1

2n

n

∑
i=1

λi (4.7)

where n is the number of nodes in the corresponding graph.

We use the same measurement, namely average λ -branching factor, to detect the

stagnation behavior. According to results, MM AbS provides a low λ -branching factor

throughout the run. Therefore, the algorithm does not enter the stagnation [80].

Therefore, we do not require an adaptive version of evaporation rate as in [82].

Figure 4.6 also confirms this observation.

67

68

5. APPLICATIONS OF THE ANT-BASED SELECTION
HYPER-HEURISTICS

In this chapter, we present three applications of the proposed hyper-heuristic,

namely Ant-based selection hyper-heuristic. Firstly, we use hyper-heuristics in a

multi-population framework, combining offline and online learning mechanisms. We

collaborated with Gönül Uludağ in this study. Secondly, we implement the proposed

approaches on HyFlex which is an interface to develop hyper-heuristics. Finally, we

explore the performance of the proposed approaches on a real-world optimization

problem referred to as the Dynamic Traveling Salesman problem.

5.1 Application I: Hyper-heuristics in A Hybrid Multi-population Framework

Estimation of Distribution Algorithms (EDAs) [83] are population based search

methodologies in which new candidate solutions are produced using the probabilistic

distribution model learned from the current best candidate solutions. There is a

growing number of studies which apply improved variants of EDAs in dynamic

environments [25, 84–89].

There is an emerging field of research in the semi-automated design of search

methodologies: hyper-heuristics. This study focuses on the selection hyper-heuristic

methodologies. There is strong empirical evidence showing that selection

hyper-heuristics are able to quickly adapt without any external intervention in a given

dynamic environment providing effective solutions [70, 71].

In this study, in order to exploit the advantages of approaches with learning and those

with model-building features in dynamic environments, we propose a hybridization of

EDAs with hyper-heuristics in the form of a two-phase framework, combining offline

and online learning mechanisms [77–79]. A list of probability vectors for generating

good solutions is learned in an offline manner in the first phase. We consider PBIL for

the first phase in this study. In the second phase, two sub-populations are maintained.

A sub-population is sampled using an EDA, while the other one uses a hyper-heuristic

69

for sampling appropriate probability vectors from the previously learned list in an

online manner. In this study, we choose a dual population PBIL (PBIL2) as the EDA

component.

We perform exhaustive tests to determine a selection method which performs

well within the proposed framework. We also compare the proposed framework,

incorporating the chosen heuristic selection scheme, to similar methods from literature.

5.1.1 A hybrid framework for dynamic environments

In this subsection, we describe a new multi-phase hybrid framework, referred to

as hyper-heuristic based dual population EDA (HH-EDA2), for solving dynamic

environment problems.

Although we choose PBIL2 as the EDA component in our studies, the proposed hybrid

framework can combine any multi-population EDA with any selection hyper-heuristic

in order to exploit the strengths of both approaches.

HH-EDA2 consists of two main phases: offline learning and online learning. In

the offline learning phase, a number of masks to be used in the XOR generator are

sampled over the search space. The search space is divided into M sub-spaces and

a set of masks is generated randomly in each sub-space, thus making the masks

distributed well over the landscape. For the XOR generator, each mask corresponds to

a different environment. Then, for each environment (represented by each mask) PBIL

is executed. As a result of this, good probability vectors
−→
P list corresponding to a set

of different environments are learned in an offline manner. These learned probability

vectors are stored for later use during the online learning phase of HH-EDA2.

In the online learning phase, the probability vectors
−→
P list, serve as the low-level

heuristics, which a selection hyper-heuristic manages. Figure 5.1 shows a simple

diagram illustrating the structure and execution of HH-EDA2.

The online learning phase of the HH-EDA2 framework uses the PBIL2 approach.

Similar to PBIL2, the population is divided into two sub-populations and two

probability vectors, one for each sub-population, are used simultaneously. As seen

in Figure 5.1, pop1 represents the first sub-population and
−→
P 1 is its corresponding

probability vector; pop2 represents the second sub-population and
−→
P 2 is its

70

Figure 5.1 : The framework of HH-EDA2.

corresponding probability vector. The pseudocode of the proposed HH-EDA2 is shown

in Algorithm 3.

Algorithm 3 Pseudocode of the proposed HH-EDA2 approach.
1: t := 0
2: initialize

−→
P 1(0) :=

−→
0.5

3:
−→
P 2(0) is selected from

−→
P list

4: S1(0) := sample(
−→
P 1(0)) and S2(0) := sample(

−→
P 2(0))

5: while (termination criteria not fulfilled) do
6: evaluate S1(t) and evaluate S2(t)

7: adjust next population sizes for
−→
P 1(t) and

−→
P 2(t) respectively

8: place k best samples from S1(t) and S2(t) into
−→
B (t)

9: send best fitness from whole/second population to heuristic selection component

10: learn
−→
P 1(t) toward

−→
B (t)

11: mutate
−→
P 1(t)

12:
−→
P 2(t) is selected using heuristic selection

13: S1(t) := sample(
−→
P 1(t)) and S2(t) := sample(

−→
P 2(t))

14: t := t + 1
15: end while

In HH-EDA2, the first probability vector
−→
P 1 is initialized to

−→
P central , and the second

probability vector
−→
P 2 is initialized to a randomly selected vector from

−→
P list. Initial

sub-populations of equal sizes are sampled independently from their own probability

vectors. After the fitness evaluation process, sub-population sample sizes are slightly

adjusted within the range [0.3 ∗ n, 0.7 ∗ n] according to their best fitness values.

At each iteration, if the best candidate solution of the first sub-population is better

than the best candidate solution of the second sub-population, the sample size of the

first sub-population, n1 is determined by min(n1 + 0.05 ∗ n,0.7 ∗ n); otherwise n1 is

defined by min(n1 −0.05 ∗ n,0.3 ∗ n). While,
−→
P 1 is learned towards the best solution

candidate(s) in the whole population and mutation is applied to
−→
P 1,

−→
P 2 is selected

using the heuristic selection methods from
−→
P list. No mutation is applied to

−→
P 2. Then,

71

the two sub-populations are sampled based on their respective probability vectors. The

approach repeats this cycle until some termination criteria are met. In the HH-EDA2

framework, different heuristic selection methods can be used for selecting the second

probability vector from
−→
P list.

5.1.2 Computational experiments

In this study, we perform two groups of experiments. In the first group, we investigate

the influence of different heuristic selection methods on the performance of the

proposed framework, to determine the most suitable one for dynamic environment

problems. In the second group of experiments, the proposed framework, incorporating

the chosen heuristic selection scheme, is compared to similar methods from literature.

5.1.2.1 Experimental design

In the offline learning phase, first a set of M XOR masks are generated. In order

to have the XOR masks distributed uniformly on the search space, an approach

similar to stratified sampling is used. Then, for each mask, PBIL is executed for

100 independent runs where each run consists of G generations. During offline

learning, each environment is stationary and 3 best candidate solutions are used to

learn probability vectors. The population size is set to 100. At the end of the offline

learning stage, the probability vector producing the best solution found so far over all

runs for each environment, is stored in
−→
P list. The parameter settings for PBIL used in

this stage is given in Table 5.1.

Table 5.1 : Parameter settings for PBILs.

Parameter Setting Parameter Setting
Solution length 100 Mutation rate Pm 0.02
Population size 100 Mutation shift δm 0.05
Number of runs 100 Learning rate α 0.25

After the offline learning stage, we experiment with four main types of dynamic

environments: randomly changing environments (Random), environments with cyclic

changes of type 1 (Cyclic1), environments with cyclic changes of type 1 with noise

(Cyclic1-with-Noise) and environments with cyclic changes of type 2 (Cyclic2). In the

Cyclic1 type environments, the masks representing the environments, which repeat in

a cycle, are selected from among the sampled M masks used in the offline learning

72

phase of HH-EDA2. To construct Cyclic1-with-Noise type environments, we added a

random bitwise noise to the masks used in the Cyclic1 type environments. In Cyclic2

type environments, the masks representing the environments, which repeat in a cycle,

are generated randomly.

To generate dynamic environments showing different dynamism properties, we

consider different change frequencies τ , change severities ρ and cycle lengths CL.

We determined the change periods which correspond to low frequency (LF), medium

frequency (MF) and high frequency (HF) changes as a result of some preliminary

experiments where we execute PBIL on stationary versions of all the Decomposable

Unitation-Based Functions. Table 5.2 shows the determined change periods for each

Decomposable Unitation-Based Function.

Table 5.2 : The value of the change periods.

Functions LF MF HF
DUF1 50 25 5
DUF2 50 25 5
DUF3 100 35 10

In the Random type environments, the severity of changes are determined based on

the definition of the XOR generator and are chosen as 0.1 for low severity (LS), 0.2

for medium severity (MS), 0.5 for high severity (HS), and 0.75 for very high severity

(VHS) changes. For all types of cyclic environments, the cycle lengths CL are selected

as 2, 4 and 8. Except for Cyclic1-with-Noise type of environments, the environments

return to their exact previous locations.

In [78], we explore the effects of restart schemes for HH-EDA2. Our experiments

showed that a restart scheme significantly improves the performance of HH-EDA2. In

the best performing restart scheme for HH-EDA2, only the first probability vector
−→
P 1

is reset to the to
−→
P central , whenever an environment change is detected.

Since HH-EDA2 is a multi-population approach, which also uses a kind of memory,

for our comparison experiments, we focus on memory based approaches as well

as multi-population ones which are shown in literature to be successful in dynamic

environments. Therefore, we use different variants of PBILs with restart schemes and

a sentinel-based genetic algorithm which is multi-population approach to dynamic

environments. In literature, several PBIL variants are proposed for dynamic

73

environments [25, 31, 90]. In this thesis, we consider PBIL with restart (PBILr), dual

population PBIL with restart (PBIL2r), memory-based PBIL with restart (MPBILr),

and dual population memory-based PBIL with restart (MPBIL2r). Further details

about memory-based PBIL can be found in [25, 90].

Both in PBIL2 and HH-EDA2, each sub-population size is initialized as 50 and

adjusted within the range of [30, 70]. For MPBILr and MBIL2r, the population size n

is set to 100 and the memory size is fixed to 0.1∗n= 10. The memory is updated using

a stochastic time pattern. After each memory update, the next memory updating time

is set as tM = t + rand(5,10). For MPBIL2r, initial sub-populations are 0.45 ∗ n = 45

and sub-population sample sizes are slightly adjusted within the range of [30, 60].

For the sentinel-based genetic algorithm, we use tournament selection where the

tournament size is 2, uniform crossover with a probability of 1.0, mutation with a

mutation rate of 1/l where l is the chromosome length. The population size is set

to 100. We test two different values for the number of sentinels: 8 and 16. These

values are chosen for two reasons. First of all, [28] suggests working with 10% of

the population as sentinels. Secondly, in [78], we experiment with storing M = 8 and

M = 16 probability vectors in
−→
P list for HH-EDA2 and found M = 8 to be better.

At the beginning of the search, sentinels are initialized to locations of the masks

representing different parts of the search space. For HH-EDA2, the masks used in

the offline learning stage are chosen in such a way as to ensure that they are distributed

uniformly on the search space. Therefore M = 8 or M = 16 masks are used as the

sentinels.

In Reinforcement Learning, score of each heuristic is initialized to 15 and is allowed

to vary between 0 and 30. If the selected heuristic yields a solution with an improved

fitness, its score is increased by 1, otherwise it is decreased by 1. The Reinforcement

Learning settings are taken as recommended in [62].

In [91], the results show that Ant-based Selection with roulette wheel selection is

better than the version with tournament selection. Therefore, we work Ant-based

Selection with roulette wheel selection in this study. For Ant-based Selection, q0,

sd and ρ are set to 0.5, 10 and 0.1, respectively. These are the settings recommended

in [91].

74

For each run of the algorithms, 128 changes occur after the initial environment.

Therefore, the total number of generations in a run is calculated as maxGenerations =

changeFrequency∗ changeCount.

To compare the performance of approaches over different dynamic environments,

the approaches are scored in the same way as in the CHeSC competition [111].

Considering random and cyclic environments, there are 117 problem instances,

therefore, 1170 is the maximum overall score that an algorithm can get in this scoring

system.

5.1.2.2 Results

In this subsection, we provide and discuss the results of each group of experiments

separately.

Comparison of heuristic selection methods

In this set of experiments, we test different heuristic selection methods within

the proposed framework. The tested heuristic selection methods are Simple

Random, Random Descent, Random Permutation, Random Permutation Descent,

Reinforcement Learning and Ant-based Selection. We use all change frequency and

severity settings for the Random dynamic environments; we also use all change

frequency and cycle length settings for the Cyclic1, Cylic1-with-Noise and Cyclic2

type dynamic environments. Tests are performed on all DUFs, i.e. DUF1, DUF2 and

DUF3.

Table 5.3 summarizes the results generated by different heuristic selection methods

averaged over 100 runs, on all DUFs for different change severity and frequency

settings in randomly changing environments. The results show that all heuristic

selection schemes performed well and there were no statistically significant differences

between the results for most cases. However, Reinforcement Learning performs the

best as a heuristic selection method for high frequency in DUF3.

In the tested cyclic environments, the results for DUF1, DUF2 and DUF3 are provided

in Tables 5.4, 5.5 and 5.6, respectively. The results show that for DUF1 and DUF2, in

the tested cyclic environments, Random Permutation performs the best as a heuristic

selection method in the HH-EDA2 framework. For DUF3, Random Permutation

75

Table 5.3 : Offline errors generated by different heuristic selection methods averaged
over 100 runs, on all DUFs for different change severity and frequency
settings in randomly changing environments.

Heuristic

Selection

LF MF HF

LS MS HS VHS LS MS HS VHS LS MS HS VHS

DUF1

RD 0.06 0.06 0.08 0.09 0.17 0.26 0.89 1.05 22.00 23.62 26.82 28.40
RL 0.06 0.06 0.08 0.09 0.17 0.26 0.89 1.07 21.95 23.65 26.82 28.41
RP 0.06 0.06 0.08 0.09 0.17 0.25 0.86 0.99 21.94 23.60 26.79 28.26
RPD 0.06 0.06 0.08 0.09 0.17 0.26 0.89 1.07 22.00 23.61 26.83 28.39
AbS 0.06 0.06 0.08 0.09 0.17 0.26 0.87 1.02 21.98 23.65 26.79 28.31
SR 0.06 0.06 0.08 0.08 0.17 0.26 0.86 1.00 21.95 23.61 26.78 28.30

DUF2

RD 0.12 0.15 0.54 0.59 0.43 0.85 4.30 4.93 42.92 45.78 50.92 53.14
RL 0.13 0.16 0.56 0.61 0.42 0.83 4.34 4.98 42.82 45.87 50.94 53.27
RP 0.12 0.16 0.49 0.53 0.43 0.85 4.13 4.54 42.92 45.74 50.86 52.95
RPD 0.12 0.16 0.55 0.60 0.42 0.85 4.39 4.92 42.95 45.80 50.99 53.12
AbS 0.13 0.16 0.51 0.55 0.42 0.87 4.17 4.70 42.88 45.79 50.92 53.06
SR 0.12 0.15 0.50 0.54 0.42 0.86 4.16 4.64 42.92 45.80 50.93 53.00

DUF3

RD 19.22 18.29 16.03 14.20 19.62 18.96 17.26 15.51 38.33 39.60 40.66 40.25
RL 19.12 18.23 16.06 14.22 19.63 18.89 17.26 15.50 38.19 39.47 40.57 39.96
RP 19.44 18.46 16.04 14.18 19.75 18.99 17.26 15.49 38.44 39.99 41.29 40.75
RPD 19.32 18.26 16.03 14.20 19.63 18.86 17.29 15.55 38.37 39.75 40.87 40.27
AbS 19.21 18.35 16.05 14.18 19.69 18.90 17.25 15.52 38.37 39.81 41.02 40.45
SR 19.45 18.44 16.06 14.18 19.78 18.99 17.25 15.51 38.35 39.81 41.07 40.43

Descent seems to produce better results than Random Permutation, however this

performance difference is not statistically significant and actual offline error values

from Random Permutation are close to the ones produced by Random Permutation

Descent.

AbS delivers a promising performance for all DUFs in randomly changing

environments and the tested cyclically changing environments. However, it performs

the best on all DUFs for Cyclic1 with noise when the changes occur at a high frequency

and the cycle length is low (2). CL = 2 means that the change repeats between two

environments. AbS acts similar to a memory scheme for this case. It is able to select

the most appropriate the probability vector (serve as the low-level heuristic) to sample

the population at each step.

We perform statistical significance tests to determine the best heuristic selection

method. The statistical comparison summary is given in Table 5.7. As can

76

Table 5.4 : Offline errors generated by different approaches averaged over 100 runs,
on the DUF1 for different cycle length and change frequency settings in
different cyclic dynamic environments.

Heuristic

Selection

LF MF HF

CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 CL=4 CL=8

Cylic1

RD 0.04 0.04 0.04 0.15 0.13 0.14 15.76 15.67 15.77
RL 0.04 0.04 0.04 0.21 0.16 0.19 16.02 17.18 16.79
RP 0.03 0.02 0.02 0.05 0.04 0.05 14.20 13.82 14.59
RPD 0.03 0.03 0.03 0.07 0.06 0.06 14.60 14.51 14.65
AbS 0.04 0.04 0.04 0.11 0.39 0.43 4.12 12.62 18.48
SR 0.03 0.03 0.03 0.09 0.08 0.08 15.01 14.89 15.27

Cylic1-with-Noise

RD 0.04 0.04 0.04 0.16 0.12 0.13 15.88 15.59 15.94
RL 0.03 0.04 0.04 0.21 0.16 0.18 15.74 17.33 17.07
RP 0.02 0.02 0.02 0.05 0.04 0.05 14.48 13.86 14.66
RPD 0.03 0.03 0.03 0.07 0.07 0.06 14.72 14.87 14.74
AbS 0.03 0.04 0.04 0.12 0.40 0.42 4.27 12.34 18.54
SR 0.03 0.03 0.03 0.09 0.08 0.09 15.14 15.08 15.42

Cylic2

RD 0.08 0.08 0.08 0.90 0.88 0.90 25.86 26.83 27.00
RL 0.08 0.08 0.08 0.90 0.88 0.91 25.85 26.85 27.00
RP 0.08 0.08 0.08 0.85 0.86 0.89 25.83 26.80 26.98
RPD 0.08 0.08 0.08 0.90 0.89 0.90 25.84 26.80 26.99
AbS 0.08 0.08 0.08 0.82 0.86 0.85 25.87 26.80 26.96
SR 0.08 0.08 0.08 0.87 0.86 0.88 25.86 26.79 26.97

be seen, Random Permutation generates the best average performance across all

dynamic environment problems, performing significantly/slightly better than the rest

for 238/195 instances. The second best approach is Random Permutation Descent on

average.

Table 5.8 shows the ranking results obtained based on median, best and average offline

error values. Random Permutation is still the best approach if the median and best

performances are considered as well (Table 5.8) based on the Formula 1 ranking. It

can be seen from the table that Random Permutation scores 925 and 905, respectively.

Learning via the PBIL process helps, but using an additional learning mechanism on

top of that turns out to be misleading for the search process. For example, the use

of reinforcement learning in the selection hyper-heuristic (Reinforcement Learning)

yields the worst average performance. Random Permutation as a non-learning heuristic

77

Table 5.5 : Offline errors generated by different approaches averaged over 100 runs,
on the DUF2 for different cycle length and change frequency settings in
different cyclic dynamic environments.

Heuristic

Selection

LF MF HF

CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 CL=4 CL=8

Cylic1

RD 0.07 0.08 0.07 0.43 0.38 0.43 29.59 29.83 29.45
RL 0.07 0.07 0.07 0.60 0.49 0.55 30.37 32.35 30.77
RP 0.04 0.04 0.04 0.09 0.08 0.08 27.33 27.38 26.53
RPD 0.06 0.06 0.05 0.11 0.10 0.11 27.61 28.06 26.96
AbS 0.07 0.13 0.19 0.25 1.84 1.95 7.71 24.04 35.37
SR 0.06 0.05 0.05 0.23 0.20 0.20 28.77 29.16 29.38

Cylic1-with-Noise

RD 0.07 0.07 0.07 0.43 0.33 0.43 29.40 29.75 29.51
RL 0.07 0.08 0.08 0.57 0.51 0.57 29.64 32.79 30.83
RP 0.04 0.04 0.05 0.08 0.09 0.09 26.96 26.37 27.34
RPD 0.06 0.06 0.05 0.11 0.11 0.11 27.68 28.57 27.26
AbS 0.07 0.12 0.19 0.26 1.63 1.91 7.38 24.10 34.95
SR 0.06 0.06 0.06 0.24 0.18 0.22 28.77 29.15 29.45

Cylic2

RD 0.49 0.51 0.53 4.09 4.21 4.36 49.36 50.87 51.21
RL 0.49 0.52 0.51 4.16 4.24 4.38 49.39 50.93 51.27
RP 0.45 0.46 0.51 3.93 4.06 4.25 49.34 50.82 51.20
RPD 0.48 0.52 0.53 4.07 4.27 4.37 49.36 50.91 51.28
AbS 0.48 0.47 0.50 4.01 4.02 4.22 49.40 50.82 51.16
SR 0.46 0.49 0.52 3.98 4.08 4.22 49.31 50.90 51.22

selection combines the learnt probability vectors effectively yielding an improved

performance which outperforms Simple Random.

Comparisons to selected approaches from literature

In this set of experiments, we compare the proposed approach to some well known and

successful previously proposed approaches from literature. As a result of the first group

of experiments, we fix the heuristic selection component as Random Permutation

during these experiments and used the same problems, change settings and dynamic

environment types.

An overall comparison of all approaches are provided in Tables 5.9 and 5.10.

HH-EDA2 generates the best average performance across all dynamic environment

problems (Table 5.9) performing significantly/slightly better than the rest for 578/42

instances. The second best approach is PBIL using a single population and restart.

78

Table 5.6 : Offline errors generated by different approaches averaged over 100 runs,
on the DUF3 for different cycle length and change frequency settings in
different cyclic dynamic environments.

Heuristic

Selection

LF MF HF

CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 CL=4 CL=8

Cylic1

RD 10.22 11.36 11.36 11.22 12.14 12.14 23.49 24.49 23.63
RL 10.44 11.49 11.50 12.04 12.98 12.89 23.99 28.69 26.86
RP 10.09 11.36 11.33 10.35 11.60 11.58 22.23 22.42 22.76
RPD 10.11 11.33 11.31 10.36 11.51 11.48 21.36 22.08 21.67
AbS 10.07 11.35 11.44 10.20 11.87 12.75 13.97 20.38 25.30
SR 10.16 11.37 11.35 11.11 12.10 12.15 24.32 24.02 24.47

Cylic1-with-Noise

RD 10.21 11.37 11.37 11.24 12.18 12.14 23.31 24.33 23.67
RL 10.43 11.50 11.50 12.02 13.02 12.80 23.88 28.60 26.87
RP 10.09 11.35 11.34 10.35 11.59 11.59 22.21 23.20 23.20
RPD 10.11 11.33 11.32 10.35 11.51 11.50 21.20 22.49 21.67
AbS 10.07 11.35 11.45 10.21 11.89 12.74 13.98 20.35 25.30
SR 10.16 11.37 11.35 11.14 12.08 12.17 24.20 24.11 24.23

Cylic2

RD 16.04 16.55 16.11 17.38 17.69 17.26 40.65 40.77 40.64
RL 16.00 16.62 16.11 17.31 17.75 17.26 40.68 40.70 40.65
RP 16.27 16.60 16.02 17.47 17.73 17.24 40.67 41.19 41.34
RPD 16.05 16.59 16.11 17.41 17.72 17.25 40.65 40.86 40.79
AbS 15.84 16.63 16.14 17.22 17.73 17.22 40.77 40.78 41.05
SR 16.20 16.55 16.05 17.39 17.67 17.19 40.63 41.04 41.17

Moreover, HH-EDA2 is the top approach if the median and best performances are

considered as well (see Table 5.10) based on Formula 1 rankings, scoring 1020 and

995, respectively. The closest competitor accumulates a score of 725 and 649 for its

median and best performances, respectively. These results also indicate that the use of

a dual population and the selection hyper-heuristic both improves the performance of

the overall algorithm. Based on the results, the first population using PBIL serves as

the search component, while the second population using the hyper-heuristic acts as

a memory in cyclic environments and as a source of diversity in randomly changing

environments.

5.1.2.3 Discussion

The empirical results show that the selection scheme that relies on a fixed permutation

of the underlying low-level heuristics (Random Permutation) is the most successful

one. For the cases when the change period is long enough to allow all the vectors

79

Table 5.7 : Overall (s+, s−, ≥ and ≤) counts for the different heuristic selection
schemes.

Heuristic Selection s+ s− ≥ ≤
RP 238 65 195 87

RPD 185 70 130 200
AbS 156 152 132 145
SR 135 122 204 124
RD 84 189 148 164
RL 51 251 97 186

Table 5.8 : The overall score according to the Formula 1 ranking based on median,
best and average offline error values for the different heuristic selection
schemes.

Heuristic Selection Median Best Average
RP 925 905 909
SR 743 691 738

RPD 731 744 730
AbS 677 698 707
RD 606 614 602
RL 530 560 526

in the permutation to be applied at least once, the Random Permutation heuristic

selection mechanism becomes equivalent to Greedy Selection. In HH-EDA2, the move

acceptance stage of a hyper-heuristic is not used. This is the same as using the Accept

All Moves strategy. This move acceptance scheme is known to perform the best with

the Greedy Selection method [70].

The overall results also reveal that HH-EDA2 is capable of adapting itself to the

changes quickly whether the change is random or cyclic. HH-EDA2 outperforms well

Table 5.9 : Overall (s+, s−, ≥ and ≤) counts for the algorithms used.

Algorithm s+ s− ≥ ≤
HH-EDA2 578 69 42 13
PBILr 400 232 37 33
PBIL2r 343 310 11 38
MPBILr 262 394 28 18
MPBIL2r 251 405 16 30
Sentinel16 242 442 4 14
Sentinel8 229 453 14 6

80

Table 5.10 : The overall score according to the Formula 1 ranking based on median,
best and average offline error values for the algorithms used.

Algorithm Median Best Average
HH-EDA2 1020 995 1020
PBILr 725 649 725
PBIL2r 594 531 594
MPBILr 551 521 550
Sentinel8 527 523 527
MPBIL2r 517 735 518
Sentinel16 512 492 512

know approaches from literature for almost all cases and ranks performance-wise the

first among all others.

5.2 Application II: An Implementation on HyFlex

In this section, the proposed selection hyper-heuristic is implemented on HyFlex

(Hyper-heuristics Flexible framework). HyFlex provides a number of stationary

optimization problems (details are given in Subsection 2.2.3). Therefore, the

performance of all variants of the proposed approach, namely AbSrw, AbSts and MM

AbS, are explored on stationary optimization problems. These selection mechanisms

are also used together with the Improving-and-Equal acceptance technique.

5.2.1 Experimental design

In this thesis, we perform experiments with the proposed approach for six

problem domains provided in HyFlex framework, namely maximum satisfiability,

one-dimensional bin packing, personnel scheduling, permutation flow shop, the

traveling salesman problem and the vehicle routing problem. HyFlex provides a

number of instances for each problem domain. In this study, we consider the same

5 instances used in CHESC 2011 competition for each problem domains for a fair

comparison. For each problem domain, the crossover heuristics are not used. Each run

is repeated 31 times for each setting and is executed 323 seconds running time which

is the time in our computer that corresponds to 600 secs on the computer that is used

for the competition machine.

The parameters of the proposed Ant-based selection scheme are chosen as

recommended in Chapter 4. Each entry in the pheromone matrix is initialized to

81

τ0 = 1/ fs where fs is the fitness value of initial solution. For all approaches, ρ , q0

and sd are set to 0.1, 0.5 and 10, respectively. For AbSts, we let the tournament size

to be determined randomly with equal probability from among the five pre-determined

tournament size levels: k = {2,3,4,5,6}. For MM AbS, the lower and upper bound are

set to τ0 ∗50 and τ0/50 where τ0 is the initial value of the pheromone trails.

5.2.2 Results and discussion

Table 5.11 shows the overall score of AbS variants among the competing

hyper-heuristics in CHeSC2011 according to the Formula 1 ranking based on median

value. Considering all problem domains and instances, there are 30 different problems.

Therefore, 300 is the maximum overall score an algorithm can get.

As can be seen from the results, AbSrw ranks 13th out of 23 algorithms overall with the

score of 28, MM AbS gets the score of 25 ranking 14th overall, and AbSts ranks 22th

out of 23 algorithms overall with the score of 0. The proposed method has a number of

parameters and the performance of the proposed heuristic selection method is sensitive

to the initial setting of those parameters for stationary optimization problems.

Table 5.11 : The overall Formula 1 scores of our approaches compared to competing
hyper-heuristics in CHeSC2011.

Rank Algorithm Score Rank Algorithm Score
1 AdapHH [92] 178 13 AbSrw 28
2 VNS-TW [93] 132 14 MM AbS 25
3 ML [94] 125.5 15 SA-ILS 22.25
4 PHUNTER [95] 93.25 16 DynILS 22
5 EPH [96] 84.75 17 AVEG-Nep [97] 21
6 NAHH [98] 75 18 XCJ 18.5
7 HAHA [99] 74.75 19 GISS [100] 16.75
8 ISEA [101] 65 20 SelfSearch [102] 6
9 KSATS-HH [103] 59.5 21 MCHH-S [104] 4.75

10 HAEA [105] 50.5 22 AbSts 0
11 ACO-HH [106] 37 23 Ant-Q [107] 0
12 GenHive [108] 30.5

Table 5.12 presents the score of the AbS variants across six problem domains. It can be

seen that, AbSrw and MM AbS get the scores from three problem domains, namely Bin

Packing, Personnel Scheduling , and Vehicle Routing Problem. For Bin Packing, MM

AbS and AbSrw rank 3nd and 6th, respectively. AbSts gets zero point for all problem

domain. AbS with roulette wheel gives better performance when compared to AbS with

tournament selection.

82

Table 5.12 : The overall Formula 1 scores of AbS variants for six problem domains.

Algorithm BP MAX-SAT FS PS TSP VRP Overall
AbSrw 18 0 0 6 0 4 28
MM AbS 20 0 0 2 0 3 25
AbSts 0 0 0 0 0 0 0

5.3 Application III: Dynamic Traveling Salesman Problem

Benchmark generators are important research tools for creating problem instances

which enabled us to control the characteristics of those instances in a given domain.

These problem instances are mainly used for performance comparisons of different

algorithms. In the experiment, we use the Moving Peaks Benchmark and XOR

dynamic problem generator to test our approaches. On the other hand, real-world

problem instances could still vary from the artificially generated instances. Testing

an algorithm on the artificial instances might not reflect the actual performance of a

given algorithm in a real-world setting. Hence, in this study, we also investigate the

performance of our approaches, Ant-based selection, on a real-world instance of a

problem. We use the Dynamic Traveling Salesman Problem (DTSP) as a real-world

problem. DTSP has been mostly studied permutation-encoded problem in dynamic

environments. In addition, classic Traveling salesman was implemented on HyFlex.

There are are many variants of DTSP. In this thesis, we consider Dynamic Traveling

Salesman Problem with traffic factor proposed in [18] (see Subsection 2.1.1.3). In this

problem, the costs of a number of edges are changed at every ∆e iterations as given in

Equation 2.14.

5.3.1 Comparisons of selection hyper-heuristics

DTSP is implemented on HyFlex interface. The implementation of DTSP is based on

that of Traveling Salesman Problem (TSP) in HyFlex. We use the same initialization

method to generate an initial solution. A candidate solution is represented by a

permutation of the cities which represents a complete tour. To generate initial candidate

solution, the greedy heuristic in which a solution is constructed in an incremental way

83

is used. It starts from a randomly selected city. Then, it chooses the closest among the

remaining cities and it adds to the solution until a complete solution is generated.

We consider the same low-level heuristics implemented for TSP in HyFlex. There

are 13 low-level heuristics across the four categories for TSP. These heuristics are

described as follows:

Mutational heuristics

h1: A randomly selected city is reinserted into a randomly selected place in the

permutation. Then, the rest of the cities are shifted as required.

h2: Two randomly selected cities are swapped.

h3: The permutation is randomly shuffled .

h4: A number of randomly selected cities are shuffled. Here, the number of cities

to shuffle is determined by the mutation density.

h5: A number of edges is selected and substituted with randomly selected ones.

The number of edge is determined by the mutation density.

Ruin and recreate heuristics

h6: A number of cities in the permutation are removed and reinserted using greedy

procedure.

Local search heuristics

h7: This heuristic is the 2-opt local search that accepts the first improvement.

h8: This heuristic is the 2-opt local search that accepts the best improvement.

h9: This heuristic is the 3-opt local search that accepts the first improvement.

Crossover heuristics

h10: Order Crossover [81]

h11: Partially mapped crossover [81]

h12: Precedence preservative crossover [109]

h13: One-point crossover [81]

84

In the experiments, the mutation density and the depth of hill-climbing are set to 0.2.

In this study, we experiment with Max-Min Ant-based selection with roulette

wheel (MM AbS) and Ant-based selection with roulette wheel (AbS) combined with

Improving and Equal. For both approaches, q0 and sd are set to 0.5 and 10,

respectively. Each entry in the pheromone matrix is initialized to τ0 = 1/ fs where

fs is the fitness value of initial solution. ρ is set to 0.1. For MM AbS, the lower and

upper bound are set to τ0 ∗50 and τ0/50 where τ0 is the initial value of the pheromone

trails.

For all methods, the selection probability of each low-level heuristic are the same at

the beginning of the search. To manage the crossover operators, the five randomly

initialized solution are stored in a memory. If the selected heuristic is a crossover

operator, a solution is selected randomly from this memory. Then, the crossover

operator use the current solution and the selected solution to generate one offspring.

Whenever the best-so-far solution is changed, the randomly selected solution is

replaced with the best-so-far solution.

The performance of our approach is compared to state of the art selection

hyper-heuristic, namely learning heuristic selection method with adaptive dynamic

heuristic set combined with adaptive iteration limited list-based threshold accept-

ing [92] (AdapHH). AdapHH is chosen since it is the winner of the CHeSC2011

competition. It also ranks first for Traveling Salesman Problem.

AdapHH include an adaptive heuristic subset selection, a pairwise heuristic

hybridization method and adaptive parameter setting of low-level heuristics. The

adaptive dynamic heuristic set strategy adaptively determines the best heuristic subset

at each phase composed of specific number of iterations. This method can eliminate

the heuristics performing the worse and keep the best ones according to quality index.

A weighted sum of different performance metrics is used to compute the quality index

for each heuristic. Some of these performance metrics include the number of new

best solution, the total fitness improvement and worsening during the run and a phase,

the time spent and the remaining time. If the quality index of a heuristic is less than

the average of the quality indexes of all heuristic, the heuristic is excluded from the

heuristic subset. This method also uses Tabu list to store the number of phases, called

85

tabu duration, in which a heuristic is consecutively excluded. Whenever the tabu

duration reaches its upper bound, this heuristic is permanently excluded. At each

step, an appropriate heuristic is selected from the heuristic subset with a selection

probability. A relay hybridization method is also used to determine effective pairs

of heuristics that are applied successively. In addition, the parameters of low-level

heuristics, namely mutation density and depth of hill-climbing, are dynamically

adapted using reinforcement learning. Adaptive iteration limited list-based threshold

accepting method accepts the worsening solution according to the fitness values of the

previous best solutions which is used as the threshold value. If it does not explore new

best solution within adaptively adjusted number of steps, the higher value from the list

is used as the threshold value. In this study, we use the same settings as recommended

in [92]. We include two additional variants of AdapHH to deal with the dynamism. In

the first variant, denoted as AdapHH-I, a new initial solution is randomly generated

whenever a change occurs in the environment. In the second variant, denoted as

AdapHH-E, the current solution is re-evaluated when a change occurs.

We experiment with random DTSP. To generate dynamic environments showing

different dynamism properties, we consider different change frequencies and change

severities. For both types of DTSP, we determine the change periods which correspond

to low frequency (LF), medium frequency (MF) and high frequency (HF) changes

as a result of some preliminary experiments where we executed Simple Random

- Improving and Equal on stationary versions of kroA150 instance. Based on the

resultant convergence behavior, we determine the change period to be approximately

2.91 secs for low frequency (LF), 0.48 secs for medium frequency, and 0.06 secs for

high frequency. Moreover, the severity of changes are controlled by m in DTSP and

chosen as 0.1 for low severity (LS), 0.2 for medium severity (MS) and 0.5 for high

severity (HS). The lower and upper bounds of traffic factor are set to RL = 0 and

RU = 5.

To generate the dynamic instances of DTSP, we use four stationary TSP instances from

TSPLIB [113], namely kroA100, kroA150, and kroA200 which are used in [18] and

u2152 provided in HyFlex.

All trials are repeated for 31 times using each approach for each test case. The

algorithms are executed 323 seconds running time which is the time in our computer

86

that corresponds to 600 secs on the computer that is used for the CHeSC competition.

The performance of the algorithms is compared based on the offline performance (see

Equation 2.17). Here, we take into account the total number of iterations to calculate

the oflline performance instead of the evaluation counters. The performances of the

approaches are compared under a variety of change frequency-severity pair settings

under random environments.

The results are provided in terms of average offline performance values in the

tables. The performances of the algorithms are compared under a variety of change

frequency-severity pair settings for random DTSP. In the tables, the best performing

approach is marked in bold.

5.3.1.1 Results

Table 5.13 summarizes the average offline performance generated by AdapHH,

AdapHH-I, AdapHH-E, MM AbS, and AbS on kroA100 for random DTSP. The

performance of all approaches degrades as the change frequency increases. The

performance of all approaches also degrades as the change severity increases.

Moreover, all algorithms seem to be more affected from the increase in change severity.

AbS is the best performing approach for both low frequency-medium severity setting

and medium frequency-medium severity setting. When compare AbS and MM AbS

with AdapHH variants, they give comparable results for most cases except for high

severity. For high severity, AdapHH-I performs the best. In dynamic environments, the

restart of the process after a change is more useful when the change is too severe. In

AdapHH-I, the current solution is re-initialized whenever a change occurs. Therefore,

AdapHH-I delivers the best average performance for high severity

Table 5.14 and 5.15 show the average offline performance generated by AdapHH,

AdapHH-I, AdapHH-E, MM AbS, and AbS on kroA150, and kroA200 for random

DTSP, respectively. Similar phenomena as on kroA100 are observed for these

instances. The methods deteriorate in performance as the change frequency and

severity increase. However, AbS does not perform the best in any of the change

frequency-severity settings. When compare AbS and MM AbS with AdapHH

variants, the results are very close for low and medium severity. For AdapHH, the

re-initialization (AdapHH-I) improves its performance especially for high severity. In

87

addition, AbS is slightly better than AdapHH and AdapHH-E for most cases. We

also experiment with the large instance of DTSP. Table 5.16 shows the average offline

performance for random DTSP for the instance with 2152 cities. AbS and MM AbS give

comparable results for low and medium frequency. In addition, AdapHH-I performs

the best for all change frequency and severity settings.

To compare the performance of AdapHH and AbS, we allow AdapHH and AbS to

run for long periods without any change in the environment. Figure 5.2 illustrates the

convergence behavior of AdapHH and AbS on the stationary version of kroA200. As

seen in the figure, for AbS, the improvement continues gradually and it has not yet

fully converged at the end of the process. However, AdapHH has been converged in

approximately 80 seconds. Moreover, the better improvement has been observed for

AdapHH. As a result, AdapHH obtains the better solution more quickly than AbS.

0 75 150
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
x 10

4

B
es

t F
itn

es
s

(a) AdapHH

0 75 150
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
x 10

4

B
es

t F
itn

es
s

(b) AbS

Figure 5.2 : A sample plot of the fitness values of the best candidate solutions versus
time for (a) AdapHH and (b) AbS.

To manage the crossover operator, we also include a second version. In this version,

the solution memory is implemented as a queue. If the selected heuristic is a crossover

operator, the head of queue is taken and placed at the tail of the queue. Whenever

the best-so-far solution is changed, the first added to the queue is replaced with the

best-so-far solution. When compared to the first version, this strategy slightly improves

the performance of the algorithm, however, the results of these two strategies are close

for all instances. Although this strategy improves the performance of the method, it is

still outperformed by AdapHH-I for high severity.

88

Table 5.13 : Offline performance generated by different approaches averaged over 31 runs, on the kroA100 for random DTSP.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

AdapHH 23275.81 30116.53 52625.51 23711.82 32464.97 59017.32 24718.20 34972.34 69343.56

AdapHH-I 23110.09 28236.67 35494.11 23746.47 29492.83 37102.84 23961.29 30241.23 38423.33

AdapHH-E 23039.82 28690.12 44939.58 23576.88 30723.64 52841.19 23916.42 31606.82 62549.62

MMAbS 23335.19 28079.42 48781.61 23741.00 29086.39 51990.71 24426.87 30589.97 56534.80

AbS 23325.59 28052.71 48754.19 23738.94 29056.41 52036.54 24431.39 30583.61 56525.44

Table 5.14 : Offline performance generated by different approaches averaged over 31 runs, on the kroA150 for random DTSP.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

AdapHH 29599.83 39008.22 70978.70 30188.39 41851.82 79279.69 31576.96 45941.80 91501.08

AdapHH-I 29188.16 35740.94 43897.20 29877.92 37214.28 45496.29 30129.97 38412.14 47254.63

AdapHH-E 29248.07 37345.92 71487.01 29834.54 39685.22 80583.15 30319.14 41155.93 91219.25

MMAbS 29564.04 36539.80 67724.77 30036.12 37681.16 71778.99 30836.27 39628.81 77725.15

AbS 29557.42 36523.53 67729.86 30039.35 37657.06 71782.59 30841.55 39636.08 77704.55

89

Table 5.15 : Offline performance generated by different approaches averaged over 31 runs, on the kroA200 for random DTSP.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

AdapHH 33459.83 45227.76 83942.79 34285.63 47415.36 90903.18 35345.42 52427.44 102564.33

AdapHH-I 32941.82 41348.27 50760.89 33316.29 42688.63 51911.74 34242.69 43949.12 53661.87

AdapHH-E 32892.08 43245.42 83330.11 33380.21 45375.80 93502.31 34194.92 47561.57 104836.04

MMAbS 33235.58 42112.43 80709.44 33767.79 43402.95 85048.23 34687.21 45705.47 92081.09

AbS 33218.15 42091.78 80661.30 33766.63 43409.02 85084.60 34687.32 45696.52 92064.20

Table 5.16 : Offline performance generated by different approaches averaged over 31 runs, on the u2152 for random DTSP.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

AdapHH 83478.30 115952.09 227902.88 83343.41 114015.04 221514.78 82604.42 110926.79 202104.03

AdapHH-I 82000.39 99287.51 122620.92 82229.37 99096.48 122119.15 81691.60 98423.85 121557.53

AdapHH-E 82483.81 112020.69 212799.09 82426.76 109351.28 209712.07 82017.43 108356.74 205885.35

MMAbS 83590.96 111051.77 231799.33 83288.48 110279.16 222559.07 82941.03 107345.38 182491.93

AbS 83531.15 111114.30 231867.10 83292.49 110321.52 223206.21 82921.95 107458.24 182372.33

90

5.3.2 Comparisons to problem specific approaches

In this set of experiments, we compare the proposed approach to some well known and

successful previously proposed problem specific approaches from literature, namely

Random Immigrants Ant Colony Optimization, Elitism-based Immigrants Ant Colony

Optimization, and Memory-based Immigrants Ant Colony Optimization [18].

The ACO algorithms with immigrants are inspired from population-based ACO

(P-ACO) which has the long-term memory storing the best ant at every iteration [18].

The pheromone trails are generated according to ants stored in the memory and

the pheromone evaporation is not included. However, the ACO algorithms with

immigrants use the short-term memory instead of long-term memory in P-ACO.

Short-term memory stores a number of best ants of the current iteration. Then, the

worst ants in the memory are replaced by a number of immigrants. The solution is

constructed in the same way as traditional ACO, however, the pheromone trail values

are updated according to ants in short-term memory. There are three variants of ACO

with immigrants, namely Random Immigrants Ant Colony Optimization (RIACO),

Elitism-based Immigrants Ant Colony Optimization (EIACO), and Memory-based

Immigrants Ant Colony Optimization (MIACO). In RIACO, the immigrants are

randomly generated. In EIACO, the elitism-based immigrants are generated based on

the best (elite) ant from previous environment using inver-over operations in which the

segment between two cities are reversed. MIACO uses both short-term and long-term

memories. The ants in the long-term memory are initialized randomly and updated as

follows: If there are randomly generated ants in the memory, any one of the randomly

initialized ants is replaced with the best so far; otherwise, the closest ant in the memory

is replaced with best so far if it is worse than the best so far. In this method, the

immigrants are generated based on the ants in long-term memory.

The implementations of these algorithms [112] are adapted to use the corresponding

methods in the implementation of DTSP. The settings of ACO algorithms with

immigrants are taken as recommended in [18]. The parameter settings are given in

Table 5.17. In this table, Ks and r the short-term memory size and the migration

91

replacement rate, respectively. In MIACO, the long-term memory size is set to 3.

For EIACO and MIACO, the immigrants mutation probability is set to 0.02.

Table 5.17 : Parameter settings for ACO with immigrants.

Parameters RIACO EIACO MIACO
#o f ants 28 28 25
q0 0.0 0.0 0.0
α 1 1 1
β 5 5 5
Ks 6 6 6
r 0.0 0.4 0.4

As a result of the first group of experiments, we consider AbS and AdapHH-I during

these experiments and used the three instances, namely kroA100, kroA150 and

kroA200, change settings and dynamic environment type (random DTSP). For this

set of experiments, we also consider cyclic DTSP since MIACO is proposed for this

type of DTSP.

5.3.2.1 Results

Table 5.18 shows the average offline performance generated by AdapHH-I, AbS,

RIACO, EIACO and MIACO on the kroA100 for random and cyclic DTSPs. EIACO

performs the best for the most cases for random DTSP. AdapHH-I and AbS are

outperformed by ACO algorithms with immigrants for most cases. This is expected

since ACO with immigrants use problem specific information. For cyclic DTSP,

MIACO delivers the best performance for all cases. This is because MIACO uses the

memory that stores the best solutions in previously visited environments and reuses

them to generate memory-based immigrants.

Table 5.19 and 5.20 show the average offline performance generated by AdapHH-I,

AbS, RIACO, EIACO and MIACO on the kroA150 and kroA200 for random and

cyclic DTSPs, respectively. Similar results are observed as on kroA100. EIACO and

AdapHH-I deliver good performance for random DTSP and MIACO performs the best

for most cases for cyclic DTSP.

Overall, AbS gives comparable results when compared with AdapHH and AdapHH-E

for most frequency-severity settings. AdapHH-I is better than AbS for most cases,

especially for high severity. If the change is too severe, the restart of process is

92

more useful. AdapHH-I re-initializes the current solution whenever the environment

changes. Therefore, it is aware of time when a change occurs and acts on this.

However, AbS does not require any special actions when a change occurs. AdapHH

is implemented on HyFlex. It adapts the parameters of mutation and hill-climber

heuristics and re-initializes the current solution in some conditions. It can not be used

in our hybrid methods (see Section 5.1) without requiring any modifications.

93

Table 5.18 : Offline performance generated by different approaches averaged over 31 runs, on the kroA100 for random and cyclic DTSP.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

DTSPs with random traffic factor

AdapHH-I 23110.09 28236.67 35494.11 23746.47 29492.83 37102.84 23961.29 30241.23 38423.33

AbS 23325.59 28052.71 48754.19 23738.94 29056.41 52036.54 24431.39 30583.61 56525.44

RIACO 23357.06 26049.75 32087.11 23852.51 26771.10 33237.98 24824.71 28230.79 35362.84

EIACO 23082.23 25672.55 31404.28 23617.37 26510.10 32687.57 24656.16 28129.19 35146.06

MIACO 23115.52 25713.59 31495.59 23640.65 26538.45 32811.07 24674.43 28175.58 35277.05

DTSPs with cyclic traffic factor

AdapHH-I 22909.35 27721.32 34657.29 23465.21 28741.21 35879.40 23907.82 30125.22 37475.67

AbS 23239.53 28370.84 48511.20 23728.43 29105.11 52480.95 24358.19 30797.25 56643.11

RIACO 23314.76 26103.29 32045.26 23854.88 26738.92 33295.03 24686.47 28212.18 35352.59

EIACO 22988.93 25717.28 31390.09 23555.15 26462.83 32733.18 24333.77 28072.87 35133.65

MIACO 22814.76 25182.02 30477.38 23202.40 25534.79 31269.48 23850.96 26606.33 33112.68

94

Table 5.19 : Offline performance generated by different approaches averaged over 31 runs, on the kroA150 for random and cyclic DTSP.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

DTSPs with random traffic factor

AdapHH-I 29188.16 35740.94 43897.20 29877.92 37214.28 45496.29 30129.97 38412.14 47254.63

AbS 29557.42 36523.53 67729.86 30039.35 37657.06 71782.59 30841.55 39636.08 77704.55

RIACO 29539.79 33107.41 41263.44 30473.13 34436.04 43007.32 32233.05 36874.90 46160.10

EIACO 29323.74 32747.99 40470.06 30315.51 34229.06 42538.69 32230.15 36963.56 46237.52

MIACO 29376.27 32837.00 40598.01 30364.17 34315.66 42721.73 32222.26 36999.64 46365.86

DTSPs with cyclic traffic factor

AdapHH-I 29004.89 35037.45 42982.53 29447.92 36685.34 44861.42 30087.31 37887.95 46865.99

AbS 29559.49 36416.02 67221.52 29973.92 37755.76 71707.93 30786.97 39832.65 77712.77

RIACO 29567.62 33033.67 41273.82 30379.29 34407.25 43059.94 31935.98 36825.20 46310.00

EIACO 29334.25 32676.67 40475.63 30112.72 34200.78 42616.50 31657.12 36818.65 46334.47

MIACO 28987.46 31756.56 38991.97 29482.94 32585.93 40253.21 30906.28 34952.71 44287.43

95

Table 5.20 : Offline performance generated by different approaches averaged over 31 runs, on the kroA200 for random and cyclic DTSP.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

DTSPs with random traffic factor

AdapHH-I 32941.82 41348.27 50760.89 33316.29 42688.63 51911.74 34242.69 43949.12 53661.87

AbS 33218.15 42091.78 80661.30 33766.63 43409.02 85084.60 34687.32 45696.52 92064.20

RIACO 33452.27 38073.72 47998.00 34864.93 39897.63 50307.28 37256.45 42984.75 54275.11

EIACO 33258.23 37711.66 47230.69 34748.46 39773.53 50005.37 37358.22 43235.43 54508.59

MIACO 33296.32 37798.37 47376.31 34806.47 39893.08 50248.12 37241.84 43139.69 54560.92

DTSPs with cyclic traffic factor

AdapHH-I 32653.77 40624.89 49644.74 33099.91 42383.64 51317.10 34169.92 43844.27 52859.18

AbS 33165.12 42162.62 80272.08 33682.09 43270.70 84827.87 34621.91 45681.38 92410.97

RIACO 33380.58 38080.80 47948.90 34652.64 40010.87 50472.76 36186.57 42383.64 54440.95

EIACO 33147.02 37684.23 47134.78 34361.02 39829.61 50141.15 35937.63 42511.39 54614.21

MIACO 32555.93 36306.30 45276.84 33460.05 37678.89 47722.77 35052.22 40685.49 53232.24

96

6. CONCLUSION AND FUTURE WORK

In this thesis, we worked on the applicability of selection hyper-heuristics for dynamic

environments. First, the performances of well-known selection hyper-heuristics in

literature were investigated on continuous dynamic environments exhibiting various

change dynamics, produced by the Moving Peaks Benchmark generator. Second,

we proposed a new heuristic selection method for solving dynamic optimization

problems. In addition, we examined the performance of the proposed method using not

only the benchmark functions, but also real-world optimization problems in dynamic

environments.

In the first phase of the thesis, we investigated the performance of thirty five

hyper-heuristics combining five heuristic selection methods {Simple Random, Greedy,

Choice Function, Reinforcement Learning, Random Permutation Descent} and seven

move acceptance methods {All Moves, Only Improving, Equal and Improving,

Exponential Monte Carlo With Counter, Great Deluge, Simulated Annealing,

Simulated Annealing with Reheating}. A hypermutation based single point search

method, combined with these seven acceptance schemes, (1+λ)-ES and the state

of-the-art real valued optimization approach (µ ,λ)-Covariance Matrix Adaptation

Evolution Strategy were also included in the experiments. The Moving Peaks

Benchmark, a multidimensional dynamic function generator, was used for the

experiments. Different dynamic environments were produced by changing the height,

width and location of the peaks in the landscape with desired change frequencies

and severities. The empirical results showed that learning selection hyper-heuristics

incorporating compatible component perform well in dynamic environments. This

study also shows that learning selection hyper-heuristics generalize well, which make

them suitable approaches to solve dynamic optimization problems.

In the second phase of the thesis, we proposed a novel heuristic selection scheme for

selection hyper-heuristics, namely Ant-based selection hyper-heuristic, for dynamic

environments. In the first phase of the thesis, existing heuristic selection methods

97

were tested in dynamic environments and the learning selection methods were shown

to be successful. However, we assumed that these algorithms were made aware

when a change occurs in the environment. For these methods, the current solution

was re-evaluated when the environment changes. For the proposed Ant-based

selection scheme, this was not required. The parameters of the proposed heuristic

selection methods were not reset when the environment changes. In the experimental

study, we experimented with the proposed heuristic selection method combined

with Improving and Equal acceptance method for dynamic optimization problems

generated by Moving Peaks Benchmark. We considered two different variants of

Ant-based Selection which use Roulette Wheel and Tournament Selection to determine

the next heuristic. When compared Roulette Wheel with Tournament Selection,

Roulette Wheel delivered better performance. To assess the performance of our

approach, we compared our experimental results with the ones obtained using Choice

Function, Reinforcement Learning and an improved version of the Choice Function.

These selection mechanisms were also used together with the Improving-and-Equal

acceptance technique. The results showed that the proposed heuristic selection method

provides comparable results.

The proposed heuristic selection method does not need to know the time and nature

of the changes in the environment. Nevertheless, the acceptance mechanism accepts

the first solution generated after each environment change regardless of its quality.

Therefore, the algorithm requires the detection of environment changes. To detect a

change in the environment, we used a simpler approach in which the current solution is

re-evaluated at each step. The empirical results showed that the re-evaluation scheme

provides a slightly poorer performance. However, however, the approach is suitable

for cases where changes cannot be made known to the optimization algorithm. As a

future work, acceptance schemes in hyper-heuristics can be developed which are more

suitable to dynamic environments.

Furthermore, we performed a comprehensive analysis of the proposed approach.

We explored the influence of the parameters on the performance of the algorithms.

According to our experimental results, the proposed approach was in general capable

of adapting itself to the changes rapidly. Moreover, its performance is not much

affected by the settings of the parameters.

98

In the last phase of the thesis, we examined the performance of the proposed scheme

in three different applications. First, we proposed a multi-population framework using

the hyper-heuristics. The framework enables hybridization of EDAs and selection

hyper-heuristics based on online and offline learning mechanisms for solving dynamic

environment problems. A dual population approach was implemented, referred to as

HH-EDA2 which uses PBIL2 as the EDA. The performance of the overall algorithm

was tested using different heuristic selection methods to determine the best one for

HH-EDA2. The results revealed that the selection scheme that relies on a fixed

permutation of the underlying low-level heuristics (Random Permutation) was the most

successful one. HH-EDA2 was in general capable of adapting itself to the changes

rapidly whether the change is random or cyclic. Even though the hybrid method

provides good performance in the overall, it generates an outstanding performance

particularly in cyclic environments. This is somewhat expected, since the hybridization

technique based on a dual population acts similar to a memory scheme, which is

already known to be successful in cyclic dynamic environments [25]. Furthermore,

HH-EDA2 outperforms well know approaches from literature for almost all cases,

except for some deceptive problems.

In the last application, we tested our approach on real-world problems. Even though

Ant-based selection was proposed for dynamic environments, we wanted to see its

performance in stationary environment too. Therefore, first, the proposed approach

was implemented on HyFlex. The Java implementation of HyFlex was used in

CHeSC2011 competition and provides six stationary optimization problems. The

performance of the proposed approaches were compared to that of competitors in

CHeSC2011. The results showed that the proposed method was among the midst

ranking algorithms. Then, to assess the performance of the proposed method on a

dynamic real-world problem, we chose the Dynamic Traveling Salesman Problem. The

instances of the Dynamic Traveling Salesman Problem were generated from stationary

Traveling Salesman Problem instances by introducing a traffic factor as proposed

in [18]. We compared our experimental results with the ones obtained using the best

performing approach on the stationary optimization problems provided by HyFlex.

The proposed methods were also compared with problem specific approaches proposed

for the Dynamic Traveling Salesman Problem. The results showed that the proposed

99

approaches provided good results for the Dynamic Traveling Salesman Problem except

for high severity change cases.

In this thesis, we investigated a single point based selection hyper-heuristics in

dynamic environments. Hyper-heuristics were directly employed in various dynamic

environment problems. The empirical results showed that hyper-heuristic did not

depend on the change properties. However, in literature, different approaches were

used for different change properties. For example, if the changes are severe and the

change frequency is relatively high, the approaches which maintain diversity at all

times are preferred. The approaches increasing diversity after a change are preferred

for environments where changes are not too severe. Memory-based approaches are

particularly more useful for cyclic environment where a change occurs periodically.

This thesis presented the Ant-based selection hyper-heuristic for solving dynamic

optimization problems. This method is based on the simple ant colony optimization

algorithm and maintains a matrix of pheromone values between all pairs of low-level

heuristics. In Ant colony optimization, pheromone trail values and heuristic

information are used together. As a future work, we can introduce a heuristic

information in the proposed method as in Ant Colony Optimization. The heuristic

information may be the time spent by the low-level heuristics, heuristics types, i.e.

mutational, crossover, hill-climbing, or use frequency of the low-level heuristics.

The proposed approach was applied to several benchmark functions and real-world

problems without any modifications. All results showed that the proposed approach

provided good and competitive results to existing methods. These findings emphasized

the general nature of hyper-heuristics also in dynamic environments.

In this thesis, the proposed approaches were applied to benchmark functions and

real-world optimization problems in dynamic environments. Another future work can

be to design Ant-based selection hyper-heuristics to solve multi-objective optimization

problems in dynamic environments.

100

REFERENCES

[1] Burke, E., Hart, E., Kendall, G., JimNewall, Ross, P. and Schulenburg,
S. (2003). Hyper-Heuristics: An emerging Direction in Modern Search
Technology. F. Glover and G. Kochenberger, Eds., Handbook of

Metaheuristics, Kluwer.

[2] Ross, P. (2005). Hyper-heuristics. E.K. Burke and G. Kendall, Eds., Search

Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques, Springer.

[3] Chakhlevitch, K. and Cowling, P. (2008). Hyperheuristics: Recent developments.
C. Cotta, Ed., Adaptive and Multilevel Metaheuristics, Springer.

[4] Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E. and Woodward,
J.R. (2009). Exploring Hyper-heuristic Methodologies with Genetic
Programming. J. Kacprzyk, L.C. Jain, C.L. Mumford and L.C. Jain, Eds.,
Computational Intelligence (Vol.1, pp. 177–201), Springer.

[5] Denzinger, J., Fuchs, M. and Fuchs, M. (1997). High Performance ATP Systems
by Combining Several AI Methods. 4th Asia-Pacific Conf. on SEAL,
(pp.102–107).

[6] Cowling, P., Kendall, G. and Soubeiga, E. (2000). A hyper-heuristic approach to
scheduling a sales summit. Practice and Theory of Automated Timetabling

III : Third International Conference, PATAT 2000, (Vol. 2079 of LNCS),
Springer.

[7] Crowston, W.B., Glover, F., Thompson, G.L. and Trawick, J.D. (1963).
Probabilistic and parametric learning combinations of local job shop
scheduling rules. ONR Research memorandum, GSIA, Carnegie Mellon

University, Pittsburgh, (117).

[8] Fisher, H. and Thompson, G.L. (1963). Probabilistic Learning combinations
of local job-shop scheduling rules. J.F. Muth and G.L. Thompson, Eds.,

Industrial Scheduling, (pp.225–251), Prentice-Hall.

[9] Soubeiga, E. (2003). Development and Application of Hyperheuristics to Personnel

Scheduling (Ph.D. thesis). School of Computer Science and Information
Technology, The University of Nottingham, Nottingham.

[10] Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E. and Woodward,
J.R. (2010). A Classification of Hyper-heuristic Approaches. M. Gendreau
and J.Y. Potvin, Eds., Handbook of Metaheuristics (Vol. 146, pp.449–468),
Springer.

101

[11] Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. and
Rong, Q. (2009). A Survey of Hyper-heuristics (Report No.
NOTTCS-TR-SUB-0906241418-2747). School of Computer Science and
Information Technology, The University of Nottingham.

[12] Burke, E.K. and Kendall, G. (2005). Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques. Springer.

[13] Branke, J. (2002). Evolutionary optimization in dynamic environments. Kluwer.

[14] Cruz, C., Gonzalez, J. and Pelta, D. (2011). Optimization in dynamic
environments: a survey on problems, methods and measures. Soft

Computing - A Fusion of Foundations, Methodologies and Applications,
15, 1427–1448.

[15] Yang, S., Ong, Y. and Jin, Y. (2007). Evolutionary Computation in Dynamic and
Uncertain Environments. Studies in Computational Int. (Vol. 51). Springer.

[16] Branke, J. (1999). Memory enhanced evolutionary algorithms for changing
optimization problems. In Congress on Evolutionary Computation CEC

99, (Vol. 3, pp.1875–1882), IEEE.

[17] Ochoa, G., Hyde, M.R., Curtois, T., Vázquez-Rodríguez, J.A., Walker, J.D.,
Gendreau, M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic,
S. and Burke, E.K. (2012). HyFlex: A Benchmark Framework for
Cross-Domain Heuristic Search. EvoCOP, (pp.136–147).

[18] Mavrovouniotis, M. and Yang, S. (2013). Ant Colony Optimization with
Immigrants Schemes for the Dynamic Travelling Salesman Problem with
Traffic Factors. Appl. Soft Comput., 13 (10), 4023–4037.

[19] Jin, Y. and Branke, J. (2005). Evolutionary Optimization in Uncertain
Environments-a Survey. Trans. Evol. Comp, 9 (3), 303–317.

[20] Grefenstette, J.J. (1992). Genetic algorithms for changing environments.
Proceedings of Parallel Problem Solving from Nature, (pp.137–1446).

[21] Cobb, H.G. (1990). An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuous, time-dependent
nonstationary environments (Report No. AIC-90-001), Naval Research
Lab., Washington, DC.

[22] Vavak, F., Jukes, K. and Fogarty, T.C. (1997). Adaptive Combustion Balancing
in Multiple Burner Boiler Using a Genetic Algorithm with Variable Range
of Local Search. ICGA (pp.719–726). Morgan Kaufmann.

[23] Lewis, J., Hart, E. and Ritchie, G. (1998). A comparison of dominance
mechanisms and simple mutation on nonstationary problems. Proc. of

Parallel Problem Solving from Nature (pp.139–148).

[24] Uyar, Ş. and Harmanci, E. (2005). A new population based adaptive
domination change mechanism for diploid genetic algorithms in dynamic
environments. Soft Comput., 9 (11), 803–814.

102

[25] Yang, S. and Yao, X. (2008). Population-based incremental learning with asso-
ciative memory for dynamic environments. IEEE Trans. on Evolutionary

Comp., 12 (5), 542–561.

[26] Yang, S. (2008). Genetic algorithms with memory and elitism based immigrants in
dynamic environments. Evolutionary Computation, 16 (3), 385–416.

[27] Ursem, R.K. (2000). Multinational GA optimization techniques in dynamic
environments. Proc. of the Genetic Evol. Comput. Conf., (pp.19–26).

[28] Morrison, R.W. (2004). Designing evolutionary algorithms for dynamic

environments, Springer.

[29] Ghosh, A. and Muehlenbein, H. (2004). Univariate marginal distribution
algorithms for non-stationary optimization problems. Int. J. Know.-Based

Intell. Eng. Syst., 8 (3), 129–138.

[30] Kobliha, M., Schwarz, J. and Očenášek, J. (2006). Bayesian Optimization
Algorithms for Dynamic Problems. EvoWorkshops, (Vol. 3907 of Lecture
Notes in Computer Science, pp.800–804). Springer.

[31] Yang, S. and Yao, X. (2005). Experimental study on population-based incremental
learning algorithms for dynamic optimization problems. Soft Comput., 9

(11), 815–834.

[32] Simões, A. and Costa, E. (2008). Evolutionary Algorithms for Dynamic
Environments: Prediction Using Linear Regression and Markov Chains.
Proceedings of the 10th international conference on Parallel Problem

Solving from Nature: PPSN X, (pp.306–315). Springer-Verlag, Berlin,
Heidelberg.

[33] Simões, A. and Costa, E. (2008). Evolutionary Algorithms for Dynamic
Environments: Prediction using Linear Regression and Markov Chains
(Report No. TR 2008/01), Coimbra, Portugal.

[34] Simões, A. and Costa, E. (2009). Prediction in evolutionary algorithms for
dynamic environments using markov chains and nonlinear regression,
GECCO ’09, Proceedings of the 11th Annual conference on Genetic and

evolutionary computation, (pp.883–890). ACM, New York, NY, USA.

[35] Simões, A. and Costa, E. (2009). Improving prediction in evolutionary algorithms
for dynamic environments, GECCO ’09, Proceedings of the 11th Annual

conference on Genetic and evolutionary computation. ACM, New York,
NY, USA.

[36] Baluja, S. (1994). Population-Based Incremental Learning: A Method for
Integrating Genetic Search Based Function Optimization and Competitive
Learning (Report No. CMU-CS-94-163). Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, USA.

[37] Yang, S. (2004). Constructing dynamic test environments for genetic algorithms
based on problem difficulty. CEC 2004, Proc. of the 2004 Congress on

Evolutionary Computation, (pp.1262–1269).

103

[38] Yang, S. (2005). Memory-enhanced univariate marginal distribution algorithms for
dynamic optimization problems. CEC 2004, Proc. of the 2005 Congress on

Evol. Comput, (pp.2560–2567).

[39] Guntsch, M. and Middendorf, M. (2002). Applying Population Based
ACO to Dynamic Optimization Problems. ANTS ’02, Proceedings of

the Third International Workshop on Ant Algorithms, (pp.111–122).
Springer-Verlag.

[40] Eyckelhof, C.J. and Snoek, M. (2002). Ant Systems for a Dynamic TSP. Ant

Algorithms, (Vol. 2463).

[41] Younes, A., Basir, O. and Calamai, P. (2003). Benchmark generator for dynamic
optimization. Proceedings of the 3rd International Conference on Soft

Computing, Optimization, Simulation & Manufacturing Systems, (pp.
273–278).

[42] Mavrovouniotis, M. and Yang, S. (2012). A benchmark generator for dynamic
permutation-encoded problems. PPSN XII, Proceedings of the 12th

International Conference on Parallel Problem Solving from Nature (PPSN

XII), Part II, (Vol. 7492 of LNCS, pp.508–517). Springer-Verlag.

[43] Branke, J., Salihoğlu, E. and Uyar, Ş. A. (2005). Towards an analysis of dynamic
environments. GECCO ’05, Proc. of the 2005 conference on genetic and

evolutionary computation, (pp.1433–1440). ACM.

[44] Salihoğlu, E. (2005). Towards an analysis of dynamic environments (Doctoral
dissertation). Retrieved from http://web.itu.edu.tr/etaner/

thesis-salihoglu-05.pdf.

[45] Mavrovouniotis, M. and Yang, S. (2010). Ant colony optimization with
immigrants schemes in dynamic environments. PPSN XI, Proceedings

of the 11th International Conference on Parallel Problem Solving

from Nature (PPSN XI), Part II, (Vol. 6238 of LNCS, pp.371–380).
Springer-Verlag.

[46] Mavrovouniotis, M. and Yang, S. (2011). A memetic ant colony optimization
algorithm for the dynamic travelling salesman problem. Soft Computing

- A Fusion of Foundations, Methodologies and Applications, 15 (7),
1405–142.

[47] Mavrovouniotis, M. and Yang, S. (2011). Memory-Based Immigrants for Ant
Colony Optimization in Changing Environments. Proc. of EvoApplica-

tions 2011, (Vol. 6624 of LNCS, pp.324–333). Springer-Verlag.

[48] Burke, E.K., Gendreau, M., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E.
and Qu, R. (2012). Hyper-heuristics: A Survey of the State of the Art. to

appear in the Journal of the Operational Research Society.

[49] Özcan, E., Bilgin, B. and Korkmaz, E. E. (2008). A comprehensive analysis of
hyper-heuristics. Intelligent Data Analysis, 12, 3–23.

104

[50] Bai, R. (2005). An Investigation of Novel Approaches for Optimizing Retail Shelf

Space Allocation (Doctoral dissertation). School of Computer Science and
Information Technology, The University of Nottingham.

[51] Cowling, P., Kendall, G. and Soubeiga, E. (2001). A parameter-free
hyper-heuristic for scheduling a sales summit. Proceedings of the 4th

Metaheuristic International Conference, (pp.127–131).

[52] Nareyek, A. (2001). Choosing Search Heuristics by Non-Stationary Re-
inforcement Learning. Metaheuristics: Computer Decision-Making,
(pp.523–544). Kluwer Academic Publishers. Retrieved from http://

www.ai-center.com/publications/nareyek-mic01.pdf.

[53] Bilgin, B., Özcan, E. and Korkmaz, E. E. (2006). An experimental study
on hyper-heuristics and exam timetabling. PATAT 2006, Proceedings of

the 6th International Conference on Practice and Theory of Automated

Timetabling, (pp.123–140).

[54] Kendall, G. and Mohamad, M. (2004). Channel Assignment in Cellular
Communication Using a Great Deluge Hyperheuristic. IEEE Int. Conf. on

Network, (pp.769–773).

[55] Ayob, M. and Kendall, G. (2003). A Monte Carlo Hyper-Heuristic to Optimise
Component Placement Sequencing for Multi Head Placement Machine.
Proceedings of the Int. Conf. on Intelligent Technologies, (pp.132–141).

[56] Bai, R. and Kendall, G. (2005). An investigation of automated planograms
using a simulated annealing based hyper-heuristics. T. Ibaraki, K. Nonobe
and M. Yagiura, Eds., Metaheuristics: Progress as Real Problem

Solver (Operations Research/Computer Science Interface Series, Vol.32),
Springer.

[57] Bai, R., Blazewicz, J., Burke, E.K., Kendall, G. and McCollum, B. (2007). A
Simulated Annealing Hyper-Heuristic Methodology for Flexible Decision
Support (Report No. NOTTCS-TR-2007-8), School of CSiT, University of
Nottingham.

[58] Lundy, M. and Mees, A. (1986). Convergence of An Annealing Algorithm.
Mathematical Programming, 34, 111–124.

[59] Cowling, P., Kendall, G. and Soubeiga, E. (2002). Hyperheuristics: A tool for
rapid prototyping in scheduling and optimisation. EvoWorkShops, (Vol.
4193 of Lecture Notes in Computer Science, pp.1–10). Springer.

[60] Dowsland, K.A., Soubeiga, E. and Burke, E.K. (2007). A Simulated Annealing
Hyper-Heuristic for Determining Shipper Sizes. European Journal of

Operational Research, 179 (3), 759–774.

[61] Burke, E.K., Kendall, G.,Mısır, M. and Özcan, E. (2010). Monte Carlo
hyper-heuristics for examination timetabling. Annals of Operations

Research, 1–18.

105

[62] Özcan, E.,Mısır, M., Ochoa, G. and Burke, E.K. (2010). A Reinforcement
Learning - Great-Deluge Hyper-Heuristic for Examination Timetabling.
International Journal of Applied Metaheuristic Computing, 1 (1), 39–59.

[63] Gibbs, J., Kendall, G. and Özcan, E. (2011). Scheduling English Football
Fixtures over the Holiday Period Using Hyper-heuristics. R. Schaefer,
C. Cotta, J. Kolodziej and G. Rudolph, Eds., Parallel Problem Solving

from Nature - PPSN XI. Springer Berlin / Heidelberg.

[64] Drake, J.H., Özcan, E. and Burke, E.K. (2012). An Improved Choice Function
Heuristic Selection for Cross Domain Heuristic Search, C. Coello,
V. Cutello, K. Deb, S. Forrest, G. Nicosia and M. Pavone, Eds., Parallel

Problem Solving from Nature - PPSN XII. Springer Berlin Heidelberg.

[65] Curtois, T., Ochoa, G., Hyde, M. and Vázquez-Rodríguez, J.A. (2010).
A HyFlex Module for the Personnel Scheduling Problem. Retrieved
from http://www.hyflex.org/chesc2014/wp-content/

uploads/2013/09/PersonnelSchedulingHyFlex.pdf.

[66] Hyde, M., Ochoa, G., Curtois, T. and Vázquez-Rodríguez, J.A. (2010). A
HyFlex Module for the One Dimensional Bin Packing Problem. Re-
trieved from http://www.asap.cs.nott.ac.uk/external/

chesc2011/reports/BinPackingHyFlex.pdf.

[67] Hyde, M., Ochoa, G., Curtois, T. and Vázquez-Rodríguez, J.A. (2010). A
HyFlex Module for the Maximum Satisfiability (MAX-SAT) Problem. Re-
trieved from http://www.asap.cs.nott.ac.uk/external/

chesc2011/reports/BoolenSatisfiabilityHyflex.pdf.

[68] Vázquez-Rodríguez, J.A., Ochoa, G., Curtois, T. and Hyde, M. (2010).
A HyFlex Module for the Permutation Flow Shop Problem. Re-
trieved from http://www.asap.cs.nott.ac.uk/external/

chesc2011/reports/PermutationFlowshopHyFlex.pdf.

[69] Özcan, E., Etaner-Uyar, S. and Burke, E. (2009). A Greedy Hyper-heuristic in
Dynamic Environments. GECCO 2009 Workshop on Automated Heuristic

Design: Crossing the Chasm for Search Methods, (pp.2201–2204).

[70] Kiraz, B., Uyar, Ş. and Özcan, E. (2011). An Investigation of Selection
Hyper-heuristics in Dynamic Environments. Proc. of EvoApplications

2011, (Vol. 6624 of LNCS). Springer.

[71] Kiraz, B. and Topcuoglu, H.R. (2010). Hyper-heuristic approaches for the
dynamic generalized assignment problem. ISDA 2010, 2010 10th

International Conference on Intelligent Systems Design and Applications

(ISDA), (pp.1487–1492).

[72] Beyer, H. and Schwefel, H. (2002). Evolution strategies - A comprehensive
introduction. Natural Computing, 1, 3–52.

[73] Hansen, N. and Ostermeier, A. (2001). Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation,
9 (2), 159–195.

106

[74] Hansen, N., Müller, S. and Koumoutsakos, P. (2003). Reducing the Time
Complexity of the Derandomized Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES). Evol, 11 (1), 1–18.

[75] Hansen, N. (2011). The CMA Evolution Strategy: A Tutorial. Retrieved from
https://www.lri.fr/~hansen/cmatutorial.pdf.

[76] Kiraz, B., Etaner-Uyar, A.Ş. and Özcan, E. (2013). Selection Hyper-heuristics
in Dynamic Environments. Journal of the Operational Research Society,
64 (12), 1753–1769.

[77] Uludağ, G., Kiraz, B., Etaner-Uyar, Ş. and Özcan, E. (2012). A Framework to
Hybridise PBIL and a Hyper-heuristic for Dynamic Environments, PPSN

2012: 12th International Conference on Parallel Problem Solving from

Nature, (Vol. 7492, pp.358–367). Springer.

[78] Uludağ, G., Kiraz, B., Etaner-Uyar, Ş. and Özcan, E. (2012). Heuristic Selection
in a Multi-phase Hybrid Approach for Dynamic Environments, UKCI ’12,

12th UK Workshop on Computational Intelligence. Edinburgh, Scotland.

[79] Uludağ, G., Kiraz, B., Etaner-Uyar, Ş. and Özcan, E. (2013). A Hybrid
Multi-population Framework for Dynamic Environments Combining
Online and Offline Learning. Soft Computing, 17 (12), 2327–2348.

[80] Dorigo, M. and Stützle, T. (2004). Ant Colony Optimizations. MIT Press.

[81] Eiben, A.E. and Smith, J.E. (2003). Introduction to Evolutionary Computing.
Spring.

[82] Mavrovouniotis, M. and Yang, S. (2013). Adapting the Pheromone Evaporation
rate in Dynamic Routing Problem, Proc. of EvoApplications 2013, (Vol.
7835 of LNCS, pp.606–615). Springer-Verlag.

[83] Larrañaga, P. (2002). Estimation of Distribution Algorithms. A New Tool for

Evolutionary Computation. Kluwer Academic Publishers, Boston, MA.

[84] Barlow, G.J. and Smith, S.F. (2009). Using Memory Models to Improve Adaptive
Efficiency in Dynamic Problems. IEEE Symposium on Computational

Intelligence in Scheduling, CISCHED.

[85] Fernandes, C.M., Lima, C. and Rosa, A.C. (2008). UMDAs for dynamic
optimization problems. GECCO ’08, Proc. of the 10th conference on

genetic and evolutionary computation, (pp.399–406). ACM.

[86] Wu, Y., Wang, Y., Liu, X. and Ye, J. (2010). Multi-population and
diffusion UMDA for dynamic multimodal problems. Journal of Systems

Engineering and Electronics, 21 (5), 777–783.

[87] Yang, S. and Richter, H. (2009). Hyper-learning for population-based incremental
learning in dynamic environments. Proc. 2009 Congr. Evol. Comput,
(pp.682–689).

107

[88] Peng, X., Gao, X. and Yang, S. (2011). Environment identification-based memory
scheme for estimation of distribution algorithms in dynamic environments.
Soft Comput., 15, 311–326.

[89] Yuan, B., Orlowska, M.E. and Sadiq, S.W. (2008). Extending a class of
continuous estimation of distribution algorithms to dynamic problems.
Optimization Letters, 2 (3), 433–443.

[90] Yang, S. (2005). Population-based incremental learning with memory scheme for
changing environments. GECCO ’05, Proceedings of the 2005 conference

on Genetic and evolutionary computation, (pp.711–718). ACM, New
York, NY, USA.

[91] Kiraz, B., Uyar, Ş. and Özcan, E. (2013). An Ant-based Selection Hyper-heuristic
for Dynamic Environments. EvoApplications 2013, (Vol. 7835 of Lecture
Notes in Computer Science, pp.626–635). Springer.

[92] Mısır, M., Verbeeck, K., De Causmaecker, P. and Berghe, G.V. (2012). An
intelligent hyper-heuristic framework for CHeSC 2011. Learning and

Intelligent Optimization, Springer.

[93] Hsiao, P.C., Chiang, T.C. and Fu, L.C. (2012). A VNS-based hyper-heuristic
with adaptive computational budget of local search. CEC’ 12, 2012 IEEE

Congress on Evolutionary Computation, (pp.1–8).

[94] Larose, M. (2011). A Hyper-heuristic for the CHeSC 2011. LION6.

[95] Chan, C., Xue, F., Ip, W. and Cheung, C. (2012). A Hyper-Heuristic Inspired
by Pearl Hunting. Y. Hamadi and M. Schoenauer, Eds., Learning and

Intelligent Optimization. Springer Berlin Heidelberg.

[96] Meignan, D. (2012). An Evolutionary Programming Hyper-heuristic with
Co-evolution for CHeSC’11. Retrieved from http://www.

asap.cs.nott.ac.uk/external/chesc2011/entries/

meignan-chesc.pdf.

[97] Di Gaspero, L. and Urli, T. (2011). A Reinforcement Learning approach for
the Cross-Domain Heuristic Search Challenge. The IX Metaheuristics

International Conference.

[98] Mascia, F. and Stützle, T. (2012). A Non-adaptive Stochastic Local Search Algo-
rithm for the CHeSC 2011 Competition. Y. Hamadi and M. Schoenauer,
Eds., Learning and Intelligent Optimization. Springer Berlin Heidelberg.

[99] Lehrbaum, A. and Musliu, N. (2012). A New Hyperheuristic Algorithm for
Cross-Domain Search Problems. Y. Hamadi and M. Schoenauer, Eds.,
Learning and Intelligent Optimization. Springer Berlin Heidelberg.

[100] Acuña, A., Parada, V. and Gatica, G. (2011). Cross-domain Heuristic
Search Challenge: GISS Algorithm presentation. Retrieved from
http://www.asap.cs.nott.ac.uk/external/chesc2011/

entries/acuna-chesc.pdf.

108

[101] Kubalík, J. (2012). Hyper-Heuristic Based on Iterated Local Search Driven by
Evolutionary Algorithm. J.K. Hao and M. Middendorf, Eds., Evolutionary

Computation in Combinatorial Optimization. Springer Berlin Heidelberg.

[102] Elomari, J. (2011) Self-Search (Extended Abstract). Retrieved from
http://www.asap.cs.nott.ac.uk/external/chesc2011/

entries/elomari-chesc.pdf.

[103] Sim, K. (2011) KSATS-HH: A Simulated Annealing Hyper-Heuristic
with Reinforcement Learning and Tabu-Search. Retrieved from
http://www.asap.cs.nott.ac.uk/external/chesc2011/

entries/sim-chesc.pdf.

[104] McClymont, K. and Keedwell, E.C. (2011). Markov Chain Hyper-heuristic
(MCHH): An Online Selective Hyper-heuristic for Multi-objective
Continuous Problems. GECCO ’11, Proceedings of the 13th Annual

Conference on Genetic and Evolutionary Computation, (pp.2003–2010).
ACM, New York, NY, USA.

[105] Gómez, J. (2011) Hybrid adaptive evolutionary algorithm hyper heuristic. Re-
trieved from http://www.asap.cs.nott.ac.uk/external/

chesc2011/entries/gomez-chesc.pdf.

[106] Núñez, J, C. and Ceballos, A. (2011) A general purpose Hyper-Heuristic
based on Ant colony optimization. Retrieved from http:

//www.asap.cs.nott.ac.uk/external/chesc2011/

entries/nunez-chesc.pdf.

[107] Khamassi, I., Hammami, M. and Ghedira, K. (2011). Ant-Q hyper-heuristic
approach for solving 2-dimensional Cutting Stock Problem. SIS ’11, 2011

IEEE Symposium on Swarm Intelligence, (pp.1–7).

[108] Cichowicz, T., Drozdowski, M., Frankiewicz, M., Pawlak, G., Rytwiňski, F.
and Wasilewski, J. (2012). Five Phase and Genetic Hive Hyper-Heuristics
for the Cross-Domain Search. Y. Hamadi and M. Schoenauer, Eds.,
Learning and Intelligent Optimization, Springer Berlin Heidelberg.

[109] Bierwirth, C., Mattfeld, D.C. and Kopfer, H. (1996). On Permutation
Representations fro Scheduling Problems, PPSN IV, Proceeding of the

Parallel Problem Solving from Nature Conference, (Vol. 1141 of Lecture
Notes in Computer Science). Springer.

[110] HyFlex. (2014). Retrieved March 01, 2014, from www.hyflex.org.

[111] CHeSC. (2011). Retrieved December 01, 2011, from http://www.asap.

cs.nott.ac.uk/external/chesc2011/.

[112] The ACO with Immigrants. (2013). Retrieved September 15, 2013, from www.

tech.dmu.ac.uk/\simmmavrovouniotis/.

[113] TSP Instances. (2013). Retrieved November 15, 2013, from http://

comopt.ifi.uni-heidelberg.de/software/TSPLIB95.

109

110

APPENDICES

APPENDIX A : Results of Ant-Based Selection with Tournament Selection

111

112

APPENDIX : Results of Ant-Based Selection with Tournament Selection

Table A.1 and Table A.2 show the results q0 and tournament size tests for AbSts and
sAbSts, respectively.

Table A.1 : Final offline error results of various q0 settings for AbSts under the tested
change frequency-severity pairs.

q0 ts
LF MF HF

LS MS HS LS MS HS LS MS HS

0.0

2 4.13 8.63 10.95 6.86 10.54 13.09 23.14 24.99 29.16
3 4.33 8.26 10.81 6.03 10.19 13.21 19.88 23.12 27.89
4 4.13 7.85 11.17 6.44 10.80 13.68 19.80 23.03 28.10
5 4.29 8.52 11.14 6.55 11.00 13.80 20.44 23.08 29.03
6 5.55 8.23 11.37 8.28 11.96 14.48 25.72 25.73 31.28

0.1

2 3.94 8.19 10.38 6.30 9.91 13.24 22.76 24.57 29.94
3 3.98 8.39 10.77 6.38 9.98 13.09 19.34 22.19 28.03
4 4.12 8.58 10.78 6.01 10.08 12.99 18.36 22.13 27.78
5 4.59 8.22 10.73 6.67 10.77 12.99 19.89 23.66 29.00
6 4.59 8.94 11.76 8.57 11.21 14.56 23.35 24.71 30.59

0.3

2 4.34 7.63 11.04 5.83 10.72 13.26 19.20 23.16 28.70
3 4.36 8.41 10.93 5.76 10.27 12.66 17.75 21.91 27.43
4 4.11 8.59 10.52 5.86 10.00 13.27 16.72 20.96 26.97
5 4.36 8.06 10.64 5.64 10.02 14.08 19.17 22.34 28.51
6 4.63 8.76 10.90 7.34 10.66 14.03 20.95 23.55 29.79

0.5

2 3.95 8.73 10.90 5.74 9.47 12.74 17.34 21.52 28.42
3 3.81 7.88 10.85 5.42 10.17 13.11 14.76 20.05 27.40
4 3.99 8.21 10.35 5.46 10.31 13.49 15.26 20.74 27.23
5 3.79 8.49 11.10 5.64 10.69 12.90 16.21 21.89 28.14
6 4.30 8.63 11.65 6.12 10.09 14.03 17.87 22.09 29.43

0.7

2 3.90 7.84 10.26 5.15 9.83 13.70 15.41 20.51 27.24
3 4.29 8.11 11.24 5.04 9.90 13.17 13.85 21.10 27.79
4 4.19 8.54 10.96 4.88 10.33 13.47 13.43 19.08 26.74
5 3.82 8.73 10.70 5.10 11.40 14.05 14.59 20.61 28.16
6 4.11 9.15 10.96 5.77 10.63 13.81 17.60 23.00 30.37

0.9

2 4.17 8.64 11.12 5.08 10.12 14.14 13.69 20.74 28.01
3 4.27 8.98 10.82 5.21 11.10 13.97 14.00 20.16 27.90
4 3.66 8.72 11.97 5.02 10.31 14.80 14.42 21.42 28.09
5 4.23 9.30 12.05 5.33 10.38 14.50 14.79 22.04 29.93
6 4.03 9.31 11.18 5.71 11.37 14.30 15.30 22.15 30.76

1.0

2 3.94 8.81 11.58 5.63 11.82 14.23 16.44 24.22 33.01
3 4.04 9.84 12.29 5.24 10.51 13.71 15.66 22.72 32.45
4 4.11 8.82 12.29 5.82 10.69 14.31 14.98 24.89 33.35
5 4.00 10.29 12.12 5.43 10.83 13.95 16.01 23.15 33.09
6 3.96 10.33 11.12 5.27 11.47 14.76 15.70 23.54 31.57

113

Table A.2 : Final offline error results of various q0 settings for sAbSts under the tested
change frequency-severity pairs.

q0 ts
LF MF HF

LS MS HS LS MS HS LS MS HS

0.0

2 4.35 7.81 10.19 6.41 9.77 13.30 21.40 23.44 28.61
3 4.26 7.91 11.33 5.97 9.93 12.99 17.27 20.62 26.63
4 3.93 7.84 11.32 5.96 10.27 13.43 16.12 20.82 27.06
5 4.25 9.16 11.70 5.75 10.34 13.58 16.97 21.16 26.90
6 4.47 9.06 12.18 7.01 10.53 14.65 18.89 21.94 28.20

0.1

2 4.12 8.27 10.58 6.17 10.65 13.29 19.53 22.57 27.99
3 4.20 8.46 10.85 5.47 9.39 13.03 15.65 19.89 26.42
4 4.05 8.66 10.88 5.64 9.46 13.01 15.14 19.84 26.38
5 3.78 8.81 11.44 5.50 9.89 13.11 16.64 20.04 26.32
6 4.39 8.88 11.43 6.92 10.30 14.00 17.00 21.61 27.74

0.3

2 3.93 7.21 10.85 6.13 9.30 13.48 18.03 21.42 27.22
3 3.98 8.53 10.88 5.53 10.76 13.66 15.25 20.14 27.08
4 4.19 8.43 11.58 5.34 9.90 12.97 13.66 18.87 26.26
5 3.95 9.14 11.18 5.43 11.03 13.22 14.50 19.92 25.37
6 4.20 8.84 11.30 5.95 10.39 13.65 16.41 21.08 27.70

0.5

2 3.89 8.65 10.62 5.63 9.79 13.09 16.24 21.03 27.57
3 4.16 7.56 11.29 5.29 10.98 13.28 14.19 19.81 25.67
4 4.00 9.27 11.73 5.26 9.93 13.51 12.55 18.34 25.12
5 3.66 8.82 10.85 5.75 9.53 13.61 12.42 19.00 25.62
6 3.91 8.86 11.58 6.18 9.78 13.65 14.98 21.24 28.24

0.7

2 3.92 9.21 10.89 5.33 10.06 12.35 14.31 19.50 26.72
3 4.24 8.59 11.31 5.02 10.68 13.20 13.45 20.04 26.94
4 3.95 8.27 11.25 4.65 9.02 13.75 12.05 18.38 26.28
5 3.95 8.65 11.14 5.35 11.10 13.74 13.30 19.49 27.08
6 4.48 9.01 11.54 5.22 10.99 13.25 14.03 19.43 26.94

0.9

2 3.99 8.25 11.48 4.87 9.78 13.55 12.05 18.94 26.13
3 4.10 8.85 11.72 5.30 11.65 14.43 13.42 20.41 28.19
4 4.31 8.16 11.24 5.35 10.51 15.07 13.11 19.70 27.68
5 4.33 7.82 11.41 4.99 10.66 14.09 13.96 20.41 28.31
6 4.35 10.12 12.09 5.70 10.55 13.93 14.97 21.57 29.20

1.0

2 4.11 9.46 12.59 5.59 10.13 13.70 16.11 23.47 31.33
3 4.08 8.97 11.70 5.56 11.79 15.11 16.32 23.04 30.80
4 4.22 8.18 12.40 5.92 11.67 13.43 14.93 21.88 30.34
5 4.30 10.66 12.56 5.59 11.02 14.32 17.05 23.06 31.20
6 3.83 8.92 11.66 5.04 10.53 15.09 14.84 21.96 30.11

114

CURRICULUM VITAE

Name Surname: Berna KİRAZ

Place and Date of Birth: Ordu - 1982

Adress: Koç Üniversitesi Lojmanları 13/1 Rumelifeneri Yolu Sarıyer - İstanbul

E-Mail: berna.kiraz@marmara.edu.tr

B.Sc.: June 2004

M.Sc.: October 2008

Professional Experience and Rewards:
2007 - Present: Research & Teaching Assistant, Marmara University, Computer

Engineering Department

ISDA 2010, Best Paper Award, "Hyper-Heuristic Approaches for the Dynamic
Generalized Assignment Problem", B. Kiraz, H. Topçuoğlu, 2010, Cairo.

TUBITAK 2211-National Scholarship Programme for PhD students

List of Publications and Patents:

Köle M., Kiraz B., Etaner-Uyar A. Ş. and Özcan E., 2012: Heuristics for Car
Setup Optimisation in TORCS. 12th Annual Workshop on Computational Intelligence

(UKCI 2012), September 5-7, 2012 Edinburgh, Scotland.

Kiraz B. and Topçuoğlu H. R., 2010: Hyper-Heuristic Approaches for the Dynamic
Generalized Assignment Problem. ISDA 2010, November 29 - December 1, 2010
Cairo, Egypt.

List of Papers in Preparation

Asta S., Kiraz B., Özcan E., Etaner-Uyar A. Ş. and Köle M., Experimental
Comparison of Modern Heuristics for TORCS based Car Setup Optimisation to be

submitted to IEEE Transactions on Computational Intelligence and AI in Games

115

PUBLICATIONS/PRESENTATIONS ON THE THESIS

Kiraz B., Etaner-Uyar A. Ş. and Özcan E., 2013: Selection Hyper-heuristics in
Dynamic Environments. Journal of the Operational Research Society, 64 (12), pp.
1753-1769, 2013.

Uludağ G., Kiraz B., Etaner-Uyar A. Ş. and Özcan E., 2013: A Hybrid
Multi-population Framework for Dynamic Environments Combining Online and
Offline Learning, Soft Computing, Volume 17, Issue 12, pp. 2327-2348, 2013.

Kiraz B., Etaner-Uyar A. Ş. and Özcan E., 2013: An Ant-based Selection
Hyper-heuristic for Dynamic Environments. EvoStar - EvoApplications, April 3-5,
2013 Vienna, Austria.

Uludağ G., Kiraz B., Etaner-Uyar A. Ş. and Özcan E., 2012: Heuristic Selection in a
Multi-phase Hybrid Approach for Dynamic Environments. 12th Annual Workshop on

Computational Intelligence (UKCI 2012), September 5-7, 2012 Edinburgh, Scotland.

Uludağ G., Kiraz B., Etaner-Uyar A. Ş. and Özcan E., 2012: A Framework to
Hybridise PBIL and a Hyper-heuristic for Dynamic Environments. 12th International

Conference on Parallel Problem Solving from Nature (PPSN 2012), September 1-5,
2012 Taormina, Italy.

Kiraz B., Etaner-Uyar A. Ş. and Özcan E., 2011: An Investigation of Selection
Hyper-heuristics in Dynamic Environments. EvoStar - Applications, April 27-29,
2011 Torino, Italy.

116

