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ABSTRACT. Metal-contaminated soils provide numerous stressors to plant life,
resulting in unique plant communities worldwide. The current study focuses on
the vascular plants of Callahan Mine in Brooksville, ME, USA, a Superfund site
contaminated with Cu, Zn, Pb, and other pollutants. One hundred and fifty-five
taxa belonging to 50 families were identified, with the Asteraceae (21%), Poaceae
(11%), and Rosaceae (9%) as the most species-rich families. Ninety-six species
encountered at the Mine were native to North America (62%), including 11 taxa
(7%) with rarity status in at least one New England state. Fifty-one species were
non-native (33%), including nine taxa (6%) considered invasive in at least one
New England state. We characterized how the plant community changed across
different habitats at the Mine, from disturbed and exposed (waste rock piles,
tailings pond) to inundated and relatively undisturbed (wetland, shore), and
documented concurrent shifts in the ionic content of the soils across the habitats.
We found substantial differences in both the plant community and soil chemical
features among habitats. Habitats separated out along a single axis of an
ordination of the plant community, with wetland and shore habitats at one
extreme and tailings pond and waste rock-pile habitats at the other. The first
principal component axis of the 21 soil variables was significantly predicted by
the ordination of the plant community, indicating a gradient of increasing organic
matter, Fe, Mg, Mn, total N, Na, and K roughly parallel to the gradient of
increasing wetland vegetation. None of the plant species tested accumulated
substantial concentrations of metals in their leaf tissue except Salix bebbiana and
Populus balsamifera, which accumulated 1070 ppm and 969 ppm Zn in dry leaf
tissue, respectively—approximately one-third of the concentration considered as
hyperaccumulation for Zn.
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Edaphically extreme habitats, such as serpentine outcrops, guano
deposits, alkaline flats, and metal-enriched mining sites pose unique
challenges to plant life (Rajakaruna and Boyd 2008). The stressors
faced by plants of such habitats can include: water stress due to the
rocky and often shallow nature of the substrate, generally low levels
of essential nutrients, extremes of pH, and elevated concentrations
of ions, including heavy metals. Although trace levels of some
heavy metals are required by plants as micronutrients (Ahmad
and Ashraf 2011; Marschner 1995), high levels can interfere with
essential physiological processes and cause toxicities (Hansch and
Mendel 2009; Peralta-Videa et al. 2009). Some heavy metals, such
as copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc
(Zn), regulate various biological processes in plants (Epstein and
Bloom 2004), but when they occur in excess they can disrupt critical
biological processes (Chaffai and Koyama 2011; Kabata-Pendias
2001). Thus, most plants exclude metals at the root level by binding
them to organic acids or ligands or storing them within vacuoles in
the roots, where they cannot interfere with important physiological
processes (Gall and Rajakaruna 2013; Hossain et al. 2012). However,
metal-hyperaccumulating plants are able to take up high concentra-
tions of heavy metals from the soil and translocate them into above-
ground tissue at concentrations exceeding, in most cases, 0.1% of
total dry leaf tissue mass (Rascio and Navari-Izzo 2011; van der Ent
et al. 2012). The Brassicaceaec (Gall and Rajakaruna 2013),
Caryophyllaceae (Verkleij and Prast 1988), Asteraceae (O’Dell and
Rajakaruna 2011), Rubiaceae (Reeves 2003), and Fabaceae (Page et
al. 2006) are families known to consist of species able to tolerate
metals either through exclusion or accumulation.

Understanding the ecology of metal-contaminated sites is
becoming critical as increasing pollution exposes more land to
heavy metals and other contaminants (Boyd 2004; Ensley 2000;
McGee et al. 2007; Wuana and Okieimen 2011). Metal-enriched
habitats and their locally adapted biota are also undergoing drastic
changes due to natural and human-induced stressors (Williamson
and Balkwill 2006), even those resulting from recent efforts to
remediate metal mines abandoned for long periods of time (Jacobi
et al. 2011; Palmer et al. 2010). Thus, floristic surveys in support of
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conservation efforts should be encouraged. These should document
the wealth of biological diversity continually being lost from such
sites worldwide, particularly those metal-tolerant plants that could
be used for phytoremediation (Baker et al. 2010; Whiting et al.
2004). Although there are many metal-enriched sites in northeast-
ern North America (Rajakaruna, Harris, and Alexander 2009),
including 118 EPA-designated Superfund sites in New England
(Environmental Protection Agency 2013), the sites are under-
explored for both their botanical diversity and the occurrence of
species with unusual metal-accumulating physiologies (Rajakaruna,
Harris, and Alexander 2009). Studies conducted at Pine Hill, an Ni-
enriched serpentine quarry on Little Deer Isle, ME, suggest both a
unique bryophyte (Briscoe et al. 2009) and vascular flora (Pope
et al. 2010) compared to Settlement Quarry, an adjacent granite
outcrop. Harris et al. (2007) also found a unique lichen flora at Pine
Hill, including two species new to New England and an additional
three new to Maine. Rajakaruna et al. (2011) recently showed a
unique composition of lichens at the Cu-, Zn-, and Pb-enriched
Callahan Mine in Brooksville, ME, consisting of taxa that are often
found in metal-enriched sites worldwide.

In this study, we compiled a list of vascular plants growing at
Callahan Mine (hereafter also, the Mine) and examined how the
plant community and soil ionic content varied across five distinct
habitats at the Mine (tailings pond, waste rock piles, shore,
wetland, and ‘in between;’” see Figure 1 and Materials and Methods
for habitat descriptions). We hypothesized that: (a) diversity would
be lowest in the disturbed and exposed habitats (waste rock piles
and tailings pond) and the often inundated wetland habitat,
compared to less disturbed and less exposed habitats (shore, ‘in
between’); (b) species composition and life forms would be distinct
among the different habitats with herbaceous, annual, and non-
native species dominating the more disturbed and highly exposed
habitats, compared to native and perennial herb, shrub, and tree
species in the less disturbed and less exposed habitats and the
wetland habitat; and (c) substantial differences in soil variables
would be present across habitat types, and would correlate with
variation in the plant communities (although not necessarily
causing, or caused by, variation in the plant community).

We collected descriptive data on the ionic content of leaf tissue
from select plant taxa growing at Callahan Mine to assess if there
are species that show unusual physiologies with respect to metal
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Figure 1. Map of Callahan Mine featuring the sampling plots placed within
the five habitats chosen for the vegetation survey.

accumulation and that could be utilized in the restoration of metal-
contaminated sites in New England. To informally place the flora
of the Mine within a regional context, we calculated the proportion
of species that were native to North America and to New England.
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Finally, we compared the species list from the Mine to those
previously reported from two adjacent rock outcrops (Pope et al.
2010) to see if the metal-tolerant plants at the Mine were more
abundant at nearby Pine Hill (serpentine outcrop), relative to
Settlement Quarry (granitic outcrop). We expected the flora at the
Mine to be more similar (in terms of species composition, measured
by Bray-Curtis dissimilarity) to the flora of Pine Hill than to the
flora of Settlement Quarry.

MATERIALS AND METHODS

Site description. Callahan Mine is a former intertidal open-pit
mine in Brooksville, Hancock County, ME (44°20" N, 68°48'W;
WGS 84; Figure 1). It has been mined intermittently since 1880,
with the most intensive mining taking place from 1968-1972
(Environmental Protection Agency 2009; Rajakaruna et al. 2011).
Today, the 150-acre site is composed of the ore pad where rocks
from the Mine were crushed to a fine sand, three waste rock piles
where non-ore-bearing rocks were piled, and a tailings pond made up
of refuse (fine-textured soil particles) from the chemical separation of
mineral and non-mineral particles. Callahan Mine was listed as a
Superfund site in 2002 by the Environmental Protection Agency
(2002) due to elevated levels of organic contaminants and heavy
metals, including Cu, Zn, Pb, and Cd. Remediation efforts that
began in 2010 at the Mine have restricted access to the northern part
of the site. Therefore, this study focused on the southern portion of
the Mine, including waste rock piles 1 and 3, the tailings pond, and
the wetland, areas that were also surveyed during the recent lichen
study (Rajakaruna et al. 2011; Figure 1).

Floristic survey. We stratified Callahan Mine into five separate
habitats: tailings pond, waste rock piles 1 and 3, wetland, shore, and
a section without distinct geographical features referred to as ‘in
between’ (Figure 1). Within each habitat, five 10 X 10 m plots were
placed (six within the waste rock piles) using the Geographic
Information System (GIS) random point generator (ArcGIS 10.1
Spatial Analyst, ‘Create Random Points’ tool). Two of the random
plots on the tailings pond were not included in any analyses, as
remediation efforts had recently removed vegetation. We avoided
selecting plots from any areas within the Mine that were currently
undergoing remediation or were planned for such activities in the
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future. Randomly generated plots devoid of any vegetation were
also not selected for the survey. Within each plot, vascular species
were recorded, and the percent cover of each species was calculated
within a grid of twenty-five 2 X 2 m subplots to obtain a percent
cover measure per 10 X 10 m plot. Percent cover data were used to
calculate species diversity indices and other species-habitat associ-
ations. A few species not encountered within the plots were
identified from throughout the study area and included in the
species list for Callahan Mine. They were not included in the
diversity indices we calculated for individual plots. Plants were
identified using Haines (2011). Voucher specimens were deposited
at the herbarium of College of the Atlantic, Bar Harbor, ME
(HCOA).

Soil analysis. Soil samples were collected in August 2011 from
the four corners and center of each 10 X 10 meter plot from up to
10 cm below the surface using a stainless steel trowel. Samples were
air-dried for 2 weeks and stored in plastic bags. Soil pH was
measured with the 1:2 soil-to-solution method, with distilled water
and 0.01 M CaCl, (Kalra and Maynard 1991). Organic matter was
measured by loss on ignition at 375°C. Using a 1 M potassium
chloride solution, nitrate and ammonium nitrogen were extracted
and analyzed colorometrically by a Dual-Channel Automated Ton
Analyzer (OI Corporation, TX). Calcium, K, Mg, Na, P, and S
were extracted with 1 M neutral ammonium acetate (Kalra and
Maynard 1991) and determined by Inductively Coupled Plasma
Optical Emission Spectrometry (ICP-OES). Phosphorus was
determined colorometrically by the Ion Analyzer. Electrical
conductivity (EC) was measured by a saturated media water
extraction (Gavlak et al. 2003). Aluminum, Cd, Cr, Cu, Fe, Mn,
Mo, Ni, Pb, and Zn were extracted in 0.005 M DPTA to a pH of 7.3
for 2 h and determined by ICP-OES. Analyses were conducted by
the Analytical Laboratory at the University of Maine in Orono
(UMO).

Tissue analysis. Ten to fifteen fully expanded and mature leaves
were collected from throughout the Mine from five to ten widely
spaced individuals of Achillea millefolium subsp. lanulosa, Betula
papyrifera, Festuca rubra subsp. rubra, Galium mollugo, Hypericum
perforatum subsp. perforatum, Juncus gerardii, Lotus corniculatus,
Lupinus polyphyllus var. polyphyllus, Morella caroliniensis, Onoclea
sensibilis, Phragmites australis, Populus balsamifera, Salix bebbiana,
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Silene vulgaris subsp. vulgaris, Spiraea alba var. latifolia, Stellaria
graminea, Thlaspi arvense, Typha latifolia, Vaccinium angustifolium,
and Vicia villosa subsp. villosa. The unequal sample size was due to
the leaf size differences among the target species (more leaves were
collected from species with smaller leaves in order to have adequate
mass for tissue analyses) or due to their relative abundance at
the Mine (common species were collected more often). The
species selected were from plant families known to contain metal
accumulating taxa (e.g., Asteraceae, Brassicaceae, and Caryophyl-
laceae) or from those found in high abundance at the Mine (e.g.,
Betulaceae, Fabaceae, Poaceae, and Salicaceae). Leaves were rinsed
with distilled water, washed in 0.1 M HCl solution, and rinsed again
twice in distilled water. Samples were dried in a forced-draft oven
for 48 h at 80°C. One composite tissue sample from each species,
consisting of tissue from five to ten individuals, was sent to the
Analytical Laboratory at UMO. To determine tissue concentra-
tions (ppm) of Ca, K, Mg, P, Al, B, Cu, Fe, Mn, Zn, Ni, Cr, Cu,
Cd, Pb, and Mo, samples were dry-ashed at 450°C for 5 h and
dissolved in 50% HCI; concentrations were determined using ICP-
OES. Direct combustion analysis at 1150°C in pure oxygen with
detection by thermal conductivity in the combustion gases was used
to estimate total N (TN %) content of tissue.

Statistical analyses. All statistical analyses were conducted
using R (R Core Team 2013). To compare the complete flora of
Callahan Mine with those of nearby Pine Hill and Settlement
Quarry, we calculated the proportion of shared species relative to
the total number of species in a given site pair (also known as
Jaccard’s similarity index). To compare the higher taxonomy
between these sites, we used a taxonomic variant of Jaccard’s
index (AT; Bacaro et al. 2007) which is a measure of the similarity of
a pair of taxonomic trees. To estimate diversity of the plant
community across habitats at the Mine, we calculated species
richness and the Shannon diversity index (—=X; (p; - In p;), where p; is
the proportional abundance of the ith species) for each plot. To test
for differences in diversity among habitats, we used a GLM
(generalized linear model) with a quasi-Poisson distribution (for
species richness) and a normal linear model (for Shannon diversity).
To examine species composition across habitats, we used non-
metric multidimensional scaling (hereafter, nMDS) with Bray-
Curtis distance for an unconstrained ordination of the plant
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community (ter Braak 1995). Two sites of the ‘waste rock pile’
habitat were removed prior to the ordination as they were devoid of
vegetation. Habitat membership was regressed against site scores
from the ordination, and the coefficient of determination (R*) was
calculated. A permutation test was then used to assess the
probability that site scores and habitats were non-randomly
associated: the vector of habitat membership was permuted and
R? calculated with each permutation. A p-value was calculated by
asking what proportion of the permuted R* was greater than the
observed R% This procedure follows ter Braak (1995) and is
implemented in the vegan package (Oksanen et al. 2013). To
facilitate visualization of plant community structure (i.e., plant life
form and family membership across habitats), we partitioned
species scores from the ordination into separate subsets based upon
life form and family membership. For each subset, we calculated the
centroid and a 95% confidence ellipse. Species scores in an nMDS
ordination are essentially weighted means of site scores (e.g., a mean
of site scores weighted by the number of times the taxon appears in
the sites). Each species score can be viewed as an optimum—the point
in ordination space where the abundance of that taxon is maximal. In
nMDS, the rate of decline in abundance from the optimum is not
uniform in every direction (the taxon may decline in abundance more
quickly in one direction than another). Therefore, the centroid of
species scores for a subset of taxa (e.g., a clade) should not be
interpreted as the point where the abundance of this clade is
maximal, but instead as the central tendency of the optima of the
taxa in that clade. To examine soil ionic content across habitats, we
used principal components analysis (PCA) to reduce log-transformed
soil variables (pH was not log-transformed) into orthogonal
eigenvectors. Variables were scaled and centered prior to PCA. The
first six principal components explained ~92% of the variance in the
soil data; subsequent axes were not considered further. We used a
one-way MANOVA with an approximate F-test to determine
whether habitats explained a substantial amount of variation in the
PCA axes. To assess soil ionic content across variation in the plant
community, we fit PCA axes to the nMDS ordination using an
analogous procedure to that described above for habitats. Essential-
ly, each PCA axis was regressed against the corresponding site scores
of the nMDS axes. It is important to note that the PCA axes were
analyzed individually; we assessed the degree to which each PCA axis
could be predicted, given the ordination.
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RESULTS

We collected 155 taxa and identified 148 to full species (Appendix).
Seven taxa were only identified to genus as our collections were made
before or after peak flowering and the vegetative samples were not
sufficient for identification to species. A total of 50 families were
encountered at Callahan Mine. Ninety-six species encountered at the
Mine were native to North America (62%) whereas fifty-one species
were non-native (33%), including nine taxa (6%) considered invasive
in at least one New England state (New England Wild Flower Society
2012). Within the Mine, the shore and ‘in between’ habitats were the
most species rich, with 66 and 53 taxa, respectively; the tailings pond
and the waste rock piles were the least species rich, with 20 and 21
taxa, respectively (Appendix). Eleven species (7%) were listed as rare,
threatened, endangered, or special concern in at least one state in
New England (New England Wild Flower Society 2012).

Woody vegetation was abundant across the Mine but was
predominantly associated with the shore and ‘in between’ habi-
tats—although several tree species were common across habitats
(such as Betula papyrifera and Picea spp.). The wetland community
consisted of typical wetland species such as Glyceria striata,
Torreyochloa pallida, and Typha latifolia; annual and perennial
forbs (predominately of the Asteraceae, such as the goldenrods
Euthamia graminifolia and Solidago rugosa); and a few woody
species of the Rosaceae (Prunus virginiana, Rosa palustris, and
Rubus idaeus). The shoreline was dominated by a mix of
hydrophyllous and maritime species such as Juncus gerardii,
Phragmites australis, and Typha latifolia; woody species, most
abundantly Betula papyrifera and Picea rubens; and perennial forbs
(Plantago maritima, Solidago rugosa, and the maritime species S.
sempervirens). The ‘in between’ habitat was a patchy matrix of
woody vegetation dominated by deciduous trees (Betula papyrifera,
Populus tremuloides); but also supported conifers (Picea glauca,
Pinus resinosa, Thuja occidentalis), understory shrubs (Diervilla
lonicera, Morella caroliniensis, Salix sp., Sambucus racemosa,
Spiraea alba var. latifolia), forbs (the most abundant were Galium
mollugo and the introduced Hieracium spp. and Vicia cracca subsp.
cracca), and several grasses (e.g., Festuca rubra subsp. rubra, Poa
nemoralis). The waste rock piles shared some species with the ‘in
between’ and shore habitats, specifically trees (Betula papyrifera,
Picea glauca, P. rubens, and Populus tremuloides). The waste rock
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Table 1. Mean values * standard errors for two metrics of diversity: species
richness and the Shannon diversity index (SDI). Total Richness = the total
number of species found in a habitat. Area = the area of the habitat in acres.
Habitat codes: TP = tailings pond, WR = waste rock piles, WE = wetland, SH
= shore, and IB = in between.

Mean Richness Mean SDI Total Area
Habitat (per plot) (per plot) Richness (acres)
TP 37+£22 02=*02 21 7
WR 23+ 1.1 0.5+0.3 21 2.5
WE 10.6 = 2.0 14+03 39 2
SH 16 = 3.6 1.6 £ 0.2 66 7
1B 15+33 1.1 =03 53 8

piles were also characterized by Vaccinium angustifolium, as well as
small numbers of other shrubs and woodland herbs. The tailings
pond was the most marginally vegetated of the habitats and, in
contrast to the waste rock piles, lacked diversity in woody
vegetation. Only two tree species were found on the tailings pond
(Betula papyrifera and Picea glauca). Although Picea rubens was
common on the waste rock piles, it was absent from the tailings
pond; likewise, P. glauca was abundant on the waste rock piles but
sparse on the tailings pond. Aside from the woody vegetation, the
tailings pond was dominated by Festuca rubra, as well as a few
perennial forbs: the introduced legumes Lotus corniculatus and
Trifolium repens, the introduced Cerastium fontanum, and the
ubiquitous Asteraceae genera Hieracium and Solidago.

At the species level, the Callahan Mine flora was as similar to the
flora of Pine Hill (Jaccard similarity = 0.23) as it was to Settlement
Quarry (Jaccard similarity = 0.24), whereas the floras of Pine Hill
and Settlement Quarry were relatively more similar to each other
(Jaccard similarity = 0.35). When a taxonomic variant of the
Jaccard index (Bacaro et al. 2007) was used, the outcome was
similar: the higher taxonomy of the flora at Callahan Mine was as
similar to Pine Hill (At = 0.37) as to Settlement Quarry (At =
0.37), but the higher taxonomies of Pine Hill and Settlement Quarry
were relatively more similar (Ar = 0.44) to each other. The
proportion of species in the Callahan Mine flora shared with Pine
Hill (0.27) was marginally larger than the proportion of species in
Callahan Mine flora shared with Settlement Quarry (0.21).

Within Callahan Mine, Shannon diversity and species richness
were generally correlated across plots (Pearson’s p = 0.83; Table 1).
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Figure 2. Species richness and Shannon diversity for plots sampled in five
different habitats at Callahan Mine. Gray symbols and bracketing lines are
means and 95% confidence intervals, respectively. Habitat codes and symbols:
TP = tailings pond (circles), WR = waste rock piles (squares), WE = wetland
(diamonds), SH = shore (upward triangles), and IB = in between
(downward triangles).

Shore, wetland, and ‘in between’ habitats had greater species
richness and Shannon diversity than tailings pond and waste rock
piles (species richness, quasi-Poisson GLM: p < 0.001, F4 19 = 7.40;
Shannon diversity, normal GLM: p = 0.012, F4,9 = 4.25;
Figure 2). The habitats were of varying size: the tailings pond,
shore, and ‘in between’ were the largest, the wetland was the
smallest, and the waste rock was intermediate (Table 1). There was
no evidence of a correlation between the size of a habitat type and
the total species richness in that habitat (Kendall’s t = 0.22, p =
0.6). Three groups of habitats separated out clearly along the first
nMDS axis (Figure 3): tailings pond and waste rock piles, ‘in
between’ and shore, and wetland. The second nMDS axis described
the variation within habitats, and roughly separated tailings from
waste rock and shore from ‘in between.” Habitat membership
(species occupancy) was significantly correlated with nMDS axes
(R? = 0.70, permutation p < 0.001), and thus reflected differences
in plant community composition. Six plant families had more than
three species in the sampled sites at Callahan Mine (in total 48 taxa,
Figure 4). Rosaceae spp. were associated with the wetland, shore,
and ‘in between’ habitats, on average, with increasing values of
nMDS axis 1. Asteraceae spp. were associated with the waste rock,
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Figure 3. nMDS ordination of the plant community at Callahan Mine, with
five habitats indicated by labels and symbols. Circles, squares, diamonds,
triangles pointing upward, and triangles pointing downward respectively
indicate plots within tailings pond, waste rock piles, wetland, shore, and ‘in
between’ habitats. Unfilled points are centroids for each habitat. Labels are
vertically aligned with their respective centroid.

shore, wetland habitats, on average, with increasing values of
nMDS axes | and 2. Fabaceae spp. were associated with the ‘in
between’, waste rock, and tailings habitats. Pinaceae spp. were
associated with the ‘in between’ habitat. Both Fabaceae and
Pinaceae spp. were associated, on average, with decreasing values of
nMDS axes 1 and 2. Caryophyllaceae spp. had one member, each,
associated with the waste rock, tailings, and shore habitats, and one
member associated with three habitats, including ‘in-between’; on
average, with decreasing values of nMDS axis 1 and increasing
values of nMDS axis 2. Poaceae spp. were not clearly associated
with any particular habitats or nMDS axes.

Of the six life-form groups considered (all taxa, Figure 5), annual
forbs were associated with wetland and shore habitats and, on
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Figure 4. Species scores from the nMDS ordination plotted in the
ordination space shown in Figure 3, split by plant family. Only the six families
with more than three species found at Callahan Mine are shown. Arrows
indicate the centroids for each subset of species scores, and the black circle is a
95% confidence ellipse. Note that the confidence ellipse is for visualization only;
no statistical inference is performed using the species scores. The species scores
are essentially weighted means of site scores (the position of a given site within
each dimension of the ordination), where the weights are the abundance of a
species in a given site.
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Figure 5. Species scores from the nMDS ordination plotted in the
ordination space shown in Figure 3, split by life form. Arrows indicate the
centroids for each subset of species scores, and the black circle is a 95%
confidence ellipse. Note that the confidence ellipse is for visualization only; no
statistical inference is performed using the species scores. The species scores are
essentially weighted means of site scores (the position of a given site along each
dimension of the ordination), where the weights are the abundance of a species
in a given site.
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average, with increasing values of nMDS axes 1 and 2. Ferns were
associated with the wetland and ‘in between’ habitats and, on
average, with increasing values of nMDS axis 1 and decreasing
values of nMDS axis 2. Graminoids and perennial forbs were not
clearly associated with any particular habitats or nMDS axes.
Shrubs were associated primarily with shore and ‘in between’
habitats but also with the wetland habitats and, on average, with
increasing values of nMDS axis 1 and decreasing values of nMDS
axis 2. Trees were also primarily associated with the shore and ‘in
between’ habitats, with one species, each, in wetland and waste rock
habitats and, on average, with decreasing values of nMDS axis 2.

The first axis of the soil PCA was positively associated with soils
that had high levels of organic matter, Fe, Mg, Mn, N, Na, and K.
The second axis of the soil PCA was positively associated with pH,
Ca, Cu, P, Mo, and Zn, and negatively associated with Aland Fe. The
remaining axes were difficult to interpret, as they explained a
relatively small amount of variation in the soil data (Table 2). The
PCA axes varied significantly among habitats (MANOVA, approx.
Fe15 = 7.96, p < 0.001), indicating that soils of the habitats differed
substantially in ionic composition (Table 3). Values of the first PCA
axis were significantly predicted by site scores from the nMDS,
indicating that plant community type and soil ionic content were
associated (R = 0.65, permutation p < 0.001). PCA axis 1 was
associated with increasing values of nMDS axis 1 and thus reflected a
soil gradient from waste rock and tailings to wetland soil types
(Figure 6). The remaining PCA axes were not significantly predicted
by the ordination (Table 4). Table 5 lists the leaf tissue concentrations
of macronutrients (Ca, K, Mg, P, N) and Table 6 lists the tissue
concentrations of micronutrients, including heavy metals (Al, B, Cu,
Fe, Mn, Zn, Ni, Cr, Cu, Cd, Pb, and Mo), for the 20 species collected
from Callahan Mine. None of the collected plant species accumulated
substantial concentrations of metals in their leaf tissue, except Salix
bebbiana and Populus balsamifera, which accumulated 1070 ppm and
969 ppm Zn in dry leaf tissue, respectively. Populus balsamifera,
Spiraea alba var. latifolia, and S. bebbiana also accumulated 10.63,
10.47, and 6.73 ppm Cd in dry leaf tissue, respectively.

DISCUSSION

Ours is the first survey of the diversity and tissue metal content of
vascular plants of a metal-enriched Superfund site in New England.
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Table 2. Principal components loadings for 21 soil variables (log-
transformed and centered/scaled prior to PCA). Cum. Var. = the cumulative
amount of variance explained by the nth axis, %Var. Expl. = the amount of
variance explained by the nth axis.

Variable PCl1 PC2 PC3 PC4 PC5 PC6
pH —1.39 3.01 —3.36 1.05 —1.21 1.87
LOI 32 —0.15 —0.04 —1.14 —0.01 —4.08
EC 1.87 1.77 0.02 5.14 1.74 1.69
NO;™ 1.95 -0.07 —4.46 1.24 2 —4.08
NH,* 2.98 -0.15 0.52 —-2.16 -0.19 3.75
Ca 0.25 3.62 —1.88 —1.67 -0.27 3.62
K 3.09 0.38 —2.45 0.52 -0.9 —-2.32
Mg 3.12 0.82 0.29 1.3 -0.21 2.92
Na 2.88 1.16 —0.78 3.25 0.38 —0.61
P 0.59 2.87 —-3.57 —1.56 1.46 1.05
S 1.08 0.51 4.56 3.22 3.97 0.17
Al 1.58 —3.35 0.93 —-1.05 —1.34 1.86
Cd 0.88 3.66 1.69 —2.39 —-0.49 —1.98
Cr 3.27 -0.73 0.18 0.87 0.45 1.87
Cu —1.34 2.66 2.94 1.5 —1.34 —1.86
Fe 2.63 —-2.28 —-0.31 -1.3 -2.16 0.35
Mn 2.85 0.01 1.04 0.88 —3.69 0.32
Mo 1.57 3.16 1.33 —2.69 1.13 -0.27
Ni 2.92 0.6 1.81 —-2.37 -0.97 —1.48
Pb -0.79 0.96 -0.29 3.33 —6.83 —0.55
Zn —-0.05 391 2.47 -0.8 —-1.17 -0.79

Variance
Cum. Var. 0.39 0.64 0.75 0.83 0.89 0.92
%Var. Expl. 0.39 0.25 0.11 0.08 0.06 0.03

Our results indicate that the various habitats found within Callahan
Mine were not equally diverse and harbored distinct plant
communities consisting of different plant families and plant habits
(life forms). With regard to hypothesis (a): in general, the waste rock
piles and the tailings pond were the least species rich, whereas the
shore, ‘in between,” and wetland habitats were the most species rich
(Table 1). This result is not surprising, given that the waste-rock piles
and tailings pond had the lowest total N (NO;~ and NH,") and
organic matter content among the five habitats within the Mine
(Table 3). The waste-rock piles also had shallow, coarse-textured
soils (mostly gravel and rocks) and little water-holding capacity,
whereas the tailings pond was made of fine-textured soil particles
(mostly silt, clay, and fine sediment) and could be water-logged,
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Figure 6. Principal components of (log-transformed) soil variables, and the
soil variables themselves, fit to the nMDS ordination and plotted in the
ordination space shown in Figure 3. The percentage associated with each PC is
the amount of variance that PC explains, in the set of all the soil variables. The
fitting process is analogous to multiple regression, where the soil variable(s) is a
response and the ordination axes are predictors. The direction of the arrow
indicates the nature of the association between the soil variable(s) and the
ordination. The lengths of the arrows are proportional to the amount of
variance in the soil variable(s) explained by the ordination axes (e.g., the R? of
the multiple regression).
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Table 4. Fit of the variables to the nMDS ordination of the plant
community. Note that each variable was fit separately. The p-value was
derived from 999 permutations of each variable vector with regard to the site-
species matrix; the vector was permuted and R? calculated for each
permutation. The p-value, therefore, is the fraction of permutations with an
R? greater than that observed with the original data.

Variable R? p (permutation) >R?
PCl 0.6496 0.001
PC2 0.2218 0.095
PC3 0.1792 0.157
PC4 0.0284 0.785
PC5 0.0676 0.495
Habitats 0.7073 0.001

making both these habitats physically challenging for plant growth.
Wetland and shore habitats were fairly nutrient rich, especially in
total N, and had the highest organic matter content among the five
habitats examined. There was also ample soil development on both
these habitats, providing a suitable growth medium for roots.

With regard to hypothesis (b): the ordination of the plant
community indicates two distinct floras with little overlap (see
Supplementary Table with mean abundances across habitats and
NMDS loadings for all plants at http://nrajakaruna.files.wordpress.
com/2014/03/supplementary-table.pdf): 1) a wetland flora and 2) a
small subset of plants found in the disturbed habitats (waste rock
piles and tailings pond). The shore and ‘in between’ habitats—
which fall between the disturbed habitats and the wetland habitat
in ordination space—share plant taxa with both the wetland and
the disturbed habitats. Woody vegetation was abundant across
Callahan Mine but was predominately associated with the shore
and ‘in between’ habitats. The few species of ferns present at the
Mine were found in the wetland and in the wooded buffer, and were
likely restricted in location by the requirement for a moist rooting
zone. Annual forbs were infrequent at the Mine (six species in
total), and were associated only with the shore and wetland
habitats. The absence of annual forbs from the disturbed habitats—
the tailings pond and waste rock piles—is curious. It is unsurprising
that Asteraceae (33 taxa; 21%), Poaceae (17 taxa; 11%), and
Rosaceae (12 taxa; 8%) were the most species-rich families, as they
are also some of the most speciose families in the region.

Of the six families speciose enough to be considered individually,
the Rosaceae were associated with the less disturbed habitats
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(wetland, shore, and ‘in between’), whereas the Pinaceae were
absent from the wetland habitats. The Asteraceae were associated
with all habitats but were a more dominant component of the
community in the shore and wetland habitats. The Caryophyllaceae
consisted of three introduced species characteristic of disturbed
environments (Cerastium fontanum, Silene vulgaris subsp. vulgaris,
and Stellaria graminea) and a native maritime species (Spergularia
marina). Collectively, these were found in all habitats except the
wetland. Both Cerastium and Silene consist of metal-tolerant
species worldwide and are often dominant perennial forbs on Cu
and Zn mine tailings (O’Dell and Rajakaruna 2011). The Poaceae
were associated with all habitats, confirming why genera such as
Festuca and Agrostis are often used in the restoration of mine
tailings worldwide (O’Dell and Rajakaruna 2011). The Fabaceae
were absent from the wetland habitats (unsurprising, as this family is
nitrogen fixing and characteristic of marginal soils), and were all
introduced perennials characteristic of pastures. The association of
various plant families and life forms within different habitats
suggests differential tolerance to physical and chemical factors
associated with distinct habitats found within Callahan Mine. This is
an important result that provides land managers with better guidance
to select species of plants that are best suited for the restoration, per
Environmental Protection Agency (1996), of the various habitats
(tailings pond, waste rock piles, wetland, etc.) found within the Mine.

With regard to hypothesis (c): soil ionic content differed
substantially across habitats, and the gradient in the plant
community paralleled the primary differences in soils among
habitats. Wetland soils contained high levels of organic matter,
N, Fe, and the plant nutrients Mn, Mg, Na, and K, whereas the
soils of the tailings pond and waste rock piles were marginal in
terms of organic matter and N. All habitats were found to have
equivalent amounts of Cu (means ranging from 103 to 170 ppm),
except the shore (mean 56 ppm). Although it is impossible to infer a
causal influence of soil ionic content on the plant community (as
opposed to soil physical factors such as depth, texture, and water
inundation), our findings are important for management and
restoration decisions, especially when suitable species are sought to
restore distinct habitats (i.e., tailings pond, waste rock pile, etc.)
within Callahan Mine.

Our exploratory tissue analyses also indicate the extent to which
metals were accumulated by the plants found at Callahan Mine.
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None of the 20 species analyzed were found to accumulate
significant concentrations of metals in their leaves (Table 6), except
Salix bebbiana and Populus balsamifera, which accumulated close
to a third of the concentration of Zn considered the threshold
for hyperaccumulation (Table 6; van der Ent et al. 2012). Thus,
although the majority of the species we found at the Mine may not
be suitable for phytoextraction of metals, they are likely candidates
for restoring (i.e., greening) metal-enriched sites in New England.
These species are clearly able to withstand the high concentrations
of metals in the soil and to deal with the harsh habitat attributes of
mines, including rocky and shallow soils, little shade, water stress,
and steep, highly erodible topography. For example, the genus
Thlaspi (many of which are now in Noccaea) consists of many
known metal hyperaccumulators (Gall and Rajakaruna 2013).
These hyperaccumulating taxa are closely related to 7. arvense, a
non-accumulating species found at the Mine. Thlaspi arvense and
hyperaccumulating relatives have been used in comparative studies
that examined mechanisms of metal tolerance and accumulation
(Kramer et al. 2000; Salt et al. 2000). At the Mine, scattered
individuals of 7. arvense were found to the northwest of the tailings
pond in an area recently disturbed to build roads for the
remediation process. Leaf tissues of 7. arvense showed no
significant accumulation of any of the target elements. Concentra-
tions of Zn were slightly elevated (Table 6) but they were still
at levels found to be within the range for ‘normal’ plants (Kabata-
Pendias 2001). Although 7. arvense does not accumulate significant
concentrations of metals in its leaves, it is naturalized at Callahan
Mine and thus it may be a good candidate for phytostabilizing the
Mine by using plants to physically stabilize contaminated soils
(Pilon-Smits 2005).

Hyperaccumulating plants are often slow-growing and low-
biomass plants that are not well suited for phytoremediation
(Neilson and Rajakaruna 2012). Thus, metal-tolerant species with
higher biomass, that grow faster, are often utilized in phytoreme-
diation, particularly in phytostabilization (Pilon-Smits 2005). Two
such genera, Typha (Pilon-Smits 2005) and Populus (Dickinson
et al. 2009; Pilon-Smits 2005), are favored for their fast growth
and metal tolerance. Fast-growing, metal-tolerant genera such as
Typha and Populus have several advantages over slower growing
hyperaccumulators. Their extensive root systems are capable of
stabilizing soils, preventing erosion and the spread of contaminated



306 Rhodora [Vol. 116

soils, and reducing the bioavailability of metals (Dickinson et al.
2009; Neilson and Rajakaruna 2012). Additionally, high transpira-
tion rates, especially of large trees such as Populus, prevent
downward leaching of contaminated waters that may otherwise
filter into aquifers (Pilon-Smits 2005). Typha latifolia is found at
Callahan Mine in the tailings pond and in the wetland (Figure 1)
and shows slightly elevated concentrations of Mn and Mo in its
leaves. Typha latifolia has been found to sequester metals in the
roots until toxicity is reached, which explains the low concentra-
tions generally found in leaf tissue (Ye et al. 1997). Ye et al. (1997)
found populations of 7. latifolia from both contaminated and non-
contaminated soils to be tolerant of certain metals; this suggests
constitutional tolerance. There are two species of Populus found at
the Mine, P. tremuloides and P. balsamifera. Populus tremuloides
is found on the shore and the ‘in between’ habitat. Populus
balsamifera is found on the edges of waste rock pile 1, around the
wetland, and along the northern edges of Goose Pond, and has
been shown to accumulate substantial amounts of Zn and a
considerable amount of Cd. Lukaszewski et al. (1993) found
Populus species to accumulate metals in the xylem tissue rather than
in the leaves. Similarly, Salix taxa are known from metal-polluted
sites (Vandecasteele et al. 2002) and have been tested for their
potential to extract heavy metals such as Cd and Zn (Pulford and
Watson 2002; Vyslouzilova et al. 2003a, b). Both P. balsamifera
and Salix bebbiana at the Mine accumulated one third of the
concentration of Zn considered as hyperaccumulation for Zn
(hyperaccumulation threshold is 3000 ppm; van der Ent et al. 2012)
and they, along with Spiraea alba var. latifolia, accumulated
approximately one tenth of the concentration of Cd considered
as hyperaccumulation for Cd (hyperaccumulation threshold is
100 ppm; van der Ent et al. 2012). Although none of the species we
examined qualified as metal hyperaccumulators (van der Ent et al.
2012), the taxa that accumulated considerable amounts of Zn and
Cd are worthy candidates for phytoremediation.

The species we have documented as metal tolerant and metal
accumulating, including those in the genera Populus, Salix, Spiraea,
Thlaspi, and Typha, are commonly found at Callahan Mine and in
New England. These can be effectively utilized to restore non-
vegetated habitats within the Mine, if attention is paid to their
tolerance of the specific habitats we have described. For example,
Typha latifolia can be successfully introduced to regions of the
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tailings pond and wetland that are currently unvegetated, whereas
the two Populus taxa and Salix bebbiana are ideal for unvegetated
settings along the shore and ‘in-between’ habitats. Thlaspi arvense,
Silene vulgaris subsp. vulgaris, and Achillea millefolium subsp.
lanulosa are ideally suited for seeding many of the disturbed settings
at the Mine, including regions of the waste-rock piles, shore, and ‘in
between’ habitats. Similarly, the metal-tolerant grass and legume
species we have documented (Appendix) are good candidates for
phytoremediation practices, as they can stabilize the soil and, in the
case of the legumes, also introduce much-needed nitrogen to the soils.
Thus, the suite of species we have documented for the Mine can
provide a species list from which land managers can choose species
that are able to remediate the distinct habitats within the Mine, as
well as in other similar disturbed and metal-enriched settings in the
region. It is important, however, to 1) pay attention to seed source, as
not all populations may be as tolerant of heavy metals due to
intraspecific variation for metal tolerance commonly found within a
species (O’Dell and Rajakaruna 2011) and 2) select those species that
are native or naturalized and are less likely to become invasive.
Degraded, disturbed, and polluted landscapes are often consid-
ered as habitats that non-native species readily colonize (Alpert et
al. 2000; Decker et al. 2012; Lemke et al. 2013). However, our study
confirms that 62% of the taxa we encountered at Callahan Mine are
native to North America, including 11 taxa (7%) listed as rare in at
least one New England state (Appendix). Only eight taxa (5%) are
considered invasive in at least one New England state (New
England Wild Flower Society 2012). A similar trend was observed
for bryophytes (Briscoe et al. 2009), lichens (Harris et al. 2007), and
vascular plants (Pope et al. 2010) at the metal-enriched serpentine
quarry at Pine Hill and for vascular plants of a nutrient-enriched
guano deposit on an offshore island in the region (Rajakaruna,
Pope, and Perez-Orozco 2009). These results suggest that chemi-
cally and physically harsh edaphic settings, including those that are
disturbed, may contribute to species-rich native plant communities
(Hobbs and Humphries 1995). Contrary to our expectation, the
vegetation at Callahan Mine was as similar to that of the metal-
enriched serpentine quarry at Pine Hill, as it was to that of the
granitic outcrop at Settlement Quarry (Pope et al. 2010), both in
terms of families and species shared. The proportion of species in
the Callahan Mine flora shared with Pine Hill was marginally larger
than the proportion of species in Callahan Mine flora shared with
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Settlement Quarry. However, this outcome is probably a direct
result of the greater diversity in the Pine Hill flora (132 species,
relative to 94 at Settlement Quarry), and hence of the greater
chance that any given site in the region would share a larger
proportion of species with Pine Hill than Settlement Quarry.

Edaphically extreme sites, such as Callahan Mine, hold many
potential discoveries in the fields of ecology and evolution (Harrison
and Rajakaruna 2011) and green technologies such as phytoreme-
diation and phytostabilization (Pilon-Smits 2005; Whiting et al.
2004). The potential for new discoveries is exciting; however, without
prior knowledge of what is growing at sites such as Callahan Mine,
these discoveries could not take place. Remediation of the Mine
began in 2010 (Environmental Protection Agency 2013) and without
this study, there would have been little information on the flora of
this unique habitat prior to remediation. The current study of the
vascular plants at the Mine provides a baseline to compare
vegetation before and after remediation efforts, making more in-
depth studies possible in the future. Our study also points to distinct
plant-habitat associations within the Mine, and indicates that
different plant families and plant forms may be better suited to the
restoration of each of the edaphically distinct habitats found within
the Mine. Studies such as these, conducted across New England’s
many contaminated sites, can better inform land managers and
conservation authorities on how best to remediate the landscapes
degraded by human activities of the past.
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