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ABSTRACT 

ENVIRONMENTAL DRIVERS OF BENTHIC-INTERIOR EXCHANGE EVENTS 
OVER THE CONTINENTAL SHELF OF MONTEREY BAY, CALIFORNIA 

 
by Ben Yair Raanan 

This study presents a comprehensive analysis of oceanographic data collected by an 

automated profiling mooring and fixed instrumentation platforms deployed over the mud 

belt on the southern continental shelf of Monterey Bay, California at 70 m depth during 

the fall of 2012. Physical and optical measurements taken at the study site documented 

the frequent occurrence of suspended particulate matter (SPM) layers in the mid-water 

column, the majority of which were detached from the seafloor and overlaid clearer 

water. This study examines the temporal and spatial variations of these detached SPM 

layers using time series analysis and modeling methods, and investigates how 

hydrographic and climatic phenomena relate to their appearance. The results indicate that 

the forcing of detached SPM layers appears to include not only large enough surface 

waves for recent seafloor resuspension in the bottom boundary layer but also, and of 

equal importance, energetic internal tides. A probabilistic model based on co-occurrence 

of the two environmental processes predicted the appearance of detached SPM layers 

with 77% accuracy. The ability of energetic internal tides to propagate into Monterey Bay 

appears to be, to some extent, connected to wind-driven shifts in stratification over the 

shelf. 
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Introduction 

 Over continental shelves, particularly those of eastern boundary upwelling coasts, 

benthic-interior exchange (the supply of benthic material to the mid and upper water 

column) is important for ecosystem functioning and biogeochemical processes. Vertical 

distribution of suspended particulate matter (SPM) plays an important role in delivering 

benthic iron (a limiting micronutrient) and, potentially, benthic resting cysts of harmful 

algal species to the euphotic zone (Bruland et al., 2001; Ryan et al., 2005). 

Oceanographic surveys and the deployment of oceanographic systems off central 

California provide insight to the processes controlling suspension and redistribution of 

particulate matter on continental shelves. Local redistribution dynamics of suspended 

sediment transported within bottom boundary layer (BBL) flows have been well 

characterized in past studies by using fixed benthic instrumentation platforms and 

shipboard casts. However, mostly due to technological limitations, past observations 

were unable to adequately resolve SPM patterns carried in mid-water column (i.e., not at 

the seafloor) over the continental shelf due to temporal or event-scale variability of 

benthic-interior exchange processes. As such, our understanding of processes driving the 

transport of energy and matter to the mid-water column over continental shelves still 

remains incomplete, and so the ability to predict SPM mobility is limited. The work I 

present here employs innovative measurement platforms that collected high-resolution 

water column measurements over two month-long field deployments (fall 2011 and fall 

2012). These observations were then processed to characterize events of exchange 
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between bottom boundary mixed fluid and the mid-water column over the continental 

shelf. 

This study was part of a larger multi-institutional research project funded by the 

National Science Foundation (grant OCE-0961810 to lead PI McPhee-Shaw) to examine 

the exchange of SPM between the BBL and the water column interior over Monterey 

Bay’s continental shelf. The project focused specifically on detached SPM layers (BBL 

intrusions of SPM rich water), often seen in the form of intermediate nepheloid layers 

(INLs) detaching from the continental margin. The research project entailed two month-

long field deployments (fall 2011 and fall 2012) of an automated wave-driven profiling 

mooring and fixed instrumentation. Examining the fall 2011 observation period, Cheriton 

et al. (2014) document the frequent occurrence of layers of elevated SPM detached from 

the seafloor and provide evidence supporting a number of physical mechanisms (mainly 

associated with semidiurnal baroclinic internal tides of M2 frequency) driving the 

intrusion and lateral advection of SPM layers. They suggest that rather than depending on 

a sole mechanism of injection, the formation of boundary intrusions may depend on a 

hierarchy of processes that occur over a range of time scales and combine to form 

favorable conditions for detachment and dispersal of well-mixed fluid and benthic 

constituents from the BBL into the interior water column. The multiplicity of 

contributing factors makes it difficult to clearly identify the underlying physical 

mechanisms responsible for boundary layer detachment and increases the complexity of 

identifying processes associated with benthic-interior exchange. Our comprehensive 

examination of the fall 2012 observations presented here serves as a base for comparison 
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and an extension of the 2011 dataset, by expanding the investigation of relationships 

between boundary intrusions of SPM and co-occurring environmental processes 

suggested by Cheriton et al. (2014). 

Background 

Sediment Resuspension and Transport Processes Near the Seabed 

Sediment deposition on continental shelves results from a complex interplay of 

geological and oceanographic processes (Edwards, 2002). During major flooding events, 

fluvial sediment typically bypasses the littoral zone and is deposited offshore, either on or 

off the shelf (Eittreim et al., 2002; Syvitski & Morehead, 1999). For those sediments 

deposited on the shelf, subsequent transport is the result of both advective and diffusive 

processes. Sediment transport occurs during periods when bed shear stress is sufficient 

for erosion and transport (Nittrouer & Wright, 1994). On continental shelves, flux 

divergence in the sediment transport field (i.e., net erosion or deposition) can result from 

spatial gradients in wave energy, current velocity, or sediment properties (Harris & 

Wiberg, 2001). 

Episodic, long-period energetic surface swell events play an important role in 

sediment erosion on continental shelves (Sternberg & Larsen, 1975). Over Monterey 

Bay’s shelf and similar regions surface wave-induced bed shear stress has been identified 

as the primary driver for the resuspension of fine-grained silts and clays (George & Hill, 

2008; Storlazzi et al., 2007). Enhanced near-bottom currents may also drive resuspension 

and transport of fine particulates over the shelf break and at some regions of the 

continental shelf. In many studies, such energetic bottom currents were observed as 
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sheared cross-shore current pulses that are thought to form as internal tides move 

shoreward and shoal into non-linear internal boars (NLIBs) (Boguckiet al., 1997; 

Bourgault et al., 2014; Cacchione & Southard, 1974; Carter et al., 2005; Dickson & 

McCave, 1986; Hosegood et al., 2004; Noble & Xu, 2003). 

Upon resuspension, sediment particles are typically transported upward by 

turbulent eddies and vertical motions from the orbital velocities created by surface waves 

(Grant & Madsen, 1979). While the near-bottom forces associated with these waves may 

be sufficient to mobilize sediment within the wave-induced BBL, further destabilization 

and subsequent turbulence are required to efficiently propel sediment out of the BBL and 

further up into the water column. Observational studies (Carter et al., 2005; Cheriton et 

al., 2014; Hosegood et al., 2004; Jody M. Klymak & Moum, 2003), as well as laboratory 

and numerical modeling experiments (Aghsaee et al., 2012; Boegman et al., 2005; 

McPhee-Shaw, 2002), have suggested that enhanced vertical velocities generated during 

NLIW shoaling and breaking may not only bring sediment into suspension but also, in 

some cases, cause substantial vertical advection into or beyond the upper reaches of the 

BBL. 

Advection of Sediment Beyond the BBL 

Along the U.S. West Coast continental shelf, and particularly over Monterey 

Bay’s mid-shelf, occurrences of boundary layer intrusions (layers of SPM detaching from 

the BBL) and detached SPM layers overlying clearer water are well documented (Carter 

et al., 2005; Cheriton et al., 2014; Klymak & Moum, 2003; McPhee-Shaw et al., 2004; 

Pak et al., 1980). There are several possible explanations for why SPM layers are often 
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found above the BBL over the continental shelf. For example, Cheriton et al., (2014) 

present evidence of strong, locally generated, vertical updraft events induced by the 

passing of large-amplitude internal waves of depression followed by an abrupt upwards 

isopycnal adjustment. The upward vertical velocities associated with these updrafts were 

shown to be sufficient for lifting particulates into the mid-water column from the BBL. 

Subsequently, this SPM may be focused by sheared lateral advection to form SPM layers 

overlying clearer water. Another hypothesized mechanism for detachment suggests that 

turbulent boluses or internal bores that are produced during the shoaling of internal 

wavetrains (Helfrich, 1992; Hosegood et al., 2004; Venayagamoorthy & Fringer, 2007) 

are capable of suspending and transporting particulates further up the slope, as the 

boluses decay, large particles may be redeposited to the bed and an intrusion of mixed 

fluid charged with fine sediment may disperse laterally along isopycnals offshore 

(Bourgault et al., 2014; Cheriton, McPhee-Shaw, et al., 2014; Hosegood et al., 2004). 

Detached SPM layers in the form of intermediate nepheloid layers (INLs) have 

been observed over continental margins worldwide and are important for the transfer of 

energy and material such as sediment (Weering et al., 2001), nutrients (Nédélec et al., 

2007), and organic material (Inthorn et al., 2006) from the shelf to the open-ocean and 

deep-sea environments. INLs can be defined generally as plumes or clouds of SPM 

independent from the surface mixed layer and either independent from or detaching from 

the BBL. Although the formation of shelf-depth INLs and detached SPM layers may be 

driven by several different mechanisms, the formation of deeper INLs detaching from the 

outer shelf and continental slope are most commonly attributed to critical reflection of the 
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internal tide (Azetsu-Scott et al., 1995; Cacchione & Drake, 1986; De Madron, 1994; 

Dickson & McCave, 1986; Gardner, 1989; Klymak et al., 2007; McPhee-Shaw et al,, 

2004; Puig et al., 2004; Thorpe & White, 1988; Weering et al., 2001). Critical reflection 

occurs when the topographic angle of the slope matches the angle of internal wave phase 

propagation (normal to energy propagation; for a comprehensive review of this topic see 

McPhee-Shaw, 2006). 

Processes Associated with Vertical Advection of Sediment 

Cheriton et al. (2014) observed detached SPM layers over Monterey Bay’s mid-

shelf that exhibited a great deal of temporal variability and occurred under a variety of 

conditions. While some detached (or detaching) SPM layers appeared as stand-alone 

events, others appeared as a series of sequential events separated by mere hours. These 

detached SPM layers were frequently observed when winds were upwelling favorable, 

cold, dense bottom waters were present, and wave heights were >2 m. In addition, the 

presence of these detached SPM layers was strongly linked with energetic semidiurnal 

internal tides (Cheriton et al., 2014). Although the timing of strong internal tide forcing 

cannot be predicted (Nash et al., 2012), during the 2011 period of observation the influx 

of dense water up onto the shelf provided the sharp near-bottom stratification gradient, 

which supports the propagation of energetic internal tides into Monterey Bay (Cheriton et 

al., 2014b). This temporal variability and the wide range of co-occurring environmental 

conditions accompanying the appearance of detached SPM layers over the continental 

shelf of Monterey Bay suggest that these phenomena may be driven by more than one 

particular injecting mechanism, and that multiple processes, possibly fluctuating in 
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different time scales, combine to form favorable conditions for formation and transport of 

detached SPM layers (Cheriton et al., 2014). 

Though the contribution of low-frequency oscillations in physical processes such 

as winds, internal tidal waves and high surface wave events to detachment of SPM layers 

still remains unclear, some of their effects are documented. For instance, despite the 

indirect relationship found by Cheriton et al. (2014) between resuspension of sediment by 

surface wave action and the timing of detached SPM features, availability of SPM in the 

BBL forced by high swell events is thought to be a first-order requisite for supplying 

seafloor material to the mid-water column (Cheriton et al., 2014). Additionally, wind-

driven variations in bulk hydrographic shelf conditions (i.e., upwelling-relaxation 

dynamics) control stratification, which supports the propagation of internal tidal boars 

and other nonlinear internal waves thought to be important for the injection and transport 

of SPM. But to what extent do these processes influence the distribution and frequency of 

detached SPM layers? Do some processes increase (or decrease) the likelihood of 

observing detached SPM layers? If so, can that contribution be quantified? And finally, 

can we predict the presence of detached SPM layers based on these larger scale events? 

While the answers to these questions hold their own value, they may also advance our 

understanding of specific physical mechanisms that force the initial injection and 

subsequent distribution of detached SPM layers.  

So far sufficient observational, laboratory and numerical modeling evidence has 

been gathered to suggest a number of mechanistic hypotheses for the formation of 

detached SPM layers over the mid-shelf. However, the stochastic nature of internal-wave 
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activity (Nash et al., 2012) accompanied by the mélange of changing hydrographic 

conditions typical to mid-shelf environments have prevented attaining a robust analytic 

and statistical description, let alone predictive framework, of these processes leading to 

the formation of detached SPM layers. The fall of 2012 dataset presented here, was used 

to examine the contribution of semidiurnal to weekly fluctuations in hydrographic 

conditions to the appearance of detached SPM layer. To attain a better quantitative 

description of the relationships between physical drivers and detached SPM layers, I 

incorporate a probabilistic approach to my work here in addition to other conventional 

correlation tests.  

Research Objectives and Specific Questions  

Objectives 

Presented in this thesis are long-term, high-resolution observations of SPM over 

the southern Monterey Bay shelf gathered throughout the fall 2012 field effort of the NSF 

Benthic Exchange Project. The goals of this thesis research project are to (1) illustrate the 

temporal and spatial variation of detached SPM layers, (2) develop and implement time 

series analysis and modeling methods to investigate how hydrographic and climatic 

phenomena influence the appearance of detached SPM layers and manipulate erosional 

forces applied to the seabed, and finally, (3) to establish a predictive framework for 

appearance of detached SPM layers based on co-occurring environmental processes. 

Specific Questions 

1. What were the patterns of SPM over the mid-shelf of Monterey Bay during the 

period of observation (Fall, 2012)? 
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2. How did detached SPM layers vary in space and time and what were their transport 

pathways? 

3. What were the principal sets of oceanographic conditions leading to the appearance 

of detached SPM layers? 

4. How do changes in oceanographic conditions affect the likelihood of SPM features 

occurring at the study site? Can a probabilistic predictive model for the appearance of 

detached SPM layers be established based on co-occurring environmental processes? 

Study Site 

Located on the central California coast, Monterey Bay is a large, open embayment 

bisected by the Monterey Submarine Canyon, which runs east to west through the middle 

of the Bay (Figure 1). Local hydrography is strongly controlled by offshore winds 

(Breaker & Broenkow, 1994). The predominant northwesterly winds are strongest after 

the spring transition and drive the upwelling of cold, nutrient-rich waters from depths as 

deep as 300 m (Rosenfeld et al., 1994). The relaxation or reversal of this wind pattern 

allows warm surface waters to move back in over the shelf. 

Energetic semidiurnal internal tides are known to be ubiquitous features of the 

shelves of Monterey Bay and the California coast. Internal tides in the wider Central 

California region are often dominated by the semidiurnal M2 constituent (Petruncio, 

1993) but diurnal baroclinic motions dominate at some times and locations (Woodson et 

al., 2011). The intensity of internal tidal motions is controlled, in part, by the degree of 

stratification (Petruncio, Rosenfeld, & Paduan, 1998; Wang et al., 2009). Offshore in 

deep waters, energetic low-mode internal tides are generated at the nearby Sur Ridge 
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(Jachec et al., 2006) and propagate along the continental margin and into Monterey 

Canyon. Additional generation, as well as reflection and refraction, may occur both 

within the canyon and over the Monterey Bay shelf. The internal wave field over the 

shelf can include both onshore and offshore propagation (Carter et al., 2005; Cazenave et 

al., 2011) and is characterized by long-wavelength, low-mode semidiurnal waves, as well 

as high-frequency oscillations characteristic of nonlinear internal bores (Cazenave et al., 

2011; Key, 1999; Stanton & Ostrovsky, 1998; Storlazzi et al., 2003; Walter et al., 2012; 

Woodson et al., 2011). 

 
Figure 1. Map of 2011 and 2012 study site in southern Monterey Bay (Cheriton et al., 
2014). Black dot is the site where the mooring instrument platforms (autonomous 
profiler, acoustic Doppler current profiler, and thermistor chain) were deployed. 
Locations of the NOAA 46042 (square) and CDIP-156 (triangle) buoys are also shown. 
Bathymetric contours are in 10‐m from 0 to 100 m (black contours), and 100‐m from 100 
m to 2000 m (gray contours). The inset map shows the location of Monterey Bay along 
the coast of California, USA. 
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Over the Monterey Bay continental shelf and running northward, sits a band of 

fine‐grained (diameter < 63 µm) sediment, predominantly made up of silt and clay‐sized 

particles (Figure 1). The Salinas River (Figure 2) has been identified as the source of the 

mud‐belt sediment on the southern Monterey Bay shelf (Edwards, 2002). Despite likely 

seasonal variations in resuspension, gridded grain size data derived from a series of 

sediment samples (n=43; Figure 2; usSEABED, 2006) show a seemingly consistent 

quasi-circular patch of mud on the southern Monterey Bay shelf (Edwards, 2002). This 

patch appears to be approximately 10-15 km in diameter, centered on the 70-90 m 

isobaths. 

 
 
Figure 2. Sediment grain size distribution girded data superimposed over Monterey Bay’s 
bathymetry. Blue (grain size<62µm, n=25) and yellow (grain size>=62µm, n=18) 
markers show the usSEABED (2006) sediment sampling points used for girding (n=43). 
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Methods 

Field Experiment 

From October 2 to October 28, 2012, a suite of instrumentation platforms (Figure 

3) were deployed within 700 m of each other on approximately the 70 m isobath located 

on the mid-shelf mud belt of the southern Monterey Bay shelf (Figure 1). This field effort 

was designed to duplicate and extend the field deployment of September 24 to October 

27, 2011 described by Cheriton et al (2014). 

 
Figure 3. Diagram of moorings and instrumentation platforms with locations of ADCP, 
ADV, profiler, and thermistor chain. 

 

Measurements of currents, temperature, and pressure. The instrumentation 

platforms included a thermistor chain mooring and a tripod with an upwards-looking 

Teledyne RD Instruments 300-kHz WorkHorse Sentinel acoustic Doppler current profiler 
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(ADCP; 36.7000°N, 121.8733°W). The ADCP collected current profiles with 2-m 

vertical bins every minute, with 25 pings per ensemble, resulting in an estimated 

uncertainty of ± 1.5 cm s-1. The thermistor chain had 14 SeaBird SBE-39 thermistors 

sampling every 30 s; they were spaced 5 m apart from 1.5 to 61.5 meters above bottom 

(mab). The SBE-39 loggers at 1.5, 31.5, and 61.5 mab also measured pressure. Additional 

current and pressure measurements were sampled by a frame mounted Nortek Vector 

acoustic Doppler velocimeter (ADV) at 1.6 mab. Horizontal currents at the ADCP were 

rotated counter-clockwise 6.5o according to local bathymetry to obtain along-shore 

(positive, northward) and cross-shore (positive, onshore) components. 

Profiler measurements. An autonomous Brooke Ocean SeaHorse vertical 

profiler (on loan from Dr. Margaret McManus, University of Hawaii) outfitted with a 

SeaBird SBE-19plus CTD, SBE-43 oxygen sensor, WetLabs C-Star transmissometer, and 

WetLabs Wetstar chlorophyll-a fluorometer (Figure 4), was also deployed at the 70m 

isobath (36.7001°N, 121.8685°W). The profiler is wave-powered and uses a ratchet 

system controlled by an onboard microprocessor to move through the water column. 

Profiles between 9 mab and 1.5 m below the surface were undertaken each hour 

throughout the 1-month deployment period, resulting in a total of 667 profiles. Fifteen of 

these profiles were incomplete since the package did not reach the bottom of the mooring 

line upon descent. During the up-casts, the CTD on the profiler collected measurements 

at 4 Hz, for a vertical resolution of approximately 0.15 m. The profiler measured 

temperature, salinity, pressure, chlorophyll-a fluorescence, and beam transmittance. The 

resting position for the profiler was at the bottom of the cable, 9 m above bottom (at 60 m 
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depth). For further details on the operation of the autonomous profiler, see Cheriton et al. 

(2014) and Sevadjian et al., (2015). 

 

 
Figure 4. Brooke Ocean SeaHorse vertical profiler instrumentation. Photo by Olivia 
Cheriton, USGS. Used with permission. 

 

Measurements of water turbidity. The autonomous profiler collected the 

primary dataset used in this study to detect detached SPM layers throughout the water 

column. The profiler instrumentation suite included a Wet Labs C-Star transmissometer, 

which measured beam transmittance (tr) at 650 nm over a 25 cm path length (pl). An 

identical device was attached to the ADCP frame at 0.4 mab to determine turbidity 

conditions in vicinity to the bed. Beam attenuation values (c, in m-1) found to be linearly 

proportional to SPM concentrations were derived as c = (-1/pl) * log(tr) (McPhee-Shaw 
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et al., 2004). A linear fouling trend was present in beam attenuation dataset due to 

gradual accumulation of material on the transmissometer lens. To account for this, the 

trend calculated from a linear regression of the minimum values for each profile was 

removed from all beam attenuation data. 

Wind, waves, tides, and river discharge. Hourly wind velocity data (Figure 8a) 

were obtained from the National Oceanic and Atmospheric Administration’s (NOAA) 

Monterey buoy (Station 46042; www.ndbc.noaa.gov), located 27 nautical miles 

northwest of Monterey (36.785°N, 122.469°W; Figure 1). Tide levels and constituents 

were determined by applying a band-pass filter (10 h < period, T < 28 h) to pressure 

measurements from the ADV and using the t_tide software package (Pawlowicz et al., 

2002). Surface wave parameters were taken from the Coastal Data Information Program 

(CDIP) Monterey Canyon Outer buoy (Buoy 156; cdip.ucsd.edu), located about 9 km 

offshore from the study site in 170 m of water (36.7608°N, 121.9469°W; Figure 1). The 

daily-averaged Salinas River discharge rates were obtained from the U.S. Geological 

Survey stream gauge located approximately 20 km inland from the coast (Site 11152500, 

http://waterdata.usgs.gov/nwis). 

Data Processing 

Data collected by the ODIM Brooke Ocean SeaHorse autonomous profiler were 

gridded to 0.1-m depth intervals to facilitate processing and analysis. Beam attenuation 

values c that exceeded the median from a 30-hr window by 4 standard deviations, were 

removed and replaced by cubic interpolations (to account for erroneous data logging) 

along with data from the 15 profiles that did not cover the entire water column. Water 
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column stratification at the study site was evaluated from high-vertical-resolution density 

profiles using the squared buoyancy frequency (Brunt-Väisälä), 𝑁2 = −𝑔 𝜌& ∆𝜌 ∆𝑧 , 

where 𝑔 is gravitational acceleration, ρo is the mean water density over a vertical profile, 

and ρ is density at a given depth, 𝑧. Squared buoyancy frequency values were used to 

determine the localized, temporal variations of water column stratification. The inertial 

frequency, f = 2Ωsin(𝜑), which characterizes oscillation associated with Earth’s rotation 

(Ω), was calculated to be f = 8.71×10-5 rad/s (or T=20.02 hours) at the study site’s 

latitude (𝜑=36.71oN). Throughout this thesis I use “high frequency” to describe processes 

occurring at frequencies > f.  Finally, vertical isotherm displacement 𝜉 was calculated 

based on isotherm height above the bottom. 

Throughout this project I performed variance-preserving power spectral density 

(PSD) analysis using the fast Fourier transform (FFT). For time series of interest, the 

time-mean was removed and the series was linearly detrended. Next, the data were split 

into smaller segments, which were then zero padded to achieve the next power of two for 

the FFT and to increase frequency resolution. The choice of window length signified a 

compromise between the increased number of degrees of freedom (DOF) for each 

spectral estimate, decreased frequency resolution, and length of the original record. Each 

segment was multiplied by a Hamming window with 50% overlap to decrease spectral 

leakage. Spectral densities were computed using the FFT, and segments were block 

averaged. Confidence intervals (95%) were calculated using a chi-square variable 

analysis and the “equivalent” number of DOF (Thomson & Emery, 2014). 
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Near-Bed Wave Orbital Velocity and Shear Stress Model 

I computed estimates near-bed shear stresses from ADV current velocities (1.56 

mab) and CDIP buoy directional wave measurements using the Grant-Madsen model 

(Madsen, 1994). For each time iteration, the MATLAB model (obtained from USGS) 

independently calculated frictional bottom shear stress due to orbital velocities from 

surface waves 

 
𝜏+ = 1

2 𝜌𝑓+ 𝑢.
2 ( 1 ) 

 
where 𝜌 is water density, fw is the wave friction factor (Nielsen, 1992), and ub is near-bed 

wave orbital velocity. The model also accounted for bottom shear stress induced by 

horizontal near-bed currents 

 

𝜏, = 𝜌𝐶0𝑢2 ( 2 ) 

 
where 𝜌 is water density, Cd is drag coefficient, and u is the magnitude of current 

velocity, and computed combined estimates of the total bed-shear-stress 𝜏-, due to 

surface waves and currents. Maximum wave orbital velocity values, ub, were evaluated 

using the parametric spectral method described by Wiberg & Sherwood, (2008). This 

utilizes standard wave parameters and the Donelan spectral formulation method (Donelan 

et al. , 1985) which helps account for times when the wave parameters are inconsistent 

with a simple, unimodal spectral form. 
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In October 2012, a surface sample of seafloor sediment taken in the vicinity of the 

study site was found to be composed of 99.8% fine‐grained sediment with D50 and D25 of 

34 and 14 µm, respectively (Beckman Coulter LS Particle Size Analyzer result sheet; 

Appendix A). Based on this sample, estimates of bed shear stress were produced for both 

D50 and D25 grain diameters. To satisfy the model’s input requirement for inner hydraulic 

roughness of the bed, I used a value of 𝑧& = 9 x 10‐5 m, which was a model‐tuned estimate 

used for the soft, muddy portion of the Palos Verdes shelf in southern California by Ferré 

et al., (2010). The critical shear stress threshold, 𝜏cr, for mobilizing noncohesive sediment 

was calculated using the formulation described by Soulsby, (1997) as follows: 

 

𝜏,. = 𝜌(𝑢∗23)2 ( 3 ) 

 
where 𝜌 is water density and the critical shear velocity 𝑢∗23 is 

 
𝑢∗23 = 𝑠 − 1 𝑔𝑑 𝜓23 ( 4 ) 

 
where 𝑠 is the ratio of sediment and fluid densities (𝑠 = 𝜌7/𝜌8), 𝑔 is gravitational 

acceleration, 𝑑 is grain diameter and, 𝜓23, is the derived Shield parameter for initiation of 

sediment transport. This gave 𝜏cr = 0.08 N m-2 for the silt (D = 34 µm) sediment at the 

study site, which matches the critical value used by Dunbar & Barrett, (2005) and 

Cheriton et al., (2014) to determine the threshold for the resuspension of shelf muds. 

I performed time-series analysis of the different model outputs (i.e., 𝜏w,	𝜏c and 

𝜏wc) to evaluate whether detached SPM layers are associated with particular processes 
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such as erosion due to large surface waves or near-bottom currents. I also performed a 

spatial analysis of surface wave-induced bed shear stress (𝜏w) spanning the entire 

southern bay shelf (20 to 100m isobaths) to illustrate how 𝜏w varied. I then passed the 

model outputs through lagged cross-covariance functions and probabilistic statistical 

classification models (described below) to characterize the relationship between 

observations of detached SPM layers and frictional bottom shear stress and to determine 

whether the occurrence of detached SPM layers was directly related to local sediment 

resuspension events. 

Optical Peak Identification Algorithm 

The temporal variability and vertical distribution of observed detached SPM 

layers (first and second questions driving this study) were determined by a MATLAB 

algorithm designed following methods by Cheriton et al., (2014), Sullivanet al., (2010) 

and Sevadjian et al., (2015). I designed the algorithm to identify detached optical peaks 

of SPM (i.e., elevated SPM overlying clearer water) in individual vertical profiles 

collected by the profiler by examining the fine-scale vertical structure of corrected beam 

attenuation values. The iterative algorithm first extracted and smoothed individual 

profiles using a digital low-pass filter and subtracted the background attenuation level, 

then, local maxima and minima were identified by analysis of first and second derivatives 

of the signal computed with respect to depth. The “level of intensity” of each optical peak 

was determined by computing a ratio (Atratio) between the peak’s maximum attenuation 

value (Atmax) and the nearest local minima (Atmin) located under it (i.e., 

Atratio=Atmin/Atmax). detached SPM layer(s) were defined as Atratio<0.66 (Figure 5). To 
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avoid false detection, I only considered peaks with Atmax within the top 15th percentile of 

the beam attenuation record. I defined the upper and lower extents of the layer as the 

profile’s intersection with half of the peak’s maximum attenuation value (0.5*Atmax; 

Figure 5). A second filtering criterion eliminated peaks found in the upper half of the 

water column. I used the products of the algorithm to index profiles that recorded 

detached SPM layers and serve as a base for further analyses throughout this project. 

 
Figure 5. Example profile of a corrected beam attenuation (c︎) profile showing how SPM 
layer attributes were identified. The smoothed profile (dark blue line) is overlying the 
original profile (light blue dotted line), the triangle is the peak (Atmax), the circles indicate 
upper (global) and local lower minima (Atmin), and the squares mark the upper and lower 
extent of the layer (1/2*Atmax). 
 
Suspended Particle Trajectory Model 

The shelf excursions of detached SPM layers were estimated using a simple 3-

dimensional particle-trajectory model, designed following Cheriton et al.’s (2014) 
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particle tracking model concept. The model calculated particle displacement by using the 

ADCP-measured current velocity for the horizontal component, and, for the vertical 

component, the ADCP-measured vertical velocities with the estimated Stokes particle 

settling velocity (D=34 µm) of ws = 7x10‐4 m s-1 subtracted. Particle settling velocity was 

calculated according to Stokes Law of settling (Stokes, 1851) 

 

𝑊7 = 𝑔
(𝜌7 − 𝜌8)

18𝜇 𝐷2 ( 5 ) 

 
where ws is settling velocity, 𝑔 is gravitational acceleration, 𝜌7 is sediment density, 𝜌8  is 

fluid density, 𝜇 is the dynamic viscosity of seawater, and D is the particle diameter. 

To initialize the model, I used the temporal and vertical positions of the detached 

SPM peaks located by the optical peak identification algorithm as inputs. The model then 

assumed that a “particle” is present at this depth and time at the location of the profiler on 

the shelf (i.e., x = 0, and y = 0 at time of peak detection). The model tracked this particle 

forward in time from this initial point using progressive vectors, and stopped as soon as 

the particle reached the seafloor (or in some cases sea-surface). To investigate the 

possible origin and pathway the particle took before reaching the profiler site, the model 

also ran backwards in time, using reversed progressive vectors. Total model run time was 

24 hours in each direction. 

Studies show the importance of larger suspended particulates for sediment 

accumulation on continental shelves (Sternberg & Ogston, 1999) as fine suspended 

particles generally combine to form flocs and aggregates (125 to 750 µm), and thus 

considerably increase particle settling velocity (Eisma, 1993). To simulate flocculation, 
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the model replaced particle settling velocity with an empirically measured aggregate 

settling velocity of ws = 4x10‐3 m s‐1 which corresponds to a 250 µm diameter floc 

(Ogston & Sternberg, 1999). Aggregation was tested at different scenarios in which 

settling velocity replacement is simulated at different times past the initial particle 

measurement (time = 0). I used the outputs of this analysis to approximate transport 

pathways of the suspended matter entrained within the detached SPM layers and to 

provide means for addressing the second question driving this study. 

Identifying Predictors of Detachment 

Time-domain empirical orthogonal function (EOF) analysis. In many cases, 

gaining insight to the underlying processes driving vertical mixing can be challenging 

due secondary processes that introduce a considerable amount of variance (“noise”) into 

the system. In order to assess the relative importance of the various processes 

contributing to the appearance of SPM layers, I decomposed observations of current 

velocities and turbidity using a time-domain empirical orthogonal function (EOF) 

analysis (Glover, Jenkins, & Doney, 2011; Thomson & Emery, 2014) and examined the 

vertical structure and the temporal patterns of the first two modes of variability. Lucas, 

Franks, & Dupont, (2011) showed that EOF decomposition was effective in extracting 

the internal-tide signal from other modes of variability in current velocity time series. 

Interpretation of the EOF modes was achieved by extracting the time series of the EOF 

amplitude and performing variance preserving PSD analysis. 

Lag cross-correlation coefficient function. Unlike high-frequency physical 

parameters, such as vertical isotherm displacement (𝜉), which have been shown to be 
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closely coupled to local turbulent dissipation and mixing events (Carter et al., 2005; 

Klymak et al., 2007; Woodson et al., 2011), lower-frequency forcers of mixing are 

expected to exhibit indirect (time-lagged) associations to observations of benthic-interior 

mixing events. I computed lagged cross-correlation coefficients (Equation 6 and Figure 

6) along with 95% confidence intervals to identify the lag time scales associated with 

relationships between time series of interest. Following methods described by Thomson 

& Emery, (2014) and  Glover, Jenkins, & Doney, (2011), the cross-correlation 

coefficient, 𝑟=, of two time series (𝑥 and 𝑦 with means of 𝑥 and 𝑦) at lag n with N-n pairs 

over lapping is given in its definition as: 

 

𝑟= = 𝑁
𝑁 − 𝑛 − 1

𝑥A − 𝑥|=+1
C 𝑦A−= − 𝑦|1C−=

𝑥A − 𝑥|=+1
C 2 𝑦A−= − 𝑦|1C−= 2

 ( 6 ) 

 

Probabilistic Predictive Framework 

Logistic regression classification model. To further assess the relative 

importance of terms contributing to the appearance of detached SPM layers and to create 

a predictive model for the appearance of intrusions based on co-occurring environmental 

processes, I implemented logistic regression under the generalized linear model (GLM) 

framework described by Krusche, (2010) and Gelman & Hill, (2006). Logistic regression 

is the standard way to model binary outcomes, that is, data Y that take on the values 0 or 

1 (i.e., detached SPM layer absence or appearance, respectively; Gelman & Hill, 2006). 

As shown in Table 1 and in Figure 7, logistic regression is implemented to find 

the equation that best predicts the value of the Y variable for each value of the X variable. 
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What makes logistic regression different from linear regression is that the Y variable is 

not directly measured; it is instead the probability of obtaining a particular value of a 

nominal variable (i.e., 0 or 1; Figure 7). Additionally, in this case logistic regression is 

preferable over more commonly used null hypothesis significance testing (NHST) 

methods, as it allows us not only to see whether the probability of getting a particular 

outcome is associated with the measurement variable, but also to predict the probability 

of getting a particular outcome, given the measurement variable. Finally, logistic 

regression may be performed with a single metric predictor as well as an additive 

combination of multiple metric predictors. The outcomes of this analysis provide means 

for addressing the third and fourth questions driving this study. 

Table 1  

Equations used for computation of Logistic regression 

Description Equation Variables 

Logistic function  
(sigmoid function) 𝑠𝑖𝑔 𝑥 = 1

(1 + 𝑒−F) 𝑥 = measurement variable 

Logit function 
(inverse of the logistic 

function) 
𝑙𝑜𝑔𝑖𝑡 𝑝 = 𝑙𝑛 𝑝

(1 − 𝑝)  p = the probability that 
Y=1, for 0 < p < 1 

Logistic regression model 
(written in terms of the logit 

function) 
ln 𝑝 𝑦 = 1

𝑝 𝑦 = 0 = 𝛽0 + 𝛽1𝑥1 … 
p = probability, 𝑥 = 

measurement variable, β0,1 

= regression coefficients 

Logistic regression model 
(written in terms of the 

logistic function) 
𝑝 𝑦 = 1 = 𝑒M0+M1F

1 + 𝑒M0+M1F 
p = probability, 𝑥 = 

measurement variable, β0,1 
= regression coefficients 
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Figure 6. An example of the logistic sigmoid function of a single variable, with the 
measurement variable on the horizontal axis and the probability for the outcome of the 
dependent variable (between 0 to 1) on the vertical axis. 

 

Receiver operating characteristic (ROC). To illustrate the performance of each 

binary classification model, I computed a receiver operating characteristic (ROC). ROC 

analysis provides a metric commonly used to evaluate the quality of binary classifiers and 

to select possibly optimal models over suboptimal ones. For each output of the binary 

classifier, I applied threshold values across the interval [0,1]. For each threshold, two 

values were calculated, the True Positive Ratio (TPR) 

 

𝑇𝑃𝑅 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ( 7 ) 

 
and the False Positive Ratio (FPR). 
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𝐹𝑃𝑅 = 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ( 8 ) 

 
A ROC curve illustrating the classification performance of a model can then be 

constructed by plotting TPR and FPR against each other. The area under the curve (AUC) 

statistic is a commonly used metric for model comparison; a high AUC of 1.0 indicates 

perfect classification while random guessing normally yields a low AUC score of 0.5. 

Results 

Hydrographic and Meteorological Conditions 

The full record of meteorological and hydrographic variables is given in Figure 8. 

Wind-driven upwelling and water-column response. The principal component 

of winds at the offshore NDBC station 46042 was oriented at 336°, roughly parallel to 

the coast (i.e., upwelling favorable; Figure 8a). The 4-week study period was 

characterized by several periods of sustained upwelling-favorable winds (northeasterly), 

that were interrupted by weakening or full reversals to downwelling-favorable winds 

sometimes lasting up to a few days at a time. 
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Figure 7. Time series data collected over study period, from 2 to 29 October 2012 (PST). 
(a) Wind velocity, (b) water level height above mean, and (c) significant wave height, as 
well as data from the profiler: (d) temperature, (e) salinity, (f) log10 of the squared 
Brunt–Väisälä frequency, N2, (g) across-shore velocity, (h) along-shore velocity, (i) 
chlorophyll-a, and (j) corrected beam attenuation. 
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The month-long period captured 4 distinct upwelling periods, with start times of 

5, 12, 19, and 25 October (Figure 9a). Within approximately 1.5 days after the start of 

upwelling-favorable winds, cold, dense water infiltrated the bottom portion of the water 

column over the shelf (Figure 9a, 9b). When the equatorward winds relaxed, or reversed, 

the flow within the bay shifted poleward and the water column rapidly warmed. These 

observations of lagged wind/water-column response are confirmed by lagged cross-

covariance analysis of upwelling-favorable wind and 11.5oC isotherm displacement 

(Figure 10) and are in agreement with previous descriptions of the water-column 

response to upwelling dynamics over the Monterey Bay shelf (Cheriton et al., 2014; 

Storlazzi et al., 2003). 

 
Figure 8. Lagged relationship (dashed arrows) between buoy 46042 uppwelling-faverable 
winds (a) and water column tempratures collected by thermistor chain. ~1.5 days after the 
start of upwelling-favorable winds cold water infiltrated the bottom portion of the water 
column. Wind reversals are followed by rapid warming. 
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Figure 9. Lagged cross-covariance analysis of upwelling-favorable wind and isotherm 
displacement ξ11.5 show segnificant correlation beetween the above at lags of 
approxemtly 24-84 hours. The 95% confidance intervals are indicated by red dashed 
lines. 
 

During the period of observation, cold upwelled water infiltrated onto the shelf 

and formed a secondary pycnocline, that gradually shoaled as the cold bottom Ekman 

layer reached further up into the water column (Figure 11a; approximate depth of the 

secondary pycnocline depth is indicated by the 12 °C isotherm). This near-bottom 

pycnocline was of similar strength (N ~ 2 x 10-2 s-1) to the near-surface pycnocline and 

appeared on the shelf through multiple upwelling periods. The water below the secondary 

pycnocline was dense and unstratified. 

Throughout the one-month deployment, and especially during the major 

upwelling event of October 14 to 25, the appearance of the secondary pycnocline during 

upwelling periods coincided with increased high-frequency displacement of near-bottom 

isotherms (Figure 11b). The high-frequency (>f) fluctuations in bottom temperatures 

were most energetic at the M2 semidiurnal frequency (Figure 12) and can be thought of as 

the onset of upwelling seen as a series of internal tidal bores propagating near the seabed 

along secondary pycnocline. Identical observations were reported by (Cheriton et al., 

(2014b), which used the same dataset, as well as data collected further down the shelf, to 
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explore the control of regional Ekman dynamics on propagation of internal waves 

through continental shelf waters. Their results are similar to other studies conducted over 

the shelf of Oregon by ( Klymak et al., 2007; Klymak & Moum, 2003), and demonstrate 

the importance of cross-margin, upwelling-driven, shelf hydrography to the formation of 

wave guides that allow the propagation of internal wave energy at both tidal and higher 

frequencies. 

 
Figure 10. (a) Squared Brunt-Väisälä frequency, N2, in log10 scale, with the 12oC 

isotherm overlaid (black line), indicating the approximate depth of the near-bed, 

secondary pycnocline. Bottom panel (b) shows increased variance in high-passed (f) 

near-bottom isotherm displacement (𝜉), an indicator for high-frequency (>f) fluctuations. 
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Figure 11. Variance-preserving power spectral density (PSD) of high-passed (>f) near-
bottom isotherm displacement 𝜉11.5, presented along with 95% confidence intervals. The 
variability is most energetic at the M2 semidiurnal tidal frequency shown as vertical 
dashed red line. 
 

Surface-waves. Significant wave height measured at the CDIP buoy during our 

study period had an overall average of ~1.3 m and co-varied with winds (Figure 13b), 

especially during the third and fourth upwelling periods, which coincided with several 

larger-than-average surface swell events measuring wave heights of over 2 m (15–18 

October, 21 and 24 October; Figure 13a). 
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Tidal height. T-tide harmonic analysis of tidal height measurements based on 

ADV and thermistor pressure had dominant semidiurnal (M2 T=12.41 hr) and minor 

diurnal (K1, T=23.93 hr and O1, T=25.82 hr) signatures (Figure 14a, b). The max spring 

tide occurred on October 16-17, and neap heights were observed 7-8 October. 

 

Figure 12. (a) Significant wave 
height records measured at the 
CDIP buoy. (b) Normalized 
cross-covariance between 
significant wave height and wind. 
During the period of observation 
wave heights co-varied with 
winds with a correlation peak at a 
lag of 24 hours. 

a) 

b) 
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Salinas river discharge. The mean Salinas River discharge rate during our study 

period was ~0.9 m3 s-1, with the largest river discharges (>1.5 m3 s-1) occurring on 6 

October and 16 October 2012. While these rates are higher than typical monthly averaged 

values for September and October (0.2 and 0.1 m3 s-1, respectively, for years 2000–2010), 

these rates are still low enough that it is unlikely the lagoon outflow was breached 

(historically, the sand dunes that block the river outflow are bulldozed by local 

municipalities only under winter flood conditions). For comparison, the mean discharge 

Figure 13. (a) Surface tide from 
October 2-28, 2012. (b) Results of 
t_tide harmonic analysis showing a 
strong M2 and moderate K1 forcing. 
Traces of O1 are also present in the 
tidal signal. 

a) 

b) 
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for January–May 2012 was ~32.0 m3 s-1. Thus, the Salinas River (Figure 1) was not a 

major source of sediment to the bay during the study period. 

Comparison to conditions during 2011 deployment. For comparison and 

reference, the hydrographic and meteorological conditions recorded during the 2011 field 

effort (September 24 to October 27) are shown in Figure 15.   

The general hydrographic and meteorological trends observed during the 2011 

deployment are very similar in pattern and magnitude to the prevailing conditions 

recorded during the 2012 study with two exceptions: First, the baseline of significant 

wave heights measured during the study period of 2011 (Figure 15c) was larger in 

magnitude and high swell events were more persistent than in the fall of 2012 (Figure 8c 

and Table 2). Second, during the 2011 deployment near-bottom water temperatures were 

almost 1oC lower than in 2012 and bottom water masses had higher salinities (and 

densities) than observed the following year (Figure 15d, e). Interestingly, the magnitude 

and persistence of upwelling favorable winds were practically identical during the two 

periods, suggesting that the differences in water-column temperatures might have been 

driven by meso/synoptic scale variability, or alternatively, by more local near bottom 

mixing mechanisms. Summary of the differences is given in tables 2 and 3. For a more 

detailed description of fall 2011 conditions, refer to Cheriton et al., (2014). 
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Figure 14. Time series data collected over study period, from 24 September to 27 
October 2011 obtained from Cheriton et al. (2014). (a) Wind velocity, (b) water level 
height above mean, and (c) significant wave height, as well as data from the profiler: (d) 
temperature, (e) salinity, (f) log10 of the squared Brunt-Brunt–Väisälä frequency, N2, (g) 
across-shore velocity, (h) along-shore velocity, (i) chlorophyll-a, and (j) corrected beam 
attenuation (c*). 
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Table 2 

Fall 2011/2011 comparison of meteorological conditions 

 Buoy 46042 upwelling favorable winds CDIP 156 significant wave height 

 Mean ± SE+ 
(m/s) 

Max 
(m/s) 

% of time 
upwelling 

Mean ± SE+ 
(m) 

Max 
(m) 

% of time 
>2m 

2011 2.6 ± 0.12 12.05 72% 1.3 ± 0.02 3.3 22% 

2012 3.5 ± 0.12 12.70 78% 1.5 ± 0.02 2.3 5% 
+Standard error to the mean (α=0.05) 

 
Table 3 

Fall 2011/2011 comparison of water column temperatures and salinities 
 Mean Temp (oC) Mean Salinity 

mab 2012 2011 ΔTemp+ 2012 2011 ΔSal+ 

61.5 14.25 14.48 -0.22 33.46 33.41 0.058 

51.5 13.45 13.22 0.22 33.48 33.44 0.041 

41.5 12.88 12.46 0.42 33.50 33.48 0.013 

31.5 12.51 11.88 0.63 33.51 33.53 -0.021 

21.5 12.18 11.39 0.78 33.53 33.57 -0.042 

11.5 11.75 10.91 0.83 33.56 33.61 -0.053 

0.5 11.39 10.58 0.81 - - - 
+𝛥 defined 2012-2011 

 
EOF analysis of ADCP currents and energetic internal tides. Semidiurnal 

variability, dominated current velocity fields over the course of the field experiment 

(Figure 16). Semidiurnal cross-shore currents exceeded 0.25 m s-1 near the surface and 

bottom during energetic internal tides. 
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Figure 15. Along-shore (u; top), cross-shore (v, mid) and vertical (w; bottom) current 
velocity fields measured by the ADCP. 

 

To extract the signal of the semi-diurnal internal-tide from the current velocity 

fields I performed a time-domain EOF decomposition of the rotated ADCP dataset. The 

first mode of the time-domain EOF decomposition of along-shore currents explained 

60% of the variance and exhibited a barotrophic vertical structure. Spectral analysis of 

this mode had one distinct peak on the semidiurnal band (Figure 17) and the mode 

correlated with M2 surface tide height (r=0.4 at 1.5 hr lag). The second EOF mode 

explained 19% of the variance and had a distinct mode-1 baroclinic vertical structure. 
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The spectral energy of the second mode was also focused in the semidiurnal band (Figure 

17), however the mode was found to be de-correlated from the M2 surface tide. This 

likely represents the influence of the semidiurnal internal tide, which exhibits periodic 

forcing but is typically de-coupled from the semidiurnal surface tide as a result of the 

distance from the internal tide generation site (Nash et al., 2012). 

 
Figure 16. Variance-preserving power spectral density (PSD) of the first (left panel) and 
second (right panel) EOF modes of along-shore currents, presented along with 95% 
confidence intervals. The variability is most energetic at the M2 semidiurnal tidal 
frequency shown as vertical dashed red line. 

 

The first EOF mode of the cross-shore current captured 40% of the variance, and 

similarly to the second mode of the along-shore current, exhibited a distinct mode-1 

baroclinic vertical structure (Figure 18a). Here too spectral energy was centered over the 

M2 frequency (Figure 18c) and the mode was de-correlated from the M2 surface tide. The 

amplitude of the first EOF mode was variable in time, peaking during periods of 

upwelling, with weaker fluctuations during periods of downwelling (Figure 18b). The 

second mode captured 25% of the variance and was similar in character to the first mode 

of the along-shore current component. 
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Figure 17. EOF decomposition of cross-shore velocities during 2012 study. (a) The first 
vertical mode captures 40% of the variance. (b) The temporal amplitude of the first mode 
is dominated by variability at the M2 frequency (c). This representation demonstrates the 
mode-1 nature of the internal tide and shows the variability in the strength of the internal 
tide during the experimental period, peaking around 4-5 and 16 October. 

 

The second EOF mode of the along-shore current and first EOF mode of the 

cross-shore current will be referred to as the M2 internal tide hereafter. Although 

secondary in importance to the processes discussed here, other products of the EOF 

analysis (e.g., vertical current components and other modes) are given in Table 4 and 

illustrated in Appendix B and Appendix C. 
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Table 4  

EOF modes of currents velocity fields - fall 2012 
 along-shore currents (v) cross-shore currents (u) vertical currents (w) 

Mode 
Variance 
explained 

Accumulated 
variance 

explained 
Variance 
explained 

Accumulated 
variance 

explained 
Variance 
explained 

Accumulated 
variance 

explained 

1 59.8% 59.8% 40.4% 40.4% 54.7% 54.7% 

2 18.9% 78.8% 25.1% 65.5% 9.7% 64.4% 

3 7.8% 86.6% 12.3% 77.8% 6.0% 70.5% 

4 4.4% 91.1% 7.1% 85.0% 3.5% 74.0% 
 

Observations of Suspended Particulate Matter in the Water Column 

Observations from the profiler and optical peak algorithm. Throughout the 4-

week observation period, records from the profiler revealed the frequent presence of SPM 

layers with peaks well above the seafloor, overlying clearer water (Figure 19). Out of 667 

profiles collected in 2012 study, the optical peak algorithm (designed to detect detached 

peaks in individual profiles) successfully identified 313 (46.9%) detached SPM peaks 

(Table 4). Similar to the findings of Cheriton et al. (2014) from fall 2011, the peaks 

centered approximately 10-20 m above the bottom (Figure 20), and at times, exhibited 

apparent semidiurnal variability. A summary of the algorithm outputs is given in Table 5.  

Near the bottom (0.4 mab), measurements of turbidity indicate variability in the 

presence of an SPM rich bottom nepheloid layer (BNL; Figure 19b). Although there 

seemed to be correspondence between beam attenuation readings from the BNL and 

measurements from the mid-water column during high attenuation events (8 October and 
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15-18 October; Figure 19), only weak correlations were found between the records 

(rmax=0.33 at 24 hr lag). 

 
Figure 18. (a) Observations of SPM in the water column by the profiler and (b) near the 
bottom at 0.4 mab. High attenuation events are evident throughout 2-4, 8 and 12-24 of 
October. 

 

Table 5 

Results from optical peak algorithm - fall 2012 
Detached 

SPM 
peak 

Not 
detached Rejected* 

Mean beam 
attenuation 

anomaly (m-1)† 

Mean height 
above bottom 

(mab)† 

Mean 
detachment ratio 

(Atratio)† 

294 
(44.1%) 

362 
(54.2%) 

11 
(1.6%) 0.7 ± 0.03 17.7 ± 0.44 0.48	± 0.02 

*Rejected profiles did not meet basic criteria for analysis. 
†±standard error to the mean (α=0.05). 
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EOF analysis of profiler beam attenuation records. I performed a time-domain 

EOF analysis of the profiler corrected beam attenuation records to examine the vertical 

structure of the variance within the observed SPM features in the water column and 

isolate the time scales associated with oscillations in detached peaks. Results of the EOF 

analysis are given in Table 6 and Figures 21-23. I focused attention on the first two 

modes, which explained the majority of the variance (93.8%).  

Figure 19. Vertical distribution of 
detached SPM layer peaks during the 
2012 study period as identified by the 
optical peak identification algorithm. 
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Table 6 

EOF modes of profiler corrected beam attenuation records - fall 2012 

Mode Variance explained Accumulated variance explained 
1 86.4% 86.4% 

2 7.4% 93.8% 

3 3.1% 97.0% 

4 0.84% 97.8% 

 

 
 
The first EOF mode accounted for ~86% of the variance in the dataset and 

described the low-frequency temporal fluctuations of SPM in the water column. The 

vertical structure of the first mode was mostly uniform throughout the water column with 

Figure 20. Vertical structures of EOF 
amplitude from the first 4 modes of corrected 
beam attenuation records from 2012. 
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an increase in amplitude at ~15-20 mab (the same height detached SPM layers were 

centered at; Figure 21) fallowed by a decrease towards the bottom of the profile. The 

time-domain spectral energy of the first mode of variability was dominated by low 

frequency fluctuations (1-2 week; Figure 22a) following oscillation patterns found in 

wave and wind records (Figure 23a). The vertical structure of the second EOF mode was 

similar in character to structure of detached SPM layers seen in individual profiles 

(Figure 21) and carried a strong semidiurnal tidal signal of M2 frequency (Figure 22b). 

The second mode also contained a considerable amount of variance in 3-5 day bands. 

 
Figure 21. Variance-preserving spectral analysis of the first (a) and second (b) EOF 
modes of corrected beam attenuation records from the fall 2012 study period. Inertial (f) 
and M2 frequencies are shown as vertical dashed lines. 

 

 
Figure 22. Time-domain representation of the first (a) and second (b) EOF modes of 
variability computed from corrected beam attenuation records collected in 2012. Red line 
indicates the sliding mean of 6 semidiurnal cycles. 
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Suspended Particle Trajectory Simulation 

I simulated the horizontal and vertical excursions of detached SPM layers over the 

southern Monterey Bay shelf by tracking the movement of theoretical particles starting at 

the depths and times of SPM peaks as identified by the optical peak algorithm. For each 

‘‘particle’’ I assigned a range of sinking velocities, from the Stokes sinking velocity for 

34 µm particles (7×10-4 m s-1) to the estimated sinking velocity for large 250 µm flocs 

(4×10-3 m s-1) (Sternberg et al., 1999). A detailed description of this simulation is found 

in methods section 5.5. 

The backwards-in-time portion of the particle tracking model simulated a point of 

origin for all of the particles that were tested (n=294). In most cases, the vertical 

velocities preceding the appearance of detached SPM layers at the profiler site were 

sufficient to not only counteract the estimated settling velocity, but to also deliver the 

SPM from the seafloor up to the depth observed at the profiler site within a relatively 

short time frame (mean was 4.3 ± 0.52 hours, α=0.05). Corresponding to these time 

scales, and in agreement with estimates by Cheriton et al. (2014), the horizontal 

excursion of modeled particle origin proved to be surprisingly close to location of the 

study site spanning only ~1 km on average (well within the mudbelt range; Figure 24). 

Once the modeled particles reached the mid-water column (at the study site), 

vertical transport (6-min averaged ADCP measurements) was generally matched the 

vertical movement of isotherms. Averaging the vertical placement of the simulated 

particles closely reproduced the vertical distribution of the detached SPM layers recorded 

by the profiler (Figure 25a). The vertical distribution of simulated particle trajectories 
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that did not take into account flocculation ended up in shallower parts of the water 

column (Figure 25a), suggesting that flocculation influences the vertical distribution of 

SPM carried in these layers. 

 

 
Figure 23. Origin (green dots) and fate (red and orange dots) of particle trajectory 
simulation (flocculation scenario) superimposed over the southern shelf of Monterey 
Bay. Colored contours indicate the distribution of sediment grain sizes across the shelf as 
shown in the map’s legend. The origin of the majority of particles traced back to within 
the mudbelet ~1 km around the study site (black triangle). 
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Forward-in-time particle trajectories were long lasting as particles reached mid-

water depths “riding” upward vertical velocity bursts. In the case where no aggregate 

settling velocity was applied, modeled particles were advected to the ocean’s surface in 

some cases and only 23.7 % were deposited back to the bed within the 24-hour time 

frame of the forward model. Introducing aggregate settling velocities increased the 

number of deposited particles to 35.9 %, and decreased the average suspension time from 

23.3 hours in when no aggregate settling velocity was applied to 21 hours for aggregated 

particles. In both cases, the majority of particles remained in suspension beyond the 

model’s 24-hour forecasting limit. 

Based on the horizontal trajectories across the shelf I computed a general 

evaluation of the mudbelt’s stability by comparing the origin and end coordinates of 

modeled particles with the know location of the mudbelt (Figure 24). The majority of 

trajectories simulated under the aggregating scenario placed erosion and settling (start 

and finish) within the mudbelt bounds (41%) with a secondary exportation trend in ~21% 

of profiles (Figure 25b). The simulation of particle horizontal advection distributed 

particle fates equally across isobaths with a slight on-shore trend. This minor instability 

of the mud belt found by the model is in agreement with other sources in the literature, 

which identify the study period as the beginning of the mudbelt’s mobilization period 

(Storlazzi et al., 2007). 
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Figure 24. Mean vertical distribution of simulated particle trajectories (a) and mudbelt 
erosion and deposition trends (b) determined according to particle trajectory origin and 
fate (e.g., In-In (Out-Out) means that particles originated and deposited from within (out) 
of the mud belt). 

 

Processes Associated with Detached SPM Layers 

Bottom shear stress from currents and waves. Similar to Cheriton et al. (2014) 

analysis of 2011 data, I found orbital velocities from surface waves to be the dominant 

component of frictional bottom shear stress over the mid-continental shelf during fall 

2012. During the period of observation surface wave-driven bed shear stress (or simply 

𝜏w hereafter) exceeded the bottom stress driven by horizontal near-bed currents (𝜏c) 84.7 

% of the time (Figure 26a). However, 𝜏w alone managed to exceed resuspension 
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thresholds for D50=34 µm grain sizes only in a few energetic wave events (Oct 14-18). 

While 𝜏c alone very rarely managed to exceed the resuspension threshold (<1 % of the 

time), currents played an important part in that when combined with surface wave orbital 

velocities, the resulting bottom shear stress often surpassed critical thresholds needed for 

resuspension of fine sediment (e.g., Oct 10-13 and Oct 24; Figure 26a). Overall, during 

this 4-week period, combined wave-current shear stresses (𝜏wc) surpassed the critical 

threshold (𝜏cr) 13.2% of the time for grain sizes of D50 = 34 µm and 47.7 % of the time 

for grain sizes of D25 = 14 µm. 

 
Figure 25. (a) Smoothed bed shear stresses form combined wave-current (black line), 
surface wave-only (blue line), and current-only (green line) stresses. Raw signal is shown 
in faded color in the background. The critical shear stress threshold for grains of diameter 
34 µm (upper) and 14 µm (lower) are overlaid (red dashed lines; 𝜏cr = 0.08 N m-2). (b) 
Near bottom beam attenuation (0.4 mab), with times when combined wave-current bed 
shear stresses exceeded the critical threshold indicated by the light gray (14 µm) and dark 
gray (34 µm) shaded regions. 
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In addition to estimates of 𝜏 at the study site, I computed spatial estimates of 𝜏w 

for the study period of fall 2011 based on buoy CDIP 156 wave data under the 

assumption of a uniform surface-wave field across the area of the southern Monterey Bay 

shelf. In addition, for the purpose of this analysis I assumed an even grain size 

distribution of D50=34 µm over the entire shelf. It is important to note that although some 

regions of the shelf consist of grain size distributions spanning much higher grain 

diameters (recall Figure 2), increased grain diameters result in higher hydraulic roughness 

of the bed, which in turn yield higher shear (Eisma, 1993), and so the spatial estimates of 

bed shear stress produced by this analysis represent lower-bound conditions. 

The estimates of 𝜏w were computed for depths ranging 20-100m, then hourly 

averaged, and finally, assigned to a spatial grid of corresponding depths obtained from 

bathymetry data of the Monterey Bay (MBARI). Results of the spatial analysis shown in 

Figure 27 reflect spatial variations dictated mostly by the sloping topography of the 

continental shelf; this is expected given the decaying nature of surface-wave orbital 

velocities as depth increases. The average of 𝜏w calculated for the entire 4-week duration 

of the study periods is shown in Figure 27a and peak 𝜏w conditions are shown in Figure 

27b. 

For reference, I repeated the analysis of 𝜏w for the fall 2011 field campaign. 

During 2011 study period, levels of 𝜏w were higher than in 2012 and surface waves strong 

enough to affect the mudbelt (60-90m) were more frequent. Although the 2011 

deployment was only a week longer, six large surface wave events took place (24-27, 28-

30 September and 4-5, 6-8, 12-15, 26 October) compared to two in 2012 (16-18 and 21-
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25 October; Figure 28a, b). These differences were most pronounced in deeper regions of 

the shelf where 𝜏w at 70 m exceeded 𝜏cr 22.2% of the time in 2011 versus 6.3% in 2012 

(Figure 29). For comparison, time-series of 𝜏w estimates for 50, 70 and 90m for both 

deployments are shown in Figure 28. 

 
Figure 26. Spatial estimates of 𝜏w over the southern shelf of Monterey Bay. The 
magnitude of 𝜏w is indicated by color-bar and the critical threshold for resuspension 𝜏cr is 
shown (black markers on colorbar). (a) Average 𝜏w conditions over the entire period of 
observation (October 2012) and (b) peak 𝜏w conditions (15 October, 2012 17:00 PST) are 
shown. 

 



	

	 52 

 
Figure 27. Modeled time-series of 𝜏w estimates at 50, 70 and 90 m form 2011 (a) and 
2012 (b). Black arrows indicate high bed shear events where 𝜏w>>>	𝜏cr.  

 

Figure 28. Times where 
𝜏w>	𝜏cr are shown in % of 
total duration of each 
deployment at 50, 70 and 90 
m shelf depths. At 70m, 
light colored bars show 
estimates of 𝜏wc, which were 
available due to current 
measurements at the study 
site. 
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Bottom shear stress forcing of detached SPM layers. My analysis of the 

relationship between total frictional bottom shear stress 𝜏wc calculated for the study site 

and SPM concentration in the BBL (i.e., near bottom beam attenuation; Figure 26b) 

yielded a weak cross-correlation coefficient (r = 0.16). However, when examined more 

directly at an event scale, the relationship became clearer in events forced strongly by 𝜏w 

(i.e., Oct 14-18, r = 0.6) and less clear in events where shear stress was mutually forced 

by 𝜏w and 𝜏c (i.e., Oct 10-13, r = -0.12). 

To assess the relationship between SPM concentrations carried in the mid-water 

column and 𝜏w, I first computed a 10-m depth-bin average of corrected beam attenuation 

measurements collected by the profiler centered at 17 mab (~the height where most 

detached peaks were seen). Then, I performed a lagged cross-correlation analysis 

between the corrected beam attenuation signal for 17 mab and 𝜏w estimated for shelf 

depths of 50, 70 and 90 m to examine the possibility of a delayed response due to 

advection and diffusion of SPM from the bottom. Lagged cross-correlation coefficients 

increased in significance as depth shoaled and peaked at 50 m with a time lag of ~12 

hours (r=0.54; Figure 30); inferring a strong (and statistically significant) connection 

between particles sheared from the bottom at shallow depths and mid-water-column SPM 

concentrations at the study site (70 m). 
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Figure 29. Normalized cross-covariance illustrating the lagged relationships between 
wave-induced bed shear stress 𝜏w at various depths and concentrations of SPM at 17 mab. 
The 95% confidance intervals are indicated by red dashed lines. 

 

Semidiurnal internal-tide forcing of SPM features. I performed 2D wavelet 

analysis of the M2 frequency band to examine the connection between the M2 internal 

tide (i.e., mode-1 EOFs) and SPM concentrations in the mid-water column over time and 

vertical space. In this analysis, I used a 6-day running window to extract subsets of the 

time-series for processing and generated a new time-series made of the calculated data 

products (Figure 31). 

Over the period of observation energetic perturbations by the M2 frequency were 

pronounced during high attenuation events (e.g., 15-20 October 2012) in which 

reoccurring detached SPM layers were seen (Figure 31). The vertical structure of time-

integrated M2 spectral density generally matched the vertical distribution of detached 

SPM peaks detected by the optical peak algorithm (Figure 32). 
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 Figure 30. Wavelet analysis of the M2 frequency band in SPM concentrations. M2 
frequency is most energetic during high attenuation event 15-20 October. 

 

 

Figure 31. Time-integrated vertical structure 
of M2 spectral density extracted from SPM 
concentration records (top x-axis). Vertical 
structure matched the vertical distribution of 
detached SPM peaks (bars) detected by the 
optical peak algorithm (bottom x-axis). 
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Logistic Regression Classification Model 

To quantify the influence of 𝜏w and the M2 internal-tide on the appearance of 

detached SPM layers, I fitted the time-series of 𝜏w and of M2 under the logistic regression 

framework. The models produced under this analysis served a dual purpose: 1) to 

quantify the level of association between the appearance of detached SPM layer and the 

measurement variables (i.e., M2 internal-tide, 𝜏w or both) using classification performance 

metrics, and 2) to establish a predictive classification model that returns the probability 

for observing a detached SPM layer given the measurement variables. The measurement 

variables were smoothed using a low-pass filter (<20 hour) and fitted against the binary 

record of detached SPM layers identified by the optical peak algorithm; profiles that 

included a detached SPM layer were defined as 1 versus 0 in their absence. Logistic 

regression models were fitted for each measurement variable individually and as an 

additive combination of the two using MATLAB’s statistical toolbox. 

To examine the possibility of a delayed response between the measurement 

variables and the appearance of detached SPM layers (due to the time scales associated 

with advection and diffusion of SPM from the bottom to the mid water column), I 

computed multiple logistic regression models for each of the proposed measurement 

variables over a range of time lags (0-24 hours) and then compared those models using 

the Akaike information criterion (AIC) statistic (Akaike, 1998). AIC is a measure of the 

relative quality of statistical models for a given set of data. Given a collection of models 

for the data, AIC estimates the quality of each model, relative to each of the other 
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models. Hence, AIC provides a means for model selection. The models that minimized 

the AIC statistic were selected for further analysis. 

Using the method for model selection described above, I compared logistic 

regression models of the along-shore (v) and cross-shore (u) current components of the 

M2 internal-tide decomposed from the EOF analysis. Similarly, I compared logistic 

regression models using 𝜏w estimates computed for 50 m, 70 m and 90 m. Out of those 

the cross-shore (u) current component of the M2 internal-tide and 𝜏w computed for 50 m 

displayed the best performance and were selected for further analysis.  Results for the 

model selection analysis are given in Table 7 and illustrated in Figures 33 and 36. 

Table 7 

Comparison of logistic regression models 
 M2 internal-tide Surface-wave bed-shear-stress (𝜏w) 

 along-shore (v) cross-shore (u) 50 m 70 m 90 m 
AIC 806.3 772.7 803.2 826.1 844.4 

Classification 
accuracy 64% 66% 66% 66% 65% 

Lag (hr) 9 12 13 12 12 
*Selected models from each category are shown in bold text. 

The derived logistic regression coefficients and model diagnostics for the selected 

models, as well as the additive combination of the two, are given in Tables 8-10 and 

illustrated in Figures 34, 37 and 39. The classification performance evaluation of the 

selected models via ROC curve along with ±95% bootstrapping confidence bounds 

(Macskassy & Provost, 2004) are illustrated in Figures 35, 38 and 40. Finally, a 

comparison of classification performance for all three models is given in Table 11 and 

illustrated in Figure 41. 
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Figure 32. Analysis of classification performance using ROC for model comparison of 
the cross-shore (u) component of the M2 internal-tide over varying lags (blue line), along 
with ±95% bootstrapping confidence bound (blue shaded area). The model that displayed 
the best classification performance (i.e., maximized AUC statistic) is indicated by red 
dot. 
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Figure 33. The derived Logistic sigmoid curve for cross-shore (u) component of the M2 
internal-tide. Binned data points (black dots) are also shown; the density of dots reflects 
the abundance of data in each bin. 

 

Table 8 

Logistic regression (𝑙𝑜𝑔𝑖𝑡(𝑦)~𝛽0 + 𝛽1𝑥) analysis of M2 internal-tide (12hr lag) 

 Estimate SE t-stat p-value 

Intercept (𝛽0) -0.294 0.087 -3.367 7.6×10-4 

Slope (𝛽1) 0.903 0.112 8.021 1.0×10-15 

Model diagnostics 
 Deviance DFE 𝜒2 stat p-value 

𝑙𝑜𝑔𝑖𝑡(𝑦) ~ 𝛽0 (𝑁𝑢𝑙𝑙) 849.01 618   

𝑙𝑜𝑔𝑖𝑡(𝑦) ~ 𝛽0 + 𝛽1𝑥 768.67 617 80.34 3.1×10-19 

𝑅deviance
2 =0.09 AIC=772.66    
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Figure 34. ROC curve for M2 internal-tide (u) logistic regression model representing the 
accuracy of classification under varying probability thresholds (blue line), along with 
±95% bootstrapping confidence bound (blue shaded area). The optimal operating point of 
the ROC curve (red dot) calculated using the ROC cost function is also shown. 
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Figure 35. Analysis of receiver operating characteristic (ROC) curve for model 
comparison of 𝜏w (50 m isobath) over varying lags (blue line), along with ±95% 
bootstrapping confidence bound (blue shaded area). The model that displayed the best 
classification performance (i.e., maximized AUC statistic) is indicated by red dot. 
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Figure 36. Logistic sigmoid curve for 𝜏w (50 m isobath). Binned data points (black dots) 
are also shown; the density of dots reflects the abundance of data in each bin. 

 

Table 9 

Logistic regression (𝑙𝑜𝑔𝑖𝑡(𝑦)~𝛽0 + 𝛽1𝑥) analysis of 𝜏w 50m (13hr lag) 

 Estimate SE t-stat p-value 

Intercept (𝛽0) -0.278 0.084 -3.286 1.0×10-3 

Slope (𝛽1) 0.726 0.096 7.539 4.7×10-14 
 

Model diagnostics 
 Deviance DFE 𝜒2 stat p-value 

𝑙𝑜𝑔𝑖𝑡 𝑦 ~ 𝛽0(𝑁𝑢𝑙𝑙) 868.34 634   

𝑙𝑜𝑔𝑖𝑡(𝑦) ~ 𝛽0 + 𝛽1𝑥 799.23 633 69.10 9.3×10-17 

𝑅deviance
2 =0.07 AIC=803.2    
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Figure 37. ROC curve for 𝜏w (50 m isobath) logistic regression model representing the 
accuracy of classification under varying probability thresholds (blue line), along with 
±95% bootstrapping confidence bound (blue shaded area). The optimal operating point of 
the ROC curve (red dot) calculated using the ROC cost function is also shown. 
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Figure 38. Logistic sigmoid surface for 𝜏w (50m) and M2 internal-tide (u) additive 
logistic regression model. Data points used for analysis (black dots) are also shown. 

 

Table 10 

Additive logistic regression (𝑙𝑜𝑔𝑖𝑡 𝑦 ~𝛽0 + 𝛽1𝑥 + 𝛽2𝑥) analysis of 𝜏w (13hr lag) and 
M2 internal-tide (12hr lag) 

 Estimate SE t-stat p-value 

Intercept (𝛽0) -0.333 0.091 -3.654 2.5×10-4 

Slope (𝛽1) - 𝜏w (50 m) 0.735 0.102 7.197 6.1×10-13 

Slope (𝛽2) – M2 internal-tide (u) 0.926 0.116 7.964 1.6×10-15 
 

Model diagnostics 
 Deviance DFE 𝜒2 stat p-value 

𝑙𝑜𝑔𝑖𝑡(𝑦) ~ 𝛽0(𝑁𝑢𝑙𝑙) 883.96 644   

𝑙𝑜𝑔𝑖𝑡 𝑦 ~ 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥 731.73 642 152.23 8.7×10-34 

𝑅deviance
2 =0.172 AIC=737.7    
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Figure 39. ROC curve for 𝜏w (50m isobath) and M2 internal-tide (u) additive logistic 
regression model representing the accuracy of classification under varying probability 
thresholds (blue line), along with ±95% bootstrapping confidence bound (blue shaded 
area). The optimal operating point of the ROC curve (red dot) calculated using the ROC 
cost function is also shown. 
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Figure 40. Comparison of logistic regression models computed for 𝜏w (yellow), M2 
internal-tide (red), and additive combination of the two (blue) using ROC analysis. The 
optimal operating point of each ROC curve calculated using the ROC cost function are 
indicated by red dots. 

 

Table 11 

Comparison of classification performance via ROC curve optimal operating point 
Model True positive rate False positive rate Threshold* AUC 

DL ~ 1 + M2 64.7% 33.3% 0.46 0.70 

DL ~ 1 + 𝜏w50m 73.7% 39.4% 0.39 0.68 

DL ~ 1 + 𝜏w50m + M2 74.8% 32.3% 0.42 0.77 
*Optimal operating threshold. 
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Discussion 

Observations of Detached SPM Layers 

Throughout the course of the field deployment, we observed numerous accounts 

of detached SPM layers independent of the surface mixed layer and detached or 

detaching from the BBL. Concentrations of SPM carried within the mid-water column 

oscillated on low, 3-7 day, periods with a secondary fluctuation trend dominated by the 

period of the M2 internal-tide and were centered ~18 mab, but maxima were seen as high 

as ~45 mab. Similar observations of fine-grained particles detached from the seafloor 

have been made over mid or outer continental shelves (Bogucki et al., 1997; Cheriton et 

al., 2014; Johnson et al., 2001; Klymak et al., 2007; Klymak & Moum, 2003). Of 

particular relevance are observations from very near to the study site, on the southern 

Monterey Bay shelf in water depths of 70– 90 m, where Carter et al. (2005) noted 

acoustic backscatter pulses extending upward from the seafloor to between 20 and 50 

mab. 

The results from the particle tracking algorithm indicated that detached SPM 

layers were spatially distributed over the entire shelf along the horizontal principal 

component of the time-averaged current fields (𝜃 = 21°). The results produced under 

particle tracking algorithm analysis likely suffer from large error margins mainly 

introduced by two terms: 1) The generalization of current velocities for the entire 

southern shelf from measurements from a single point (the study site), and 2) The 

uncertainty in the ADCP measurements of vertical current velocities of ± 0.015 m s-1 

(equivalent to the mean of maximum vertical current velocities). 
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While these uncertainties dampen the reliability of the analysis, an interesting 

result that arises from this exercise is that the majority of the simulated particles remained 

in suspension throughout the 24 hr period that the model tracked them. These results are 

an order of a magnitude larger than previous estimates made by Cheriton et al. (2014), 

which did not account for the influence of vertical current velocities in the mid water 

column. I have found that during the 2012 study period, the vertical structure of the 

currents was an important feature for maintaining particles in suspension, especially in 

mid-water depths where the vertical placement of particles was strongly influenced by 

what seemed to be periodic upward vertical velocity bursts. 

Similar observations of vertical velocity bursts were reported by Cheriton et al. 

(2014), which concluded that they were important for lifting particles from the BBL to 

the mid-water column. Others have reported similar upsweeps of fine-grained seafloor 

particles in the BBL and have associated them with the passage NLIWs on mid or outer 

continental shelves (Bogucki et al., 1997; Carter et al., 2005; Johnson et al., 2001; 

Klymak et al., 2007; Klymak & Moum, 2003). My results indicate that in addition to 

lifting particles from the BBL, vertical velocity bursts are likely important for 

maintaining particles and flocs suspended in the mid-water column for periods longer 

than 24 hours; this could allow for greater horizontal advection and distribution of SPM 

than commonly thought. 

Predictors of Detached SPM Layers 

As in previous studies, my findings identify surface wave-induced bed shear 

stresses as the primary control over resuspension of fine particulates in the BBL. 
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Although SPM concentrations in the BBL at the 70 m study site were decoupled from 

those seen in the mid-water-column, I have found a time-lagged correlated relationship 

between SPM found in the BBL at shallower shelf depths (50 m) to the SPM observed in 

the mid-water column at the 70 m study site. The time-lagged coupling between bed 

shear stresses at the 50 m isobath and concentrations of SPM in the mid-water column at 

the 70 m study site was identified by cross-correlation analysis and the logistic regression 

model selection process. This time-lag reflects the dominant role of advection in 

determining the timing of detached SPM layers at the 70 m study site. Elevated bed shear 

stress in shallower depths can be thought of as a first-order requisite for the appearance of 

detached SPM layers by providing sufficient energy to keep the BBL filled with SPM.  

Favorable conditions for detached SPM layers on the Monterey Bay midshelf 

appear to include not only large enough surface waves for recent seafloor resuspension in 

the BBL but also energetic internal tides. During the period of observation, variability of 

SPM by the M2 frequency was most pronounced during periods of high SPM 

concentrations and was vertically distributed along the water column in similar patterns 

as detached SPM layers. The logistic regression model selection process further 

accentuated the relationship between the M2 internal-tide and the appearance of detached 

SPM layers: both AIC and AUC model quality statistics were preeminent for the M2 

internal-tide cross-shore component (u) at a 12-hour lag (~one tidal cycle).  

The coupling between the appearance of detached SPM layers and cross-shore 

component (u) of the M2 internal-tide is likely the result of the direction of the internal-

wave propagation compared to the topographic slope of the southern Monterey Bay shelf. 
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Under mean summer hydrographic conditions, the shelf is critical to the M2 internal tide 

directly upslope from the inshore mud belt boundary (~30–50 m isobaths) (Jachec, 2012). 

However, the inshore critical slope region likely varies depending on regional 

hydrography and stratification. 

An important finding of this study is that the co-occurrence of the individual 

physical processes discussed above seems to significantly increase the likelihood of 

observing detached SPM layers. The results from the logistic regression model that 

accounted for the additive combination of 𝜏w computed for the 50 m isobath and the 

cross-shore (u) component of the M2 internal-tide outperformed the models computed for 

each of the predictors individually in its ability to explain the data (e.g., AIC statistic) and 

its classification capabilities (e.g., Accuracy statistic). The combined logistic regression 

model clearly shows that observing a detached SPM layer is far more likely when the 

intensity of both predictors increases. 

Wind-Driven Stratification and Energetic Internal Tides 

Though we cannot predict the timing of strong internal tide forcing (Nash et al., 

2012), evidence presented by Cheriton et al., (2014b) and in this thesis have shown that 

during the 2012 study period the ability of energetic internal tides to propagate into 

Monterey Bay appeared to also be, to some extent, connected to wind-driven shifts in 

stratification over the shelf (Figure 42). During the field experiment, the influx of dense 

water up onto the shelf provided the stratification necessary to support energetic two-

layered internal tides. The evidence presented here support the notion that at this shelf 

depth, wind-driven variations in bulk hydrographic conditions over the shelf may be just 
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as important for sediment transport events as the more commonly considered surface 

swell events that erode the seafloor. 

 
Figure 41. Normalized cross-covariance coefficients illustrating the lagged relationships 
between wind-driven shifts in isotherm vertical placement over the shelf (𝜉45℃) and the 
energy of the cross-shore (u) component of the M2 internal-tide over the 2012 deployment 
period. Wind-driven variations in bulk hydrographic conditions are represented by the 
height above the bottom of the 12oC (𝜉45℃ low-passed <30hr), which closely followed 
the near-bottom secondary pycnocline. The strength of the M2 internal-tide is computed 
as the 5-day sliding variance of cross-shore current velocity EOF mode 1. The signals are 
significantly correlated between 12 to ~ 72 hours. 

 

Conclusion 

Most studies of the processes controlling suspension and redistribution of 

particulate matter on continental shelves have focused on SPM transported within the 

BBL. Studies that have focused on SPM carried in mid-water column over the continental 

shelf were unable to adequately resolve transport patterns due to temporal or event-scale 
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variability of benthic-interior exchange processes. This study provided insight about the 

spatial and temporal variations of SPM transport in mid-water column over the 

continental shelf and linked changes in oceanographic conditions with vertical advection 

of sediment beyond the BBL and through the mid-water column.  

During the period of observation detached SPM layers oscillated on low, 3-7 day, 

periods with a secondary fluctuation trend dominated by the period of the M2 internal-

tide and were centered ~18 mab. Forcing of detached SPM layers appear to include not 

only large enough surface waves for recent seafloor resuspension in the BBL but also, 

and of equal importance, energetic internal tides. A probabilistic model based on co-

occurrence of the two environmental processes predicted the appearance of detached 

SPM layers with 77% accuracy. The ability of energetic internal tides to propagate into 

Monterey Bay appeared to also be, to some extent, connected to wind-driven shifts in 

stratification over the shelf. 
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Appendix A 

Beckman Coulter LS Particle Size Analyzer result sheet 
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Appendix B 

Vertical profiles of time-domain EOF analysis for ADCP currents 
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Appendix C 

Variance preserving spectral density of time-domain EOF components 

decomposed from along-shore (a-b), cross-shore (c-d) and vertical (e-f) ADCP currents 
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