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HYPER-HEURISTICS IN DYNAMIC ENVIRONMENTS

SUMMARY

Current state-of-the-art methodologies are mostly developed for stationary optimiza-
tion problems. However, many real world problems are dynamic in nature. To
handle the complexity of dealing with the changes in the environment, an optimization
algorithm needs to be adaptive and hence capable of following the change dynamics.
From the point of view of an optimization algorithm, the problem environment consists
of the instance, the objectives and the constraints. The dynamism may arise due
to a change in any of the components of the problem environment. Existing search
methodologies have been modified suitably with respect to the change properties, in
order to tackle dynamic environment problems. Population based approaches, such as
evolutionary algorithms are frequently used for solving dynamic environment problem.

Hyper-heuristics are high-level methodologies that perform search over the space of
heuristics rather than solutions for solving computationally difficult problems. They
operate at a higher level, communicating with the problem domain through a domain
barrier. Any type of problem specific information is filtered through the domain barrier.
Due to this feature, a hyper-heuristic can be directly employed in various problem
domains without requiring any change, of course, through the use of appropriate
domain specific low-level heuristics.

Selection hyper-heuristics are highly adaptive search methodologies that aim to raise
the level of generality by providing solutions to a diverse set of problems having
different characteristics. In this thesis, we investigate single point search based
selection hyper-heuristics in dynamic environments. We first work on the applicability
of selection hyper-heuristics proposed in literature for dynamic environments. Then,
we propose a novel learning hyper-heuristic for dynamic environments and investigate
the performance of the proposed hyper-heuristic and its variants.

In the first phase, the performances of thirty-five single point search based selection
hyper-heuristics are investigated on continuous dynamic environments exhibiting
various change dynamics, produced by the Moving Peaks Benchmark generator.
Even though there are many successful applications of selection hyper-heuristics to
discrete optimization problems, to the best of our knowledge, this study is one of the
initial applications of selection hyper-heuristics to real-valued optimization as well
as being among the very few which address dynamic optimization issues using these
techniques. The empirical results indicate that learning selection hyper-heuristics
which incorporate compatible components can react to different types of changes in
the environment and are capable of tracking them. This study shows the suitability of
selection hyper-heuristics as solvers in dynamic environments.

In the second phase, we propose a new learning hyper-heuristic, called the Ant-based
Selection (AbS), for dynamic environments which is inspired from the ant colony

Xxi



optimization algorithm components. The proposed hyper-heuristic maintains a matrix
of pheromone intensities (utility values) between all pairs of low-level heuristics. A
heuristic is selected based on the utility values between the previously invoked heuristic
and each heuristic from the set of low-level heuristics. For this study, we employ
the generic Improving and Equal acceptance scheme. We explore the performance of
the proposed hyper-heuristic and its variants using Moving Peaks Benchmark (MPB)
generator. The empirical results indicate that the proposed heuristic selection scheme
provides slightly better performance than the heuristic selection scheme that was
previously reported to be the best in dynamic environments.

The proposed approach does not require any special actions whenever a change occurs
in the environment. However, the first candidate solution generated after each change
is accepted regardless of its quality. Therefore, the move acceptance needs to detect
the change. In this study, we use a simple detection mechanism in which the current
solution is re-evaluated at each step. If there is a change in the fitness of the current
solution, a change is considered to be detected. We consider Ant-based selection,
Choice Function and Reinforcement Learning as the heuristic selection methods. The
results show that the re-evaluation process slightly deteriorates the performance of
approaches for especially high frequency changes, however, the approach is suitable
for cases where changes cannot be made known to the optimization algorithm. We
then investigate the effect of the parameters of the proposed algorithm on overall
performance. The results show that the settings of the parameters are not very sensitive
and similar results are obtained for a wide range of parameter values.

In the third phase, we explore the performance of the proposed hyper-heuristic through
three different applications. As the first application, the selection hyper-heuristics
are used in a hybrid multi-population framework. We use a hybridization of the
Estimation of Distribution Algorithm (EDA) with hyper-heuristics in the form of a
two-phase framework. We investigate the influence of different heuristic selection
methods. The empirical results show that a heuristic selection method that relies
on a fixed permutation of the underlying low-level heuristics is more successful
than the learning approaches across different dynamic environments produced by a
well-known benchmark generator. The proposed approach also outperforms some
of the top approaches in literature for dynamic environment problems. Ant-based
selection is proposed for dynamic environments. However, to see its performance in a
stationary environment, Ant-based Selection is applied to six stationary optimization
problems provided in HyFlex as the second application. The results are compared
with the results of participants in CHeSC2011 competition. Finally, we present the
performance of Ant-based Selection on a real-world optimization problem referred
to as the Dynamic Traveling Salesman Problem. The overall results show that the
proposed approach delivers good performance on the tested optimization problems.
These last set of experiments also emphasize the general nature of hyper-heuristics.
For all optimization problems in this study, all hyper-heuristics are applied without
requiring any modifications or parameter tuning.
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DINAMIK ORTAMLARDA UST-SEZGISELLER

OZET

Son zamanlarda Onerilen metotlar daha cok statik eniyileme problemleri icin
gelistirilmiglerdir. Fakat gercek hayatta karsilagilan eniyileme problemlerinin pek
cogu dinamik bir yap1 gostermektedir. Dinamik bir ortamda, eniyileme yonteminin
tizerinde caligmaya basladig1 ortamda zaman icinde degisimler olabilir. Ancak bu
problemlerin ¢oziimiinde genelde bu dinamiklik g6z ardi edilerek klasik eniyileme
yaklagimlar1 uygulanmaktadir. Halbuki bu dinamikligi de g6z Oniine alarak ¢alisan
bir eniyileme yaklasimi, ortamdaki degisimleri hizli bir sekilde izleyebilmeli ve
bunlara uyum saglayabilmek icin adaptif olmalidir. Eniyileme algoritmasi agisindan
bakildiginda problem ortami, problemin tanmimli degerleri, eniyilemede kullanilan
amag fonksiyonlar1 ve kisitlardan olusur. Ortamdaki dinamiklik, problem ortamini
olusturan bu parcalardan herhangi birisinde veya birkacinda meydana gelen tekil ya
da es zamanlh degisimlerden kaynaklanabilir. Farkli problemlerde bu degisimler de
farkl1 6zellikler gostermektedir. Bu 6zellikler genelde degisimlerin siddetine, sikligina,
periyodik olup olmamasina gore siniflandirilirlar. Ortamdaki dinamizmin 6zelliklerine
gore farkli durumlarda farkli yaklagimlar basarili olmaktadir. Bu ise eniyileme
yaklasimini secerken ortamdaki degisimlerin 6zelliklerinin bilinmesi anlamina gelir.
Halbuki gercek hayatta bu her zaman miimkiin olmayabilir. Ayrica ortamin gosterdigi
degisimin 6zellikleri de zaman icinde degisebilir. Bu durumda basta secilen yaklagim,
eniyilemenin ilerleyen asamalarinda basarili olmayabilir.

Ust-sezgiseller problem uzayinda problem ile etkilesim halinde olan ve aday ¢oziimii
giincelleyen alt seviyedeki sezgiseller araciligir ile arama yapar. Alt seviyede
kullanilan, probleme 6zel sezgiseller ise problemin ¢6ziim uzayinda arama yaparlar.
Bu nedenle alt seviyedeki sezgiseller, iist-sezgiseller ile problemin ¢oziim uzayi
arasinda bir ara katman olarak diisiiniilebilir. Boylece problem uzayinda aramayi alt
sezgiseller yapmis olur. Bu 6zellik sayesinde bir {ist-sezgisel, uygun alt sezgisellerin
kullanilmasiyla, degistirilmeden ¢esitli problemlere uygulanabilir.

Sezgisel secen lst-sezgiseller konusunda yapilan arastirmalarin temel hedefi,
eniyilemenin genellestirme seviyesini yiikselterek pek ¢ok farkli problem domeninde
ve farkli 6zellikler gosteren ortamlarda uygulanabilir bir yaklasim gelistirmektir. Bu
nedenle iist-sezgiseller, dogalar1 geregi adaptif yapidadirlar. Bu 6zellikleri sayesinde
dinamik ortamlardaki degisimlere, herhangi bir dis miidahale gerektirmeden hizla
uyum gosterip, etkin ¢oziimler iiretebilirler. Bu tezde oncelikle literatiirde var olan
ist-sezgisellerin dinamik ortamlar i¢in uygunlugu iizerinde ¢alisilmigtir. Elde edilen
bilgiler 1s1¢1inda dinamik ortamlarda basarili ¢oziimler iiretecek yeni iist-sezgisel
yaklagim gelistirilmis ve bagarimi Sl¢iilmiigtiir.

Tezin ilk asamasinda, otuz bes tek ¢oziim iireten sezgisel secen iist-sezgisellerin
bagsarimini, farkli degisim dinamikleri sergileyen siirekli dinamik eniyileme problem-
leri i¢in degerlendirdik. Deneylerde iizerinde calismak icin yapay olusturulmus test
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problemi (Moving Peaks Benchmark) kullanilmistir. Ayrik eniyileme problemleri
icin sezgisel secen iist-sezgisellerin bir¢ok basarili uygulamalar1 olmasina ragmen,
bilgimiz dahilinde, bu calisma reel degerli (siirekli) eniyileme problemleri i¢in sezgisel
secen list-sezgisellerin ilk uygulamalarindan biridir. Bunun yani sira bu calisma,
bu teknikleri kullanarak dinamik eniyileme problemlerini ele alan ¢ok az calisma
arasinda yer almaktadir. Deneysel sonuclar géstermistir ki; uygun bilesenli 6grenme
tabanli list-sezgiseller ortamdaki farkli tipteki degisimlere hizli bir sekilde tepki
gosterebilmekte ve onlar1 takip edebilmektedir. Bu ¢alisma iist-sezgisellerin dinamik
eniyileme problemlerini ¢cézmek i¢in uygun oldugunu gostermektedir.

Ikinci asamada, karinca kolonisi algoritmasindan esinlenerek yeni &grenme tabanli
list-sezgisel yaklagim, karinca tabanli segim, gelistirilmistir. Onerilen iist-sezgisel
diisiik seviyeli biitiin sezgisel ¢iftleri arasindaki feromon yogunluklarinin bir matrisini
tutar. Her adimda bir sezgisel, onceden ¢agirilan sezgisel ile diisiik seviyeli sezgisel
kiimesinden her bir eleman arasindaki feromon degerlerine gore secilir. Bu calismada
iyilestiren ve esit hareket kabul yontemi kullanilmistir. Onerdigimiz iist-sezgisel
yonteminin basarimi yapay olusturulmus test problemi (Moving Peaks Benchmark)
kullanilarak degerlendirilmigtir.  Test sonuglarina gore, Onerilen yaklasim daha
onceden dinamik ortamlar icin en iyi olarak belirlenen sezgisel se¢me yontemleri ile
benzer sonuglar vermistir.

Onerilen yaklagim ortam degistiginde herhangi bir 6zel eyleme gerek duymamaktadir.
Fakat hareket kabul yonteminin dogasi geregi, her bir degisimden sonra iiretilen
ilk c¢oziim aday1 niteligine bakilmaksizin kabul edilmektedir. =~ Bundan dolayi
hareket kabul yontemi ortamdaki degisikligi algilamak zorundadir. Bu calismada
ortamdaki degisimleri algilamak icin basit bir yontem kullanilmistir. Bu yontemde
su anki coziimiin basarim degeri her adimda tekrardan hesaplanmaktadir. Eger
su anki ¢oziimiin basarim degerinde bir degisiklik varsa ortam degismis demektir.
Sezgisel secme yontemi olarak secin fonksiyonu, destekli 6grenme ve karinca tabanh
secim kullanilmigtir. Test sonuglarina gore yeniden degerlendirme yontemi biitiin
yaklagimlarin bagarimini azaltmistir.

Bu calismada ayrica onerilen yaklagimin kapsamli bir analizi yapilmistir. Bu amacla
onerilen yaklagimin adaptasyon yetenegi ve algoritmalarin parametrelerinin basarima
etkisi incelenmistir. Deneysel sonuglara gore, Onerilen yaklasim hizli bir sekilde
degisimlere uyum saglayabilmektedir. Onerilen yaklasim parametre atamalarindan
cok fazla etkilenmemekte ve genis aralikli parametre degerleri icin benzer sonuglar
vermektedir.

Tezin son asamasinda, Onerilen yaklasimin basarimi {i¢ farkli uygulamada
degerlendirilmistir. ~ Oncelikle, sezgisel segen iist-sezgiseller cok popiilasyonlu
hibrid bir cerceve icinde kullanilmislardir. Bu c¢erceve cevrimici ve cevrimdist
0grenme mekanizmalarina dayanan iist-sezgiseller ile dagilim tahmini algoritmasinin
hibridlestirilmesine olanak saglamaktadir.  Iyi ¢oziimler iiretmek icin olasilik
vektorlerinin listesi ilk asamada ¢evrimdisi olarak Ogrenilir. Ikinci asamada iki
ayr1 popiilasyon ve her popiilasyonun kendi olasilik vektorleri vardir.  Bir alt
popiilasyon dagilim tahmini algoritmasi kullanarak orneklendirilirken, diger alt
popiilasyon ¢evrimici olarak uygun olasilik vektoriinii ¢cevrimici asamada 6grenilen
olasilik vektorleri listesinden orneklemek icin iist-sezgiselleri kullanir. Onerilen
hidrid yontemin basarimi farkli sezgisel secme yontemleri kullanilarak denenmistir
ve Rastgele Permiitasyon metodunun daha basarili oldugu gozlemlenmistir. Ayrica bu

XXiv



hibrid yap literatiirde iyi bilinen benzer yaklagimlarla karsilastirilmig ve bunlara gore
daha iyi sonug verdigi gézlemlenmistir.

Onerilen yontem dinamik ortamlar icin 6nerilmistir. Bununla birlikte, yontemin statik
ortamlardaki basarimini goézlemlemek i¢in, ikinci uygulama olarak, Onerilen metot
HyFlex arayiizii lizerinde uygulanmistir. HyFlex’in Java uygulamasit CHeSC2011
yarismasinda kullanilmistir. Bu uygulama alt1 statik problem domeni saglamaktadir.
Onerilen yaklagimin basarimi yarismadaki katilmcilarla karsilastirilmistir.  Son
uygulama olarak Onerilen yaklasimin bagaris1 gercek diinya problemi kullanilarak
degerlendirilmigtir. Yapay olusturulmus test problemleri problem 6rneklerini yaratmak
icin kullanilan 6nemli arastirma araglari olup verilen domende bu Orneklerin
ozelliklerini kontrol etmemizi saglar. Bu problem oOrnekleri farkli algoritmalarin
basarimini kargilastirmak icin cogunlukla kullanilmaktadirlar. Ote yandan, gercek
diinya problemleri yapay olarak olusturulan orneklerden farkli olabilir.  Yapay
ornekleri kullanarak yapilan algoritmalarin test edilmesi verilen algoritmanin gercek
diinya problemi iizerindeki asil performansini yansitmayabilir.  Dolayisiyla, bu
calismada, Dinamik Gezgin Satict Problemi olarak bilinen gercek diinya problemi
ele alinmis ve Onerilen yaklasimin basarimi degerlendirilmistir. Dinamik Gezgin
Satic1 Problemi 6rneklerini olusturmak icin literatiirde cokca kullanilan Gezgin Satict
Problemi’ nin Orneklerine trafik faktorii eklenmistir.  Genel olarak, test edilen
problemler iizerinde Onerilen metodun iyi sonu¢ verdigi gozlemlenmistir. En son
yapilan testler iist-sezgisellerin genel bir yapi oldugunu vurgulamistir. Ust-sezgiseller
hicbir degisiklige ya da parametre ayarlarina gerek duymadan bu ¢alismada kullanilan
tiim eniyileme problemlerine uygulanmistir.
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1. INTRODUCTION

A hyper-heuristic is a methodology which explores the space of heuristics for solving
complex computational problems [1-4]. Although the term hyper-heuristic was
introduced recently [5, 6], the initial ideas can be traced back to the 60s [7, 8].
There has been a growing interest in this field since then. A hyper-heuristic is
an alternative method to meta-heuristics, which operate on the problem directly by
using problem-specific information. For meta-heuristic methods, parameters must be
fine-tuned for different problems. On the other hand, hyper-heuristics can operate on
a problem indirectly by way of heuristics, which interact with the problem and modify
the solutions [9]. There are two main types of hyper-heuristics in literature [10]:
methodologies that select, or generate heuristics. This study focuses on the former
type of hyper-heuristics based on a single point search framework termed as a selection
hyper-heuristic. A selection hyper-heuristic controls a set of low-level heuristics and
adaptively chooses the most appropriate one to invoke at each step. This type of
hyper-heuristics has been successfully applied to many combinatorial optimization

problems ranging from timetabling to vehicle routing [11].

One of the challenges in combinatorial optimization is to develop a solution method
which is capable of solving different types of instances having different characteristics
for a given problem domain. There is a variety of heuristic search methodologies,
such as tabu search and evolutionary algorithms to choose from to solve static
combinatorial optimization problems [12]. If the environment changes over time
during the optimization/search process for a given problem, then this task becomes
even more challenging. Such problems are referred to as dynamic optimization
problems. When performing a search for the best solution in such environments, the
dynamism is often ignored and generic methodologies are utilized. However, the key
to success for a search algorithm in dynamic environments is its adaptation ability and
speed to react whenever a change occurs. There is a range of approaches in literature

proposed for solving dynamic environment problems [13—15]. Often, a given approach



performs better than some others for handling a particular type of dynamism in the
environment. This implies that the properties of the dynamism need to be known
beforehand, if the most appropriate approach is to be chosen. However, even this may

be impossible depending on the relevant dynamism associated with the problem.

A key goal in hyper-heuristic research is raising the level of generality. To this end,
approaches which generalize well and are applicable across a wide range of problem
domains or different problems with different characteristics, have been investigated.
Considering the adaptive nature of hyper-heuristics, they are expected to respond
to the changes in a dynamic environment rapidly and hence be effective solvers in
such environments regardless of the change properties. In this thesis, we study the

applicability of selection hyper-heuristics in dynamic environments.

In the first phase of this thesis, we investigate the performance of a set of selection
hyper-heuristics proposed in literature for dynamic environments to determine their
strengths and weaknesses and to analyze their behavior. In this study, selection
hyper-heuristics are applied to a set of real-valued optimization problems generated
using the Moving Peaks Benchmark (MPB) generator [16]. This benchmark generator
is preferred as a testbed for our investigations mainly because it is one of the most
commonly used benchmark generators in literature for creating dynamic optimization
environments in the continuous domain [14]. Based on the empirical results, the
learning selection hyper-heuristics with appropriate acceptance methods are applicable
approaches to solve dynamic optimization problems. They can react rapidly whenever

a change occurs and are capable of tracking the changing optima closely.

In the second phase of this thesis, we describe a new learning hyper-heuristic for
dynamic environments, which is designed based on the ant colony optimization
algorithm components. The proposed hyper-heuristic maintains a matrix of pheromone
intensities (utility values) between all pairs of low-level heuristics. A heuristic is
selected based on the utility values between the previously invoked heuristic and each
heuristic from the set of low-level heuristics. We investigate the performance of the
proposed hyper-heuristic controlling a set of parameterized mutation operators for
solving the dynamic environment problems produced by the Moving Peaks Benchmark
(MPB) generator. The empirical results show that the proposed heuristic selection

scheme provides slightly better performance than the heuristic selection scheme
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previously reported to be the best in dynamic environments. The Ant-based selection
hyper-heuristic does not require any special actions when the environment changes.
However, due to the nature of the acceptance mechanism, the first solution candidate
generated after each environment change is accepted regardless of its solution quality.
This means that the algorithm needs to know when a change occurs in the environment.
In this thesis, we consider a simple change detection mechanism. To detect a change
in the environment, the current solution is re-evaluated at each step. A change occurs
in the environments when the fitness value of the current solution is changed. The
empirical results show that the re-evaluation slightly degrades the performance of the
algorithms. However, the approach is suitable for cases where changes cannot be
made known to the optimization algorithm. We further perform exhaustive tests to
empirically analyze and explain the behavior of our approach. The results indicate
that the parameter settings of the proposed approach are not very sensitive and similar

results are obtained for a wide range of parameter values.

In the final phase of this thesis, we present three applications of the pro-
posed hyper-heuristic, namely Ant-based selection hyper-heuristic.  Firstly, the
hyper-heuristics are used in a hybrid multi-population framework. The framework
hybridizes selection hyper-heuristic and Estimation of Distribution Algorithm (EDA)
combining offline and online learning mechanisms. A list of probability vectors
for generating good solutions is learned in an offline manner in the first phase.
In the second phase, two sub-populations are maintained. A sub-population is
sampled using an Estimation of Distribution Algorithm, while the other one uses
a hyper-heuristic for sampling appropriate probability vectors from the previously
learned list in an online manner. The empirical results show that the proposed
approach using a particular hyper-heuristic outperforms some of the best known
approaches in literature on the dynamic environment problems dealt with. Even though
Ant-based selection is proposed for dynamic environments, to assess its performance in
a stationary environment, we implement the proposed approach on HyFlex [17] which
provides six stationary optimization problems. We then compare the performance of
proposed method with that of competitors in Cross-domain Heuristic Search Challenge
(CHeSC2011). Finally, we investigate the performance of the proposed approach,

on a real-world dynamic optimization problem referred to as the Dynamic Traveling



Salesman Problem (DTSP). The instances for the Dynamic Traveling Salesman
Problem are generated from the classic Traveling Salesman Problem instances by
introducing the traffic factor proposed in [18]. We compare the experimental results
with those obtained from well-known approaches in literature. Overall, the proposed

methods provide good performance on the tested problems.

1.1 Contribution
The contributions of this work can be stated as follows:

As the first contribution of this thesis, this study is the first study investigating
single point search based hyper-heuristics in dynamic environments. In dynamic
environments, different approaches are proposed to deal with different change
properties. However, hyper-heuristics do not depend on the change dynamics and
therefore hyper-heuristics can be directly employed in various dynamic optimization

problems without requiring any modifications.

As the second contribution of this thesis, this study provides a complete empirical
analysis of different hyper-heuristics coupling well-known heuristic selection and
move acceptance methods in dynamic environments. There is no such previous
study investigating a single point based search hyper-heuristic framework for solving
dynamic environment problems. Moreover, to the best of our knowledge, this is one of
the first studies which investigates the application of hyper-heuristics to a real-valued
optimization as well as being among the very few which address dynamic optimization
issues with these techniques. This study shows that learning selection hyper-heuristics
are sufficiently general. This yields them to be viable approaches in solving not only
dynamic problems regardless of the change dynamics in the environment, but also

continuous optimization problems.

The third contribution is the Ant-based selection hyper-heuristics. We propose a
new learning heuristic selection scheme for selection hyper-heuristics, especially for
use in dynamic environments. Although the existing hyper-heuristics are appropriate
for solving dynamic environment problems, they have some weaknesses. In these
methods, it is assumed that they are aware of the time when the environment changes

and they act on this. However, the proposed heuristic selection approaches do not



require any special actions when the environment changes. The experimental results

show that the proposed methods perform well on the tested problems.

1.2 Outline of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides background
information on hyper-heuristics and dynamic environments as well as a related
literature survey on the topic. Chapter 3 presents the empirical analysis of
a set of hyper-heuristics in dynamic environments exhibiting different change
characteristics. Chapter 4 describes the proposed Ant-based hyper-heuristics for
dynamic environment. The empirical analysis of the proposed methods are also
provided in Chapter 4. Then, Chapter 5 presents three applications of the proposed
hyper-heuristics as well as the experimental study for each application. Finally,

Chapter 6 discusses the conclusion and future work.

1.3 Academic Publications
The list of the publications produced during the PhD research are the following:

Journal publications

e Goniil Uludag, Berna Kiraz, A. Sima Etaner-Uyar, and Ender Ozcan, "A Hybrid
Multi-population Framework for Dynamic Environments Combining Online and

Offline Learning”, Soft Computing, Volume 17, Issue 12, pp. 2327-2348, 2013.

e Berna Kiraz, A. Sima Etaner-Uyar, and Ender Ozcan, "Selection Hyper-heuristics
in Dynamic Environments”, Journal of the Operational Research Society, 64 (12),

pp- 1753-1769, DOI: 10.1057/jors.2013.24, 2013.
International conference publications

e Berna Kiraz, A. Sima Etaner-Uyar, and Ender Ozcan,“An Ant-based Selection
Hyper-heuristic for Dynamic Environments”, EvoApplications 2013, LNCS vol.
7835, pp. 626-635, Springer, 2013.



e Goniil Uludag, Berna Kiraz, A. Sima Etaner-Uyar, and Ender Ozcan, “Heuristic
Selection in a Multi-phase Hybrid Approach for Dynamic Environments”, 12th
Annual Workshop on Computational Intelligence (UKCI 2012), pp. 1-8, 2012.

e GoOniil Uludag, Berna Kiraz, A. Sima Etaner-Uyar, and Ender Ozcan, “A
Framework to Hybridise PBIL and a Hyper-heuristic for Dynamic Environments”,
PPSN 2012: 12th International Conference on Parallel Problem Solving from
Nature, LNCS vol. 7492, pp. 358-367, Springer, 2012.

e BernaKiraz, A. Sima Etaner-Uyar, and Ender Ozcan, “An Investigation of Selection
Hyper-heuristics in Dynamic Environments”, EvoApplications 2011, Part I, LNCS
vol. 6624, pp. 314-323, Springer, 2011



2. BACKGROUND AND RELATED WORK

2.1 Dynamic Environments

A dynamic environment is made up of components, such as, the problem instance,
the objectives and the constraints, each of which may change in time individually
or simultaneously. A change in a component can be categorized based on its
characteristics as given in [13]: (i) Frequency of change defines how often the
environment changes. (i1) Severity of change defines the magnitude of the change
in the environment. (iii) Predictability of change is a measure of correlation between
changes. (iv) Cycle length/cycle accuracy is a property that defines whether the optima

return exactly to previous locations or close to them.

When designing an optimization algorithm for dynamic environments, one of the main
issues for the algorithm to deal with is tracking the moving optima as closely as
possible after a change occurs. Another one is being able to react to a change in the
environment quickly and adapting to the new environment as fast as possible. Several
strategies have been proposed to be used as a part of existing search methodologies for
dynamic environments depending on the change properties. These strategies can be
grouped into four main categories [19]: (i) maintain diversity at all times, (ii) increase

diversity after a change, (iii) use memory, (iv) work with multiple populations.

For the approaches which maintain diversity at all times, e.g., as in the random
immigrants approach [20], achieving and preserving the right level of diversity is
crucial. In this method, a subset of population are replaced randomly generated
solutions at each step during the search. A high level of diversity which is more
than needed for a given problem may be detrimental to the search process during the
stationary periods. These approaches are generally more successful in environments

where the changes are severe and the change frequency is relatively high.

Approaches, such as hypermutation [21] and variable local search [22] increase

diversity by increasing the mutation rate when the environment changes. It has been
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observed that too much diversity disrupts the search process, while too little may not
be sufficient to prevent premature convergence. These approaches are more suitable

for environments where changes are not too severe.

Some approaches make use of memory, as in [23-26], where the evolutionary
algorithm remembers solutions which have been successful in the previous
environments. These approaches are particularly more useful if a change occurs
periodically and a previous environment is re-encountered during the search process at

a later stage.

There are also other approaches with a good performance in dynamic environments,
which make use of multiple populations, such as [13, 27]. In these approaches,
the population is divided into subpopulations, where each subpopulation explores a
different part of the search space. Often, the focus of such an algorithm is tracking

several optima simultaneously in different regions of the search space.

The sentinel-based genetic algorithm (GA) [28] is another multi-population approach
to dynamic environments which makes use of solutions referred to as sentinels,
uniformly distributed over the search space for maintaining diversity. Sentinels are
fixed at the beginning of the search and in general, are not mutated or replaced during
the search. Sentinels can be selected for mating and used during crossover. Due to
having the sentinels distributed uniformly over the search space, the algorithm can
recover quickly when the environment changes and the optimum move to another
location in the search space. Sentinels are reported to be effective in detecting and

following the changes in the environment.

There is a growing interest in Statistical model-based optimization algorithms which
are adaptive and, thus, have the potential to react quickly to changes in the environment
and track them. For example, Estimation of Distribution Algorithms (EDAs), such as,
Univariate marginal distribution algorithm [29], Bayesian optimization algorithm [30],
and Population Based Incremental Learning (PBIL) [31], are among the most common
Statistical model-based optimization algorithms used in dynamic environments. There
are also some studies based on Statistical model-based optimization algorithms for
dynamic environments to estimate both time and direction (pattern) of changes [32—

35].



The standard PBIL algorithm is first introduced by [36]. PBIL builds a probability
distribution model based on a probability vector, ? using a selected set of promising
solutions to estimate a new set of candidate solutions. Learning and sampling are
the key steps in PBIL. Several PBIL variants are presented in literature for dynamic
environment. One of them is a dual population PBIL (PBIL2) introduced in [31]. In
PBIL2, the population is divided into two sub-populations. Each sub-population has

its own probability vector. Both vectors are maintained in parallel.

2.1.1 Dynamic optimization problems

There are different benchmark generators in literature for dynamic environments. The
Moving Peaks Benchmark generator [16] is commonly used in continuous domains,
while in discrete domains the XOR dynamic problem generator [37,38] is preferred.
In the case of permutation-encoded problems, such as Traveling Salesman Problems
(TSP) and Vehicle Routing Problems (VRP), different dynamic versions [18,39-41]

and benchmark generators [41,42] are proposed in literature.

2.1.1.1 The moving peaks benchmark

The Moving Peaks Benchmark (MPB) generator introduced by Branke [16], is used in
this study for analyzing and comparing the performance of different approaches. MPB
is a dynamic benchmark function generator which is not as simplified as most of the
toy problems in literature. Moreover, MPB exhibits similar properties to real world
problems, e.g. through the application of the measures proposed in [43], it has been
shown in [44] that the change dynamics generated by the MPB show a similar behavior

to those observed in a dynamic multi-dimensional knapsack problem.

The MPB generator provides multidimensional and multi-modal landscapes with a
variety of different peak shapes. In MPB, the most commonly used peak shape is the
cone. The height, width and the location of each peak is altered whenever a change in
the environment occurs. A dynamic benchmark function generated using MPB with

cone shaped peaks is formulated as follows:

d
F(1) = max {H;(t) —Wi(r)* | Y (x;—X;(t))*} (2.1)



where m is the number of peaks, d is the number of dimensions, X;; are the coordinates
of the peaks in each dimension, H; and W; are the heights and widths of the peaks
respectively. For example, assume that the current peak coordinates, height and width
values of two peaks in a 2-dimensional landscape at the given time 7. are as given in
Table 2.1. The function value of a real-valued vector (candidate solution) located at

X = (x1,x2) = (10.0,3.0) is calculated as follows:

F((10.0,3.0),z,) = maX{SO.O—O.l*\/((10.0—2.0)2—1—(3.0—2.0)2),

70.0 — 0.5 % \/((10.0 —20.0)2+(3.0—-20.0)2)}
F((10.0,3.0),.) = max{49.19,60.14}
F((10.0,3.0),¢) = 60.14

Table 2.1 : Example peak coordinate, height and width values of a 2-dimensional
landscape with two peaks.

Peak i | X;1(t.) | Xnn(tc) | Wilte) | Hi(tc)
1 2.0 2.0 0.1 50.0
2 20.0 20.0 0.5 70.0

In some applications, a time-invariant base function B(X) is used as part of the
benchmark function. In this case, the new MPB function, denoted as G(X,7) becomes

G(%,1) = max{B(X), F(%,1)}.

When working with the MPB, firstly, the coordinates, heights and widths of the peaks
are initialized. Then, every Ae iterations, the heights and the widths of the peaks are
changed by adding a normally distributed random variable, while the location of the
peaks are also shifted by a vector V of fixed length viength in a random direction.
During the search, the height, width and location of each peak are changed according

to the following equations:

p € N(u,oc% (2.2)
Hi(t) = Hi(t— 1)+ height_severity-p 2.3
Wi(t) = W(t—1)+width_severity-p 2.4)

Xi(t) = Xi(t—1)+it) (2.5)

where p is a random value drawn from a Gaussian distribution N (i, 62), where u and

o2 denote its mean and variance set to 0 and 1, respectively and v;(¢) is the shift vector
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which is the linear combination of the previous shift vector v;(f — 1) and a random
vector 7 normalized to vlength. The height_severity, the width_severity and vlength
parameters determine the severity of the change in the heights, widths and locations
of the peaks respectively. Ae determines the frequency of changes in the environment.

The shift vector at time ¢ is calculated as:

vlength

vi(t) = m((1—¢)?+¢‘7i(f—l)) (2.6)

where the random vector 7 is created by drawing uniformly distributed random
numbers for each dimension and normalizing its length to viength, and ¢ is the
correlation coefficient. Higher values of ¢ indicate a higher correlation between the

current and previous shift vectors.

Figure 2.1 gives an example of an initial fitness landscape on which various types of
changes are applied. The fitness landscapes in the figure are generated using MPB
with a basis function of B(X) = 0. Figure 2.1(a) shows the initial 2-dimensional fitness
landscape with 2 peaks (m = 2). Each of the rest of the sub-figures shows a specific

type of change applied on this initial fitness landscape.

0.
100

(d) (e)

Figure 2.1 : A 2-dimensional fitness-landscape with two peaks is given in (a). The
following changes are applied on this landscape: (b) the peaks are shifted,
i.e. their locations are changed, but their heights and widths remain fixed,
(c) the widths of the peaks are changed, but their locations and heights
remain fixed, (d) the heights of the peaks are changed, but their locations
and widths remain fixed, (e) the heights, widths and locations of the peaks
are changed.
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An initial landscape with five peaks is generated to demonstrate the effect of the
changes on the landscape further. 20 consecutive changes are applied to this initial
landscape. For simplicity, only the heights of the peaks are modified as a change, but
their locations and widths are fixed. Figure 2.2 gives the height of each peak including

the optimum after each change.

I peakl
I peak2
I peak3
7 | ] peak4
[ lpeak5

< | = B =optimum

Peak Heights

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Environment No

Figure 2.2 : The heights of all the peaks given for each stationary environment over
20 changes.

2.1.1.2 XOR generator

XOR dynamic problem generator [37, 38] creates dynamic environment problems
with various degrees of difficulty from any binary-encoded stationary problem using
a bitwise exclusive-or (XOR) operator. Given a function f(X) in a stationary
environment and X € {0,1}/, the fitness value of the X at a given generation g is
calculated as the following:

fR8) = f(xdmy) 2.7)

where my, is a binary mask for k" stationary environment and @ is the XOR operator.
Firstly, the mask m is initialized with a zero vector. Then, every T generations, the
mask my, is changed as

mpy=my_1 Dt (2.8)

where #; is a binary template.
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In literature, Decomposable Unitation-Based Functions (DUFs) [25] are used within
the XOR generator. All Decomposable Unitation-Based Functions are composed of
25 copies of 4-bit building blocks. Each building block is denoted as a unitation-based
function u(x) which gives the number of ones in the corresponding building block.
Its maximum value is 4. The fitness of a bit string is calculated as the sum of the
u(x) values of the building blocks. The optimum fitness value for all Decomposable
Unitation-Based Functions is 100. DUF]1 is the OneMax problem whose objective is
to maximize the number of ones in a bit string. DUF2 has a unique optimal solution
surrounded by four local optima and a wide plateau with eleven points having a
fitness of zero. DUF2 is more difficult than DUF1. DUF3 is fully deceptive. The
mathematical formulations of the Decomposable Unitation-Based Functions, as given

in [25], can be seen below.

four1 = u(x) (2.9)
4 ifu(x)=4
foura =% 2 ,ifu(x)=3 (2.10)
0 ,ifu(x)<3
(4 Lifu(x) =4
fours = { 3—u(x) L ifulx) <4 (2.11)

2.1.1.3 Dynamic traveling salesman problem

The Traveling Salesman Problem (TSP) is an NP-complete combinatorial optimization
problem and defined as the problem of finding the shortest path that visits each city
exactly once and then returns to the starting city. The problem can be represented by
a fully connected weighted graph, such that the cities are the vertices of the graph, the
connections between cities are the edges of the graph, the distance between two cities

is the length of the corresponding edge.

TSP is defined as follows:

f(x) =min zn: zn: dijxij (2.12)

i=0 j=0

subject to
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X = { 1 ,if (i,j) is used in the path 2.13)

0 , otherwise
where 7 is the number of cities, d;; is the distance between city i and city j.

The Dynamic Traveling Salesman (DTSP) is more close to the real world than the
classic TSP. The dynamism can be introduced by changing the location of cities,
adding/deleting cities or changing the distance between the cities. In real world, for
example, traffic jam may change in time. In this case, the salesman needs to re-plan

his route with the minimum cost.

There are different variations of the DTSP in literature. Guntsch and Middendorf [39]
present a DTSP solved using Ant Colony Optimization. The dynamic environment
is constructed by exchanging a number of cities between the actual problem and
a spare pool of cities. This benchmark is adapted in [45, 46]. Eyckelhof and
Snoek [40] propose the DTSP where the travel times between the cities are changed.
They apply a new Ant System approach to the DTSP. Mavrovouniotis and Yang [47]
propose a similar benchmark which is solved using Ant Colony Optimization with
Memory-based Immigrants. Younes et al. [4]1] present a benchmark generator
to produce DTSP with three different modes and several Genetic Algorithms are
compared on the new benchmark. Mavrovouniotis and Yang [42] propose a benchmark
generator for dynamic permutation-encoded problems. They use the benchmark
generator to generate several dynamic instances from Traveling Salesman Problem
and Vehicle Routing Problem. Mavrovouniotis and Yang [18] propose two novel types
of Dynamic Traveling Salesman Problem with traffic factor in random and cyclic
environments. The change dynamics generated by DTSP represents a real world

problem called the traffic jam.

In this thesis, we consider the DTSP with traffic factor proposed in [18]. In DTSP, the

cost of the edge between two cities i and j is changed as follows:
Cij = dij*tij (2.14)

where d;; is the traveled distance and #;; is the traffic factor between two cities i and
j- In randomly changing environment (random DTSP), every Ae iterations, each
traffic factor between two cities is changed by adding a random number R with a

probability of m (t;; = 1 + R). Otherwise, the traffic factor is set to 7;; = 1, which
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means there is no traffic. For each edge, a different random number R € [Ry, Ry]
is generated to reflect the traffic jam, where Ry and Ry are the lower and upper
bound of the traffic factor, respectively. In cyclic environment (cyclic DTSP), on
the other hand, the previous environments reappear in the future. To construct cyclic
environments, a predetermined number of base states are generated as in randomly
changing environments. Then, these base states repeat in a cycle. It should be note that

m and Ae determine the severity of change and the frequency of change, respectively.

2.1.2 Performance evaluation criteria

Online and offline performance can be used to compare the performance of the
algorithms [13]. Online performance is calculated as the cumulative average of all
evaluations, as given below.

Teval

Y e (2.15)
t=1

. 1
online_per formance = —
Tevar

where T,,,; is the total number of evaluations.

Offline performance is calculated as the cumulative average of the best values found

so far since the last change until a given time ¢, as provided in Equation 2.17

Toval

of fline_per formance = Z e (2.16)
eval 1—]

e," =max{er,eri1,...,€} 2.17)

where T, is the total number of evaluations, 7 is the last time step (T < ¢) when
change occurred, and e is the best solution found so far until the time step ¢ since the

last change at time 7.

The overall offline performance [18, 38] is also used to compare the performance of
the algorithms. Given the best of generation fitness of generation i of run j (Fpog;,),

the overall offline performance is calculated as given in Equation 2.18.

— 18 1 X
Fro6 =z 2.(5 X Fso;) (2.18)
i=1 " j=1

where G is the total number generations and N is the total number of runs.

If the optimum value is known at any point in time, offline error metric [13] can be used

to compare the performance of the algorithms. The error value of a candidate solution
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X at time ¢ represents its distance to the optimum in terms of the objective/functional

value at a given time as given in Equation 2.19.
err(X,t) = |optimum(t) — F(X,t)| (2.19)

Here optimum(t) and F(X,t) are the function values of the global optimum solution
and a given candidate solution X at time #, respectively (MPB provides the location and
the function value of the current global optimum). The offline error is calculated as a
cumulative average of err(X,t)* which denote the error values of the best candidate
solutions (X},) found so far since the last change until a given time ¢, as provided in
Equation 2.21. An algorithm solving a dynamic environment problem aims to achieve

the least overall offline error value obtained at the end of a run.

Toval
of fline_error = Z (err(Xp,t)*) (2.20)
eval 1—|
err(Xp,t)* = min{err(Xp,7),err(Xp, T+ 1),...,err(xp,1)} (2.21)

Here T,,, is the total number of evaluations, 7 is the last time step (7 < ¢) when
change occurred, and x;, is the best solution found so far until the time step ¢ since the

last change at time 7.

Moreover, the population diversity [18] can be used to evaluate the performance of the
algorithms. The total population diversity is calculated as provided in Equation 2.22.
1& 1 ¥

Tpy = — (= DIVij) (2.22)
G Y

where G is the total number generations, N is the total number of runs and DIV; is the
diversity of the population of generation i of run j. DIV;; can be calculated as given in

Equation 2.23.

1 [
M(p, 2.23
u(u—l)pg‘lq;;, (p.q) (2.23)

where u is the population size, M(p,q) is the similarity metric between the solution p

DIV;; =

ans solution q.

Statistical significance tests can also be performed to compare the performance of the
approaches. The comparison based on these tests show whether the observed pairwise

performance variations are statistically significant or not. Some of the statistical tests
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include t-test, Wilcoxon sum-rank test and One-way ANOVA and Tukey HSD test. In
this thesis, we perform One-way ANOVA and Tukey HSD tests at a confidence level of
95%. To provide a summary of the statistical comparison results, we count the number
of times an approach obtains a significance state over the others for different change
severity and frequency settings. In the tables providing the summary of statistical
comparisons, the values under s+ shows the total number of times the corresponding
approach performs statistically better than the others and s— shows the vice versa; >
shows the total number of times the corresponding approach performs slightly better
than the others, however, the performance difference is not statistically significant and

< shows the vice versa.

2.2 Hyper-heuristics

Heuristic and many meta-heuristic approaches operate directly on the solution space
and utilize problem domain specific information. Hyper-heuristics [48], on the other
hand, are described as more general methodologies as compared to such approaches,
since they are designed for solving a range of computationally difficult problems
without requiring any modification. They conduct search over the space formed by
a set of low-level heuristics which perturb or construct a (set of) candidate solution(s)
[6,49]. Hyper-heuristics operate at a higher level, communicating with the problem
domain through a domain barrier as they perform search over the heuristics space.
Any type of problem specific information is filtered through the domain barrier. Due
to this feature, a hyper-heuristic can be directly employed in various problem domains
without requiring any change, of course, through the use of appropriate domain specific
low-level heuristics. This gives hyper-heuristics an increased level of generality.

Figure 2.3 shows the framework of the hyper-heuristics.

There are different categorizations of hyper-heuristics in literature.  In [9],
hyper-heuristics are classified into two categories: (1) without learning and (2)
with learning. Hyper-heuristics without learning choose several low-level heuristics
randomly or a predetermined order. On the other hand, hyper-heuristics with learning
incorporate learning mechanism based on the historical performance of the low-level

heuristics.

17



Hyper-Heuristic J

Domain Barrier ]

Problem Domain

+ Representation

Low-level Heuristics Problem Specific Knowledge
‘ ‘ - Fitness Evaluation

LLH - ( LLH,)

Figure 2.3 : Selection hyper-heuristic framework [1].

In [50], hyper-heuristics are classified into two categories: constructive and
perturbative. A constructive hyper-heuristic approach starts with an empty solution;
then, it incrementally chooses and applies an appropriate constructive heuristic until a
complete solution has been obtained. A perturbative hyper-heuristic, on the other hand,
starts from a complete solution which are generated randomly or using a procedure.
It iteratively chooses and applies an appropriate perturbative heuristic to improve
the current solution. When a stopping condition defined by the user is met, the

hyper-heuristic outputs the best solution found during the search.

In [3], hyper-heuristics are classified into four groups: (1) hyper-heuristics based on
the random choice of low-level heuristics, (2) greedy and peckish hyper-heuristics,
which apply the all or a subset of heuristics and choose the best performing one.
(3) meta-heuristic based hyper-heuristics, and (4) hyper-heuristics employing learning

mechanisms.

In [10], hyper-heuristics are classified with respect to two dimensions: (1) nature of
heuristic search space, and (2) the source of feedback during learning. According
to the nature of heuristic search space, there are two main types of hyper-heuristics
in literature [10]: methodologies that select, or generate heuristics. A selection
hyper-heuristic controls a set of low-level heuristics and adaptively chooses the most
appropriate heuristic to invoke at each step. A generation hyper-heuristic generates
new heuristics using basic components of heuristics. Both selection and generation
heuristics use the constructions and perturbation low-level heuristics. According to the

source of feedback, on the other hand, hyper-heuristics are classified into three groups:
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online learning hyper-heuristics, offline learning hyper-heuristics, and hyper-heuristics
without learning. Online learning hyper-heuristics get the feedback/guidance during
the search process while a problem instance is being solved. Offline learning
hyper-heuristics make use of a training session using a set of test instances to learn

how to deal with unseen instances.

2.2.1 Selection hyper-heuristics

A selection hyper-heuristic is a high-level heuristic that adaptively controls a set of
simple, low-level heuristics [1, 6,9, 51]. Basically, at any given point during the
execution of a problem, a hyper-heuristic will decide the specific low-level heuristic to
apply.

In a selection hyper-heuristic framework, an initial candidate solution is iteratively
improved through two successive stages: heuristic selection and move acceptance [49].
Almost all selection hyper-heuristics in literature perform a single point based
search [11]. In the first stage, a heuristic is selected from a fixed set of low-level
perturbative heuristics and applied to the solution in hand, generating a new one. The
heuristic selection method does not use any problem domain specific knowledge while
making this decision. Then, the new solution is either accepted or rejected based on an
acceptance method. This process is repeated until the termination criteria are satisfied
and the best solution is returned. The general view of an selection hyper-heuristics in

pseudocode is given in Algorithm 1.

Algorithm 1 A Selection Hyper-heuristic Framework - Single-point Search.

generate initial candidate solution p
while (termination criteria not satisfied) do
select a heuristic 4 from Hy,...,H,
generate a new solution s = h(p) by applying & to p
decide whether to accept s or not
if (s is accepted) then
p=s
end if
end while

2.2.1.1 Heuristic selection methods

Heuristic selection methods without learning include Simple Random (SR) and

Random Permutation (RP) [6,9]. Simple Random heuristic selection chooses a
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low-level heuristic at random, whereas Random Permutation uses all low-level
heuristics and chooses the one at the head of a queue in which heuristics are randomly

ordered.

On the other hand, an online learning hyper-heuristic gets feedback during the search
process in order to improve its performance. Some of these methods include Random
Descent (RD), Random Permutation Descent (RPD), Greedy (GR), Choice Function
(CF) [6,9], and Reinforcement Learning (RL) [52].

Random Descent applies a randomly selected heuristic to the current solution
repeatedly as long as the solution improves, then another heuristic is selected randomly.
Random Permutation Descent selects a heuristic in the same way as Random
Permutation, but it applies the selected heuristic repeatedly as long as the solution
improves. The gradient heuristic selection operators can be considered as learning
hyper-heuristic components with a short term memory, since the same heuristic is used
as long as there is improvement which requires objective value of the solution from
the previous step. Greedy applies all low-level heuristics to the current solution and

selects the one which generates the largest improvement.

Choice Function maintains a utility score for each low-level heuristic H; (Equa-
tion 2.24), measuring how well it has performed individually (u; (H;) in Equation 2.25)
and as a successor of the previously selected heuristic (u2(H;,Hgolocted) iN
Equation 2.26), and the elapsed time since its last call (u3(H;) in Equation 2.27). The
heuristic with the maximum score is selected at each iteration (Hgg|ected)- The score of
each heuristic denoted as score(H;) gets updated after the heuristic selection process.
Given that Af,,(y) (Afn(x,y)) denotes the change in the solution quality and Time,(y)
(Timey(x,y)) denotes time spent, when the nth last time heuristic y was selected and

applied to the current solution (before the application of heuristic x):

Vi, SCOF€(H,'> = aul(H,-) +ﬁ“2(Hi7Hselected> +5u3(H,-) (2.24)

| L A(H)
H. _ n—1_=Jn\") 2.25
Vi, uy(H;) ;OC Time, (H;) ( )
. _ Afn(HHH lect d)
Vi, up(H;, H ) B 0 (220
i»Mgelected ; Time,(H;,Hyolected)
Vi, u3(H;) = elapsedTime(H;) 227
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Cowling et al. [51] provide a mechanism showing how the parameters o, B € (0, 1]

and 0 can be adjusted dynamically.

Reinforcement Learning [52] maintains a utility score (weight) for each low-level
heuristic. Initially, all scores are the same for all heuristics, e.g., 0. If the selected
heuristic improves the solution, its score is increased; otherwise it is decreased, e.g.
by one. A heuristic is selected with the highest utility value (or based on some other
criteria) at each step. The scores for the low-level heuristics are restricted to vary

between certain lower and upper bounds.

2.2.1.2 Move acceptance methods

Move acceptance methods can be deterministic or non-deterministic. Several move
acceptance criteria are proposed in literature. All Moves (AM), Only Improving
(OD), and Improving and Equal (IE) are some examples for the deterministic
acceptance criteria in literature [6,53]. There are other more sophisticated acceptance
mechanisms, such as Great Deluge (GD) [54], Exponential Monte Carlo With
Counter (EMCQ) [55], Simulated Annealing (SA) [56], and Simulated Annealing with
Reheating (SA+RH) [57].

All Moves accepts a solution in any case
Only Improving accepts a solution only if it is better than the previous solution
Improving and Equal accepts improving and equal moves.

Great Deluge accepts improving and equal moves. In addition, a worsening move is
accepted, if it is better than a dynamically changing threshold value which depends
on the current time and overall duration of the experiment. Linearly decreasing the
threshold value at each step is a common practice as illustrated in Equation 2.28 to

determine an acceptance range for a given worsening solution.

t

threshold; = ffinal +AF- (1= -
reshold, ffm“l+ ( maxlIterations

) (2.28)

where [y 1s the expected objective value, maxiterations is the maximum number
of steps (or total time), ¢ denotes the current step (time), AF is an expected range

for the maximum solution quality (fitness/cost) change.
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Exponential Monte Carlo With Counter accepts all improving moves and a worsen-

ing move with a probability p given in Equation 2.29.
p=e 2, (2.29)

where Q is a counter for successive worsening moves and m is the unit time in
minutes that measures the duration of the heuristic execution, Af is the difference
in the quality between new and current solutions. Q is reset if the quality of the

solution improves, otherwise it is incremented.

Simulated Annealing accepts all improving moves and a worsening move with a

probability p given in Equation 2.30.

Af

p=e 0 iamraions) (2.30)

Simulated Annealing with Reheating accepts all improving moves. Additionally, the
following formula e~ 7 is used while deciding whether or not to accept a worsening
move. The temperature (7') is reduced using the nonlinear formula, 7' = # [58],

where

y— 0= tyima)it€rieny (2.31)

 maxlterations-tyt fina’
iteriemp 18 the number of iterations at a temperature. During the reheating phase,

the temperature is increased using the formula 7' = ; L

=97 and the system reenters

the annealing phase.

2.2.2 Related literature

Cowling et al. [6] define hyper-heuristics as "heuristics to choose heuristics" and
investigate the performance of different heuristic selection methods on a real-world
scheduling problem. These methods include Simple Random, Random Descent,
Random Permutation, Random Permutation Descent, Greedy and a more elaborate
learning heuristic selection method, namely Choice Function. In [6,59], the authors
combine all the above heuristic selection methods with the following deterministic
acceptance methods: All Move and Only Improving. The computational experiments

result with the success of the Choice Function—All Moves hyper-heuristic.

Nareyek [52] applies Reinforcement Learning (RL) heuristic selection to Orc Quest

and modified Logistics Domain problems. The author investigates different negative
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and positive adaptation strategies as well as heuristic selection methods based on the
scores. All Moves is the acceptance method used in this study. The results show that
high negative and low positive adaptation rates are preferable and maximum strategy

performs better than soft max for choosing a low-level heuristic based on their scores.

Kendall and Mohamad [54] apply a Great Deluge move acceptance based

hyper-heuristic to a mobile telecommunications network problem.

Ayob and Kendall [55] propose a set of Monte Carlo move acceptance methods
inspired from the well-known simulated annealing meta-heuristic. The results show
that Simple Random heuristic selection combined with Exponential Monte Carlo With

Counter move acceptance (EMCQ) performs well.

Bai et al. [56] show that Simulated Annealing (SA) as a move acceptance is promising.
Bilgin et al. [53] compare the performances of many heuristic selection and move
acceptance combinations in hyper-heuristics. The results show that a standard
simulated annealing move acceptance performs the best, especially combined with

Choice Function.

Bai et al. [57] investigate the performance of a Reinforcement Learning — Simulated
Annealing with Reheating (SA+RH) hyper-heuristic on nurse rostering, university
course timetabling and one-dimensional bin packing problems. This hyper-heuristic
generates a better performance when compared to the other meta-heuristic solutions in
each problem domain. The same acceptance is also used by Dowsland et al. [60] as a
part of a hyper-heuristic which hybridized Tabu Search with Reinforcement Learning
as a heuristic selection method. This hyper-heuristic performs well on a shipper

rationalization problem.

Burke et al. [61] compare the performance of different Monte Carlo move acceptance
methods over a set of benchmark examination timetabling problems. Exponential
Monte Carlo with Counter as a move acceptance delivers a poor performance
as compared to Simulated Annealing based methods. Simulated Annealing with
Reheating turns out to be very promising as a move acceptance component of a

hyper-heuristic.

Ozcan et al. [62] experiment with Great Deluge based hyper-heuristics on examination

timetabling. It is observed that Reinforcement Learning—Great Deluge delivers a
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promising performance, when an additive/subtractive adaptation rate is used for
rewarding/punishing. Similarly, Gibbs et al. [63] report the success of Reinforcement
Learning—Great Deluge and Reinforcement Learning—Simulated Annealing for solving

sports scheduling problems.

Drake and Ozcan [64] propose a modified version of Choice Function improving
its performance (ICF) in which weights dynamically change, enforcing the search
process to go into diversification faster than usual, when the successive moves are

non-improving.

2.2.3 HyFlex and first cross-domain heuristic search challenge

Hyper-heuristics are highly adaptive search methodologies that aim to raise the
level of generality by providing solutions to a diverse set of problems having
different characteristics. Hyper-heuristics Flexible framework (HyFlex) [110] is an
interface designed to develop, test and compare the hyper-heuristics. The interface
is referred as the domain barrier between low-level heuristics and a hyper-heuristic
in the hyper-heuristics. HyFlex consists of two parts: a general-purpose and the
problem-specific. The problem-specific part provided by the framework contains
a number of problem domain modules. The general-purpose part contains the

hyper-heuristics which need to be implemented by the user.

In [17], HyFlex is implemented as a modular framework in Java and used at the
CHeSC2011 — Cross-domain Heuristic Search Challenge [111], a competition on
hyper-heuristics held in 2011. In this competition, different hyper-heuristics compete
for solving problem instances from different problem domains. In the current version
of HyFlex, it provides six problem domains: maximum satisfiability (MAX-SAT),
one-dimensional bin packing (BP), personnel scheduling (PS), permutation flow shop
(FS), the traveling salesman problem (TSP) and the vehicle routing problem (VRP).
For each problem domain, four main heuristic types, namely mutational heuristics
(MU), crossover (OX), ruin-recreate heuristic (RC) and hill-climbing heuristics (HC),
are implemented. Table 2.2 summarizes the number of low-level heuristics for each
heuristic type for each problem domain. Further details about these problems and their

instances can be found in [65-68].
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Table 2.2 : The number of low-level heuristics for each heuristic type for each problem
domain.

Problem Domain MU RC OX HC Total

MAX-SAT 6 1 2 2 11
BP 3 2 1 2 8

PS 1 3 3 5 12
FS 5 2 4 4 15
TSP 5 1 4 3 13
VRP 3 2 2 3 10

In the current implementation of HyFlex, all low-level heuristics are perturbative
heuristics and all crossover operators generate a single offspring. The parameters
of low-level heuristics, namely mutation density and depth of hill-climbing, can be
adjusted. The mutation density indicates the degree of the changes that the mutation
operators generate a solution. The depth of hill-climbing determines the number of

step completed by the hill-climbing heuristics.

In CHeSC2011, the algorithms are allowed to run with 4 test domains and 2 hidden
domains. Moreover, 5 instances are used for each problem domain. Each run is
repeated 31 times and is executed 600 seconds running time. As comparison and
ranking, the organizers adopted the Formula 1 scoring system used before 2010. The
top eight approaches are given a score of 10, 8, 6, 5, 4, 3, 2 and 1 points for each
problem instance from the best to the worst, successively. The rest of the approaches
receive a score of 0. The comparison and the ranking of the approaches are based
on the median result generated by each approach over a given number of runs for an
instance. The sum of scores over all problem instances determine the final ranking of

an approach.

2.2.4 Selection hyper-heuristics in dynamic environments

Ozcan et al. [69] is the first study which proposed a hyper-heuristic for solving
dynamic environment problems to the best of our knowledge. The authors apply a
Greedy hyper-heuristic to five well known benchmark functions. The Greedy heuristic
selection method is chosen as a hyper-heuristic component with the hope that it would
respond to the changes in the environment quickly. The results indeed show that this

selection hyper-heuristic is capable of adapting itself to the changes.
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In [70], the authors compare the performance of different heuristic selection
mechanisms within the selection hyper-heuristic framework. The hyper-heuristics
combine the Improving and Equal acceptance with five heuristic selection methods
controlling a set of mutational low-level heuristics in a very simple dynamic
environment. The landscape is only allowed to shift in this environment, and its
general features remained the same. The Moving Peaks Benchmark is used during
the experiments. Choice Function—Improving and Equal delivers the best average

performance.

Kiraz and Topcuoglu [71] propose a population based search framework embedding
a variety of hyper-heuristics which combine {Simple Random, Random Descent,
Random Permutation, Random Permutation Descent, Choice Function} with {All
Moves, Only Improving}. The behavior of these hyper-heuristics is investigated over
a set of dynamic generalized assignment problem instances. The authors use an
evolutionary algorithm operating on two subpopulations: search and memory. The
individuals in the search subpopulation are perturbed using a heuristic selected by a
hyper-heuristic and the other one is evolved using a standard evolutionary algorithm
updating the memory periodically. The results show that the Random Permutation
Descent—All Moves and Choice Function—All Moves hyper-heuristics performed well

in general.
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3. SELECTION HYPER-HEURISTICS IN DYNAMIC ENVIRONMENTS

In this thesis, we explore the performance of a set of hyper-heuristics in dynamic
environments exhibiting different change characteristics, which are generated using

the MPB generator.

We experiment with thirty five hyper-heuristics composed of five heuristic selection
methods {Simple Random, Greedy, Choice Function, Reinforcement Learning,
Random Permutation Descent} combined with seven move acceptance methods
{All Moves, Only Improving, Improving and Equal, Exponential Monte Carlo with
Counter, Great Deluge, Simulated Annealing, Simulated Annealing with Reheating}.
All these hyper-heuristic components have different properties. Simple Random
uses no feedback. Greedy selects the best solution at each step. Choice Function
and Reinforcement Learning incorporate an online learning mechanism. Random
Permutation Descent makes a random choice, but converts the framework into a
hill climber, since the same heuristic is invoked repetitively as long as the solution
improves. Great Deluge, Exponential Monte Carlo with Counter, Simulated Annealing
and Simulated Annealing with Reheating are non-deterministic acceptance methods
for which the acceptance decision depends on a given step. On the other hand, All

Moves, Only Improving, Improving and Equal acceptance methods are deterministic.

The experiments consist of four parts. In the first part, a simple dynamic environment
scenario is investigated, where only the locations of the peaks are changed but their
heights and widths remain the same. We will refer to these set of experiments as
EXPSETI1. In the second part, denoted as EXPSET2, the approaches are compared
in environments of different change frequencies and change severities, where peak
locations as well as peak heights and widths are changed. In the third part, we explore
the tracking ability of the approaches. In the last part their scalability is investigated
through experiments where the number of peaks and the number of dimensions are

increased.
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3.1 Experimental Setting

The hyper-heuristics used in this study are applied to a set of real-valued dynamic
function optimization instances produced by the Moving Peaks Benchmark (MPB)
generator. A candidate solution is a real-valued vector representing the coordinates of a
point in the multidimensional search space for a given instance, for which the length of
the vector is the number of dimensions. In order to perturb a given candidate solution, a
parameterized Gaussian mutation, N(0, 62), where o denotes the standard deviation, is
implemented. Seven mutation operators based on seven different standard deviations;
{0.5, 2,7, 15, 20, 25, 30} are used as low-level heuristics within the hyper-heuristic
framework during the experiments. A low-level heuristic draws a random value from
the relevant Gaussian distribution for each dimension separately and this random value

is added to the corresponding dimension of a candidate solution to generate a new one.

Table 3.1 lists the fixed parameters of the Moving Peaks Benchmark used during the
experiments. These parameter settings are taken from [13,16]. In the scalability
experiments (subsection 3.2.5), dimension and peak counts are changed while the rest

of the settings are kept the same.

Table 3.1 : Parameter settings for the Moving Peaks Benchmark.

Parameter Setting Parameter Setting
Number of peaks p 5 Number of dimensions d 5
Peak heights € [30,70] Peak widths €[0.8,7.0]
Peak function cone Basis function not used
Range in each dimension | € [0.0,100.0] || Correlation coefficient ¢ 0

In this study, we experiment with combinations of two change characteristics, namely
the frequency and the severity of the changes. We performed some initial experiments

to determine the settings for various change frequencies and severities.

First, we utilize the Simple Random heuristic selection as a basis to determine change
frequency settings. We allow a Simple Random-Improving and Equal hyper-heuristic
to run for long periods without any change in the environment. Based on the resultant
convergence behavior given in Figure 3.1, we determine the change periods! as 6006

fitness evaluations for low frequency (LF), 1001 for medium frequency (MF) and 126

I'Since we have 7 low-level heuristics and the Greedy heuristic selection method evaluates all at each
step, these values are determined as multiples of 7 to give each method an equal number of evaluations
during each stationary period.

28



for high frequency (HF). In the convergence plot, 6006 fitness evaluations correspond
to a stage where the algorithm has been converged for some time, 1001 corresponds to
a time where the approach has not yet fully converged and 126 is very early on in the

search.
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Figure 3.1 : Average convergence plot generated by the best solution versus fitness
evaluation counts for Simple Random and Improving and Equal.

In MPB, the severity of the changes in the locations of the peaks, their heights
and widths are controlled by three parameters, namely viength, height_severity and
width_severity, respectively. We determine low severity (LS), medium severity (MS)
and high severity (HS) change settings based on the Moving Peaks Benchmark
formulation given in Equation 2.1. The parameter settings used in the experiments

for different levels of severity are provided in Table 3.2.

Table 3.2 : MPB parameter settings for each severity level.

Setting LS | MS | HS
viength 1.0 | 5.0 | 10.0
height_severity | 1.0 | 5.0 | 10.0
width_severity | 0.1 | 0.5 | 1.0

Each run is repeated 100 times for a given setting. Each problem instance contains 20
changes in a given environment, i.e. there are 21 consecutive stationary periods. The
total number of iterations per run (maxlterations) is determined based on the change

period as given in Equation 3.1,

maxlterations = (NoO fChanges + 1) x ChangePeriod 3.1
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where there are (NoO fChanges+ 1) stationary periods with a length of ChangePeriod,
including the initial environment before the first change. The performance of the

approaches is compared based on the offline error metric (see Equation 2.17).

3.1.1 Approaches used in comparisons

The performances of different hyper-heuristics are compared to well known
techniques from literature including a Hypermutation [21] based approach (HM),
(1,A)-Evolutionary Strategies (ES) [72] and (u,A)-Covariance Matrix Adaptation
Evolution Strategy (CMAES) [73-75]. These techniques are chosen since they are
well known approaches to real-valued optimization and all use a different mutation
adaptation scheme to deal with the dynamics in the environment. Hypermutation
adapts the mutation rate whenever the environment changes. ES adapts the mutation
rate based on the success or failure of the ongoing search. In CMAES, adaptation is

based on the adaptation of the covariance matrix.

The parameter settings of HM, ES and CMAES are determined empirically as a result

of a series of preliminary experiments so that they achieve a good performance.

Hypermutation performs a Gaussian mutation with a fixed standard deviation of
2 during the stationary periods. When a change occurs, the standard deviation
is increased to 7 for 70 consecutive fitness evaluations. Afterwards, the standard

deviation is reset to 2.

In (1,A)-ES, A offspring (new candidate solutions) are generated from one parent
(current solution in hand) by a Gaussian mutation with zero mean and a standard
deviation of ¢. The initial value for o is set to 2. Whenever the environment changes,
O is reset to this initial value. During the stationary period of the search, ¢ is adapted
according to the classical 1/5 success rule [72] as shown in Equation 3.2 at every k
iterations. If the percentage of successful mutations, denoted as p; is greater than 1/5,
o is increased, otherwise it is decreased. After A offspring are obtained, a solution is
selected from them to replace the parent. The value of & is set to 7. This evolutionary
process repeats until a maximum number of iterations is completed.
c/c ifps>1/5

c={ o.c ifp;<1/5 (3.2)
o ifp,=1/5
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During the experiments, the value of the parameter ¢ is set to 0.9 € [0.85,1) as

suggested in [72].

CMAES is the state-of-the-art algorithm for global optimization. It is based on the

adaptation of the covariance matrix. In CMAES, offspring at generation g+ 1 are

generated by sampling the multivariate normal distribution [73],i.e. k=1,...,4
x]((g+l) _ <x>5§) +0'® ~ N(0,c®)) (3.3)

where (x) sf) is the weighted mean of the u best individuals at generation g, o is the

mutation step size, C(8) is the covariance matrix at generation g. The covariance matrix
C is adapted via the evolution path. The step size o is initialized to o = 0.3 and is then
updated using a cumulative step-size adaptation (CSA) approach, in which a conjugate

evolution path is constructed [73]. Further details on CMAES can be found in [73-75].

The initial value of u is set to 1 for CMAES for a fair comparison with the other single
point search methods [73], while the value of A for ES and CMAES is set to 7 for a fair

comparison with the Greedy hyper-heuristic which makes 7 evaluations at each step.

3.1.2 Parameter settings of hyper-heuristics

Some of the heuristic selection and acceptance methods have parameters which require

initial settings.

e In Reinforcement Learning, the initial scores of all heuristics are set to 15. Their
lower and upper bounds are set to 0 and 30, respectively as suggested in [62]. If
the current heuristic produces a better solution than the previous one, its score is

increased by 1, otherwise it is decreased by 1.

e In Choice Function, ¢, B, and J are set to 0.5 and updated by +0.01 at each

iteration.

e In Exponential Monte Carlo with Counter, the value of B is set to 60, 10, 2 for LF,

MF and HF changes, respectively.

e In Great Deluge, Simulated Annealing and Simulated Annealing with Reheating,
the expected range is calculated as AF = initial Error — optimumError, where

initial Error is the error value of initial candidate solution and optimumError = 0.
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Also in Simulated Annealing with Reheating, the starting and final temperatures are

set to tg = —AF /log(0.1) and t £, = —AF /10g(0.005), respectively.

It is assumed that all programs are aware of the time when a change occurs during the

experiments. As soon as the environment changes,

the current solution is re-evaluated.

the Exponential Monte Carlo with Counter parameters m and Q are reset to 1.

the expected range (AF) is recalculated for Great Deluge and Simulated Annealing.

the system enters the reheating phase for Simulated Annealing with Reheating.

On the other hand, the parameters of the heuristic selection methods Choice Function

and Reinforcement Learning are not updated at all when the environment changes.

3.2 Results

All trials are repeated for 100 times using each approach for each test case. The results
are provided in terms of average offline error values in the tables. The performances
of the approaches are compared under a variety of change frequency-severity pair
settings where each setting generates a different dynamic environment. In the rows
of the tables, we can see the performance of each approach. Each column shows the
performance of all the approaches for the corresponding change frequency-severity
pair settings. In addition, the best performing approach is marked in bold in the result
tables. The comparisons based on One-way ANOVA and Tukey HSD tests at a 95%
confidence level are performed to show whether the observed pairwise performance
variations are statistically significant or not. We illustrate the tracking ability of the
approaches as well as their scalability, only using EXPSET? in this section, since we

have observed the same behavior for EXPSET1 and EXPSET?2.

3.2.1 Results for EXPSET1

Table 3.3 summarizes the results of EXPSET1 using MPB in which only the peak
locations change in time. This table shows the offline error generated by each approach

for different change frequency-severity combinations. The performance of all methods
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degrades as the change frequency increases. Moreover, the offline error becomes
particularly high when the change frequency is high. Performance also degrades
for almost all methods as the severity of change increases. These observations are
somewhat expected, based on the fact that the methods are provided with a very limited

time to respond to the changes in the environment.

We performed statistical significance tests to determine the overall best heuristic
selection and best move acceptance methods. Considering all hyper-heuristic runs
where a different heuristic selection method is used, Only Improving and Improving
and Equal acceptance consistently perform the better over all frequency-severity
settings. However, when considering all hyper-heuristic runs where a different move
acceptance method is used, there is more variation among the best performing heuristic

selection methods for different frequency-severity settings:

e Greedy performs the best when combined with the All Moves acceptance.

e Choice Function is the best as a heuristic selection method to be combined with the

Improving and Equal, Only Improving and EMCQ acceptance methods.

e Greedy seems to perform the best for low frequency changes, while the heuristic
selection methods that rely on randomness, i.e., RPD and Simple Random perform
better for higher frequency changes when combined with Simulated Annealing and

Simulated Annealing with Reheating.

e Great Deluge based hyper-heuristics perform similarly regardless of the heuristic

selection.

Overall, considering the average offline error results given in Table 3.3 and the
statistical significance tests, Choice Function is the best performing hyper-heuristic
when combined with Only Improving and Improving and Equal for EXPSETI.
Hypermutation performs the best when combined with the Improving and Equal
and Only Improving acceptance methods. However, overall it is one of the
heuristic selection methods which delivers very poor performance. Evolutionary
Strategy performs well in the cases for which the change frequency is low. Its
performance deteriorates as the frequency increases. CMAES performs the best

only when both the change frequency and severity are low. For this particular case,
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Evolutionary Strategy is the second best performing approach. For the remaining
severity settings with low frequency, Evolutionary Strategy performs best. For all
the remaining frequency-severity settings, Choice Function-Improving and Equal and

Choice Function—Only Improving give the better performance.

3.2.2 Results for EXPSET2

Table 3.4 summarizes the results of EXPSET2 using MPB in which peak locations,
their heights and widths are changed. This table shows the offline error generated
by each approach for different combinations of frequency and severity of change.
Similar phenomena as in the previous part (EXPSET1) are observed during this set
of experiments. The methods deteriorate in performance as the change frequency

increases.

We again performed statistical significance tests to determine the overall best heuristic
selection and best move acceptance methods. In this set of experiments, the Improving
and Equal, Only Improving and EMCQ acceptance methods all perform well. In most
cases, there is no statistically significant difference between them when applied in
combination with different heuristic selection method. Considering all hyper-heuristic
experiments for which a different move acceptance method is used, the Choice
function, Reinforcement Learning and Random Permutation Descent perform well.
For all cases, there is no statistically significant difference between them when

combined with Improving and Equal, Only Improving and EMCQ.

Hypermutation is again among the worst performing heuristic selection methods.
Evolutionary Strategy performs the best only when both the change frequency and
severity are low. Unlike in the previous experiments, in EXPSET2, CMAES does
not perform the best in any of the change frequency-severity settings. For most
cases, Evolutionary Strategy and CMAES are outperformed by the Choice Function,
Reinforcement Learning and Random Permutation Descent in combination with either

Improving and Equal, Only Improving or EMCQ acceptance methods.

3.2.3 Dynamic environment heuristic search challenge

In order to evaluate the performance of hyper-heuristics across different dynamic

environments and see their relative performance as compared to the state-of-the-art
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Table 3.3 : The offline error generated by each approach during the EXPSETI
experiments for different combinations of change frequency and severity

settings.
Algorithm LF MF HF
LS MS HS LS MS HS LS MS HS

GR-AM 2492 24.69 2477 38.08 37.69 37.90 63.92 63.03 63.51
GR-OI 124 222 338 3.15 742 12.15 13.54 22.58 31.56
GR-IE 1.26 223 3.39 306 736 12.18 13.85 2295 31.52
GR-GD 207 410 5.99 4.02 834 13.59 1473  24.19 31.96
GR-EMCQ 269 3.67 4.6 489 820 1296 14.16 2272 31.72
GR-SA 352 728 13.20 11.47 18.50 23.71 38.49 4333 46.48

GR-SA+RH 6.18 674  8.00 15.05 16.30 18.60 55.97 55.86 56.11

CF-AM 123.36 122.02 121.82 155.43 155.19 149.75 190.32 186.44 183.42
CF-OI 0.66 0.72  0.81 1.43 1.73  2.27 5.21 7.25 11.74
CF-IE 0.66  0.71 0.81 143 1.65 2.27 556 759 12.04
CF-GD 295 447 712 4.02  6.19 10.57 893 12.78 19.43
CF-EMCQ 0.86 091 1.03 1.57 1.92 258 599 812 1221
CF-SA 5.88 11.39 19.77 3097 3245 54.03 131.49 134.67 130.75

CF-SA+RH 13.53 13.58 13.96 2486 26.87 27.50 61.42 67.82 75.62

SR-AM 35.04 3493 3523 52.96 53.09 52.76 86.68 86.45 85.54
SR-OI 0.97 1.19 1.37 1.82 299 421 544 1129 18.41
SR-IE 0.97 1.18 1.38 1.87 3.01 4.23 525 1147 18.06
SR-GD 206 402 6.62 333 634 10.29 6.95 13.07 20.76
SR-EMCQ 1.68 208 231 277 406 5.19 6.47 12.13 18.51
SR-SA 370 972 15.96 6.79 15.01 24.01 40.63 42.19 48.23

SR-SA+RH 879 893 887 14.45 15.18 16.04 3126  32.62 35.66

RL-AM 3772 3723 37.76 61.31 60.54 60.93 96.23 94.37 97.85
RL-OI 096 1.12 1.25 1.82 263 340 522 996 1551
RL-IE 096 1.11 1.25 1.84 262 347 541 10.16 15.50
RL-GD 226 4.01 6.28 348  6.28 10.10 6.96 1222 19.27
RL-EMCQ 1.43 1.66 181 241 324 413 6.55 10.22 15.46
RL-SA 363 895 15.65 743 1533  25.40 5590 65.70 68.59

RL-SA+RH 856  8.38 8.64 1581 16.47 16.14 3339 36.73 41.01

HM-AM 60.44 59.60 59.58 88.57 87.00 87.15 113.11 111.65 112.23
HM-OI 222 251 2.56 347 466 523 8.17 1450 18.09
HM-IE 222 250 257 346 471 5.19 8.66 14.60 18.68
HM-GD 374 460 6.11 561 736 9.64 943 1581 19.72
HM-EMCQ 257 278  2.86 392 495 550 9.37 1476 18.49
HM-SA 514 9.14 1487 9.79 1551 23.90 56.10 65.38 70.23

HM-SA+RH 7.83 8.06 845 1475 15.33 1491 31.68 3293 33.53

RPD-AM 36.60 36.90 36.43 54.86 5428 54.40 88.81 88.96 89.45
RPD-OI 0.97 1.13 1.28 1.78 268 3.63 5.16 1041 16.24
RPD-IE 0.96 1.13 1.28 1.78 268 3.70 5.09 1027 16.36
RPD-GD 209 393 642 324  6.13  9.87 6.64 1224 19.28
RPD-EMCQ 152 1.80 1.96 247 348 443 6.02 10.73 16.65
RPD-SA 356 9.19 15.04 6.27 14.16 23.00 3940 42.66 48091

RPD-SA+RH 814  8.07 850 13.83 14.19 14.96 30.75 32.66 35.28

ES 0.53  0.65 0.79 287 344 419 11.08 12.67 15.88
CMAES 042 159 314 1.96 5.60 10.06 9.66 13.57 1997
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Table 3.4 : The offline error generated by each approach during the EXPSET2
experiments for different combinations of change frequency and severity

settings.
Algorithm LF MF HF
LS MS HS LS MS HS LS MS HS

GR-AM 2647 22.85 24.86 39.36 3298 35.00 63.41 52.63 56.06
GR-OI 4.35 8.82 11.48 6.19 14.06 19.14 17.08 28.16 36.08
GR-IE 463 896 11.69 6.33 15.03 19.38 17.06 27.61 35.58
GR-GD 5.11 9.96 13.09 7.05 15.04 20.34 18770 27.81 36.31
GR-EMCQ 535 852 1147 8.34 1337 19.50 17.60 28.80 36.47
GR-SA 552 11.10 17.17 15.88 20.18 25.86 4331 4030 45.14

GR-SA+RH 8.88 11.35 13.81 16.93 1929 22.84 56.71 47.78 50.02

CF-AM 120.80 100.11 103.07 157.44 127.87 12845 191.67 147.74 149.18
CF-OI 438 9.07 12.19 436 9.60 13.66 870 16.11 24.34
CF-IE 3.81 946 11.04 4.68 10.75 13.59 8.58 1597 2482
CF-GD 594 1265 17.62 7.25 1459 2197 11.54 1994 31.22
CF-EMCQ 416 9.76 11.72 479 954 1322 9.27 15.85 24.60
CF-SA 9.79 16.80 30.05 33.59 50.68 76.72 127.10 120.53 120.31

CF-SA+RH 17.17 21.65 24.68 29.76  34.78 39.77 68.99 73.81 8&5.31

SR-AM 37.03 33.09 35.36 54.60 47.71 50.13 88.27 75.67 78.21
SR-OI 3.89 819 10.24 546  9.65 13.27 8.83 18.65 26.90
SR-1IE 4.04 754 984 496 10.76 13.60 8.87 18.46 27.24
SR-GD 522  9.63 1296 6.39 13.25 17.59 9.87 20.10 29.26
SR-EMCQ 478 7.84 10.23 579 10.04 14.04 10.03 18.83 28.16
SR-SA 536 12779 19.78 9.06 18.05 27.41 44.63 4190 50.21

SR-SA+RH 10.74 1297 14.06 17.19 19.58 21.70 35.85 35.60 39.64

RL-AM 39.82 3535 37.06 62.72 53.69 56.58 99.50 83.29 85.32
RL-OI 4.04 7775 9.8l 497 9.55 13.28 8.45 18.14 25.26
RL-1IE 410 796  9.32 524 993 13.23 9.04 18.63 24.05
RL-GD 5.64 10.11 13.64 6.65 13.52 17.79 9.98 19.51 28.55
RL-EMCQ 437 758 996 546 10.03 13.22 9.36 1851 26.18
RL-SA 526 12.85 20.49 9.79 2140 34.07 65.18 65.29 73.03

RL-SA+RH 10.72 1294 15.10 1875 21.92 2478 37770 43.07 48.33

HM-AM 62.52 56.36 59.70 90.72 78.52 8227 11532 98.13 101.77
HM-OI 5.59 10.63 13.00 6.88 1351 15.73 11.41 2221 2932
HM-IE 544 1137 1348 6.72 13.09 15.81 11.26 23.53 29.63
HM-GD 6.66 1192 1594 891 1581 19.79 12.46 2395 3043
HM-EMCQ 5.80 990 12.49 7.09 1295 15.48 12.59 2239 29.49
HM-SA 7.50 13.82 22.14 12.10 20.13 32.12 62.87 72.03 81.57

HM-SA+RH 11.16 14.46 16.58 17.69 2223 2434 35.04 3831 4272

RPD-AM 38.80 33.99 36.77 56.75 48.90 51.39 90.22 76.93 80.70
RPD-OI 426 7.54 10.17 5.01 10.19 12.61 812 17.73 25.56
RPD-IE 4.14  8.12 10.28 5.00 9.67 12.54 831 16.65 26.20
RPD-GD 520 887 14.15 6.71 1244 17.27 10.12  18.98 28.36
RPD-EMCQ 428 742 934 5.80 10.01 13.89 899 17.51 26.59
RPD-SA 5.16 1232 19.30 8.51 17.44 26.67 4281 42.63 51.06

RPD-SA+RH 10.26 12.30 13.78 16.50 19.09 21.29 3340 34.82 39.29

ES 3.69 9.19 1274 6.18 12.21 15.68 14.58 21.37 27.40
CMAES 6.20 13.78 17.01 7.86 17.25 21.28 15.53 24.17 31.73
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techniques, all approaches are scored in the same way as in CHeSC (See Section 2.1.2).
The scoring system in CheSC are based on the median result generated by each
approach over the number of runs. In addition to that of the competition, best and
average values over all runs are used for the comparison and the ranking of the
approaches in this study. Considering both EXPSET1 and EXPSET2 with all change
frequency-severity combinations, there are 18 different problems. Therefore, 180 is

the maximum overall score an approach can get.

The results are summarized in Table 3.5, where the overall scores of the best fourteen
approaches are included. Based on the median and average, Choice Function—Only
Improving is the winner which is followed by the Choice Function—-Improving and
Equal. However, Choice Function—Improving and Equal is the winner based on
the best. For all metrics, the top three hyper-heuristics use Choice Function as
the heuristic selection component. All hyper-heuristics using All Moves, Great
Deluge, Simulated Annealing or Simulated Annealing with Reheating as an acceptance
component perform poorly with an overall score of 0 regardless of the heuristic
selection component. Only when the best value is considered, Choice Function—Great
Deluge receives 7 points. Based on the median, ES ranks eighth with a score of
40, CMAES ranks thirteenth with a score of 10, while all the Hypermutation based
methods receive a score of 0 in all cases. Histograms of Formula 1 scores for
Choice Function—Only Improving based on the median, Choice Function—-Improving
and Equal based on the best, and Choice Function—-Only Improving based on average
are given in Figure 3.2. Choice Function-Improving and Equal ranks the first, second
and third among all approaches in all cases based on the best. Choice Function—Only
Improving ranks the first in a total of seven out of the eighteen cases based on median

and in a total of four out of the eighteen cases based on average, respectively.

3.2.4 Tracking ability of the approaches

The error values of the best candidate solutions calculated using Equation 2.19
versus the number of evaluations based on different change frequency and severity
combinations are plotted in Figure 3.3 for Choice Function—Improving and Equal,
Hypermutation—All Moves, ES and CMAES to illustrate and compare their tracking

ability when the environment changes. Choice Function—Improving and Equal is
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Table 3.5 : The overall Formula 1 scores for the top fourteen approaches.

Approach Median Best Average
Choice Function—Only Improving 113 125 105
Choice Function—-Improving and Equal 98 145 100
Choice Function-EMCQ 85 87 83
Reinforcement Learning—Only Improving 71 65 74
Reinforcement Learning—Improving and Equal 66 48 62
Random Permutation Descent—Only Improving 64 25 59
Random Permutation Descent-Improving and Equal 60 36 62
Evolutionary Strategies 40 50 40
Simple Random-Improving and Equal 27 23 28
Random Permutation Descent-EMCQ 23 12 25
Simple Random—Only Improving 22 11 23
Reinforcement Learning—-EMCQ 21 19 26
CMAES 10 47 10
Simple Random-EMCQ 2 0 5
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Figure 3.2 : Histograms of Formula 1 scores for (a) CF-OI based on the median, (b)
CF-IE based on the best, and (c) CF-OI based on average over 18 dynamic
environment cases.

chosen as the best performing hyper-heuristic, while Hypermutation—All Moves is

chosen as a poor approach. ES and CMAES are included as they are known to be

among the best real-valued optimization approaches. Figure 3.5 shows the boxplots

for the final offline error values of the corresponding approaches. In the boxplot, the

minimum and maximum values obtained (excluding the outliers), the lower and upper

quartiles and the median are shown. The outlier points are also marked.

To be able to demonstrate the tracking behavior of the approaches more clearly, we
isolated the plots for a medium frequency and a medium severity change scenario
from Figure 3.3, and plotted them in Figure 3.4. From Figures 3.3 and 3.4, it
can be observed that when the environment changes, the error values of the best
candidate solutions produced by Choice Function—Improving and Equal, ES and
CMAES increase much less than that of Hypermutation—All Moves. Moreover,
these approaches are able to recover much more quickly, following the optimum.

This indicates that Choice Function—Improving and Equal, ES and CMAES display
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Figure 3.3 : Comparison of approaches (CF-IE, HM-AM, ES, and CMAES) for the
combinations of (a) Low, (b) Medium, (c) High frequencies and severities
of change based on the error values of the best candidate solution versus
evaluation counts for EXPSET?2.
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Figure 3.4 : A sample plot of the error values of the best candidate solution
versus evaluation counts based on medium change frequency and
medium severity combination for EXPSET2. The left and right
plots show the results for Choice Function—-Improving and Equal and
Hypermutation—All Moves, respectively.

a good tracking behavior.

However, the tracking behavior of Hypermutation—All

Moves is poor. Choice Function-Improving and Equal performs significantly better
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Figure 3.5 : Box-plots of offline error values for a statistical comparison of the
approaches (CF-IE, HM-AM, ES, and CMAES) for the combinations of
(a) Low, (b) Medium, (c) High frequencies and severities of change using
EXPSET?2.
than the Hypermutation-All Moves, ES and CMAES on average during most of the

environment changes as illustrated in Figure 3.5. The average performance of an

approach reflects upon its tracking behavior as well.

3.2.5 Scalability results

In this part, we investigate the scalability of the approaches for different
frequency-severity settings. We perform experiments with different number of peaks
and dimensions. Table 3.6 summarizes the results for analyzing the effect of the
number of dimensions on performance using EXPSET?2 for different change frequency
and severity combinations. In these experiments, only the best hyper-heuristics
{Choice Function-Improving and Equal, Choice Function—-EMCQ} are considered
along with Hypermutation—-Improving and Equal, Hypermutation—-EMCQ, ES and

CMAES. As expected, the performance of the hyper-heuristics and ES worsens
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as the number of dimensions increases. ES seems to be less affected from the
dimensionality increase for lower frequency and severity settings. CMAES improves
its performance when the number of dimensions is increased to 10. However, Choice
Function-Improving and Equal scales better and is the best performing approach for
most change frequency and severity settings.

Table 3.6 : Offline error generated by each approach in the experiments for analyzing

the effect of number of dimensions for EXPSET?2 for different frequency
and severity combinations.

# of dimensions CF-IE CF-EMCQ HM-IE HM-EMCQ ES CMAES

LF

LS 5 4.13 4.18 5.39 5.74 4.14 5.98
10 5.07 5.69 9.22 11.03 4.60 2.30
20 8.65 10.94 17.76 24.09 5.65 4.75

MS 5 8.52 9.61 12.40 10.06 9.73 12.05
10 11.03 13.23 1591 15.03 9.88 7.08
20 14.76 16.24 26.22 25.76 13.73  11.94

HS 5 11.65 12.64 12.42 12.43 12.16 1248
10 14.21 14.67 19.99 17.68 12.67 14.15
20 18.41 20.89 32.57 29.62 16.56  21.84

MF

LS 5 4.64 4.96 6.66 7.20 6.35 7.94
10 7.04 8.59 11.33 13.92 9.22 5.35
20 13.94 16.24 21.99 28.51 17.66  12.46

MS 5 11.29 11.01 13.11 13.07 13.10  17.94
10 13.75 14.43 19.89 21.26 17.68 1231
20 22.83 23.03 33.63 36.96 30.54  22.83

HS 5 12.90 13.22 15.69 15.11 15.67  24.23
10 18.12 18.05 25.47 24.78 23.07  21.80
20 25.98 27.04 41.16 44.28 3712 33.39

HF

LS 5 8.70 8.90 11.68 13.03 14.04  14.70
10 21.52 22.10 23.22 26.32 31.88  27.20
20 56.65 60.20 48.42 53.73 68.98  73.81

MS 5 16.34 16.36 22.62 23.33 21.26  23.18
10 29.43 32.85 36.73 36.70 40.03  34.87
20 66.53 70.05 64.35 63.72 78.68  86.49

HS 5 24.58 24.98 29.81 29.55 28.32  42.36
10 41.31 44.66 50.78 49.52 46.62  50.22
20 79.43 86.44 78.59 75.79 85.02  86.55

Table 3.7 provides the results for analyzing the effect of the number of
peaks in the environment on performance using EXPSET?2 for different change
frequency and severity combinations. The same hyper-heuristics {Choice
Function—Improving and Equal, Choice Function-EMCQ, Hypermutation—Improving
and Equal, Hypermutation—-EMCQ}, ES and CMAES are included in the experiments.

Again, the performance of the hyper-heuristics worsens as the number of peaks
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increases. This time, ES performs similar to the hyper-heuristics. However, the
effect of the increase in the number of peaks is less than the effect of the increase
in dimensionality for ES. CMAES improves its performance as the number of peaks
increases for all frequencies combined with low and medium severities. However, in
almost all cases, it is no longer the best performing approach. All methods seem to

scale well with respect to the increase in the number of peaks in the environment.

Table 3.7 : Offline error generated by each approach in the experiments for analyzing
the effect of number of peaks for EXPSET?2 for different frequency and
severity combinations.

#ofpeaks CF-IE CF-EMCQ HM-IE HM-EMCQ ES  CMAES

LF

LS 5 3.78 4.30 5.40 5.79 3.95 5.85
10 5.07 5.23 6.27 6.32 4.65 5.11
15 5.07 5.53 6.95 6.83 4.87 3.38

MS 5 8.73 8.74 9.90 10.16 9.07 13.88
10 11.03 11.11 12.72 10.53 1095 13.14
15 10.69 11.56 12.26 9.73 1136  11.06

HS 5 11.60 11.88 13.56 12.41 11.33  14.06
10 13.87 14.04 14.55 13.22 1434  16.06
15 13.90 13.52 15.08 12.28 1372 17.48

MF

LS 5 4.64 4.83 6.48 7.17 6.23 7.28
10 5.15 5.16 7.36 7.95 6.82 6.88
15 6.13 5.84 7.41 8.33 7.60 5.20

MS 5 10.59 10.84 12.31 11.14 1146  17.53
10 12.08 11.63 14.45 12.57 13.62  17.36
15 13.16 11.50 14.31 12.31 13.50 16.28

HS 5 12.89 13.55 15.82 15.48 15.69  22.58
10 15.31 16.20 17.27 16.47 17.62 2397
15 15.29 16.26 16.20 16.38 1736 26.29

HF

LS 5 8.42 8.72 11.06 12.08 14.54 1597
10 8.60 8.46 11.82 12.92 13.77  13.79
15 8.69 9.13 11.81 12.55 13.52  10.37

MS 5 16.11 16.77 21.93 23.49 21.77  28.37
10 16.87 17.52 23.62 22.38 21.63  23.64
15 17.12 17.29 21.97 21.89 21.82 2335

HS 5 24.13 25.70 29.06 29.67 27.34 3346
10 25.77 25.83 29.79 28.81 28.67  30.28
15 25.35 25.48 27.59 27.50 28.13  35.18

42



3.3 Discussion

The empirical results show that learning selection hyper-heuristics perform well in
dynamic environments, especially when combined with the proper acceptance method.
They can react rapidly to different types of changes in the environment and are capable
of tracking them closely. The acceptance criteria which rely on some algorithmic
parameter settings, such as Simulated Annealing, do not perform well as part of
a hyper-heuristic in dynamic environments. This is possibly because the relevant
parameters of such non-deterministic or stochastic acceptance methods often require
a search for tuning. In dynamic environments, as a result of the changes in the

environment, another level of complexity is added on top of the search process.

The overall results also show that accepting all moves is the worst strategy regardless
of the heuristic selection method for solving dynamic environment problems. As
an online learning approach which receives feedback during the search process, the
Choice Function—-Only Improving hyper-heuristic ranks performance-wise the first
among all others based on the median and average values over all runs. Choice
Function—Improving and Equal ranks the first among all approaches based on the
best value over all runs. Evolutionary Strategies, Covariance Matrix Adaptation
Evolution Strategy and Hypermutation perform mostly worse than the learning
selection hyper-heuristics when compared across a range of dynamic environments

exhibiting a variety of change properties.

In this study, it is assumed that the learning heuristic selection methods are aware of
the time when the environment change occurs and acts on this. To this end, we focus
on the investigation of learning heuristic selection methods which are more suitable

for dynamic environments as selection hyper-heuristic components.
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4. AN ANT-BASED SELECTION HYPER-HEURISTICS FOR DYNAMIC
ENVIRONMENTS

Dynamic environment problems require adaptive solution methodologies which can
deal with the changes in the environment during the solution process for a given
problem. A selection hyper-heuristic manages a set of low-level heuristics and decides
which one to apply at each iterative step. Recent studies [70, 71, 76-79] show that
selection hyper-heuristic methodologies are suitable for solving dynamic environment
problems with their ability of tracking the change dynamics in a given environment.
Among the tested selection hyper-heuristics, learning selection hyper-heuristics are
reported to perform especially well in dynamic environments. In this thesis, we
propose a novel learning selection hyper-heuristic for dynamic environments, which
is inspired from the ant colony optimization algorithm components. In this chapter, we
describe the proposed hyper-heuristic and its variants. We investigate the performance
of the proposed hyper-heuristic controlling a set of parameterised mutation operators
for solving dynamic environment problems produced by the Moving Peaks Benchmark

(MPB) generator. Then, we perform a comprehensive analysis of our approach.

4.1 Proposed Ant-Based Selection Hyper-heuristic Methods

In this thesis, we propose a selection hyper-heuristic incorporating a novel heuristic
selection method, called the Ant-based Selection (AbS), which is based on simple ant
colony optimization (ACO) algorithm components [80]. Most of the mechanisms used
in ACO are adapted within AbS. A distinct feature of AbS is that, unlike ACO, AbS is

based on a single point based search framework.

Ant Colony Optimization (ACO) [80] is a swarm intelligence technique for solving
optimization problems. Basic ACO consists of solution construction and pheromone
update stages. Each ant constructs a complete solution at each step. Each ant starts
from a random solution component and adds the next component to the solution. The

next component is determined through a stochastic local decision policy based on
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the pheromone trail values and the heuristic information. Pheromone trail represents
the long-term memory about the search. Heuristic information, on the other hand,
represents the information on the problem instances. After all ants construct a complete
solution, pheromone trail values are modified. Firstly, pheromone values are decreased
by a constant factor (evaporation) for all pairs of components. Then, pheromone values

are increased by the amount of pheromone deposited by each ant.

Similar to Choice Function and Reinforcement Learning heuristic selection schemes,
ADbS also incorporates an online learning mechanism using a matrix of utility values.
In ABS, each low-level heuristic pair is associated with a pheromone trail value (7, ;)
which shows the desirability of selecting the j* (h ;) low-level heuristic after the
application of the ' (h;) low-level heuristic. All pheromone trail values are initialized
to a small value 75. AbS selects a random low-level heuristic at the first step. In
the following steps, the most appropriate low-level heuristic is selected based on the

pheromone trail value and is applied to the solution in hand .

AbS consists of heuristic selection and pheromone update stages. For the first stage,
we consider two variants of heuristic selection schemes. In both variants, the low-level
heuristic ig with the highest pheromone trail value (h; = argmax;_; y Thc,hj) is selected
with a probability of gy where A, is the previously selected low-level heuristic and
N is the number of low-level heuristics. Otherwise, methods inspired by two of the
mate selection techniques most commonly used in Evolutionary Algorithms [81] are
employed to determine the next low-level heuristic to select. In the first variant, like in
ACO, the next low-level heuristic is determined based on probabilities proportional to
the pheromone levels of each low-level heuristic pair. This is similar to the roulette
wheel mate selection in Evolutionary Algorithms. This method termed as AbSrw
selects the next low-level heuristic Ay with a probability which is proportional to the

pheromone trail value of 7;,_; as givenin Eq 4.1.

The,h

Phedis = 4.1

1=1..N The ly
where N is the number of low-level heuristics. In the second variant (AbSts), the choice
of the next low-level heuristic is based on tournament selection. AbSts chooses the next

low-level heuristic i with the highest pheromone trail (hy = argmax,_;_ Ty, »;)-
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After selecting a low-level heuristic, pheromone trails are updated. Unlike in ACO,
only the pheromone value between the previously selected heuristic (4.) and the last
selected heuristic (4) is decreased by a constant value (evaporation) and then increased
by the amount of pheromone. If evaporation acted on all heuristic pairs (like in ACO),
this would have caused the pheromone values of unused heuristics to drop to very low
levels over time. This approach we have used has a similar effect to the one used in
Choice Function where selection probabilities of heuristics not used for a long time are

increased.

In the proposed method, the pheromone values are modified as follows: Firstly,
only pheromone value on the pheromone matrix is decreased by a constant factor

(evaporation) between h. and &g as given in Equation 4.2.

Ty = (1= P) T g (4.2)

where 0 < p <1 is the pheromone evaporation rate.

After evaporation, only the pheromone value between h. and h; (7T, p,) is increased
using Equation 4.3.
Th(77h5 = Tth’lS + AT (4o3)

where h. is the previously selected low-level heuristic and h; is the last selected
low-level heuristic. A7 is the amount of pheromone added and is defined as in
Equation 4.4.

AT =1/(sd* f) 4.4)

where f. is the fitness value of the new solution generated by applying the selected
low-level heuristic Ay and sd is the slow decreasing parameter which controls the step

size. The pseudocode of the proposed method is shown in Algorithm 2.

4.1.1 An illustrative example

Let us illustrate the working of AbS on the MPB. Assume that we have four low-level
heuristics. So, we have a 4-by-4 matrix of pheromone trail information. All pheromone
trail values are initialized to a small value 79 = 1/fo = 1/214.13 = 0.004670 where
fo=214.13 is the fitness value of the initial solution. As a result, the initial pheromone

values are as follows:
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Algorithm 2 Pseudocode of the proposed approach.
1: initialize 79 = 1/f;

2: initialize Ty h; = T0, Vi, j
3: while (termination criteria not fulfilled) do
4. if (rand|[0.0,1.0] < go) then
S: Select hy = argmax;_;_ Th, s,
6: else
7: if (AbSrw is selected) then
8: the next low-level heuristic /; is determined based on roulette wheel
9: end if
10: if (AbSts is selected) then
11: the next low-level heuristic /; is determined based on tournament selection
12: end if
13: end if
14: Thehy = (1 = P) T n, (evaporation)

15: The,hs = The,hg + AT
16: end while

0.004670 0.004670 0.004670 0.004670
0.004670 0.004670 0.004670 0.004670
0.004670 0.004670 0.004670 0.004670
0.004670 0.004670 0.004670 0.004670

After eighteen fitness evaluations, we have the following pheromone trail values:

0.004670 0.004670 0.004670 0.004670
0.004670 0.005024 0.004746 0.005376
0.004670 0.004764 0.004670 0.004905
0.004670 0.005505 0.004942 0.004670

In addition, the last selected heuristic is the second low-level heuristic (/). In that case,
we consider the second row of the matrix. AbS selects the fourth low-level heuristic

(h4) with a probability of gg = 0.5 since A4 has the highest pheromone trail value.

0.004670 0.004670 0.004670 0.004670
0.004670 0.005024 0.004746 0.005376
0.004670 0.004764 0.004670 0.004905
0.004670 0.005505 0.004942 0.004670

After selecting h4, only pheromone trail value between hy and Ay is decreased by a
constant factor (s, 5, = (1 —0.1) * 73, 5, = 0.9%0.005376 = 0.004838). Then, only
pheromone trail value between hy and hy is increased using Ty, p, = Tp, 4, +AT =
0.004838 +0.00114 = 0.005978 where AT = 1/(sd * f;) = 1/(10%87.72) = 0.00114.

The resulting pheromone trail values are the following:
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0.004670 0.004670 0.004670 0.004670
0.004670 0.005024 0.004746° 0.005978
0.004670 0.004764 0.004670 0.004905
0.004670 0.005505 0.004942 0.004670

4.2 Performance Evaluation of Ant-based Hyper-heuristic

In this section, we perform experiments with our new hyper-heuristic for dynamic
environments, combining the Ant-based selection scheme and the Improving and Equal
acceptance technique. For comparison, we also experiment with previously used
selection mechanisms which incorporate some form of online learning and are shown
to be successful in dynamic environments [76], namely the Choice Function (CF) and
Reinforcement Learning (RL). We also include an improved version of the Choice
Function (ICF) proposed in [64]. These selection mechanisms are also used together

with the Improving and Equal acceptance technique.

4.2.1 Experimental design

In the experiments, we use the Moving Peaks Benchmark (MPB) generator [16] to
generate the various dynamic environments. For the parameter settings of MPB, we
use the ones given in Section 3.1 labeled as EXPSET?2. Based on these settings, Ae is
taken as 6000 fitness evaluations for low frequency (LF), 1000 for medium frequency
(MF) and 126 for high frequency (HF); the height_severity, the width_severity and
vlength parameters are taken as given in Table 3.2 which correspond to low severity

(LS), medium severity (MS) and high severity (HS) changes.

A real-valued vector corresponds to the coordinates of a point in the search space
generated by the MPB. The fitness of a candidate solution at a given time ¢ is given by
its error, which is calculated as its distance to the optimum in terms of the objective
function value at time ¢. Therefore, the problem becomes that of minimizing the error

values.

The search algorithm searches through the landscape by perturbing these candidate
solutions at each step to obtain a new one using a parameterized Gaussian mutation,
N(0,6?), where o denotes the standard deviation. We use the same settings for the

mutation operators as given in Section 3.1, which are implemented as seven different
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standard deviations; {0.5, 2, 7, 15, 20, 25, 30}. These mutation operators are used as

the low-level heuristics in the hyper-heuristic framework.

The parameters of the proposed Ant-based selection scheme are chosen as follows:
p and sd are set to 0.1 and 1, respectively. Each entry in the pheromone matrix is
initialized to 79 = 1/f; where f is the fitness value of the initial solution. We set
the lower bound as 0.00001 for each entry in the pheromone matrix. For AbSrw,
we experiment with seven ¢q values: {0.0,0.1,0.3,0.5,0.7,0.9,1.0}. For AbSts, we
consider five tournament size values: k = {2,3,4,5,6} as well as the above given seven
qo values. We also experiment with another sd value: sd = 10 for both approaches.
In the tables, AbSrw with slow decreasing (sd = 10) and AbSts with slow decreasing

(sd = 10) are denoted as sAbSrw and sAbSts, respectively.

For the parameter settings of the other heuristic selection methods, the following
settings taken from literature are used. In Reinforcement Learning, the scores of all
heuristics are initialized to 15 with lower and upper bounds as 0 and 30 respectively as
givenin [62]. Ateach step, the score of a low-level heuristic that improves performance
is increased by 1 and otherwise it is decreased by 1. In Choice Function, o, 3, and
O are initialized to 0.5 with updates of £0.01 at each iteration as given in [64]. In
the Improved Choice Function, ¢ andd are initialized to 0.5. If the low-level heuristic
improves performance, the values of ¢ are set to 0.99. Otherwise, the values of ¢, at
time ¢ are calculated as ¢, = max{¢_; —0.01,0.01}. In addition, § is calculated as

&=1-¢,

We assume that all programs are made aware when a change in the environment occurs.
For the Reinforcement Learning, Choice Function and the Improved Choice Function
selection methods, when a change occurs, the current solution is re-evaluated. For the
proposed Ant-based selection scheme, this is not required. The parameters of none
of the heuristic selection methods are reset when the environment changes. Due to the
nature of the acceptance mechanism, Improving-and-Equal, the first candidate solution

generated after each environment change is accepted regardless of its solution quality.

100 runs are performed for each setting where 20 changes occur in each run, i.e.

there are 21 consecutive stationary periods. For evaluating the performance of the
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approaches, we use the offline error [13] metric. At the end of a run, a lower overall

offline error value is desired indicating a good performance.

4.2.2 Results and discussion

The results in the tables are provided in terms of average offline error values over
100 runs. The performances of the methods are compared under a variety of change

frequency-severity pair settings.

Table 4.1 shows the results of the g tests for both AbSrw and sAbSrw. In the table,
qo = 0.0 means that the next low-level heuristic is chosen using only the roulette-wheel
selection. However, gop = 1.0 means that roulette wheel selection is not used and
always the low-level heuristic with the best score (pheromone value) is chosen to
be applied. The results show that there are no statistically significant differences
between most cases, however, the best values are provided by different g values for
different frequency-severity pairs. Therefore, to avoid overtuning, we use a setting
which provides an acceptable performance in most of the cases for both approaches.
For the rest of the experiments we continue with a setting of gg = 0.5 for both AbSrw
and sAbSTw.

Table 4.1 : Final offline error results of various gq settings for AbSrw and sAbSrw
under the tested change frequency-severity pairs.

LF MF HF

LS MS HS LS MS HS LS MS HS
0.0 3.56 7.67 10.09 4.82 896 12.10 1291 19.73 26.53
0.1 358 7.43 951 539 893 1234 12.55 19.05 25.62
03 374 735 9.60 479 9.73 11.33 12.06 18.42 25.38

AbSrw 0.5 4.02 832 10.38 475 9.35 12.87 11.62 17.90 26.42
0.7 393 7.82 11.58 4.55 947 13.30 10.85 18.16 25.86
0.9 4.19 7.51 11.00 542 10.18 13.63 12.74 19.52 28.81
1.0 3.71 8.43 11.85 5.58 11.50 13.44 15.21 23.03 32.24
0.0 3.80 7.82 10.07 522 887 1241 15.13 20.60 28.09
0.1 3.66 7.03 9.77 524 9.04 12.63 14.18 20.22 27.24
0.3 3.77 8.20 10.07 5.38 10.64 12.39 12.78 18.60 26.18

sAbSrw 0.5 374 791 10.18 5.18 879 1198 11.60 17.60 25.81
0.7 358 844 995 427 9791 1271 1095 17.58 25.19
0.9 394 813 11.48 497 10.21 13.10 1093 18.16 26.63
1.0 430 9.08 11.88 535 11.18 14.54 15.62 22.26 30.26

Algorithm  qq

Then, we performed experiments to set the gg and tournament size values for the AbSts
and sAbSts variations. The experimental results are provided in Appendix A. The

best setting of these two parameters depends on the dynamics of the environment.
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The best values are provided by different gy and tournament size values for different
frequency-severity pairs. For this study, we choose a simpler approach. For those
cases where tournament selection is applied, each time we let the tournament size to
be determined randomly with equal probability from among the five pre-determined
tournament size levels. We performed the gg analysis for AbSts and sAbSts based on
this scheme. Table 4.2 shows the final offline error results for various gq settings for
AbSts and sAbSts when the tournament sizes are determined randomly. We choose gg =
0.5 for both AbSts and sAbSts, since each approach delivers an acceptable performance

in most of the cases with this setting which are used for the rest of the experiments.

Table 4.2 : Final offline error results of various g settings for AbSts and sAbSts using
random tournament size under the tested change frequency-severity pairs.

LF MF HF

LS MS HS LS MS HS LS MS HS
0.0 425 842 10.59 497 9.57 13.01 15.86 20.18 26.59
0.1 430 7.51 10.89 549 1021 13.23 15.20 20.04 26.48
03 406 873 11.09 5.37 9.81 13.12 13.80 18.90 25.84

AbSts 0.5 393 811 10.83 525 9.80 13.25 13.64 19.43 26.86
0.7 374 873 10.58 4.73 10.89 13.43 12.94 1991 26.84
0.9 398 10.68 12.67 5.20 10.71 13.90 13.26 21.27 29.31
1.0 382 9.06 12.63 5.24 1091 14.75 14.85 23.56 31.82
0.0 421 815 10.71 5.11 10.11 13.50 1449 19.66 26.15
0.1 4.12 7.44 10.86 5.06 10.63 12.71 13.81 18.84 25.31
03 381 894 10.53 494 949 13.17 13.17 19.05 25.08

SADbSts 0.5 3.55 881 11.67 4.68 10.47 13.37 12.17 18.85 25.10
0.7 376 9.02 1143 4770 10.09 12.71 12.23 19.14 26.37
09 393 887 1194 492 11.67 14.33 12.93 20.69 28.33
1.0 426 9.75 12.00 5.38 9.87 13.83 14.32 21.67 29.81

Algorithm  qq

Table 4.3 summarizes the results of AbS variants with the proposed settings in the
previous part in which for both AbSrw and sAbSrw, qq 1s set to 0.5, for both AbSts and
sAbSts, qo 1s set to 0.5 with randomly determined tournament size settings. It can be
seen that sAbSrw provides the better results in most cases among the versions of the
proposed heuristic selection scheme. AbSts delivers poor performance in the cases for

which the change frequency is high.

Table 4.4 provides a summary of the statistical comparisons for AbS variants.
According to the results, there are no statistically significant differences between them
in most cases. The counts in the table show that sAbSrw has the same s+ counts as

AbSrw and it also has the most > counts.
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Table 4.3 : Final offline error results for the proposed heuristic selection schemes.
Here, for both AbSrw and sAbSrw go = 0.5, for both AbSts and sAbSts
qo = 0.5 with random tournament size settings.

LF MF HF
LS MS HS LS MS HS LS MS HS
AbSrw 4.02 8.32 10.38 475 9.35 12.87 11.62 17.90 26.42
SAbSTW 3.74 791 10.18 5.18 8.79 11.98 11.60 17.60 25.81
AbSts 393 811 10.83 525 9.80 13.25 13.64 19.43 26.86
sAbSts 3.55 8.81 11.67 4.68 10.47 13.37 12.17 18.85 25.10

Algorithm

Table 4.4 : Summary of statistical significance comparisons for AbS variants.

Algorithm | s+  s— > <
AbSrw 1 0 13 13
SADSTw 1 0 22 4
AbSts 0 2 6 19
sAbSts 0 0 11 16

Finally, we compare sAbSrw with those obtained using the heuristic selection methods
taken from literature, namely Reinforcement Learning (RL), Choice Function (CF)
and the Improved Choice Function (ICF) selection methods. Table 4.5 shows the
results of these comparisons. The better results are marked in bold in the table. The
results show that sAbSrw performs well different combinations of change frequency
and severity settings. Choice Function is worse than the others for almost all
cases, however, the results are very close. Improved Choice Function also gives
better performance. Improved Choice Function aims to emphasize the intensification
component of the generic Choice Function by automatically increasing the weight of
relevant components as soon as there is improvement. Diversification, on the other
hand, is introduced at a gradually increasing rate. This property works in solving
stationary combinatorial optimization problems as shown in [64] as well as in dynamic

optimization problems.

Table 4.5 : Final offline error results for the proposed heuristic selection schemes and
RL, CF and ICF.

Algorithm LE MF HF

LS MS HS LS MS HS LS MS HS
SADSrw 3.74 791 10.18 5.18 879 11.98 11.60 17.60 25.81
CF 395 9.57 1191 4.58 10.30 14.20 8.48 15.38 24.83
ICF 3.88 9.24 11.24 470 10.63 13.01 8.19 15.84 24.35
RL 448 17.35 10.01 448 10.44 12.90 8.38 17.68 24.85
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One-way ANOVA and Tukey HSD tests at a 95% confidence level are performed to
observe whether the pairwise performance variations between the approaches, namely
sAbSrw, Choice Function, Improved Choice Function, and Reinforcement Learning,
are statistically significant or not. The corresponding results are provided in Table 4.6.
As seen in the table, there are no statistically significant differences between them for
most cases. sAbSrw is significantly better than Choice Function for low frequency
and high severity and for medium frequency and high severity settings. However, the
differences between sAbSrw and the other methods are significantly significant for high

frequency and low severity setting.

Table 4.6 : Pair-wise comparison of algorithms for each dynamic environment type
determined by a given change frequency and severity. Given A vs B, s+
(s—) denote that A (B) is performing statistically better than B (A), while
~ denotes that there is no statistically significant performance variation
between A and B.
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As can be seen, sAbSrw generates competitive results for different combinations of
change frequency and severity settings. However, the most important issue is the
fact that sAbSrw (and also all the other proposed variants) is more suitable to be
used in dynamic environments than Choice Function, Improved Choice Function,
and Reinforcement Learning because the proposed heuristic selection schemes do not
require any special actions to be performed when the environment changes, whereas
for the others, right after an environment change, the last candidate solution in the
previous environment needs to be re-evaluated. This is a drawback for two reasons: it
makes change detection necessary and it also wastes fitness evaluations, especially in

environments where change frequencies are very high.

4.3 Experiments using a Detection Mechanism

In our previous studies [70, 76], existing heuristic selection mechanisms are tested in

various types of dynamic environments and those that incorporate some form of online
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learning are shown to be successful. One drawback of these approaches for dynamic
environments is that they require the re-evaluation of the last candidate solution in the
previous environment for score calculation. As well as wasting computing resources
for the re-evaluation, this also means that the algorithm needs to detect when the
environment changes. The Ant-based selection heuristic selection does not require
any special actions when the environment changes. However, due to the nature of
the acceptance mechanism, Improving and Equal (IE), the first solution candidate
generated after each environment change is accepted regardless of its solution quality.

This means that the algorithm needs to know when a change occurs in the environment.

In this study, we consider a simple change detection mechanism which is commonly
used in literature [18]. In this strategy, at each iteration the current solution is
re-evaluated. If the fitness value of the current solution changes, this means that a
change occurs. Thus, none of heuristic selection methods require the re-evaluation of
the last candidate solution in the previous environment for score calculation. It should
be noted that we assume that the environment is not noisy. Otherwise, a change in
the fitness value of a solution candidate cannot be taken to indicate a change in the

environment.

4.3.1 Experimental design

In this section, we investigate the performance of the heuristic selection methods
using the above explained change detection mechanism. We consider three heuristic
selection methods, namely Ant-based selection with roulette wheel, Choice Function
and Reinforcement Learning. For this study, we consider Ant-based selection with
roulette wheel since it performs better than tournament selection. In this section, from
this point on we will use Ant-based selection (AbS) to denote Ant-based selection
with roulette wheel selection. The selection mechanisms are used together with the
Improving and Equal acceptance technique. In the experiments, we investigate the
performance of all the algorithms using the same detection mechanism. It should be

noted that IEd denotes Improving and Equal with the detection mechanism.

In the experiments, we use the Moving Peaks Benchmark (MPB) generator [16] to
generate the various dynamic environments. For the parameter settings of MPB, we

use the ones given in Subsection 4.2.1.
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Parameterized Gaussian mutations are used as the low-level heuristics in the
hyper-heuristic framework. We use the same settings for the mutation operators as
in [76], which are implemented as seven different standard deviations; {0.5, 2, 7, 15,

20, 25, 30}.

For AbS, qo, sd and p are set to 0.5, 10 and 0.1, respectively. These are the settings
chosen in the previous section. For the parameter settings of the other heuristic

selection methods, their proposed settings from literature [62,76] are used.

To evaluate the performance of the approaches, we use the offline error [13] metric.
100 runs are performed for each setting where 20 changes occur, i.e. there are 21

consecutive stationary periods per run.

4.3.2 Results and discussion

Table 4.7 shows the offline errors generated by each approach for different
combinations of change frequency and severity settings. As can be seen, performance
degrades for all methods as the change frequency and severity values increase. IE and
IEd give competitive performance for low and medium frequency. However, for high
frequency IE outperforms the IEd. This observation is somewhat expected since the

IEd is provided with a very limited time to respond to the changes in the environment.

Table 4.7 : The offline errors generated by each approach for different combinations
of change frequency and severity settings.

LF MF HF
LS MS HS LS MS HS LS MS HS
AbS-1IE 376 7.72 10.63 5.00 10.04 12.25 1136 17.86 25.18
AbS-1Ed 398 7.87 10.77 496 10.35 14.42 14.43 2333 34.44

Algorithm

CF-1E 3.56 9.89 11.69 447 10.57 13.28 9.02 16.80 25.46
CF-IEd 375 998 12.74 545 11.63 14.79 13.33 20.98 30.77

RL -1E 3.98 8.03 10.04 4.81 10.02 12.76 8.39 17.66 25.10
RL-IEd 420 8.08 10.92 5.84 11.68 15.85 21.85 26.18 35.79

First, the performance of IEd is compared to IE combined with AbS. The results of the
ANOVA and Tukey’s HSD tests for statistical significance are reported in Table 4.8.
In the table, each entry shows the total number of times the corresponding approach

achieves the corresponding significance state (s+, s—, > and <) over the others for
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different change severity and frequency settings. From the table, it can be seen that IE

is better than IEd.

Table 4.8 : Summary of statistical significance comparisons between AbS-IE and

AbS-IEd.
Algorithm s+ >
AbS - 1E 4 4
AbS-IEd 0 1

Second, we investigate the performance of IEd used together with AbS, Choice
Function and Reinforcement Learning. The results of the ANOVA and Tukey’s HSD
tests for statistical significance are reported in Table 4.9. The results show that AbS

and Choice Function give better performance when combined with the IEd.

Table 4.9 : Summary of statistical significance comparisons between AbS, CF and RL

combined with IEd.
Algorithm s+ s— > <
AbS-IEA 5 2 9 2
CF - IEd 5 4 6 3
RL - 1IEd 2 6 0 10

4.4 Analysis of the Components of AbS

In this section, we investigate the behavior of our approach on dynamic environment.

We also perform the sensitivity analysis of each component of AbS.

In the previous set of experiments, sAbSrw gives better performance than the other
variants. Therefore, we consider sAbSrw during the rest of the experiments in which
the pheromone values decrease more gradually, i.e. sd = 10. Unless stated otherwise,
the following setting is used for the rest of the experiments in this chapter: p and g

are set to 0.1 and 0.5, respectively. From this point on, we use AbS to denote sAbSTw.

4.4.1 The behavior of ant-based selection

In this subsection, we perform exhaustive tests to empirically analyze the behavior
of our approach. Firstly, we examine the tracking ability of the proposed approach.
To illustrate its tracking ability when a change occurs, the error values of the best

candidate solutions versus the number of evaluations for low, medium and high
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frequencies of change are plotted in Figure 4.1. It can be figured out that AbS display
a good tracking behavior and is able to recover quickly, following the optimum for all

change frequency and severity settings.
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Figure 4.1 : A sample plot of the error values of the best candidate solutions versus
the number of evaluations for the combinations of (a) Low, (b) Medium,
(c) High frequencies of change for AbS.

We investigate the change of pheromone trail value for each heuristic pair during
the search. Figure 4.2 illustrates the semilogarithmic plot with logarithmic scale for
y-axis for the pheromone trail values versus fitness evaluations for each heuristic
pair for the high frequency and medium severity setting. As seen in the figure, the
low-level heuristics with the smaller indexes are mostly selected while the others are
selected less. The plots for other frequencies are not provided here, however, similar
observations are made for low and medium frequency, too. In AbS, the heuristic with
the highest pheromone trail is selected with a probability of gg. If there are two or more
heuristics with the highest pheromone value, the low-level heuristic with the smallest
index is chosen. Therefore, AbS may tend to select the first heuristic at the beginning
of the search. To avoid this, we handle the ties as follows: If there are two or more
heuristics with the highest pheromone value, one is randomly selected among them.
The corresponding results are illustrated in Figure 4.3. It can be seen that similar

observations are made for this version, too.

As seen in Figure 4.3, mostly the low-level heuristics with the smaller indexes
are selected. Based on these results, to evaluate the performance of the low-level
heuristics, each low-level heuristic is allowed to run individually. The performance of
each individual heuristic is tested under a random mutation hill climbing framework,
which perturbs a solution using the corresponding individual parameter setting for the
Gaussian mutation and improving and equal moves are accepted. The results, reported

as the average offline error, can be seen in Table 4.10. According to the results in the
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table, LLH1, which corresponds to using Gaussian mutation with a standard deviation
of 0.5 is the most successful approach for low and medium frequencies. However,

LLH?2 is the best performing heuristic for high frequency.

Table 4.10 : The offline errors generated by each individual low-level heuristic for
different combinations of change frequency and severity settings.

Algorithm LF MF HF

LS MS HS LS MS HS LS MS HS
LLHI 426 9.39 11.35 545 12.67 13.77 15.66 22.82 33.31
LLH? 5.28 10.13 13.30 7.30 1329 15.52 12.43 18.96 23.93
LLH3 10.56 14.66 16.80 15.39 18.61 20.56 25.08 27.63 31.60
LLH4 17.67 17.62 19.80 25.72 23.58 2547 4242 36.46 38.61

LLH5 21.32 19.27 21.40 30.60 26.00 28.29 50.61 41.11 44.15
LLH6 24.01 20.82 22.93 34.59 28.77 30.84 56.59 45.05 47.05
LLH7 26.49 22.35 24.25 38.19 31.16 33.26 60.97 48.39 50.92

In the experiments until now, we use seven Gaussian mutation operators as the
low-level heuristics based on seven different standard deviations. Based on the results
given in Table 4.10, the first two heuristics (LLH1 and LLH2) give better performance.
Our previous experiments showed that using the best performing low-level heuristics
does not provide good performance. Therefore, we further evaluate the proposed
approach using the first four heuristics as the low-level heuristics, namely LLHI,

LLH2, LLH3, and LLH4.

Table 4.11 shows the offline errors generated by AbS with 7 and 4 low-level heuristics
for different combinations of change frequency and severity settings. As seen in the
table, the results are very close. We perform statistical significance tests to determine
the number of low-level heuristics to be used. The corresponding results are provided
in Table 4.12. There are no statistically significant differences between them for
most cases. Since using four heuristics decreases the computational requirements, the

number of low-level heuristics is taken as four for the rest of the experiments.

Table 4.11 : The offline errors generated by AbS with 7 and 4 low-level heuristics for
different combinations of change frequency and severity settings.

IF MF AF
#of LLHs —e—pre—prs IS MS HS IS MS HS
7 395 8.05 1022 457 9.02 1239 1142 17.88 2448
4 426 846 1082 420 971 13.07 1007 17.90 24.34
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Figure 4.2 : A sample semilogarithmic plot for the pheromone trail values versus fitness evaluations for each heuristic pair based on high frequency
and medium severity combination for AbS.
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Figure 4.3 : A sample semilogarithmic plot for the pheromone trail values versus fitness evaluations for each heuristic pair based on high frequency
and medium severity combination for AbS with handling ties.
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Table 4.12 : Summary of statistical significance comparisons between AbS with 7 and
4 low-level heuristics.

#of LLHs | s+ >
7 0 6
4 1 2

4.4.2 Max-Min ant-based selection hyper-heuristic

Ant-based selection utilizes a matrix of pheromone trail values. When looking into
the change of the values in the matrix during the search, we observe that while some
pheromone trail values increase considerably, the others remain around their initial
values. (See Figure 4.3). Therefore, we decide to experiment with another version of
AbS (Max-Min AbS) which is inspired by the Max-Min Ant Colony Optimization [80]
where the pheromone trail values are restricted to vary between certain lower and upper
bounds. Unlike Max-Min Ant Colony Optimization, the lower and upper bounds are
constant during the search in this method. This version of AbS is denoted as MM AbS.
Both AbS and MM AbS use 4 low-level heuristics. In MM AbS, the lower and upper
bounds are set to 7 /50 and 7y * 50 where Ty is the initial value of the pheromone trails.
This setting is determined empirically as a result of a series of preliminary experiments
so that they achieve a good performance. The corresponding offline errors are given in

Table 4.13. It can be seen that MM AbS delivers good performance for most cases.

Table 4.13 : The offline errors generated by AbS and Max-Min AbS for different
combinations of change frequency and severity settings.

Aleorith LF MF HF
SOTHIM =6 MS  HS LS MS _HS LS MS _HS
ADS 380 905 11.07 521 10.06 1331 904 1639 24.22

MM AbS 3.85 8.75 10.36 518 10.30 13.27 8.69 16.83 23.48

Table 4.14 : Overall (s+, s—, > and <) counts for AbS and Max-Min AbS.

Algorithm | s+  s—
AbS 0 0
MM AbS 0 0

= oV
N A

An overall comparison of two approaches is provided in Table 4.14. It can be seen that

there are no statistically significant differences between them for all cases. However,
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MM AbS performs slightly better than AbS for 7 instances. Therefore, we use MM AbS

as the heuristic selection method for the rest of the experiments.

4.4.3 Re-initialization of pheromone trails with max-min AbS

A simple approach to address dynamic optimization problems is to restart the
search algorithm when the environment changes. To this end, the pheromone trails
values are re-initialized with the same initial value 7y whenever a change occurs.
Table 4.15 shows the offline errors generated by MM AbS and MM AbS-R for different
combinations of change frequency and severity settings. In this table, MM AbS-R
denotes the Max-Min AbS with re-initialization. It can be observed that MM AbS-R
gives better performance for medium frequency and high severity settings. On the
other hand, MM AbS outperforms MM AbS-R for all other cases. As expected, the
re-initialization of pheromone trails delivers very poor performance for high frequency

since it is provided with a limited time for search after re-initialization.

Table 4.15 : The offline errors generated by MM AbS and MM AbS-R for different
combinations of change frequency and severity settings.

LF MF HF
LS MS HS LS MS HS LS MS HS
MM AbS 3.85 8.75 10.36 518 10.30 13.27 8.69 16.83 23.48
MM AbS-R 399 8.88 10.87 5.80 10.85 12.80 17.05 20.39 26.30

Algorithm

4.4.4 The influence of g

In this part of the experiment, we explore the influence the settings of go which
may affect the performance of our approach. We experiment with seven g values:
{0.0,0.1,0.3,0.5,0.7,0.9,1.0}. For this experiment, we consider MM AbS with four
low-level heuristics and sd = 10.0 which are the good settings obtained in the previous
sets of experiments. Table 4.16 shows the results of various gq settings for MM AbS.
It should be note that gg = 0.0 means that the next heuristic is selected using only the
roulette wheel. On the other hand, go = 1.0 means that always the heuristic with the
best pheromone value is selected. The results show that the best values provided by
different gg values for different frequency-severity settings. According to results, MM
AbS delivers very poor performance for gy = 1.0. Figure 4.4 illustrates this observation

for different combination of change frequency and severity settings.
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Table 4.16 : Final offline error results of various gq settings for MM AbS under the
tested change frequency-severity pairs.

LF MF HF
° T[S MS HS LS MS HS LS MS HS
00 374 830 1058 496 1038 12.67 1093 18.18 24.80
0.1 421 818 1093 501 10.67 13.06 1033 17.69 25.45
03 358 855 1147 486 9.04 12.83 9.50 17.07 24.86
0.5 3.84 835 1147 467 932 13.35 9.14 16.02 23.41
0.7 397 956 1128 456 9.61 12.99 931 17.43 22.80
0.9 431 1009 10.84 434 1029 13.58 947 1659 24.27
1.0 7.05 12.06 13.80 937 1321 1602 1825 2237 27.36
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Figure 4.4 : Final offline error versus of different gy values for MM AbS for different
combination of change frequency and severity settings.

We also perform statistical significance tests to determine the best setting of gog. The

statistical comparison summary is provided in Table 4.17. In this table, the results

for go = 1.0 is not included as it is significantly worse than the rest. Based on the

results, the differences between different gy values are not statistically significant for

most cases

Table 4.17 : Overall (s+, s—, > and <) counts various g settings for MM AbS.

q0 s+ 5 — > <
0.0 0 4 22 19
0.1 0 1 13 31
0.3 1 0 23 21
0.5 1 0 28 16
0.7 2 0 24 19
0.9 1 0 20 24

To be able to decrease the number of parameters needing to be tuned, we try to develop

an adaptive version for gg. However, the results show that the differences between
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different gy values are not statistically significant for different frequency-severity

settings. Hence, we observe that an adaptive version of gg is not required.

4.4.5 The influence of slow decreasing parameter

In this set of experiment, we look into effect the slow decreasing parameter. To this
end, different sd values are tested for MM AbS with four low-level heuristics. Here,
qo is set to 0.5. For this set set of experiment, we experiment with seven sd values:
{1,10,30,50,75,100,150}. Table 4.18 shows the results of various sd settings for
MM AbS. The results show that the best offline error values provided by different sd
values for different frequency-severity settings. Figure 4.5 illustrates this observation

for different combination of change frequency and severity settings.

Table 4.18 : Final offline error results of various sd settings for MM AbS under the
tested change frequency-severity pairs.

LF MF HF
LS MS HS LS MS HS LS MS HS
1 390 9.03 11.34 4.85 1041 13.15 12.02 18.03 24.45
10 3.53 7.85 11.78 471 10.15 13.09 8.98 16.86 24.22
30 346 920 11.22 496 11.00 13.08 9.24 16.69 22.93
50 3.83 852 11.02 449 1045 12.54 9.05 16.33 24.05
75 417 9.16 11.28 4.63 9.65 12.35 9.18 16.30 23.76
100 3.72 7.69 11.03 5.18 10.12 13.38 9.17 16.46 2457
150 4.10 8.09 10.88 524 1024 12.22 9.60 16.73 23.35

sd

Average Offline Error

LF-LS  LF-MS  LF-HS  MF-LS  MF-MS  MF-HS  HF-LS  HF-MS  HF-HS

Figure 4.5 : Final offline error versus of different sd values for MM AbS for different
combination of change frequency and severity settings.

The results of statistical significance tests are given in Table 4.19. As can be seen
from the results, there are no statistically significant differences between them for most

cases. However, sd = 1 is significantly worse than the others for 6 cases.
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Table 4.19 : Overall (s+, s—, > and <) counts various sd settings for MM AbS.

sd s+ s— > <
1 0 6 12 36
10 1 0 28 25
30 1 0 24 29
50 1 0 34 19
75 1 0 31 22
100 1 0 27 26
150 1 0 27 26

Based on the results, the setting of slow decreasing parameter is not very critical.
There are no statistically significant differences between sd values for different
frequency-severity pairs. Therefore, we decide to choose a setting which produce

acceptable results instead of adaptive version of sd.

4.4.6 The influence of evaporation rate

Pheromone evaporation allows the algorithm to forget the bad decisions previously
made, which can be seen as exploration mechanism. The evaporation rate (p) is an
important parameter of Ant Colony Optimization. An approach with small evaporation
rate adapt slowly, whereas an approach with high evaporation adapt quickly. In this
set of experiment, we investigate the effect of the evaporation rate. To this end, we
experiment with four different p values: 0.10,0.15,0.2,0.25. Table 4.20 shows the
results of various p settings for MM AbS. The results show that the performance of MM
AbS is not much affected by the settings of rho. Figure 4.6 illustrates this observation

for different combination of change frequency and severity settings.

Table 4.20 : Final offline error results of various p settings for MM AbS under the
tested change frequency-severity pairs.

IF MF HF
P —Is Ms HS IS MS HS IS MS HS
010 385 8.14 1035 480 857 12.01 1195 18.05 25.07
015 381 7.64 981 488 935 1251  10.67 17.49 25.78
020 389 827 10.12 478 972 1245 11.50 17.05 24.77
025 3.63 7.63 10.09 501 10.12 1246 1173 17.53 2425

Mavrovouniotis and Yang [82] propose an adaptive version for the evaporation rate
parameter. In the adaptive approach, if the algorithm approaches the stagnation
situation, the evaporation rate is increased by a fixed step size; otherwise, it is

decreased by a fixed step size. To detect the stagnation behavior, they consider
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Figure 4.6 : Final offline error versus of different p values for MM AbS for different
combination of change frequency and severity settings.

A-branching factor which measures the distribution of the pheromone trail values. The

A-branching factor [80] for node i is defined as follows:

d
Ai=Y I 4.5)
j=1

where d is the number of arcs incident to node i and I;; is defined as the following:

o 1 ,iffijzfzin'i')‘(riimx_flidn)
lij = { 0 , otherwise (4.6)

and 7', are the minimal and the maximal

where A € [0, 1] is a constant parameter, 7' .

pheromone trail values on the arcs incident to node i. The average A-branching factor
(1) is calculated as the average of the A-branching factors of all nodes (given in

Eq. 4.7)

1

A= 7 Ai 4.7)

=1

where 7 is the number of nodes in the corresponding graph.

We use the same measurement, namely average A-branching factor, to detect the
stagnation behavior. According to results, MM AbS provides a low A-branching factor
throughout the run. Therefore, the algorithm does not enter the stagnation [80].
Therefore, we do not require an adaptive version of evaporation rate as in [82].

Figure 4.6 also confirms this observation.
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5. APPLICATIONS OF THE ANT-BASED SELECTION
HYPER-HEURISTICS

In this chapter, we present three applications of the proposed hyper-heuristic,
namely Ant-based selection hyper-heuristic. Firstly, we use hyper-heuristics in a
multi-population framework, combining offline and online learning mechanisms. We
collaborated with Goniil Uludag in this study. Secondly, we implement the proposed
approaches on HyFlex which is an interface to develop hyper-heuristics. Finally, we
explore the performance of the proposed approaches on a real-world optimization

problem referred to as the Dynamic Traveling Salesman problem.

5.1 Application I: Hyper-heuristics in A Hybrid Multi-population Framework

Estimation of Distribution Algorithms (EDAs) [83] are population based search
methodologies in which new candidate solutions are produced using the probabilistic
distribution model learned from the current best candidate solutions. There is a
growing number of studies which apply improved variants of EDAs in dynamic

environments [25, 84—89].

There is an emerging field of research in the semi-automated design of search
methodologies: hyper-heuristics. This study focuses on the selection hyper-heuristic
methodologies. There is strong empirical evidence showing that selection
hyper-heuristics are able to quickly adapt without any external intervention in a given

dynamic environment providing effective solutions [70, 71].

In this study, in order to exploit the advantages of approaches with learning and those
with model-building features in dynamic environments, we propose a hybridization of
EDAs with hyper-heuristics in the form of a two-phase framework, combining offline
and online learning mechanisms [77-79]. A list of probability vectors for generating
good solutions is learned in an offline manner in the first phase. We consider PBIL for
the first phase in this study. In the second phase, two sub-populations are maintained.

A sub-population is sampled using an EDA, while the other one uses a hyper-heuristic
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for sampling appropriate probability vectors from the previously learned list in an
online manner. In this study, we choose a dual population PBIL (PBIL2) as the EDA

component.

We perform exhaustive tests to determine a selection method which performs
well within the proposed framework. We also compare the proposed framework,

incorporating the chosen heuristic selection scheme, to similar methods from literature.

5.1.1 A hybrid framework for dynamic environments

In this subsection, we describe a new multi-phase hybrid framework, referred to
as hyper-heuristic based dual population EDA (HH-EDA?2), for solving dynamic

environment problems.

Although we choose PBIL?2 as the EDA component in our studies, the proposed hybrid
framework can combine any multi-population EDA with any selection hyper-heuristic

in order to exploit the strengths of both approaches.

HH-EDA2 consists of two main phases: offline learning and online learning. In
the offline learning phase, a number of masks to be used in the XOR generator are
sampled over the search space. The search space is divided into M sub-spaces and
a set of masks is generated randomly in each sub-space, thus making the masks
distributed well over the landscape. For the XOR generator, each mask corresponds to
a different environment. Then, for each environment (represented by each mask) PBIL
is executed. As a result of this, good probability vectors ?list corresponding to a set
of different environments are learned in an offline manner. These learned probability

vectors are stored for later use during the online learning phase of HH-EDA?2.

In the online learning phase, the probability vectors ?list, serve as the low-level
heuristics, which a selection hyper-heuristic manages. Figure 5.1 shows a simple

diagram illustrating the structure and execution of HH-EDA?2.

The online learning phase of the HH-EDA2 framework uses the PBIL2 approach.
Similar to PBIL2, the population is divided into two sub-populations and two
probability vectors, one for each sub-population, are used simultaneously. As seen
in Figure 5.1, popl represents the first sub-population and ?1 is its corresponding

probability vector; pop2 represents the second sub-population and ?2 is its
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Figure 5.1 : The framework of HH-EDA?2.

corresponding probability vector. The pseudocode of the proposed HH-EDA?2 is shown
in Algorithm 3.

Algorithm 3 Pseudocode of the proposed HH-EDA?2 approach.

1: t:=0

2: initialize B1(0):=0.5

3: ?2(0) is selected from P list

4: §1(0) := sample(P 1(0)) and 55(0) := sample( P (0))

5: while (termination criteria not fulfilled) do
6:  evaluate S;(¢) and evaluate S,(7)
7.
8
9

adjust next population sizes for ?1 (¢) and ?z(t respectively
place k best samples from S () and S»(¢) into B (¢)
: send best fitness from whole/second population to heuristic selection component
10:  learn ?1 (t) toward ?(t)
11:  mutate P(t)

12: 2(1) is selected using heuristic selection
13: S(t) := sample(P 1(1)) and S5 (t) := sample( P (1))
14: ti=t+1

15: end while

In HH-EDAZ2, the first probability vector ?1 is initialized to ?centrala and the second
probability vector ?2 is initialized to a randomly selected vector from ?l ist. Initial
sub-populations of equal sizes are sampled independently from their own probability
vectors. After the fitness evaluation process, sub-population sample sizes are slightly
adjusted within the range [0.3 xn, 0.7 * n| according to their best fitness values.
At each iteration, if the best candidate solution of the first sub-population is better
than the best candidate solution of the second sub-population, the sample size of the
first sub-population, n; is determined by min(n; + 0.05 % n,0.7 x n); otherwise n; is
defined by min(n; —0.05%n,0.3 xn). While, ?1 is learned towards the best solution
candidate(s) in the whole population and mutation is applied to ?1, ?2 is selected

using the heuristic selection methods from ?l ist. No mutation is applied to ?2. Then,

71



the two sub-populations are sampled based on their respective probability vectors. The
approach repeats this cycle until some termination criteria are met. In the HH-EDA?2
framework, different heuristic selection methods can be used for selecting the second

probability vector from ?l ist.

5.1.2 Computational experiments

In this study, we perform two groups of experiments. In the first group, we investigate
the influence of different heuristic selection methods on the performance of the
proposed framework, to determine the most suitable one for dynamic environment
problems. In the second group of experiments, the proposed framework, incorporating

the chosen heuristic selection scheme, is compared to similar methods from literature.

5.1.2.1 Experimental design

In the offline learning phase, first a set of M XOR masks are generated. In order
to have the XOR masks distributed uniformly on the search space, an approach
similar to stratified sampling is used. Then, for each mask, PBIL is executed for
100 independent runs where each run consists of G generations. During offline
learning, each environment is stationary and 3 best candidate solutions are used to
learn probability vectors. The population size is set to 100. At the end of the offline
learning stage, the probability vector producing the best solution found so far over all
runs for each environment, is stored in ?l ist. The parameter settings for PBIL used in

this stage is given in Table 5.1.

Table 5.1 : Parameter settings for PBILs.

Parameter Setting Parameter Setting
Solution length 100 Mutation rate P,, | 0.02
Population size 100 Mutation shift 5,, | 0.05
Number of runs | 100 Learning rate o 0.25

After the offline learning stage, we experiment with four main types of dynamic
environments: randomly changing environments (Random), environments with cyclic
changes of type 1 (Cyclicl), environments with cyclic changes of type 1 with noise
(Cyclicl-with-Noise) and environments with cyclic changes of type 2 (Cyclic2). In the
Cyclicl type environments, the masks representing the environments, which repeat in

a cycle, are selected from among the sampled M masks used in the offline learning
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phase of HH-EDA?2. To construct Cyclicl-with-Noise type environments, we added a
random bitwise noise to the masks used in the Cyclicl type environments. In Cyclic2
type environments, the masks representing the environments, which repeat in a cycle,

are generated randomly.

To generate dynamic environments showing different dynamism properties, we
consider different change frequencies 7, change severities p and cycle lengths CL.
We determined the change periods which correspond to low frequency (LF), medium
frequency (MF) and high frequency (HF) changes as a result of some preliminary
experiments where we execute PBIL on stationary versions of all the Decomposable
Unitation-Based Functions. Table 5.2 shows the determined change periods for each

Decomposable Unitation-Based Function.

Table 5.2 : The value of the change periods.

Functions | LF MF HF
DUFI1 50 25 5
DUF2 50 25 5
DUF3 100 35 10

In the Random type environments, the severity of changes are determined based on
the definition of the XOR generator and are chosen as 0.1 for low severity (LS), 0.2
for medium severity (MS), 0.5 for high severity (HS), and 0.75 for very high severity
(VHS) changes. For all types of cyclic environments, the cycle lengths CL are selected
as 2, 4 and 8. Except for Cyclicl-with-Noise type of environments, the environments

return to their exact previous locations.

In [78], we explore the effects of restart schemes for HH-EDA2. Our experiments
showed that a restart scheme significantly improves the performance of HH-EDAZ2. In
the best performing restart scheme for HH-EDA?2, only the first probability vector ? 1

is reset to the to ?Cemml, whenever an environment change is detected.

Since HH-EDA?2 is a multi-population approach, which also uses a kind of memory,
for our comparison experiments, we focus on memory based approaches as well
as multi-population ones which are shown in literature to be successful in dynamic
environments. Therefore, we use different variants of PBILs with restart schemes and
a sentinel-based genetic algorithm which is multi-population approach to dynamic

environments. In literature, several PBIL variants are proposed for dynamic
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environments [25,31,90]. In this thesis, we consider PBIL with restart (PBILr), dual
population PBIL with restart (PBIL2r), memory-based PBIL with restart (MPBILr),
and dual population memory-based PBIL with restart (MPBIL2r). Further details
about memory-based PBIL can be found in [25,90].

Both in PBIL2 and HH-EDAZ2, each sub-population size is initialized as 50 and
adjusted within the range of [30, 70]. For MPBILr and MBIL2r, the population size n
is set to 100 and the memory size is fixed to 0.1 xn = 10. The memory is updated using
a stochastic time pattern. After each memory update, the next memory updating time
is set as ty =t +rand(5,10). For MPBIL2r, initial sub-populations are 0.45 xn = 45

and sub-population sample sizes are slightly adjusted within the range of [30, 60].

For the sentinel-based genetic algorithm, we use tournament selection where the
tournament size is 2, uniform crossover with a probability of 1.0, mutation with a
mutation rate of 1// where [ is the chromosome length. The population size is set
to 100. We test two different values for the number of sentinels: 8 and 16. These
values are chosen for two reasons. First of all, [28] suggests working with 10% of
the population as sentinels. Secondly, in [78], we experiment with storing M = 8 and
M = 16 probability vectors in ?list for HH-EDA?2 and found M = 8 to be better.
At the beginning of the search, sentinels are initialized to locations of the masks
representing different parts of the search space. For HH-EDA2, the masks used in
the offline learning stage are chosen in such a way as to ensure that they are distributed
uniformly on the search space. Therefore M = 8 or M = 16 masks are used as the

sentinels.

In Reinforcement Learning, score of each heuristic is initialized to 15 and is allowed
to vary between 0 and 30. If the selected heuristic yields a solution with an improved
fitness, its score is increased by 1, otherwise it is decreased by 1. The Reinforcement

Learning settings are taken as recommended in [62].

In [91], the results show that Ant-based Selection with roulette wheel selection is
better than the version with tournament selection. Therefore, we work Ant-based
Selection with roulette wheel selection in this study. For Ant-based Selection, gy,
sd and p are set to 0.5, 10 and 0.1, respectively. These are the settings recommended

in [91].
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For each run of the algorithms, 128 changes occur after the initial environment.
Therefore, the total number of generations in a run is calculated as maxGenerations =

changeFrequency * changeCount.

To compare the performance of approaches over different dynamic environments,
the approaches are scored in the same way as in the CHeSC competition [111].
Considering random and cyclic environments, there are 117 problem instances,
therefore, 1170 is the maximum overall score that an algorithm can get in this scoring

system.

5.1.2.2 Results

In this subsection, we provide and discuss the results of each group of experiments

separately.

Comparison of heuristic selection methods

In this set of experiments, we test different heuristic selection methods within
the proposed framework. The tested heuristic selection methods are Simple
Random, Random Descent, Random Permutation, Random Permutation Descent,
Reinforcement Learning and Ant-based Selection. We use all change frequency and
severity settings for the Random dynamic environments; we also use all change
frequency and cycle length settings for the Cyclicl, Cylicl-with-Noise and Cyclic2
type dynamic environments. Tests are performed on all DUFs, i.e. DUF1, DUF2 and
DUF3.

Table 5.3 summarizes the results generated by different heuristic selection methods
averaged over 100 runs, on all DUFs for different change severity and frequency
settings in randomly changing environments. The results show that all heuristic
selection schemes performed well and there were no statistically significant differences
between the results for most cases. However, Reinforcement Learning performs the

best as a heuristic selection method for high frequency in DUF3.

In the tested cyclic environments, the results for DUF1, DUF2 and DUF3 are provided
in Tables 5.4, 5.5 and 5.6, respectively. The results show that for DUF1 and DUF2, in
the tested cyclic environments, Random Permutation performs the best as a heuristic

selection method in the HH-EDA?2 framework. For DUF3, Random Permutation
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Table 5.3 : Offline errors generated by different heuristic selection methods averaged
over 100 runs, on all DUFs for different change severity and frequency
settings in randomly changing environments.

Heuristic LF MF HF
Selection LS MS HS VHS LS MS HS VHS LS MS HS VHS
DUF1
RD 0.06 0.06 0.08 0.09 0.17 026 0.89 1.05 2200 23.62 26.82 28.40
RL 0.06 0.06 0.08 0.09 0.17 026 0.89 1.07 2195 23.65 26.82 28.41
RP 0.06 0.06 0.08 0.09 0.17 025 086 099 2194 23.60 26.79 28.26
RPD 0.06 0.06 0.08 0.09 0.17 026 0.89 1.07 2200 23.61 26.83 28.39
AbS 0.06 0.06 0.08 0.09 0.17 026 0.87 1.02 2198 23.65 26.79 28.31
SR 0.06 0.06 0.08 0.08 017 026 086 1.00 2195 23.61 26.78 28.30
DUF2
RD 0.12 0.15 054 0.59 043 085 430 493 4292 4578 5092 53.14
RL 0.13 0.16 0.56 0.61 042 083 434 498 42.82 4587 5094 53.27
RP 012 0.16 049 0.53 043 085 4.13 454 4292 4574 50.86 52.95
RPD 0.12 0.16 0.55 0.60 042 0.85 439 492 4295 4580 50.99 53.12
AbS 0.13 0.16 0.51 0.55 042 087 4.17 470 4288 4579 50.92 53.06
SR 0.12 0.15 050 0.54 042 086 4.16 4.64 4292 4580 50.93 53.00
DUF3
RD 19.22 1829 16.03 1420 19.62 1896 17.26 15.51 38.33 39.60 40.66 40.25
RL 19.12 18.23 16.06 1422 19.63 18.89 17.26 1550 38.19 39.47 40.57 39.96
RP 19.44 18.46 16.04 14.18 19.75 1899 17.26 1549 38.44 39.99 41.29 40.75
RPD 19.32 18.26 16.03 14.20 19.63 18.86 17.29 15.55 38.37 39.75 40.87 40.27
AbS 19.21 18.35 16.05 14.18 19.69 18.90 17.25 15.52 38.37 39.81 41.02 40.45
SR 19.45 18.44 16.06 14.18 19.78 18.99 17.25 15.51 38.35 39.81 41.07 40.43

Descent seems to produce better results than Random Permutation, however this
performance difference is not statistically significant and actual offline error values
from Random Permutation are close to the ones produced by Random Permutation

Descent.

AbS delivers a promising performance for all DUFs in randomly changing
environments and the tested cyclically changing environments. However, it performs
the best on all DUFs for Cyclicl with noise when the changes occur at a high frequency
and the cycle length is low (2). CL = 2 means that the change repeats between two
environments. AbS acts similar to a memory scheme for this case. It is able to select
the most appropriate the probability vector (serve as the low-level heuristic) to sample

the population at each step.

We perform statistical significance tests to determine the best heuristic selection

method. The statistical comparison summary is given in Table 5.7. As can
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Table 5.4 : Offline errors generated by different approaches averaged over 100 runs,
on the DUF1 for different cycle length and change frequency settings in
different cyclic dynamic environments.

Heuristic LF MF HF
Selection CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 C(CL=4 CL=8
Cylicl

RD 0.04 0.04 0.04 0.15 0.13 0.14 15.76 15.67 15.77
RL 0.04 0.04 0.04 0.21 0.16 0.19 16.02 17.18 16.79
RP 0.03 0.02 0.02 0.05 0.04 0.05 1420 13.82 14.59
RPD 0.03 0.03 0.03 0.07 0.06 0.06 14.60 14.51 14.65
AbS 0.04 0.04 0.04 0.11 039 043 4.12 12.62 18.48
SR 0.03 0.03 0.03 0.09 0.08 0.08 15.01 14.89 15.27

Cylicl-with-Noise

RD 0.04 004 0.04 0.16 0.12 0.13 15.88 1559 1594
RL 0.03 0.04 0.04 021 0.16 0.18 15.74 17.33 17.07
RP 0.02 0.02 0.02 0.05 0.04 0.05 1448 13.86 14.66
RPD 0.03 0.03 0.03 0.07 0.07 0.06 1472 14.87 14.74
AbS 0.03 004 0.04 0.12 040 042 427 12.34 1854
SR 0.03 0.03 0.03 0.09 0.08 0.09 15.14 15.08 1542
Cylic2
RD 0.08 0.08 0.08 090 088 0.90 25.86 26.83 27.00
RL 0.08 0.08 0.08 090 088 091 25.85 26.85 27.00
RP 0.08 0.08 0.08 0.85 086 0.89 25.83 26.80 26.98
RPD 0.08 0.08 0.08 090 089 0.90 25.84 26.80 26.99
AbS 0.08 0.08 0.08 082 086 0.85 25.87 26.80 26.96
SR 0.08 0.08 0.08 0.87 086 0.88 25.86 26.79 26.97

be seen, Random Permutation generates the best average performance across all
dynamic environment problems, performing significantly/slightly better than the rest
for 238/195 instances. The second best approach is Random Permutation Descent on

average.

Table 5.8 shows the ranking results obtained based on median, best and average offline
error values. Random Permutation is still the best approach if the median and best
performances are considered as well (Table 5.8) based on the Formula 1 ranking. It
can be seen from the table that Random Permutation scores 925 and 905, respectively.
Learning via the PBIL process helps, but using an additional learning mechanism on
top of that turns out to be misleading for the search process. For example, the use
of reinforcement learning in the selection hyper-heuristic (Reinforcement Learning)

yields the worst average performance. Random Permutation as a non-learning heuristic
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Table 5.5 : Offline errors generated by different approaches averaged over 100 runs,
on the DUF2 for different cycle length and change frequency settings in
different cyclic dynamic environments.

Heuristic LF MF HF
Selection CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 C(CL=4 CL=8
Cylicl
RD 0.07 0.08 0.07 043 038 043 29.59 29.83 29.45
RL 0.07 0.07 0.07 060 049 0.55 30.37 32.35 30.77
RP 0.04 0.04 0.04 0.09 0.08 0.08 27.33 27.38 26.53
RPD 0.06 0.06 0.05 0.11 0.10 0.11 27.61 28.06 26.96
AbS 0.07 0.13 0.19 0.25 1.84 1.95 7.71 24.04 35.37
SR 0.06 0.05 0.05 023 020 0.20 28.77 29.16 29.38

Cylicl-with-Noise

RD 0.07 0.07 0.07 043 033 043 2940 29.75 29.51
RL 0.07 0.08 0.08 0.57 051 057 29.64 32.79 30.83
RP 0.04 0.04 0.05 0.08 0.09 0.09 26.96 2637 2734
RPD 0.06 0.06 0.05 0.11  0.11  0.11 27.68 28.57 27.26
AbS 0.07 0.12 0.19 026 1.63 191 7.38 24.10 34.95
SR 0.06 0.06 0.06 024 0.18 0.22 28.77 29.15 2945
Cylic2
RD 049 051 0.53 4.09 421 436 49.36  50.87 51.21
RL 049 052 0.51 4.16 424 438 49.39 50.93 51.27
RP 045 046 0.51 393 406 425 49.34 50.82 51.20
RPD 048 052 053 407 427 437 49.36 5091 51.28
AbS 048 047 0.50 401 4.02 4.22 4940 50.82 51.16
SR 046 049 052 398 4.08 4.22 49.31 5090 51.22

selection combines the learnt probability vectors effectively yielding an improved

performance which outperforms Simple Random.

Comparisons to selected approaches from literature

In this set of experiments, we compare the proposed approach to some well known and
successful previously proposed approaches from literature. As aresult of the first group
of experiments, we fix the heuristic selection component as Random Permutation
during these experiments and used the same problems, change settings and dynamic

environment types.

An overall comparison of all approaches are provided in Tables 5.9 and 5.10.
HH-EDA?2 generates the best average performance across all dynamic environment
problems (Table 5.9) performing significantly/slightly better than the rest for 578/42

instances. The second best approach is PBIL using a single population and restart.
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Table 5.6 : Offline errors generated by different approaches averaged over 100 runs,
on the DUF3 for different cycle length and change frequency settings in
different cyclic dynamic environments.

Heuristic LF MF HF
Selection CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 C(CL=4 CL=8
Cylicl
RD 10.22 11.36 11.36 11.22 12.14 12.14 23.49 2449 23.63
RL 1044 1149 11.50 12.04 1298 12.89 23.99 28.69 26.86
RP 10.09 1136 11.33 1035 11.60 11.58 2223 2242 22.76
RPD 10.11 11.33 11.31 10.36 11.51 11.48 21.36 22.08 21.67
AbS 10.07 11.35 1144 1020 11.87 12.75 13.97 20.38 25.30
SR 10.16 11.37 11.35 11.11 12.10 12.15 2432 24.02 2447

Cylicl-with-Noise

RD 1021 1137 1137 11.24 12.18 12.14 2331 2433 23.67
RL 1043 11.50 11.50 12.02 13.02 12.80 23.88 28.60 26.87
RP 10.09 11.35 11.34 10.35 11.59 11.59 22.21 23.20 23.20
RPD 10.11 11.33 11.32 10.35 11.51 11.50 21.20 2249 21.67
AbS 10.07 1135 1145 10.21 11.89 12.74 13.98 2035 25.30
SR 10.16 1137 11.35 11.14 12.08 12.17 2420 24.11 24.23
Cylic2
RD 16.04 16.55 16.11 17.38 17.69 17.26 40.65 40.77 40.64
RL 16.00 16.62 16.11 17.31 17.75 17.26 40.68 40.70 40.65
RP 1627 16.60 16.02 1747 1773 17.24 40.67 41.19 41.34
RPD 16.05 16.59 16.11 1741 17.72 17.25 40.65 40.86 40.79
AbS 1584 16.63 16.14 17.22 1773 17.22 40.77 40.78 41.05
SR 16.20 16.55 16.05 17.39 17.67 17.19 40.63 41.04 41.17

Moreover, HH-EDA?2 is the top approach if the median and best performances are
considered as well (see Table 5.10) based on Formula 1 rankings, scoring 1020 and
995, respectively. The closest competitor accumulates a score of 725 and 649 for its
median and best performances, respectively. These results also indicate that the use of
a dual population and the selection hyper-heuristic both improves the performance of
the overall algorithm. Based on the results, the first population using PBIL serves as
the search component, while the second population using the hyper-heuristic acts as
a memory in cyclic environments and as a source of diversity in randomly changing

environments.

5.1.2.3 Discussion

The empirical results show that the selection scheme that relies on a fixed permutation
of the underlying low-level heuristics (Random Permutation) is the most successful

one. For the cases when the change period is long enough to allow all the vectors
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Table 5.7 : Overall (s+, s—, > and <) counts for the different heuristic selection

schemes.
Heuristic Selection | s+  s— > <
RP 238 65 195 87
RPD 18 70 130 200
AbS 156 152 132 145
SR 135 122 204 124
RD 84 189 148 164
RL 51 251 97 186

Table 5.8 : The overall score according to the Formula 1 ranking based on median,
best and average offline error values for the different heuristic selection

schemes.
Heuristic Selection | Median  Best ~ Average
RP 925 905 909
SR 743 691 738
RPD 731 744 730
AbS 677 698 707
RD 606 614 602
RL 530 560 526

in the permutation to be applied at least once, the Random Permutation heuristic
selection mechanism becomes equivalent to Greedy Selection. In HH-EDA?2, the move
acceptance stage of a hyper-heuristic is not used. This is the same as using the Accept
All Moves strategy. This move acceptance scheme is known to perform the best with

the Greedy Selection method [70].

The overall results also reveal that HH-EDA?2 is capable of adapting itself to the

changes quickly whether the change is random or cyclic. HH-EDA?2 outperforms well

Table 5.9 : Overall (s+, s—, > and <) counts for the algorithms used.

Algorithm | s+  s— > <
HH-EDA2 | 578 69 42 13
PBILr 400 232 37 33

PBIL2r 343 310 11 38
MPBILr 262 394 28 18
MPBIL2r | 251 405 16 30
Sentinell6 | 242 442 4 14
Sentinel8 229 453 14 6
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Table 5.10 : The overall score according to the Formula 1 ranking based on median,
best and average offline error values for the algorithms used.

Algorithm | Median Best  Average
HH-EDA2 1020 995 1020

PBILr 725 649 725
PBIL2r 594 531 594
MPBILr 551 521 550

Sentinel8 527 523 527
MPBIL2r 517 735 518
Sentinel16 512 492 512

know approaches from literature for almost all cases and ranks performance-wise the

first among all others.

5.2 Application II: An Implementation on HyFlex

In this section, the proposed selection hyper-heuristic is implemented on HyFlex
(Hyper-heuristics Flexible framework). HyFlex provides a number of stationary
optimization problems (details are given in Subsection 2.2.3). Therefore, the
performance of all variants of the proposed approach, namely AbSrw, AbSts and MM
AbS, are explored on stationary optimization problems. These selection mechanisms

are also used together with the Improving-and-Equal acceptance technique.

5.2.1 Experimental design

In this thesis, we perform experiments with the proposed approach for six
problem domains provided in HyFlex framework, namely maximum satisfiability,
one-dimensional bin packing, personnel scheduling, permutation flow shop, the
traveling salesman problem and the vehicle routing problem. HyFlex provides a
number of instances for each problem domain. In this study, we consider the same
5 instances used in CHESC 2011 competition for each problem domains for a fair
comparison. For each problem domain, the crossover heuristics are not used. Each run
is repeated 31 times for each setting and is executed 323 seconds running time which
is the time in our computer that corresponds to 600 secs on the computer that is used

for the competition machine.

The parameters of the proposed Ant-based selection scheme are chosen as

recommended in Chapter 4. Each entry in the pheromone matrix is initialized to
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70 = 1/f; where f; is the fitness value of initial solution. For all approaches, p, qo
and sd are set to 0.1, 0.5 and 10, respectively. For AbSts, we let the tournament size
to be determined randomly with equal probability from among the five pre-determined
tournament size levels: k = {2,3,4,5,6}. For MM AbS, the lower and upper bound are

set to 7p * 50 and 7p/50 where 7y is the initial value of the pheromone trails.

5.2.2 Results and discussion

Table 5.11 shows the overall score of AbS variants among the competing
hyper-heuristics in CHeSC2011 according to the Formula 1 ranking based on median
value. Considering all problem domains and instances, there are 30 different problems.

Therefore, 300 is the maximum overall score an algorithm can get.

As can be seen from the results, AbSrw ranks 13" out of 23 algorithms overall with the
score of 28, MM AbS gets the score of 25 ranking 14" overall, and AbSts ranks 22"
out of 23 algorithms overall with the score of 0. The proposed method has a number of
parameters and the performance of the proposed heuristic selection method is sensitive

to the initial setting of those parameters for stationary optimization problems.

Table 5.11 : The overall Formula 1 scores of our approaches compared to competing
hyper-heuristics in CHeSC2011.

Rank  Algorithm Score || Rank  Algorithm Score
1 AdapHH [92] 178 13 AbSrw 28
2 VNS-TW [93] 132 14 MM AbS 25
3 ML [94] 125.5 15  SA-ILS 22.25
4 PHUNTER [95] 93.25 16  DynILS 22
5 EPH [96] 84.75 17 AVEG-Nep [97] 21
6 NAHH [98] 75 18 XCJ 18.5
7 HAHA [99] 74.75 19  GISS [100] 16.75
8 ISEA [101] 65 20 SelfSearch [102] 6
9 KSATS-HH [103] 59.5 21  MCHH-S [104] 4.75
10 HAEAT105] 50.5 22 AbSts 0
11 ACO-HH[106] 37 23 Ant-Q[107] 0
12 GenHive [108] 30.5

Table 5.12 presents the score of the AbS variants across six problem domains. It can be
seen that, AbSrw and MM AbS get the scores from three problem domains, namely Bin
Packing, Personnel Scheduling , and Vehicle Routing Problem. For Bin Packing, MM
AbS and AbSrw rank 3"¢ and 6", respectively. AbSts gets zero point for all problem
domain. AbS with roulette wheel gives better performance when compared to AbS with

tournament selection.
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Table 5.12 : The overall Formula 1 scores of AbS variants for six problem domains.

Algorithm BP MAX-SAT FS PS TSP VRP Overall

AbSrw 18 0 0 6 0 4 28
MM ABS 20 0 0 2 0 3 25
AbSts 0 0 0 0 0 0 0

5.3 Application III: Dynamic Traveling Salesman Problem

Benchmark generators are important research tools for creating problem instances
which enabled us to control the characteristics of those instances in a given domain.
These problem instances are mainly used for performance comparisons of different
algorithms. In the experiment, we use the Moving Peaks Benchmark and XOR
dynamic problem generator to test our approaches. On the other hand, real-world
problem instances could still vary from the artificially generated instances. Testing
an algorithm on the artificial instances might not reflect the actual performance of a
given algorithm in a real-world setting. Hence, in this study, we also investigate the
performance of our approaches, Ant-based selection, on a real-world instance of a
problem. We use the Dynamic Traveling Salesman Problem (DTSP) as a real-world
problem. DTSP has been mostly studied permutation-encoded problem in dynamic
environments. In addition, classic Traveling salesman was implemented on HyFlex.
There are are many variants of DTSP. In this thesis, we consider Dynamic Traveling
Salesman Problem with traffic factor proposed in [18] (see Subsection 2.1.1.3). In this
problem, the costs of a number of edges are changed at every Ae iterations as given in

Equation 2.14.

5.3.1 Comparisons of selection hyper-heuristics

DTSP is implemented on HyFlex interface. The implementation of DTSP is based on
that of Traveling Salesman Problem (TSP) in HyFlex. We use the same initialization
method to generate an initial solution. A candidate solution is represented by a
permutation of the cities which represents a complete tour. To generate initial candidate

solution, the greedy heuristic in which a solution is constructed in an incremental way
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is used. It starts from a randomly selected city. Then, it chooses the closest among the

remaining cities and it adds to the solution until a complete solution is generated.

We consider the same low-level heuristics implemented for TSP in HyFlex. There

are 13 low-level heuristics across the four categories for TSP. These heuristics are

described as follows:

Mutational heuristics

h]i

A randomly selected city is reinserted into a randomly selected place in the

permutation. Then, the rest of the cities are shifted as required.

: Two randomly selected cities are swapped.
: The permutation is randomly shuffled .

: A number of randomly selected cities are shuffled. Here, the number of cities

to shuffle is determined by the mutation density.

: A number of edges is selected and substituted with randomly selected ones.

The number of edge is determined by the mutation density.

Ruin and recreate heuristics

h61

A number of cities in the permutation are removed and reinserted using greedy

procedure.

Local search heuristics

h7: This heuristic is the 2-opt local search that accepts the first improvement.
hg: This heuristic is the 2-opt local search that accepts the best improvement.

hg: This heuristic is the 3-opt local search that accepts the first improvement.
Crossover heuristics

hyg: Order Crossover [81]
hi1: Partially mapped crossover [81]
hiy: Precedence preservative crossover [109]

hi3: One-point crossover [81]
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In the experiments, the mutation density and the depth of hill-climbing are set to 0.2.

In this study, we experiment with Max-Min Ant-based selection with roulette
wheel (MM AbS) and Ant-based selection with roulette wheel (AbS) combined with
Improving and Equal. For both approaches, gy and sd are set to 0.5 and 10,
respectively. Each entry in the pheromone matrix is initialized to 7o = 1/f; where
f5 1s the fitness value of initial solution. p is set to 0.1. For MM AbS, the lower and
upper bound are set to 7y * 50 and 7y /50 where 1y is the initial value of the pheromone

trails.

For all methods, the selection probability of each low-level heuristic are the same at
the beginning of the search. To manage the crossover operators, the five randomly
initialized solution are stored in a memory. If the selected heuristic is a crossover
operator, a solution is selected randomly from this memory. Then, the crossover
operator use the current solution and the selected solution to generate one offspring.
Whenever the best-so-far solution is changed, the randomly selected solution is

replaced with the best-so-far solution.

The performance of our approach is compared to state of the art selection
hyper-heuristic, namely learning heuristic selection method with adaptive dynamic
heuristic set combined with adaptive iteration limited list-based threshold accept-
ing [92] (AdapHH). AdapHH is chosen since it is the winner of the CHeSC2011

competition. It also ranks first for Traveling Salesman Problem.

AdapHH include an adaptive heuristic subset selection, a pairwise heuristic
hybridization method and adaptive parameter setting of low-level heuristics. The
adaptive dynamic heuristic set strategy adaptively determines the best heuristic subset
at each phase composed of specific number of iterations. This method can eliminate
the heuristics performing the worse and keep the best ones according to quality index.
A weighted sum of different performance metrics is used to compute the quality index
for each heuristic. Some of these performance metrics include the number of new
best solution, the total fitness improvement and worsening during the run and a phase,
the time spent and the remaining time. If the quality index of a heuristic is less than
the average of the quality indexes of all heuristic, the heuristic is excluded from the

heuristic subset. This method also uses Tabu list to store the number of phases, called
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tabu duration, in which a heuristic is consecutively excluded. Whenever the tabu
duration reaches its upper bound, this heuristic is permanently excluded. At each
step, an appropriate heuristic is selected from the heuristic subset with a selection
probability. A relay hybridization method is also used to determine effective pairs
of heuristics that are applied successively. In addition, the parameters of low-level
heuristics, namely mutation density and depth of hill-climbing, are dynamically
adapted using reinforcement learning. Adaptive iteration limited list-based threshold
accepting method accepts the worsening solution according to the fitness values of the
previous best solutions which is used as the threshold value. If it does not explore new
best solution within adaptively adjusted number of steps, the higher value from the list
is used as the threshold value. In this study, we use the same settings as recommended
in [92]. We include two additional variants of AdapHH to deal with the dynamism. In
the first variant, denoted as AdapHH-I, a new initial solution is randomly generated
whenever a change occurs in the environment. In the second variant, denoted as

AdapHH-E, the current solution is re-evaluated when a change occurs.

We experiment with random DTSP. To generate dynamic environments showing
different dynamism properties, we consider different change frequencies and change
severities. For both types of DTSP, we determine the change periods which correspond
to low frequency (LF), medium frequency (MF) and high frequency (HF) changes
as a result of some preliminary experiments where we executed Simple Random
- Improving and Equal on stationary versions of kroA150 instance. Based on the
resultant convergence behavior, we determine the change period to be approximately
2.91 secs for low frequency (LF), 0.48 secs for medium frequency, and 0.06 secs for
high frequency. Moreover, the severity of changes are controlled by m in DTSP and
chosen as 0.1 for low severity (LS), 0.2 for medium severity (MS) and 0.5 for high
severity (HS). The lower and upper bounds of traffic factor are set to Ry = 0 and

Ry =5.

To generate the dynamic instances of DTSP, we use four stationary TSP instances from
TSPLIB [113], namely kroA100, kroA150, and kroA200 which are used in [18] and
u2152 provided in HyFlex.

All trials are repeated for 31 times using each approach for each test case. The

algorithms are executed 323 seconds running time which is the time in our computer
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that corresponds to 600 secs on the computer that is used for the CHeSC competition.
The performance of the algorithms is compared based on the offline performance (see
Equation 2.17). Here, we take into account the total number of iterations to calculate
the oflline performance instead of the evaluation counters. The performances of the
approaches are compared under a variety of change frequency-severity pair settings

under random environments.

The results are provided in terms of average offline performance values in the
tables. The performances of the algorithms are compared under a variety of change
frequency-severity pair settings for random DTSP. In the tables, the best performing

approach is marked in bold.

5.3.1.1 Results

Table 5.13 summarizes the average offline performance generated by AdapHH,
AdapHH-I, AdapHH-E, MM AbS, and AbS on kroA100 for random DTSP. The
performance of all approaches degrades as the change frequency increases. The
performance of all approaches also degrades as the change severity increases.
Moreover, all algorithms seem to be more affected from the increase in change severity.
ADbS is the best performing approach for both low frequency-medium severity setting
and medium frequency-medium severity setting. When compare AbS and MM AbS
with AdapHH variants, they give comparable results for most cases except for high
severity. For high severity, AdapHH-I performs the best. In dynamic environments, the
restart of the process after a change is more useful when the change is too severe. In
AdapHH-I, the current solution is re-initialized whenever a change occurs. Therefore,

AdapHH-I delivers the best average performance for high severity

Table 5.14 and 5.15 show the average offline performance generated by AdapHH,
AdapHH-I, AdapHH-E, MM AbS, and AbS on kroA150, and kroA200 for random
DTSP, respectively. Similar phenomena as on kroA100 are observed for these
instances. The methods deteriorate in performance as the change frequency and
severity increase. However, AbS does not perform the best in any of the change
frequency-severity settings. When compare AbS and MM AbS with AdapHH
variants, the results are very close for low and medium severity. For AdapHH, the

re-initialization (AdapHH-I) improves its performance especially for high severity. In
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addition, AbS is slightly better than AdapHH and AdapHH-E for most cases. We
also experiment with the large instance of DTSP. Table 5.16 shows the average offline
performance for random DTSP for the instance with 2152 cities. AbS and MM AbS give
comparable results for low and medium frequency. In addition, AdapHH-I performs

the best for all change frequency and severity settings.

To compare the performance of AdapHH and AbS, we allow AdapHH and AbS to
run for long periods without any change in the environment. Figure 5.2 illustrates the
convergence behavior of AdapHH and AbS on the stationary version of kroA200. As
seen in the figure, for AbS, the improvement continues gradually and it has not yet
fully converged at the end of the process. However, AdapHH has been converged in
approximately 80 seconds. Moreover, the better improvement has been observed for

AdapHH. As a result, AdapHH obtains the better solution more quickly than AbS.
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Figure 5.2 : A sample plot of the fitness values of the best candidate solutions versus
time for (a) AdapHH and (b) AbS.

To manage the crossover operator, we also include a second version. In this version,
the solution memory is implemented as a queue. If the selected heuristic is a crossover
operator, the head of queue is taken and placed at the tail of the queue. Whenever
the best-so-far solution is changed, the first added to the queue is replaced with the
best-so-far solution. When compared to the first version, this strategy slightly improves
the performance of the algorithm, however, the results of these two strategies are close
for all instances. Although this strategy improves the performance of the method, it is

still outperformed by AdapHH-I for high severity.
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Table 5.13 : Offline performance generated by different approaches averaged over 31 runs, on the kroA100 for random DTSP.

LF MF HF
Algorithm
LS MS HS LS MS HS LS MS HS

AdapHH 23275.81  30116.53  52625.51 23711.82 3246497  59017.32 24718.20 3497234  69343.56
AdapHH-I 23110.09  28236.67  35494.11 23746.47  29492.83  37102.84 2396129  30241.23  38423.33
AdapHH-E  23039.82  28690.12  44939.58 23576.88  30723.64  52841.19 2391642 31606.82  62549.62
MMAbBS 23335.19  28079.42  48781.61 23741.00  29086.39  51990.71 24426.87  30589.97  56534.80
AbS 23325.59  28052.71  48754.19 23738.94  29056.41  52036.54 2443139  30583.61  56525.44

Table 5.14 : Offline performance generated by different approaches averaged over 31 runs, on the kroA150 for random DTSP.

LF MF HF
Algorithm
LS MS HS LS MS HS LS MS HS

AdapHH 29599.83  39008.22  70978.70 30188.39  41851.82  79279.69 31576.96  45941.80  91501.08
AdapHH-I 29188.16  35740.94  43897.20 29877.92 3721428  45496.29 30129.97 38412.14  47254.63
AdapHH-E = 29248.07 37345.92  71487.01 29834.54  39685.22  80583.15 30319.14 4115593  91219.25
MMADS 29564.04  36539.80  67724.77 30036.12  37681.16  71778.99 30836.27  39628.81  77725.15
AbS 29557.42  36523.53  67729.86 30039.35  37657.06  71782.59 30841.55  39636.08  77704.55
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Table 5.15 : Offline performance generated by different approaches averaged over 31 runs, on the kroA200 for random DTSP.

LF MF HF
Algorithm
LS MS HS LS MS HS LS MS HS

AdapHH 33459.83  45227.76  83942.79 34285.63 4741536  90903.18 3534542  52427.44  102564.33
AdapHH-I 32941.82  41348.27 50760.89 33316.29  42688.63 51911.74 34242.69  43949.12 53661.87
AdapHH-E  32892.08 4324542  83330.11 33380.21  45375.80  93502.31 34194.92  47561.57  104836.04
MMADbS 33235.58 4211243  80709.44 33767.79 4340295  85048.23 34687.21 4570547 92081.09
AbS 33218.15  42091.78  80661.30 33766.63  43409.02  85084.60 34687.32  45696.52 92064.20

Table 5.16 : Offline performance generated by different approaches averaged over 31 runs, on the u2152 for random DTSP.

LF MF HF
Algorithm
LS MS HS LS MS HS LS MS HS

AdapHH 83478.30  115952.09  227902.88 83343.41 114015.04  221514.78 82604.42  110926.79  202104.03
AdapHH-I 82000.39 99287.51  122620.92 82229.37 99096.48  122119.15 81691.60 98423.85  121557.53
AdapHH-E = 82483.81  112020.69  212799.09 82426.76  109351.28  209712.07 82017.43  108356.74  205885.35
MMADbS 83590.96  111051.77  231799.33 83288.48  110279.16  222559.07 82941.03  107345.38  182491.93
AbS 83531.15 111114.30  231867.10 8329249  110321.52  223206.21 82921.95 107458.24  182372.33
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5.3.2 Comparisons to problem specific approaches

In this set of experiments, we compare the proposed approach to some well known and
successful previously proposed problem specific approaches from literature, namely
Random Immigrants Ant Colony Optimization, Elitism-based Immigrants Ant Colony

Optimization, and Memory-based Immigrants Ant Colony Optimization [18].

The ACO algorithms with immigrants are inspired from population-based ACO
(P-ACO) which has the long-term memory storing the best ant at every iteration [18].
The pheromone trails are generated according to ants stored in the memory and
the pheromone evaporation is not included. However, the ACO algorithms with
immigrants use the short-term memory instead of long-term memory in P-ACO.
Short-term memory stores a number of best ants of the current iteration. Then, the
worst ants in the memory are replaced by a number of immigrants. The solution is
constructed in the same way as traditional ACO, however, the pheromone trail values
are updated according to ants in short-term memory. There are three variants of ACO
with immigrants, namely Random Immigrants Ant Colony Optimization (RIACO),
Elitism-based Immigrants Ant Colony Optimization (EIACO), and Memory-based
Immigrants Ant Colony Optimization (MIACO). In RIACO, the immigrants are
randomly generated. In EIACO, the elitism-based immigrants are generated based on
the best (elite) ant from previous environment using inver-over operations in which the
segment between two cities are reversed. MIACO uses both short-term and long-term
memories. The ants in the long-term memory are initialized randomly and updated as
follows: If there are randomly generated ants in the memory, any one of the randomly
initialized ants is replaced with the best so far; otherwise, the closest ant in the memory
is replaced with best so far if it is worse than the best so far. In this method, the

immigrants are generated based on the ants in long-term memory.

The implementations of these algorithms [112] are adapted to use the corresponding
methods in the implementation of DTSP. The settings of ACO algorithms with
immigrants are taken as recommended in [18]. The parameter settings are given in

Table 5.17. In this table, K and r the short-term memory size and the migration
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replacement rate, respectively. In MIACO, the long-term memory size is set to 3.

For EIACO and MIACO, the immigrants mutation probability is set to 0.02.

Table 5.17 : Parameter settings for ACO with immigrants.

Parameters RIACO EIACO MIACO

#o fants 28 28 25
q0 0.0 0.0 0.0
o 1 1 1

B

K; 6 6 6

r 0.0 0.4 0.4

As a result of the first group of experiments, we consider AbS and AdapHH-I during
these experiments and used the three instances, namely kroA100, kroA150 and
kroA200, change settings and dynamic environment type (random DTSP). For this
set of experiments, we also consider cyclic DTSP since MIACO is proposed for this

type of DTSP.

5.3.2.1 Results

Table 5.18 shows the average offline performance generated by AdapHH-I, AbS,
RIACO, EIACO and MIACO on the kroA100 for random and cyclic DTSPs. EIACO
performs the best for the most cases for random DTSP. AdapHH-I and AbS are
outperformed by ACO algorithms with immigrants for most cases. This is expected
since ACO with immigrants use problem specific information. For cyclic DTSP,
MIACO delivers the best performance for all cases. This is because MIACO uses the
memory that stores the best solutions in previously visited environments and reuses

them to generate memory-based immigrants.

Table 5.19 and 5.20 show the average offline performance generated by AdapHH-I,
AbS, RIACO, EIACO and MIACO on the kroA150 and kroA200 for random and
cyclic DTSPs, respectively. Similar results are observed as on kroA100. EIACO and
AdapHH-I deliver good performance for random DTSP and MIACO performs the best

for most cases for cyclic DTSP.

Overall, AbS gives comparable results when compared with AdapHH and AdapHH-E
for most frequency-severity settings. AdapHH-I is better than AbS for most cases,

especially for high severity. If the change is too severe, the restart of process is
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more useful. AdapHH-I re-initializes the current solution whenever the environment
changes. Therefore, it is aware of time when a change occurs and acts on this.
However, AbS does not require any special actions when a change occurs. AdapHH
is implemented on HyFlex. It adapts the parameters of mutation and hill-climber
heuristics and re-initializes the current solution in some conditions. It can not be used

in our hybrid methods (see Section 5.1) without requiring any modifications.
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Table 5.18 : Offline performance generated by different approaches averaged over 31 runs, on the kroA100 for random and cyclic DTSP.

Algorithm LE MF HE
LS MS HS LS MS HS LS MS HS
DTSPs with random traffic factor
AdapHH-I  23110.09  28236.67  35494.11 23746.47  29492.83  37102.84 23961.29  30241.23  38423.33
AbS 23325.59 2805271  48754.19 23738.94  29056.41  52036.54 24431.39  30583.61  56525.44
RIACO 23357.06  26049.75  32087.11 23852.51  26771.10  33237.98 2482471  28230.79  35362.84
EIACO 23082.23  25672.55  31404.28 23617.37  26510.10  32687.57 24656.16  28129.19  35146.06
MIACO 23115.52  25713.59  31495.59 23640.65  26538.45  32811.07 24674.43  28175.58  35277.05
DTSPs with cyclic traffic factor

AdapHH-I 2290935 2772132  34657.29 23465.21 2874121  35879.40 23907.82  30125.22  37475.67
AbS 23239.53  28370.84  48511.20 23728.43  29105.11  52480.95 24358.19  30797.25  56643.11
RIACO 23314.76  26103.29  32045.26 23854.88  26738.92  33295.03 24686.47  28212.18  35352.59
EIACO 22988.93  25717.28  31390.09 23555.15  26462.83  32733.18 24333.77  28072.87  35133.65
MIACO 22814.76  25182.02  30477.38 23202.40  25534.79  31269.48 23850.96  26606.33  33112.68
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Table 5.19 : Offline performance generated by different approaches averaged over 31 runs, on the kroA150 for random and cyclic DTSP.

Algorithm LF MF il
LS MS HS LS MS HS LS MS HS
DTSPs with random traffic factor
AdapHH-I 29188.16  35740.94  43897.20 29877.92  37214.28  45496.29 30129.97  38412.14  47254.63
AbS 29557.42  36523.53  67729.86 30039.35  37657.06  71782.59 30841.55  39636.08  77704.55
RIACO 29539.79  33107.41  41263.44 30473.13  34436.04  43007.32 32233.05 3687490 46160.10
EIACO 29323.74  32747.99  40470.06 30315.51  34229.06  42538.69 32230.15  36963.56  46237.52
MIACO 29376.27  32837.00  40598.01 30364.17  34315.66  42721.73 3222226  36999.64  46365.86
DTSPs with cyclic traffic factor

AdapHH-I 29004.89  35037.45  42982.53 29447.92  36685.34  44861.42 30087.31  37887.95  46865.99
AbS 2955949  36416.02  67221.52 2997392 3775576  71707.93 30786.97  39832.65  77712.77
RIACO 29567.62  33033.67  41273.82 30379.29  34407.25  43059.94 3193598 3682520  46310.00
EIACO 2933425  32676.67  40475.63 30112.72  34200.78  42616.50 31657.12  36818.65  46334.47
MIACO 28987.46  31756.56  38991.97 29482.94  32585.93  40253.21 30906.28  34952.71  44287.43
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Table 5.20 : Offline performance generated by different approaches averaged over 31 runs, on the kroA200 for random and cyclic DTSP.

Algorithm LE MF HE
LS MS HS LS MS HS LS MS HS
DTSPs with random traffic factor
AdapHH-I 32941.82  41348.27  50760.89 33316.29  42688.63  51911.74 34242.69  43949.12  53661.87
AbS 33218.15  42091.78  80661.30 33766.63  43409.02  85084.60 34687.32  45696.52  92064.20
RIACO 33452.27  38073.72  47998.00 34864.93  39897.63  50307.28 37256.45  42984.75  54275.11
EIACO 33258.23  37711.66  47230.69 34748.46  39773.53  50005.37 37358.22 4323543  54508.59
MIACO 33296.32  37798.37  47376.31 34806.47  39893.08  50248.12 37241.84  43139.69  54560.92
DTSPs with cyclic traffic factor

AdapHH-I 32653.77  40624.89  49644.74 33099.91  42383.64  51317.10 34169.92  43844.27  52859.18
AbS 33165.12  42162.62  80272.08 33682.09  43270.70  84827.87 3462191 4568138  92410.97
RIACO 33380.58  38080.80  47948.90 34652.64  40010.87  50472.76 36186.57  42383.64  54440.95
EIACO 33147.02  37684.23  47134.78 34361.02  39829.61  50141.15 35937.63  42511.39  54614.21
MIACO 3255593  36306.30  45276.84 33460.05 37678.89  47722.77 35052.22 4068549  53232.24
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6. CONCLUSION AND FUTURE WORK

In this thesis, we worked on the applicability of selection hyper-heuristics for dynamic
environments. First, the performances of well-known selection hyper-heuristics in
literature were investigated on continuous dynamic environments exhibiting various
change dynamics, produced by the Moving Peaks Benchmark generator. Second,
we proposed a new heuristic selection method for solving dynamic optimization
problems. In addition, we examined the performance of the proposed method using not
only the benchmark functions, but also real-world optimization problems in dynamic

environments.

In the first phase of the thesis, we investigated the performance of thirty five
hyper-heuristics combining five heuristic selection methods { Simple Random, Greedy,
Choice Function, Reinforcement Learning, Random Permutation Descent} and seven
move acceptance methods {All Moves, Only Improving, Equal and Improving,
Exponential Monte Carlo With Counter, Great Deluge, Simulated Annealing,
Simulated Annealing with Reheating}. A hypermutation based single point search
method, combined with these seven acceptance schemes, (1+A)-ES and the state
of-the-art real valued optimization approach (u,A)-Covariance Matrix Adaptation
Evolution Strategy were also included in the experiments. The Moving Peaks
Benchmark, a multidimensional dynamic function generator, was used for the
experiments. Different dynamic environments were produced by changing the height,
width and location of the peaks in the landscape with desired change frequencies
and severities. The empirical results showed that learning selection hyper-heuristics
incorporating compatible component perform well in dynamic environments. This
study also shows that learning selection hyper-heuristics generalize well, which make

them suitable approaches to solve dynamic optimization problems.

In the second phase of the thesis, we proposed a novel heuristic selection scheme for
selection hyper-heuristics, namely Ant-based selection hyper-heuristic, for dynamic

environments. In the first phase of the thesis, existing heuristic selection methods
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were tested in dynamic environments and the learning selection methods were shown
to be successful. However, we assumed that these algorithms were made aware
when a change occurs in the environment. For these methods, the current solution
was re-evaluated when the environment changes. For the proposed Ant-based
selection scheme, this was not required. The parameters of the proposed heuristic
selection methods were not reset when the environment changes. In the experimental
study, we experimented with the proposed heuristic selection method combined
with Improving and Equal acceptance method for dynamic optimization problems
generated by Moving Peaks Benchmark. We considered two different variants of
Ant-based Selection which use Roulette Wheel and Tournament Selection to determine
the next heuristic. When compared Roulette Wheel with Tournament Selection,
Roulette Wheel delivered better performance. To assess the performance of our
approach, we compared our experimental results with the ones obtained using Choice
Function, Reinforcement Learning and an improved version of the Choice Function.
These selection mechanisms were also used together with the Improving-and-Equal
acceptance technique. The results showed that the proposed heuristic selection method

provides comparable results.

The proposed heuristic selection method does not need to know the time and nature
of the changes in the environment. Nevertheless, the acceptance mechanism accepts
the first solution generated after each environment change regardless of its quality.
Therefore, the algorithm requires the detection of environment changes. To detect a
change in the environment, we used a simpler approach in which the current solution is
re-evaluated at each step. The empirical results showed that the re-evaluation scheme
provides a slightly poorer performance. However, however, the approach is suitable
for cases where changes cannot be made known to the optimization algorithm. As a
future work, acceptance schemes in hyper-heuristics can be developed which are more

suitable to dynamic environments.

Furthermore, we performed a comprehensive analysis of the proposed approach.
We explored the influence of the parameters on the performance of the algorithms.
According to our experimental results, the proposed approach was in general capable
of adapting itself to the changes rapidly. Moreover, its performance is not much

affected by the settings of the parameters.
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In the last phase of the thesis, we examined the performance of the proposed scheme
in three different applications. First, we proposed a multi-population framework using
the hyper-heuristics. The framework enables hybridization of EDAs and selection
hyper-heuristics based on online and offline learning mechanisms for solving dynamic
environment problems. A dual population approach was implemented, referred to as
HH-EDA?2 which uses PBIL2 as the EDA. The performance of the overall algorithm
was tested using different heuristic selection methods to determine the best one for
HH-EDA?2. The results revealed that the selection scheme that relies on a fixed
permutation of the underlying low-level heuristics (Random Permutation) was the most
successful one. HH-EDA?2 was in general capable of adapting itself to the changes
rapidly whether the change is random or cyclic. Even though the hybrid method
provides good performance in the overall, it generates an outstanding performance
particularly in cyclic environments. This is somewhat expected, since the hybridization
technique based on a dual population acts similar to a memory scheme, which is
already known to be successful in cyclic dynamic environments [25]. Furthermore,
HH-EDA?2 outperforms well know approaches from literature for almost all cases,

except for some deceptive problems.

In the last application, we tested our approach on real-world problems. Even though
Ant-based selection was proposed for dynamic environments, we wanted to see its
performance in stationary environment too. Therefore, first, the proposed approach
was implemented on HyFlex. The Java implementation of HyFlex was used in
CHeSC2011 competition and provides six stationary optimization problems. The
performance of the proposed approaches were compared to that of competitors in
CHeSC2011. The results showed that the proposed method was among the midst
ranking algorithms. Then, to assess the performance of the proposed method on a
dynamic real-world problem, we chose the Dynamic Traveling Salesman Problem. The
instances of the Dynamic Traveling Salesman Problem were generated from stationary
Traveling Salesman Problem instances by introducing a traffic factor as proposed
in [18]. We compared our experimental results with the ones obtained using the best
performing approach on the stationary optimization problems provided by HyFlex.
The proposed methods were also compared with problem specific approaches proposed

for the Dynamic Traveling Salesman Problem. The results showed that the proposed
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approaches provided good results for the Dynamic Traveling Salesman Problem except

for high severity change cases.

In this thesis, we investigated a single point based selection hyper-heuristics in
dynamic environments. Hyper-heuristics were directly employed in various dynamic
environment problems. The empirical results showed that hyper-heuristic did not
depend on the change properties. However, in literature, different approaches were
used for different change properties. For example, if the changes are severe and the
change frequency is relatively high, the approaches which maintain diversity at all
times are preferred. The approaches increasing diversity after a change are preferred
for environments where changes are not too severe. Memory-based approaches are

particularly more useful for cyclic environment where a change occurs periodically.

This thesis presented the Ant-based selection hyper-heuristic for solving dynamic
optimization problems. This method is based on the simple ant colony optimization
algorithm and maintains a matrix of pheromone values between all pairs of low-level
heuristics. In Ant colony optimization, pheromone trail values and heuristic
information are used together. As a future work, we can introduce a heuristic
information in the proposed method as in Ant Colony Optimization. The heuristic
information may be the time spent by the low-level heuristics, heuristics types, i.e.

mutational, crossover, hill-climbing, or use frequency of the low-level heuristics.

The proposed approach was applied to several benchmark functions and real-world
problems without any modifications. All results showed that the proposed approach
provided good and competitive results to existing methods. These findings emphasized

the general nature of hyper-heuristics also in dynamic environments.

In this thesis, the proposed approaches were applied to benchmark functions and
real-world optimization problems in dynamic environments. Another future work can
be to design Ant-based selection hyper-heuristics to solve multi-objective optimization

problems in dynamic environments.
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APPENDIX : Results of Ant-Based Selection with Tournament Selection

Table A.1 and Table A.2 show the results gy and tournament size tests for AbSts and
sAbSts, respectively.

Table A.1 : Final offline error results of various g settings for AbSts under the tested
change frequency-severity pairs.

LF MF HF
q0 IS MS HS IS MS HS IS MS HS
413 863 1095 686 1054 13.09 23.14 2499 29.16
433 826 1081 603 10.19 1321  19.88 23.12 27.89
413 785 11.17 644 10.80 13.68  19.80 23.03 28.10
429 852 11.14 655 11.00 13.80 2044 23.08 29.03
555 823 11.37 828 11.96 1448 2572 2573 31.28
394 819 1038 630 991 1324 2276 2457 2994
398 839 1077 638 998 13.09 1934 22.19 28.03
412 858 1078 601 10.08 12.99 1836 22.13 27.78
459 822 1073  6.67 1077 12.99  19.89 23.66 29.00
459 894 11.76 857 1121 1456 2335 2471 30.59
434 763 11.04 583 1072 1326 1920 23.16 28.70
436 841 1093 576 1027 12.66 1775 2191 27.43
411 859 1052 586 10.00 1327 1672 2096 26.97
436 806 10.64 564 10.02 1408 1917 22.34 2851
463 876 1090 734 10.66 1403 2095 23.55 29.79
395 873 1090 574 947 1274 1734 2152 2842
381 7.88 10.85 542 10.17 13.11 1476 20.05 27.40
399 821 1035 546 1031 1349 1526 2074 27.23
379 849 11.10 564 10.69 1290 1621 21.89 28.14
430 863 11.65 612 10.09 14.03  17.87 22.09 29.43
390 7.84 1026 5.5 983 13.70 1541 2051 27.24
429 811 1124 504 990 13.17 13.85 21.10 27.79
419 854 1096 4.88 1033 1347 1343 19.08 26.74
382 873 1070  5.10 1140 1405 1459 20.61 28.16
411 915 1096 577 10.63 13.81  17.60 23.00 30.37
417 864 11.12 508 10.12 1414 13.69 20.74 2801
427 898 10.82 521 11.10 13.97 1400 20.16 27.90
366 872 1197 502 1031 14.80 1442 2142 28.09
423 930 1205 533 1038 1450 1479 22.04 29.93
403 931 1118 571 1137 1430 1530 22.15 30.76
394 881 1158 563 11.82 1423 1644 2422 3301
404 984 1229 524 1051 1371 1566 2272 32.45
411 882 1229 58 10.69 1431 1498 24.89 33.35
400 1029 12.12 543 10.83 1395 1601 23.15 33.09
396 1033 11.12 527 1147 1476 1570 23.54 31.57
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Table A.2 : Final offline error results of various gg settings for sAbSts under the tested
change frequency-severity pairs.

IF MF HF
o 57 Ms  HS IS MS HS IS MS HS
2 435 781 1019 641 977 1330 2140 2344 23861
3426 791 1133 597 993 1299 1727 20.62 26.63
00 4 393 784 1132 596 1027 1343  16.12 20.82 27.06
5 425 916 1170 575 1034 1358 1697 21.16 26.90
6 447 906 1218 7.01 1053 1465 18.89 21.94 28.20
2 412 827 1058 617 1065 1329 1953 22.57 27.99
3420 846 1085 547 939 13.03 1565 19.89 26.42
01 4 405 866 1088 564 946 1301 1514 19.84 2638
5 378 881 1144 550 989 13.11  16.64 20.04 2632
6 439 888 1143 692 1030 1400 17.00 21.61 27.74
2 393 721 1085 613 930 1348 1803 2142 2722
3 398 853 1088 553 1076 13.66 1525 20.14 27.08
03 4 419 843 1158 534 990 1297 13.66 18.87 2626
5 395 914 11.18 543 11.03 1322 1450 19.92 2537
6 420 884 1130 595 1039 13.65 1641 21.08 27.70
2 389 865 1062 563 979 1300 1624 21.03 27.57
3416 756 1129 529 1098 1328 1419 1981 25.67
05 4 400 927 1173 526 993 1351 1255 1834 25.12
5 366 882 1085 575 953 1361 1242 19.00 25.62
6 391 886 1158 6.8 978 13.65 1498 21.24 2824
2 392 921 1089 533 1006 1235 1431 1950 2672
3424 859 1131 502 1068 1320 1345 20.04 26.94
07 4 395 827 1125 465 902 1375 12.05 1838 2628
5 395 865 11.14 535 11.10 1374 1330 19.49 27.08
6 448 901 1154 522 1099 1325 1403 1943 26.94
2 399 825 1148 487 978 1355 1205 1894 2613
3410 885 1172 530 11.65 1443 1342 2041 28.19
09 4 431 816 1124 535 1051 1507  13.11 19.70 27.68
5 433 7.82 1141 499 1066 1409 1396 2041 2831
6 435 10.12 1209 570 1055 1393 1497 2157 29.20
2 411 946 1259 559 1013 1370 1611 2347 3133
3408 897 1170 556 1179 1511 1632 23.04 30.80
1.0 4 422 818 1240 592 11.67 1343 1493 21.88 30.34
5 430 1066 1256 559 11.02 1432  17.05 23.06 31.20
6 383 892 11.66 504 1053 1509 1484 21.96 30.11
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