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ABSTRACT 

RNA-PROTEIN STRUCTURE CLASSIFIERS INCORPORATED INTO 
SECOND-GENERATION STATISTICAL POTENTIALS 

 
by Takayuki Kimura 

 

 Computational modeling of RNA-protein interactions remains an important 

endeavor.  However, exclusively all-atom approaches that model RNA-protein 

interactions via molecular dynamics are often problematic in their application.  One 

possible alternative is the implementation of hierarchical approaches, first efficiently 

exploring configurational space with a coarse-grained representation of the RNA and 

protein.  Subsequently, the lowest energy set of such coarse-grained models can be used 

as scaffolds for all-atom placements, a standard method in modeling protein 3D-structure. 

However, the coarse-grained modeling likely will require improved ribonucleotide-amino 

acid potentials as applied to coarse-grained structures.  As a first step we downloaded 

1,345 PDB files and clustered them with PISCES to obtain a non-redundant complex data 

set.  The contacts were divided into nine types with DSSR according to the 3D structure 

of RNA and then 9 sets of potentials were calculated.  The potentials were applied to 

score fifty thousand poses generated by FTDock for twenty-one standard RNA-protein 

complexes.  The results compare favorably to existing RNA-protein potentials. Future 

research will optimize and test such combined potentials.  
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 1. INTRODUCTION  

1.1. Interactions between RNA and Protein Are Important 

Protein and RNA are the two critical macromolecular classes in biology as 

evidenced by the central dogma.  The interaction between RNA and protein is essential 

for many regulatory processes in cells, especially in post-transcriptional regulation.  

Many processes in development and differentiation are related to this RNA-protein 

interaction.1  Areas of interest include interactions involving the ribosome and 

spliceosome, but characterization of nonhuman and noncoding RNA protein interactions 

remain at the frontiers of science.2  To understand relevant mechanisms of action, 

obtaining 3D structures is often required and usually involves x-ray crystallography or 

NMR.3  The former requires protein crystallization, an often arduous and difficult task.  

Moreover, purifying RNA-protein structures is difficult because of the nature of RNA 

structure.  One issue is that the interface of RNA has many phosphate groups that are 

negatively charged.  Because of the repulsive force between such negative charges, 

crystallization is problematic.  The second issue is that the shape of RNA is often not 

globular unlike proteins, where crystallization of non-globular molecules can also be 

problematic due to the difficulty of forming regularized structures.4  An existing option 

for the crystallization involves in vitro preparation that mixes pure RNA and pure protein 

together.  Here, in vivo expression and purification using recombinant RNA in E coli has 

recently been implemented.  Recently, a method for co-expression and co-purification of 

both RNA and protein was presented5 but it is still in its infancy.  

Though NMR resolution is often less robust than x-ray, NMR provides 

information on dynamics of flexible structures such as RNA.  Recently, problems 
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analyzing extended RNA molecules6 were in part overcome by combining NMR with 

x-ray crystallography or cryo-EM.7  In addition to the intrinsic flexibility, RNAs show 

conformational rearrangement in contact with other macromolecules such as protein.6  

These dynamics of RNA caused by ligand can be elucidated with NMR and x-ray 

crystallography.8  Still, with increasing demand for the 3D structures of RNA-protein 

complexes, reliable computational prediction of modeling 3D structures is required.  

Though there has been a 50-fold increase in the number of high quality structures, in 

general that is just a fraction of complexes identified biologically. 

1.2. Prediction of RNA Structure 

Although the computational prediction of RNA secondary structure has been 

successfully applied when combined with experimental results using SHAPE chemistry,9 

the prediction of 3D structure is not yet as well developed.  The predictions of RNA 3D 

structure include physics-based bottom-up predictions10 and knowledge-based 

predictions.11  The prediction of RNA 3D structure from sequence has utilized 

knowledge-based modeling and machine learning, showing some success for short 

RNAs.12  However, compared with the prediction of protein structure, prediction of RNA 

3D structures especially for long chain RNAs of more than 50 nucleotides remains 

problematic.13 

 One of the latest successful methods employed the Nash equilibrium of Game 

Theory in sampling of configurational space.14  Development of 3D modeling is in part 

limited by the amount and diversity of structural data on RNA at the atomic level.  More 

importantly, the development of suitable RNA-protein potentials is required to do 

computational modeling of 3D structure.  
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1.3. Prediction of 3D Structure of Protein 

Today, many protein 3D structures can be obtained at the RSCB Protein Data 

Bank (PDB).  The quantity of uploaded protein structures is much more than those of 

RNA: 46,985 PDB entries including protein chains and 4,559 PDB entries including 

RNA chains were found (Protein Data Bank, 2016).  However, the available 3D structural 

data for RNA and protein are only a small portion of known sequences.  At the GenBank, 

more than 190 million sequences can be downloaded (GenBank, 2016), but available 3D 

structures of RNA-protein complexes at the PDB are less than 1,800.  Similar to RNA, 

this difference of the availability in part comes from limitations of experimental methods 

such as x-ray crystallography15 and NMR.16  This is why computational prediction is still 

essential for the 3D structure determination of protein. 

Computational prediction of 3D structure is divided into two broad approaches: 

physical and comparative modeling.17  The former is based on physical principles that 

calculate forces and interactions to estimate the structure with minimum potential energy.  

Comparative modeling typically utilizes physical principles and known sequence and 

structural data.  The comparative strategy includes homology modeling18 and folding 

recognition.19  One of the recent successful programs, Rosetta,20 searches fragments of 

similar sequence and assembles them using potentials calculated from experimental 

data.21  Most de novo protein modeling does not work for proteins of more than 150 

residues.22  However, recent application of methods that predict conserved tertiary pair 

has shown promise.23 
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1.4. Prediction of 3D Structure of RNA-protein Complex 

The prediction of RNA-protein 3D structure is still an ongoing issue.  Although 

crystallization and subsequent x-ray crystallography itself or NMR can provide high 

resolution coordinates of complex structure, implementing the approaches can be 

problematic.24  Computational prediction lags experimental approaches in overall 

accuracy.  Cryo-EM (Electron Microscopy) is emerging as a powerful method for 3D 

structures at high resolution, especially for large molecules such as membrane proteins 

and viruses.25  Cryo-EM does not require any crystallization.  Instead, it freezes the 

purified solution, takes a large number of images using electron microscopy, and 

aggregates the images to determine the 3D structure of the macromolecule by analyzing 

the pictures at atomic level.  Note that 231 entries of RNA-protein structures have been 

obtained by electron microscopy compared to 1,416 entries via x-ray crystallography and 

105 via solution NMR (Protein Data Bank, 2016). 

The computational universe of RNA-protein docking algorithms and software is 

much smaller than those involving protein-protein docking.  Note that GRAMM,26 

FTDock,27 and Rosetta20 are relatively popular docking programs that accept atomic 

coordinates for RNA and protein 3D structures.  FTDock orients macromolecules into an 

orthogonal grid and samples the configurational space for translational and rotational 

movement.  Fast Fourier transform can be used to increase the speed of calculation.28 

GRAMM and FTDock employ rigid structures of RNA and protein, and evaluate bound 

structures by scoring with nucleotide-amino acid potentials and not all-atom ones.  Such 

potentials applied to these rigid all-atom configurations are consistent with 

coarse-grained modeling of simpler structural representation (e.g. lattice models) that 
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allows exhaustive sampling of configurational space, but may sacrifice additional details 

associated with all-atoms.  FTDock and GRAMM align both backbones of the 

macromolecules on a grid, and then add the remaining atoms such as those in the side 

chains.  On the other hand, Rosetta, as the first step, samples configurational space with 

only the backbones of the rigid-body macromolecules; then side chains are repacked and 

the displacement of both the side chains and backbone can be optimized using Monte 

Carlo minimization.  In summary, such methods sample configurational space in docking 

two molecules, and then score the resulting poses with potentials, and in some programs, 

additionally refine the generated poses.  

In the typical coarse-grained models, the score of a pose is calculated as a sum of 

scores of RNA-protein interactions.  The statistical potential is well known to be a simple 

but powerful approach for scoring such interactions.  It is calculated from a propensity 

that is, in most cases, obtained from the expected or theoretically deduced probability 

normalized by the observed probability of a certain type of contact.  If a certain 

propensity is much larger than others, it means that the type of interaction happens more 

often than expected, which implies there is a stronger preference for the interaction than 

others.  The statistical potential ∆𝐺 is often calculated from propensity P by the following 

equation,29,30 in which C is a constant. 

∆𝐺 = −𝐶 × 𝑙𝑛𝑃 

 Calculating propensity depends on the classification of the contacts.  A simple 

classification based solely on amino acid and nucleotide type was developed.29  A 

subsequent approach included accessible surface area in the calculation of propensity.30  

Some approaches classify interactions based on their geometric and electrostatic 
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properties.31  One of the most successful methods employs distance criteria32,33 as well as 

angles.34  Typically these interactions are hydrogen bonds. 

The differences in binding potentials for RNA-protein versus DNA-protein 

interactions were explored in terms of recognizing four bases.  Lustig et al. calculated 

pairwise statistical potentials between the amino acid and the base component of RNA.29  

They counted hydrogen bonds between RNA and protein for U1RNA-spliceosomal 

protein, and for seryl, aspartyl, and glutaminyl-tRNA synthetases with their variants, 

where the protein sequence at the hydrogen bonds was assumed to be conserved.  Here, 

the normalization involved the logarithm of the frequency for a given amino acid, 

averaging with respect to the four bases such that the sum of the appropriately weighted 

logs is zero.  The normalized relative potentials were calculated for ten amino acids (Arg, 

Asn, Lys, Asp, Gln, Glu, Ala, Tyr, Ser, and Thr).  Ser and Thr were plotted as one 

because the two sets of frequency data were identical.  Initially, the definition of major 

groove interactions included not only the RNA A-form helix but alternative forms that 

afford contacts with atoms allocated to the major groove.  In addition, potentials at 

specifically identified major grooves were separately calculated for Arg and Asn.  

Comparing RNA and DNA in the major groove, Arg most prefers guanine in both cases 

(the order of preference was G, A, U, and C for RNA, and G, U, C, and A for DNA in 

descending order).   

The correlation coefficient between RNA and DNA for the potentials of Arg and 

Asn in the major groove was 0.5 (p-value < 0.21).  The Arg and Asn data included those 

not in the major groove but interacting with base atoms that are usually accessible in the 

major groove.  The correlation plots indicate a somewhat weak correlation between RNA 
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and DNA for potentials of Arg and Asn in the major groove, even though the specific 

structural differences are minimal.  In that correlation plot for Arg and Asn, Asn was 

clearly more correlated between RNA and DNA. 

Notably Arg and Lys had strong interactions, mostly with the major groove of 

RNA, and the comparison of the statistical potentials showed strong similarities between 

the rank orders of contacting bases of RNA and DNA.29  It is known that double stranded 

RNA (dsRNA) has a stronger affinity for protein than single stranded RNA or double 

stranded DNA.35  Here, a zinc finger protein called ZNF346 has a strong affinity to 

dsRNA, especially with regard to Lys and Arg contacts which appear particularly suited 

to allow access in the deep and narrowed major groove of RNA.29  This type of binding is 

essential for protein moieties such as the zinc fingers to recognize RNA.   

2. METHODS 

2.1. Research Overview 

This research calculates statistical potentials and evaluates them over a test set of 

twenty-one standard complexes.30  It consist of five components: (1) preparation of 

training data set, (2) calculation of potentials, (3) docking of the test set, (4) scoring the 

generated poses, and (5) evaluation of the potentials (see Table 1).  Third-party programs 

such as FTDock were employed in all of the five components, and the in-house software 

developed here automates the implementation of the five components.  The work 

discussed here puts an emphasis on developing and analyzing potentials, especially in 

regards to the novel classification of contacts.  The learning set used in the classification 

of contacts is determined by all possible hydrogen bonds.  With regard to the test set, the 

various potentials are implemented. 
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Table 1.  List of associated computational methods. 

 
2.2. Calculation of Potential Sets 

 2.2.1.  PISCES.  The 1,345 RNA-protein mmCIF files were downloaded (Protein 

Data Bank, 2015).  Then the protein chains were clustered by PISCES (PISCES, 2015) at 

25% similarity for the PDB entries, and 165 clusters were obtained.  Only the structures 

determined by x-ray crystallography with resolution of 3.5 Å or below and with one-letter 

chain ID were used.  The mmCIF files that have the best resolution in each cluster were 

selected as the complexes of record.  The default maximum R-value of 0.3 and a 

minimum chain length of 40 were used.  Note that the structural coordinates were 

downloaded as an mmCIF format instead of a pdb format for easy updating of our 

program in the future, although in this study one could not utilize the other information in 

the mmCIF files at all.  One of the problems with the pdb format is that the pdb format 

has just one digit to identify a chain.  For example, 4V6X (structure of the human 80S 

ribosome) does not have pdb files but only mmCIF files because 4V6X has 89 chains and 

one digit cannot accommodate that many chain IDs.  However, we could not find any 

third party programs for analyzing hydrogen bonds and RNA 3D structures, which deal 

with mmCIF files and can handle those large complexes.  

 2.2.2. X3DNA-DSSR.  X3DNA-DSSR36 was first employed for two purposes, 

to obtain hydrogen bonds between protein and RNA, and to determine the secondary 

1. Calculation of Potential Sets 2. Docking and Scoring with Potential Sets 
Obtain 1345 mmCIF files Generate 50,373 poses (FTDock) 

Cluster protein chains (PISCES) Calculate hydrogen bonds (DSSR) 
Calculate hydrogen bonds (DSSR) Obtain RNA 3D structures for poses (DSSR) 
Obtain RNA 3D structures (DSSR) Score the poses with the nine potential sets 

Classify contacts into nine categories Rank native structures by score 
Calculate nine sets of potentials  
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structure of RNA.  Here, hydrogen bonds are obtained from the 663 non-redundant 

complexes by applying X3DNA-DSSR.  Finally, the hydrogen bonds were categorized 

according to the RNA structure, position, and base pair type.  For example, if a hydrogen 

bond is at N6 of a base, and if the base makes a canonical base pair involved in an 

A-form helix as noted by DSSR, the hydrogen bonding is at the major groove, so the 

hydrogen bond will be categorized as 1.  

Hydrogen bonds between RNA and protein are determined by the distance and 

angle between the donor atom and acceptor atom.  The algorithm of detecting hydrogen 

bonds in X3DNA-DSSR is not fully transparent, but it tends to provide more contacts 

than HBPLUS37 and is considered a standard procedure.36 

 2.2.3. Nine Categories.  Hydrogen bonds between RNA and protein for the 

training set were classified into nine categories (Figure 1).  Then, in each category, 80 (20 

amino acid × 4 bases) pairwise potentials were calculated.  Therefore, 720 potentials in 

total were calculated from the training set.  Contacts in Category 1 include RNA atoms 

belonging to the major groove side of an A-form helix.  A-form helix is regarded as the 

most common secondary structure for RNA38.  Each category is assigned by the helicity 

of RNA,  
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Figure 1. Nine categories defined by RNA structure (mg = major groove,  bp = base 
pair). 
 
helix type, location of the atom (base or backbone, ribose is included in the backbone), 

and base pair type.  Accordingly, contacts in Categories 3, 7, and 9 include RNA 

backbone, and contacts in Categories 1, 2, 4, 5, 6, and 8 include a base of RNA. 

Specifically, if a contact includes N4 of cytosine, N7 or O6 of guanine, O4 of 

uracil, N6 or N7 of adenine, or O4 or N7 of uracil in U-U base pair, in A-form helix RNA, 

the contact is classified as Category 1.  Here, keeping our program simple, only the 

contacts in a canonical base pair (indicated cW-w in DSSR) were classified as Category 1.  

Those contacts that include RNA atoms on the major groove side of a non-canonical base 

pair were classified as Category 2 (not major groove).   

For contacts on the major groove side not in A-form helix, they were classified 

into two categories according to the base pair type.  If the contact was in the canonical 

base pair, it was classified as Category 4; otherwise it was classified as Category 5.  

Identification of the helix type (A-form or not) depends on the output of DSSR.  

	(non)	
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Categories 4 to 7 include contacts in a B-form helix, Z-form helix, unclassified helix, and 

any helix with backbone breaks. 

 2.2.4. Statistical	Potentials.		The statistical potentials were calculated from the 

following equations.29,30  The statistical potential was calculated from the propensity that 

is a value of observed probability of the pairwise (e.g. Arg-guanine) contact in the 

category (1-9) divided by the expected or theoretical probability of the pairwise contacts 

(Equation 1).   

Propensity: 

P(p,q,s) = !(!,!,!)/ !(!,!)!"

!(!,!)/ ! ! × !(!,!)/! ! !!
                 (1) 

where N(p,q,s) is the number of contacts between amino acid p and base q in the 

classification of the category s, and N(p,q) is the number of contacts between amino acid 

p and base q.  Therefore, the numerator of equation 1 is the observed probability for the 

pairwise contact for a particular category.  The denominator, the theoretical probability of 

the contact, is the product of fractions of an amino acid and a base occurring in all chains 

in the training set.  In the denominator, N(p,s) is the number of amino acids for s 

classification in all protein chains in the training set, and N(p) is the number of the amino 

acids for all proteins.  Note, because identifying Category 1 or 2 requires base pairing, 

Categories 1 and 2 have the same value for N(p,s).  Categories 4, 5, and 6 also have 

among themselves the same N(p,s) values.  Potential energy is calculated from the 

propensity by the following equation: 

Potential Energy: 

∆𝐺 𝑝, 𝑞, 𝑠 = −𝑅𝑇×𝑙𝑛 (𝑃(𝑝, 𝑞, 𝑠)) 

p : amino acid (1-20)  
q : base (1-4) 
s : category (1-9) 
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where ∆𝐺 𝑝, 𝑞, 𝑠  is the potential for the amino acid p and the base q in the category s, R 

is the gas constant, and T is temperature in K.  For RT, 0.59 was used as the value. Both 

the propensity and the potentials are the functions of three arguments: amino acid, base 

and structure category of RNA. For example, the propensity between Arg and guanine in 

Category 1 is calculated as follows. 

PI(Arg, guanine,1) = 
!"#$% !" !"#!!"#$%$& !"#$% !" !"#$%&'( !

!"#$% !" !"" !"#$%
!"#$% !" !"# !" !"#$%&'( !
!"#$% !" !"" !"#$% !"#$%  × !"#$% !" !"#$%$&

!"#$% !" !"" !"#$%&'()%*

            (2) 

 In one of the cases involving redundant set, the number of pairs in Category 1 

was 755, and 437 of the pairs were Arg-guanine. The count of all amino acids in 

Category 1 was 71,335, and 6891 of them were Arg. The count of all nucleotides in 

Category 1 was 809,393, and 259,504 of them were guanine. Amino acids and 

nucleotides were counted in any protein that had at least one Arg-guanine hydrogen bond. 

Then the value of the propensity was calculated as follows. 

PI(Arg, guanine,1) = 
!"#
!""

!"#$
!"##$ × !"#"$%!"!"!"

= 18.69 

 Alternatively, potentials without a structure category of RNA were calculated as 

an “aggregate average.”  As in equation 3, when no contact is found in the training set, 

0.001 is used instead of 0 as the propensity for calculating the statistical potential.  In that 

case, statistical potentials will be 4.076 (RT = 0.59 kcal/mol). 

0.59 × 𝑙𝑛 0.001 = 4.076           (3) 
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For example, because Ala-adenine in Category 1 has no contact in the training set, 

𝑃!(Ala, adenine, 1)= 0.001, therefore ∆𝐺 𝐴𝑙𝑎,𝑎𝑑𝑒𝑛𝑖𝑛𝑒, 1 = −0.59 × 𝑙𝑛 0.001 =

4.076. 

Propensity (aggregate average): 

𝑃! 𝑝, 𝑞 = !!(!,!)/ !!(!,!)!"

!(!)/ ! ! × !(!)/! ! !!
 = !"#$%&$' !"#$%$&'&() !" !!! !"#$ !"#$

!"#$%&$' !"#$%$&'&() !" !!! !"#$ !"#$
   

Potential Energy (aggregate average):       ∆𝐺 𝑝, 𝑞 = −𝑅𝑇×𝑙𝑛 (𝑃!(𝑝, 𝑞)) 

For instance, in one case, the number of pairs was 247,044, and 23,623 of them were 

Arg-guanine. Then the value of the propensity was calculated as follows. 

PI(Arg, guanine) = 
!"#!"
!"#$""

!"!
!"#$# × !"##$!!"#$%

=     3.440	

 2.2.5. FTDock.  FTDock is a rigid-body docking program based on Fourier 

transform.28  FTDock 2.0.3 was employed to generate 50,373 poses for standard 

complexes and ran with default options including no calculation of electrostatics.30  A 

Perl parameter file of FTDock was edited so that FTDock recognized all atoms in RNA.  

Since FTDock is a rigid-body docking program, and it allows an exhaustive exploration 

of a particular ligand conformation binding to a fixed target.  Of course the caveat is that 

side chain repacking and flexible features in RNA are not fully accounted.  Methods for 

such modeling are not yet fully developed.  However, we employed FTDock for two 

reasons.  First, one of the objectives for this study is to develop and evaluate potentials 

for comparing with previously reported ones, and not the prediction itself.  Secondly, 

FTDock is capable of RNA-protein docking and easily incorporates customized RNA-
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protein potentials.30  Courtesy of Dr. Graham Smith, we employed the developer's 

version of FTDock (FTDock v2.0.3) which is compatible with multiprocessing 

(openmpi). 

2.3. Docking and Scoring with Potential Sets 

 2.3.1. Scoring.  Each pose was scored with nine sets of potentials. First, 

hydrogen bonds and the corresponding RNA structures were calculated by X3DNA-

DSSR and all the hydrogen bonds were assigned a category according to the RNA 

structure and the position.  Secondly, each pose was scored by adding up all the scores of 

the hydrogen bonds in the pose. Here, the distance of hydrogen bonds was not taken into 

account in scoring. 	

 2.3.2. Evaluating Benchmarks.  Shown in Table 2 are the test complexes and 

unbound protein and RNA chains.  Docking a protein chain (Column 3) and an RNA 

chain (Column 6) using FTDock generates 50,373 poses, and then RMSD value between 

each pose and a complex structure (Column 2) is calculated after structure alignment.  

PyMol (version 1.8) is used to achieve both of the structural alignment and calculation of 

RMSD value.  In the structure alignment, an unbound or bound protein structure (Column 

3) is aligned to the protein structure in the corresponding complex structure (Column 2) 

using only the alpha carbon atoms.  Then the RMSD value is calculated using all atoms 

in the two RNA structures (Column 2 and Column 6).  This process is coded using 

python package 'pymol' that allows PyMol command written in a python program.  The 

generated raw output is parsed by 'RMSD2.py'  and a table of pose id and RMSD is made 

(RMSD2.out). 
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  The pose was regarded as a native structure when RMSD was less than 

10 angstrom.30 Twenty-one standard complexes that have their unbound protein/RNA 

structures were chosen (Table 2).  In other words, RNA chain and protein chain were 

taken from different PDB entries and unbound structures are considered to be more 

difficult cases as test complexes than bound structures.32 

Table 2.  Test set of protein-RNA complexes. 
 Complex 

(bound) 
  Protein 

(unbound) 
   RNA 

(unbound) 
 

Sizea RMSDb Sizec RMSDd 
1 1WSU_a_e 1LVA_a 2191 0.7 1MFK_a 740 0 
2 2PJP_a_b 2PJP_a 982 0 1MFK_a 740 3.1 
3 1LNG_a_b 1LNG_a 727 0 1Z43_a 2169 2.1 
4 1E7K_a_c 2JNB_a 2031 3.2 1E7K_c 365 0 
5 1WPU_a_c 1WPV_a 1095 0.2 1WPU_c 145 0 
6 2QUX_a_c 2QUD_a 2006 0.7 2QUX_c 531 0 
7 2JEA_a_c 2JE6_a 2119 0 2JEA_c 88 0 
8 2FMT_a_c 1FMT_a 2350 1.2 3CW5_a 1645 2.9 
9 1MFQ_c_a 1QB2_b 966 3.1 1L9A_b 2683 5.1 
10 1U0B_b_a 1LI7_a 2961 1 1B23_r 1584 6.6 
11 1EC6_a_d 1DTJ_a 525 1.6 1EC6_d 1081 0 
12 1HC8_a_c 1FOY_a 1169 2.9 1HC8_c 1219 0 
13 1JBR_b_d 1AQZ_a 1129 0.6 1JBR_d 664 0 
14 1KOG_a_i 1EVL_a 3265 0.6 1KOG_i 785 0 
15 1M8W_a_c 1M8Z_a 2750 1.2 1M8W_c 167 0 
16 1F7U_a_b 1BS2_a 4874 3.4 1F7U_b 1629 0 
17 1K8W_a_b 1R3F_a 2158 2.2 1K8W_b 466 0 
18 1N78_a_c 1J09_a 3814 1.9 1N78_c 1597 0 
19 1U63_a_b 1I2A_a 1682 1.3 1U63_b 1055 0 
20 2BTE_a_b 1H3N_a 6642 4.1 2BTE_b 1674 0 
21 2HW8_a_b 1AD2_a 1712 6.7 2HW8_b 774 0 
 

 

 

 
Note that three complexes in Table 2 (2FMT, 1MFQ, and 1U0B) consist of three 

different PDB entries and others consist of two different PDB entries.  Therefore, at least 

one of the RNA chains or protein chains has a non-zero RMSD value, even before 

a  Number of protein atoms. 
b  RMSD (Å) of a complex structure (Column 2) and a protein structure (Column 3) calculated  
   with alpha carbon atoms of both structures.      
c  Number of RNA atoms. 
d  RMSD (Å) of complex structure (Column 2) and RNA structure (Column 6) calculated with  
   phosphorous atoms of both structures. 
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docking.  For example, the protein chain 1AD2_a has RMSD value of 6.6 (Row 22).  

Perez-Cano et al. adopted unbound docking set,30 and this study also adopted an unbound 

docking set to compare our results with theirs.  Each complex was excluded from the 

training set in each calculation.  As a comparison, the QUASI-RNP scoring program and 

DARS-RNP were downloaded and applied to the same poses. The amino acid-nucleotide 

potentials from the study of Perez-Cano were obtained by digitizing the color intensity 

(Park and Lustig, unpublished results) of given graphics.30  In addition, the best rankings 

from potential sets with no filtering and no clustering were also calculated. 	

 2.3.3. Best Rank for the Test Set.  The 50,373 poses of a test set complex were 

ranked by binding energy, and then the rank of the most stable, low RMSD (< 10 Å) 

native-like complex structure was calculated as belonging to the relevant percentile of the 

50,373 poses.  For example, if the test set 1KOG had 3 native like structures among 

50,373 poses and the lowest score of these native-like structures (most native-like) was 

the 10,000th score ranked by binding energy, the best rank for 1KOG would be 19.85%.  

The average of the best ranks of the twenty-one test set complexes was also calculated to 

evaluate the scoring method. 	

 2.3.4. Success Rate of Prediction.		Another evaluation for the scoring method is 

calculated as the success rate for each test set complex.30  And in addition, the success 

rate is calculated for six scenarios (see Table 3).  For instance, one calculates the success 

rate among all twenty-one-test complexes, for whether the native-like structure's energy 

is identified among the threshold-filtered values.  For example, for a threshold of ten, one 

identifies whether the native-like structure and its energy is among the lowest ten 

energies.  The success rate is the fraction of the 21 test proteins that meet that criteria.  
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For example, when the threshold was 1000 (i.e., checking among the first 1000 poses) 

and the current nine-category set of potentials had only one test set complex that had the 

best score within that top 1000, the success rate would be 4.76% (1/21×100).  In the ideal 

prediction, the success rate would be always 100% no matter the range.	

 2.3.5. Six	Scenarios.		In this study, six scenarios (the first three calculated here) 

for calculating potentials (Table 3) are evaluated.  These six scoring scenarios are applied 

to the 50,373 FTDock poses to compare the success rate, best rank and other analytics.  

Potentials for Perez-Cano were calculated from non-redundant hydrogen bonds between 

RNA and protein.30  The contacts with more than 70% sequence identity were clustered, 

then the x-ray coordinates with the best resolution for each cluster was chosen as a 

representative of the cluster.  As a result, 282 RNA-protein contacts were obtained and 

used to calculate potentials.  The equation of Perez-Cano is the same as Equation 1, but 

their calculation includes only the atoms on an accessible surface area.  The potentials are 

pairwise base-amino acid potentials, so the total number of the potential is 80 (4 bases × 

20 canonical amino acids).  They employed FTDock to generate binding modes for a test 

set.  These potentials for Perez-Cano are presented graphically.30 

Table 3.  Six scoring scenarios. 
Scenario Description 

Current Nine-category set of potentials, calculated from non-redundant contacts as 
selected by PISCES (R-value  < 0.30, x-ray resolution < 3.5 Å, sequence 
identity < 25%). 

Current  
Redundant 

Nine-category set of potentials, calculated from complete list of RNA-protein 
contacts (without clustering and filtering). 

Aggregate 
Average 

One category set of potentials (without classifying by RNA secondary 
structure). 

Perez-Cano Potentials obtained by digitizing the color intensity of the heat map in the 
literature. 
(Perez-Cano et al., 2010) DARS-RNP https://genesilico.pl/index.php/software/35.html?sectionid=1 

QUASI-
RNP 

https://genesilico.pl/index.php/software/35.html?sectionid=1 
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The potentials for QUASI-RNP and DARS-RNP are also calculated from the 

redundant contacts.34  The training set complexes are selected by choosing from 3.5 Å or 

better resolution x-ray crystal structures and clustered by sequence identity of more than 

30% for protein chains and 70% for RNA chains.  They obtained seventy-two 

RNA-protein complexes to make the scoring function.  The arguments of the scoring 

function are amino acid (20), base (4), and a contact distance divided by angle of the 

hydrogen bond.  QUASI-RNP calculates potentials purely from observed native 

structures, but DARS-RNP includes coordinates from decoy structures generated by 

GRAMM.27 

2.4. Flow Chart of Automated Process 

 2.4.1. Overview. 	Almost all processes from preparing training data set to 

calculating relative ranks for the test set were automated with our python programs and 

shell scripts.  The whole code was divided into many files so that we could debug with 

ease and analyze each output at every step.  All the separated programs are called and 

executed by one program file 'director.py' in order.  	

 2.4.2. Preparing Training Set. 	Figure 2 describes how the non-redundant 

contacts were prepared automatically.  The figure describes the relationships and order of 

python programs (red boxes) and data files (blue boxes).  Arrows represent outputs and 

inputs of the programs.  Note that the purple boxes represent programs or websites other 

than our python programs and the arrows for the purple boxes represent manual 

processes.  For example, ‘5let_inputchains.txt’ and mmCIF files were downloaded 

manually from PDB (shown in the top-right corner of Figure 2). 
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Figure 2.  The flowchart for preparing training set.  Red, blue, and purple boxes, 
respectively, represent program, data file, and third party program or website.  Arrows 
starting from or to purple boxes represent the processes manually done before running the 
program.  Other arrows represent input or output for the python program. 
	
Initially, the structural coordinate files for the training set (1,345 complexes) were 

downloaded manually from PDB in mmCIF format.  Then the complexes were culled at 

chain level using the PISCES online server to filter and obtain cluster identifiers.  

Hydrogen bonds for the downloaded 1,345 complexes were obtained by manually 

running DSSR.   

 The valid chains, cluster numbers, and resolution for x-ray crystal structures were 

summarized in one file (by GetClusterNum.py).  Hydrogen bonds between RNA and 

protein were extracted from the output files for DSSR and combined with the chain 

information (by combinecontacts.py).  Finally, the contact with the lowest resolution in 

chainsInfo.txt	

contacts.txt	 choosebest.py	 bests.txt	
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each cluster was chosen (by choosebest.py), and all the other contacts of that pair of 

chains were restored to make a file of non-redundant contacts (by getallredun.py).	

2.4.3. Calculating Potentials.  The filtered redundant contacts are then used to 

calculate statistical potentials in three paths (Figure 3).  One path starting with 

‘assignTNA3Dall.py’ calculates potentials for the aggregate average scenario (see Table 

3).  The second path starting with 

 
Figure 3.  The flowchart for calculating potentials.  Red and blue boxes, respectively, 
represent program and data file.  Arrows represent input or output for the python program.  
The ’allredun.txt’ comes from the previous process.  The ‘allredun.txt’ is then used as 
inputs for three programs that calculate propensity for all contacts 
(‘assignRNA3Dall.py’), contacts in helix (assignRNA3D.py), and contacts in not helix 
(‘extracthelix.py’). 
 
‘assignRNA3D’ calculates potentials involving RNA stem for current scenario.  The third 

path starting with ‘extracthelix.py’ is for calculating potentials in non-helical 

classifications for the current scenario.  The output files from DSSR are used as inputs for 

assignRNA3Dall.py	

bests3Dplus.txt	

bests3D.txt	

assignRNA3D.py	

allredun.txt	

assignBorS.py	

addmajor.py	

majoradded.txt	

overall.txt	

fasta.txt	

overall.py	

bests3Dall.txt	
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nothelix.txt	extracthelix.py	

*.txt	
*.txt	
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RNA structural information in each path, and the FASTA file downloaded from PDB is 

also used as an input file to calculate the fractions of amino acid or nucleotide for 

Equation 1.  Calculated propensities for the current scenario are then transformed into 

potentials by ‘potent.py.’	

 2.4.4. Evaluating Potentials.  The next process is to evaluate the calculated 

potentials using test complexes (Figure 4).  The test complex files (pdb files) are 

downloaded from PDB (PDB 2015).  The mmCIF gives the same results.  The 

coordinates for necessary chains (see Table 2) are extracted from the downloaded pdb 

files by ‘correct.py.’ The protein chain and RNA chain are used as inputs for FTDock, 

and 50,373 docking poses are generated.  RMSD values are calculated by ‘RMSD.py’ 

and hydrogen bonds for each pose are obtained by ‘DSSR_hbonds.py.’  RNA secondary 

structure is also obtained by running ‘DSSR.py’ and each atom in the RNA coordinates 

file is assigned the corresponding structure category (see Figure 1) by ‘assign3D.py.’  All 

of the information, including hydrogen bonds, category for each atom, and RMSD for 

each pose, are combined and the score for the pose is calculated by ‘calpot.py.’  Here for 

a given test set complex, its corresponding learning set is excluded and a potential set is 

newly calculated in each prediction.  Running FTDock, DSSR (for hydrogen bonds), and 

‘calpot.py’ utilizes multiprocessing python package (openmpi) to improve running times. 
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Figure 4.  The flowchart for evaluating calculated potentials.  Red, blue, and purple 
boxes, respectively, represent program, data file, and third party program.  Arrows 
represent input or output for the python program.  The black dotted line represents test 
complex files that consist of RNA coordinates, protein coordinates, and complex 
coordinates files.  The potential files to score generated poses are obtained from the 
previous process.  FTDock is embedded in a shell script 'FTDock.sh' and called from 
python program 'director.py' and will also implement the characterization of the hydrogen 
bonds and RMSD for the test set. 
	
3. RESULTS 

3.1. Classified Contacts in the Training Set 

Figure 5 shows the classification of nine categories for the protein-RNA contacts 

in the learning set as shown in Figure 1 (see Appendix A for details), but the number of 

calculated contacts is now included.  Categories 3, 7, and 9 indicate the contacts in RNA 

backbones and have 3,171, 5,881, and 3,330 contacts, respectively. These three 

categories occupy 74.3% of all contacts. 
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Figure 5.  The number of hydrogen bond contacts between RNA and protein in each of 
the nine classes. All hydrogen bonds (16,031) were divided into nine categories by the 
classification of RNA structure as shown above.  The classification derives from the 
output of DSSR that defines A-form helix as the helices with canonical base pair and 
without any break of backbone.  Backbone includes phosphate and ribose.  Contacts in 
major groove side and not in A-form helix are classified as ‘mg like.’  ‘Non canonical bp’ 
is the irregular base pair in which the base is flipped or rotated (except “cW-W” in the 
DSSR output). The inserted pie graph shows the fractions of hydrogen bonds in each 
class.  Please note that bifurcated hydrogen bonds are calculated twice (e.g. hydroxyl 
hydrogen atom for Ser329 in 1ASY_B makes two contacts with O2 and N3 for C674 for 
1ASY_S). 
	
3.2. Best Rank for the Test Set 

The relative rank for each test complex and the six scenarios is shown in Table 4.  

For instance, for the first entry 1E7K (crystal structure of the spliceosomal 15.5 KD 

protein bound to a U4 snRNA fragment), there are 22 native-like structures, and the best 

rank percentile for the current scenario is 0.042% (column 3, 21×100/50373).  The best 

rank for aggregate average for 1E7K was 0.008% (column 4, 4×100/50373).  The best 

rank for current redundant (potentials calculated without clustering and filtering training 

set) was 0.008% (column 5, 4×100/50373).  Using Perez-Cano potentials resulted in 

(non)	
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the best relative rank of 0.004% (column 6, 2×100/50373). The best rank for 

QUASI-RNP for 1E7K was 0.993%  (column 7, 500×100/50373) and DARS-RNP was 

0.280%  (column 8, 141×100/50373).  

Table 4.  Rank of native structures (percentage of total poses). 

a  Structures with less than 10 Å RMSD. 
b  Using potentials calculated without filtering and clustering. 

The last row of Table 4 shows the mean value of the 21 best ranks for each 

method.  For example, the average relative rank over all twenty-one complexes for the 

current scenario with redundant training set was 3.706%, which was remarkably the best 

mean value as compared with other potentials.  Even in terms of the lowest performing 

Complex 
Number of 

Native 
Structuresa 

Current Aggregate 
Average 

Current 
(redundant)b 

Perez-
Cano 

QUASI-
RNP 

DARS-
RNP 

1E7K 22 0.042 0.008 0.008 0.004 0.993 0.280 
1EC6 200 0.105 0.451 0.143 0.927 12.431 5.364 
1F7U 5 0.977 0.250 1.856 0.435 1.136 0.191 
1HC8 95 8.751 4.125 7.810 2.001 0.244 0.083 
1JBR 74 1.642 1.139 1.239 0.393 0.054 0.123 
1K8W 4 4.203 25.123 8.221 11.667 70.750 62.154 
1KOG 1 4.260 37.349 8.914 50.386 99.144 99.927 
1LNG 28 1.441 0.056 0.236 0.038 0.099 0.038 
1M8W 278 0.218 0.034 0.169 0.177 0.004 0.058 
1MFQ 3 61.118 2.150 27.844 3.649 41.139 50.730 
1N78 7 11.345 18.764 13.394 18.071 70.010 13.620 
1U0B 6 14.204 10.462 4.572 7.399 4.137 1.632 
1U63 48 0.177 0.099 0.103 0.046 0.129 0.095 
1WPU 222 0.478 0.189 0.439 3.053 0.107 0.040 
1WSU 465 0.022 0.119 0.018 0.113 2.718 2.124 
2BTE 14 1.304 0.534 0.613 0.276 0.250 0.609 
2FMT 9 0.030 0.788 0.026 0.695 2.257 1.914 
2HW8 36 1.374 0.905 1.697 0.709 4.494 5.036 
2JEA 642 0.002 0.008 0.002 0.006 4.342 1.090 
2PJP 141 0.067 0.179 0.081 0.119 0.069 0.026 

2QUX 17 0.629 1.257 0.435 0.621 3.538 2.607 
Mean  5.352 4.952 3.706 4.799 15.145 11.797 
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relative rank, the current scenario has the best rank, 27.844% for 1MFQ.  This means that 

native-like structure is always among top 27.844% in the current scenario. 

3.3. Potentials for Current Scenario 

3.3.1. General.  All 720 potentials for the 9 categories (see Figure 1 and 5) of 

the current scenario (4 bases × 20 canonical amino acid × 9 categories) are plotted in 

Figure 6 (see Appendix B for details).  The abscissa is the category type and ordinate 

represents calculated contact potential energy.  

 
Figure 6.  All potentials for current scenario.  Abscissa represents category from 1 to 9, 
and ordinate represents potential energy.  Red and blue points represent potentials 
involving Arg and Lys, respectively.  Potentials for missing contacts are not shown. 
	
  Each category has 80 potentials (20 canonical amino acid, 4 bases).  The strongest 

interaction involves Arg in Category 3.  Categories involving RNA backbone (Categories 

3, 7, and 9) have strong interactions (negative potential values), and the strongest 
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interaction in each category involves Arg (red point).  Even in the categories involving 

the base in RNA (Categories 1, 4, 5, and 8), the strongest interactions involve Arg.  For 

categories involving the base in RNA, only Category 8 has negative potential values.  

Category 1 has an outlier (the strongest interaction) involving Arg-G.  Category 4 has 

two outliers involving Arg-G and Arg-A.	

3.3.2. Strong Interactions.  For the current scenario (nine-category set of 

potentials), 720 potentials were calculated.  The strongest interactions from the 20 

potentials among all the 720 possible ones for the nine categories are shown in Table 5.  

The columns represent the rank (1 to 20) out of 720 possibilities, category (1 to 9), pair 

type of the potential, and potential, respectively from the left.  Most of the strongest 

potentials (eighteen of the twenty) involve RNA backbone (Categories 3, 7, and 9).  The 

strongest interaction involved Arg-cytosine.  However, interactions for Arg-cytosine, 

Arg-uracil, Arg-guanine, and  

Table 5.  The strongest 20 interactions. 
Rank Category Pair Type Potential Rank Category Pair Type Potential 

1 3 ARG_C -1.039 11 3 ARG_G -0.646 
2 3 LYS_C -1.025 12 9 ARG_G -0.627 
3 7 ARG_C -0.914 13 7 ARG_U -0.613 
4 9 ARG_U -0.882 14 7 ARG_G -0.604 
5 9 ARG_C -0.828 15 3 ARG_A -0.603 
6 7 ARG_A -0.807 16 8 ARG_C -0.600 
7 9 ARG_A -0.786 17 8 ASN_U -0.581 
8 3 TYR_C -0.736 18 7 LYS_C -0.509 
9 3 ARG_U -0.725 19 3 HIS_A -0.503 
10 7 TRP_U -0.714 20 3 LYS_G -0.485 

 
Arg-adenine are of the similar strength (-0.646 to -1.039).  For potentials involving bases, 

potentials in Category 8 ranked 16th (Arg-cytosine), and 17th (Asn-uracil).	

3.3.3. Potentials between Arg and Four Bases.  Because Arg is the dominant 

amino acid residue in the calculated potentials (Table 5), potentials related to Arg were 
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studied more closely.  Figure 7 shows the potentials of Arg in the current scenario and 

those in the aggregate average.  The first four bars represent the potentials for Arg-

adenine, Arg-cytosine, Arg-guanine, and 

 

Figure 7. The potentials of Arg for four bases in each class.  The bars in each category 
represent potentials of A, C, G, and U from the left (see the four bars in aggregate 
average).  The potentials from missing data such as Arg-adenine in Category 1 were 
changed to zero in this plot for convenience.  Bold column names indicate categories 
including RNA backbone. 
 
Arg-uracil, respectively, in aggregate average (an approach with no structure 

classification).  The other numbers labeled as abscissa represent Category 1 to 9.   

The three categories involving backbone component of nucleotide (Categories 3, 

7, and 9) have similar pattern, but potentials involving base component (Categories 1, 2, 

4, 5, 6, and 8) look very different.  The largest potential is Arg-cytosine in Category 1.  
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Potentials for Lysine have slightly different patterns (Figure 8).  For example, in 

Category 2, Arg has preference for uracil but Lys prefers adenine.  For both Lys and Arg, 

strongest interaction is with cytosine in Category 2, and they are of similar strength. 

 
Figure 8. The potentials of Lys for four bases in each class.  The bars in each class 
represent potentials of A, C, G, and U from the left (see the four bars in aggregate 
average).  The potentials from missing data such as Lys-cytosine and Lys-uracil in 
Category 1 were changed to zero in this plot for convenience.  Bold column names 
indicate categories including RNA backbone. 

 
3.3.4. Potentials for Aggregate Average.  The amino acid-nucleotide potentials 

for aggregate average (without classification by RNA structure) do not utilize RNA 
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structure classifiers.  The potentials for aggregate average are shown in Figure 9.  

 

Figure 9.  The potentials for aggregate average (potentials without classification by RNA 
structure).  The bars in each class represent potentials of A, C, G, and U from the left.  
Amino acid is shown in descending order of the average potential for four bases. 
Background color for a box indicates the characteristic for the amino acid.  For example, 
Arg, Lys, and His are positively charged residues and these boxes are painted in black. 
 

Amino acids with at least one negative potential are Asp, Trp, Tyr, Ser, Thr, His, 

Gln, Asn, Lys, and Arg.  These potentials can be clustered into five groups in the order of 

strong interactions: positively charged side chains (Arg, Lys), strongly polar side chains 

(Asn, Gln, His), polar side chains (Ser, Thr, Trp, and Tyr), and negatively charged side 

chains (Asp, Glu), and hydrophobic side chains.  His in certain environments can be 

positively charged.39 
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3.4.  Success Rate for the Current Method 

Success rate is calculated among all twenty-one-test complexes to evaluate 

potentials.  For instance, success rate is calculated for whether the native-like structure is 

identified as belonging in the threshold demarcated set of energy/structures.  The success 

rates of the current, current redundant, and aggregate average are shown in the Figure 10.   

 
Figure 10.  Success rates of current scenario (red line) and other methods (Perez-Cano 
(black dotted line), QUASI-RNP (blue dotted line), and DARS-RNP (red dotted line).  
The abscissa represents the increasing thresholds starting with the 1 lowest energy 
structure.  The ordinate represents success rate at the threshold. 
	
3.5. Success Rates for Other Scenarios 
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potentials and achieves a 94.5% success rate at the threshold value 1000, which is best 

among the four potentials. 

Comparison of the success rate from the aggregate average and QUASI-RNP, 

DARS-RNP, and Perez-Cano are shown in Figure 11B.  All four approaches adopt 

reduced representation for atom types.  The success rate for the aggregate average (black 

dotted line) is better than others except for the thresholds 50 to 200, and 600 to 3,000.  At 

the threshold 10,000, the current scenario and aggregate average approach indicated a 

success rate of 95.24% where DARS-RNP and QUASI-RNP remained at 85.71%, and 

Perez-Cano remained at 80.95%.  Our current scenario and aggregate average show at 

least comparable overall success rates. 
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Figure 11.  Plots of success rate as a function of threshold value.  The abscissa represents 
the increasing thresholds starting with the 1 lowest energy structure and the ordinate 
represents success rate at the threshold.  (A) Success rates of current scenario and others 
(Perez-Cano, DARS-RNP, QUASI-RNP), and (B) success rates of aggregate average and 
others (Perez-Cano, DARS-RNP, QUASI-RNP).  The range is only from 1 to 10,000 
among 50,373.  A threshold 10,000, the right end, corresponds to 20% of the lowest 
energy structures. 
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3.6. Score versus RMSD Analysis 

 3.6.1. Analysis Guidelines. 	Investigating the discriminating ability of the 

scoring function or potentials by plotting score versus RMSD is typical.32-34  Robertson 

and Varani  (2007) employed five complexes (1CVJ, 1FXL, 1URN, 1EC6, and 1JID) as a 

bound test set, and generated poses with Rosetta (Chen et al., 2004).  Also, they used 

twenty-one complexes and generated poses by MD (molecular dynamics).  The docking 

coordinates are for bound chains, so both the RNA and protein chain belong to the same 

PDB entry.  They examined the plot of score versus RMSD for poses of those five 

complexes.  The R-squared value and Z-score were calculated only for the near native 

poses (RMSD < 3.0 Å).  They compared their distance-dependent potentials and number 

of contacts with Coulomb potentials and the Rosetta HB potentials,40 as well as the 

AMBER potentials.41  R-squared values for the five bound complexes ranged from 0.15 

to 0.46 (0.41 for 1CVJ, 0.20 for 1FXL, 0.15 for URN, 0.46 for 1EC6, 0.17 for 1JID, with 

p-values less than 0.05). 

 Tuszynska and Bujnicki (2011) tested the same poses as those in Chen et 

al. (2004) for five complexes (1CVJ, 1FXL, 1URN, 1EC6, and 1JID) and tested here are 

additional poses generated by GRAMM for eight pairs of unbound RNA and protein and 

five RNA-protein complexes.  They compared their potentials (QUASI-RNP and 

DARS-RNP) with Varani potentials40 and Perez-Cano potentials.30  Also they analyzed 

the unbound docking set for eight complexes (3BSO, 1WPU, 2JEA, 1E7K, 2PXV, 

1LNG, 2R8S, and 2RKJ) and bound docking set for five complexes (1CVJ, 1FXL, 1URN, 

1EC6, and 1JID) using GRAMM for docking.  They calculated correlation coefficients 

for poses with three different RMSD thresholds (5 Å, 10 Å, and  20 Å threshold).  
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Overall, the mean of the five correlation coefficients for DARS-RNP and QUASI-RNP 

was comparable to those involving the Perez-Cano potential.  For example, the mean 

correlation coefficients for the unbound test set ranged from 0.23 to 0.37, while those for 

Varani and Perez-Cano ranged from -0.04 to 0.06 (at 10 Å threshold, p-value is greater 

than 0.05 in 2RKJ, 2R8S, 1LNG, and 2PXV). 

 Huang and Zou (2014) also used the bound docking set for the five Chen 

complexes.40  Score versus RMSD plots were examined, and correlation coefficients for 

near-native poses were calculated with three different RMSD thresholds (5 Å, 10 Å, and 

20 Å threshold).  They also tested three other docking sets.  They compared their 

potential ITScore-PR with DARS-RNP, QUASI-RNP, and dRNA.31  Overall, for the five 

Chen complexes, at the RMSD threshold is 5 Å, the correlation coefficient for 

ITScore-PR was better (0.86) than others (dRNA 0.81, DARS-RNP 0.81, QUASI-RNP 

0.80) with a p-value less than 0.05.	

	 3.6.2. Analysis in the Current Scenario.  Shown in Figure 12 are examples of 

three patterns involving plots of RMSD (abscissa) versus score in kcal/mol (ordinate).  

The rest of the plots are shown in Appendix C.  Each pose as calculated by FTDock can 

be binary classified, with RMSD value less than 10 Å (red circle) or RMSD value greater 

than or equal to10 Å (black circle).  Slopes and p-values for the regression lines are 

shown in Table 6, and each RNA-protein complex is classified into three types depending 

on the combination of the sign of the two slopes for the two groups.  TypeⅠhas two 

positive slopes for regression lines.  TypeⅡ has a positive slope for the low RMSD sets 

but is negative for the high  
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Figure 12.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario. (A) 1E7K (y=0.320x+0.699, R2=0.021, p-value=0.062; y=0.063x+2.789, 
R2=0.019, p-value<0.001), (B) 1N78 (y=0.649x+27.683, R2=0.044, p-value=0.651;  
y=-0.256x+66.265, R2=0.011, p-value<0.001), (C) 1HC8 (y=-0.269x+6.619, R2=0.036, 
p-value<0.066; y=0.036x+2.881, R2=0.007, p-value<0.001), which are the examples for 
typeⅠ, Ⅱ, and Ⅲ, respectively.  The red circles represent poses whose RMSD values are 
less than 10 Å and the black circles are the poses whose RMSD values equal or are more 
than 10 Å.  The slopes and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
 
RMSD ones.  Type Ⅲ has a negative slope for the low RMSD sets.  For example, if both 

of the low and high RMSD sets have positive slopes for the regression lines, the complex 

is typeⅠ(Figure 12).  The current scenario set has ten complexes for typeⅠ, three 
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complex for typeⅡ, and seven complexes for typeⅢ.  Note that 1KOG cannot be 

assigned to any type because it has only one pose for low RMSD.   

Current 
RMSD < 10 Å RMSD ≥ 10 Å 

Type Number 
of Poses 

Slope p-value R2 Slope p-value R2 

1 1E7K 22 0.320 0.062 0.021 0.063 < 0.001 0.019 Ⅰ 
2 1EC6 200 0.048 0.870 < 0.001 -0.041 < 0.001 0.001 Ⅱ 
3 1F7U 5 1.234 0.072 0.712 0.027 < 0.001 0.007 Ⅰ 
4 1HC8 95 -0.269 0.066 0.036 0.036 < 0.001 0.007 Ⅲ 
5 1JBR 74 -0.016 0.870 < 0.001 0.084 < 0.001 0.051 Ⅲ 
6 1K8W 4 -6.605 0.813 0.035 -0.288 < 0.001 0.014 Ⅲ 
7 1KOG 1 - - - 0.438 < 0.001 0.040 - 
8 1LNG 28 -0.250 0.397 0.028 0.063 < 0.001 0.029 Ⅲ 
9 1M8W 278 0.207 < 0.001 0.049 0.029 < 0.001 0.015 Ⅰ 
10 1MFQ 3 -0.611 0.923 0.014 0.028 < 0.001 0.011 Ⅲ 
11 1N78 7 0.649 0.651 0.044 -0.256 < 0.001 0.011 Ⅱ 
12 1U0B 6 0.360 0.824 0.014 0.024 < 0.001 0.005 Ⅰ 
13 1U63 48 -0.781 0.019 0.113 0.045 < 0.001 0.015 Ⅲ 
14 1WPU 222 0.098 0.095 0.013 <0.001 0.970 < 0.001 Ⅰ 
15 1WSU 465 0.164 0.239 0.003 0.017 < 0.001 0.008 Ⅰ 
16 2BTE 14 6.348 < 0.001 0.765 0.007 < 0.001 0.001 Ⅰ 
17 2FMT 9 -1.736 0.340 0.130 0.022 < 0.001 0.008 Ⅲ 
18 2HW8 36 0.103 0.854 < 0.001 0.109 < 0.001 0.061 Ⅰ 
19 2JEA 642 0.152 0.079 0.005 -0.018 < 0.001 0.004 Ⅱ 
20 2PJP 141 0.737 0.039 0.030 0.117 < 0.001 0.096 Ⅰ 
21 2QUX 17 1.017 0.004 0.431 0.052 < 0.001 0.011 Ⅰ 
Table 6.  Summary of regression lines for current scenario.  Poses are separated into two 
groups, poses: the poses whose RMSD are less than 10 Å, and the poses whose RMSD 
values are greater than or equal to 10 Å.  Regression line is drawn for each of the two 
groups, and the slope and the p-value for both of the regression lines are determined.  
Column 2 is the PDB entry for the twenty-one test complexes.  Column 3 is the number 
of poses whose RMSD value is less than 10 Å, and Column 4 is the slope for the 
regression line.  Column 5 is the p-value for the regression line.  Columns 6 and 7 are the 
slope and p-value for the regression line drawn on the poses whose RMSD values are 
greater than or equal to 10 Å. 
	
 TypeⅠ(ten complexes), identified out of assigned twenty RNA-protein 

complexes, is consistent with reasonably distributed decoys.33  The slope for low RMSD 

is greater than 0.01, and the one for high RMSD is positive and smaller than the one for 

the low RMSD (except 2HW8).  The most favorable case is the 2BTE whose slope for 
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low RMSD sets are 6.348, highest among all the slopes, with a p-value less than 0.001.  

Note that four among the ten complexes have p-values less than 0.05 (see Table 6).  All 

R-squared values are less than 0.10 for the high RMSD sets.  Low RMSD sets have 

slightly larger R-squared values (three complexes has R-squared values more than 0.1), 

and notably 2BTE has the largest R-squared value (0.765).  TypeⅠis assumed preferable 

to other types. 

 TypeⅡ has three complexes (1EC6, 1N78 and 2JEA), and has a negative slope 

for high RMSD sets and a positive one for low RMSD ones.  Even though the slope for 

low RMSD sets is positive, this type is problematic.  The p-value for the high RMSD sets 

is less than 0.001 in the three complexes. 

 TypeⅢ(seven complexes) has a negative slope for low RMSD sets.  Especially, 

1K8W have very steep regression lines (-6.605).  R-squared values for high RMSD sets 

 are all smaller than 0.06, and those for low RMSD ones are relatively large.  All the 

p-values for low RMSD sets are larger than 0.05, and all the high RMSD sets have a 

small p-values less than 0.05 (except 1U63).  Note that all complexes have a small 

number (<100) of poses for low RMSD sets.	

 3.6.3. Score versus RMSD Analysis.  The analysis of energy score versus 

RMSD with regression lines for both the current showed that about half of the complexes 

are problematic because the slopes for the regression lines are almost zero or negative.  

This is in part due to the limited sampling by FTDock that includes rigid molecules in 

docking and no energy optimization.  For instance, in the analysis for current scenario 

(Table 6), when the number of the native-like structures (RMSD < 10 Å) is greater than 

100, the slope is always positive (1EC6, 1M8W, 1WPU, 1WSU, 2JEA, and 2PJP).  



	 38	
	

However, the slope can be negative when the number of the native-like structures is less 

than 100.  An example of a negative slope for the low RMSD group can be seen in the 

literature, too.33  For example, the regression line of poses for 1EC6 is almost a flat slope 

despite the fact that the docking pose was generated by ROSETTA which should provide 

a better sampling of poses.   

4. DISCUSSION 

4.1. Interactions for Arginine 

Category 1 (A-form helix, major groove) has a strong preference for Arg-guanine, 

and Category 4 (not A-form helix, major groove, canonical base pair) also has a strong 

preference for Arg-guanine and Arg-adenine.  The strong interactions of Arg-guanine are 

likely due to the ionic effect between the positively charged amino group of Arg and the 

partial negative charge on nitrogen or oxygen atoms of guanine and adenine.42  However, 

no significant preference was indicated for categories 3, 7, and 9.  Moreover, because Arg 

has an ability to make hydrogen-bonding networks with bases, phosphates, and sugars, it 

makes contacts with not only backbones but also with base edges.43  Bidentate 

interactions for Arg-guanine also augment the potential.44  Luscombe et al. observed four 

types of bidentate interactions between guanine and Arg.  In addition, the longer side 

chain of Arg is suitable for the deep and narrow major groove for the A-form helix of 

RNA.  Our results are consistent with the notion that guanine in the A-form helix for 

RNA has uniquely strong interactions with Arg.29  

4.2. Comparison with Cutting-edge Density Function Potentials 

 A new scoring function called ITScore-PR was recently developed using a density 

function approach calculated from statistical mechanics.32  It calculates all-atom and 
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distance-dependent atomic interaction potentials.  The unique feature of the scoring 

function is that the potentials function is derived from the distribution function refined 

with poses generated by ZDock.  Courtesy of Dr. Zou, we tested ITScore-PR32 on our 

twenty-one test complexes, and its mean best rank in percentile on our twenty-one test 

complexes was 2.430%, which is better than our current scenario (5.352%).  ITScore-PR 

defines atom types with reduced representation.  For example, an alpha carbon of any 

amino acid is represented by "C3A," and "NZ" of Lys is represented as "N3+."  Note that 

the alpha carbon is included in the contacts in their training set, which means their 

potential includes van der Waals force.  The distance-dependent potentials are calculated 

using poses generated by ZDOCK in addition to 175 RNA-protein native complex 

structures.  The number of classifications for ITScore-PR is 14,400 (12 RNA atom types, 

20 protein atom types, and 60 bins for distance).  However, their evaluation of the test set 

is more limited in its grouping of sets of atoms. 

4.3. Redundancy in a Training Set 

 Current scenario without filtering and clustering had a better mean rank (3.706%) 

than current scenario (5.352%).  The redundant training set (267,330 contacts) was more 

than fifteen times larger than the non-redundant training set (16,031 contacts).  This 

result suggests that clustering and filtering allow a larger set of non-contact potentials and 

therefore are not allowing any relative scaling of those potentials with respect to amino 

acid type.  However, preliminary results indicate that if we apply the 70% protein identity 

filter used in Perez-Cano, our ranking results for current scenario exceed those for 

Perez-Cano. 
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4.4. Limitations of FTDock and All-atom Potentials 

 The score versus RMSD analysis showed that seven of twenty-one test set 

complexes had negative slopes for regression lines in native-like 

structures (RMSD < 10 Å), indicating limited sampling by FTDock.  Therefore, the 

comparison with other approaches may have drawbacks.  This may come from the 

restricted ability for FTDock to generate realistic alternative poses.  This problem in 

samplinig may be overcome by using a more sophisticated docking program such as 

Rosetta which adopts hierarchical modeling, flexible back bone docking and optimizing 

side chains.33  However, when we apply our most recent all-atom potential to Rosetta,20 

we will not be able to use the potential in the first sampling step, the crucial step for good 

prediction, because the first step is too coarse-grained.  This issue also may apply to 

using ITScore-PR. 

5. CONCLUSIONS 

 This project has successfully developed pairwise nucleotide-amino acid  

potentials for protein-RNA binding and quantitatively analyzed interactions between 

RNA and protein, noting the following: 

• The analysis of statistical potentials confirmed the strong preference for Arg-guanine 

in the major groove of A-form helices. 

• Moreover, the dominant Arg interactions are involved in the backbone. 

• We introduced a classifier of RNA structures, and it improved the prediction when we 

allowed redundancy and increased the size of the training set. 

• Comparison with other approaches such as ITScore-PR may not be adequate because 

of the limited capability of FTDock to generate native-like binding poses. 
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6. FUTURE STUDIES 

 Continuation of these methods should include the following: 

• Use docking programs such as Rosetta that include flexible docking and side chain 

repacking to fully evaluate our potentials. 

• Incorporate our potentials into Rosetta (aggregate average for the first step and 

suitable all-atom potential to the second step). 

• Explore the additional arguments such as distance and bonding angles to our 

potentials and evaluate them. 

• Explore other potentials including van der Waals forces. 

• Group together OP1 and OP2 (and NH1 and NH2), and recalculate potentials. 

• In addition, better scaling for potentials with no actual hydrogen bonds identified 

should be explored. 
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APPENDICES 

Appendix A 

Table A. 1.  Frequency of contacts for current scenario.  The first row indicates 
categories. Columns 1 and 10 indicate amino acid-nucleotide pair. 

 1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9 
ALA_A 0 0 5 0 0 0 27 6 21 LEU_A 0 0 7 0 1 0 11 13 7 
ALA_C 1 0 8 0 0 1 22 4 6 LEU_C 0 0 11 0 0 0 10 13 2 
ALA_G 0 1 11 11 0 12 28 10 13 LEU_G 0 1 8 0 0 0 18 18 4 
ALA_U 0 0 12 0 0 0 22 7 28 LEU_U 0 0 1 0 0 0 8 7 5 
ARG_A 5 2 82 62 4 27 508 113 440 LYS_A 2 7 58 3 3 5 308 31 222 
ARG_C 20 14 500 6 0 29 674 161 237 LYS_C 0 4 512 2 0 20 356 89 103 
ARG_G 60 8 263 98 46 10 584 129 212 LYS_G 2 7 210 25 46 14 313 49 102 
ARG_U 3 20 109 15 18 27 303 104 311 LYS_U 0 2 75 1 11 7 222 49 126 
ASN_A 1 3 18 3 4 10 64 43 44 MET_A 0 0 3 0 0 0 5 6 2 
ASN_C 1 5 56 7 0 12 65 17 22 MET_C 0 1 9 0 0 2 18 4 4 
ASN_G 0 13 52 8 2 28 88 30 21 MET_G 0 5 7 0 0 14 16 2 0 
ASN_U 0 6 19 2 1 12 43 104 67 MET_U 0 0 1 0 0 3 6 2 2 
ASP_A 0 0 8 0 2 1 13 30 25 PHE_A 0 0 0 0 1 0 2 7 19 
ASP_C 1 1 20 4 0 2 18 20 28 PHE_C 0 0 2 0 0 0 2 3 3 
ASP_G 0 25 22 0 6 36 35 59 16 PHE_G 0 1 6 0 0 0 2 15 4 
ASP_U 0 0 13 0 0 0 19 35 19 PHE_U 0 0 1 0 0 0 2 12 5 
CYS_A 0 0 0 0 0 0 4 3 1 PRO_A 0 0 1 0 0 1 13 4 8 
CYS_C 0 0 0 1 0 0 1 0 0 PRO_C 0 2 5 0 0 0 10 4 5 
CYS_G 0 0 1 0 0 0 1 0 0 PRO_G 3 4 10 3 0 11 8 1 7 
CYS_U 0 0 0 0 0 0 0 2 2 PRO_U 0 0 3 0 0 0 16 6 8 
GLN_A 2 8 19 1 1 2 39 33 41 SER_A 2 3 17 2 7 8 66 45 88 
GLN_C 4 7 54 3 1 13 59 13 31 SER_C 2 13 79 9 1 20 129 44 38 
GLN_G 1 21 56 4 1 58 92 19 17 SER_G 0 13 60 4 7 40 100 20 22 
GLN_U 0 7 36 0 0 6 42 50 45 SER_U 3 0 14 2 3 6 48 30 54 
GLU_A 1 0 10 0 1 0 21 33 19 THR_A 0 1 9 1 0 4 61 58 61 
GLU_C 0 1 15 5 0 2 21 31 11 THR_C 0 4 90 0 0 4 83 37 30 
GLU_G 0 10 26 3 2 22 34 88 25 THR_G 1 8 44 2 0 20 81 27 39 
GLU_U 0 6 12 0 0 1 19 14 23 THR_U 1 1 29 0 3 0 52 20 65 
GLY_A 0 2 14 0 3 2 60 18 62 TRP_A 0 0 1 0 0 0 7 2 11 
GLY_C 4 2 40 3 0 3 84 17 16 TRP_C 0 0 4 1 0 0 9 5 4 
GLY_G 11 27 47 6 0 33 271 13 44 TRP_G 0 3 2 0 0 1 24 3 2 
GLY_U 0 0 21 2 0 0 48 36 37 TRP_U 0 0 3 0 1 1 49 1 3 
HIS_A 0 2 23 0 1 9 33 10 44 TYR_A 0 3 6 0 3 3 89 65 76 
HIS_C 1 3 36 0 0 7 40 22 21 TYR_C 0 1 135 2 2 0 103 9 19 
HIS_G 2 4 46 3 7 12 50 14 34 TYR_G 0 3 27 0 2 11 49 19 30 
HIS_U 0 2 15 0 1 3 29 22 38 TYR_U 0 1 3 1 0 1 29 14 44 
ILE_A 0 0 4 0 0 0 4 25 3 VAL_A 0 0 1 0 0 0 14 14 6 
ILE_C 1 0 1 0 0 0 4 7 6 VAL_C 0 0 20 0 0 0 10 6 4 
ILE_G 0 0 4 0 0 0 9 7 6 VAL_G 0 3 13 0 0 2 33 12 7 
ILE_U 0 0 0 0 0 0 8 10 7 VAL_U 0 0 3 0 0 0 8 3 5 
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Appendix B 

 
Figure B. 1.  Potentials for current scenario Category 1 (potentials for missing data is set 
as 0).  Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and 
blue bars for each amino acid.  Potentials for missing contacts are not shown in this plot.  
These potentials are calculated from the whole training set (without excluding any test 
set). 
 

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

1
AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U



	 48	
	

 
Figure B. 2.  Potentials for current scenario Category 2 (potentials for missing data is set 
as 0).  Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and 
blue bars for each amino acid.  Potentials for missing contacts are not shown in this plot.  
These potentials are calculated from the whole training set (without excluding any test 
set). 
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Figure B. 3.  Potentials for current scenario Category 3 (potentials for missing data is set 
as 0).  Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and 
blue bars for each amino acid.  Potentials for missing contacts are not shown in this plot.  
These potentials are calculated from the whole training set (without excluding any test 
set). 
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Figure B. 4.  Potentials for current scenario Category 4 (potentials for missing data is set 
as 0).  Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and 
blue bars for each amino acid.  Potentials for missing contacts are not shown in this plot.  
These potentials are calculated from the whole training set (without excluding any test 
set). 
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Figure B. 5.  Potentials for current scenario Category 5 (potentials for missing data is set 
as 0).  Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and 
blue bars for each amino acid.  Potentials for missing contacts are not shown in this plot.  
These potentials are calculated from the whole training set (without excluding any test 
set). 
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Figure B. 6.  Potentials for current scenario Category 6 (potentials for missing data is set 
as 0).  Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and 
blue bars for each amino acid.  Potentials for missing contacts are not shown in this plot.  
These potentials are calculated from the whole training set (without excluding any test 
set). 
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Figure B. 7.  Potentials for current scenario Category 7 (potentials for missing data is set 
as 0).  Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and 
blue bars for each amino acid.  Potentials for missing contacts are not shown in this plot.  
These potentials are calculated from the whole training set (without excluding any test 
set). 
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Figure B. 8.  Potentials for current scenario Category 8 (potentials for missing data is set 
as 0).  Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and 
blue bars for each amino acid.  Potentials for missing contacts are not shown in this plot.  
These potentials are calculated from the whole training set (without excluding any test 
set). 
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Figure B. 9.  Potentials for current scenario Category 9 (potentials for missing data is set 
as 0).  Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and 
blue bars for each amino acid.  Potentials for missing contacts are not shown in this plot.  
These potentials are calculated from the whole training set (without excluding any test 
set). 
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Appendix C 

 

 
Figure C. 1.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1EC6.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 2.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1F7U.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 3.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1JBR.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 4.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1K8W.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 5.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1LNG.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 6.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1KOG.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 7.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1M8W.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 8.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1MFQ.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 9.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1U0B.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 10.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1U63.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 11.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1WPU.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 12.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 1WSU.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 13.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 2BTE.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 14.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 2FMT.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 15.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 2HW8.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 16.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 2JEA.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Figure C. 17.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 2PJP.  The red circles represent poses whose RMSD values are less than 10 Å 
and the black circles are the poses whose RMSD values equal or greater than 10 Å.  The 
slopes, R-squared, and p-values for the regression lines for the red and black circles are 
shown above the scatter plots. 
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Figure C. 18.  Scatter plots of score as a function of RMSD for 50,373 poses in current 
scenario of 2QUX.  The red circles represent poses whose RMSD values are less than 10 
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.  
The slopes, R-squared, and p-values for the regression lines for the red and black circles 
are shown above the scatter plots. 
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Appendix D Tables and Figures for Unpublished Results 

 
Table D. 1.  Classification summary of all scenarios including unpublished results  

 Number of Classification 
Total Number 

of 
Classifications 

Mean Best 
Rank (%) 

Protein RNA 

Scenario 
Amino 
Acid 
Type 

Atom 
Type Structure Base 

Type 
Atom 
Type Structure 

Current 20 - - 4 - 9 720 5.352 
PRat11 20 17 - 4 15 - 20,400 6.050 
PRat17 20 17 - 4 15 7 142,800 11.972 
PRat71 20 17 7 4 15 - 142,800 5.216 
PRat77 20 17 7 4 15 7 999,600 5.872 
PR77 20 - 7 4 - 7 3,920 7.275 

 
 
 

 
Figure D. 1.  Best (red), mean (blue), and worst (black) rankings for all scenarios over 
twenty-one test complexes.  For example, the mean rank for PRat11 (1.114%) is the 
average ranking among the twenty-one best rankings for the scenario. 
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Figure D. 2.  Chart Flow to Calculate Propensity for PRat11.  The pfasta.txt and rfasta.txt 
are fasta format files that have structural identification numbers added by pfasta.py and 
parseDSSR.py.  Protein structure was given by STRIDE. 
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Figure D. 3.  The equation to calculate propensity for PRat77 (top).  NC, NP, and NR 
indicate number of contacts, amino acids (or atoms in proteins), and bases (or atoms in 
RNA), respectively.  Variables for the protein side(p1, p2, and p3) are described in the 
bottom-left box.  Variables for the RNA side (r1,r2, and r3) are described in the bottom-
right box.  NC(p1, p2, p3, r1, r2, r3) indicates the number of contacts classified by those 
six variables and NC (all) indicates the number of all contacts in training set.  NP indicates 
the number of atoms in proteins classified by p1, p2 and p3.  NR indicates the number of 
atoms in RNA classified by r1, r2, and r3.  

OH,OG1,OG,OE2,OE1,OD2,OD1,O,	
NZ,NH2,NH1,NE2,NE1,NE,ND2,ND1,N	

OP2,OP1,O6,O5',O4',O4,O3',	
O2',O2,N7,N6,N4,N3,N2,N1	
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Figure D. 4.  Equations for scenarios (PRat17, PRat71, PRat11, PR77, and at77).  
Variables NP and NR indicate a number of atoms (atom name is denoted by p2 and r2) in 
the amino acid (p1) and the base (r1), respectively, but for PR77, NP and NR indicate a 
number of amino acids (p1) and bases (r1). 
 
Appendix E Python Program Listings 

Program: transformPISCES.py 

path = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/PISCES/30letter/' 
previousID1,previousID2 = '','' 
i = 0 
 
with open(path+'similarityNumed.txt','w+') as fo: 
    with open(path+'similarity25rev.txt') as fi: 
        for ilines in fi.readlines(): 
            ilinelist = ilines.split() 
 
            # skip if same as the line above 
            if previousID1 == ilinelist[1] and previousID2 == ilinelist[2]: 
                continue 
 
            # write both chainIDs if at the first line of the cluster 
            elif previousID1 != ilinelist[1] or previousID1 == '': 
                i += 1 
                fo.writelines(str(i)+'\t'+ilinelist[1]+'\n') 
                fo.writelines(str(i)+'\t'+ilinelist[2]+'\n') 
 
            # if consecutive line, write only second chainID 
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            elif previousID1 == ilinelist[1]: 
                fo.writelines(str(i)+'\t'+ilinelist[2]+'\n') 
 
            previousID1 = ilinelist[1] 
            previousID2 = ilinelist[2] 
 
Program: GetClusterNum.py 

# Based on chains in similarityNumed.txt that is from PISCES output, 
# this code pulls resolution and method and add them to lines in similarityNumed.txt 
def GetClusterNum(mode): 
 
    import os 
    clusterNum,reso,found = 0,0,0 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    path1 = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/PISCES/' 
 
    if mode == 1: 
        inputchaininfo = '5let_inputchains_valid.txt' # non redundant 
    elif mode == 0: 
        inputchaininfo = '5let_inputchains.txt'       # redundant 
 
    # open the output file 
    with open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/chainsInfo.txt','w+') as 
fo: 
        with open(path1+inputchaininfo) as fr: 
            for rline in fr.readlines(): 
                entry = rline[0:4] 
 
                for filename in 
os.listdir('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'): 
                    method = '' 
                    reso = '' 
                    if filename[0:4].upper() == entry and filename[-3:] == 'cif': 
                        chainID = rline[0:5] 
 
                        # open mmCif and obtain method and resolution 
                        with 
open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'+filename) as fcif: 
                            for linecif in fcif.readlines(): 
 
                                # When the method is X-RAY 
                                if 'X-RAY DIFFRACTION' in linecif: 
                                    method = 'XRY' 
                                    with 
open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'+filename) as fcif2: 



	 79	
	

                                        for linecif2 in fcif2.readlines(): 
                                            if '_reflns.d_resolution_high' in linecif2: 
                                                resofull = (linecif2[27:]).strip() 
                                                reso = resofull[:3] 
                                                if reso == '?': 
                                                    with 
open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'+filename) as fcif3: 
                                                        for linecif3 in fcif3.readlines(): 
                                                            if '_refine.ls_d_res_high' in linecif3: 
                                                                resofull = (linecif3[23:]).strip() 
                                                                reso = resofull[:4] 
                                                                break 
                                                    break 
                                                break 
                                            elif '_refine.ls_d_res_high' in linecif2: 
                                                resofull = (linecif2[23:]).strip() 
                                                reso = resofull[:3] 
                                                break 
                                    break 
 
                        # obtain cluster# 
                        with open(path1+'30letter/similarityNumed.txt') as fp: 
                            found = 0 
                            for plines in fp.readlines(): 
                                plinelist = plines.split() 
                                chainID = chainID.replace(':','') 
                                if chainID.upper() == plinelist[1]: 
                                    clusterNum = plinelist[0] 
                                    found = 1 
                                    break 
 
                        if found == 1: 
                            
fo.writelines(chainID+'\t'+str(clusterNum)+'\t'+method+'\t'+str(reso)+'\n') 
                        elif found == 0: 
                            fo.writelines(chainID+'\t'+'0'+'\t'+method+'\t'+str(reso)+'\n') 
 
Program: combincontacts.py 

# This code change the order of RNAchain and protein chain in DSSR output 
# in this order. 
# then from 'chainsinfo.txt', add resolution and cluster# to each contact 
 
def combinecontacts(resolim,Cname): 
    import os 
    i = 0 
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    path = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/' 
    xpath = '/Volumes/Transcend/hbonds/'+Cname+'/' 
    os.remove(path+'contacts.txt') 
 
    with open(path+'contacts.txt','w+') as fo: 
        with open(path+'chainsInfo.txt') as chainf: 
            for chline in chainf.readlines(): 
                chlinelist = chline.split('\t') 
                chainID = chlinelist[0] 
                entry = chainID[0:4] 
                for filename in 
os.listdir('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'): 
                    if filename[0:4].upper() == entry.upper() and 'out' in filename: 
                        with 
open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'+filename) as fi: 
                            for iline in fi.readlines(): 
                                # 0     1    2      3    4     5   6          7 
                                # 937   634  #18    p    3.871 O/N O@P.PHE336 N4@R.C141 
                                ilinelist = iline.split() 
                                if ':' in iline and len(ilinelist) > 6: 
                                    # c1 = [N@1:B, G0]  c2 = [O@1:A, PRO1] 
                                    c1 = ilinelist[6].split('.') 
                                    c2 = ilinelist[7].split('.') 
 
                                    # nc1 = 'G'   nc2 = 'PRO' 
                                    nc1 = c1[1].strip('0123456789') 
                                    nc2 = c2[1].strip('0123456789') 
 
                                    # if len(c1)+len(c2) == 4: 
                                    if len(nc1) == 3 and len(nc2) == 1: 
                                        tmp = ilinelist[7] 
                                        ilinelist[7] = ilinelist[6] 
                                        ilinelist[6] = tmp 
 
                                    # c1 = [N@1:B, G0]  c2 = [O@1:A, PRO1] 
                                    c1 = ilinelist[6].split('.') 
                                    c2 = ilinelist[7].split('.') 
 
                                    # nc1 = 'G'   nc2 = 'PRO' 
                                    nc1 = c1[1].strip('0123456789') 
                                    nc2 = c2[1].strip('0123456789') 
 
                                    # d1 = [N@1, B]   d2 = [O@1, A] 
                                    d1 = c1[0].split(':') 
                                    d2 = c2[0].split(':') 
                                    if resolim != 10: 
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                                        if 'XRY' in chline: 
                                            # get cluster#, method, resolution from chainsInfo.txt ** 
protein ** 
                                            if chainID == filename[:-8].upper()+d2[1]: 
                                                clusterN = chlinelist[1] 
                                                method = chlinelist[2] 
                                                resolution = chlinelist[3].strip('\n') 
                                                if float(resolution) < resolim: 
                                                    fo.writelines(str(i)+'\t'+filename[:-
8].upper()+'\t'+ilinelist[0]+'\t'+\ 
                                                    
ilinelist[1]+'\t'+ilinelist[4]+'\t'+ilinelist[6]+'\t'+ilinelist[7]+\ 
                                                    '\t'+clusterN+'\t'+method+'\t'+resolution+'\n') 
                                                    i += 1 
                                    elif resolim == 10: 
                                        if chainID == filename[:-8].upper()+d2[1]: 
                                            clusterN = chlinelist[1] 
                                            fo.writelines(str(i)+'\t'+filename[:-
8].upper()+'\t'+ilinelist[0]+'\t'+ilinelist[1]+'\t'+ilinelist[4]+\ 
                                                      
'\t'+ilinelist[6]+'\t'+ilinelist[7]+'\t'+clusterN+'\t'+'any'+'\t'+'0'+'\n') 
                                            i += 1 
 
Program: director_cluster.py 

 
def director_cluster(potentials,complist,resolim,Cname): 
 
    if potentials == 98 or potentials == 99: 
        mode = 0 
        # 1:non-redundant data   0:redundant data(filter with resolution, method, and cluster) 
    elif potentials != 98 and potentials != 99: 
        mode = 1 
 
    from GetClusterNum import GetClusterNum 
    GetClusterNum(mode) 
 
    from combinecontacts import combinecontacts 
    combinecontacts(resolim,Cname) 
 
    if mode == 1:  # with clustering 
        from choosebest_f import choosebest 
        choosebest(complist,resolim) 
        print('** non-redundant mode **') 
 
        from getallredun_f import getallredun 
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        getallredun(complist) 
        print('** allredun is made **') 
 
    elif mode == 0:  # without clustering 
        from choosebest_all import choosebest_all 
        choosebest_all(complist) 
        print('** redundant mode **') 
 
        from getallredun_f_all import getallredun 
        getallredun(complist) 
        print('** allredun is made  
 
Program: choosebest.py 

def choosebest(complist,resolim):  # with clustering 
    path = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/' 
    idlist = [] 
    i = 1 
    amino = 
['ALA','VAL','LEU','ILE','PHE','TRP','MET','PRO','ASP','GLU','GLY','SER','THR','CYS'
,'TYR','ASN','GLN','LYS','ARG','HIS'] 
    with open(path+'bests.txt','w+') as fo: 
        with open(path+'contacts.txt') as fi: 
            for line in fi.readlines(): 
                linelist = line.split('\t') 
 
                #  0    1       2   3       4       5           6           7   8   9   10 : index 
                #  24  1A34   1  2950   3.206  O5'@1:B.U11    N@1:A.THR13    6  XRY    1.8    
1 
                resi = linelist[6].split('.') 
                resi2 = resi[1].strip('0123456789') # resi2 = THR or U 
                resib = linelist[5].split('.') 
                resib2 = resib[1].strip('0123456789') # resi2 = THR or U 
 
                if linelist[1] in complist: 
                    continue 
                if len(resi2)+len(resib2) == 4: 
                    if resolim != 10: 
                        if resi2 in amino and linelist[8] == 'XRY': 
                            if linelist[7] == '0': 
                                fo.writelines(str(i)+'\t'+line) 
                                i += 1 
                            elif linelist[7] != 0: 
                                id = linelist[7] 
                                if id in idlist: 
                                    continue 
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                                elif id not in idlist: 
                                    idlist.append(id) 
                                    with open(path+'contacts.txt') as fi2: 
                                        bestline = '' 
                                        for line2 in fi2.readlines(): 
                                            linelist2 = line2.split('\t') 
                                            id2 = linelist2[7] 
                                            if id2 == id: 
                                                # bestline[8]=method, bestline[9]=resolution 
                                                # compare current reso with bestreso 
                                                if bestline == '': 
                                                    if linelist2[8] == 'XRY': 
                                                        bestline = line2 
                                                else: 
                                                    if bestline[9] > line2[9]: 
                                                        bestline = line2 
                                                    else: 
                                                        continue 
 
                                        if bestline == '': 
                                            continue 
 
                                        fo.writelines(str(i)+'\t'+bestline) 
                                        i += 1 
                    elif resolim == 10: 
                        if resi2 in amino: 
                            fo.writelines(str(i)+'\t'+line) 
                            i += 1 
 
Program: getallredun.py 

# this code reads chainID like 1A1T_A from chosen contacts, 
# and copy the line of the same chainID from contacts.txt to allredun.txt 
 
def getallredun(complist): 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/' 
    rlinelist,id6,id7,ridl,pidl,linelist,iid6,iid7,iridl,ipidl = [],[],[],[],[],[],[],[],[],[] 
    chainid,ichainid,rid,pid,irid,ipid = '','','','','','' 
    i = 0 
 
    with open(path+'allredun.txt','w+') as fo: 
        with open(path+'bests.txt') as fr: 
            for rline in fr.readlines(): 
                rlinelist = rline.split('\t') 
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                # 9    8  1A1T   312    1220   2.950  O6@1:B.G210    N@1:A.TRP37    0     0 
                # 10   9  1A1T   312    1360   2.803  O6@1:B.G210    N@1:A.MET46    0     0 
                # 22   21 1A1T   478    756    3.956  O4@1:B.U215    NH2@1:A.ARG7   0  
any    0 
 
                id6 = rlinelist[6].split(':') 
                id7 = rlinelist[7].split(':') 
                ridl = id6[1].split('.') 
                pidl = id7[1].split('.') 
                rid = ridl[0] 
                pid = pidl[0] 
                chainid = rlinelist[2]+'_'+rid+'_'+pid 
 
                ires1 = ridl[1].strip('1234567890') 
                ires2 = pidl[1].strip('1234567890') 
 
                if rlinelist[2] in complist: 
                    print('remove a line of '+rlinelist[2]) 
                    continue 
 
                # write as is if the contact is not clustered 
                elif rlinelist[8] == '0': 
                    if len(ires1) == 1 and len(ires2) == 3: 
                        
fo.writelines(str(i)+'\t'+chainid+'\t'+rlinelist[1]+'\t'+rlinelist[2]+'\t'+rlinelist[3]+\ 
                                      
'\t'+rlinelist[4]+'\t'+rlinelist[5]+'\t'+rlinelist[6]+'\t'+rlinelist[7]+'\t'+\ 
                                      rlinelist[8]+'\t'+rlinelist[9]+'\t'+rlinelist[10]) 
                        i += 1 
 
                # if clustered, obtain all contacts of the same chain combi ID 
                else: 
                    with open(path+'contacts.txt') as fi: 
                        for line in fi.readlines(): 
                            linelist = line.split('\t') 
 
                            # line[1]=1A1T   [5]=OP2@1:B.A203   [6]=N@1:A.GLY4 
                            iid6 = linelist[5].split(':') 
                            iid7 = linelist[6].split(':') 
                            iridl = iid6[1].split('.') 
                            ipidl = iid7[1].split('.') 
                            ichainid = linelist[1]+'_'+iridl[0]+'_'+ipidl[0] 
 
                            res1 = iridl[1].strip('1234567890') 
                            res2 = ipidl[1].strip('1234567890') 
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                            if chainid == ichainid: 
                                if len(res1) == 1 and len(res2) == 3: 
                                    fo.writelines(str(i)+'\t'+ichainid+'\t'+line) 
                                    i += 1 
 
Program: director_potential.py 

# this is the director file that uses allredun.txt as an an input 
# and output nine sets of potentials 
def director_potential(): 
    nums = [] 
 
    from assignRNA3D import assignRNA3D 
    assignRNA3D() 
    print("2.assignRNA3D IS DONE") 
 
    def calp_m1(k):  # k: 0-2 
        from sepcalp1 import sepcalp1 
        sepcalp1(k) 
 
    import multiprocessing as mp1 
    calp_processes = [mp1.Process(target=calp_m1, args=(k,)) for k in range(0,3)] 
 
    for p in calp_processes: 
        p.start() 
    for p in calp_processes: 
        p.join() 
 
    from calcdenomi import calcdenomi 
    r2p2 = calcdenomi() 
    print("*** r2 and p2 were made ***") 
 
    # Calculate potential set 1-9 
 
    def calp_m(k,r2p2,nums):  # k: 0-5 
        from sepcalp import sepcalp 
        sepcalp(k,r2p2,nums) 
 
    import multiprocessing as mp1 
    calp_processes = [mp1.Process(target=calp_m, args=(k,r2p2,nums)) for k in 
range(0,6)] 
 
    for p in calp_processes: 
        p.start() 
    for p in calp_processes: 
        p.join() 
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    from potenti import potenti 
    potenti() 
 
    print("15.potenti IS DONE") 
    from overallpot import overallpot 
    overallpot() 
 
    print("16.overallpot IS DONE") 
    print(nums) 
    return nums 
 
Program: assignRNA3Dall.py 

# this code assign DSSR 3D structure to each RNA in a contact 
 
def assignRNA3Dall(): 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    i= 0 
    with open(path+'Analyzing/bests3Dall.txt','w+') as fo: 
        with open(path+'Clustering/allredun.txt') as fi: 
            for iline in fi.readlines(): 
                ilinelist = iline.split() 
                # 0 1        2  3    4  5    6     7           8           9 10  11 
                # 3    1A34_B_A 26 1A34 14 2948 2.131 OP1@1:B.U11 N@1:A.GLY14 6 
XRY 1.8 
 
                sixlist = ilinelist[7].split(':') 
                # query chain ID is like 'B.G668' 
                qchID = sixlist[1] 
 
                
fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'NA'+'\t'+'NA'+'\t'+'NA'+'\t'+'NA'+'\n') 
 
Program: assignBorSall.py 

# this code use best3D.txt and add 'bbone'/'bases' to each line 
 
def assignBorSall(): 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    bbone = ["OP2","OP1","O5'","O4'","O3'","O2'"] 
    bases = ['N1','O2','N3','O4','N6','N7','N9','N2','O6','N4','N'] 
    bbnum, basesnum,space, aform, uncon, uncla = 0,0,0,0,0,0 
 
    with open(path+'Analyzing/bests3Dplusall.txt','w+') as fo: 
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        with open(path+'Analyzing/bests3Dall.txt') as fi: 
             for iline in fi.readlines(): 
                ilinelist = iline.split() 
 
                # 0 1 2        3  4    5   6    7     8          9             10 11  12  13   14   15 16 
                # 1 4 1A34_B_A 27 1A34 345 2454 2.693 O2'@1:B.A5 OG1@1:A.THR36 6  
XRY 1.8 left cW-W A  n 
                # 0    3 1A34_B_A 26 1A34 14  2948    2.131 OP1@1:B.U11  N@1:A.GLY14 
6  XRY 1.8 NA   NA  NA NA 
                try: 
                    # get base(='G') and RNAatom(='OP2') 
                    preatom = ilinelist[8].split('@') 
                    RNAatom = preatom[0] 
                    prebase = preatom[1].split('.') 
                    prebase2 = prebase[1] 
                    base = prebase2[0] 
 
                    # get residue and ratom 
                    preresiatom = ilinelist[9].split('@') 
                    resiatom = preresiatom[0] 
                    preresi = preresiatom[1].split('.') 
                    preresi2 = preresi[1] 
                    residue = preresi2[0:3] 
 
                    if 'Note: ' in iline: 
                        break 
                    if len(ilinelist) == 16: 
                        ilinelist.append(' ') 
 
                    # preatom = ["O2'", "1:B.A5"] 
                    if preatom[0] in bases: 
                        
fo.writelines(ilinelist[1]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\ 
                                      +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\ 
                                      
'\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bases'+'\t'+str(basesnum)+'\n') 
 
                    elif preatom[0] in bbone: 
                        
fo.writelines(ilinelist[1]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\ 
                                      +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\ 
                                      
'\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bbone'+'\t'+str(basesnum)+'\n') 
                    # elif (preatom[0] not in bases) and (preatom[0] not in bbone): 
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                except IndexError: 
                    print(iline) 
 
Program: overall.py 

# this code calculates propensities for overall 
def overall(): 
    def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq): 
        newseq1,newseq2 = '','' 
        with open(reffile) as ff: 
            linef = ff.readlines() 
            for i in range(0, len(linef)): 
                line = linef[i] 
                # extend the RNA chain 
                if (RNAchainID in line) and (sign == 'RNA'): 
                    Rseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                Rseq = Rseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq1 = oldseq+Rseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq1 = oldseq+Rseq.strip('\n') 
                            break 
                    return newseq1 
 
                # extend the protein chain 
                elif (proteinchainID in line) and (sign == 'protein'): 
                    pseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                pseq = pseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq2 = oldseq + pseq.strip('\n') 
                                break 
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                        except IndexError: 
                            newseq2 = oldseq + pseq.strip('\n') 
                            break 
                    return newseq2 
            return oldseq 
 
    def calpropensity(RNAseq,proteinseq,outputfile,apair): 
 
        aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] 
        bases = ['A','C','G','U'] 
        aminot = 
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\ 
                   'GLN','ARG','SER','THR','VAL','TRP','TYR'] 
        # R = residic[ARG] 
        with open(outputfile,'w+') as fo: 
            for i in range(0,20): 
                for j in range(0,4): 
                    # avoid dividing by zero 
                    if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0: 
                        fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n') 
                    else: 
                        numerator = (apair.count(aminot[i]+'_'+bases[j]))/len(apair) 
                        denominator1 = RNAseq.count(bases[j])/len(RNAseq) 
                        denominator2 = proteinseq.count(aminos[i])/len(proteinseq) 
                        
fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+'\
n') 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    i,j,count = 0,0,0 
    pre = '' 
    # helix > a form > bases > mg > canonical 
 
    with open(path+'Analyzing/bests3Dplusall.txt') as fi: 
        atompair,combinations,combinations2,atompair2 = [],[],[],[] 
        proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','','' 
 
        for ilines in fi.readlines(): 
            ilinelist = ilines.split('\t') 
            # 15   1A9N_Q_B   U  O2 ARG    NE NA NA NA NA bases  0 
            # 0 1        2 3   4   5   6     7 
            # 4    1A4T_A_B C OP2 ARG NH2 bbone 0 
 
            # get chain ID 
            elementlist = ilinelist[1].split('_') 
            RNAchainID = elementlist[0]+':'+elementlist[1] 



	 90	
	

            proteinchainID = elementlist[0]+':'+elementlist[2] 
 
            # add this atom pair to list and extend the sequence 
            atompair.append(ilinelist[4]+'_'+ilinelist[2]) 
            count += 1 
 
            if ilinelist[1] not in combinations: 
                combinations.append(ilinelist[1]) 
                RNAseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','RNA',RNAseq) 
                proteinseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq) 
 
        
calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/overall.txt',atompair) 
    print(count) 
 
Program: assignRNA3D.py 

# this code assign DSSR 3D structure to each RNA in a contact 
 
def assignRNA3D(): 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    i= 0 
    wobblepair = ['GU','UG'] 
 
    with open(path+'Analyzing/bests3D.txt','w+') as fo: 
        with open(path+'Clustering/allredun.txt') as fi: 
            for iline in fi.readlines(): 
                ilinelist = iline.split() 
                # 0 1        2  3    4  5    6     7           8           9 10  11 
                # 3    1A34_B_A 26 1A34 14 2948 2.131 OP1@1:B.U11 N@1:A.GLY14 6 
XRY 1.8 
 
                sixlist = ilinelist[7].split(':') 
                # query chain ID is like 'B.G668' 
                qchID = sixlist[1] 
                try: 
                    with 
open('/Users/kimuratakayuki/Desktop/PRat77/Analyzing/DSSRout/'+ilinelist[3].lower()+
'.cif.out') as fm: 
                        readstart,findstart,escape = 0,0,0 
                        for mline in fm.readlines(): 
                            # search the keywords and start parsing lines 
                            if mline[2:7] == 'helix': 
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                                findstart = 1 
                            elif findstart == 1 and mline[6:16] == 'helix-form': 
                                readstart = 1 
                                stepline = mline 
                            elif readstart == 1: 
                                if (mline != '\n') and ('----' not in mline) and (mline[3] != ' '): 
                                    if '********' in mline: 
                                        break 
                                    row = mline.split() 
 
                                    #    row[1]='1:B.G201',row[2]='1:B.C220' 
                                    # or row[1]=  'B.G201',row[2]=  'B.C220' 
                                    base1 = row[1].split('.') 
                                    base2 = row[2].split('.') 
 
                                    chainid1pre = base1[0] 
                                    chainid1    = chainid1pre[-1:] 
                                    prebaseid1     = base1[1] 
                                    baseid1 = prebaseid1[0] 
 
                                    chainid2pre = base2[0] 
                                    chainid2    = chainid2pre[-1:] 
                                    prebaseid2     = base2[1] 
                                    baseid2 = prebaseid2[0] 
 
                                    if (baseid1 + baseid2) in wobblepair: 
                                        wobble = 'w' 
                                    else: 
                                        wobble = 'n' 
 
                                    if qchID == chainid1+'.'+prebaseid1: 
                                        i += 1 
                                        if stepline[17+int(row[0])] == '\n': 
                                            fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'left 
'+'\t'+row[7]+'\t'+'e'+'\t'+wobble+'\n') 
                                        else: 
                                            fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'left 
'+'\t'+row[7]+'\t'+stepline[17+int(row[0])]+'\t'+wobble+'\n') 
                                        break 
                                    elif qchID == chainid2+'.'+prebaseid2: 
                                        i += 1 
                                        if stepline[17+int(row[0])] == '\n': 
                                            
fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'right'+'\t'+row[7]+'\t'+'e'+'\t'+wobble+'\n') 
                                        else: 
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fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'right'+'\t'+row[7]+'\t'+stepline[17+int(row[0])]
+'\t'+wobble+'\n') 
                                        break 
                except IOError: 
                    print('IOError @ '+iline) 
 
Program: assignBorS.py 

# this code use best3D.txt and add 'bbone'/'bases' to each line 
def assignBorS(): 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    bbone = ["OP2","OP1","O5'","O4'","O3'","O2'"] 
    bases = ['N1','O2','N3','O4','N6','N7','N9','N2','O6',''] 
    bbnum, basesnum,space, aform, uncon, uncla = 0,0,0,0,0,0 
 
    with open(path+'Analyzing/bests3Dplus.txt','w+') as fo: 
        with open(path+'Analyzing/bests3D.txt') as fi: 
             for iline in fi.readlines(): 
                ilinelist = iline.split() 
 
                # 0 1 2        3  4    5   6    7     8          9             10 11  12  13   14   15 16 
                # 1 4 1A34_B_A 27 1A34 345 2454 2.693 O2'@1:B.A5 OG1@1:A.THR36 6  
XRY 1.8 left cW-W A  n 
 
                # get base(='G') and RNAatom(='OP2') 
                preatom = ilinelist[8].split('@') 
                RNAatom = preatom[0] 
                prebase = preatom[1].split('.') 
                prebase2 = prebase[1] 
                base = prebase2[0] 
 
                # get residue and ratom 
                preresiatom = ilinelist[9].split('@') 
                resiatom = preresiatom[0] 
                preresi = preresiatom[1].split('.') 
                preresi2 = preresi[1] 
                residue = preresi2[0:3] 
 
                if 'Note: ' in iline: 
                    break 
                if len(ilinelist) == 16: 
                    ilinelist.append(' ') 
 
                # preatom = ["O2'", "1:B.A5"] 
                if preatom[0] in bases: 
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fo.writelines(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\ 
                                  +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\ 
                                  '\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bases'+'\t'+str(basesnum)+'\n') 
                    if ilinelist[16] == ' ': 
                        space += 1 
                    elif ilinelist[16] == 'x': 
                        uncon += 1 
                    elif ilinelist[16] == '.': 
                        uncla += 1 
                    elif ilinelist[16] == 'A': 
                        aform += 1 
 
                    basesnum += 1 
                elif preatom[0] in bbone: 
                    
fo.writelines(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\ 
                                  +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\ 
                                  '\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bbone'+'\t'+str(basesnum)+'\n') 
                    bbnum += 1 
 
                # 
print(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+ratom\ 
                #                   +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\ 
                #                   
'\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bases'+'\t'+str(basesnum)+'\n') 
 
Program: addmajor.py 

# this code assign 'major' without considering RNA structure 
# just from the base specimen and atom position 
def addmajor(): 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/Analyzing/' 
 
    Cmajor = ['N4'] 
    Gmajor = ['N7','O6',] 
    Umajor = ['O4'] 
    Amajor = ['N6','N7'] 
    WUmajor = ['O4','N3'] 
 
    with open(path+'majoradded.txt','w+') as fo: 
        with open(path+'bests3Dplus.txt') as fi: 
            for ilines in fi.readlines(): 
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                ilinelist = ilines.split('\t') 
 
                major = 'no' 
                if ilinelist[2] == 'G': 
                    if ilinelist[3] in Gmajor: 
                        major = 'major' 
 
                elif ilinelist[2] == 'C': 
                    if ilinelist[3] in Cmajor: 
                        major = 'major' 
 
                elif ilinelist[2] == 'A': 
                    if ilinelist[3]in Amajor: 
                        major = 'major' 
 
                elif ilinelist[2] == 'U': 
                    if (ilinelist[8] == 'w') and (ilinelist[3] in WUmajor): 
                        major = 'major' 
                    elif (ilinelist[8] == 'n') and (ilinelist[3] in Umajor): 
                        major = 'major' 
 
                fo.writelines(ilines.strip('\n')+'\t'+major+'\n') 
                major = '' 
 
Program: extracthelix.py 

def extractnothelix(): 
    path = '/Users/kimuratakayuki/Desktop/Thesis/Analyzing/' 
    path2 = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/' 
 
    i = 0 
    helix = [] 
 
    with open(path+'bests3D.txt') as f: 
        for flines in f.readlines(): 
            flist = flines.split('\t') 
            helix.append(flist[8]+flist[9]) 
 
    with open(path+'nothelix.txt','w+') as fo: 
        with open(path2+'allredun.txt') as fa: 
            for falines in fa.readlines(): 
                falineslist = falines.split('\t') 
                if falineslist[7]+falineslist[8] not in helix: 
                    fo.writelines(str(i)+'\t'+falines) 
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Program: assignBorSnh.py 

# this code use best3D.txt and add 'bbone'/'bases' to each line 
 
def assignBorSnh(): 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    bbone = ["OP2","OP1","O5'","O4'","O3'","O2'"] 
    bases = ['N1','O2','N3','O4','N6','N7','N9','N2','O6',''] 
    bbnum, basesnum,space, aform, uncon, uncla = 0,0,0,0,0,0 
 
    with open(path+'Analyzing/nothelix2.txt','w+') as fo: 
        with open(path+'Analyzing/nothelix.txt') as fi: 
             for iline in fi.readlines(): 
                ilinelist = iline.split() 
 
                # 0 1  2        3   4    5   6    7     8           9             10 11  12  13   14   15 16 
                # 5    16 1A4T_A_B 176 1A4T 234 602  2.922 O3'@1:A.C11 ND1@1:B.HIS7  
0  XRY 1.8 
                # 1 4  1A34_B_A 27  1A34 345 2454 2.693 O2'@1:B.A5  OG1@1:A.THR36 6  
XRY 1.8 left cW-W A  n 
 
                # get base(='G') and RNAatom(='OP2') 
                preatom = ilinelist[8].split('@') 
                RNAatom = preatom[0] 
                prebase = preatom[1].split('.') 
                prebase2 = prebase[1] 
                base = prebase2[0] 
 
                # get residue and ratom 
                preresiatom = ilinelist[9].split('@') 
                resiatom = preresiatom[0] 
                preresi = preresiatom[1].split('.') 
                preresi2 = preresi[1] 
                residue = preresi2[0:3] 
 
                # preatom = ["O2'", "1:B.A5"] 
                if preatom[0] in bases: 
                    
fo.writelines(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\ 
                                  +'\t'+'bases'+'\t'+str(basesnum)+'\n') 
 
                elif preatom[0] in bbone: 
                    
fo.writelines(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
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m\ 
                                  +'\t'+'bbone'+'\t'+str(basesnum)+'\n') 
Program: calcdenomi.py 

# this code calculates propensities for 
# helix > a form > bases > mg > canonical 
def calcdenomi(): 
    def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq): 
        newseq1,newseq2 = '','' 
        with open(reffile) as ff: 
            linef = ff.readlines() 
            for i in range(0, len(linef)): 
                line = linef[i] 
                # extend the RNA chain 
                if (RNAchainID in line) and (sign == 'RNA'): 
                    Rseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                Rseq = Rseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq1 = oldseq+Rseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq1 = oldseq+Rseq.strip('\n') 
                            break 
                    return newseq1 
 
                # extend the protein chain 
                elif (proteinchainID in line) and (sign == 'protein'): 
                    pseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                pseq = pseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq2 = oldseq + pseq.strip('\n') 
                                break 
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                        except IndexError: 
                            newseq2 = oldseq + pseq.strip('\n') 
                            break 
                    return newseq2 
            return oldseq 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
 
    # helix > a form > bases > mg > canonical 
    with open(path+'Analyzing/bests3Dplusall.txt') as fi: 
        pairlen = 0 
 
        for ilines in fi.readlines(): 
            pairlen += 1 
 
    with open(path+'Analyzing/bests3Dplusall.txt') as fi: 
        atompair,combinations,combinations2,atompair2 = [],[],[],[] 
        proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','','' 
 
        for ilines in fi.readlines(): 
            ilinelist = ilines.split('\t') 
 
            # get chain ID 
            elementlist = ilinelist[1].split('_') 
            RNAchainID = elementlist[0]+':'+elementlist[1] 
            proteinchainID = elementlist[0]+':'+elementlist[2] 
            # add this atom pair to list and extend the sequence 
            # 0     1        2 3  4   5 6     7    8 9 10    11   12 
            # 11420    4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major 
            if ilinelist[1] not in combinations: 
                combinations.append(ilinelist[1]) 
                RNAseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','RNA',RNAseq) 
                proteinseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq) 
        rp = [len(RNAseq),len(proteinseq),pairlen] 
        return rp 
 
print(calcdenomi()) 
 
Program: sepcalp.py 

def sepcalp(k,r2p2,nums): 
    if k == 0: 
        from calp1_2 import calp1_2 
        calp1_2(nums,r2p2) 



	 98	
	

    elif k == 1: 
        from calp3 import calp3 
        calp3(nums,r2p2) 
    elif k == 2: 
        from calp4_5 import calp4_5 
        calp4_5(nums,r2p2) 
    elif k == 3: 
        from calp6 import calp6 
        calp6(nums,r2p2) 
    elif k == 4: 
        from calp7 import calp7 
        calp7(nums,r2p2) 
    elif k == 5: 
        from calp8_9 import calp8_9 
        calp8_9(nums,r2p2)  
 
Program: calp1_2.py 

# this code calculates propensities for 
# helix > a form > bases > mg > canonical 
def calp1_2(num1_2,r2p2): 
 
    def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq): 
        newseq1,newseq2 = '','' 
        with open(reffile) as ff: 
            linef = ff.readlines() 
            for i in range(0, len(linef)): 
                line = linef[i] 
                # extend the RNA chain 
                if (RNAchainID in line) and (sign == 'RNA'): 
                    Rseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                Rseq = Rseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq1 = oldseq+Rseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq1 = oldseq+Rseq.strip('\n') 
                            break 
                    return newseq1 
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                # extend the protein chain 
                elif (proteinchainID in line) and (sign == 'protein'): 
                    pseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                pseq = pseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq2 = oldseq + pseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq2 = oldseq + pseq.strip('\n') 
                            break 
                    return newseq2 
            return oldseq 
 
    def calpropensity(RNAseq,proteinseq,outputfile,apair): 
 
        aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] 
        bases = ['A','C','G','U'] 
        aminot = 
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\ 
                   'GLN','ARG','SER','THR','VAL','TRP','TYR'] 
        # R = residic[ARG] 
        with open(outputfile,'w+') as fo: 
            for i in range(0,20): 
                for j in range(0,4): 
                    # avoid dividing by zero 
                    if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0: 
                        fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n') 
                    else: 
                        numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2] 
                        denominator1 = RNAseq.count(bases[j])/r2p2[0] 
                        denominator2 = proteinseq.count(aminos[i])/r2p2[1] 
                        
fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\ 
                                      
'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(r2p2[2])+\ 
                                
'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(r2p2[0])+'\t'+',p1:'+\ 
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'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(r2p2[1])+'\n') 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    i,j = 0,0 
    count1, count2 =0,0 
 
    # helix > a form > bases > mg > canonical 
    with open(path+'Analyzing/majoradded.txt') as fi: 
        atompair,combinations,combinations2,atompair2 = [],[],[],[] 
        proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','','' 
 
        for ilines in fi.readlines(): 
            ilinelist = ilines.split('\t') 
 
            # get chain ID 
            elementlist = ilinelist[1].split('_') 
            RNAchainID = elementlist[0]+':'+elementlist[1] 
            proteinchainID = elementlist[0]+':'+elementlist[2] 
 
            # add this atom pair to list and extend the sequence 
            # 0     1        2 3  4   5 6     7    8 9 10    11   12 
            # 11420    4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major 
            if (ilinelist[8] == 'A') and (ilinelist[10] == 'bases'): 
                if ilinelist[12].strip('\n') == 'major': 
                    atompair.append(ilinelist[4]+'_'+ilinelist[2]) 
                    count1 += 1 
                    if ilinelist[1] not in combinations: 
                        combinations.append(ilinelist[1]) 
                        RNAseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta_af.txt','RNA',RNAseq) 
                        proteinseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq) 
 
                elif ilinelist[12].strip('\n') != 'major': 
                    atompair2.append(ilinelist[4]+'_'+ilinelist[2]) 
                    count2 += 1 
                    if ilinelist[1] not in combinations2: 
                        combinations2.append(ilinelist[1]) 
                        RNAseq2 = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta_af.txt','RNA',RNAseq2) 
                        proteinseq2 = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq2) 
 
        calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/1_mg.txt',atompair) 
        
calpropensity(RNAseq2,proteinseq2,path+'Analyzing/propensities/2_not_mg.txt',atompai
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r2) 
    print('1:'+str(count1)) 
    print('2:'+str(count2)) 
    num1_2.append(count1) 
    num1_2.append(count2) 
    return num1_2 
 
Program: calp3.py 

def calp3(nums,r2p2): 
 
    def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq): 
        newseq1,newseq2 = '','' 
        with open(reffile) as ff: 
            linef = ff.readlines() 
            for i in range(0, len(linef)): 
                line = linef[i] 
                # extend the RNA chain 
                if (RNAchainID in line) and (sign == 'RNA'): 
                    Rseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                Rseq = Rseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq1 = oldseq+Rseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq1 = oldseq+Rseq.strip('\n') 
                            break 
                    return newseq1 
 
                # extend the protein chain 
                elif (proteinchainID in line) and (sign == 'protein'): 
                    pseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                pseq = pseq.strip('\n') + nextline 
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                            elif nextline[0] == '>': 
                                newseq2 = oldseq + pseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq2 = oldseq + pseq.strip('\n') 
                            break 
                    return newseq2 
            return oldseq 
 
    def calpropensity(RNAseq,proteinseq,outputfile,apair): 
 
        aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] 
        bases = ['A','C','G','U'] 
        aminot = 
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\ 
                   'GLN','ARG','SER','THR','VAL','TRP','TYR'] 
        # R = residic[ARG] 
        with open(outputfile,'w+') as fo: 
            for i in range(0,20): 
                for j in range(0,4): 
                    # avoid dividing by zero 
                    if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0: 
                        fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n') 
                    else: 
                        numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2] 
                        denominator1 = RNAseq.count(bases[j])/r2p2[0] 
                        denominator2 = proteinseq.count(aminos[i])/r2p2[1] 
 
                        
fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\ 
                                      
'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\ 
                                
'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\ 
                                      
'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n') 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    i,j = 0,0 
    count = 0 
 
    with open(path+'Analyzing/majoradded.txt') as fi: 
        atompair,combinations,combinations2,atompair2 = [],[],[],[] 
        proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','','' 
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        for ilines in fi.readlines(): 
            ilinelist = ilines.split('\t') 
 
            # get chain ID 
            elementlist = ilinelist[1].split('_') 
            RNAchainID = elementlist[0]+':'+elementlist[1] 
            proteinchainID = elementlist[0]+':'+elementlist[2] 
 
            # add this atom pair to list and extend the sequence 
            # 0     1        2 3  4   5 6     7    8 9 10    11   12 
            # 11420    4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major 
            if (ilinelist[8] == 'A') and (ilinelist[10] == 'bbone'): 
                atompair.append(ilinelist[4]+'_'+ilinelist[2]) 
                count += 1 
                if ilinelist[1] not in combinations: 
                    combinations.append(ilinelist[1]) 
                    RNAseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta_af.txt','RNA',RNAseq) 
                    proteinseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq) 
 
        
calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/3_aform_bb.txt',atompai
r) 
    print('3:'+str(count)) 
    nums.append(count) 
    return nums 
 
Program: calp4_5.py 

# this code calculates propensities for 
# helix > a form > bases > mg > canonical 
def calp4_5(nums,r2p2): 
 
    def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq): 
        newseq1,newseq2 = '','' 
        with open(reffile) as ff: 
            linef = ff.readlines() 
            for i in range(0, len(linef)): 
                line = linef[i] 
                # extend the RNA chain 
                if (RNAchainID in line) and (sign == 'RNA'): 
                    Rseq = '' 
                    for j in range(1,100): 
                        try: 
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                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                Rseq = Rseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq1 = oldseq+Rseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq1 = oldseq+Rseq.strip('\n') 
                            break 
                    return newseq1 
 
                # extend the protein chain 
                elif (proteinchainID in line) and (sign == 'protein'): 
                    pseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                pseq = pseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq2 = oldseq + pseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq2 = oldseq + pseq.strip('\n') 
                            break 
                    return newseq2 
            return oldseq 
 
    def calpropensity(RNAseq,proteinseq,outputfile,apair): 
 
        aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] 
        bases = ['A','C','G','U'] 
        aminot = 
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\ 
                   'GLN','ARG','SER','THR','VAL','TRP','TYR'] 
        # R = residic[ARG] 
        with open(outputfile,'w+') as fo: 
            for i in range(0,20): 
                for j in range(0,4): 
                    # avoid dividing by zero 
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                    if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0: 
                        fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n') 
                    else: 
                        numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2] 
                        denominator1 = RNAseq.count(bases[j])/r2p2[0] 
                        denominator2 = proteinseq.count(aminos[i])/r2p2[1] 
 
                        
fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\ 
                                      
'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\ 
                                
'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\ 
                                      
'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n') 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    i,j,count4,count5 = 0,0,0,0 
 
    # helix > a form > bases > mg > canonical 
 
    with open(path+'Analyzing/majoradded.txt') as fi: 
        atompair,combinations,combinations2,atompair2 = [],[],[],[] 
        proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','','' 
 
        for ilines in fi.readlines(): 
            ilinelist = ilines.split('\t') 
 
            # get chain ID 
            elementlist = ilinelist[1].split('_') 
            RNAchainID = elementlist[0]+':'+elementlist[1] 
            proteinchainID = elementlist[0]+':'+elementlist[2] 
 
            if (ilinelist[8] != 'A') and (ilinelist[10] == 'bases'): 
                if ilinelist[12].strip('\n') == 'major' and ilinelist[7] == 'cW-W': 
                    atompair.append(ilinelist[4]+'_'+ilinelist[2]) 
                    count4 += 1 
                    if ilinelist[1] not in combinations: 
                        combinations.append(ilinelist[1]) 
                        RNAseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta_na.txt','RNA',RNAseq) 
                        proteinseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq) 
 
                elif ilinelist[12].strip('\n') == 'major' and ilinelist[7] != 'cW-W': 
                    atompair2.append(ilinelist[4]+'_'+ilinelist[2]) 
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                    count5 += 1 
                    if ilinelist[1] not in combinations2: 
                        combinations2.append(ilinelist[1]) 
                        RNAseq2 = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta_na.txt','RNA',RNAseq2) 
                        proteinseq2 = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq2) 
 
        
calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/4_mglike_cano.txt',atom
pair) 
        
calpropensity(RNAseq2,proteinseq2,path+'Analyzing/propensities/5_mglike_noncano.txt
',atompair2) 
    print('4:'+str(count4)) 
    print('5:'+str(count5)) 
    nums.append(count4) 
    nums.append(count5) 
    return nums 
 
Program: calp6.py 

# this code calculates propensities for 
# helix > a form > bases > mg > canonical 
def calp6(nums,r2p2): 
 
    def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq): 
        newseq1,newseq2 = '','' 
        with open(reffile) as ff: 
            linef = ff.readlines() 
            for i in range(0, len(linef)): 
                line = linef[i] 
                # extend the RNA chain 
                if (RNAchainID in line) and (sign == 'RNA'): 
                    Rseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                Rseq = Rseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq1 = oldseq+Rseq.strip('\n') 
                                break 
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                        except IndexError: 
                            newseq1 = oldseq+Rseq.strip('\n') 
                            break 
                    return newseq1 
 
                # extend the protein chain 
                elif (proteinchainID in line) and (sign == 'protein'): 
                    pseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                pseq = pseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq2 = oldseq + pseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq2 = oldseq + pseq.strip('\n') 
                            break 
                    return newseq2 
            return oldseq 
 
    def calpropensity(RNAseq,proteinseq,outputfile,apair): 
 
        aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] 
        bases = ['A','C','G','U'] 
        aminot = 
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\ 
                   'GLN','ARG','SER','THR','VAL','TRP','TYR'] 
        # R = residic[ARG] 
        with open(outputfile,'w+') as fo: 
            for i in range(0,20): 
                for j in range(0,4): 
                    # avoid dividing by zero 
                    if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0: 
                        fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n') 
                    else: 
                        numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2] 
                        denominator1 = RNAseq.count(bases[j])/r2p2[0] 
                        denominator2 = proteinseq.count(aminos[i])/r2p2[1] 
 
                        
fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\ 
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'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\ 
                                
'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\ 
                                      
'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n') 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    i,j,count = 0,0,0 
 
    # helix > a form > bases > mg > canonical 
 
    with open(path+'Analyzing/majoradded.txt') as fi: 
        atompair,combinations,combinations2,atompair2 = [],[],[],[] 
        proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','','' 
 
        for ilines in fi.readlines(): 
            ilinelist = ilines.split('\t') 
 
            # get chain ID 
            elementlist = ilinelist[1].split('_') 
            RNAchainID = elementlist[0]+':'+elementlist[1] 
            proteinchainID = elementlist[0]+':'+elementlist[2] 
 
            # add this atom pair to list and extend the sequence 
            # 0     1        2 3  4   5 6     7    8 9 10    11   12 
            # 11420    4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major 
            if (ilinelist[8] != 'A') and (ilinelist[10] == 'bases'): 
                if ilinelist[12].strip('\n') != 'major': 
                    atompair.append(ilinelist[4]+'_'+ilinelist[2]) 
                    count += 1 
                    if ilinelist[1] not in combinations: 
                        combinations.append(ilinelist[1]) 
                        RNAseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta_na.txt','RNA',RNAseq) 
                        proteinseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq) 
 
        
calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/6_notmglike.txt',atompai
r) 
    print('6:'+str(count)) 
    nums.append(count) 
    return nums 
 



	 109	
	

Program: calp7.py 

def calp7(nums,r2p2): 
 
    def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq): 
        newseq1,newseq2 = '','' 
        with open(reffile) as ff: 
            linef = ff.readlines() 
            for i in range(0, len(linef)): 
                line = linef[i] 
                # extend the RNA chain 
                if (RNAchainID in line) and (sign == 'RNA'): 
                    Rseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                Rseq = Rseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq1 = oldseq+Rseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq1 = oldseq+Rseq.strip('\n') 
                            break 
                    return newseq1 
 
                # extend the protein chain 
                elif (proteinchainID in line) and (sign == 'protein'): 
                    pseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                pseq = pseq.strip('\n') + nextline 
                            elif nextline[0] == '>': 
                                newseq2 = oldseq + pseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq2 = oldseq + pseq.strip('\n') 
                            break 
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                    return newseq2 
            return oldseq 
 
    def calpropensity(RNAseq,proteinseq,outputfile,apair): 
 
        aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] 
        bases = ['A','C','G','U'] 
        aminot = 
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\ 
                   'GLN','ARG','SER','THR','VAL','TRP','TYR'] 
        # R = residic[ARG] 
        with open(outputfile,'w+') as fo: 
            for i in range(0,20): 
                for j in range(0,4): 
                    # avoid dividing by zero 
                    if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0: 
                        fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n') 
                    else: 
                        numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2] 
                        denominator1 = RNAseq.count(bases[j])/r2p2[0] 
                        denominator2 = proteinseq.count(aminos[i])/r2p2[1] 
 
                        
fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\ 
                                      
'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\ 
                                
'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\ 
                                      
'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n') 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    i,j,count = 0,0,0 
 
    with open(path+'Analyzing/majoradded.txt') as fi: 
        atompair,combinations,combinations2,atompair2 = [],[],[],[] 
        proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','','' 
 
        for ilines in fi.readlines(): 
            ilinelist = ilines.split('\t') 
 
            # get chain ID 
            elementlist = ilinelist[1].split('_') 
            RNAchainID = elementlist[0]+':'+elementlist[1] 
            proteinchainID = elementlist[0]+':'+elementlist[2] 
 



	 111	
	

            # add this atom pair to list and extend the sequence 
            # 0     1        2 3  4   5 6     7    8 9 10    11   12 
            # 11420    4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major 
            if (ilinelist[8] != 'A') and (ilinelist[10] == 'bbone'): 
                atompair.append(ilinelist[4]+'_'+ilinelist[2]) 
                count += 1 
                if ilinelist[1] not in combinations: 
                    combinations.append(ilinelist[1]) 
                    RNAseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta_na.txt','RNA',RNAseq) 
                    proteinseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq) 
 
        
calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/7_no_aform_bb.txt',atom
pair) 
    print('7:'+str(count)) 
    nums.append(count) 
    return nums 
 
Program: calp8_9.py 

# this code calculates propensities for 
# helix > a form > bases > mg > canonical 
def calp8_9(nums,r2p2): 
 
    def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq): 
        newseq1,newseq2 = '','' 
        aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] 
        bases = ['A','C','G','U'] 
        with open(reffile) as ff: 
            linef = ff.readlines() 
            for i in range(0, len(linef)): 
                line = linef[i] 
                # extend the RNA chain 
                if (RNAchainID in line) and (sign == 'RNA'): 
                    Rseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                if nextline[0] in bases: 
                                    Rseq = Rseq.strip('\n') + nextline 
                            elif nextline[0] == '>' : 
                                newseq1 = oldseq+Rseq.strip('\n') 
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                                break 
 
                        except IndexError: 
                            newseq1 = oldseq+Rseq.strip('\n') 
                            break 
                        except EOFError: 
                            newseq1 = oldseq+Rseq.strip('\n') 
                            break 
 
                    return newseq1 
 
                # extend the protein chain 
                elif (proteinchainID in line) and (sign == 'protein'): 
                    pseq = '' 
                    for j in range(1,100): 
                        try: 
                            nextline = linef[i+j] 
 
                            # if not > line, add the line to 'seq' 
                            if nextline[0] != '>': 
                                if nextline[0] in aminos: 
                                    pseq = pseq.strip('\n') + nextline 
                                elif nextline is None: 
                                    newseq2 = oldseq+pseq.strip('\n') 
                                    break 
                            elif nextline[0] == '>': 
                                newseq2 = oldseq + pseq.strip('\n') 
                                break 
 
                        except IndexError: 
                            newseq2 = oldseq + pseq.strip('\n') 
                            break 
                    return newseq2 
            return oldseq 
 
    def calpropensity(RNAseq,proteinseq,outputfile,apair): 
 
        aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] 
        bases = ['A','C','G','U'] 
        aminot = 
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\ 
                   'GLN','ARG','SER','THR','VAL','TRP','TYR'] 
        # R = residic[ARG] 
        with open(outputfile,'w+') as fo: 
            for i in range(0,20): 
                for j in range(0,4): 
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                    # avoid dividing by zero 
                    if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0: 
                        fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n') 
                    else: 
                        numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2] 
                        denominator1 = RNAseq.count(bases[j])/r2p2[0] 
                        denominator2 = proteinseq.count(aminos[i])/r2p2[1] 
 
                        
fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\ 
                                      
'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\ 
                                
'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\ 
                                      
'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n') 
    path = '/Users/kimuratakayuki/Desktop/Thesis/' 
    i,j = 0,0 
    count8,count9 = 0,0 
    # helix > a form > bases > mg > canonical 
 
    with open(path+'Analyzing/nothelix2.txt') as fi: 
        atompair,combinations,combinations2,atompair2 = [],[],[],[] 
        proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','','' 
 
        for ilines in fi.readlines(): 
            ilinelist = ilines.split('\t') 
 
            # get chain ID 
            elementlist = ilinelist[1].split('_') 
            RNAchainID = elementlist[0]+':'+elementlist[1] 
            proteinchainID = elementlist[0]+':'+elementlist[2] 
 
            # add this atom pair to list and extend the sequence 
            if ilinelist[6] == 'bases': 
                atompair.append(ilinelist[4]+'_'+ilinelist[2])  # ARG_G 
                count8 += 1 
                if ilinelist[1] not in combinations: 
                    combinations.append(ilinelist[1]) 
                    RNAseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta_nh.txt','RNA',RNAseq) 
                    proteinseq = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq) 
 
            elif ilinelist[6] == 'bbone': 
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                atompair2.append(ilinelist[4]+'_'+ilinelist[2]) 
                count9 += 1 
                if ilinelist[1] not in combinations2: 
                    combinations2.append(ilinelist[1]) 
                    RNAseq2 = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta_nh.txt','RNA',RNAseq2) 
                    proteinseq2 = 
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq2) 
 
        
calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/8_nothelix_bases.txt',ato
mpair) 
        
calpropensity(RNAseq2,proteinseq2,path+'Analyzing/propensities/9_nothelix_bb.txt',ato
mpair2) 
    print('8:'+str(count8)) 
    print('9:'+str(count9)) 
    nums.append(count8) 
    nums.append(count9) 
    return nums 
 
Program: potenti.py 
 
def potenti(): 
    import os,math 
 
    path = '/Users/kimuratakayuki/Desktop/Thesis/Analyzing/' 
    i = 1 
    RT = 0.59 
    pot = 0 
 
    for filename in os.listdir(path+'propensities/'): 
        if str(i)+'_' in filename: 
            i += 1 
            with open(path+'0/'+filename,'w+') as fo: 
                with open(path+'propensities/'+filename) as fp: 
                    for plines in fp.readlines(): 
                        plist = plines.split('\t') 
                        pro = float(plist[1]) 
                        if pro != 0: 
                            pot = RT*math.log(pro) 
                        elif pro == 0: 
                            pro = 0.001 
                            pot = RT*math.log(pro) 
 
                        fo.writelines(plist[0]+'\t'+str(pot)+'\n') 
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Program: correct.py 

def correct(rnafile,rchain,protfile,pchain,compfile,cchain1,cchain2): 
    # this code delete unnecessary lines and change chain names 
    # ex.)   rnafile  :  1ABC.pdb , rchain : a 
    #        protfile :  2ADE.pdb , pchain : c 
    #        compfile :  3EDF.pdb , cchain1: b, cchain2:t 
 
    import os 
    path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/structures/' 
 
    # ATOM   2084  C   MET P   1       3.661   7.340  -5.524  1.00 12.96              M 13 
    # ATOM   2085  O   MET P   1       3.663   6.397  -6.323  1.00 13.08              M 13 
 
    # modify RNA file 
    with open(path+rnafile[0:4]+'_r.pdb','w+') as rfo: 
        with open(path+rnafile) as rf: 
            start = 0 
            for lines in rf.readlines(): 
                if lines[21].upper() in rchain.upper(): 
                    if lines[17:19] == '  ' and lines[0:4]=='ATOM': 
                        rfo.writelines(lines[:21]+'R'+lines[22:]) 
                        start = 1 
                    elif start == 1 and 'TER' in lines[0:3]: 
                        break 
 
    # modify protein file 
    with open(path+protfile[0:4]+'_p.pdb','w+') as pfo: 
        with open(path+protfile) as pf: 
            start = 0 
            for lines in pf.readlines(): 
                if lines[21].upper() == pchain.upper() and lines[17:19] != '  ' and 
lines[0:4]=='ATOM': 
                    # if int(lines[22:26]) > 800: 
                    #     lines = lines[0:22]+str(int(lines[22:26])-800).rjust(4)+lines[26:] 
                    pfo.writelines(lines[:21]+'P'+lines[22:]) 
                    start = 1 
                elif start == 1 and lines[0:3] == 'TER': 
                    break 
 
    # modify comp file 
    with open(path+compfile[0:4]+'_p_r.pdb','w+') as cfo: 
        with open(path+compfile) as cf: 
            tercount,rnaend,protend,rnastart,protstart = 0,0,0,0,0 
            for lines in cf.readlines(): 
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                if lines[21].upper() == cchain1.upper() and lines[17:19] != '  ' and 
lines[0:4]=='ATOM' and rnaend == 0: 
                    # if int(lines[22:26]) > 800: 
                    #     lines = lines[0:22]+str(int(lines[22:26])-800).rjust(4)+lines[26:] 
                    cfo.writelines(lines[:21]+'P'+lines[22:]) 
                    rnastart = 1 
                elif rnastart == 1 and lines[0:3] == 'TER': 
                    rnaend = 1 
                    tercount += 1 
                    continue 
 
                elif lines[21].upper() == cchain2.upper() and lines[17:19] == '  ' and 
lines[0:4]=='ATOM' and protend == 0: 
                    cfo.writelines(lines[:21]+'R'+lines[22:]) 
                    protstart = 1 
                elif protstart == 1 and lines[0:3] == 'TER': 
                    tercount += 1 
                    protend = 1 
                    continue 
 
Program: assign3D.py 

# this code prepare 'master.txt' that has 
# 3D structure info of RNA  (< DSSR.out, ligand.pdb) 
def assign3D(rnafile): 
    print('****  ASSIGN3D STARTED  ****') 
    path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/' 
    bbone = ["OP2","OP1","O5'","O4'","O3'","O2'"] 
    bases = ['N1','O2','N3','O4','N6','N7','N9','N2','O6'] 
    Cmajor,Gmajor,Umajor,Amajor,WUmajor,wobblepair  = 
['N4'],['N7','O6',],['O4'],['N6','N7'],['O4','N3'],['GU','UG'] 
    canonical = 0 
    stepline = '' 
    with open(path+'master.txt','w+') as fo: 
        with open(path+'structures/'+rnafile) as fr: 
            for rlines in fr.readlines(): 
                atomid = rlines[11:17].replace(' ','') 
                baseID2 = (rlines[19]+rlines[22:26]).replace(' ','') #G140 
                baseID = baseID2[:1]  # G 
                findstart,readstart,category,helix,wobble,rownum,pairlinestart = 0,0,0,0,0,0,0 
                with open(path+'DSSR.out') as fi: 
                    # check whether the atom of the line is in helix 
                    for lines in fi.readlines(): 
                        if findstart*readstart == 1: 
                            if lines == '\n': 
                                findstart,readstart = 0,0 
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                            elif lines !='\n': 
                                row = lines.split() 
                                if len(row) >= 5: 
                                    base1 = row[1].split('.') # G139 
                                    base2 = row[2].split('.') # C123 
                                    if baseID2 == base1[1] or baseID2 == base2[1]: 
                                        helix = 1 
                                        canonical = lines[66:71] 
                                        rownum = str(lines[0:4]).replace(' ','') 
                                        if base1[1]+base2[1] in wobblepair: 
                                            wobble = 1 
                        elif findstart == 1 and lines[6:11] == 'helix': 
                            readstart = 1 
                            stepline = lines 
                        elif lines[2:7] == 'helix': 
                            findstart = 1 
 
                if helix == 0: 
                    if atomid in bases: 
                        category = 8 
                    elif atomid in bbone: 
                        category = 9 
                elif helix == 1: 
                    try: 
                        formtype = stepline[int(rownum)+17] 
                    except IndexError: 
                        formtype = ' ' 
                    if formtype == 'A': 
                        if atomid not in bases: 
                            category = 3 
 
                        elif atomid in bases: 
                            if baseID == 'G' and atomid in Gmajor: 
                                category = 1 
                            elif baseID == 'C' and atomid in Cmajor: 
                                category = 1 
                            elif baseID == 'A' and atomid in Amajor: 
                                category = 1 
                            elif baseID == 'U': 
                                if atomid in Umajor and wobble == 0: 
                                    category = 1 
                                elif atomid in WUmajor and wobble == 1: 
                                    category = 1 
                                else: 
                                    category = 2 
                            else: 
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                                category = 2 
 
                    elif formtype != 'A': 
                        if atomid not in bases: 
                            category = 7 
 
                        elif atomid in bases: 
                            if (baseID == 'G' and atomid in Gmajor) or \ 
                               (baseID == 'C' and atomid in Cmajor)or \ 
                               (baseID == 'A' and atomid in Amajor): 
                                if 'cW-W' in canonical: 
                                    category = 4 
                                else: 
                                    category = 5 
                            elif baseID == 'U': 
                                if (atomid in Umajor and wobble == 0) or \ 
                                   (atomid in WUmajor and wobble == 1): 
                                    if 'cW-W' in canonical: 
                                        category = 4 
                                    else: 
                                        category = 5 
                                else: 
                                    category = 6 
                            else: 
                                category = 6 
                fo.writelines(rlines[0:27]+str(category)+'\n') 
    print('****  ASSIGN3D COMPLETED  ****') 
 
    # For each atom in the RNA(****.pdb), assign 1-9 categories 
    # 0. assign baseID like 'G12' 
    # 1. helix or not helix 
    # 2. 1 -> if not helix, bases(8) or backbones(9) 
    # 3. 1 -> if helix, A-form or not 
    # 4. 3 -> if A-form, bases or backbone(3) 
    # 5. 4 -> if bases, major groove(1) or not(2) 
    # 6. 3 -> if not A-form, bases or backbone(7) 
    # 7. 6 -> if bases, mglike or not mglike(6) 
    # 8. 7 -> if mglike, canonical bp(4) or non canonical(5) 
 
Program: RMSD.py 

# this code calculates RMSD of each poses using pymol command 'align' 
##  THIS CODE HAS TO BE RUN BY TYPING 'pymol RMSD.py' from terminal 
## move to the directory you have RMSD.py (this file), then type 
## ****  pymol -cqr RMSD.py >> ../../FTDock/RMSD.out  *** 
#  *  change the chain ID before running this file 
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import __main__ 
__main__.pymol_argv = ['pymol', '-qc'] 
import pymol 
import os 
 
pymol.finish_launching() 
 
resultlist = [] 
path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/' 
 
# get complexname from a txt file 
with open('/Users/kimuratakayuki/Desktop/Thesis/FTDock/threefiles.txt') as fi: 
    fline = fi.readline() 
    flist = fline.split('\t') 
    complex = flist[2] 
 
complexfile = path+'structures/'+complex 
 
for filename in 
os.listdir('/Users/kimuratakayuki/Desktop/Thesis/python/8.apply_potentials/'): 
    if '.D' not in filename and 'Comp' in filename: 
        posefile = 
'/Users/kimuratakayuki/Desktop/Thesis/python/8.apply_potentials/'+filename 
        pymol.cmd.do('load %s , pose' % posefile) 
        pymol.cmd.do('load %s , complex' % complexfile) 
 
        # align peptides 
        pymol.cmd.do('align pose and name CA and chain P, complex and name CA and 
chain P') 
        pymol.cmd.do('select ou, /complex//R//') 
        pymol.cmd.do('select co, /pose//R//') 
        pymol.cmd.do('rms_cur ou,co') 
        pymol.cmd.do('delete %s' % (posefile)) 
        pymol.cmd.do('delete %s'% (complexfile)) 
        pymol.cmd.do('delete complex') 
        pymol.cmd.do('delete pose') 
        pymol.cmd.do('delete ou') 
        pymol.cmd.do('delete co') 
 
Program: RMSD2.py 

def RMSD2(xpath,cname): 
    path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/' 
    with open(xpath+'rmsd/'+cname+'/RMSD2.out','w+') as fo: 
        infile = open(path+'RMSD.out','r') 
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        for line in infile: 
            if ', pose' in line: 
                flist = line.split('/') 
                last = flist[-1] 
                filenm = last.replace(' , pose','') 
                filenm = filenm.replace('\n','') 
            elif 'rms_cur' in line: 
                nexline = next(infile) 
                if 'r:Noato' in nexline[17:26].replace(' ','') : 
                    continue 
                rms = nexline[17:26].replace(' ','') 
                fo.writelines(filenm.replace('\n','')+'\t'+str(rms)+'\n') 
 
    print('****  RMSD2 COMPLETED  ****') 
 
Program: calpot_multi.py 

    # this code apply potentials to each pose 
    # potential files + master.txt + pose files -> scores.txt 
    # the output file would be like below 
    # 1.pose filename  2.score  3.RMSD 
 
def calpot(xpath,potcategory,rangenum,out_q,potmode,Cname):   # category 0-10, 10 is 
overall, 0 is full set 
    path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/' 
    path2 = '/Users/kimuratakayuki/Desktop/Thesis/Analyzing/' 
    # xpath = '/Volumes/Transcend/' or '/Users/kimuratakayuki/Desktop/PRat_asa/stored/' 
    # xpath + 'hbonds/'+Cname+'/' or 'rmsd/' + Cname+'/' 
    import os, shutil 
    group,pre1,pre2,state = '','','','' 
    cate = [0,0,0,0,0,0,0,0,0] 
    import math 
    with open(path+str(rangenum[0])+'scores.txt','w+') as fo: 
        for filename in os.listdir(xpath + 'hbonds/'+Cname+'/'): 
            if 'Complex' in filename: 
                filenum = int(filename.replace('Complex_','').replace('g.pdb.hb','')) 
                if filenum in range(rangenum[0],rangenum[1]+1): 
                    scoresum,combscore = 0,0 
                    cate_native = [0,0,0,0,0,0,0,0,0] 
                    rmsd = 0 
 
                    with open(xpath + 'hbonds/'+Cname+'/'+filename) as fc: 
                        for lines in fc.readlines(): 
                            if lines[0] != ' ': 
                                continue 
                            # pick the contact between RNA-protein 
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                            pre_ele1,pre_ele2 = '','' 
 
                            # 51    78  #50    p    3.106 O/N O@P.ALA384 N@P.GLN388 
                            linelist = lines.split() 
                            # 0      pre_elelist          '''            14            15 
                            # " 51    78  #50    p    3","106","O/N","O@P.ALA384", 
"N@P.GLN388" 
                            atomID1 = linelist[0] 
                            atomID2 = linelist[1] 
                            atomnafl1 = linelist[6].split('.') 
                            atomnafl2 = linelist[7].split('.') 
                            atomna1 = atomnafl1[1] 
                            atomna2 = atomnafl2[1] 
                            distance = linelist[4] 
 
                            # pre_ele1 : G1  pre_ele2 : THR 
                            # remove numbers from 'G13' 
                            for i in range(0,10): 
                                atomna1=atomna1.replace(str(i),'') 
                                atomna2=atomna2.replace(str(i),'') 
 
                            if len(atomna1)+len(atomna2) == 4: 
                                if len(atomna1) == 1: 
                                    atomna1,atomna2 = atomna2,atomna1 
                                    atomID = atomID1 
                                else: 
                                    atomID = atomID2 
                                pairtype = atomna1+'_'+atomna2 
                                # get category# using atomID and baseID 
                                # ATOM    198  P       U A   7 0 
                                category = 0 
                                with open(path+'master.txt') as fm: 
                                    for mlines in fm.readlines(): 
                                        matomIDlist = mlines.split() 
                                        matomID = matomIDlist[1] 
                                        if matomID == atomID: 
                                            category = mlines[27] 
                                            if category != 0: 
                                                cate[int(category)-1] += 1 
                                                cate_native[int(category)-1] += 1 
 
                                if potmode == 'ba': 
                                    if int(category) in [3,7,9]: 
                                        continue 
 
                                elif potmode == 'bb': 
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                                    if int(category) in [1,2,4,5,6,8]: 
                                        continue 
 
                                # for filename2 in os.listdir(path2+str(potcategory)): 
                                for filename2 in os.listdir(path2+'0'): 
                                    if potcategory == 0 or potcategory == 98:  # full set 
                                        if (str(category)+'_') in filename2: 
                                            with open(path2+'0/'+filename2) as fp: 
                                                for plines in fp.readlines(): 
                                                    # ASP_A    0.3593608045735999 
                                                    plist = plines.split('\t') 
                                                    if plist[0] == pairtype: 
                                                        scoresum += float(plist[1]) 
                                                        # scoresum += (8103*math.exp(-
2.46*float(distance))/40)*float(plist[1]) 
                                    elif potcategory == 11:  # propensity 
                                        if (str(category)+'_') in filename2: 
                                            with open(path2+'11/'+filename2) as fp: 
                                                for plines in fp.readlines(): 
                                                    # ASP_A    0.3593608045735999 
                                                    plist = plines.split('\t') 
                                                    if plist[0] == pairtype: 
                                                        scoresum += float(plist[1]) 
                                    elif potcategory == 10:  # overall 
                                        with open(path2+'10/overall.txt') as fp: 
                                            for plines in fp.readlines(): 
                                                # ASP_A    0.3593608045735999 
                                                plist = plines.split('\t') 
                                                if plist[0] == pairtype: 
                                                    scoresum += float(plist[1]) 
                                    elif potcategory == 99:  # overall 
                                        with open(path2+'99/overall.txt') as fp: 
                                            for plines in fp.readlines(): 
                                                # ASP_A    0.3593608045735999 
                                                plist = plines.split('\t') 
                                                if plist[0] == pairtype: 
                                                    scoresum += float(plist[1]) 
                                    elif potcategory == 13:  # propensity 
                                        with open(path2+'13/amos.txt') as fp: 
                                            for plines in fp.readlines(): 
                                                # ASP_A    0.3593608045735999 
                                                plist = plines.split() 
                                                if plist[0] == pairtype: 
                                                    scoresum += float(plist[1]) 
                                    elif potcategory != 0 and potcategory != 11:  # one set only 
                                        with open(path2+str(potcategory)+'/pot.txt') as fp: 
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                                            for plines in fp.readlines(): 
                                                # ASP_A    0.3593608045735999 
                                                plist = plines.split('\t') 
                                                if plist[0] == pairtype: 
                                                    scoresum += float(plist[1]) 
 
                        # calculate rank in ftdock scoring 
                        with open(path+'structures/ftdock_rpscored.dat') as rpf: 
                            for lines in rpf.readlines(): 
                                if 'G_DATA' in lines: 
                                    list1 = lines.split() 
                                    if filename.replace('g.pdb.hb','').replace('Complex_','') == list1[1]: 
                                        combscore = float(list1[4])*(-1) + scoresum 
 
                        # get RMSD 
                        # Complex_1006g.pdb.rstd   13.7907018661  1460 
                        with open(xpath + 'rmsd/'+Cname+'/RMSD2.out') as fr: 
                            for rlines in fr.readlines(): 
                                if filename.strip('.hb') in rlines: 
                                    rlist = rlines.split('\t') 
 
                                    rmsd = rlist[1] 
                                    if float(rmsd) < 10: 
                                        group = 'Native' 
                                        print(rlines) 
                                    else: 
                                        group = 'Non_native' 
 
                    
fo.writelines(filename+'\t'+str(scoresum)+'\t'+str(rmsd).replace('\n','')+'\t'+group+'\t'+str(c
ombscore)+'\t'+\ 
                                  
str(cate_native[0])+'\t'+str(cate_native[1])+'\t'+str(cate_native[2])+'\t'+str(cate_native[3])
+\ 
                                  
'\t'+str(cate_native[4])+'\t'+str(cate_native[5])+'\t'+str(cate_native[6])+'\t'+str(cate_native[
7])+\ 
                                  '\t'+str(cate_native[8])+'\n') 
 
    # make a list of native like poses and scores 
    with open(path+str(rangenum[0])+'arrows.txt','w+') as fo2: 
        with open(path+str(rangenum[0])+'scores.txt') as scof: 
            for lines in scof.readlines(): 
                scolist = lines.split('\t') 
                if scolist[3] == 'Native': 
                    fo2.writelines(scolist[0]+'\t'+scolist[1]+'\t'+scolist[2]+'\t'+scolist[4]+'\n') 
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    result =  str(cate[0])+' '+str(cate[1])+' '+str(cate[2])+' '+str(cate[3])+' '+str(cate[4])+' 
'+str(cate[5])+' '+\ 
    str(cate[6])+' '+str(cate[7])+' '+str(cate[8]) 
    out_q.put(result) 
 
Program: nativerank.py 

# this code makes nativerank.txt that has the best rank and 
# the number of native like structures 
# and then make result***.txt which is like a log 
 
def nativerank(gridsize,compname,posemax,potentials,resolim,potmode): 
    print('****  NATIVERANK STARTED  ****') 
    import shutil 
    path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/' 
    comfile = open('/Users/kimuratakayuki/Desktop/Thesis/FTDock/bbrestore.txt','r') 
    comlist = comfile.readline().split('\t') 
    bbrestore = comlist[1] 
    combrank = 0 
    rank = 0 
    state='' 
 
    if bbrestore == '1': 
        state = 'Rm' 
    elif bbrestore == '0': 
        state = 'Rf' 
 
    with open(path+'nativeranks.txt','w+') as fo: 
        with open(path+'arrows.txt') as fa: 
            for lines in fa.readlines(): 
                if lines != '\n': 
                    nlist = lines.split('\t') 
                    score = nlist[1].replace(' ','') 
                    combscore = nlist[3] 
                    combcount = 0 
 
                    # get the rank for each line in arrows.txt 
                    with 
open(path+'results/scores/'+compname.strip('.pdb')+'_'+potmode+'_'+str(gridsize)+'_'+str(
posemax)+'_3_'+str(potentials)+'_asa_0_'+str(resolim)+'.txt') as fr: 
                        count = 0 
                        for rlines in fr.readlines(): 
                            if rlines != '\n': 
                                rlist = rlines.split('\t') 
                                try: 
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                                    if float(score) < float(rlist[1]): 
                                        count += 1 
                                    if float(combscore) < float(rlist[4]): 
                                        combcount += 1 
 
                                except ValueError: 
                                    print('VALU ERROR  '+rlines) 
 
                        rank = count + 1 
                        combrank = combcount + 1 
                if combrank == 0: 
                    combrank = posemax 
                fo.writelines(lines.replace('\n','')+'\t'+str(rank)+'\t'+str(combrank)+'\n') 
 
        # calculate the best rank in FTDock scoring from RMSD2.out 
        with open(path+'RMSD2.out') as rmf: 
            bestposeid = 50373 
            for lines in rmf.readlines(): 
                linlist = lines.split('\t') 
                if float(linlist[1]) < 10.0: 
                    list2 = linlist[0].split('_') 
                    list3 = list2[1].split('g.') 
                    poseid = float(list3[0]) 
                    if poseid < bestposeid: 
                        bestposeid = poseid 
            fo.writelines('Best FTrank is : Complex_'+str(bestposeid)+'g.pdb and rank is 
'+str(bestposeid)) 
 
    bestrank = 50373 
    combbestrank = 50373 
    # read the output and get the best ranking 
    with open(path+'nativeranks.txt') as rankf: 
        i = 0 
        for ranline in rankf.readlines(): 
            if 'Best ' in ranline: 
                continue 
            i += 1 
            ranlist = ranline.split('\t') 
            if int(ranlist[4]) < int(bestrank): 
                bestrank = ranlist[4] 
            if int(ranlist[5]) < int(combbestrank): 
                combbestrank = ranlist[5] 
 
        a1 = 'Best rank '+str(bestrank) + ' , number of native like '+str(i) 
        a2 = 'FTDock best rank '+str(bestposeid)+', combined scoring rank best '+ 
str(combrank) 
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        nativemess = [a1, a2] 
 
        # save native ranks with complex name in its filename 
        
shutil.copy2(path+'nativeranks.txt',path+'results/natives/result_'+compname+'_'+state+'_'
+str(gridsize)\ 
                     +'_'+str(posemax)+'_'+str(potentials)+'.txt') 
 
        print('****  NATIVERANK COMPLETED  ****') 
        return nativemess 
 
Appendix F Main Python Scripts for Unpublished Results  

Program: addPR_cate.py 

def addPR_cate(patom, ratom): 
 
    catelist = [[(1+i+17*j) for i in range(17)] for j in range(15)]  # column:protein, 
row:RNA 
    patomlist = ["OH", "OG1", "OG", "OE2", "OE1", "OD2", "OD1", "O", "NZ", "NH2", 
"NH1", "NE2", "NE1", "NE", "ND2", "ND1","N"] 
    ratomlist = ["OP2", "OP1", "O6", "O5'", "O4'", "O4", "O3'", "O2'", "O2", "N7", "N6", 
"N4", "N3", "N2","N1"] 
    #                                        5                                10                              15 
    try: 
        pindex = patomlist.index(patom) 
    except ValueError: 
        return '' 
    try: 
        rindex = ratomlist.index(ratom) 
    except ValueError: 
        return '' 
    return catelist[rindex][pindex] 

 

Program:  pfasta.py 

def pfasta(path): # path = /--/PRat_asa/FTDock/ 
    import os 
    aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y'] 
    aminot = 
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\ 
                   'GLN','ARG','SER','THR','VAL','TRP','TYR'] 
 
    with open(path+'pfasta.txt','w') as fo2: 
        print('') 
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    with open(path+'pfasta.txt','a') as fo: 
        # pdb1j5e.ent.strideout 
        # 5aor.pdb.strideout 
        # 4v42-pdb-bundle.tar.strideout 
        # ASG  THR A  134  122    E        Strand   -130.85    151.94      26.5      1A34 
        # ASG  VAL A  135  123    E        Strand   -118.42    173.67      58.5      1A34 
        for files in os.listdir(path+'structures/stride_out/'): 
            if '.pdb.strideout' in files or '.ent.strideout' in files: 
                with open(path + 'structures/stride_out/'+files) as fi: 
                    pdb = files[0:4] 
                    if files[0:3] == 'pdb': 
                        pdb = files[3:7] 
                    chainlist = [] 
                    for lines in fi.readlines(): 
                        # 0. AlphaHelix 
                        # 1. 310Helix 
                        # 2. Pi-helix 
                        # 3. Strand 
                        # 4. Bridge 
                        # 5. Turn 
                        # 6. Coil or else 
 
                        # ASG  VAL P    2    2    C          Coil    -75.53    134.66      13.9      ~~~~ 
                        # ASG  VAL P    3    3    E        Strand   -133.52    116.40      11.0      ~~~~ 
                        try: 
                            if lines[0:3] == 'ASG': 
                                chain = lines[9] 
                                if chain not in chainlist: 
                                    chainlist.append(chain) 
                                    fo.writelines(pdb.upper()+':'+chain+'\n') 
                                if 'AlphaHelix' in lines.split()[6]: 
                                    
fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'0'+'\t'+lines.split()[3]+'\t'+'\n') 
                                elif '310Helix' in lines.split()[6]: 
                                    
fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'1'+'\t'+lines.split()[3]+'\t'+'\n') 
                                elif 'PiHelix' in lines.split()[6]: 
                                    
fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'2'+'\t'+lines.split()[3]+'\t'+'\n') 
                                elif 'Strand' in lines.split()[6]: 
                                    
fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'3'+'\t'+lines.split()[3]+'\t'+'\n') 
                                elif 'Turn' in lines.split()[6]: 
                                    
fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'4'+'\t'+lines.split()[3]+'\t'+'\n') 
                                elif 'Bridge' in lines.split()[6]: 
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fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'5'+'\t'+lines.split()[3]+'\t'+'\n') 
                                else: # including Coil 
                                    
fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'6'+'\t'+lines.split()[3]+'\t'+'\n') 
                        except ValueError: 
                            continue 
 
    for files in os.listdir(path.replace('/FTDock/','')+'/Clustering/mmCIF/'): 
        if files[4:8] == '.cif' and len(files) == 8:   # files = '1a1t.cif' 
            with open(path.replace('/FTDock/','')+'/pfasts/'+files[0:4].upper()+'.pfasta','w') as 
fos: 
                with open(path+'pfasta.txt') as fis: 
                    start = 0 
                    for lines in fis.readlines(): 
                        # 1A34:A 
                        # T    A  3  13 
                        # G    A  3  14 
                        if start == 0: 
                            if files[0:4].upper() in lines: 
                                start = 1 
                                fos.writelines(lines) 
                        elif start == 1: 
                            if ':' in lines: 
                                if files[0:4].upper() not in lines: 
                                    break 
                                else: 
                                    fos.writelines(lines) 
                            else: 
                                fos.writelines(lines) 
pfasta('/Users/kimuratakayuki/Desktop/PRat77/FTDock/') 
 
Program:  parseDSSR.py 

def parseDSSR(): # this code generates rfasta.txt ******  MANUALLY RUN !!! 
 
    def parseDS(dssrfile,ciffile,path): 
        def sec_check(file,resi,type):  # resi -> Q.G344 
            try: 
                with open(file) as f: 
                    start,found = 0,0 
                    for lines in f.readlines(): 
                        if start == 0: 
                            if 'List' in lines and type in lines: 
                                start = 1 
                        elif start == 1: 
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                            if '******' in lines: 
                                break 
                            elif resi in lines: 
                                if resi+',' in lines: 
                                    found = 1 
                                    break 
                                elif lines.split()[2].split(',')[-1] == resi: 
                                    found = 1 
                                    break 
                return found 
            except FileNotFoundError: 
                pass 
 
        with open(path+'rfasta.txt','a') as fo: 
            with open(ciffile) as fr:  # make resilist in the cif file 
                resilist,chlist = [],[] 
                for rlines in fr.readlines(): 
                    # ATOM 486   H H6     . C   A 1 15 ? 15.751  0.322   -6.067  1.00 0.00 ? ? ? 
? ? ? 18 C   A H6     1 
                    # ATOM 487   N N      . ASN B 2 1  ? 10.545  2.262   5.673   1.00 0.00 ? ? ? 
? ? ? 1  ASN B N      1 
                    # ATOM 488   C CA     . ASN B 2 1 
                    if rlines[0:4] == 'ATOM' and len(rlines.split()[5]) == 1: 
                        resi = rlines.split()[23]+'.'+rlines.split()[5]+rlines.split()[21] # S.U608 
                        if resi not in resilist and len(rlines.split()[23]) == 1: 
                            resilist.append(resi) 
 
            for resi in resilist: # classify the residues of the resilist 
                category = '' 
                if resi[0] not in chlist: 
                    chlist.append(resi[0]) 
                    fo.writelines(dssrfile[-12:][0:4].upper()+':'+resi[0].upper()+'\n') 
 
                # classify except helices : type -> 'hairpin loops','bulges','internal 
loops','junctions', 
                # 
                # 0 Single Stranded        'single-stranded' 
                # 1 Hairpin Loop           'hairpin loops' 
                # 2 Bulge or Internal Loop 'bulges','internal loops' 
                # 3 Junction               'junctions' 
                # 4 Helix A-form 
                # 5 Other Helix 
                # 6 Other 
 
                # assign category 0-3   *** priority *** 
                if sec_check(dssrfile,resi,'single-stranded') == 1:   # S.U608 
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                    category = 3 
                    
fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n') 
                    continue 
                elif sec_check(dssrfile,resi,'hairpin loop') == 1: 
                    category = 4 
                    
fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n') 
                    continue 
                elif sec_check(dssrfile,resi,'junction') == 1: 
                    category = 5 
                    
fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n') 
                    continue 
 
                try: 
                    with open(dssrfile) as fi: 
                        found,start,any = 0,0,0 
                        for lines in fi.readlines(): 
                            if start == 0: 
                                if lines[0:8] == '  helix#': 
                                    start,any = 1,1 
                                    signlist = [] 
                            elif start == 1: 
                                if 'helix-form' in lines: 
                                    signlist = lines[18:] 
                                elif lines[2:4] == '--': 
                                    start = 0 
                                elif '********' in lines: 
                                    break 
                                elif resi in lines: 
                                    found = 1 
                                    if signlist[int(lines.split()[0])-1] == 'A': 
                                        category = 0 
                                        
fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n') 
                                        break 
                                    elif signlist[int(lines.split()[0])-1] == 'x': 
                                        category = 1 
                                        
fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n') 
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                                        break 
                                    elif signlist[int(lines.split()[0])-1] == '.': 
                                        category = 2 
                                        
fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n') 
                                        break 
                except FileNotFoundError: 
                    pass 
 
                if category == 0 or category == 1 or category == 2: 
                    continue 
                else: 
                    category = 6 
                    
fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n') 
                    continue 
 
    import os 
    path0 = os.getcwd() 
    path0 = path0.replace('/python/8.apply_potentials','')+'/' # path0 = /Users/---/PRat_asa/ 
    path = path0+'FTDock/'    # path = /--/PRat_asa/FTDock/ 
    with open(path0+'rfasta.txt','w'):  # renew rfasta.txt 
        pass 
    for files in os.listdir(path0+'Clustering/mmCIF/'): 
        if files[4:8] == '.cif' and len(files) == 8:   # only cif files not '1a1t.cif.out' 
            
parseDS(path0+'Analyzing/DSSRout/'+files[0:4]+'.cif.out',path0+'Clustering/mmCIF/'+fi
les[0:4]+'.cif',path0) 
 
    for files in os.listdir(path0+'Clustering/mmCIF/'): 
        if files[4:8] == '.cif' and len(files) == 8:   # files = '1a1t.cif' 
            with 
open(path.replace('/FTDock/','')+'/DSSRparsed/'+files[0:4].upper()+'.rfasta','w') as fos: 
                with open(path0+'rfasta.txt') as fis: 
                    start = 0 
                    for lines in fis.readlines(): 
                        if start == 0: 
                            if files[0:4].upper() in lines: 
                                start = 1 
                                fos.writelines(lines) 
                        elif start == 1: 
                            if ':' in lines: 
                                if files[0:4].upper() not in lines: 
                                    break 
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                                else: 
                                    fos.writelines(lines) 
                            else: 
                                fos.writelines(lines) 
 
    print('**** DSSRparse complete ****') 
parseDSSR() 
 
Appendix G Shell Script 

Program: DSSR.sh 

#!/bin/bash 
echo "****  DSSR STARTED  ****" 
ifiles=/Users/kimuratakayuki/Desktop/Thesis/FTDock/structures/$1 
outputdir=/Users/kimuratakayuki/Desktop/Thesis/FTDock/ 
 
for file in $ifiles;do 
/usr/local/bin/x3dna-dssr --input=$file --output=$outputdir/DSSR.out &>dssr.log 
done 
 
echo "****  DSSR COMPLETED  ****" 
 
Program: FTDock.sh 

#!/bin/bash 
path="/Users/kimuratakayuki/Desktop/Thesis/FTDock/structures/" 
path1="/Users/kimuratakayuki/Desktop/Thesis/FTDock/" 
path2="/Users/kimuratakayuki/Desktop/Beforeprelim/ftdock-2-dev/scripts-2.0.3/" 
 
mfile=$path$1 # $1:protein like 1QUX_p.pdb 
rfile=$path$2 # $2:rna 
 
/opt/local/bin/perl $path1'preprocess-pdb.perl' -pdb $mfile shell=TRUE > prepro1.log 
/opt/local/bin/perl $path1'preprocess-pdb.perl' -pdb $rfile shell=TURE > prepro2.log 
 
alt=".parsed" 
mf=${mfile%.pdb}$alt 
rf=${rfile%.pdb}$alt 
 
echo " ****  FTDOCK STARTED  **** " 
# according to bbrestore($3), switch mobile and fixed 
if [ "$3" -eq "1" ]; then 
    mpirun -v -np 8 ftdock_mpi -mobile $rf -static $mf -calculate_grid $4 -dlim_static $9 -
dlim_mobile $9 -out $path'ftdock_global.dat' -surface $7 $8 -noelec > ftdock.log 
elif [ "$3" -eq "0" ]; then 
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    mpirun -v -np 8 ftdock_mpi -mobile $mf -static $rf -calculate_grid $4 -dlim_static $9 -
dlim_mobile $9 -out $path'ftdock_global.dat' -surface $7 $8 -noelec > ftdock.log 
fi 
echo " ****  FTDOCK COMPLETED  **** " 
 
echo " ****  RPSCORE STARTED  **** " 
if [ "$6" -eq "1" ]; then  # default matrix 
    /usr/local/bin/rpscore -in $path'ftdock_global.dat' -out $path'ftdock_rpscored.dat' -
matrix $path'best.matrix' > rpscore.log 
elif [ "$3" -eq "0" ]; then   #  all 1 matrix 
    /usr/local/bin/rpscore -in $path'ftdock_global.dat' -out $path'ftdock_rpscored.dat' -
matrix $path'allone.matrix' > rpscore.log 
fi 
 
echo " ****  RPSCORE COMPLETED  **** " 
echo " ****  BUILD STARTED  **** " 
cd /Users/kimuratakayuki/Desktop/Thesis/python/8.apply_potentials/restored 
/usr/local/bin/build -b2 $5 -in $path'ftdock_rpscored.dat' > build.log 
 
echo " ****  BUILD COMPLETED  **** " 
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