
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2016

RNA-Protein Structure Classifiers Incorporated
into Second-Generation Statistical Potentials
Takayuki Kimura
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Kimura, Takayuki, "RNA-Protein Structure Classifiers Incorporated into Second-Generation Statistical Potentials" (2016). Master's
Theses. 4760.
DOI: https://doi.org/10.31979/etd.ykec-6u66
https://scholarworks.sjsu.edu/etd_theses/4760

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/4760?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4760&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

	

RNA-PROTEIN STRUCTURE CLASSIFIERS INCORPORATED INTO
SECOND-GENERATION STATISTICAL POTENTIALS

A Thesis

Presented to

The Faculty of the Department of Chemistry

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Takayuki Kimura

December 2016

	vi	

@ 2016

Takayuki Kimura

ALL RIGHTS RESERVED

	vii	

The Designated Thesis Committee Approves the Thesis Titled

RNA-PROTEIN STRUCTURE CLASSIFIERS INCORPORATED INTO

SECOND-GENERATION STATISTICAL POTENTIALS

by

Takayuki Kimura

APPROVED FOR THE DEPARTMENT OF CHEMISTRY

SAN JOSÉ STATE UNIVERSITY

December 2016

Dr. Brooke Lustig Department of Chemistry

Dr. Daryl K. Eggers Department of Chemistry

Dr. Alberto A. Rascón, Jr. Department of Chemistry

	viii	

ABSTRACT

RNA-PROTEIN STRUCTURE CLASSIFIERS INCORPORATED INTO
SECOND-GENERATION STATISTICAL POTENTIALS

by Takayuki Kimura

 Computational modeling of RNA-protein interactions remains an important

endeavor. However, exclusively all-atom approaches that model RNA-protein

interactions via molecular dynamics are often problematic in their application. One

possible alternative is the implementation of hierarchical approaches, first efficiently

exploring configurational space with a coarse-grained representation of the RNA and

protein. Subsequently, the lowest energy set of such coarse-grained models can be used

as scaffolds for all-atom placements, a standard method in modeling protein 3D-structure.

However, the coarse-grained modeling likely will require improved ribonucleotide-amino

acid potentials as applied to coarse-grained structures. As a first step we downloaded

1,345 PDB files and clustered them with PISCES to obtain a non-redundant complex data

set. The contacts were divided into nine types with DSSR according to the 3D structure

of RNA and then 9 sets of potentials were calculated. The potentials were applied to

score fifty thousand poses generated by FTDock for twenty-one standard RNA-protein

complexes. The results compare favorably to existing RNA-protein potentials. Future

research will optimize and test such combined potentials.

v	

ACKNOWLEDGEMENTS

 This research project would not have been possible without the support of many

people. First, I wish to express my gratitude to my research advisor, Dr. Lustig who

guided me and taught me the tremendous joy of pursuing research and excitement in

solving problems. He also showed me that scientific research requires a lot of energy and

time to achieve. By accomplising this research, I acquired various skills including

python coding, R, statistical analysis, and scientific writing. I would also like to thank

my committee members, Dr. Eggers and Dr. Rascón, for spending their precious time to

answering my questions and reviewing my thesis. I would also like to thank Phuc Tran, a

former undergrad student who helped me to proceed with my project. I would also like

to thank current grad students at Dr. Lustig's lab, Thanh Le and Artem Soshnikov for

providing me useful advice. Dr. Sami Khuri, the chair of Computer Science Department

also mentored me since before I was accepted to this university. I would also like to

thank him and his wife, Dr. Natalia Khuri for their practical advice. For my family, I

appreciate my beloved wife who financially and mentally supported me for, at least, these

two and half years in San Jose State University. To others who supported me, I thank

you so much.

Takayuki Kimura

vi	

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES .. x

1. INTRODUCTION ... 1
1.1. Interactions between RNA and protein are important .. 1
1.2. Prediction of RNA Structure ... 2
1.3. Prediction of 3D Structure of Protein .. 3
1.4. Prediction of 3D Structure of RNA-protein Complex .. 4

2. METHODS .. 7
2.1. Research Overview .. 7
2.2. Calculation of Potential Sets ... 8

2.2.1. PISCES ... 8
2.2.2. X3DNA-DSSR ... 8
2.2.3. Nine Categories .. 9
2.2.4. Statistical Potentials .. 11
2.2.5. FTDock ... 13

2.3. Docking and Scoring with Potential Sets .. 14
2.3.1. Scoring .. 14
2.3.2. Evaluating Benchmarks .. 14
2.3.3. Best Rank for the Test Set .. 16
2.3.4. Success Rate of Prediction ... 16
2.3.5. Six Scenarios ... 17

2.4. Flow Chart of Automated Process .. 18
2.4.1. Overview .. 18
2.4.2. Preparing Training Set .. 18
2.4.3. Calculating Potentials ... 20
2.4.4. Evaluating Potentials .. 21

3. RESULTS .. 22
3.1. Classified Contacts in the Training Set ... 22
3.2. Best Rank for the Test Set ... 23
3.3. Potentials for Current Scenario ... 25

3.3.1. General ... 25
3.3.2. Strong Interactions .. 26
3.3.3. Potentials between Arg and Four Bases ... 26
3.3.4. Potentials for Aggregate Average ... 28

3.4. Success Rate for the Current Method .. 30
3.5. Success Rates for Other Scenarios .. 30
3.6. Score versus RMSD Analysis ... 33

3.6.1. Analysis Guidelines .. 33
3.6.2. Analysis in the Current Scenario .. 34
3.6.3. Score versus RMSD Analysis .. 37

vii	
	

4. DISCUSSIONS .. 38
4.1. Interactions for Arginine ... 38
4.2. Comparison with Cutting-edge Density Function Potentials 38
4.3. Redundancy in a Training Set ... 39
4.4. Limitations of FTDock and All-atom Potentials ... 40

5. CONCLUSIONS ... 40

6. FUTURE STUDIES .. 41

REFERENCES ... 42

APPENDICES .. 46
Appendix A ... 46
Appendix B ... 47
Appendix C ... 56
Appendix D Tables and Figures for Unpublished Results .. 74
Appendix E Python Program Listings .. 77

Program: transformPISCES.py ... 77
Program: GetClusterNum.py .. 78
Program: combincontacts.py ... 79
Program: director_cluster.py ... 81
Program: choosebest.py .. 82
Program: getallredun.py .. 83
Program: director_potential.py ... 85
Program: assignRNA3Dall.py .. 86
Program: assignBorSall.py ... 86
Program: overall.py ... 88
Program: assignRNA3D.py .. 90
Program: assignBorS.py ... 92
Program: addmajor.py ... 93
Program: extracthelix.py ... 94
Program: assignBorSnh.py ... 95
Program: calcdenomi.py ... 96
Program: sepcalp.py .. 97
Program: calp1_2.py ... 98
Program: calp3.py ... 101
Program: calp4_5.py ... 103
Program: calp6.py ... 106
Program: calp7.py ... 109
Program: calp8_9.py ... 111
Program: potenti.py ... 114
Program: correct.py ... 115
Program: assign3D.py ... 116
Program: RMSD.py .. 118
Program: RMSD2.py .. 119

viii	
	

Program: calpot_multi.py ... 120
Program: nativerank.py ... 124

Appendix F Main Python Scripts for Unpublished Results 126
Program: addPR_cate.py ... 126
Program: pfasta.py ... 126
Program: parseDSSR.py .. 128

Appendix G Shell Script .. 132
Program: DSSR.sh .. 132
Program: FTDock.sh ... 132

ix	
	

LIST OF TABLES

Table 1. List of associated computational methods. .. 8

Table 2. Test set of protein-RNA complexes. .. 15

Table 3. Six scoring scenarios ... 17

Table 4. Rank of native structures (percentage of total poses) .. 24

Table 5. The strongest 20 interactions ... 26

Table 6. Summary of regression lines for current scenario.. ... 36

Table A. 1. Frequency of Contacts for current Scenario ... 46

Table D. 1. Classification summary of all scenarios including unpublished results 74

x	
		

LIST OF FIGURES

Figure 1. Nine categories defined by RNA structure (mg = major groove) 10

Figure 2. The flowchart for preparing training set. .. 19

Figure 3. The flowchart for calculating potentials ... 20

Figure 4. The flowchart for evaluating calculated potentials .. 22

Figure 5. The number of hydrogen bond contacts between RNA and protein in each of
the nine classes ... 23

Figure 6. All potentials for current scenario .. 25

Figure 7. The potentials of Arg for four bases in each class .. 27

Figure 8. The potentials of Lys for four bases in each class .. 28

Figure 9. The potentials for aggregate average (potentials without classification by RNA
structure) ... 29

Figure 10. Success rates of current scenario (red line) and other methods (Perez-Cano
(black dotted line), QUASI-RNP (blue dotted line), and DARS-RNP (red
dotted line) .. 30

Figure 11. Plots of success rate as a function of threshold value 32

Figure 12. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario .. 35

Figure B. 1. Potentials for Category 1 (potentials for missing data is set as 0)................56

Figure B. 2. Potentials for Category 2. .. 57

Figure B. 3. Potentials for Category 3. .. 58

Figure B. 4. Potentials for Category 4. .. 59

Figure B. 5. Potentials for Category 5. .. 60

xi	
	

Figure B. 6. Potentials for Category 6. .. 61

Figure B. 7. Potentials for Category 7. .. 62

Figure B. 8. Potentials for Category 8. .. 63

Figure B. 9. Potentials for Category 9. .. 64

Figure C. 1. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1F7U. ... 65

Figure C. 2. Scatter plots of score as a function of RMSD for 50,373 poses in Curren
scenario of 1HC8. .. 66

Figure C. 3. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1JBR. ... 67

Figure C. 4. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1K8W .. 68

Figure C. 5. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1LNG. .. 69

Figure C. 6. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1KOG .. 70

Figure C. 7. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1M8W. ... 71

Figure C. 8. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1MFQ .. 72

Figure C. 9. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1U0B ... 73

Figure C. 10. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1U63. .. 74

Figure C. 11. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1WPU ... 75

xii	
	

Figure C. 12. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2WSU ... 76

Figure C. 13. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2BTE .. 77

Figure C. 14. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2FMT .. 78

Figure C. 15. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2HW8 ... 79

Figure C. 16. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2JEA. .. 80

Figure C. 17. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2PJP .. 81

Figure C. 18. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2QUX ... 82

 Figure D. 1. Best (red), mean (blue), and worst (black) ranks for all scenarios over
twenty-one test complexes. .. 83

Figure D. 2. Chart flow to calculate propensity for PRat11 .. 84

Figure D. 3. The equation to calculate propensity for PRat77 (top) 85

Figure D. 4. Equations for scenarios (PRat17, PRat71, PRat11, PR77, and at77) 86

	 1	
	

 1. INTRODUCTION

1.1. Interactions between RNA and Protein Are Important

Protein and RNA are the two critical macromolecular classes in biology as

evidenced by the central dogma. The interaction between RNA and protein is essential

for many regulatory processes in cells, especially in post-transcriptional regulation.

Many processes in development and differentiation are related to this RNA-protein

interaction.1 Areas of interest include interactions involving the ribosome and

spliceosome, but characterization of nonhuman and noncoding RNA protein interactions

remain at the frontiers of science.2 To understand relevant mechanisms of action,

obtaining 3D structures is often required and usually involves x-ray crystallography or

NMR.3 The former requires protein crystallization, an often arduous and difficult task.

Moreover, purifying RNA-protein structures is difficult because of the nature of RNA

structure. One issue is that the interface of RNA has many phosphate groups that are

negatively charged. Because of the repulsive force between such negative charges,

crystallization is problematic. The second issue is that the shape of RNA is often not

globular unlike proteins, where crystallization of non-globular molecules can also be

problematic due to the difficulty of forming regularized structures.4 An existing option

for the crystallization involves in vitro preparation that mixes pure RNA and pure protein

together. Here, in vivo expression and purification using recombinant RNA in E coli has

recently been implemented. Recently, a method for co-expression and co-purification of

both RNA and protein was presented5 but it is still in its infancy.

Though NMR resolution is often less robust than x-ray, NMR provides

information on dynamics of flexible structures such as RNA. Recently, problems

	 2	
	

analyzing extended RNA molecules6 were in part overcome by combining NMR with

x-ray crystallography or cryo-EM.7 In addition to the intrinsic flexibility, RNAs show

conformational rearrangement in contact with other macromolecules such as protein.6

These dynamics of RNA caused by ligand can be elucidated with NMR and x-ray

crystallography.8 Still, with increasing demand for the 3D structures of RNA-protein

complexes, reliable computational prediction of modeling 3D structures is required.

Though there has been a 50-fold increase in the number of high quality structures, in

general that is just a fraction of complexes identified biologically.

1.2. Prediction of RNA Structure

Although the computational prediction of RNA secondary structure has been

successfully applied when combined with experimental results using SHAPE chemistry,9

the prediction of 3D structure is not yet as well developed. The predictions of RNA 3D

structure include physics-based bottom-up predictions10 and knowledge-based

predictions.11 The prediction of RNA 3D structure from sequence has utilized

knowledge-based modeling and machine learning, showing some success for short

RNAs.12 However, compared with the prediction of protein structure, prediction of RNA

3D structures especially for long chain RNAs of more than 50 nucleotides remains

problematic.13

 One of the latest successful methods employed the Nash equilibrium of Game

Theory in sampling of configurational space.14 Development of 3D modeling is in part

limited by the amount and diversity of structural data on RNA at the atomic level. More

importantly, the development of suitable RNA-protein potentials is required to do

computational modeling of 3D structure.

	 3	
	

1.3. Prediction of 3D Structure of Protein

Today, many protein 3D structures can be obtained at the RSCB Protein Data

Bank (PDB). The quantity of uploaded protein structures is much more than those of

RNA: 46,985 PDB entries including protein chains and 4,559 PDB entries including

RNA chains were found (Protein Data Bank, 2016). However, the available 3D structural

data for RNA and protein are only a small portion of known sequences. At the GenBank,

more than 190 million sequences can be downloaded (GenBank, 2016), but available 3D

structures of RNA-protein complexes at the PDB are less than 1,800. Similar to RNA,

this difference of the availability in part comes from limitations of experimental methods

such as x-ray crystallography15 and NMR.16 This is why computational prediction is still

essential for the 3D structure determination of protein.

Computational prediction of 3D structure is divided into two broad approaches:

physical and comparative modeling.17 The former is based on physical principles that

calculate forces and interactions to estimate the structure with minimum potential energy.

Comparative modeling typically utilizes physical principles and known sequence and

structural data. The comparative strategy includes homology modeling18 and folding

recognition.19 One of the recent successful programs, Rosetta,20 searches fragments of

similar sequence and assembles them using potentials calculated from experimental

data.21 Most de novo protein modeling does not work for proteins of more than 150

residues.22 However, recent application of methods that predict conserved tertiary pair

has shown promise.23

	 4	
	

1.4. Prediction of 3D Structure of RNA-protein Complex

The prediction of RNA-protein 3D structure is still an ongoing issue. Although

crystallization and subsequent x-ray crystallography itself or NMR can provide high

resolution coordinates of complex structure, implementing the approaches can be

problematic.24 Computational prediction lags experimental approaches in overall

accuracy. Cryo-EM (Electron Microscopy) is emerging as a powerful method for 3D

structures at high resolution, especially for large molecules such as membrane proteins

and viruses.25 Cryo-EM does not require any crystallization. Instead, it freezes the

purified solution, takes a large number of images using electron microscopy, and

aggregates the images to determine the 3D structure of the macromolecule by analyzing

the pictures at atomic level. Note that 231 entries of RNA-protein structures have been

obtained by electron microscopy compared to 1,416 entries via x-ray crystallography and

105 via solution NMR (Protein Data Bank, 2016).

The computational universe of RNA-protein docking algorithms and software is

much smaller than those involving protein-protein docking. Note that GRAMM,26

FTDock,27 and Rosetta20 are relatively popular docking programs that accept atomic

coordinates for RNA and protein 3D structures. FTDock orients macromolecules into an

orthogonal grid and samples the configurational space for translational and rotational

movement. Fast Fourier transform can be used to increase the speed of calculation.28

GRAMM and FTDock employ rigid structures of RNA and protein, and evaluate bound

structures by scoring with nucleotide-amino acid potentials and not all-atom ones. Such

potentials applied to these rigid all-atom configurations are consistent with

coarse-grained modeling of simpler structural representation (e.g. lattice models) that

	 5	
	

allows exhaustive sampling of configurational space, but may sacrifice additional details

associated with all-atoms. FTDock and GRAMM align both backbones of the

macromolecules on a grid, and then add the remaining atoms such as those in the side

chains. On the other hand, Rosetta, as the first step, samples configurational space with

only the backbones of the rigid-body macromolecules; then side chains are repacked and

the displacement of both the side chains and backbone can be optimized using Monte

Carlo minimization. In summary, such methods sample configurational space in docking

two molecules, and then score the resulting poses with potentials, and in some programs,

additionally refine the generated poses.

In the typical coarse-grained models, the score of a pose is calculated as a sum of

scores of RNA-protein interactions. The statistical potential is well known to be a simple

but powerful approach for scoring such interactions. It is calculated from a propensity

that is, in most cases, obtained from the expected or theoretically deduced probability

normalized by the observed probability of a certain type of contact. If a certain

propensity is much larger than others, it means that the type of interaction happens more

often than expected, which implies there is a stronger preference for the interaction than

others. The statistical potential ∆𝐺 is often calculated from propensity P by the following

equation,29,30 in which C is a constant.

∆𝐺 = −𝐶 × 𝑙𝑛𝑃

 Calculating propensity depends on the classification of the contacts. A simple

classification based solely on amino acid and nucleotide type was developed.29 A

subsequent approach included accessible surface area in the calculation of propensity.30

Some approaches classify interactions based on their geometric and electrostatic

	 6	
	

properties.31 One of the most successful methods employs distance criteria32,33 as well as

angles.34 Typically these interactions are hydrogen bonds.

The differences in binding potentials for RNA-protein versus DNA-protein

interactions were explored in terms of recognizing four bases. Lustig et al. calculated

pairwise statistical potentials between the amino acid and the base component of RNA.29

They counted hydrogen bonds between RNA and protein for U1RNA-spliceosomal

protein, and for seryl, aspartyl, and glutaminyl-tRNA synthetases with their variants,

where the protein sequence at the hydrogen bonds was assumed to be conserved. Here,

the normalization involved the logarithm of the frequency for a given amino acid,

averaging with respect to the four bases such that the sum of the appropriately weighted

logs is zero. The normalized relative potentials were calculated for ten amino acids (Arg,

Asn, Lys, Asp, Gln, Glu, Ala, Tyr, Ser, and Thr). Ser and Thr were plotted as one

because the two sets of frequency data were identical. Initially, the definition of major

groove interactions included not only the RNA A-form helix but alternative forms that

afford contacts with atoms allocated to the major groove. In addition, potentials at

specifically identified major grooves were separately calculated for Arg and Asn.

Comparing RNA and DNA in the major groove, Arg most prefers guanine in both cases

(the order of preference was G, A, U, and C for RNA, and G, U, C, and A for DNA in

descending order).

The correlation coefficient between RNA and DNA for the potentials of Arg and

Asn in the major groove was 0.5 (p-value < 0.21). The Arg and Asn data included those

not in the major groove but interacting with base atoms that are usually accessible in the

major groove. The correlation plots indicate a somewhat weak correlation between RNA

	 7	
	

and DNA for potentials of Arg and Asn in the major groove, even though the specific

structural differences are minimal. In that correlation plot for Arg and Asn, Asn was

clearly more correlated between RNA and DNA.

Notably Arg and Lys had strong interactions, mostly with the major groove of

RNA, and the comparison of the statistical potentials showed strong similarities between

the rank orders of contacting bases of RNA and DNA.29 It is known that double stranded

RNA (dsRNA) has a stronger affinity for protein than single stranded RNA or double

stranded DNA.35 Here, a zinc finger protein called ZNF346 has a strong affinity to

dsRNA, especially with regard to Lys and Arg contacts which appear particularly suited

to allow access in the deep and narrowed major groove of RNA.29 This type of binding is

essential for protein moieties such as the zinc fingers to recognize RNA.

2. METHODS

2.1. Research Overview

This research calculates statistical potentials and evaluates them over a test set of

twenty-one standard complexes.30 It consist of five components: (1) preparation of

training data set, (2) calculation of potentials, (3) docking of the test set, (4) scoring the

generated poses, and (5) evaluation of the potentials (see Table 1). Third-party programs

such as FTDock were employed in all of the five components, and the in-house software

developed here automates the implementation of the five components. The work

discussed here puts an emphasis on developing and analyzing potentials, especially in

regards to the novel classification of contacts. The learning set used in the classification

of contacts is determined by all possible hydrogen bonds. With regard to the test set, the

various potentials are implemented.

	 8	
	

Table 1. List of associated computational methods.

2.2. Calculation of Potential Sets

 2.2.1. PISCES. The 1,345 RNA-protein mmCIF files were downloaded (Protein

Data Bank, 2015). Then the protein chains were clustered by PISCES (PISCES, 2015) at

25% similarity for the PDB entries, and 165 clusters were obtained. Only the structures

determined by x-ray crystallography with resolution of 3.5 Å or below and with one-letter

chain ID were used. The mmCIF files that have the best resolution in each cluster were

selected as the complexes of record. The default maximum R-value of 0.3 and a

minimum chain length of 40 were used. Note that the structural coordinates were

downloaded as an mmCIF format instead of a pdb format for easy updating of our

program in the future, although in this study one could not utilize the other information in

the mmCIF files at all. One of the problems with the pdb format is that the pdb format

has just one digit to identify a chain. For example, 4V6X (structure of the human 80S

ribosome) does not have pdb files but only mmCIF files because 4V6X has 89 chains and

one digit cannot accommodate that many chain IDs. However, we could not find any

third party programs for analyzing hydrogen bonds and RNA 3D structures, which deal

with mmCIF files and can handle those large complexes.

 2.2.2. X3DNA-DSSR. X3DNA-DSSR36 was first employed for two purposes,

to obtain hydrogen bonds between protein and RNA, and to determine the secondary

1. Calculation of Potential Sets 2. Docking and Scoring with Potential Sets
Obtain 1345 mmCIF files Generate 50,373 poses (FTDock)

Cluster protein chains (PISCES) Calculate hydrogen bonds (DSSR)
Calculate hydrogen bonds (DSSR) Obtain RNA 3D structures for poses (DSSR)
Obtain RNA 3D structures (DSSR) Score the poses with the nine potential sets

Classify contacts into nine categories Rank native structures by score
Calculate nine sets of potentials

	 9	
	

structure of RNA. Here, hydrogen bonds are obtained from the 663 non-redundant

complexes by applying X3DNA-DSSR. Finally, the hydrogen bonds were categorized

according to the RNA structure, position, and base pair type. For example, if a hydrogen

bond is at N6 of a base, and if the base makes a canonical base pair involved in an

A-form helix as noted by DSSR, the hydrogen bonding is at the major groove, so the

hydrogen bond will be categorized as 1.

Hydrogen bonds between RNA and protein are determined by the distance and

angle between the donor atom and acceptor atom. The algorithm of detecting hydrogen

bonds in X3DNA-DSSR is not fully transparent, but it tends to provide more contacts

than HBPLUS37 and is considered a standard procedure.36

 2.2.3. Nine Categories. Hydrogen bonds between RNA and protein for the

training set were classified into nine categories (Figure 1). Then, in each category, 80 (20

amino acid × 4 bases) pairwise potentials were calculated. Therefore, 720 potentials in

total were calculated from the training set. Contacts in Category 1 include RNA atoms

belonging to the major groove side of an A-form helix. A-form helix is regarded as the

most common secondary structure for RNA38. Each category is assigned by the helicity

of RNA,

	 10	
	

Figure 1. Nine categories defined by RNA structure (mg = major groove, bp = base
pair).

helix type, location of the atom (base or backbone, ribose is included in the backbone),

and base pair type. Accordingly, contacts in Categories 3, 7, and 9 include RNA

backbone, and contacts in Categories 1, 2, 4, 5, 6, and 8 include a base of RNA.

Specifically, if a contact includes N4 of cytosine, N7 or O6 of guanine, O4 of

uracil, N6 or N7 of adenine, or O4 or N7 of uracil in U-U base pair, in A-form helix RNA,

the contact is classified as Category 1. Here, keeping our program simple, only the

contacts in a canonical base pair (indicated cW-w in DSSR) were classified as Category 1.

Those contacts that include RNA atoms on the major groove side of a non-canonical base

pair were classified as Category 2 (not major groove).

For contacts on the major groove side not in A-form helix, they were classified

into two categories according to the base pair type. If the contact was in the canonical

base pair, it was classified as Category 4; otherwise it was classified as Category 5.

Identification of the helix type (A-form or not) depends on the output of DSSR.

	(non)	

	 11	
	

Categories 4 to 7 include contacts in a B-form helix, Z-form helix, unclassified helix, and

any helix with backbone breaks.

 2.2.4. Statistical	Potentials.		The statistical potentials were calculated from the

following equations.29,30 The statistical potential was calculated from the propensity that

is a value of observed probability of the pairwise (e.g. Arg-guanine) contact in the

category (1-9) divided by the expected or theoretical probability of the pairwise contacts

(Equation 1).

Propensity:

P(p,q,s) = !(!,!,!)/ !(!,!)!"

!(!,!)/ ! ! × !(!,!)/! ! !!
 (1)

where N(p,q,s) is the number of contacts between amino acid p and base q in the

classification of the category s, and N(p,q) is the number of contacts between amino acid

p and base q. Therefore, the numerator of equation 1 is the observed probability for the

pairwise contact for a particular category. The denominator, the theoretical probability of

the contact, is the product of fractions of an amino acid and a base occurring in all chains

in the training set. In the denominator, N(p,s) is the number of amino acids for s

classification in all protein chains in the training set, and N(p) is the number of the amino

acids for all proteins. Note, because identifying Category 1 or 2 requires base pairing,

Categories 1 and 2 have the same value for N(p,s). Categories 4, 5, and 6 also have

among themselves the same N(p,s) values. Potential energy is calculated from the

propensity by the following equation:

Potential Energy:

∆𝐺 𝑝, 𝑞, 𝑠 = −𝑅𝑇×𝑙𝑛 (𝑃(𝑝, 𝑞, 𝑠))

p : amino acid (1-20)
q : base (1-4)
s : category (1-9)

	 12	
	

where ∆𝐺 𝑝, 𝑞, 𝑠 is the potential for the amino acid p and the base q in the category s, R

is the gas constant, and T is temperature in K. For RT, 0.59 was used as the value. Both

the propensity and the potentials are the functions of three arguments: amino acid, base

and structure category of RNA. For example, the propensity between Arg and guanine in

Category 1 is calculated as follows.

PI(Arg, guanine,1) =
!"#$% !" !"#!!"#$%$& !"#$% !" !"#$%&'(!

!"#$% !" !"" !"#$%
!"#$% !" !"# !" !"#$%&'(!
!"#$% !" !"" !"#$% !"#$% × !"#$% !" !"#$%$&

!"#$% !" !"" !"#$%&'()%*

 (2)

 In one of the cases involving redundant set, the number of pairs in Category 1

was 755, and 437 of the pairs were Arg-guanine. The count of all amino acids in

Category 1 was 71,335, and 6891 of them were Arg. The count of all nucleotides in

Category 1 was 809,393, and 259,504 of them were guanine. Amino acids and

nucleotides were counted in any protein that had at least one Arg-guanine hydrogen bond.

Then the value of the propensity was calculated as follows.

PI(Arg, guanine,1) =
!"#
!""

!"#$
!"##$ × !"#"$%!"!"!"

= 18.69

 Alternatively, potentials without a structure category of RNA were calculated as

an “aggregate average.” As in equation 3, when no contact is found in the training set,

0.001 is used instead of 0 as the propensity for calculating the statistical potential. In that

case, statistical potentials will be 4.076 (RT = 0.59 kcal/mol).

0.59 × 𝑙𝑛 0.001 = 4.076 (3)

	 13	
	

For example, because Ala-adenine in Category 1 has no contact in the training set,

𝑃!(Ala, adenine, 1)= 0.001, therefore ∆𝐺 𝐴𝑙𝑎,𝑎𝑑𝑒𝑛𝑖𝑛𝑒, 1 = −0.59 × 𝑙𝑛 0.001 =

4.076.

Propensity (aggregate average):

𝑃! 𝑝, 𝑞 = !!(!,!)/ !!(!,!)!"

!(!)/ ! ! × !(!)/! ! !!
 = !"#$%&$' !"#$%$&'&() !" !!! !"#$!"#$

!"#$%&$' !"#$%$&'&() !" !!! !"#$!"#$

Potential Energy (aggregate average): ∆𝐺 𝑝, 𝑞 = −𝑅𝑇×𝑙𝑛 (𝑃!(𝑝, 𝑞))

For instance, in one case, the number of pairs was 247,044, and 23,623 of them were

Arg-guanine. Then the value of the propensity was calculated as follows.

PI(Arg, guanine) =
!"#!"
!"#$""

!"!
!"#$# × !"##$!!"#$%

= 3.440	

 2.2.5. FTDock. FTDock is a rigid-body docking program based on Fourier

transform.28 FTDock 2.0.3 was employed to generate 50,373 poses for standard

complexes and ran with default options including no calculation of electrostatics.30 A

Perl parameter file of FTDock was edited so that FTDock recognized all atoms in RNA.

Since FTDock is a rigid-body docking program, and it allows an exhaustive exploration

of a particular ligand conformation binding to a fixed target. Of course the caveat is that

side chain repacking and flexible features in RNA are not fully accounted. Methods for

such modeling are not yet fully developed. However, we employed FTDock for two

reasons. First, one of the objectives for this study is to develop and evaluate potentials

for comparing with previously reported ones, and not the prediction itself. Secondly,

FTDock is capable of RNA-protein docking and easily incorporates customized RNA-

	 14	
	

protein potentials.30 Courtesy of Dr. Graham Smith, we employed the developer's

version of FTDock (FTDock v2.0.3) which is compatible with multiprocessing

(openmpi).

2.3. Docking and Scoring with Potential Sets

 2.3.1. Scoring. Each pose was scored with nine sets of potentials. First,

hydrogen bonds and the corresponding RNA structures were calculated by X3DNA-

DSSR and all the hydrogen bonds were assigned a category according to the RNA

structure and the position. Secondly, each pose was scored by adding up all the scores of

the hydrogen bonds in the pose. Here, the distance of hydrogen bonds was not taken into

account in scoring. 	

 2.3.2. Evaluating Benchmarks. Shown in Table 2 are the test complexes and

unbound protein and RNA chains. Docking a protein chain (Column 3) and an RNA

chain (Column 6) using FTDock generates 50,373 poses, and then RMSD value between

each pose and a complex structure (Column 2) is calculated after structure alignment.

PyMol (version 1.8) is used to achieve both of the structural alignment and calculation of

RMSD value. In the structure alignment, an unbound or bound protein structure (Column

3) is aligned to the protein structure in the corresponding complex structure (Column 2)

using only the alpha carbon atoms. Then the RMSD value is calculated using all atoms

in the two RNA structures (Column 2 and Column 6). This process is coded using

python package 'pymol' that allows PyMol command written in a python program. The

generated raw output is parsed by 'RMSD2.py' and a table of pose id and RMSD is made

(RMSD2.out).

	 15	
	

 The pose was regarded as a native structure when RMSD was less than

10 angstrom.30 Twenty-one standard complexes that have their unbound protein/RNA

structures were chosen (Table 2). In other words, RNA chain and protein chain were

taken from different PDB entries and unbound structures are considered to be more

difficult cases as test complexes than bound structures.32

Table 2. Test set of protein-RNA complexes.
 Complex

(bound)
 Protein

(unbound)
 RNA

(unbound)

Sizea RMSDb Sizec RMSDd
1 1WSU_a_e 1LVA_a 2191 0.7 1MFK_a 740 0
2 2PJP_a_b 2PJP_a 982 0 1MFK_a 740 3.1
3 1LNG_a_b 1LNG_a 727 0 1Z43_a 2169 2.1
4 1E7K_a_c 2JNB_a 2031 3.2 1E7K_c 365 0
5 1WPU_a_c 1WPV_a 1095 0.2 1WPU_c 145 0
6 2QUX_a_c 2QUD_a 2006 0.7 2QUX_c 531 0
7 2JEA_a_c 2JE6_a 2119 0 2JEA_c 88 0
8 2FMT_a_c 1FMT_a 2350 1.2 3CW5_a 1645 2.9
9 1MFQ_c_a 1QB2_b 966 3.1 1L9A_b 2683 5.1
10 1U0B_b_a 1LI7_a 2961 1 1B23_r 1584 6.6
11 1EC6_a_d 1DTJ_a 525 1.6 1EC6_d 1081 0
12 1HC8_a_c 1FOY_a 1169 2.9 1HC8_c 1219 0
13 1JBR_b_d 1AQZ_a 1129 0.6 1JBR_d 664 0
14 1KOG_a_i 1EVL_a 3265 0.6 1KOG_i 785 0
15 1M8W_a_c 1M8Z_a 2750 1.2 1M8W_c 167 0
16 1F7U_a_b 1BS2_a 4874 3.4 1F7U_b 1629 0
17 1K8W_a_b 1R3F_a 2158 2.2 1K8W_b 466 0
18 1N78_a_c 1J09_a 3814 1.9 1N78_c 1597 0
19 1U63_a_b 1I2A_a 1682 1.3 1U63_b 1055 0
20 2BTE_a_b 1H3N_a 6642 4.1 2BTE_b 1674 0
21 2HW8_a_b 1AD2_a 1712 6.7 2HW8_b 774 0

Note that three complexes in Table 2 (2FMT, 1MFQ, and 1U0B) consist of three

different PDB entries and others consist of two different PDB entries. Therefore, at least

one of the RNA chains or protein chains has a non-zero RMSD value, even before

a Number of protein atoms.
b RMSD (Å) of a complex structure (Column 2) and a protein structure (Column 3) calculated
 with alpha carbon atoms of both structures.
c Number of RNA atoms.
d RMSD (Å) of complex structure (Column 2) and RNA structure (Column 6) calculated with
 phosphorous atoms of both structures.

	 16	
	

docking. For example, the protein chain 1AD2_a has RMSD value of 6.6 (Row 22).

Perez-Cano et al. adopted unbound docking set,30 and this study also adopted an unbound

docking set to compare our results with theirs. Each complex was excluded from the

training set in each calculation. As a comparison, the QUASI-RNP scoring program and

DARS-RNP were downloaded and applied to the same poses. The amino acid-nucleotide

potentials from the study of Perez-Cano were obtained by digitizing the color intensity

(Park and Lustig, unpublished results) of given graphics.30 In addition, the best rankings

from potential sets with no filtering and no clustering were also calculated. 	

 2.3.3. Best Rank for the Test Set. The 50,373 poses of a test set complex were

ranked by binding energy, and then the rank of the most stable, low RMSD (< 10 Å)

native-like complex structure was calculated as belonging to the relevant percentile of the

50,373 poses. For example, if the test set 1KOG had 3 native like structures among

50,373 poses and the lowest score of these native-like structures (most native-like) was

the 10,000th score ranked by binding energy, the best rank for 1KOG would be 19.85%.

The average of the best ranks of the twenty-one test set complexes was also calculated to

evaluate the scoring method. 	

 2.3.4. Success Rate of Prediction.		Another evaluation for the scoring method is

calculated as the success rate for each test set complex.30 And in addition, the success

rate is calculated for six scenarios (see Table 3). For instance, one calculates the success

rate among all twenty-one-test complexes, for whether the native-like structure's energy

is identified among the threshold-filtered values. For example, for a threshold of ten, one

identifies whether the native-like structure and its energy is among the lowest ten

energies. The success rate is the fraction of the 21 test proteins that meet that criteria.

	 17	
	

For example, when the threshold was 1000 (i.e., checking among the first 1000 poses)

and the current nine-category set of potentials had only one test set complex that had the

best score within that top 1000, the success rate would be 4.76% (1/21×100). In the ideal

prediction, the success rate would be always 100% no matter the range.	

 2.3.5. Six	Scenarios.		In this study, six scenarios (the first three calculated here)

for calculating potentials (Table 3) are evaluated. These six scoring scenarios are applied

to the 50,373 FTDock poses to compare the success rate, best rank and other analytics.

Potentials for Perez-Cano were calculated from non-redundant hydrogen bonds between

RNA and protein.30 The contacts with more than 70% sequence identity were clustered,

then the x-ray coordinates with the best resolution for each cluster was chosen as a

representative of the cluster. As a result, 282 RNA-protein contacts were obtained and

used to calculate potentials. The equation of Perez-Cano is the same as Equation 1, but

their calculation includes only the atoms on an accessible surface area. The potentials are

pairwise base-amino acid potentials, so the total number of the potential is 80 (4 bases ×

20 canonical amino acids). They employed FTDock to generate binding modes for a test

set. These potentials for Perez-Cano are presented graphically.30

Table 3. Six scoring scenarios.
Scenario Description

Current Nine-category set of potentials, calculated from non-redundant contacts as
selected by PISCES (R-value < 0.30, x-ray resolution < 3.5 Å, sequence
identity < 25%).

Current
Redundant

Nine-category set of potentials, calculated from complete list of RNA-protein
contacts (without clustering and filtering).

Aggregate
Average

One category set of potentials (without classifying by RNA secondary
structure).

Perez-Cano Potentials obtained by digitizing the color intensity of the heat map in the
literature.
(Perez-Cano et al., 2010) DARS-RNP https://genesilico.pl/index.php/software/35.html?sectionid=1

QUASI-
RNP

https://genesilico.pl/index.php/software/35.html?sectionid=1

	 18	
	

The potentials for QUASI-RNP and DARS-RNP are also calculated from the

redundant contacts.34 The training set complexes are selected by choosing from 3.5 Å or

better resolution x-ray crystal structures and clustered by sequence identity of more than

30% for protein chains and 70% for RNA chains. They obtained seventy-two

RNA-protein complexes to make the scoring function. The arguments of the scoring

function are amino acid (20), base (4), and a contact distance divided by angle of the

hydrogen bond. QUASI-RNP calculates potentials purely from observed native

structures, but DARS-RNP includes coordinates from decoy structures generated by

GRAMM.27

2.4. Flow Chart of Automated Process

 2.4.1. Overview. 	Almost all processes from preparing training data set to

calculating relative ranks for the test set were automated with our python programs and

shell scripts. The whole code was divided into many files so that we could debug with

ease and analyze each output at every step. All the separated programs are called and

executed by one program file 'director.py' in order. 	

 2.4.2. Preparing Training Set. 	Figure 2 describes how the non-redundant

contacts were prepared automatically. The figure describes the relationships and order of

python programs (red boxes) and data files (blue boxes). Arrows represent outputs and

inputs of the programs. Note that the purple boxes represent programs or websites other

than our python programs and the arrows for the purple boxes represent manual

processes. For example, ‘5let_inputchains.txt’ and mmCIF files were downloaded

manually from PDB (shown in the top-right corner of Figure 2).

	 19	
	

	
Figure 2. The flowchart for preparing training set. Red, blue, and purple boxes,
respectively, represent program, data file, and third party program or website. Arrows
starting from or to purple boxes represent the processes manually done before running the
program. Other arrows represent input or output for the python program.
	
Initially, the structural coordinate files for the training set (1,345 complexes) were

downloaded manually from PDB in mmCIF format. Then the complexes were culled at

chain level using the PISCES online server to filter and obtain cluster identifiers.

Hydrogen bonds for the downloaded 1,345 complexes were obtained by manually

running DSSR.

 The valid chains, cluster numbers, and resolution for x-ray crystal structures were

summarized in one file (by GetClusterNum.py). Hydrogen bonds between RNA and

protein were extracted from the output files for DSSR and combined with the chain

information (by combinecontacts.py). Finally, the contact with the lowest resolution in

chainsInfo.txt	

contacts.txt	 choosebest.py	 bests.txt	

similarity.txt	

fasta.txt	

GetClusterNum.py	

combinecontacts.py	

allredun.txt		
(non	redundant	contacts)	

getallredun.py	

DSSR	

*.cif.out	

transformPISCES.py	

similarityNumed.txt	

5let_inputchains_valid.txt	

mmCIF	files	(*.cif)	

5let_inputchains.txt	

PISCES	 invalidchains.txt	

PDB	

PDB	

Program	

Data	File	

Third	Party	Program	
		or	Website	

	 20	
	

each cluster was chosen (by choosebest.py), and all the other contacts of that pair of

chains were restored to make a file of non-redundant contacts (by getallredun.py).	

2.4.3. Calculating Potentials. The filtered redundant contacts are then used to

calculate statistical potentials in three paths (Figure 3). One path starting with

‘assignTNA3Dall.py’ calculates potentials for the aggregate average scenario (see Table

3). The second path starting with

Figure 3. The flowchart for calculating potentials. Red and blue boxes, respectively,
represent program and data file. Arrows represent input or output for the python program.
The ’allredun.txt’ comes from the previous process. The ‘allredun.txt’ is then used as
inputs for three programs that calculate propensity for all contacts
(‘assignRNA3Dall.py’), contacts in helix (assignRNA3D.py), and contacts in not helix
(‘extracthelix.py’).

‘assignRNA3D’ calculates potentials involving RNA stem for current scenario. The third

path starting with ‘extracthelix.py’ is for calculating potentials in non-helical

classifications for the current scenario. The output files from DSSR are used as inputs for

assignRNA3Dall.py	

bests3Dplus.txt	

bests3D.txt	

assignRNA3D.py	

allredun.txt	

assignBorS.py	

addmajor.py	

majoradded.txt	

overall.txt	

fasta.txt	

overall.py	

bests3Dall.txt	

assignBorSall.py	

bests3Dplusall.txt	

nothelix.txt	extracthelix.py	

*.txt	
*.txt	
*.txt	

1-9	*.py	

assignBorSnh.py	

nothelix2.txt	

potenE.py	
*.txt	
*.txt	
*.txt	

*.cif.out	

fasta.txt	

PotenEal	
PotenEal	

Propensity	

1	 2	

3	

	 21	
	

RNA structural information in each path, and the FASTA file downloaded from PDB is

also used as an input file to calculate the fractions of amino acid or nucleotide for

Equation 1. Calculated propensities for the current scenario are then transformed into

potentials by ‘potent.py.’	

 2.4.4. Evaluating Potentials. The next process is to evaluate the calculated

potentials using test complexes (Figure 4). The test complex files (pdb files) are

downloaded from PDB (PDB 2015). The mmCIF gives the same results. The

coordinates for necessary chains (see Table 2) are extracted from the downloaded pdb

files by ‘correct.py.’ The protein chain and RNA chain are used as inputs for FTDock,

and 50,373 docking poses are generated. RMSD values are calculated by ‘RMSD.py’

and hydrogen bonds for each pose are obtained by ‘DSSR_hbonds.py.’ RNA secondary

structure is also obtained by running ‘DSSR.py’ and each atom in the RNA coordinates

file is assigned the corresponding structure category (see Figure 1) by ‘assign3D.py.’ All

of the information, including hydrogen bonds, category for each atom, and RMSD for

each pose, are combined and the score for the pose is calculated by ‘calpot.py.’ Here for

a given test set complex, its corresponding learning set is excluded and a potential set is

newly calculated in each prediction. Running FTDock, DSSR (for hydrogen bonds), and

‘calpot.py’ utilizes multiprocessing python package (openmpi) to improve running times.

	 22	
	

Figure 4. The flowchart for evaluating calculated potentials. Red, blue, and purple
boxes, respectively, represent program, data file, and third party program. Arrows
represent input or output for the python program. The black dotted line represents test
complex files that consist of RNA coordinates, protein coordinates, and complex
coordinates files. The potential files to score generated poses are obtained from the
previous process. FTDock is embedded in a shell script 'FTDock.sh' and called from
python program 'director.py' and will also implement the characterization of the hydrogen
bonds and RMSD for the test set.
	
3. RESULTS

3.1. Classified Contacts in the Training Set

Figure 5 shows the classification of nine categories for the protein-RNA contacts

in the learning set as shown in Figure 1 (see Appendix A for details), but the number of

calculated contacts is now included. Categories 3, 7, and 9 indicate the contacts in RNA

backbones and have 3,171, 5,881, and 3,330 contacts, respectively. These three

categories occupy 74.3% of all contacts.

*.pdb	

RMSD	.out	

preprocess.perl	

RNA.pdb	 protein.pdb	

FTDock	

build	

DSSR.py	 DSSR_hbonds	

*.hb	RNA.out	

calpot.py	
master.txt	

50373	pdb	files	

FTDock	

assign3D.py	

scores.txt	

potenFal	files	

RMSD2	.out	

RMSD2.py	

correct.py	 *.pdb	

naFverank.py	 result.txt	

RMSD.py	

*.pdb	
Test	Complex	

*.hb	*.hb	

potenFal	files	potenFal	files	

correct.py	

complex.pdb	

	 23	
	

Figure 5. The number of hydrogen bond contacts between RNA and protein in each of
the nine classes. All hydrogen bonds (16,031) were divided into nine categories by the
classification of RNA structure as shown above. The classification derives from the
output of DSSR that defines A-form helix as the helices with canonical base pair and
without any break of backbone. Backbone includes phosphate and ribose. Contacts in
major groove side and not in A-form helix are classified as ‘mg like.’ ‘Non canonical bp’
is the irregular base pair in which the base is flipped or rotated (except “cW-W” in the
DSSR output). The inserted pie graph shows the fractions of hydrogen bonds in each
class. Please note that bifurcated hydrogen bonds are calculated twice (e.g. hydroxyl
hydrogen atom for Ser329 in 1ASY_B makes two contacts with O2 and N3 for C674 for
1ASY_S).
	
3.2. Best Rank for the Test Set

The relative rank for each test complex and the six scenarios is shown in Table 4.

For instance, for the first entry 1E7K (crystal structure of the spliceosomal 15.5 KD

protein bound to a U4 snRNA fragment), there are 22 native-like structures, and the best

rank percentile for the current scenario is 0.042% (column 3, 21×100/50373). The best

rank for aggregate average for 1E7K was 0.008% (column 4, 4×100/50373). The best

rank for current redundant (potentials calculated without clustering and filtering training

set) was 0.008% (column 5, 4×100/50373). Using Perez-Cano potentials resulted in

(non)	

	 24	
	

the best relative rank of 0.004% (column 6, 2×100/50373). The best rank for

QUASI-RNP for 1E7K was 0.993% (column 7, 500×100/50373) and DARS-RNP was

0.280% (column 8, 141×100/50373).

Table 4. Rank of native structures (percentage of total poses).

a Structures with less than 10 Å RMSD.
b Using potentials calculated without filtering and clustering.

The last row of Table 4 shows the mean value of the 21 best ranks for each

method. For example, the average relative rank over all twenty-one complexes for the

current scenario with redundant training set was 3.706%, which was remarkably the best

mean value as compared with other potentials. Even in terms of the lowest performing

Complex
Number of

Native
Structuresa

Current Aggregate
Average

Current
(redundant)b

Perez-
Cano

QUASI-
RNP

DARS-
RNP

1E7K 22 0.042 0.008 0.008 0.004 0.993 0.280
1EC6 200 0.105 0.451 0.143 0.927 12.431 5.364
1F7U 5 0.977 0.250 1.856 0.435 1.136 0.191
1HC8 95 8.751 4.125 7.810 2.001 0.244 0.083
1JBR 74 1.642 1.139 1.239 0.393 0.054 0.123
1K8W 4 4.203 25.123 8.221 11.667 70.750 62.154
1KOG 1 4.260 37.349 8.914 50.386 99.144 99.927
1LNG 28 1.441 0.056 0.236 0.038 0.099 0.038
1M8W 278 0.218 0.034 0.169 0.177 0.004 0.058
1MFQ 3 61.118 2.150 27.844 3.649 41.139 50.730
1N78 7 11.345 18.764 13.394 18.071 70.010 13.620
1U0B 6 14.204 10.462 4.572 7.399 4.137 1.632
1U63 48 0.177 0.099 0.103 0.046 0.129 0.095
1WPU 222 0.478 0.189 0.439 3.053 0.107 0.040
1WSU 465 0.022 0.119 0.018 0.113 2.718 2.124
2BTE 14 1.304 0.534 0.613 0.276 0.250 0.609
2FMT 9 0.030 0.788 0.026 0.695 2.257 1.914
2HW8 36 1.374 0.905 1.697 0.709 4.494 5.036
2JEA 642 0.002 0.008 0.002 0.006 4.342 1.090
2PJP 141 0.067 0.179 0.081 0.119 0.069 0.026

2QUX 17 0.629 1.257 0.435 0.621 3.538 2.607
Mean 5.352 4.952 3.706 4.799 15.145 11.797

	 25	
	

relative rank, the current scenario has the best rank, 27.844% for 1MFQ. This means that

native-like structure is always among top 27.844% in the current scenario.

3.3. Potentials for Current Scenario

3.3.1. General. All 720 potentials for the 9 categories (see Figure 1 and 5) of

the current scenario (4 bases × 20 canonical amino acid × 9 categories) are plotted in

Figure 6 (see Appendix B for details). The abscissa is the category type and ordinate

represents calculated contact potential energy.

Figure 6. All potentials for current scenario. Abscissa represents category from 1 to 9,
and ordinate represents potential energy. Red and blue points represent potentials
involving Arg and Lys, respectively. Potentials for missing contacts are not shown.
	
 Each category has 80 potentials (20 canonical amino acid, 4 bases). The strongest

interaction involves Arg in Category 3. Categories involving RNA backbone (Categories

3, 7, and 9) have strong interactions (negative potential values), and the strongest

−4
−2

0
2

Category

Po
te

nt
ia

l

1 2 3 4 5 6 7 8 9

Not HelixHelix

Base BackBoneBackBone BackBone

A−form Not A−form
MG

Not MG MG like
canonical

 bp

MG like
no canonical

 bp

Not MG like

	 26	
	

interaction in each category involves Arg (red point). Even in the categories involving

the base in RNA (Categories 1, 4, 5, and 8), the strongest interactions involve Arg. For

categories involving the base in RNA, only Category 8 has negative potential values.

Category 1 has an outlier (the strongest interaction) involving Arg-G. Category 4 has

two outliers involving Arg-G and Arg-A.	

3.3.2. Strong Interactions. For the current scenario (nine-category set of

potentials), 720 potentials were calculated. The strongest interactions from the 20

potentials among all the 720 possible ones for the nine categories are shown in Table 5.

The columns represent the rank (1 to 20) out of 720 possibilities, category (1 to 9), pair

type of the potential, and potential, respectively from the left. Most of the strongest

potentials (eighteen of the twenty) involve RNA backbone (Categories 3, 7, and 9). The

strongest interaction involved Arg-cytosine. However, interactions for Arg-cytosine,

Arg-uracil, Arg-guanine, and

Table 5. The strongest 20 interactions.
Rank Category Pair Type Potential Rank Category Pair Type Potential

1 3 ARG_C -1.039 11 3 ARG_G -0.646
2 3 LYS_C -1.025 12 9 ARG_G -0.627
3 7 ARG_C -0.914 13 7 ARG_U -0.613
4 9 ARG_U -0.882 14 7 ARG_G -0.604
5 9 ARG_C -0.828 15 3 ARG_A -0.603
6 7 ARG_A -0.807 16 8 ARG_C -0.600
7 9 ARG_A -0.786 17 8 ASN_U -0.581
8 3 TYR_C -0.736 18 7 LYS_C -0.509
9 3 ARG_U -0.725 19 3 HIS_A -0.503
10 7 TRP_U -0.714 20 3 LYS_G -0.485

Arg-adenine are of the similar strength (-0.646 to -1.039). For potentials involving bases,

potentials in Category 8 ranked 16th (Arg-cytosine), and 17th (Asn-uracil).	

3.3.3. Potentials between Arg and Four Bases. Because Arg is the dominant

amino acid residue in the calculated potentials (Table 5), potentials related to Arg were

	 27	
	

studied more closely. Figure 7 shows the potentials of Arg in the current scenario and

those in the aggregate average. The first four bars represent the potentials for Arg-

adenine, Arg-cytosine, Arg-guanine, and

Figure 7. The potentials of Arg for four bases in each class. The bars in each category
represent potentials of A, C, G, and U from the left (see the four bars in aggregate
average). The potentials from missing data such as Arg-adenine in Category 1 were
changed to zero in this plot for convenience. Bold column names indicate categories
including RNA backbone.

Arg-uracil, respectively, in aggregate average (an approach with no structure

classification). The other numbers labeled as abscissa represent Category 1 to 9.

The three categories involving backbone component of nucleotide (Categories 3,

7, and 9) have similar pattern, but potentials involving base component (Categories 1, 2,

4, 5, 6, and 8) look very different. The largest potential is Arg-cytosine in Category 1.

Potentials of Arg

Category

Po
te
nt
ia
l

−1
0

1
2

3
4

Aggregate
Average 1 2 3 4 5 6 7 8 9

ACGU

3	 7	 9	

	 28	
	

Potentials for Lysine have slightly different patterns (Figure 8). For example, in

Category 2, Arg has preference for uracil but Lys prefers adenine. For both Lys and Arg,

strongest interaction is with cytosine in Category 2, and they are of similar strength.

Figure 8. The potentials of Lys for four bases in each class. The bars in each class
represent potentials of A, C, G, and U from the left (see the four bars in aggregate
average). The potentials from missing data such as Lys-cytosine and Lys-uracil in
Category 1 were changed to zero in this plot for convenience. Bold column names
indicate categories including RNA backbone.

3.3.4. Potentials for Aggregate Average. The amino acid-nucleotide potentials

for aggregate average (without classification by RNA structure) do not utilize RNA

Potentials of Lys

Category

Po
te
nt
ia
l

−1
0

1
2

3
4

Aggregate
Average 1 2 3 4 5 6 7 8 9

ACGU

3	 7	 9	

	 29	
	

structure classifiers. The potentials for aggregate average are shown in Figure 9.

Figure 9. The potentials for aggregate average (potentials without classification by RNA
structure). The bars in each class represent potentials of A, C, G, and U from the left.
Amino acid is shown in descending order of the average potential for four bases.
Background color for a box indicates the characteristic for the amino acid. For example,
Arg, Lys, and His are positively charged residues and these boxes are painted in black.

Amino acids with at least one negative potential are Asp, Trp, Tyr, Ser, Thr, His,

Gln, Asn, Lys, and Arg. These potentials can be clustered into five groups in the order of

strong interactions: positively charged side chains (Arg, Lys), strongly polar side chains

(Asn, Gln, His), polar side chains (Ser, Thr, Trp, and Tyr), and negatively charged side

chains (Asp, Glu), and hydrophobic side chains. His in certain environments can be

positively charged.39

−1
0

1
2

3
Po

te
nt

ia
l

C
YS IL

E
LE

U
VA

L
PH

E
PR

O
AL

A
M

ET G
LY

G
LU

AS
P

TR
P

TY
R

SE
R

TH
R

H
IS

G
LN

AS
N

LY
S

AR
G

Positively Charged
Polar
Negatively Charged
Non Polar

	 30	
	

3.4. Success Rate for the Current Method

Success rate is calculated among all twenty-one-test complexes to evaluate

potentials. For instance, success rate is calculated for whether the native-like structure is

identified as belonging in the threshold demarcated set of energy/structures. The success

rates of the current, current redundant, and aggregate average are shown in the Figure 10.

Figure 10. Success rates of current scenario (red line) and other methods (Perez-Cano
(black dotted line), QUASI-RNP (blue dotted line), and DARS-RNP (red dotted line).
The abscissa represents the increasing thresholds starting with the 1 lowest energy
structure. The ordinate represents success rate at the threshold.
	
3.5. Success Rates for Other Scenarios

Success rates for current and QUASI-RNP, DARS-RNP, and Perez-Cano are

compared in Figure 11A. The current scenario potentials compete well with others.

Except for the middle range, current scenario performs best among the four sets of

1 10 100 1000 10000

0
20

40
60

80
10

0

Range from the Lowest(/50,373)

Su
cc

es
s

R
at

e
(%

)

Current
Aggregate Average
Current (redundant)

	 31	
	

potentials and achieves a 94.5% success rate at the threshold value 1000, which is best

among the four potentials.

Comparison of the success rate from the aggregate average and QUASI-RNP,

DARS-RNP, and Perez-Cano are shown in Figure 11B. All four approaches adopt

reduced representation for atom types. The success rate for the aggregate average (black

dotted line) is better than others except for the thresholds 50 to 200, and 600 to 3,000. At

the threshold 10,000, the current scenario and aggregate average approach indicated a

success rate of 95.24% where DARS-RNP and QUASI-RNP remained at 85.71%, and

Perez-Cano remained at 80.95%. Our current scenario and aggregate average show at

least comparable overall success rates.

	 32	
	

Figure 11. Plots of success rate as a function of threshold value. The abscissa represents
the increasing thresholds starting with the 1 lowest energy structure and the ordinate
represents success rate at the threshold. (A) Success rates of current scenario and others
(Perez-Cano, DARS-RNP, QUASI-RNP), and (B) success rates of aggregate average and
others (Perez-Cano, DARS-RNP, QUASI-RNP). The range is only from 1 to 10,000
among 50,373. A threshold 10,000, the right end, corresponds to 20% of the lowest
energy structures.

1 10 100 1000 10000

0
20

40
60

80
10

0

Range from the Lowest(/50,373)

Su
cc

es
s R

ate
 (%

)
Current
QUASI−RNP
DARS−RNP
Perez−Cano

1 10 100 1000 10000

0
20

40
60

80
10

0

Range from the Lowest(/50,373)

Su
cc

es
s

Ra
te

 (%
)

Aggregate Average
QUASI−RNP
DARS−RNP
Perez−Cano

(A)	

(B)	

	 33	
	

3.6. Score versus RMSD Analysis

 3.6.1. Analysis Guidelines. 	Investigating the discriminating ability of the

scoring function or potentials by plotting score versus RMSD is typical.32-34 Robertson

and Varani (2007) employed five complexes (1CVJ, 1FXL, 1URN, 1EC6, and 1JID) as a

bound test set, and generated poses with Rosetta (Chen et al., 2004). Also, they used

twenty-one complexes and generated poses by MD (molecular dynamics). The docking

coordinates are for bound chains, so both the RNA and protein chain belong to the same

PDB entry. They examined the plot of score versus RMSD for poses of those five

complexes. The R-squared value and Z-score were calculated only for the near native

poses (RMSD < 3.0 Å). They compared their distance-dependent potentials and number

of contacts with Coulomb potentials and the Rosetta HB potentials,40 as well as the

AMBER potentials.41 R-squared values for the five bound complexes ranged from 0.15

to 0.46 (0.41 for 1CVJ, 0.20 for 1FXL, 0.15 for URN, 0.46 for 1EC6, 0.17 for 1JID, with

p-values less than 0.05).

 Tuszynska and Bujnicki (2011) tested the same poses as those in Chen et

al. (2004) for five complexes (1CVJ, 1FXL, 1URN, 1EC6, and 1JID) and tested here are

additional poses generated by GRAMM for eight pairs of unbound RNA and protein and

five RNA-protein complexes. They compared their potentials (QUASI-RNP and

DARS-RNP) with Varani potentials40 and Perez-Cano potentials.30 Also they analyzed

the unbound docking set for eight complexes (3BSO, 1WPU, 2JEA, 1E7K, 2PXV,

1LNG, 2R8S, and 2RKJ) and bound docking set for five complexes (1CVJ, 1FXL, 1URN,

1EC6, and 1JID) using GRAMM for docking. They calculated correlation coefficients

for poses with three different RMSD thresholds (5 Å, 10 Å, and 20 Å threshold).

	 34	
	

Overall, the mean of the five correlation coefficients for DARS-RNP and QUASI-RNP

was comparable to those involving the Perez-Cano potential. For example, the mean

correlation coefficients for the unbound test set ranged from 0.23 to 0.37, while those for

Varani and Perez-Cano ranged from -0.04 to 0.06 (at 10 Å threshold, p-value is greater

than 0.05 in 2RKJ, 2R8S, 1LNG, and 2PXV).

 Huang and Zou (2014) also used the bound docking set for the five Chen

complexes.40 Score versus RMSD plots were examined, and correlation coefficients for

near-native poses were calculated with three different RMSD thresholds (5 Å, 10 Å, and

20 Å threshold). They also tested three other docking sets. They compared their

potential ITScore-PR with DARS-RNP, QUASI-RNP, and dRNA.31 Overall, for the five

Chen complexes, at the RMSD threshold is 5 Å, the correlation coefficient for

ITScore-PR was better (0.86) than others (dRNA 0.81, DARS-RNP 0.81, QUASI-RNP

0.80) with a p-value less than 0.05.	

	 3.6.2. Analysis in the Current Scenario. Shown in Figure 12 are examples of

three patterns involving plots of RMSD (abscissa) versus score in kcal/mol (ordinate).

The rest of the plots are shown in Appendix C. Each pose as calculated by FTDock can

be binary classified, with RMSD value less than 10 Å (red circle) or RMSD value greater

than or equal to10 Å (black circle). Slopes and p-values for the regression lines are

shown in Table 6, and each RNA-protein complex is classified into three types depending

on the combination of the sign of the two slopes for the two groups. TypeⅠhas two

positive slopes for regression lines. TypeⅡ has a positive slope for the low RMSD sets

but is negative for the high

	 35	
	

Figure 12. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario. (A) 1E7K (y=0.320x+0.699, R2=0.021, p-value=0.062; y=0.063x+2.789,
R2=0.019, p-value<0.001), (B) 1N78 (y=0.649x+27.683, R2=0.044, p-value=0.651;
y=-0.256x+66.265, R2=0.011, p-value<0.001), (C) 1HC8 (y=-0.269x+6.619, R2=0.036,
p-value<0.066; y=0.036x+2.881, R2=0.007, p-value<0.001), which are the examples for
typeⅠ, Ⅱ, and Ⅲ, respectively. The red circles represent poses whose RMSD values are
less than 10 Å and the black circles are the poses whose RMSD values equal or are more
than 10 Å. The slopes and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

RMSD ones. Type Ⅲ has a negative slope for the low RMSD sets. For example, if both

of the low and high RMSD sets have positive slopes for the regression lines, the complex

is typeⅠ(Figure 12). The current scenario set has ten complexes for typeⅠ, three

	 36	
	

complex for typeⅡ, and seven complexes for typeⅢ. Note that 1KOG cannot be

assigned to any type because it has only one pose for low RMSD.

Current
RMSD < 10 Å RMSD ≥ 10 Å

Type Number
of Poses

Slope p-value R2 Slope p-value R2

1 1E7K 22 0.320 0.062 0.021 0.063 < 0.001 0.019 Ⅰ
2 1EC6 200 0.048 0.870 < 0.001 -0.041 < 0.001 0.001 Ⅱ
3 1F7U 5 1.234 0.072 0.712 0.027 < 0.001 0.007 Ⅰ
4 1HC8 95 -0.269 0.066 0.036 0.036 < 0.001 0.007 Ⅲ
5 1JBR 74 -0.016 0.870 < 0.001 0.084 < 0.001 0.051 Ⅲ
6 1K8W 4 -6.605 0.813 0.035 -0.288 < 0.001 0.014 Ⅲ
7 1KOG 1 - - - 0.438 < 0.001 0.040 -
8 1LNG 28 -0.250 0.397 0.028 0.063 < 0.001 0.029 Ⅲ
9 1M8W 278 0.207 < 0.001 0.049 0.029 < 0.001 0.015 Ⅰ
10 1MFQ 3 -0.611 0.923 0.014 0.028 < 0.001 0.011 Ⅲ
11 1N78 7 0.649 0.651 0.044 -0.256 < 0.001 0.011 Ⅱ
12 1U0B 6 0.360 0.824 0.014 0.024 < 0.001 0.005 Ⅰ
13 1U63 48 -0.781 0.019 0.113 0.045 < 0.001 0.015 Ⅲ
14 1WPU 222 0.098 0.095 0.013 <0.001 0.970 < 0.001 Ⅰ
15 1WSU 465 0.164 0.239 0.003 0.017 < 0.001 0.008 Ⅰ
16 2BTE 14 6.348 < 0.001 0.765 0.007 < 0.001 0.001 Ⅰ
17 2FMT 9 -1.736 0.340 0.130 0.022 < 0.001 0.008 Ⅲ
18 2HW8 36 0.103 0.854 < 0.001 0.109 < 0.001 0.061 Ⅰ
19 2JEA 642 0.152 0.079 0.005 -0.018 < 0.001 0.004 Ⅱ
20 2PJP 141 0.737 0.039 0.030 0.117 < 0.001 0.096 Ⅰ
21 2QUX 17 1.017 0.004 0.431 0.052 < 0.001 0.011 Ⅰ
Table 6. Summary of regression lines for current scenario. Poses are separated into two
groups, poses: the poses whose RMSD are less than 10 Å, and the poses whose RMSD
values are greater than or equal to 10 Å. Regression line is drawn for each of the two
groups, and the slope and the p-value for both of the regression lines are determined.
Column 2 is the PDB entry for the twenty-one test complexes. Column 3 is the number
of poses whose RMSD value is less than 10 Å, and Column 4 is the slope for the
regression line. Column 5 is the p-value for the regression line. Columns 6 and 7 are the
slope and p-value for the regression line drawn on the poses whose RMSD values are
greater than or equal to 10 Å.
	
 TypeⅠ(ten complexes), identified out of assigned twenty RNA-protein

complexes, is consistent with reasonably distributed decoys.33 The slope for low RMSD

is greater than 0.01, and the one for high RMSD is positive and smaller than the one for

the low RMSD (except 2HW8). The most favorable case is the 2BTE whose slope for

	 37	
	

low RMSD sets are 6.348, highest among all the slopes, with a p-value less than 0.001.

Note that four among the ten complexes have p-values less than 0.05 (see Table 6). All

R-squared values are less than 0.10 for the high RMSD sets. Low RMSD sets have

slightly larger R-squared values (three complexes has R-squared values more than 0.1),

and notably 2BTE has the largest R-squared value (0.765). TypeⅠis assumed preferable

to other types.

 TypeⅡ has three complexes (1EC6, 1N78 and 2JEA), and has a negative slope

for high RMSD sets and a positive one for low RMSD ones. Even though the slope for

low RMSD sets is positive, this type is problematic. The p-value for the high RMSD sets

is less than 0.001 in the three complexes.

 TypeⅢ(seven complexes) has a negative slope for low RMSD sets. Especially,

1K8W have very steep regression lines (-6.605). R-squared values for high RMSD sets

 are all smaller than 0.06, and those for low RMSD ones are relatively large. All the

p-values for low RMSD sets are larger than 0.05, and all the high RMSD sets have a

small p-values less than 0.05 (except 1U63). Note that all complexes have a small

number (<100) of poses for low RMSD sets.	

 3.6.3. Score versus RMSD Analysis. The analysis of energy score versus

RMSD with regression lines for both the current showed that about half of the complexes

are problematic because the slopes for the regression lines are almost zero or negative.

This is in part due to the limited sampling by FTDock that includes rigid molecules in

docking and no energy optimization. For instance, in the analysis for current scenario

(Table 6), when the number of the native-like structures (RMSD < 10 Å) is greater than

100, the slope is always positive (1EC6, 1M8W, 1WPU, 1WSU, 2JEA, and 2PJP).

	 38	
	

However, the slope can be negative when the number of the native-like structures is less

than 100. An example of a negative slope for the low RMSD group can be seen in the

literature, too.33 For example, the regression line of poses for 1EC6 is almost a flat slope

despite the fact that the docking pose was generated by ROSETTA which should provide

a better sampling of poses.

4. DISCUSSION

4.1. Interactions for Arginine

Category 1 (A-form helix, major groove) has a strong preference for Arg-guanine,

and Category 4 (not A-form helix, major groove, canonical base pair) also has a strong

preference for Arg-guanine and Arg-adenine. The strong interactions of Arg-guanine are

likely due to the ionic effect between the positively charged amino group of Arg and the

partial negative charge on nitrogen or oxygen atoms of guanine and adenine.42 However,

no significant preference was indicated for categories 3, 7, and 9. Moreover, because Arg

has an ability to make hydrogen-bonding networks with bases, phosphates, and sugars, it

makes contacts with not only backbones but also with base edges.43 Bidentate

interactions for Arg-guanine also augment the potential.44 Luscombe et al. observed four

types of bidentate interactions between guanine and Arg. In addition, the longer side

chain of Arg is suitable for the deep and narrow major groove for the A-form helix of

RNA. Our results are consistent with the notion that guanine in the A-form helix for

RNA has uniquely strong interactions with Arg.29

4.2. Comparison with Cutting-edge Density Function Potentials

 A new scoring function called ITScore-PR was recently developed using a density

function approach calculated from statistical mechanics.32 It calculates all-atom and

	 39	
	

distance-dependent atomic interaction potentials. The unique feature of the scoring

function is that the potentials function is derived from the distribution function refined

with poses generated by ZDock. Courtesy of Dr. Zou, we tested ITScore-PR32 on our

twenty-one test complexes, and its mean best rank in percentile on our twenty-one test

complexes was 2.430%, which is better than our current scenario (5.352%). ITScore-PR

defines atom types with reduced representation. For example, an alpha carbon of any

amino acid is represented by "C3A," and "NZ" of Lys is represented as "N3+." Note that

the alpha carbon is included in the contacts in their training set, which means their

potential includes van der Waals force. The distance-dependent potentials are calculated

using poses generated by ZDOCK in addition to 175 RNA-protein native complex

structures. The number of classifications for ITScore-PR is 14,400 (12 RNA atom types,

20 protein atom types, and 60 bins for distance). However, their evaluation of the test set

is more limited in its grouping of sets of atoms.

4.3. Redundancy in a Training Set

 Current scenario without filtering and clustering had a better mean rank (3.706%)

than current scenario (5.352%). The redundant training set (267,330 contacts) was more

than fifteen times larger than the non-redundant training set (16,031 contacts). This

result suggests that clustering and filtering allow a larger set of non-contact potentials and

therefore are not allowing any relative scaling of those potentials with respect to amino

acid type. However, preliminary results indicate that if we apply the 70% protein identity

filter used in Perez-Cano, our ranking results for current scenario exceed those for

Perez-Cano.

	 40	
	

4.4. Limitations of FTDock and All-atom Potentials

 The score versus RMSD analysis showed that seven of twenty-one test set

complexes had negative slopes for regression lines in native-like

structures (RMSD < 10 Å), indicating limited sampling by FTDock. Therefore, the

comparison with other approaches may have drawbacks. This may come from the

restricted ability for FTDock to generate realistic alternative poses. This problem in

samplinig may be overcome by using a more sophisticated docking program such as

Rosetta which adopts hierarchical modeling, flexible back bone docking and optimizing

side chains.33 However, when we apply our most recent all-atom potential to Rosetta,20

we will not be able to use the potential in the first sampling step, the crucial step for good

prediction, because the first step is too coarse-grained. This issue also may apply to

using ITScore-PR.

5. CONCLUSIONS

 This project has successfully developed pairwise nucleotide-amino acid

potentials for protein-RNA binding and quantitatively analyzed interactions between

RNA and protein, noting the following:

• The analysis of statistical potentials confirmed the strong preference for Arg-guanine

in the major groove of A-form helices.

• Moreover, the dominant Arg interactions are involved in the backbone.

• We introduced a classifier of RNA structures, and it improved the prediction when we

allowed redundancy and increased the size of the training set.

• Comparison with other approaches such as ITScore-PR may not be adequate because

of the limited capability of FTDock to generate native-like binding poses.

	 41	
	

6. FUTURE STUDIES

 Continuation of these methods should include the following:

• Use docking programs such as Rosetta that include flexible docking and side chain

repacking to fully evaluate our potentials.

• Incorporate our potentials into Rosetta (aggregate average for the first step and

suitable all-atom potential to the second step).

• Explore the additional arguments such as distance and bonding angles to our

potentials and evaluate them.

• Explore other potentials including van der Waals forces.

• Group together OP1 and OP2 (and NH1 and NH2), and recalculate potentials.

• In addition, better scaling for potentials with no actual hydrogen bonds identified

should be explored.

	 42	
	

REFERENCES

(1) Liu, B.; Diamond, J. M.; Mathews, D. H.; Turner, D. H. Fluorescence competition
and optical melting measurements of RNA three-way multibranch loops provide a
revised model for thermodynamic parameters. Biochemistry 2011, 50, 640-653.

(2) Cereda, M.; Pozzoli, U.; Rot, G.; Juvan, P.; Schweitzer, A.; Clark, T.; Ule, J. RNA
motifs: prediction of multivalent RNA motifs that control alternative splicing. Genome
Biol. 2014, 15, R20-2014-15-1-r20.

(3) Wang, Y. X.; Zuo, X.; Wang, J.; Yu, P.; Butcher, S. E. Rapid global structure
determination of large RNA and RNA complexes using NMR and small-angle X-ray
scattering. Methods 2010, 52, 180-191.

(4) Flores, J. K.; Kariawasam, R.; Gimenez, A. X.; Helder, S.; Cubeddu, L.; Gamsjaeger,
R.; Ataide, S. F. Biophysical characterisation and quantification of nucleic acid-protein
interactions: EMSA, MST and SPR. Curr. Protein Pept. Sci. 2015, 16, 727-734.

(5) Ponchon, L.; Catala, M.; Seijo, B.; El Khouri, M.; Dardel, F.; Nonin-Lecomte, S.;
Tisne, C. Co-expression of RNA-protein complexes in Escherichia coli and applications
to RNA biology. Nucleic Acids Res. 2013, 41, e150.

(6) Shi, X.; Huang, L.; Lilley, D. M.; Harbury, P. B.; Herschlag, D. The solution
structural ensembles of RNA kink-turn motifs and their protein complexes. Nat. Chem.
Biol. 2016, 12, 146-152.

(7) Gong, Z.; Schwieters, C. D.; Tang, C. Conjoined use of EM and NMR in RNA
structure refinement. PLoS One 2015, 10, e0120445.

(8) Kligun, E.; Mandel-Gutfreund, Y. The role of RNA conformation in RNA-protein
recognition. RNA Biol. 2015, 12, 720-727.

(9) Low, J. T.; Weeks, K. M. SHAPE-directed RNA secondary structure prediction.
Methods 2010, 52, 150-158.

(10) Cao, S.; Chen, S. J. Physics-based de novo prediction of RNA 3D structures. J. Phys.
Chem. B 2011, 115, 4216-4226.

(11) Kerpedjiev, P.; Honer Zu Siederdissen, C.; Hofacker, I. L. Predicting RNA 3D
structure using a coarse-grain helix-centered model. RNA 2015, 21, 1110-1121.

(12) Lorenz, R.; Wolfinger, M. T.; Tanzer, A.; Hofacker, I. L. Predicting RNA secondary
structures from sequence and probing data. Methods 2016, 103, 86-98.

(13) Biesiada, M.; Pachulska-Wieczorek, K.; Adamiak, R. W.; Purzycka, K. J.
RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 2016,
103, 120-127.

	 43	
	

(14) Boudard, M.; Bernauer, J.; Barth, D.; Cohen, J.; Denise, A. GARN: Sampling RNA
3D structure space with game theory and knowledge-based scoring strategies. PLoS One
2015, 10, e0136444.

(15) Pusey, M. L.; Liu, Z. J.; Tempel, W.; Praissman, J.; Lin, D.; Wang, B. C.; Gavira, J.
A.; Ng, J. D. Life in the fast lane for protein crystallization and X-ray crystallography.
Prog. Biophys. Mol. Biol. 2005, 88, 359-386.

(16) Swails, J.; Zhu, T.; He, X.; Case, D. A. AFNMR: automated fragmentation quantum
mechanical calculation of NMR chemical shifts for biomolecules. J. Biomol. NMR 2015,
63, 125-139.

(17) Bowie, J. U.; Luthy, R.; Eisenberg, D. A method to identify protein sequences that
fold into a known three-dimensional structure. Science 1991, 253, 164-170.

(18) Baker, D.; Sali, A. Protein structure prediction and structural genomics. Science
2001, 294, 93-96.

(19) Kelley, L. A.; Sternberg, M. J. Protein structure prediction on the web: a case study
using the Phyre server. Nat. Protoc. 2009, 4, 363-371.

(20) Guilhot-Gaudeffroy, A.; Froidevaux, C.; Aze, J.; Bernauer, J. Protein-RNA
complexes and efficient automatic docking: expanding RosettaDock possibilities. PLoS
One 2014, 9, e108928.

(21) Kaufmann, K. W.; Lemmon, G. H.; Deluca, S. L.; Sheehan, J. H.; Meiler, J.
Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry
2010, 49, 2987-2998.

(22) Dill, K. A.; MacCallum, J. L. The protein-folding problem, 50 years on. Science
2012, 338, 1042-1046.

(23) Bale, J. B.; Gonen, S.; Liu, Y.; Sheffler, W.; Ellis, D.; Thomas, C.; Cascio, D.;
Yeates, T. O.; Gonen, T.; King, N. P.; Baker, D. Accurate design of megadalton-scale
two-component icosahedral protein complexes. Science 2016, 353, 389-394.

(24) Ke, A.; Doudna, J. A. Crystallization of RNA and RNA-protein complexes. Methods
2004, 34, 408-414.

(25) Cheng, Y. Single-Particle Cryo-EM at Crystallographic Resolution. Cell 2015, 161,
450-457.

(26) Tovchigrechko, A.; Vakser, I. A. GRAMM-X public web server for protein-protein
docking. Nucleic Acids Res. 2006, 34, W310-4.

(27) Katchalski-Katzir, E.; Shariv, I.; Eisenstein, M.; Friesem, A. A.; Aflalo, C.; Vakser,
I. A. Molecular surface recognition: determination of geometric fit between proteins and

	 44	
	

their ligands by correlation techniques. Proc. Natl. Acad. Sci. U. S. A. 1992, 89,
2195-2199.

(28) Gabb, H. A.; Jackson, R. M.; Sternberg, M. J. Modelling protein docking using
shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 1997,
272, 106-120.

(29) Lustig, B.; Arora, S.; Jernigan, R. L. RNA base-amino acid interaction strengths
derived from structures and sequences. Nucleic Acids Res. 1997, 25, 2562-2565.

(30) Perez-Cano, L.; Solernou, A.; Pons, C.; Fernandez-Recio, J. Structural prediction of
protein-RNA interaction by computational docking with propensity-based statistical
potentials. Pac. Symp. Biocomput. 2010, 293-301.

(31) Wang, J.; Zhao, Y.; Zhu, C.; Xiao, Y. 3dRNAscore: a distance and torsion angle
dependent evaluation function of 3D RNA structures. Nucleic Acids Res. 2015, 43, e63.

(32) Huang, S. Y.; Zou, X. A knowledge-based scoring function for protein-RNA
interactions derived from a statistical mechanics-based iterative method. Nucleic Acids
Res. 2014, 42, e55.

(33) Robertson, T. A.; Varani, G. An all-atom, distance-dependent scoring function for
the prediction of protein-DNA interactions from structure. Proteins 2007, 66, 359-374.

(34) Tuszynska, I.; Bujnicki, J. M. DARS-RNP and QUASI-RNP: new statistical
potentials for protein-RNA docking. BMC Bioinformatics 2011, 12, 348-2105-12-348.

(35) Burge, R. G.; Martinez-Yamout, M. A.; Dyson, H. J.; Wright, P. E. Structural
characterization of interactions between the double-stranded RNA-binding zinc finger
protein JAZ and nucleic acids. Biochemistry 2014, 53, 1495-1510.

(36) Lu, X. J.; Olson, W. K. 3DNA: a software package for the analysis, rebuilding and
visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003, 31,
5108-5121.

(37) McDonald, I. K.; Thornton, J. M. Satisfying hydrogen bonding potential in proteins.
J. Mol. Biol. 1994, 238, 777-793.

(38) Bailor, M. H.; Mustoe, A. M.; Brooks, C. L.,3rd; Al-Hashimi, H. M. 3D maps of
RNA interhelical junctions. Nat. Protoc. 2011, 6, 1536-1545.

(39) Chi, Y. C.; Armstrong, G. S.; Jones, D. N.; Eisenmesser, E. Z.; Liu, C. W. Residue
histidine 50 plays a key role in protecting alpha-synuclein from aggregation at
physiological pH. J. Biol. Chem. 2014, 289, 15474-15481.

(40) Chen, Y.; Kortemme, T.; Robertson, T.; Baker, D.; Varani, G. A new
hydrogen-bonding potential for the design of protein-RNA interactions predicts specific
contacts and discriminates decoys. Nucleic Acids Res. 2004, 32, 5147-5162.

	 45	
	

(41) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development
and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157-1174.

(42) Abraham, R. J.; Smith, P. E. Charge calculations in molecular mechanics 6: the
calculation of partial atomic charges in nucleic acid bases and the electrostatic
contribution to DNA base pairing. Nucleic Acids Res. 1988, 16, 2639-2657.

(43) Burd, C. G.; Dreyfuss, G. Conserved structures and diversity of functions of
RNA-binding proteins. Science 1994, 265, 615-621.

(44) Luscombe, N. M.; Laskowski, R. A.; Thornton, J. M. Amino acid-base interactions:
a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic
Acids Res. 2001, 29, 2860-2874.

	 46	
	

APPENDICES

Appendix A

Table A. 1. Frequency of contacts for current scenario. The first row indicates
categories. Columns 1 and 10 indicate amino acid-nucleotide pair.

 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
ALA_A 0 0 5 0 0 0 27 6 21 LEU_A 0 0 7 0 1 0 11 13 7
ALA_C 1 0 8 0 0 1 22 4 6 LEU_C 0 0 11 0 0 0 10 13 2
ALA_G 0 1 11 11 0 12 28 10 13 LEU_G 0 1 8 0 0 0 18 18 4
ALA_U 0 0 12 0 0 0 22 7 28 LEU_U 0 0 1 0 0 0 8 7 5
ARG_A 5 2 82 62 4 27 508 113 440 LYS_A 2 7 58 3 3 5 308 31 222
ARG_C 20 14 500 6 0 29 674 161 237 LYS_C 0 4 512 2 0 20 356 89 103
ARG_G 60 8 263 98 46 10 584 129 212 LYS_G 2 7 210 25 46 14 313 49 102
ARG_U 3 20 109 15 18 27 303 104 311 LYS_U 0 2 75 1 11 7 222 49 126
ASN_A 1 3 18 3 4 10 64 43 44 MET_A 0 0 3 0 0 0 5 6 2
ASN_C 1 5 56 7 0 12 65 17 22 MET_C 0 1 9 0 0 2 18 4 4
ASN_G 0 13 52 8 2 28 88 30 21 MET_G 0 5 7 0 0 14 16 2 0
ASN_U 0 6 19 2 1 12 43 104 67 MET_U 0 0 1 0 0 3 6 2 2
ASP_A 0 0 8 0 2 1 13 30 25 PHE_A 0 0 0 0 1 0 2 7 19
ASP_C 1 1 20 4 0 2 18 20 28 PHE_C 0 0 2 0 0 0 2 3 3
ASP_G 0 25 22 0 6 36 35 59 16 PHE_G 0 1 6 0 0 0 2 15 4
ASP_U 0 0 13 0 0 0 19 35 19 PHE_U 0 0 1 0 0 0 2 12 5
CYS_A 0 0 0 0 0 0 4 3 1 PRO_A 0 0 1 0 0 1 13 4 8
CYS_C 0 0 0 1 0 0 1 0 0 PRO_C 0 2 5 0 0 0 10 4 5
CYS_G 0 0 1 0 0 0 1 0 0 PRO_G 3 4 10 3 0 11 8 1 7
CYS_U 0 0 0 0 0 0 0 2 2 PRO_U 0 0 3 0 0 0 16 6 8
GLN_A 2 8 19 1 1 2 39 33 41 SER_A 2 3 17 2 7 8 66 45 88
GLN_C 4 7 54 3 1 13 59 13 31 SER_C 2 13 79 9 1 20 129 44 38
GLN_G 1 21 56 4 1 58 92 19 17 SER_G 0 13 60 4 7 40 100 20 22
GLN_U 0 7 36 0 0 6 42 50 45 SER_U 3 0 14 2 3 6 48 30 54
GLU_A 1 0 10 0 1 0 21 33 19 THR_A 0 1 9 1 0 4 61 58 61
GLU_C 0 1 15 5 0 2 21 31 11 THR_C 0 4 90 0 0 4 83 37 30
GLU_G 0 10 26 3 2 22 34 88 25 THR_G 1 8 44 2 0 20 81 27 39
GLU_U 0 6 12 0 0 1 19 14 23 THR_U 1 1 29 0 3 0 52 20 65
GLY_A 0 2 14 0 3 2 60 18 62 TRP_A 0 0 1 0 0 0 7 2 11
GLY_C 4 2 40 3 0 3 84 17 16 TRP_C 0 0 4 1 0 0 9 5 4
GLY_G 11 27 47 6 0 33 271 13 44 TRP_G 0 3 2 0 0 1 24 3 2
GLY_U 0 0 21 2 0 0 48 36 37 TRP_U 0 0 3 0 1 1 49 1 3
HIS_A 0 2 23 0 1 9 33 10 44 TYR_A 0 3 6 0 3 3 89 65 76
HIS_C 1 3 36 0 0 7 40 22 21 TYR_C 0 1 135 2 2 0 103 9 19
HIS_G 2 4 46 3 7 12 50 14 34 TYR_G 0 3 27 0 2 11 49 19 30
HIS_U 0 2 15 0 1 3 29 22 38 TYR_U 0 1 3 1 0 1 29 14 44
ILE_A 0 0 4 0 0 0 4 25 3 VAL_A 0 0 1 0 0 0 14 14 6
ILE_C 1 0 1 0 0 0 4 7 6 VAL_C 0 0 20 0 0 0 10 6 4
ILE_G 0 0 4 0 0 0 9 7 6 VAL_G 0 3 13 0 0 2 33 12 7
ILE_U 0 0 0 0 0 0 8 10 7 VAL_U 0 0 3 0 0 0 8 3 5

	 47	
	

Appendix B

Figure B. 1. Potentials for current scenario Category 1 (potentials for missing data is set
as 0). Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and
blue bars for each amino acid. Potentials for missing contacts are not shown in this plot.
These potentials are calculated from the whole training set (without excluding any test
set).

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

1
AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U

	 48	
	

Figure B. 2. Potentials for current scenario Category 2 (potentials for missing data is set
as 0). Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and
blue bars for each amino acid. Potentials for missing contacts are not shown in this plot.
These potentials are calculated from the whole training set (without excluding any test
set).

.

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

2

AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U

	 49	
	

Figure B. 3. Potentials for current scenario Category 3 (potentials for missing data is set
as 0). Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and
blue bars for each amino acid. Potentials for missing contacts are not shown in this plot.
These potentials are calculated from the whole training set (without excluding any test
set).

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

3

AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U

	 50	
	

Figure B. 4. Potentials for current scenario Category 4 (potentials for missing data is set
as 0). Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and
blue bars for each amino acid. Potentials for missing contacts are not shown in this plot.
These potentials are calculated from the whole training set (without excluding any test
set).

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

4

AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U

	 51	
	

Figure B. 5. Potentials for current scenario Category 5 (potentials for missing data is set
as 0). Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and
blue bars for each amino acid. Potentials for missing contacts are not shown in this plot.
These potentials are calculated from the whole training set (without excluding any test
set).

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

5

AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U

	 52	
	

Figure B. 6. Potentials for current scenario Category 6 (potentials for missing data is set
as 0). Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and
blue bars for each amino acid. Potentials for missing contacts are not shown in this plot.
These potentials are calculated from the whole training set (without excluding any test
set).

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

6

AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U

	 53	
	

Figure B. 7. Potentials for current scenario Category 7 (potentials for missing data is set
as 0). Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and
blue bars for each amino acid. Potentials for missing contacts are not shown in this plot.
These potentials are calculated from the whole training set (without excluding any test
set).

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

7

AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U

	 54	
	

Figure B. 8. Potentials for current scenario Category 8 (potentials for missing data is set
as 0). Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and
blue bars for each amino acid. Potentials for missing contacts are not shown in this plot.
These potentials are calculated from the whole training set (without excluding any test
set).

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

8

AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U

	 55	
	

Figure B. 9. Potentials for current scenario Category 9 (potentials for missing data is set
as 0). Potentials for A, C, G, and U are indicated, respectively, by black, green, red, and
blue bars for each amino acid. Potentials for missing contacts are not shown in this plot.
These potentials are calculated from the whole training set (without excluding any test
set).

−2
−1

0
1

2
3

4
Po
te
nt
ia
l

9

AL
A

C
YS AS
P

G
LU

PH
E

G
LY H
IS IL
E

LY
S

LE
U

M
ET

AS
N

PR
O

G
LN

AR
G

SE
R

TH
R

VA
L

TR
P

TY
R

A
C
G
U

	 56	
	

Appendix C

Figure C. 1. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1EC6. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 57	
	

Figure C. 2. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1F7U. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 58	
	

Figure C. 3. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1JBR. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 59	
	

Figure C. 4. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1K8W. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 60	
	

Figure C. 5. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1LNG. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 61	
	

Figure C. 6. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1KOG. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 62	
	

Figure C. 7. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1M8W. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 63	
	

Figure C. 8. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1MFQ. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 64	
	

Figure C. 9. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1U0B. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 65	
	

Figure C. 10. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1U63. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 66	
	

Figure C. 11. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1WPU. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 67	
	

Figure C. 12. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 1WSU. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 68	
	

Figure C. 13. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2BTE. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 69	
	

Figure C. 14. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2FMT. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 70	
	

Figure C. 15. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2HW8. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 71	
	

Figure C. 16. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2JEA. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 72	
	

Figure C. 17. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2PJP. The red circles represent poses whose RMSD values are less than 10 Å
and the black circles are the poses whose RMSD values equal or greater than 10 Å. The
slopes, R-squared, and p-values for the regression lines for the red and black circles are
shown above the scatter plots.

	 73	
	

Figure C. 18. Scatter plots of score as a function of RMSD for 50,373 poses in current
scenario of 2QUX. The red circles represent poses whose RMSD values are less than 10
Å and the black circles are the poses whose RMSD values equal or greater than 10 Å.
The slopes, R-squared, and p-values for the regression lines for the red and black circles
are shown above the scatter plots.

	 74	
	

Appendix D Tables and Figures for Unpublished Results

Table D. 1. Classification summary of all scenarios including unpublished results

 Number of Classification
Total Number

of
Classifications

Mean Best
Rank (%)

Protein RNA

Scenario
Amino
Acid
Type

Atom
Type Structure Base

Type
Atom
Type Structure

Current 20 - - 4 - 9 720 5.352
PRat11 20 17 - 4 15 - 20,400 6.050
PRat17 20 17 - 4 15 7 142,800 11.972
PRat71 20 17 7 4 15 - 142,800 5.216
PRat77 20 17 7 4 15 7 999,600 5.872
PR77 20 - 7 4 - 7 3,920 7.275

Figure D. 1. Best (red), mean (blue), and worst (black) rankings for all scenarios over
twenty-one test complexes. For example, the mean rank for PRat11 (1.114%) is the
average ranking among the twenty-one best rankings for the scenario.

100

80

60

40

20

0

R
an

k(
%

)

ITS
co
re
−P
R

Curr
en

t(r
ed

)
Pe
re
z

AV
G

PRat7
1

Curr
en

t
PRat7

7
PRat1

1
PR77
DA
RS

PRat1
7

QU
AS
I

Best Rank
Mean Rank
Worst Rank

	 75	
	

Figure D. 2. Chart Flow to Calculate Propensity for PRat11. The pfasta.txt and rfasta.txt
are fasta format files that have structural identification numbers added by pfasta.py and
parseDSSR.py. Protein structure was given by STRIDE.

	 76	
	

Figure D. 3. The equation to calculate propensity for PRat77 (top). NC, NP, and NR
indicate number of contacts, amino acids (or atoms in proteins), and bases (or atoms in
RNA), respectively. Variables for the protein side(p1, p2, and p3) are described in the
bottom-left box. Variables for the RNA side (r1,r2, and r3) are described in the bottom-
right box. NC(p1, p2, p3, r1, r2, r3) indicates the number of contacts classified by those
six variables and NC (all) indicates the number of all contacts in training set. NP indicates
the number of atoms in proteins classified by p1, p2 and p3. NR indicates the number of
atoms in RNA classified by r1, r2, and r3.

OH,OG1,OG,OE2,OE1,OD2,OD1,O,	
NZ,NH2,NH1,NE2,NE1,NE,ND2,ND1,N	

OP2,OP1,O6,O5',O4',O4,O3',	
O2',O2,N7,N6,N4,N3,N2,N1	

	 77	
	

Figure D. 4. Equations for scenarios (PRat17, PRat71, PRat11, PR77, and at77).
Variables NP and NR indicate a number of atoms (atom name is denoted by p2 and r2) in
the amino acid (p1) and the base (r1), respectively, but for PR77, NP and NR indicate a
number of amino acids (p1) and bases (r1).

Appendix E Python Program Listings

Program: transformPISCES.py

path = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/PISCES/30letter/'
previousID1,previousID2 = '',''
i = 0

with open(path+'similarityNumed.txt','w+') as fo:
 with open(path+'similarity25rev.txt') as fi:
 for ilines in fi.readlines():
 ilinelist = ilines.split()

 # skip if same as the line above
 if previousID1 == ilinelist[1] and previousID2 == ilinelist[2]:
 continue

 # write both chainIDs if at the first line of the cluster
 elif previousID1 != ilinelist[1] or previousID1 == '':
 i += 1
 fo.writelines(str(i)+'\t'+ilinelist[1]+'\n')
 fo.writelines(str(i)+'\t'+ilinelist[2]+'\n')

 # if consecutive line, write only second chainID

	 78	
	

 elif previousID1 == ilinelist[1]:
 fo.writelines(str(i)+'\t'+ilinelist[2]+'\n')

 previousID1 = ilinelist[1]
 previousID2 = ilinelist[2]

Program: GetClusterNum.py

Based on chains in similarityNumed.txt that is from PISCES output,
this code pulls resolution and method and add them to lines in similarityNumed.txt
def GetClusterNum(mode):

 import os
 clusterNum,reso,found = 0,0,0
 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 path1 = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/PISCES/'

 if mode == 1:
 inputchaininfo = '5let_inputchains_valid.txt' # non redundant
 elif mode == 0:
 inputchaininfo = '5let_inputchains.txt' # redundant

 # open the output file
 with open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/chainsInfo.txt','w+') as
fo:
 with open(path1+inputchaininfo) as fr:
 for rline in fr.readlines():
 entry = rline[0:4]

 for filename in
os.listdir('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'):
 method = ''
 reso = ''
 if filename[0:4].upper() == entry and filename[-3:] == 'cif':
 chainID = rline[0:5]

 # open mmCif and obtain method and resolution
 with
open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'+filename) as fcif:
 for linecif in fcif.readlines():

 # When the method is X-RAY
 if 'X-RAY DIFFRACTION' in linecif:
 method = 'XRY'
 with
open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'+filename) as fcif2:

	 79	
	

 for linecif2 in fcif2.readlines():
 if '_reflns.d_resolution_high' in linecif2:
 resofull = (linecif2[27:]).strip()
 reso = resofull[:3]
 if reso == '?':
 with
open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'+filename) as fcif3:
 for linecif3 in fcif3.readlines():
 if '_refine.ls_d_res_high' in linecif3:
 resofull = (linecif3[23:]).strip()
 reso = resofull[:4]
 break
 break
 break
 elif '_refine.ls_d_res_high' in linecif2:
 resofull = (linecif2[23:]).strip()
 reso = resofull[:3]
 break
 break

 # obtain cluster#
 with open(path1+'30letter/similarityNumed.txt') as fp:
 found = 0
 for plines in fp.readlines():
 plinelist = plines.split()
 chainID = chainID.replace(':','')
 if chainID.upper() == plinelist[1]:
 clusterNum = plinelist[0]
 found = 1
 break

 if found == 1:

fo.writelines(chainID+'\t'+str(clusterNum)+'\t'+method+'\t'+str(reso)+'\n')
 elif found == 0:
 fo.writelines(chainID+'\t'+'0'+'\t'+method+'\t'+str(reso)+'\n')

Program: combincontacts.py

This code change the order of RNAchain and protein chain in DSSR output
in this order.
then from 'chainsinfo.txt', add resolution and cluster# to each contact

def combinecontacts(resolim,Cname):
 import os
 i = 0

	 80	
	

 path = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/'
 xpath = '/Volumes/Transcend/hbonds/'+Cname+'/'
 os.remove(path+'contacts.txt')

 with open(path+'contacts.txt','w+') as fo:
 with open(path+'chainsInfo.txt') as chainf:
 for chline in chainf.readlines():
 chlinelist = chline.split('\t')
 chainID = chlinelist[0]
 entry = chainID[0:4]
 for filename in
os.listdir('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'):
 if filename[0:4].upper() == entry.upper() and 'out' in filename:
 with
open('/Users/kimuratakayuki/Desktop/PRat77/Clustering/mmCIF/'+filename) as fi:
 for iline in fi.readlines():
 # 0 1 2 3 4 5 6 7
 # 937 634 #18 p 3.871 O/N O@P.PHE336 N4@R.C141
 ilinelist = iline.split()
 if ':' in iline and len(ilinelist) > 6:
 # c1 = [N@1:B, G0] c2 = [O@1:A, PRO1]
 c1 = ilinelist[6].split('.')
 c2 = ilinelist[7].split('.')

 # nc1 = 'G' nc2 = 'PRO'
 nc1 = c1[1].strip('0123456789')
 nc2 = c2[1].strip('0123456789')

 # if len(c1)+len(c2) == 4:
 if len(nc1) == 3 and len(nc2) == 1:
 tmp = ilinelist[7]
 ilinelist[7] = ilinelist[6]
 ilinelist[6] = tmp

 # c1 = [N@1:B, G0] c2 = [O@1:A, PRO1]
 c1 = ilinelist[6].split('.')
 c2 = ilinelist[7].split('.')

 # nc1 = 'G' nc2 = 'PRO'
 nc1 = c1[1].strip('0123456789')
 nc2 = c2[1].strip('0123456789')

 # d1 = [N@1, B] d2 = [O@1, A]
 d1 = c1[0].split(':')
 d2 = c2[0].split(':')
 if resolim != 10:

	 81	
	

 if 'XRY' in chline:
 # get cluster#, method, resolution from chainsInfo.txt **
protein **
 if chainID == filename[:-8].upper()+d2[1]:
 clusterN = chlinelist[1]
 method = chlinelist[2]
 resolution = chlinelist[3].strip('\n')
 if float(resolution) < resolim:
 fo.writelines(str(i)+'\t'+filename[:-
8].upper()+'\t'+ilinelist[0]+'\t'+\

ilinelist[1]+'\t'+ilinelist[4]+'\t'+ilinelist[6]+'\t'+ilinelist[7]+\
 '\t'+clusterN+'\t'+method+'\t'+resolution+'\n')
 i += 1
 elif resolim == 10:
 if chainID == filename[:-8].upper()+d2[1]:
 clusterN = chlinelist[1]
 fo.writelines(str(i)+'\t'+filename[:-
8].upper()+'\t'+ilinelist[0]+'\t'+ilinelist[1]+'\t'+ilinelist[4]+\

'\t'+ilinelist[6]+'\t'+ilinelist[7]+'\t'+clusterN+'\t'+'any'+'\t'+'0'+'\n')
 i += 1

Program: director_cluster.py

def director_cluster(potentials,complist,resolim,Cname):

 if potentials == 98 or potentials == 99:
 mode = 0
 # 1:non-redundant data 0:redundant data(filter with resolution, method, and cluster)
 elif potentials != 98 and potentials != 99:
 mode = 1

 from GetClusterNum import GetClusterNum
 GetClusterNum(mode)

 from combinecontacts import combinecontacts
 combinecontacts(resolim,Cname)

 if mode == 1: # with clustering
 from choosebest_f import choosebest
 choosebest(complist,resolim)
 print('** non-redundant mode **')

 from getallredun_f import getallredun

	 82	
	

 getallredun(complist)
 print('** allredun is made **')

 elif mode == 0: # without clustering
 from choosebest_all import choosebest_all
 choosebest_all(complist)
 print('** redundant mode **')

 from getallredun_f_all import getallredun
 getallredun(complist)
 print('** allredun is made

Program: choosebest.py

def choosebest(complist,resolim): # with clustering
 path = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/'
 idlist = []
 i = 1
 amino =
['ALA','VAL','LEU','ILE','PHE','TRP','MET','PRO','ASP','GLU','GLY','SER','THR','CYS'
,'TYR','ASN','GLN','LYS','ARG','HIS']
 with open(path+'bests.txt','w+') as fo:
 with open(path+'contacts.txt') as fi:
 for line in fi.readlines():
 linelist = line.split('\t')

 # 0 1 2 3 4 5 6 7 8 9 10 : index
 # 24 1A34 1 2950 3.206 O5'@1:B.U11 N@1:A.THR13 6 XRY 1.8
1
 resi = linelist[6].split('.')
 resi2 = resi[1].strip('0123456789') # resi2 = THR or U
 resib = linelist[5].split('.')
 resib2 = resib[1].strip('0123456789') # resi2 = THR or U

 if linelist[1] in complist:
 continue
 if len(resi2)+len(resib2) == 4:
 if resolim != 10:
 if resi2 in amino and linelist[8] == 'XRY':
 if linelist[7] == '0':
 fo.writelines(str(i)+'\t'+line)
 i += 1
 elif linelist[7] != 0:
 id = linelist[7]
 if id in idlist:
 continue

	 83	
	

 elif id not in idlist:
 idlist.append(id)
 with open(path+'contacts.txt') as fi2:
 bestline = ''
 for line2 in fi2.readlines():
 linelist2 = line2.split('\t')
 id2 = linelist2[7]
 if id2 == id:
 # bestline[8]=method, bestline[9]=resolution
 # compare current reso with bestreso
 if bestline == '':
 if linelist2[8] == 'XRY':
 bestline = line2
 else:
 if bestline[9] > line2[9]:
 bestline = line2
 else:
 continue

 if bestline == '':
 continue

 fo.writelines(str(i)+'\t'+bestline)
 i += 1
 elif resolim == 10:
 if resi2 in amino:
 fo.writelines(str(i)+'\t'+line)
 i += 1

Program: getallredun.py

this code reads chainID like 1A1T_A from chosen contacts,
and copy the line of the same chainID from contacts.txt to allredun.txt

def getallredun(complist):

 path = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/'
 rlinelist,id6,id7,ridl,pidl,linelist,iid6,iid7,iridl,ipidl = [],[],[],[],[],[],[],[],[],[]
 chainid,ichainid,rid,pid,irid,ipid = '','','','','',''
 i = 0

 with open(path+'allredun.txt','w+') as fo:
 with open(path+'bests.txt') as fr:
 for rline in fr.readlines():
 rlinelist = rline.split('\t')

	 84	
	

 # 9 8 1A1T 312 1220 2.950 O6@1:B.G210 N@1:A.TRP37 0 0
 # 10 9 1A1T 312 1360 2.803 O6@1:B.G210 N@1:A.MET46 0 0
 # 22 21 1A1T 478 756 3.956 O4@1:B.U215 NH2@1:A.ARG7 0
any 0

 id6 = rlinelist[6].split(':')
 id7 = rlinelist[7].split(':')
 ridl = id6[1].split('.')
 pidl = id7[1].split('.')
 rid = ridl[0]
 pid = pidl[0]
 chainid = rlinelist[2]+'_'+rid+'_'+pid

 ires1 = ridl[1].strip('1234567890')
 ires2 = pidl[1].strip('1234567890')

 if rlinelist[2] in complist:
 print('remove a line of '+rlinelist[2])
 continue

 # write as is if the contact is not clustered
 elif rlinelist[8] == '0':
 if len(ires1) == 1 and len(ires2) == 3:

fo.writelines(str(i)+'\t'+chainid+'\t'+rlinelist[1]+'\t'+rlinelist[2]+'\t'+rlinelist[3]+\

'\t'+rlinelist[4]+'\t'+rlinelist[5]+'\t'+rlinelist[6]+'\t'+rlinelist[7]+'\t'+\
 rlinelist[8]+'\t'+rlinelist[9]+'\t'+rlinelist[10])
 i += 1

 # if clustered, obtain all contacts of the same chain combi ID
 else:
 with open(path+'contacts.txt') as fi:
 for line in fi.readlines():
 linelist = line.split('\t')

 # line[1]=1A1T [5]=OP2@1:B.A203 [6]=N@1:A.GLY4
 iid6 = linelist[5].split(':')
 iid7 = linelist[6].split(':')
 iridl = iid6[1].split('.')
 ipidl = iid7[1].split('.')
 ichainid = linelist[1]+'_'+iridl[0]+'_'+ipidl[0]

 res1 = iridl[1].strip('1234567890')
 res2 = ipidl[1].strip('1234567890')

	 85	
	

 if chainid == ichainid:
 if len(res1) == 1 and len(res2) == 3:
 fo.writelines(str(i)+'\t'+ichainid+'\t'+line)
 i += 1

Program: director_potential.py

this is the director file that uses allredun.txt as an an input
and output nine sets of potentials
def director_potential():
 nums = []

 from assignRNA3D import assignRNA3D
 assignRNA3D()
 print("2.assignRNA3D IS DONE")

 def calp_m1(k): # k: 0-2
 from sepcalp1 import sepcalp1
 sepcalp1(k)

 import multiprocessing as mp1
 calp_processes = [mp1.Process(target=calp_m1, args=(k,)) for k in range(0,3)]

 for p in calp_processes:
 p.start()
 for p in calp_processes:
 p.join()

 from calcdenomi import calcdenomi
 r2p2 = calcdenomi()
 print("*** r2 and p2 were made ***")

 # Calculate potential set 1-9

 def calp_m(k,r2p2,nums): # k: 0-5
 from sepcalp import sepcalp
 sepcalp(k,r2p2,nums)

 import multiprocessing as mp1
 calp_processes = [mp1.Process(target=calp_m, args=(k,r2p2,nums)) for k in
range(0,6)]

 for p in calp_processes:
 p.start()
 for p in calp_processes:
 p.join()

	 86	
	

 from potenti import potenti
 potenti()

 print("15.potenti IS DONE")
 from overallpot import overallpot
 overallpot()

 print("16.overallpot IS DONE")
 print(nums)
 return nums

Program: assignRNA3Dall.py

this code assign DSSR 3D structure to each RNA in a contact

def assignRNA3Dall():
 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 i= 0
 with open(path+'Analyzing/bests3Dall.txt','w+') as fo:
 with open(path+'Clustering/allredun.txt') as fi:
 for iline in fi.readlines():
 ilinelist = iline.split()
 # 0 1 2 3 4 5 6 7 8 9 10 11
 # 3 1A34_B_A 26 1A34 14 2948 2.131 OP1@1:B.U11 N@1:A.GLY14 6
XRY 1.8

 sixlist = ilinelist[7].split(':')
 # query chain ID is like 'B.G668'
 qchID = sixlist[1]

fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'NA'+'\t'+'NA'+'\t'+'NA'+'\t'+'NA'+'\n')

Program: assignBorSall.py

this code use best3D.txt and add 'bbone'/'bases' to each line

def assignBorSall():

 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 bbone = ["OP2","OP1","O5'","O4'","O3'","O2'"]
 bases = ['N1','O2','N3','O4','N6','N7','N9','N2','O6','N4','N']
 bbnum, basesnum,space, aform, uncon, uncla = 0,0,0,0,0,0

 with open(path+'Analyzing/bests3Dplusall.txt','w+') as fo:

	 87	
	

 with open(path+'Analyzing/bests3Dall.txt') as fi:
 for iline in fi.readlines():
 ilinelist = iline.split()

 # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 # 1 4 1A34_B_A 27 1A34 345 2454 2.693 O2'@1:B.A5 OG1@1:A.THR36 6
XRY 1.8 left cW-W A n
 # 0 3 1A34_B_A 26 1A34 14 2948 2.131 OP1@1:B.U11 N@1:A.GLY14
6 XRY 1.8 NA NA NA NA
 try:
 # get base(='G') and RNAatom(='OP2')
 preatom = ilinelist[8].split('@')
 RNAatom = preatom[0]
 prebase = preatom[1].split('.')
 prebase2 = prebase[1]
 base = prebase2[0]

 # get residue and ratom
 preresiatom = ilinelist[9].split('@')
 resiatom = preresiatom[0]
 preresi = preresiatom[1].split('.')
 preresi2 = preresi[1]
 residue = preresi2[0:3]

 if 'Note: ' in iline:
 break
 if len(ilinelist) == 16:
 ilinelist.append(' ')

 # preatom = ["O2'", "1:B.A5"]
 if preatom[0] in bases:

fo.writelines(ilinelist[1]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\
 +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\

'\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bases'+'\t'+str(basesnum)+'\n')

 elif preatom[0] in bbone:

fo.writelines(ilinelist[1]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\
 +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\

'\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bbone'+'\t'+str(basesnum)+'\n')
 # elif (preatom[0] not in bases) and (preatom[0] not in bbone):

	 88	
	

 except IndexError:
 print(iline)

Program: overall.py

this code calculates propensities for overall
def overall():
 def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq):
 newseq1,newseq2 = '',''
 with open(reffile) as ff:
 linef = ff.readlines()
 for i in range(0, len(linef)):
 line = linef[i]
 # extend the RNA chain
 if (RNAchainID in line) and (sign == 'RNA'):
 Rseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 Rseq = Rseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq1 = oldseq+Rseq.strip('\n')
 break

 except IndexError:
 newseq1 = oldseq+Rseq.strip('\n')
 break
 return newseq1

 # extend the protein chain
 elif (proteinchainID in line) and (sign == 'protein'):
 pseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 pseq = pseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq2 = oldseq + pseq.strip('\n')
 break

	 89	
	

 except IndexError:
 newseq2 = oldseq + pseq.strip('\n')
 break
 return newseq2
 return oldseq

 def calpropensity(RNAseq,proteinseq,outputfile,apair):

 aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
 bases = ['A','C','G','U']
 aminot =
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\
 'GLN','ARG','SER','THR','VAL','TRP','TYR']
 # R = residic[ARG]
 with open(outputfile,'w+') as fo:
 for i in range(0,20):
 for j in range(0,4):
 # avoid dividing by zero
 if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0:
 fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n')
 else:
 numerator = (apair.count(aminot[i]+'_'+bases[j]))/len(apair)
 denominator1 = RNAseq.count(bases[j])/len(RNAseq)
 denominator2 = proteinseq.count(aminos[i])/len(proteinseq)

fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+'\
n')

 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 i,j,count = 0,0,0
 pre = ''
 # helix > a form > bases > mg > canonical

 with open(path+'Analyzing/bests3Dplusall.txt') as fi:
 atompair,combinations,combinations2,atompair2 = [],[],[],[]
 proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','',''

 for ilines in fi.readlines():
 ilinelist = ilines.split('\t')
 # 15 1A9N_Q_B U O2 ARG NE NA NA NA NA bases 0
 # 0 1 2 3 4 5 6 7
 # 4 1A4T_A_B C OP2 ARG NH2 bbone 0

 # get chain ID
 elementlist = ilinelist[1].split('_')
 RNAchainID = elementlist[0]+':'+elementlist[1]

	 90	
	

 proteinchainID = elementlist[0]+':'+elementlist[2]

 # add this atom pair to list and extend the sequence
 atompair.append(ilinelist[4]+'_'+ilinelist[2])
 count += 1

 if ilinelist[1] not in combinations:
 combinations.append(ilinelist[1])
 RNAseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','RNA',RNAseq)
 proteinseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq)

calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/overall.txt',atompair)
 print(count)

Program: assignRNA3D.py

this code assign DSSR 3D structure to each RNA in a contact

def assignRNA3D():

 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 i= 0
 wobblepair = ['GU','UG']

 with open(path+'Analyzing/bests3D.txt','w+') as fo:
 with open(path+'Clustering/allredun.txt') as fi:
 for iline in fi.readlines():
 ilinelist = iline.split()
 # 0 1 2 3 4 5 6 7 8 9 10 11
 # 3 1A34_B_A 26 1A34 14 2948 2.131 OP1@1:B.U11 N@1:A.GLY14 6
XRY 1.8

 sixlist = ilinelist[7].split(':')
 # query chain ID is like 'B.G668'
 qchID = sixlist[1]
 try:
 with
open('/Users/kimuratakayuki/Desktop/PRat77/Analyzing/DSSRout/'+ilinelist[3].lower()+
'.cif.out') as fm:
 readstart,findstart,escape = 0,0,0
 for mline in fm.readlines():
 # search the keywords and start parsing lines
 if mline[2:7] == 'helix':

	 91	
	

 findstart = 1
 elif findstart == 1 and mline[6:16] == 'helix-form':
 readstart = 1
 stepline = mline
 elif readstart == 1:
 if (mline != '\n') and ('----' not in mline) and (mline[3] != ' '):
 if '********' in mline:
 break
 row = mline.split()

 # row[1]='1:B.G201',row[2]='1:B.C220'
 # or row[1]= 'B.G201',row[2]= 'B.C220'
 base1 = row[1].split('.')
 base2 = row[2].split('.')

 chainid1pre = base1[0]
 chainid1 = chainid1pre[-1:]
 prebaseid1 = base1[1]
 baseid1 = prebaseid1[0]

 chainid2pre = base2[0]
 chainid2 = chainid2pre[-1:]
 prebaseid2 = base2[1]
 baseid2 = prebaseid2[0]

 if (baseid1 + baseid2) in wobblepair:
 wobble = 'w'
 else:
 wobble = 'n'

 if qchID == chainid1+'.'+prebaseid1:
 i += 1
 if stepline[17+int(row[0])] == '\n':
 fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'left
'+'\t'+row[7]+'\t'+'e'+'\t'+wobble+'\n')
 else:
 fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'left
'+'\t'+row[7]+'\t'+stepline[17+int(row[0])]+'\t'+wobble+'\n')
 break
 elif qchID == chainid2+'.'+prebaseid2:
 i += 1
 if stepline[17+int(row[0])] == '\n':

fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'right'+'\t'+row[7]+'\t'+'e'+'\t'+wobble+'\n')
 else:

	 92	
	

fo.writelines(str(i)+'\t'+iline.strip('\n')+'\t'+'right'+'\t'+row[7]+'\t'+stepline[17+int(row[0])]
+'\t'+wobble+'\n')
 break
 except IOError:
 print('IOError @ '+iline)

Program: assignBorS.py

this code use best3D.txt and add 'bbone'/'bases' to each line
def assignBorS():

 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 bbone = ["OP2","OP1","O5'","O4'","O3'","O2'"]
 bases = ['N1','O2','N3','O4','N6','N7','N9','N2','O6','']
 bbnum, basesnum,space, aform, uncon, uncla = 0,0,0,0,0,0

 with open(path+'Analyzing/bests3Dplus.txt','w+') as fo:
 with open(path+'Analyzing/bests3D.txt') as fi:
 for iline in fi.readlines():
 ilinelist = iline.split()

 # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 # 1 4 1A34_B_A 27 1A34 345 2454 2.693 O2'@1:B.A5 OG1@1:A.THR36 6
XRY 1.8 left cW-W A n

 # get base(='G') and RNAatom(='OP2')
 preatom = ilinelist[8].split('@')
 RNAatom = preatom[0]
 prebase = preatom[1].split('.')
 prebase2 = prebase[1]
 base = prebase2[0]

 # get residue and ratom
 preresiatom = ilinelist[9].split('@')
 resiatom = preresiatom[0]
 preresi = preresiatom[1].split('.')
 preresi2 = preresi[1]
 residue = preresi2[0:3]

 if 'Note: ' in iline:
 break
 if len(ilinelist) == 16:
 ilinelist.append(' ')

 # preatom = ["O2'", "1:B.A5"]
 if preatom[0] in bases:

	 93	
	

fo.writelines(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\
 +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\
 '\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bases'+'\t'+str(basesnum)+'\n')
 if ilinelist[16] == ' ':
 space += 1
 elif ilinelist[16] == 'x':
 uncon += 1
 elif ilinelist[16] == '.':
 uncla += 1
 elif ilinelist[16] == 'A':
 aform += 1

 basesnum += 1
 elif preatom[0] in bbone:

fo.writelines(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\
 +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\
 '\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bbone'+'\t'+str(basesnum)+'\n')
 bbnum += 1

 #
print(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+ratom\
 # +'\t'+ilinelist[13]+'\t'+ilinelist[14]+\
 #
'\t'+ilinelist[15]+'\t'+ilinelist[16]+'\t'+'bases'+'\t'+str(basesnum)+'\n')

Program: addmajor.py

this code assign 'major' without considering RNA structure
just from the base specimen and atom position
def addmajor():

 path = '/Users/kimuratakayuki/Desktop/Thesis/Analyzing/'

 Cmajor = ['N4']
 Gmajor = ['N7','O6',]
 Umajor = ['O4']
 Amajor = ['N6','N7']
 WUmajor = ['O4','N3']

 with open(path+'majoradded.txt','w+') as fo:
 with open(path+'bests3Dplus.txt') as fi:
 for ilines in fi.readlines():

	 94	
	

 ilinelist = ilines.split('\t')

 major = 'no'
 if ilinelist[2] == 'G':
 if ilinelist[3] in Gmajor:
 major = 'major'

 elif ilinelist[2] == 'C':
 if ilinelist[3] in Cmajor:
 major = 'major'

 elif ilinelist[2] == 'A':
 if ilinelist[3]in Amajor:
 major = 'major'

 elif ilinelist[2] == 'U':
 if (ilinelist[8] == 'w') and (ilinelist[3] in WUmajor):
 major = 'major'
 elif (ilinelist[8] == 'n') and (ilinelist[3] in Umajor):
 major = 'major'

 fo.writelines(ilines.strip('\n')+'\t'+major+'\n')
 major = ''

Program: extracthelix.py

def extractnothelix():
 path = '/Users/kimuratakayuki/Desktop/Thesis/Analyzing/'
 path2 = '/Users/kimuratakayuki/Desktop/Thesis/Clustering/'

 i = 0
 helix = []

 with open(path+'bests3D.txt') as f:
 for flines in f.readlines():
 flist = flines.split('\t')
 helix.append(flist[8]+flist[9])

 with open(path+'nothelix.txt','w+') as fo:
 with open(path2+'allredun.txt') as fa:
 for falines in fa.readlines():
 falineslist = falines.split('\t')
 if falineslist[7]+falineslist[8] not in helix:
 fo.writelines(str(i)+'\t'+falines)

	 95	
	

Program: assignBorSnh.py

this code use best3D.txt and add 'bbone'/'bases' to each line

def assignBorSnh():

 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 bbone = ["OP2","OP1","O5'","O4'","O3'","O2'"]
 bases = ['N1','O2','N3','O4','N6','N7','N9','N2','O6','']
 bbnum, basesnum,space, aform, uncon, uncla = 0,0,0,0,0,0

 with open(path+'Analyzing/nothelix2.txt','w+') as fo:
 with open(path+'Analyzing/nothelix.txt') as fi:
 for iline in fi.readlines():
 ilinelist = iline.split()

 # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 # 5 16 1A4T_A_B 176 1A4T 234 602 2.922 O3'@1:A.C11 ND1@1:B.HIS7
0 XRY 1.8
 # 1 4 1A34_B_A 27 1A34 345 2454 2.693 O2'@1:B.A5 OG1@1:A.THR36 6
XRY 1.8 left cW-W A n

 # get base(='G') and RNAatom(='OP2')
 preatom = ilinelist[8].split('@')
 RNAatom = preatom[0]
 prebase = preatom[1].split('.')
 prebase2 = prebase[1]
 base = prebase2[0]

 # get residue and ratom
 preresiatom = ilinelist[9].split('@')
 resiatom = preresiatom[0]
 preresi = preresiatom[1].split('.')
 preresi2 = preresi[1]
 residue = preresi2[0:3]

 # preatom = ["O2'", "1:B.A5"]
 if preatom[0] in bases:

fo.writelines(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato
m\
 +'\t'+'bases'+'\t'+str(basesnum)+'\n')

 elif preatom[0] in bbone:

fo.writelines(ilinelist[0]+'\t'+ilinelist[2]+'\t'+base+'\t'+RNAatom+'\t'+residue+'\t'+resiato

	 96	
	

m\
 +'\t'+'bbone'+'\t'+str(basesnum)+'\n')
Program: calcdenomi.py

this code calculates propensities for
helix > a form > bases > mg > canonical
def calcdenomi():
 def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq):
 newseq1,newseq2 = '',''
 with open(reffile) as ff:
 linef = ff.readlines()
 for i in range(0, len(linef)):
 line = linef[i]
 # extend the RNA chain
 if (RNAchainID in line) and (sign == 'RNA'):
 Rseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 Rseq = Rseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq1 = oldseq+Rseq.strip('\n')
 break

 except IndexError:
 newseq1 = oldseq+Rseq.strip('\n')
 break
 return newseq1

 # extend the protein chain
 elif (proteinchainID in line) and (sign == 'protein'):
 pseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 pseq = pseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq2 = oldseq + pseq.strip('\n')
 break

	 97	
	

 except IndexError:
 newseq2 = oldseq + pseq.strip('\n')
 break
 return newseq2
 return oldseq

 path = '/Users/kimuratakayuki/Desktop/Thesis/'

 # helix > a form > bases > mg > canonical
 with open(path+'Analyzing/bests3Dplusall.txt') as fi:
 pairlen = 0

 for ilines in fi.readlines():
 pairlen += 1

 with open(path+'Analyzing/bests3Dplusall.txt') as fi:
 atompair,combinations,combinations2,atompair2 = [],[],[],[]
 proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','',''

 for ilines in fi.readlines():
 ilinelist = ilines.split('\t')

 # get chain ID
 elementlist = ilinelist[1].split('_')
 RNAchainID = elementlist[0]+':'+elementlist[1]
 proteinchainID = elementlist[0]+':'+elementlist[2]
 # add this atom pair to list and extend the sequence
 # 0 1 2 3 4 5 6 7 8 9 10 11 12
 # 11420 4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major
 if ilinelist[1] not in combinations:
 combinations.append(ilinelist[1])
 RNAseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','RNA',RNAseq)
 proteinseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq)
 rp = [len(RNAseq),len(proteinseq),pairlen]
 return rp

print(calcdenomi())

Program: sepcalp.py

def sepcalp(k,r2p2,nums):
 if k == 0:
 from calp1_2 import calp1_2
 calp1_2(nums,r2p2)

	 98	
	

 elif k == 1:
 from calp3 import calp3
 calp3(nums,r2p2)
 elif k == 2:
 from calp4_5 import calp4_5
 calp4_5(nums,r2p2)
 elif k == 3:
 from calp6 import calp6
 calp6(nums,r2p2)
 elif k == 4:
 from calp7 import calp7
 calp7(nums,r2p2)
 elif k == 5:
 from calp8_9 import calp8_9
 calp8_9(nums,r2p2)

Program: calp1_2.py

this code calculates propensities for
helix > a form > bases > mg > canonical
def calp1_2(num1_2,r2p2):

 def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq):
 newseq1,newseq2 = '',''
 with open(reffile) as ff:
 linef = ff.readlines()
 for i in range(0, len(linef)):
 line = linef[i]
 # extend the RNA chain
 if (RNAchainID in line) and (sign == 'RNA'):
 Rseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 Rseq = Rseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq1 = oldseq+Rseq.strip('\n')
 break

 except IndexError:
 newseq1 = oldseq+Rseq.strip('\n')
 break
 return newseq1

	 99	
	

 # extend the protein chain
 elif (proteinchainID in line) and (sign == 'protein'):
 pseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 pseq = pseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq2 = oldseq + pseq.strip('\n')
 break

 except IndexError:
 newseq2 = oldseq + pseq.strip('\n')
 break
 return newseq2
 return oldseq

 def calpropensity(RNAseq,proteinseq,outputfile,apair):

 aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
 bases = ['A','C','G','U']
 aminot =
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\
 'GLN','ARG','SER','THR','VAL','TRP','TYR']
 # R = residic[ARG]
 with open(outputfile,'w+') as fo:
 for i in range(0,20):
 for j in range(0,4):
 # avoid dividing by zero
 if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0:
 fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n')
 else:
 numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2]
 denominator1 = RNAseq.count(bases[j])/r2p2[0]
 denominator2 = proteinseq.count(aminos[i])/r2p2[1]

fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\

'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(r2p2[2])+\

'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(r2p2[0])+'\t'+',p1:'+\

	 100	
	

'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(r2p2[1])+'\n')

 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 i,j = 0,0
 count1, count2 =0,0

 # helix > a form > bases > mg > canonical
 with open(path+'Analyzing/majoradded.txt') as fi:
 atompair,combinations,combinations2,atompair2 = [],[],[],[]
 proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','',''

 for ilines in fi.readlines():
 ilinelist = ilines.split('\t')

 # get chain ID
 elementlist = ilinelist[1].split('_')
 RNAchainID = elementlist[0]+':'+elementlist[1]
 proteinchainID = elementlist[0]+':'+elementlist[2]

 # add this atom pair to list and extend the sequence
 # 0 1 2 3 4 5 6 7 8 9 10 11 12
 # 11420 4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major
 if (ilinelist[8] == 'A') and (ilinelist[10] == 'bases'):
 if ilinelist[12].strip('\n') == 'major':
 atompair.append(ilinelist[4]+'_'+ilinelist[2])
 count1 += 1
 if ilinelist[1] not in combinations:
 combinations.append(ilinelist[1])
 RNAseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta_af.txt','RNA',RNAseq)
 proteinseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq)

 elif ilinelist[12].strip('\n') != 'major':
 atompair2.append(ilinelist[4]+'_'+ilinelist[2])
 count2 += 1
 if ilinelist[1] not in combinations2:
 combinations2.append(ilinelist[1])
 RNAseq2 =
extendtwochains(RNAchainID,proteinchainID,path+'fasta_af.txt','RNA',RNAseq2)
 proteinseq2 =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq2)

 calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/1_mg.txt',atompair)

calpropensity(RNAseq2,proteinseq2,path+'Analyzing/propensities/2_not_mg.txt',atompai

	 101	
	

r2)
 print('1:'+str(count1))
 print('2:'+str(count2))
 num1_2.append(count1)
 num1_2.append(count2)
 return num1_2

Program: calp3.py

def calp3(nums,r2p2):

 def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq):
 newseq1,newseq2 = '',''
 with open(reffile) as ff:
 linef = ff.readlines()
 for i in range(0, len(linef)):
 line = linef[i]
 # extend the RNA chain
 if (RNAchainID in line) and (sign == 'RNA'):
 Rseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 Rseq = Rseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq1 = oldseq+Rseq.strip('\n')
 break

 except IndexError:
 newseq1 = oldseq+Rseq.strip('\n')
 break
 return newseq1

 # extend the protein chain
 elif (proteinchainID in line) and (sign == 'protein'):
 pseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 pseq = pseq.strip('\n') + nextline

	 102	
	

 elif nextline[0] == '>':
 newseq2 = oldseq + pseq.strip('\n')
 break

 except IndexError:
 newseq2 = oldseq + pseq.strip('\n')
 break
 return newseq2
 return oldseq

 def calpropensity(RNAseq,proteinseq,outputfile,apair):

 aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
 bases = ['A','C','G','U']
 aminot =
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\
 'GLN','ARG','SER','THR','VAL','TRP','TYR']
 # R = residic[ARG]
 with open(outputfile,'w+') as fo:
 for i in range(0,20):
 for j in range(0,4):
 # avoid dividing by zero
 if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0:
 fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n')
 else:
 numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2]
 denominator1 = RNAseq.count(bases[j])/r2p2[0]
 denominator2 = proteinseq.count(aminos[i])/r2p2[1]

fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\

'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\

'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\

'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n')

 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 i,j = 0,0
 count = 0

 with open(path+'Analyzing/majoradded.txt') as fi:
 atompair,combinations,combinations2,atompair2 = [],[],[],[]
 proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','',''

	 103	
	

 for ilines in fi.readlines():
 ilinelist = ilines.split('\t')

 # get chain ID
 elementlist = ilinelist[1].split('_')
 RNAchainID = elementlist[0]+':'+elementlist[1]
 proteinchainID = elementlist[0]+':'+elementlist[2]

 # add this atom pair to list and extend the sequence
 # 0 1 2 3 4 5 6 7 8 9 10 11 12
 # 11420 4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major
 if (ilinelist[8] == 'A') and (ilinelist[10] == 'bbone'):
 atompair.append(ilinelist[4]+'_'+ilinelist[2])
 count += 1
 if ilinelist[1] not in combinations:
 combinations.append(ilinelist[1])
 RNAseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta_af.txt','RNA',RNAseq)
 proteinseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq)

calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/3_aform_bb.txt',atompai
r)
 print('3:'+str(count))
 nums.append(count)
 return nums

Program: calp4_5.py

this code calculates propensities for
helix > a form > bases > mg > canonical
def calp4_5(nums,r2p2):

 def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq):
 newseq1,newseq2 = '',''
 with open(reffile) as ff:
 linef = ff.readlines()
 for i in range(0, len(linef)):
 line = linef[i]
 # extend the RNA chain
 if (RNAchainID in line) and (sign == 'RNA'):
 Rseq = ''
 for j in range(1,100):
 try:

	 104	
	

 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 Rseq = Rseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq1 = oldseq+Rseq.strip('\n')
 break

 except IndexError:
 newseq1 = oldseq+Rseq.strip('\n')
 break
 return newseq1

 # extend the protein chain
 elif (proteinchainID in line) and (sign == 'protein'):
 pseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 pseq = pseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq2 = oldseq + pseq.strip('\n')
 break

 except IndexError:
 newseq2 = oldseq + pseq.strip('\n')
 break
 return newseq2
 return oldseq

 def calpropensity(RNAseq,proteinseq,outputfile,apair):

 aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
 bases = ['A','C','G','U']
 aminot =
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\
 'GLN','ARG','SER','THR','VAL','TRP','TYR']
 # R = residic[ARG]
 with open(outputfile,'w+') as fo:
 for i in range(0,20):
 for j in range(0,4):
 # avoid dividing by zero

	 105	
	

 if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0:
 fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n')
 else:
 numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2]
 denominator1 = RNAseq.count(bases[j])/r2p2[0]
 denominator2 = proteinseq.count(aminos[i])/r2p2[1]

fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\

'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\

'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\

'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n')
 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 i,j,count4,count5 = 0,0,0,0

 # helix > a form > bases > mg > canonical

 with open(path+'Analyzing/majoradded.txt') as fi:
 atompair,combinations,combinations2,atompair2 = [],[],[],[]
 proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','',''

 for ilines in fi.readlines():
 ilinelist = ilines.split('\t')

 # get chain ID
 elementlist = ilinelist[1].split('_')
 RNAchainID = elementlist[0]+':'+elementlist[1]
 proteinchainID = elementlist[0]+':'+elementlist[2]

 if (ilinelist[8] != 'A') and (ilinelist[10] == 'bases'):
 if ilinelist[12].strip('\n') == 'major' and ilinelist[7] == 'cW-W':
 atompair.append(ilinelist[4]+'_'+ilinelist[2])
 count4 += 1
 if ilinelist[1] not in combinations:
 combinations.append(ilinelist[1])
 RNAseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta_na.txt','RNA',RNAseq)
 proteinseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq)

 elif ilinelist[12].strip('\n') == 'major' and ilinelist[7] != 'cW-W':
 atompair2.append(ilinelist[4]+'_'+ilinelist[2])

	 106	
	

 count5 += 1
 if ilinelist[1] not in combinations2:
 combinations2.append(ilinelist[1])
 RNAseq2 =
extendtwochains(RNAchainID,proteinchainID,path+'fasta_na.txt','RNA',RNAseq2)
 proteinseq2 =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq2)

calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/4_mglike_cano.txt',atom
pair)

calpropensity(RNAseq2,proteinseq2,path+'Analyzing/propensities/5_mglike_noncano.txt
',atompair2)
 print('4:'+str(count4))
 print('5:'+str(count5))
 nums.append(count4)
 nums.append(count5)
 return nums

Program: calp6.py

this code calculates propensities for
helix > a form > bases > mg > canonical
def calp6(nums,r2p2):

 def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq):
 newseq1,newseq2 = '',''
 with open(reffile) as ff:
 linef = ff.readlines()
 for i in range(0, len(linef)):
 line = linef[i]
 # extend the RNA chain
 if (RNAchainID in line) and (sign == 'RNA'):
 Rseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 Rseq = Rseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq1 = oldseq+Rseq.strip('\n')
 break

	 107	
	

 except IndexError:
 newseq1 = oldseq+Rseq.strip('\n')
 break
 return newseq1

 # extend the protein chain
 elif (proteinchainID in line) and (sign == 'protein'):
 pseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 pseq = pseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq2 = oldseq + pseq.strip('\n')
 break

 except IndexError:
 newseq2 = oldseq + pseq.strip('\n')
 break
 return newseq2
 return oldseq

 def calpropensity(RNAseq,proteinseq,outputfile,apair):

 aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
 bases = ['A','C','G','U']
 aminot =
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\
 'GLN','ARG','SER','THR','VAL','TRP','TYR']
 # R = residic[ARG]
 with open(outputfile,'w+') as fo:
 for i in range(0,20):
 for j in range(0,4):
 # avoid dividing by zero
 if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0:
 fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n')
 else:
 numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2]
 denominator1 = RNAseq.count(bases[j])/r2p2[0]
 denominator2 = proteinseq.count(aminos[i])/r2p2[1]

fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\

	 108	
	

'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\

'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\

'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n')
 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 i,j,count = 0,0,0

 # helix > a form > bases > mg > canonical

 with open(path+'Analyzing/majoradded.txt') as fi:
 atompair,combinations,combinations2,atompair2 = [],[],[],[]
 proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','',''

 for ilines in fi.readlines():
 ilinelist = ilines.split('\t')

 # get chain ID
 elementlist = ilinelist[1].split('_')
 RNAchainID = elementlist[0]+':'+elementlist[1]
 proteinchainID = elementlist[0]+':'+elementlist[2]

 # add this atom pair to list and extend the sequence
 # 0 1 2 3 4 5 6 7 8 9 10 11 12
 # 11420 4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major
 if (ilinelist[8] != 'A') and (ilinelist[10] == 'bases'):
 if ilinelist[12].strip('\n') != 'major':
 atompair.append(ilinelist[4]+'_'+ilinelist[2])
 count += 1
 if ilinelist[1] not in combinations:
 combinations.append(ilinelist[1])
 RNAseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta_na.txt','RNA',RNAseq)
 proteinseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq)

calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/6_notmglike.txt',atompai
r)
 print('6:'+str(count))
 nums.append(count)
 return nums

	 109	
	

Program: calp7.py

def calp7(nums,r2p2):

 def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq):
 newseq1,newseq2 = '',''
 with open(reffile) as ff:
 linef = ff.readlines()
 for i in range(0, len(linef)):
 line = linef[i]
 # extend the RNA chain
 if (RNAchainID in line) and (sign == 'RNA'):
 Rseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 Rseq = Rseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq1 = oldseq+Rseq.strip('\n')
 break

 except IndexError:
 newseq1 = oldseq+Rseq.strip('\n')
 break
 return newseq1

 # extend the protein chain
 elif (proteinchainID in line) and (sign == 'protein'):
 pseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 pseq = pseq.strip('\n') + nextline
 elif nextline[0] == '>':
 newseq2 = oldseq + pseq.strip('\n')
 break

 except IndexError:
 newseq2 = oldseq + pseq.strip('\n')
 break

	 110	
	

 return newseq2
 return oldseq

 def calpropensity(RNAseq,proteinseq,outputfile,apair):

 aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
 bases = ['A','C','G','U']
 aminot =
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\
 'GLN','ARG','SER','THR','VAL','TRP','TYR']
 # R = residic[ARG]
 with open(outputfile,'w+') as fo:
 for i in range(0,20):
 for j in range(0,4):
 # avoid dividing by zero
 if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0:
 fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n')
 else:
 numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2]
 denominator1 = RNAseq.count(bases[j])/r2p2[0]
 denominator2 = proteinseq.count(aminos[i])/r2p2[1]

fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\

'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\

'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\

'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n')
 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 i,j,count = 0,0,0

 with open(path+'Analyzing/majoradded.txt') as fi:
 atompair,combinations,combinations2,atompair2 = [],[],[],[]
 proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','',''

 for ilines in fi.readlines():
 ilinelist = ilines.split('\t')

 # get chain ID
 elementlist = ilinelist[1].split('_')
 RNAchainID = elementlist[0]+':'+elementlist[1]
 proteinchainID = elementlist[0]+':'+elementlist[2]

	 111	
	

 # add this atom pair to list and extend the sequence
 # 0 1 2 3 4 5 6 7 8 9 10 11 12
 # 11420 4D67_2_Y G O6 HIS N right tm+m x n bases 1783 major
 if (ilinelist[8] != 'A') and (ilinelist[10] == 'bbone'):
 atompair.append(ilinelist[4]+'_'+ilinelist[2])
 count += 1
 if ilinelist[1] not in combinations:
 combinations.append(ilinelist[1])
 RNAseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta_na.txt','RNA',RNAseq)
 proteinseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq)

calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/7_no_aform_bb.txt',atom
pair)
 print('7:'+str(count))
 nums.append(count)
 return nums

Program: calp8_9.py

this code calculates propensities for
helix > a form > bases > mg > canonical
def calp8_9(nums,r2p2):

 def extendtwochains(RNAchainID,proteinchainID,reffile,sign,oldseq):
 newseq1,newseq2 = '',''
 aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
 bases = ['A','C','G','U']
 with open(reffile) as ff:
 linef = ff.readlines()
 for i in range(0, len(linef)):
 line = linef[i]
 # extend the RNA chain
 if (RNAchainID in line) and (sign == 'RNA'):
 Rseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]
 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 if nextline[0] in bases:
 Rseq = Rseq.strip('\n') + nextline
 elif nextline[0] == '>' :
 newseq1 = oldseq+Rseq.strip('\n')

	 112	
	

 break

 except IndexError:
 newseq1 = oldseq+Rseq.strip('\n')
 break
 except EOFError:
 newseq1 = oldseq+Rseq.strip('\n')
 break

 return newseq1

 # extend the protein chain
 elif (proteinchainID in line) and (sign == 'protein'):
 pseq = ''
 for j in range(1,100):
 try:
 nextline = linef[i+j]

 # if not > line, add the line to 'seq'
 if nextline[0] != '>':
 if nextline[0] in aminos:
 pseq = pseq.strip('\n') + nextline
 elif nextline is None:
 newseq2 = oldseq+pseq.strip('\n')
 break
 elif nextline[0] == '>':
 newseq2 = oldseq + pseq.strip('\n')
 break

 except IndexError:
 newseq2 = oldseq + pseq.strip('\n')
 break
 return newseq2
 return oldseq

 def calpropensity(RNAseq,proteinseq,outputfile,apair):

 aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
 bases = ['A','C','G','U']
 aminot =
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\
 'GLN','ARG','SER','THR','VAL','TRP','TYR']
 # R = residic[ARG]
 with open(outputfile,'w+') as fo:
 for i in range(0,20):
 for j in range(0,4):

	 113	
	

 # avoid dividing by zero
 if proteinseq.count(aminos[i])*RNAseq.count(bases[j])== 0:
 fo.writelines(aminot[i]+'_'+bases[j]+'\t'+'0.0'+'\n')
 else:
 numerator = (apair.count(aminot[i]+'_'+bases[j]))/r2p2[2]
 denominator1 = RNAseq.count(bases[j])/r2p2[0]
 denominator2 = proteinseq.count(aminos[i])/r2p2[1]

fo.writelines(aminot[i]+'_'+bases[j]+'\t'+str(numerator/(denominator1*denominator2))+\

'\t'+'a1:'+'\t'+str(apair.count(aminot[i]+'_'+bases[j]))+'\t'+',a2:'+'\t'+str(len(apair))+\

'\t'+',rna1:'+'\t'+str(RNAseq.count(bases[j]))+'\t'+',rna2:'+'\t'+str(len(RNAseq))+'\t'+',p1:'+
\

'\t'+str(proteinseq.count(aminos[i]))+'\t'+',p2:'+'\t'+str(len(proteinseq))+'\n')
 path = '/Users/kimuratakayuki/Desktop/Thesis/'
 i,j = 0,0
 count8,count9 = 0,0
 # helix > a form > bases > mg > canonical

 with open(path+'Analyzing/nothelix2.txt') as fi:
 atompair,combinations,combinations2,atompair2 = [],[],[],[]
 proteinseq, RNAseq, proteinseq2, RNAseq2 = '','','',''

 for ilines in fi.readlines():
 ilinelist = ilines.split('\t')

 # get chain ID
 elementlist = ilinelist[1].split('_')
 RNAchainID = elementlist[0]+':'+elementlist[1]
 proteinchainID = elementlist[0]+':'+elementlist[2]

 # add this atom pair to list and extend the sequence
 if ilinelist[6] == 'bases':
 atompair.append(ilinelist[4]+'_'+ilinelist[2]) # ARG_G
 count8 += 1
 if ilinelist[1] not in combinations:
 combinations.append(ilinelist[1])
 RNAseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta_nh.txt','RNA',RNAseq)
 proteinseq =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq)

 elif ilinelist[6] == 'bbone':

	 114	
	

 atompair2.append(ilinelist[4]+'_'+ilinelist[2])
 count9 += 1
 if ilinelist[1] not in combinations2:
 combinations2.append(ilinelist[1])
 RNAseq2 =
extendtwochains(RNAchainID,proteinchainID,path+'fasta_nh.txt','RNA',RNAseq2)
 proteinseq2 =
extendtwochains(RNAchainID,proteinchainID,path+'fasta.txt','protein',proteinseq2)

calpropensity(RNAseq,proteinseq,path+'Analyzing/propensities/8_nothelix_bases.txt',ato
mpair)

calpropensity(RNAseq2,proteinseq2,path+'Analyzing/propensities/9_nothelix_bb.txt',ato
mpair2)
 print('8:'+str(count8))
 print('9:'+str(count9))
 nums.append(count8)
 nums.append(count9)
 return nums

Program: potenti.py

def potenti():
 import os,math

 path = '/Users/kimuratakayuki/Desktop/Thesis/Analyzing/'
 i = 1
 RT = 0.59
 pot = 0

 for filename in os.listdir(path+'propensities/'):
 if str(i)+'_' in filename:
 i += 1
 with open(path+'0/'+filename,'w+') as fo:
 with open(path+'propensities/'+filename) as fp:
 for plines in fp.readlines():
 plist = plines.split('\t')
 pro = float(plist[1])
 if pro != 0:
 pot = RT*math.log(pro)
 elif pro == 0:
 pro = 0.001
 pot = RT*math.log(pro)

 fo.writelines(plist[0]+'\t'+str(pot)+'\n')

	 115	
	

Program: correct.py

def correct(rnafile,rchain,protfile,pchain,compfile,cchain1,cchain2):
 # this code delete unnecessary lines and change chain names
 # ex.) rnafile : 1ABC.pdb , rchain : a
 # protfile : 2ADE.pdb , pchain : c
 # compfile : 3EDF.pdb , cchain1: b, cchain2:t

 import os
 path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/structures/'

 # ATOM 2084 C MET P 1 3.661 7.340 -5.524 1.00 12.96 M 13
 # ATOM 2085 O MET P 1 3.663 6.397 -6.323 1.00 13.08 M 13

 # modify RNA file
 with open(path+rnafile[0:4]+'_r.pdb','w+') as rfo:
 with open(path+rnafile) as rf:
 start = 0
 for lines in rf.readlines():
 if lines[21].upper() in rchain.upper():
 if lines[17:19] == ' ' and lines[0:4]=='ATOM':
 rfo.writelines(lines[:21]+'R'+lines[22:])
 start = 1
 elif start == 1 and 'TER' in lines[0:3]:
 break

 # modify protein file
 with open(path+protfile[0:4]+'_p.pdb','w+') as pfo:
 with open(path+protfile) as pf:
 start = 0
 for lines in pf.readlines():
 if lines[21].upper() == pchain.upper() and lines[17:19] != ' ' and
lines[0:4]=='ATOM':
 # if int(lines[22:26]) > 800:
 # lines = lines[0:22]+str(int(lines[22:26])-800).rjust(4)+lines[26:]
 pfo.writelines(lines[:21]+'P'+lines[22:])
 start = 1
 elif start == 1 and lines[0:3] == 'TER':
 break

 # modify comp file
 with open(path+compfile[0:4]+'_p_r.pdb','w+') as cfo:
 with open(path+compfile) as cf:
 tercount,rnaend,protend,rnastart,protstart = 0,0,0,0,0
 for lines in cf.readlines():

	 116	
	

 if lines[21].upper() == cchain1.upper() and lines[17:19] != ' ' and
lines[0:4]=='ATOM' and rnaend == 0:
 # if int(lines[22:26]) > 800:
 # lines = lines[0:22]+str(int(lines[22:26])-800).rjust(4)+lines[26:]
 cfo.writelines(lines[:21]+'P'+lines[22:])
 rnastart = 1
 elif rnastart == 1 and lines[0:3] == 'TER':
 rnaend = 1
 tercount += 1
 continue

 elif lines[21].upper() == cchain2.upper() and lines[17:19] == ' ' and
lines[0:4]=='ATOM' and protend == 0:
 cfo.writelines(lines[:21]+'R'+lines[22:])
 protstart = 1
 elif protstart == 1 and lines[0:3] == 'TER':
 tercount += 1
 protend = 1
 continue

Program: assign3D.py

this code prepare 'master.txt' that has
3D structure info of RNA (< DSSR.out, ligand.pdb)
def assign3D(rnafile):
 print('**** ASSIGN3D STARTED ****')
 path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/'
 bbone = ["OP2","OP1","O5'","O4'","O3'","O2'"]
 bases = ['N1','O2','N3','O4','N6','N7','N9','N2','O6']
 Cmajor,Gmajor,Umajor,Amajor,WUmajor,wobblepair =
['N4'],['N7','O6',],['O4'],['N6','N7'],['O4','N3'],['GU','UG']
 canonical = 0
 stepline = ''
 with open(path+'master.txt','w+') as fo:
 with open(path+'structures/'+rnafile) as fr:
 for rlines in fr.readlines():
 atomid = rlines[11:17].replace(' ','')
 baseID2 = (rlines[19]+rlines[22:26]).replace(' ','') #G140
 baseID = baseID2[:1] # G
 findstart,readstart,category,helix,wobble,rownum,pairlinestart = 0,0,0,0,0,0,0
 with open(path+'DSSR.out') as fi:
 # check whether the atom of the line is in helix
 for lines in fi.readlines():
 if findstart*readstart == 1:
 if lines == '\n':
 findstart,readstart = 0,0

	 117	
	

 elif lines !='\n':
 row = lines.split()
 if len(row) >= 5:
 base1 = row[1].split('.') # G139
 base2 = row[2].split('.') # C123
 if baseID2 == base1[1] or baseID2 == base2[1]:
 helix = 1
 canonical = lines[66:71]
 rownum = str(lines[0:4]).replace(' ','')
 if base1[1]+base2[1] in wobblepair:
 wobble = 1
 elif findstart == 1 and lines[6:11] == 'helix':
 readstart = 1
 stepline = lines
 elif lines[2:7] == 'helix':
 findstart = 1

 if helix == 0:
 if atomid in bases:
 category = 8
 elif atomid in bbone:
 category = 9
 elif helix == 1:
 try:
 formtype = stepline[int(rownum)+17]
 except IndexError:
 formtype = ' '
 if formtype == 'A':
 if atomid not in bases:
 category = 3

 elif atomid in bases:
 if baseID == 'G' and atomid in Gmajor:
 category = 1
 elif baseID == 'C' and atomid in Cmajor:
 category = 1
 elif baseID == 'A' and atomid in Amajor:
 category = 1
 elif baseID == 'U':
 if atomid in Umajor and wobble == 0:
 category = 1
 elif atomid in WUmajor and wobble == 1:
 category = 1
 else:
 category = 2
 else:

	 118	
	

 category = 2

 elif formtype != 'A':
 if atomid not in bases:
 category = 7

 elif atomid in bases:
 if (baseID == 'G' and atomid in Gmajor) or \
 (baseID == 'C' and atomid in Cmajor)or \
 (baseID == 'A' and atomid in Amajor):
 if 'cW-W' in canonical:
 category = 4
 else:
 category = 5
 elif baseID == 'U':
 if (atomid in Umajor and wobble == 0) or \
 (atomid in WUmajor and wobble == 1):
 if 'cW-W' in canonical:
 category = 4
 else:
 category = 5
 else:
 category = 6
 else:
 category = 6
 fo.writelines(rlines[0:27]+str(category)+'\n')
 print('**** ASSIGN3D COMPLETED ****')

 # For each atom in the RNA(****.pdb), assign 1-9 categories
 # 0. assign baseID like 'G12'
 # 1. helix or not helix
 # 2. 1 -> if not helix, bases(8) or backbones(9)
 # 3. 1 -> if helix, A-form or not
 # 4. 3 -> if A-form, bases or backbone(3)
 # 5. 4 -> if bases, major groove(1) or not(2)
 # 6. 3 -> if not A-form, bases or backbone(7)
 # 7. 6 -> if bases, mglike or not mglike(6)
 # 8. 7 -> if mglike, canonical bp(4) or non canonical(5)

Program: RMSD.py

this code calculates RMSD of each poses using pymol command 'align'
THIS CODE HAS TO BE RUN BY TYPING 'pymol RMSD.py' from terminal
move to the directory you have RMSD.py (this file), then type
**** pymol -cqr RMSD.py >> ../../FTDock/RMSD.out ***
* change the chain ID before running this file

	 119	
	

import __main__
__main__.pymol_argv = ['pymol', '-qc']
import pymol
import os

pymol.finish_launching()

resultlist = []
path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/'

get complexname from a txt file
with open('/Users/kimuratakayuki/Desktop/Thesis/FTDock/threefiles.txt') as fi:
 fline = fi.readline()
 flist = fline.split('\t')
 complex = flist[2]

complexfile = path+'structures/'+complex

for filename in
os.listdir('/Users/kimuratakayuki/Desktop/Thesis/python/8.apply_potentials/'):
 if '.D' not in filename and 'Comp' in filename:
 posefile =
'/Users/kimuratakayuki/Desktop/Thesis/python/8.apply_potentials/'+filename
 pymol.cmd.do('load %s , pose' % posefile)
 pymol.cmd.do('load %s , complex' % complexfile)

 # align peptides
 pymol.cmd.do('align pose and name CA and chain P, complex and name CA and
chain P')
 pymol.cmd.do('select ou, /complex//R//')
 pymol.cmd.do('select co, /pose//R//')
 pymol.cmd.do('rms_cur ou,co')
 pymol.cmd.do('delete %s' % (posefile))
 pymol.cmd.do('delete %s'% (complexfile))
 pymol.cmd.do('delete complex')
 pymol.cmd.do('delete pose')
 pymol.cmd.do('delete ou')
 pymol.cmd.do('delete co')

Program: RMSD2.py

def RMSD2(xpath,cname):
 path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/'
 with open(xpath+'rmsd/'+cname+'/RMSD2.out','w+') as fo:
 infile = open(path+'RMSD.out','r')

	 120	
	

 for line in infile:
 if ', pose' in line:
 flist = line.split('/')
 last = flist[-1]
 filenm = last.replace(' , pose','')
 filenm = filenm.replace('\n','')
 elif 'rms_cur' in line:
 nexline = next(infile)
 if 'r:Noato' in nexline[17:26].replace(' ','') :
 continue
 rms = nexline[17:26].replace(' ','')
 fo.writelines(filenm.replace('\n','')+'\t'+str(rms)+'\n')

 print('**** RMSD2 COMPLETED ****')

Program: calpot_multi.py

 # this code apply potentials to each pose
 # potential files + master.txt + pose files -> scores.txt
 # the output file would be like below
 # 1.pose filename 2.score 3.RMSD

def calpot(xpath,potcategory,rangenum,out_q,potmode,Cname): # category 0-10, 10 is
overall, 0 is full set
 path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/'
 path2 = '/Users/kimuratakayuki/Desktop/Thesis/Analyzing/'
 # xpath = '/Volumes/Transcend/' or '/Users/kimuratakayuki/Desktop/PRat_asa/stored/'
 # xpath + 'hbonds/'+Cname+'/' or 'rmsd/' + Cname+'/'
 import os, shutil
 group,pre1,pre2,state = '','','',''
 cate = [0,0,0,0,0,0,0,0,0]
 import math
 with open(path+str(rangenum[0])+'scores.txt','w+') as fo:
 for filename in os.listdir(xpath + 'hbonds/'+Cname+'/'):
 if 'Complex' in filename:
 filenum = int(filename.replace('Complex_','').replace('g.pdb.hb',''))
 if filenum in range(rangenum[0],rangenum[1]+1):
 scoresum,combscore = 0,0
 cate_native = [0,0,0,0,0,0,0,0,0]
 rmsd = 0

 with open(xpath + 'hbonds/'+Cname+'/'+filename) as fc:
 for lines in fc.readlines():
 if lines[0] != ' ':
 continue
 # pick the contact between RNA-protein

	 121	
	

 pre_ele1,pre_ele2 = '',''

 # 51 78 #50 p 3.106 O/N O@P.ALA384 N@P.GLN388
 linelist = lines.split()
 # 0 pre_elelist ''' 14 15
 # " 51 78 #50 p 3","106","O/N","O@P.ALA384",
"N@P.GLN388"
 atomID1 = linelist[0]
 atomID2 = linelist[1]
 atomnafl1 = linelist[6].split('.')
 atomnafl2 = linelist[7].split('.')
 atomna1 = atomnafl1[1]
 atomna2 = atomnafl2[1]
 distance = linelist[4]

 # pre_ele1 : G1 pre_ele2 : THR
 # remove numbers from 'G13'
 for i in range(0,10):
 atomna1=atomna1.replace(str(i),'')
 atomna2=atomna2.replace(str(i),'')

 if len(atomna1)+len(atomna2) == 4:
 if len(atomna1) == 1:
 atomna1,atomna2 = atomna2,atomna1
 atomID = atomID1
 else:
 atomID = atomID2
 pairtype = atomna1+'_'+atomna2
 # get category# using atomID and baseID
 # ATOM 198 P U A 7 0
 category = 0
 with open(path+'master.txt') as fm:
 for mlines in fm.readlines():
 matomIDlist = mlines.split()
 matomID = matomIDlist[1]
 if matomID == atomID:
 category = mlines[27]
 if category != 0:
 cate[int(category)-1] += 1
 cate_native[int(category)-1] += 1

 if potmode == 'ba':
 if int(category) in [3,7,9]:
 continue

 elif potmode == 'bb':

	 122	
	

 if int(category) in [1,2,4,5,6,8]:
 continue

 # for filename2 in os.listdir(path2+str(potcategory)):
 for filename2 in os.listdir(path2+'0'):
 if potcategory == 0 or potcategory == 98: # full set
 if (str(category)+'_') in filename2:
 with open(path2+'0/'+filename2) as fp:
 for plines in fp.readlines():
 # ASP_A 0.3593608045735999
 plist = plines.split('\t')
 if plist[0] == pairtype:
 scoresum += float(plist[1])
 # scoresum += (8103*math.exp(-
2.46*float(distance))/40)*float(plist[1])
 elif potcategory == 11: # propensity
 if (str(category)+'_') in filename2:
 with open(path2+'11/'+filename2) as fp:
 for plines in fp.readlines():
 # ASP_A 0.3593608045735999
 plist = plines.split('\t')
 if plist[0] == pairtype:
 scoresum += float(plist[1])
 elif potcategory == 10: # overall
 with open(path2+'10/overall.txt') as fp:
 for plines in fp.readlines():
 # ASP_A 0.3593608045735999
 plist = plines.split('\t')
 if plist[0] == pairtype:
 scoresum += float(plist[1])
 elif potcategory == 99: # overall
 with open(path2+'99/overall.txt') as fp:
 for plines in fp.readlines():
 # ASP_A 0.3593608045735999
 plist = plines.split('\t')
 if plist[0] == pairtype:
 scoresum += float(plist[1])
 elif potcategory == 13: # propensity
 with open(path2+'13/amos.txt') as fp:
 for plines in fp.readlines():
 # ASP_A 0.3593608045735999
 plist = plines.split()
 if plist[0] == pairtype:
 scoresum += float(plist[1])
 elif potcategory != 0 and potcategory != 11: # one set only
 with open(path2+str(potcategory)+'/pot.txt') as fp:

	 123	
	

 for plines in fp.readlines():
 # ASP_A 0.3593608045735999
 plist = plines.split('\t')
 if plist[0] == pairtype:
 scoresum += float(plist[1])

 # calculate rank in ftdock scoring
 with open(path+'structures/ftdock_rpscored.dat') as rpf:
 for lines in rpf.readlines():
 if 'G_DATA' in lines:
 list1 = lines.split()
 if filename.replace('g.pdb.hb','').replace('Complex_','') == list1[1]:
 combscore = float(list1[4])*(-1) + scoresum

 # get RMSD
 # Complex_1006g.pdb.rstd 13.7907018661 1460
 with open(xpath + 'rmsd/'+Cname+'/RMSD2.out') as fr:
 for rlines in fr.readlines():
 if filename.strip('.hb') in rlines:
 rlist = rlines.split('\t')

 rmsd = rlist[1]
 if float(rmsd) < 10:
 group = 'Native'
 print(rlines)
 else:
 group = 'Non_native'

fo.writelines(filename+'\t'+str(scoresum)+'\t'+str(rmsd).replace('\n','')+'\t'+group+'\t'+str(c
ombscore)+'\t'+\

str(cate_native[0])+'\t'+str(cate_native[1])+'\t'+str(cate_native[2])+'\t'+str(cate_native[3])
+\

'\t'+str(cate_native[4])+'\t'+str(cate_native[5])+'\t'+str(cate_native[6])+'\t'+str(cate_native[
7])+\
 '\t'+str(cate_native[8])+'\n')

 # make a list of native like poses and scores
 with open(path+str(rangenum[0])+'arrows.txt','w+') as fo2:
 with open(path+str(rangenum[0])+'scores.txt') as scof:
 for lines in scof.readlines():
 scolist = lines.split('\t')
 if scolist[3] == 'Native':
 fo2.writelines(scolist[0]+'\t'+scolist[1]+'\t'+scolist[2]+'\t'+scolist[4]+'\n')

	 124	
	

 result = str(cate[0])+' '+str(cate[1])+' '+str(cate[2])+' '+str(cate[3])+' '+str(cate[4])+'
'+str(cate[5])+' '+\
 str(cate[6])+' '+str(cate[7])+' '+str(cate[8])
 out_q.put(result)

Program: nativerank.py

this code makes nativerank.txt that has the best rank and
the number of native like structures
and then make result***.txt which is like a log

def nativerank(gridsize,compname,posemax,potentials,resolim,potmode):
 print('**** NATIVERANK STARTED ****')
 import shutil
 path = '/Users/kimuratakayuki/Desktop/Thesis/FTDock/'
 comfile = open('/Users/kimuratakayuki/Desktop/Thesis/FTDock/bbrestore.txt','r')
 comlist = comfile.readline().split('\t')
 bbrestore = comlist[1]
 combrank = 0
 rank = 0
 state=''

 if bbrestore == '1':
 state = 'Rm'
 elif bbrestore == '0':
 state = 'Rf'

 with open(path+'nativeranks.txt','w+') as fo:
 with open(path+'arrows.txt') as fa:
 for lines in fa.readlines():
 if lines != '\n':
 nlist = lines.split('\t')
 score = nlist[1].replace(' ','')
 combscore = nlist[3]
 combcount = 0

 # get the rank for each line in arrows.txt
 with
open(path+'results/scores/'+compname.strip('.pdb')+'_'+potmode+'_'+str(gridsize)+'_'+str(
posemax)+'_3_'+str(potentials)+'_asa_0_'+str(resolim)+'.txt') as fr:
 count = 0
 for rlines in fr.readlines():
 if rlines != '\n':
 rlist = rlines.split('\t')
 try:

	 125	
	

 if float(score) < float(rlist[1]):
 count += 1
 if float(combscore) < float(rlist[4]):
 combcount += 1

 except ValueError:
 print('VALU ERROR '+rlines)

 rank = count + 1
 combrank = combcount + 1
 if combrank == 0:
 combrank = posemax
 fo.writelines(lines.replace('\n','')+'\t'+str(rank)+'\t'+str(combrank)+'\n')

 # calculate the best rank in FTDock scoring from RMSD2.out
 with open(path+'RMSD2.out') as rmf:
 bestposeid = 50373
 for lines in rmf.readlines():
 linlist = lines.split('\t')
 if float(linlist[1]) < 10.0:
 list2 = linlist[0].split('_')
 list3 = list2[1].split('g.')
 poseid = float(list3[0])
 if poseid < bestposeid:
 bestposeid = poseid
 fo.writelines('Best FTrank is : Complex_'+str(bestposeid)+'g.pdb and rank is
'+str(bestposeid))

 bestrank = 50373
 combbestrank = 50373
 # read the output and get the best ranking
 with open(path+'nativeranks.txt') as rankf:
 i = 0
 for ranline in rankf.readlines():
 if 'Best ' in ranline:
 continue
 i += 1
 ranlist = ranline.split('\t')
 if int(ranlist[4]) < int(bestrank):
 bestrank = ranlist[4]
 if int(ranlist[5]) < int(combbestrank):
 combbestrank = ranlist[5]

 a1 = 'Best rank '+str(bestrank) + ' , number of native like '+str(i)
 a2 = 'FTDock best rank '+str(bestposeid)+', combined scoring rank best '+
str(combrank)

	 126	
	

 nativemess = [a1, a2]

 # save native ranks with complex name in its filename

shutil.copy2(path+'nativeranks.txt',path+'results/natives/result_'+compname+'_'+state+'_'
+str(gridsize)\
 +'_'+str(posemax)+'_'+str(potentials)+'.txt')

 print('**** NATIVERANK COMPLETED ****')
 return nativemess

Appendix F Main Python Scripts for Unpublished Results

Program: addPR_cate.py

def addPR_cate(patom, ratom):

 catelist = [[(1+i+17*j) for i in range(17)] for j in range(15)] # column:protein,
row:RNA
 patomlist = ["OH", "OG1", "OG", "OE2", "OE1", "OD2", "OD1", "O", "NZ", "NH2",
"NH1", "NE2", "NE1", "NE", "ND2", "ND1","N"]
 ratomlist = ["OP2", "OP1", "O6", "O5'", "O4'", "O4", "O3'", "O2'", "O2", "N7", "N6",
"N4", "N3", "N2","N1"]
 # 5 10 15
 try:
 pindex = patomlist.index(patom)
 except ValueError:
 return ''
 try:
 rindex = ratomlist.index(ratom)
 except ValueError:
 return ''
 return catelist[rindex][pindex]

Program: pfasta.py

def pfasta(path): # path = /--/PRat_asa/FTDock/
 import os
 aminos = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
 aminot =
['ALA','CYS','ASP','GLU','PHE','GLY','HIS','ILE','LYS','LEU','MET','ASN','PRO',\
 'GLN','ARG','SER','THR','VAL','TRP','TYR']

 with open(path+'pfasta.txt','w') as fo2:
 print('')

	 127	
	

 with open(path+'pfasta.txt','a') as fo:
 # pdb1j5e.ent.strideout
 # 5aor.pdb.strideout
 # 4v42-pdb-bundle.tar.strideout
 # ASG THR A 134 122 E Strand -130.85 151.94 26.5 1A34
 # ASG VAL A 135 123 E Strand -118.42 173.67 58.5 1A34
 for files in os.listdir(path+'structures/stride_out/'):
 if '.pdb.strideout' in files or '.ent.strideout' in files:
 with open(path + 'structures/stride_out/'+files) as fi:
 pdb = files[0:4]
 if files[0:3] == 'pdb':
 pdb = files[3:7]
 chainlist = []
 for lines in fi.readlines():
 # 0. AlphaHelix
 # 1. 310Helix
 # 2. Pi-helix
 # 3. Strand
 # 4. Bridge
 # 5. Turn
 # 6. Coil or else

 # ASG VAL P 2 2 C Coil -75.53 134.66 13.9 ~~~~
 # ASG VAL P 3 3 E Strand -133.52 116.40 11.0 ~~~~
 try:
 if lines[0:3] == 'ASG':
 chain = lines[9]
 if chain not in chainlist:
 chainlist.append(chain)
 fo.writelines(pdb.upper()+':'+chain+'\n')
 if 'AlphaHelix' in lines.split()[6]:

fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'0'+'\t'+lines.split()[3]+'\t'+'\n')
 elif '310Helix' in lines.split()[6]:

fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'1'+'\t'+lines.split()[3]+'\t'+'\n')
 elif 'PiHelix' in lines.split()[6]:

fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'2'+'\t'+lines.split()[3]+'\t'+'\n')
 elif 'Strand' in lines.split()[6]:

fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'3'+'\t'+lines.split()[3]+'\t'+'\n')
 elif 'Turn' in lines.split()[6]:

fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'4'+'\t'+lines.split()[3]+'\t'+'\n')
 elif 'Bridge' in lines.split()[6]:

	 128	
	

fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'5'+'\t'+lines.split()[3]+'\t'+'\n')
 else: # including Coil

fo.writelines(lines.split()[1]+'\t'+lines.split()[2]+'\t'+'6'+'\t'+lines.split()[3]+'\t'+'\n')
 except ValueError:
 continue

 for files in os.listdir(path.replace('/FTDock/','')+'/Clustering/mmCIF/'):
 if files[4:8] == '.cif' and len(files) == 8: # files = '1a1t.cif'
 with open(path.replace('/FTDock/','')+'/pfasts/'+files[0:4].upper()+'.pfasta','w') as
fos:
 with open(path+'pfasta.txt') as fis:
 start = 0
 for lines in fis.readlines():
 # 1A34:A
 # T A 3 13
 # G A 3 14
 if start == 0:
 if files[0:4].upper() in lines:
 start = 1
 fos.writelines(lines)
 elif start == 1:
 if ':' in lines:
 if files[0:4].upper() not in lines:
 break
 else:
 fos.writelines(lines)
 else:
 fos.writelines(lines)
pfasta('/Users/kimuratakayuki/Desktop/PRat77/FTDock/')

Program: parseDSSR.py

def parseDSSR(): # this code generates rfasta.txt ****** MANUALLY RUN !!!

 def parseDS(dssrfile,ciffile,path):
 def sec_check(file,resi,type): # resi -> Q.G344
 try:
 with open(file) as f:
 start,found = 0,0
 for lines in f.readlines():
 if start == 0:
 if 'List' in lines and type in lines:
 start = 1
 elif start == 1:

	 129	
	

 if '******' in lines:
 break
 elif resi in lines:
 if resi+',' in lines:
 found = 1
 break
 elif lines.split()[2].split(',')[-1] == resi:
 found = 1
 break
 return found
 except FileNotFoundError:
 pass

 with open(path+'rfasta.txt','a') as fo:
 with open(ciffile) as fr: # make resilist in the cif file
 resilist,chlist = [],[]
 for rlines in fr.readlines():
 # ATOM 486 H H6 . C A 1 15 ? 15.751 0.322 -6.067 1.00 0.00 ? ? ?
? ? ? 18 C A H6 1
 # ATOM 487 N N . ASN B 2 1 ? 10.545 2.262 5.673 1.00 0.00 ? ? ?
? ? ? 1 ASN B N 1
 # ATOM 488 C CA . ASN B 2 1
 if rlines[0:4] == 'ATOM' and len(rlines.split()[5]) == 1:
 resi = rlines.split()[23]+'.'+rlines.split()[5]+rlines.split()[21] # S.U608
 if resi not in resilist and len(rlines.split()[23]) == 1:
 resilist.append(resi)

 for resi in resilist: # classify the residues of the resilist
 category = ''
 if resi[0] not in chlist:
 chlist.append(resi[0])
 fo.writelines(dssrfile[-12:][0:4].upper()+':'+resi[0].upper()+'\n')

 # classify except helices : type -> 'hairpin loops','bulges','internal
loops','junctions',
 #
 # 0 Single Stranded 'single-stranded'
 # 1 Hairpin Loop 'hairpin loops'
 # 2 Bulge or Internal Loop 'bulges','internal loops'
 # 3 Junction 'junctions'
 # 4 Helix A-form
 # 5 Other Helix
 # 6 Other

 # assign category 0-3 *** priority ***
 if sec_check(dssrfile,resi,'single-stranded') == 1: # S.U608

	 130	
	

 category = 3

fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n')
 continue
 elif sec_check(dssrfile,resi,'hairpin loop') == 1:
 category = 4

fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n')
 continue
 elif sec_check(dssrfile,resi,'junction') == 1:
 category = 5

fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n')
 continue

 try:
 with open(dssrfile) as fi:
 found,start,any = 0,0,0
 for lines in fi.readlines():
 if start == 0:
 if lines[0:8] == ' helix#':
 start,any = 1,1
 signlist = []
 elif start == 1:
 if 'helix-form' in lines:
 signlist = lines[18:]
 elif lines[2:4] == '--':
 start = 0
 elif '********' in lines:
 break
 elif resi in lines:
 found = 1
 if signlist[int(lines.split()[0])-1] == 'A':
 category = 0

fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n')
 break
 elif signlist[int(lines.split()[0])-1] == 'x':
 category = 1

fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n')

	 131	
	

 break
 elif signlist[int(lines.split()[0])-1] == '.':
 category = 2

fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n')
 break
 except FileNotFoundError:
 pass

 if category == 0 or category == 1 or category == 2:
 continue
 else:
 category = 6

fo.writelines(resi.split('.')[1][0]+'\t'+resi[0].upper()+'\t'+str(category)+'\t'+resi.split('.')[1][
1:]+'\n')
 continue

 import os
 path0 = os.getcwd()
 path0 = path0.replace('/python/8.apply_potentials','')+'/' # path0 = /Users/---/PRat_asa/
 path = path0+'FTDock/' # path = /--/PRat_asa/FTDock/
 with open(path0+'rfasta.txt','w'): # renew rfasta.txt
 pass
 for files in os.listdir(path0+'Clustering/mmCIF/'):
 if files[4:8] == '.cif' and len(files) == 8: # only cif files not '1a1t.cif.out'

parseDS(path0+'Analyzing/DSSRout/'+files[0:4]+'.cif.out',path0+'Clustering/mmCIF/'+fi
les[0:4]+'.cif',path0)

 for files in os.listdir(path0+'Clustering/mmCIF/'):
 if files[4:8] == '.cif' and len(files) == 8: # files = '1a1t.cif'
 with
open(path.replace('/FTDock/','')+'/DSSRparsed/'+files[0:4].upper()+'.rfasta','w') as fos:
 with open(path0+'rfasta.txt') as fis:
 start = 0
 for lines in fis.readlines():
 if start == 0:
 if files[0:4].upper() in lines:
 start = 1
 fos.writelines(lines)
 elif start == 1:
 if ':' in lines:
 if files[0:4].upper() not in lines:
 break

	 132	
	

 else:
 fos.writelines(lines)
 else:
 fos.writelines(lines)

 print('**** DSSRparse complete ****')
parseDSSR()

Appendix G Shell Script

Program: DSSR.sh

#!/bin/bash
echo "**** DSSR STARTED ****"
ifiles=/Users/kimuratakayuki/Desktop/Thesis/FTDock/structures/$1
outputdir=/Users/kimuratakayuki/Desktop/Thesis/FTDock/

for file in $ifiles;do
/usr/local/bin/x3dna-dssr --input=$file --output=$outputdir/DSSR.out &>dssr.log
done

echo "**** DSSR COMPLETED ****"

Program: FTDock.sh

#!/bin/bash
path="/Users/kimuratakayuki/Desktop/Thesis/FTDock/structures/"
path1="/Users/kimuratakayuki/Desktop/Thesis/FTDock/"
path2="/Users/kimuratakayuki/Desktop/Beforeprelim/ftdock-2-dev/scripts-2.0.3/"

mfile=$path$1 # $1:protein like 1QUX_p.pdb
rfile=$path$2 # $2:rna

/opt/local/bin/perl $path1'preprocess-pdb.perl' -pdb $mfile shell=TRUE > prepro1.log
/opt/local/bin/perl $path1'preprocess-pdb.perl' -pdb $rfile shell=TURE > prepro2.log

alt=".parsed"
mf=${mfile%.pdb}$alt
rf=${rfile%.pdb}$alt

echo " **** FTDOCK STARTED **** "
according to bbrestore($3), switch mobile and fixed
if ["$3" -eq "1"]; then
 mpirun -v -np 8 ftdock_mpi -mobile $rf -static $mf -calculate_grid $4 -dlim_static $9 -
dlim_mobile $9 -out $path'ftdock_global.dat' -surface $7 $8 -noelec > ftdock.log
elif ["$3" -eq "0"]; then

	 133	
	

 mpirun -v -np 8 ftdock_mpi -mobile $mf -static $rf -calculate_grid $4 -dlim_static $9 -
dlim_mobile $9 -out $path'ftdock_global.dat' -surface $7 $8 -noelec > ftdock.log
fi
echo " **** FTDOCK COMPLETED **** "

echo " **** RPSCORE STARTED **** "
if ["$6" -eq "1"]; then # default matrix
 /usr/local/bin/rpscore -in $path'ftdock_global.dat' -out $path'ftdock_rpscored.dat' -
matrix $path'best.matrix' > rpscore.log
elif ["$3" -eq "0"]; then # all 1 matrix
 /usr/local/bin/rpscore -in $path'ftdock_global.dat' -out $path'ftdock_rpscored.dat' -
matrix $path'allone.matrix' > rpscore.log
fi

echo " **** RPSCORE COMPLETED **** "
echo " **** BUILD STARTED **** "
cd /Users/kimuratakayuki/Desktop/Thesis/python/8.apply_potentials/restored
/usr/local/bin/build -b2 $5 -in $path'ftdock_rpscored.dat' > build.log

echo " **** BUILD COMPLETED **** "

	San Jose State University
	SJSU ScholarWorks
	Fall 2016

	RNA-Protein Structure Classifiers Incorporated into Second-Generation Statistical Potentials
	Takayuki Kimura
	Recommended Citation

	Microsoft Word - Takayuki_thesis_corrected_for_GST.docx

