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Abstract

Given a fixed and uniform illumination, metameric objects appear as the same color. How-

ever, when the illumination is altered, two metameric reflecting objects under the first

illuminant may no longer produce the same color signal under the second. This situation is

called metamer mismatching. Metamer mismatching poses several challenges for the camera

and display industries as well as color-based computer vision technology. In light of metamer

mismatching, the present study criticizes the conventional approaches to color description

when the illuminant alters, and then lays a foundation to robustly describe object colors

under varying illumination conditions. Later, the degree of metamer mismatching is used as

a measure of the quality of lights. We demonstrate that although the common color spaces

such as CIELAB and related spaces in the literature may work well for a fixed illuminant,

they can lead to poor results when the illuminant is changed. In view of these problems,

new descriptors for hue, lightness and chroma are presented that are based on properties

of a Gaussian-like spectrum metameric to the given color tristimulus coordinates. Exper-

iments show that the new Gaussian-based appearance descriptors correlate with different

descriptors as well as the CIECAM02 appearance model does on average. Furthermore,

the Gaussian-based descriptors are significantly more stable than the descriptors defined in

the CIECAM02 appearance model. Afterwards, the problem of predicting how the color

signal arising in response to light reflected from the surface of an object is likely to change

when the lighting alters is investigated. A new method, called the Gaussian Metamer (GM)

method is proposed for predicting what a color signal observed from a surface under a first

light is likely to be when the same surface is lit instead by a second light. Due to metamer

mismatching, there is not a unique answer for this problem. Our approach is to use one of

the possible metamers that is likely to do well on average. The results outperform other

state-of-the-art prediction methods.
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Chapter 1

Introduction

Colors provide computer vision systems with a lot of information to help automatic recog-

nition. People discriminate the colors so easily they do not really think about it, but

distinguishing colors in different illumination conditions is very difficult for a machine. This

problem originates from the central theory in color science that the color devices differenti-

ate colors based on trichromacy and therefore are very poor in discriminating illuminants of

different spectral power distributions. Trichromacy assumes that we have only three types

of cone photoreceptors. According to trichromacy, two lights may be indiscriminable when

they produce an equal rate of photopigment absorption for each of the three cone types.

These two equally perceived reflected lights are called metameric. The problem is that this

equivalence in three channels does not generalize when scene lights are changed. Given a

fixed illumination, the reflecting objects producing the same color signal (metameric reflect-

ing objects) exhibit the same color. However, when the illumination is changed, two objects

reflecting metameric light under the first illuminant may no longer produce the same color

signal under the second. This situation is called metamer mismatching [5].

A change of the illumination spectrum of a scene leads to changes in the light reflected

off the surfaces. If this is an extreme change it will lead to a great change in the color

of each surface and cause serious problems for many applications whose main feature is

the color information, such as color-based object recognition, scene understanding, image

reproduction, digital photography, human-computer interaction, color feature extraction,

and color appearance models [12–14]. For example, if the colors of the objects in a database

are trained for illuminant A (a reddish tungsten lamp), then a color-based object recognition

will likely have problems when the objects are seen under a blue illumination (e.g., blue sky).
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For object recognition to work properly, the change of colors caused by illuminant changes

must be within the tolerance of the system [15]. Thus the illumination must be controlled

in a way i.e., determined and taken into account. The human visual system has the ability

to get a relatively stable representation of colors despite changes of the illumination. This

ability is called color constancy [16–19].

As an example, the focus of color balancing in Figure 1.1, where a single scene is rendered

under four different illuminants, is to correct the images so that they all appear identical to

the bottom-right image that is rendered under a white light source. It is generally desired

to mitigate this effect on any captured image. One of the biggest challenges towards this

goal is metamerism, which is studied in details in this thesis.

Metamerism is of both theoretical interest and practical importance. At a high level,

research on metamer mismatching will lead to theoretical results of interest to the broad

imaging and vision communities in terms of how much color constancy is possible. Al-

though color constancy has been always taken for granted, some experiments have shown

large deviations from perfect color constancy [14, 20, 21]. A critical reason for this imper-

fectness is metamer mismatching. Unfortunately, the seriousness of metamer mismatching

is frequently neglected and most of the computational studies of color constancy implicitly

assume perfect color constancy as their goal. However, metamer mismatching in its serious

cases shows that the color of an object is not a stable and intrinsic feature to be used because

it can disperse to many different colors under a second illuminant. An interesting research

direction emerges here to check how different a color can become under different lighting

and sensor sensitivity conditions. In light of metamer mismatching, Chapter 3 reports a

set of experiments forming an essential foundation for a larger collaborative project with

Logvinenko, Funt and Tokunaga [1] studying the consequences of metamer mismatching for

color constancy. That project explores the fact that color is not an intrinsic and indepen-

dent attribute of an object, but rather is an attribute of a combination of light and surface

reflectance pair.

Metamer mismatch volumes are also important in the related field of lighting design.

In particular, lights leading to the smallest amount of metamer mismatching are naturally

expected to yield the best color rendering. All of these applications have been limited,

until now, by the lack of a method for computing metamer mismatch volumes precisely. In

Chapter 4 we discuss the possibility of evaluating the illuminants based on their potential

metamer mismatching. Variants of metamer mismatching have been previously used as a
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measure of the color rendering of lights. Most of the proposed methods are limited to the

specific reflectance set they use. Whitehead et al. [22] extend this general idea by using a

large number of randomly generated metameric spectra and then assessing the fraction of

them that undergo a noticeable color signal change when the illuminant changes. In contrast,

the method proposed here is based on measuring the size of the metamer mismatch volume,

which is the volume of color signals (i.e., XYZs) induced under the second light by the set

of all theoretically possible reflectances that make a metameric match under the first light.

Then we move on to object colors, where the main issue with color description is the

illumination variation. We demonstrate that although the common color spaces such as

CIELAB and related spaces in the literature may work well for a fixed illuminant, they

can lead to unstable results when the illuminant is changed. We show that the source

of this instability is that they account for the illumination via von Kries scaling, but von

Kries scaling can be subject to very large errors. In addition, even the most recent color

appearance models fail to resolve the instability of the appearance dimensions under different

lighting conditions. In view of these problems, in Chapters 5 and 6, new descriptors for

hue, lightness and chroma are presented that are based on properties of a Gaussian-like

spectrum metameric to the given color tristimulus coordinates. These Gaussian functions

have interesting features that include illuminant invariance and reasonable correlation with

appearance attributes of color. The color of any given object can then be described in

terms of this object-color space and its three main appearance dimensions. We investigate

the new descriptors in terms of three fundamental issues. First, what is the gamut of colors

these Gaussians can represent? Second, in comparison to CIECAM02 how well do these

new descriptors correlate with the appearance attributes in different datasets. Third, in

comparison to CIECAM02 how stable are the new correlates across different illuminants?

The development of a robust hue-chroma-value description of colors is followed by an-

other line of research. In Chapter 7 the problem of predicting how the color signal (i.e., cone

LMS, CIE XYZ or sRGB) arising in response to light reflected from the surface of an object

changes when the lighting alters is investigated. It arises in computer vision applications

such as color-based object identification and tracking, where it is important to be able to

recognize the same object under different illuminants. It also arises in white balancing dig-

ital imagery, and when re-rendering printed material for viewing under a second illuminant

(e.g., changing from D65 to D50). In particular, in Chapter 7 a new method, called the

Gaussian Metamer (GM) method, is proposed for predicting what a color signal observed
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from a surface under a first light will be when the same surface is lit instead by a second

light. This method is then extended for a more limited case when we only know the color

of the illuminants and not their spectral power distribution. The results outperform other

state-of-the-art prediction methods.

In summary, this thesis begins by criticizing the established approaches of color descrip-

tion, and then laying a foundation to robustly represent the object colors under varying

lights. A robust hue-chroma-value description of object colors is introduced, and novel

approaches are taken to perform the prediction procedure of the colors when lighting alters.

Chapter 2 provides some fundamental background knowledge required for this research.

Please note that the following published articles form the basic foundation and also most

significant contributions of this thesis [1, 6, 8, 23–33]:

• Xiandou Zhang, Brian Funt, and Hamidreza Mirzaei. Metamer mismatching in prac-

tice versus theory. JOSA A, 33(3), A238-A247, 2016.

• Alexander Logvinenko, Brian Funt, Hamidreza Mirzaei, and Rumi Tokunaga. Re-

thinking colour constancy. PLOS ONE, 2015.

• Hamidreza Mirzaei and Brian Funt. Gaussian-based hue descriptors. IEEE Transac-

tions on Pattern Analysis & Machine Intelligence, 2015.

• Hamidreza Mirzaei and Brian Funt. Robust chroma and lightness descriptors. In

Color and Imaging Conference, 2015. Society for Imaging Science and Technology,

2015.

• Xiandou Zhang, Brian Funt, and Hamidreza Mirzaei. Metamer Mismatching and Its

Consequences for Predicting How Colours Are Affected by the Illuminant. ICCV,

Proceedings of the IEEE International Conference on Computer Vision Workshops,

2015.

• Hamidreza Mirzaei, and Brian Funt. Metamer Mismatching as a Measure of the

Color Rendering of Lights. In Proceedings of the Congress of the International Colour

Association (AIC 2015), 2015.

• Hamidreza Mirzaei and Brian Funt. Object-color-signal prediction using wraparound

gaussian metamers. JOSA A, 31(7):1680–1687, 2014.
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• Hamidreza Mirzaei and Brian Funt. Gaussian illuminants and reflectances for colour

signal prediction. In Color and Imaging Conference, volume 2014, pages 212–216.

Society for Imaging Science and Technology, 2014.

• Brian Funt, Hamidreza Mirzaei, and Alexander Logvinenko. Metamer Mismatch

Volumes of Flat Grey. In Proceedings of Color and Imaging Conference (CIC 2014),

2014.

• Hamidreza Mirzaei and Brian Funt. Hue correlate stability using a gaussian versus

rectangular object colour atlas. In AIC 2013, 12th International Colour Congress,

International Colour Association, pages 1133–1136, 2013.

• Hamidreza Mirzaei and Brian Funt. A robust hue descriptor. In Color and Imaging

Conference, volume 2013, pages 75–78. Society for Imaging Science and Technology,

2013.

• Alexander Logvinenko, Brian Funt, and Hamidreza Mirzaei. The extent of metamer

mismatching. Proc. 12th Congr. AIC, pages 507–510, 2013.

• Hamidreza Mirzaei and Brian Funt. Gaussian-metamer-based prediction of colour

signal change under illuminant change. AIC 2011, Congress of the International
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• Brian Funt and Hamidreza Mirzaei. Intersecting color manifolds. In Color and

Imaging Conference, volume 2011, pages 166–170. Society for Imaging Science and

Technology, 2011.
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(a) (b)

(c) (d)

Figure 1.1: The sRGB rendering of the same image from Columbia dataset [2], computed
under 4 different lighting conditions. (a) CIE A (b) CIE F3 (c) LED with correlated color
temperature of 2900K. (d) CIE D65.
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Chapter 2

Background

In what follows, we provide the background and fundamental theory of color image forma-

tion, followed by different concepts studied in this thesis.

2.1 Color formation

In this section we talk about the basic physical model of color formation. There are three

important factors determining the color of a pixel recorded by a camera:

1. The illuminant spectrum

2. The surface reflectance spectrum at each pixel of the image

3. The camera’s sensor-response-curve

In what comes next a brief introduction to each of these concepts is provided.

2.1.1 Illuminants

An “illuminant” or “light” is usually described by a Spectral Power Distribution (SPD)

P (λ) defining its radiant power at each wavelength of the spectrum [4]. Note that we are

essentially concerned with the visible part of the radiation spectrum that the human visual

system is sensitive to (approximately 380-780 nm). It is also the case for the sensors and

reflectance spectra. The Commission International de L’Eclairage (CIE) [3, 4] specifies the

relative spectral power distributions of typical lights e.g., different phases of daylight and
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Figure 2.1: Three different phases of CIE Daylight illuminants. D55: dashed blue, D65:
dotted black, D80: green curve.

fluorescent illuminants. As for daylight illuminants, they are usually called by a letter “D”

for daylight, followed by two numbers indicating the corresponding correlated color temper-

ature as the temperature of a blackbody (Planckian) radiator whose perceived color most

closely matches the given color under certain viewing conditions [4]. Figure 2.1 illustrates

three different phases of standard daylight illuminants, including D55 (i.e., Daylight with

the CCT of 5500), D65 and D80.

The SPD of a blackbody radiator can be completely recovered from its color temperature

in Kelvin (K). It is common to use the correlated color temperature (CCT) as a measure of

light source color appearance defined by the proximity of the light’s chromaticity coordinates

with respect to the blackbody locus, as a single number. Light sources of different SPD may

have identical CCTs if they have identical chromaticities.
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2.1.2 Surface Reflectance

The second factor on determining the color of an object is its surface reflectance spectrum

R(λ), where it is considered to be physically realizable i.e., 0 ≤ R(λ) ≤ 1 [34]. This function

indicates, at each wavelength, the proportion of the incoming light that is reflected off

the surface. The perfect reflector R(λ) = 1 reflects all the incoming light and the perfect

absorber R(λ) = 0 characterizes a surface that does not reflect any of the incoming light.

2.1.3 Spectral Sensitivity Functions

In this context, a sensor is defined as an entity that reacts to light [34]. The sensitivity

function S(λ), also referred to as the sensor response curve (SRC), is defined as the human

eye or camera sensor’s response to the incoming radiation at each wavelength [34].

Similar to reflectances, sensors are usually considered to be physically realizable, such

as CCD or CMOS photo sites or the cones in the human retina, all of which give a positive

response when radiation is detected. As an example of sensor response curves, the NIKON

D700 SRC and CIE 1931 2-degree standard observer color matching functions have been

plotted in Figure 2.2 and Figure 2.3, respectively.

2.1.4 Color Image Formation

The image recorded from a scene is defined as a function of the light source with spectral

power distribution P (λ), the surface reflectance R(λ, x), and the camera sensitivity function

Sk(λ) is given by:

Φk(x) =mb

∫
w
R(λ, x)P (λ)Sk(λ)dλ+ms

∫
w
R(λ, x)P (λ)Sk(λ)dλ

k = 1, 2, 3.

(2.1)

where w is the visible spectrum (e.g., [380nm − 780nm]), x is the spatial location of

the pixel in the image, and mb and ms are scale factors of body and specular reflectance

that contribute to the overall light reflected at location x [35]. Assuming fully Lambertian

non-specular surface reflectances we have:

Φk(x) =

∫
w
R(λ, x)P (λ)Sk(λ)dλ k = 1, 2, 3 (2.2)
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Figure 2.2: The sensor response curves of the Nikon D700 camera.

Figure 2.3: The CIE 1931 x y z color matching functions for standard 2-degree observer
defined by CIE [3, 4].
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It is generally assumed that the scene is observed under one single light source. The color

of any given illuminant depends only on the SPD of the light source P (λ) as well as the

camera sensitivity function Sk(λ):

ek =

∫
w
P (λ)Sk(λ)dλ k = 1, 2, 3 (2.3)

It is desired to separate P out of the integral in equation 2.1. Without prior knowl-

edge, both P and R are unknown, and hence, this task is an under-constrained problem

that cannot be solved without further assumptions. Therefore, in practice, the proposed

theories usually make assumptions about the world such as the maxima obtained from each

color channel represents the illumination color [36], there is a specularity [35], there are

no specularities [37] in every scene and so on. A general assumption also is that the color

of the illuminant is constant through the scene. There are also other assumptions such as

restricted gamuts (limited number of image colors which can be observed under a specific

illuminant), the distribution of colors that are present in an image (e.g., white patch, gray

world, etc.), and the set of possible light sources.

In the next sections we will study in more details the limits of the color changes that

might be perceived under illumination change (the so called metamer mismatching effect),

discuss different ways to predict these changes, and present an object-color space that is

more stable under illuminant changes.

2.2 Metamer Mismatching

2.2.1 What is Metamerism?

Although color constancy has received a lot of attention in the digital color imaging commu-

nity, previous studies have not shown whether perfect color constancy is possible, nor how

constant the colors humans perceive really are. Many experiments have shown significant

deviations from color constancy [20]. One of the underlying problems is the phenomenon

called metamerism. Metamerism poses important challenges for the computer vision and

digital camera industries. One such challenge is metamer mismatching, which refers to the

circumstance in which two objects having the identical color under one illumination have

different colors under a second illumination [38].
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2.2.2 Literature Review

A tristimulus value under one light (called source illuminant) may be dispersed into several

different tristimulus values under a different light (called target illuminant). The question

is how large the range of possible colors that might be observed under the second light is?

For instance, given a color value under CIE illuminant D65, what is the set of all possible

colors that could be invoked under CIE illuminant A? This set of colors constructs a convex

volume [39], which is known as the metamer mismatch volume (MMV) or sometimes gamut

[38, 40, 41]. The convexity of the metamer set was first studied by Schmitt [41].

Many methods in the literature have tried to characterize the MMV. There are several

works that derive the metamer set in a framework of linear models of surface reflectances

[40, 42, 43]. Wyszecki has employed the concept of metameric black. He first decomposes

a reflectance into two parts: one part that is a particular solution and results in the actual

tristimulus, and a part that results in a tristimulus of zeros, the metameric black. See

Equation 2.4. In this framework, the metameric black part represents the variation between

metameric answers. The answers are then computed by adding the fundamental metameric

solution to a linear combination of metameric black components.

Φk =

∫
w
Rfundamental(λ, x)P (λ)Sk(λ)dλ+

∫
R0(λ, x)P (λ)Sk(λ)dλ

k = 1, 2, 3.

(2.4)

Finlayson [40] uses the original framework of Wyszecki [42], but also tries to enforce more

constraints on the reflectances to make them physically realizable. Cohen and Kappauf [44]

employed Wyszecki’s decomposition [42], but solved it using linear algebra and their matrix

based method called matrix-R theory. This was later extended for multiple illuminants by

Berns et al. [45].

There are some other methods that find a basis of the entire set of metameric reflectances

and color signals (called simple metamers [41]), as opposed to finding a fundamental answer

plus metameric blacks. Any metamer is then defined as a convex combination of the simple

metamers. All of the mentioned attempts have in common that they provide a model to

continuously express all the metamers.

On the other hand, there are some discrete solutions that characterize only a subset of

metamers that are of particular interest. These methods are usually called discrete solutions
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[40]. These approaches define a set of constraints that form the set of solutions. Different

methods differ in the way they create the constraints and properties that best characterize

surface reflectances. Takahama et al. [46, 47] work based on a given tristimulus φ∗ and

a set of N reflectances Ri(λ) resulting in tristimulus values φi, i = 1, .., N . N metameric

reflectances R∗
i (λ) are found such that a minimal change from the original reflectance occurs:

∫
w
R∗
i (λ, x)P (λ)S(λ)dλ = φ∗ (2.5)

and

min
R∗

i (λ)

∫
ω

[Ri(λ)−R∗
i (λ)]2dλ. (2.6)

In [47] a similar strategy is used, however, reflectances are constrained to be in the [0,1]

range. According to [40], both these methods have the problem that the final metamers

depend significantly on the initializations. The set of initial N reflectances, Ri(λ), if selected

badly, could be such that the resulting final metamers, R∗
i (λ), are all the same.

These methods usually don’t provide a systematic way to generate metamers, and also,

essentially, depend on the initialization. In addition, most of them are based on finding

metameric reflectances under the source illuminant and then computing their corresponding

tristimulus values under the target illuminant. There is not a clear understanding of where

exactly these metamers fall within the mismatch volume. Therefore they do not accurately

specify the metamer mismatch volume. On the other hand, it is not possible to find out

the accuracy of these approximations because there is no precise boundary of the mismatch

volume as the ground truth. This problem may arise more seriously specially in the methods

such as [40, 48] where the sampling is done only from a finite-dimensional subset of the

infinite-dimensional set of all the reflectances.

In view of this issue, a recent method proposed by Logvinenko et al. [5], computes only

the metamer mismatch volume boundary. This boundary, which is sufficient to specify the

whole convex volume, is of more interest in this thesis. This method is applicable for any

reflectance and strictly positive illuminant. Note that metamer mismatching also happens in

case of a change in the sensor sensitivities (called observer-induced metamer mismatching).

In this context, this phenomenon is essentially analogous to an illuminant change (called

illuminant-induced metamer mismatching). Logvinenko et al. refer to the set of illuminant
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and sensor as a color mechanism [5] and provide a general solution for metamer mismatching

that arises under a change of the color mechanism.

2.2.2.1 Logvinenko’s Metamer Mismatching Theory

Logvinenko et al. investigate the boundary of the metamer mismatch volume from the

formal point of view and then provide an algorithm for computing the metamer mismatch

volumes for arbitrary, strictly positive illuminants and strictly positive sensor sensitivity

functions, without placing any restrictions on the reflectances. Specifying the boundary of

the mismatching can fully describe this convex volume.

Consider a set of sensors Φ = (φ1, ..., φn), the response of each of which to a reflecting

object with spectral reflectance function R(λ) illuminated by a light with spectral power

distribution P (λ) is given by:

φk =

∫
w
R(λ)P (λ)Sk(λ)dλ

(k = 1, ..., n).

(2.7)

where w is the visible spectrum interval, and Sk(λ) is the sensitivity of the kth sensor.

Note that this is a general formulation for a vision system with n sensors. The vector

Φ = (φ1(x), ..., φn(x)) of the sensor responses is referred to as the color signal produced

by the sensor set Φ in response to R(λ) illuminated by P (λ). In the case of trichromatic

human color vision, n = 3 and S1(λ) , S2(λ) , and S3(λ) are the CIE 1931 2-degree standard

observer color matching functions. Note that S1(λ) , S2(λ) , and S3(λ) can be sensors’

spectral sensitivity functions of a digital camera.

In this context, the reflectances mapping to the MMV boundary are called optimal [38].

The goal is not to solve for all the optimal reflectances directly because the set of possible

optimal reflectances is infinite. However, for different directions from the center of the MMV,

reflectance functions with a particular parameterization specifying the boundary points can

be found [39, 49]. The possibility of such parameterization emerges from the fact that the

optimal reflectances are step-like functions that can be characterized by a finite number

of transition wavelengths. There is an accepted assumption, first proposed by Schrodinger

[50], that the optimal spectral reflectance functions only take two values: either 0 or 1.

In order to find the metameric members on the boundary of MMV, an either 0 or 1 step-

like function with 5 transitions is defined: x5(λ;λ1, ..., λ5). As in related works [39, 49, 51],
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the elementary step-like functions are defined with xm as type 1:

xm = (λ;λ1, ..., λm) =
m∑
i=1

(−1)i−1x1(λ;λi) (2.8)

and 1− xm as type 2:

1− xm(λ;λ1, ..., λm) (2.9)

where

x1 = (λ;λ1) =

0 if λ < λ1

1 otherwise;
(2.10)

and λmin < λ1 < λ2 < ... < λm < λmax. In this context λ1, λ2,... and < λm are

called the transition wavelengths of the step-like elementary function xm = (λ;λ1, ..., λm).

It is shown that these elementary steplike functions with m = 5 map to the boundary

of the metamer mismatch volume under the second illuminant. Therefore, finding the

boundary points in enough number of directions in the color space will specify the MMV. The

detailed implementation of the method is available in “Metamer Mismatching,” authored

by Logvinenko, Funt, and Godau [5].

To gain some more intuition into metamer mismatch volumes consider the simple one-

dimensional case of a pair of color mechanisms. As shown in Figure 2.4 (directly taken

from [5]), the object-color solid (i.e., the whole set of possible colors that can be observed

under the second illuminant) becomes a convex region in 2 dimensions. In the trichromatic

case, the object-color solid is the set of all possible XYZ that can arise for all possible

reflectance functions R(λ) (i.e., 0 ≤ R(λ) ≤ 1, 380 ≤ λ ≤ 780nm). For this figure, the

CIE1931 x(λ) color matching function has been used as the single underlying sensor. Under

CIE illuminants D65 and A, with spectral power distributions PD65(λ) and PA(λ), the

spectral weighting functions of the corresponding color mechanisms are PD65(λ)x(λ), and

PA(λ)x(λ). As can be seen from the figure, the color signal CIE X = 35 under D65 could

potentially become any value in the range CIE X = [20.5, 58] under A.

Figure 2.6 shows an example of the metamer mismatch volume for the XYZ of flat grey

for a change in illuminant from a 2900K LED to CIE D65, the spectra of which are shown in
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Figure 2.4: Metamer mismatch volume for a monochromatic color device with sensitivity
function CIE1931 x(λ). The CIE X obtained under CIE illuminant D65 are plotted along
the horizontal axis, and under CIE A along the vertical axis. The shaded area indicates the
set of all CIE X pairs arising under D65 and A from all possible object reflectances. The
metamer mismatch volume for color signal value X = 35 under D65 is obtained from the
projection shaded area at X=35 onto the vertical axis. The color signal CIE X = 35 under
D65 could, under A, potentially become any value in the range CIE X = [20.5, 58]. This
figure is directly taken from [5].
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Figure 2.5: Spectra of a 2900K LED (blue) and that of CIE D65 (dashed red).

Figure 2.5. Even though the two illuminants are of the same CCT the metamer mismatch

volume is quite large: it fills a sizable fraction of the entire object-color solid. This means

that a single color under 2900K LED light, can be possibly dispersed into a large portion

of all the possible colors under CIE D65. Therefore, it is not reasonable to ignore the huge

impact of metamer mismatching on color science, especially the problem of estimation of

the reflectance spectrum that could possibly produce a given color under a given illuminant.

Digital camera companies are becoming interested in metamerism issues in camera de-

sign. As well, the issue of metamerism is important in the design of new energy efficient light

fixtures. In Chapters 3 and 4 we discuss two important implications of metamer mismatch

volumes.

2.3 Reflectance Based Object-Color Space

Common color spaces such as CIE 1931 [4] and its derivatives are more appropriate for

representing the colors of self-luminous than reflecting objects. The main problem in using

them to specify object colors is that their coordinates depend on the illumination. CIELAB

adjusts for the illumination using a von Kries type transformation, but this adjustment

compensates only partially for the illumination. In view of this problem, Logvinenko intro-

duced a new object-color atlas that is invariant to illumination [49, 52]. Logvinenko bases
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Figure 2.6: Metamer mismatch volume (for the XYZ of flat grey lit by a 2900K LED) shown
inside the object-color solid of the CIE D65 for the case when the illuminant is changed from
the LED to D65. Coordinates are the CIE 1931 XYZ space.

his color atlas on ‘optimal reflectance’ spectra that take on only the values 0 or 1 and make

no more than two transitions between 0 and 1 over the visible spectrum [49]. The optimal

reflectances generate color stimuli on the surface of the object-color solid, which is the set

of all possible colors from reflecting objects under a given illuminant. The spectral locus

must be convex in order for the two-transition property to hold. It has been shown that for

the CIE color matching functions, the points on the boundary of the object-color solid are

unique. In particular, they can be uniquely specified by their two transition wavelengths, λ1

and λ2 [49]. In Logvinenko’s theory, the color atlas is based on object reflectances that are

rectangular functions [49] formed as a mixture of the flat grey spectral reflectance function

(0.5 across the visible spectrum) and an optimal reflectance. Given λ1 and λ2 as transition

wavelengths, the optimal reflectance functions can be expressed equivalently by their central

wavelength λ = (λ1 + λ2)/2 and spectral bandwidth σ = λ2 − λ1. The relative weighting of

the grey and rectangular components is controlled by a parameter α called the chromatic

amplitude. Each triple of these components αδλ therefore specifies a unique rectangular

reflectance. The set of all such reflectances constitutes the elements of the color atlas. The

coordinates of an arbitrary object under a given illumination creating color signal XYZ are

the αδλ coordinates of the rectangular reflectance generating the same color signal XYZ. In
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Figure 2.7: The composition of a rectangular reflectance spectrum.

other words, the atlas coordinates are those of the rectangular reflectance that is metameric

to the object under the given illumination.

Figure 2.7 illustrates an example of a rectangular spectra generated as a mixture of a

flat grey (left panel), and an optimal rectangular spectra (middle panel) via parameter α.

Logvinenko’s object color atlas has several interesting features including:

• illuminant invariance (i.e., the elements of the atlas do not change with the illuminant);

• reasonable correlation between two of its coordinate axes and the perceptual dimen-

sions of hue and chroma;

• the possibility of predicting the effects of a change in illuminant.

Another favorable property is that the αδλ coordinates are somewhat independent of

the spectral sensitivity of the sensors. In particular, under any linear transformation of the

sensitivity functions they remain completely unchanged.

2.3.1 Other Representations

The color atlas that has been defined above consists of rectangle spectral reflectance func-

tions. The issue with these reflectances is that they cannot be implemented in practice.

Logvinenko approaches this problem by trying to use physically implementable objects to

model an object color atlas that is suitable not for all the objects but only for a limited

subset of them [52].
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In one of his alternatives, Logvinenko suggests a parameterization of his color atlas based

on “wraparound Gaussian” reflectance functions as defined in section 2.3.1.1. Gaussians are

smooth by definition and have been used in modeling objects and lights [53–55]. They

can represent the whole object color solid, but only if some functions that are not physical

reflectance functions are included. Specifically, functions are required with ‘reflectance’

values exceeding 1.

2.3.1.1 Gaussian parameterization

Consider a three-parameter set of spectral reflectance functions which are Gaussian-like

functions where k, 1/
√
θ, and µ indicate the height, standard deviation and center (peak

wavelength) of the Gaussian. These functions are not strictly Gaussians, but rather are

defined on a finite wavelength interval and in some cases wraparound at the ends of the

interval, hence the name “wraparound Gaussians”[52]. Wraparound Gaussians are defined

by the following equations:

If µm ≤ (λmin + λmax)/2 we have two cases:

1. For µm ≤ λ ≤ µm + Λ/2:

gm(λ; km, θm, µm) = km exp[−θm(λ− µm)2] (2.11)

2. For µm + (Λ/2) ≤ λ ≤ λmax:

gm(λ; km, θm, µm) = km exp[−θm(λ− µm − Λ)2] (2.12)

where Λ = λmax − λmin.

On the other hand when µm > (λmin + λmax)/2, again we have two cases:

1. For λmin ≤ λ ≤ µm + Λ/2:

gm(λ; km, θm, µm) = km exp[−θm(λ− µm − Λ)2] (2.13)

2. For µm − (Λ/2) ≤ λ ≤ λmax:

gm(λ; km, θm, µm) = km exp[−θm(λ− µm)2] (2.14)
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Then, for 0 ≤ Km ≤ 1, λmin ≤ λm ≤ λmax and positive θm, we have a Gaussian

reflectance spectrum. In this representation, the roles of µ and θ are analogous to those

of central wavelength λ and spectral bandwidth δ defined in the Logvinenko’s original [49]

αδλ coordinate system.

We will refer to triples kσµ as KSM coordinates. Figure 2.8 shows an example of a

wraparound Gaussian metamer for the spectral reflectance of Munsell paper 5 YR 5/6 under

D65.

Figure 2.8: The spectral reflectance of Munsell 7.5 PB 5/8 (dashed black) and its metameric
wraparound Gaussian (solid black). Figure is copied from [6].

In this thesis, such Gaussian-like reflectances have been used to describe the appearance

attributes of object-colors in Chapters 5 and 6. Due to their interesting properties, they

have been also employed as a tool for predicting how a color signal (i.e., cone response triple)

changes with a change in illumination as explained in Chapter 7 [8, 27].

2.4 Appearance Dimensions of Color

The development of color science research in the literature can be divided into three main

directions: color specification, color difference measurement and color appearance modelling

[56]. The first component deals with the need to specify and convey the color information

via numbers. The CIE recommended a set of standards for a color specification system in

1931 that include standard colorimetric observers, or color matching functions (CIE x, y, z),

standard illuminants such as daylight illuminants, and standard viewing conditions. The

typical colorimetric measures are the tristimulus value (X,Y,Z) and chromaticity coordinates

(x,y).

The second component deals with the need of having a uniform color space and a color

difference formula. The CIE XYZ and xy chromaticity coordinates are not uniform spaces.
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Therefore, CIELAB and CIELUV were recommended by CIE in order to providing unifor-

mity and calculating color differences. Later on, CIE recommended the CIEDE2000 [57] for

evaluating color differences.

The next important aspect of color science deals with color appearance models. Although

conventional colorimetry has existed for a long while, it is limited to the local signals coming

from each single object. However, the colors humans perceive depend on the relationship

and integration of signals across the whole visual scene. The question of how these light

signals are playing their role in generating the perceived colors has been an object of research

for understanding color vision. In addition, conventional colorimetry can be used only under

quite limited and standardized viewing conditions and contexts. For example it does not

consider background and surrounding objects, and reference white in the scene. Recent

developments in color technology and the need to match the appearance of a color across

different platforms, for example a camera, a display or a printed paper, have heightened the

importance of color appearance models. The main challenge for a color appearance model is

its capability to predict the appearance attributes across different viewing conditions. The

color of any given object can be described in terms of three main appearance dimensions:

1. Hue

2. Chroma

3. Lightness

Different color spaces employ different definitions for each of these appearance correlates.

The attributes were originally defined on regular color spaces such as CIELAB too, but later

received considerable critical attention in color appearance models. The first appearance

model, titled CIECAM97s, was proposed and recommended by CIE in 1997 [58]. After a few

years of evaluation by different researchers, it was improved and revised. A simpler and more

accurate model, called CIECAM02, was recommended by CIE in 2002 [59]. CIECAM02

provides the prediction of a range of different color appearance attributes, among which, we

pay more attention to hue, chroma, and lightness.

2.4.1 Illumination Effect

When a color appearance attribute is calculated under a target illuminant, a color appear-

ance model such as CIECAM02 [59] containing a chromatic adaptation transform (CAT)
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is used. A CAT is a transformation that converts the input colors captured under a first

illuminant to the corresponding output colors under the second illuminant. In this case, the

CAT maps the color values under the given light source to the predicted color values under

the canonical target light source. All these color appearance models and other color spaces

are under the von Kries rule limitations.

The change of illumination can significantly affect the color appearance attributes. Col-

ored illuminants will neutralize and darken surfaces of complementary-colors. It will also

increase the relative lightness of all surfaces that reflect wavelengths present in the light.

The surface hues also shift towards the dominant wavelength of the light. In addition, the

range of colors seen under a white illuminant is always wider than that seen under a colored

illuminant. To achieve robustness with respect to illuminants, the appearance dimensions of

object color have been studied in more detail and new hue, chroma and lightness descriptors

have been developed in Chapters 5 and 6 of this thesis.

2.5 Mitigating the Illumination Effects

It is usually desired to simulate the ability of the human visual system to preserve an approx-

imate color of an object under different lighting conditions. The human visual system has a

mechanism to identify objects across different illumination conditions. But this ability for

a computational model is difficult to maintain. In order to illustrate the concept, consider,

for example, the Munsell chips Logvinenko and Tokunaga used in their experiments [7], as

shown in Figure 2.9. Figure 2.10 graphically depicts the change of object colors when the

illuminant is changed from a Neutral to a Blue illuminant. Each reflectance sample (Mun-

sell chip) under a source illuminant can be described in terms of its CIE XY Z coordinates

i.e., XY Zreference. Changing the illuminant will lead to different CIE XY Z values i.e.,

XY Ztarget. These plots compare the CIE xy chromaticity coordinates of the actual papers

under the first (shown by blue curve) and second (shown by black curve) illuminants and

the asymmetric color matches made by observers in Logvinenko & Tokunaga’s experiment

(shown by red curve). The average matches chosen by human subjects are fairly close to

the ground truth papers. It means that they have been able to identify the correct paper

in each of the 20 cases based on its color under the second illuminant quite well.

In the literature, the fact that color is not an intrinsic and independent attribute of an

object, but rather is an attribute of a combination of light and surface reflectance pair, has
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Figure 2.9: Photograph giving a general indication of the colors of the 20 chromatic stimulus
papers used in Logvinenko & Tokunaga’s experiment. To evaluate the colors correctly
requires viewing the actual Munsell papers. Their Munsell notations starting from 1 are:
10 RP 5/14, 5 R 4/14, 10 R 5/16, 5 YR 7/14, 10 YR 7/14, 5 Y 8/14, 10 Y 8.5/12, 5 GY
7/12, 10 GY 6/12, 5 G 5/10, 10 G 5/10, 5 BG 6/10, 10 BG 5/10, 5 B 5/10, 10 B 5/12, 5
PB 5/12, 10 PB 4/12, 5 P 4/12, 10 P 4/12, 5 RP 5/12.

been often neglected. Therefore, the goal of computational methods have been to model

the mapping from XY Zreference to XY Ztarget values. This mapping, usually referred to as

a chromatic adaptation transform (CAT ), has fundamental issues.

2.5.1 Chromatic Adaptation

In this section, we discuss different chromatic adaptation transforms, most of which are based

on the model proposed by Johannes von Kries [60], the first who attempted to describe this

phenomenon with a mathematical model. In his model, each color channel is independently

scaled by the ratio of the color signals obtained from an ideal reflector under the two

illuminants. It can be implemented as a diagonal-matrix that maps a color response matrix

under one illuminant to a corresponding color response matrix under a second illuminant.

Despite its simplicity, von Kries model is a generally accepted color correction model [61–64]
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Figure 2.10: The asymmetric color matching (blue to neutral) [7] done by different observers
for 20 Munsell papers shown in Figure 2.9. Circular dots connected by the black lines stand
for the stimulus papers under the Neutral illuminant. The squares connected by the red
lines represent the averaged observer matches. Circular dots connected by the blue lines
stand for the stimulus papers under the Blue illuminant. The dashed line is a segment of
the spectrum locus. The detailed analysis is presented in Chapter 3.
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used to transform the images from the estimated illuminant color to the so called illuminant-

invariant descriptors under a perfect white light, i.e.,[1,1,1].

It is well known that von Kries rule performs poorly if applied on CIE XY Z and this

transform must be applied in a cone space. The Hunt-Pointer-Estevez matrix (MHPE) is

a transformation originally used to convert the XY Z values into LMS cone space that is

more compatible with the von Kries transform method, and is therefore also called von Kries

transformation matrix (MvonKries):
L

M

S

 = MHPE


X

Y

Z

 (2.15)

MHPE =


0.3897 0.6890 −0.0787

−0.2298 1.1834 0.0464

0 0 1

 (2.16)

Although von Kries model has been elaborated during the past years, the essential idea

has not been changed much. In a number of studies [64–66], West, Worthey, and Brill

analyzed the factors that limit this model and found that sensor sensitivity breadth and

overlap affect von Kries based color constancy significantly and cause imperfect constancy.

Later, Finlayson, Drew, and Funt [63, 67–69] showed that von Kries can be successfully

employed on tri-stimulus values if they are prepared by transforming to a space of more

concentrated and sharper sensors. In particular, they showed that if reflectances can be

accurately modelled by 3 basis functions and illuminants by 2 basis functions, then there

exists a set of new sensors as linear combinations of the fixed cone sensitivity functions

that guarantees diagonal color constancy [70]. Therefore, the color values must be first

transformed to a space of sharpened sensor sensitivities. This transformation can be done

via a linear 3x3 matrix (M). The diagonal von Kries transform matrix can then be applied.

There are different versions of von Kries in the literature that work based on transfor-

mation to a sharpened space [71–73], among which, Bradford and CAT02 are more popular.

CAT02 is implemented in CIECAM02, the most recent color appearance model approved

by CIE. Given a set of CIE XY Z values, the corresponding sharpened LMS values given

by CAT02 are given by the following transform:
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MCAT02 =


0.7328 0.4296 −0.1624

−0.7036 1.6975 0.0061

0.0030 0.0136 0.9834

 (2.17)

The other popular transform, the Bradford transformation matrix, works best with a mod-

ified von Kries transform that has a small non-linearity in the blue channel. However,

this is often neglected and a linear von Kries in all channels is used with the Bradford

transformation matrix.

MBFD =


0.8951 0.2664 0.1614

−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296

 (2.18)

2.5.2 Other Illuminant Invariant Spaces

Another line of research, not pursued in this report, focuses on the invariance that can be

obtained by applying other transformations, sometimes also referred to as color constancy

[74–77]. Such methods often present different forms of invariance, like invariance to high-

lights or shadows, but do not result in output images that have any visual similarity to the

original input image. The shadow removal methods proposed by Finlayson and Drew fall

into this category [74, 76, 77]. There are some assumptions such as Lambertian surfaces

and Planckian lights in order for the model to hold. Although it is not always the case

for the sensors, narrow-band sensors better follow the requirements of the invariant model.

There have been also some sharpening methods proposed to better remove the shadows

using a 3x3 sensor sharpening matrix and fulfill the requirements of the model. The key

step of these algorithms is to find an angle to project the log-log chromaticities into a 1D

illuminant-invariant space. This is obtained by finding a projection that minimizes the en-

tropy. The obtained intrinsic image is claimed to represent the reflectance property of the

image pixels and is independent of lighting condition. Once the invariant image is obtained,

one can reintegrate this image back into the original image preserving the original colors

and removing the shadows and other effects of illumination [74]. One can find two edge

maps, one from the original image, and one for the invariant image. Comparison of edges

in these two images gives the required information to detect the shadows.
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In Chapter 7 of this thesis, we have proposed novel approaches that map the input

colors that are viewed under the source illuminant to the desired colors under the canonical

illuminant.

28



Chapter 3

Implications of Metamer

Mismatching

3.1 Summary

This chapter describes the experiments that form the underlying results of the joint project

with Logvinenko, Funt, and Tokunaga, titled “Rethinking Colour Constancy” [1] where the

implications of metamer mismatching on color constancy are discussed. Metamer mismatch-

ing refers to the fact that two objects reflecting metameric light under one illumination may

no longer reflect metameric light under a second light. Therefore two objects appearing as

having the same color under one illuminant may appear as having different colors under

a second. This phenomenon is a serious obstacle towards perfect color constancy but the

deviations from perfect color constancy reported in experiments have been typically thought

to be small enough that they do not controvert the concept of color constancy.

The question is whether this imperfectness is because of the imperfectness of illuminant

estimation or there is perhaps some other fundamental underlying problem. One important

source of color inconstancy is metamer mismatching problem. Therefore, it is important to

determine how the deviations from color constancy relate to the limits metamer mismatching

imposes on constancy. This has been limited, until now, by the lack of a method for

computing metamer mismatch volumes precisely.

Employing the method for calculating the exact boundaries of metamer mismatch volume

[5], the experiments described in the next sections show how serious metamer mismatching
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can be. The variation in object colors under illumination changes is large enough so as

to confirm that color is not an independent, intrinsic attribute of an object, but rather an

attribute of an object/light pair. In its stead, Logvinenko suggests a definition of color

in terms of object/light pairs (called material color [1, 52]). The findings of this chapter

have led to publications in PLOS ONE, 2015, JOSA A, 2016, proceedings of the IEEE

International Conference on Computer Vision (ICCV) Workshops, 2015, proceedings of

Color and Imaging Conference (CIC), 2014, and proceedings of the 12th Congress of the

International Colour Association (AIC), 2013 [1, 23, 26, 28, 31].

3.2 Method and Materials

The goal of this section is to investigate the metamer mismatch volumes in different lighting

conditions. These volumes can be used for defining the limits of both human and machine-

based color constancy. Since the metamer mismatch volumes are convex bodies, they have

been determined by their boundary surfaces computed using the recent algorithm proposed

by Logvinenko et al. [78].

As an example output of this method, Fig. 3.1 illustrates a metamer mismatch volume

computed for a point produced by the flat spectral reflectance function (0.5 across the visible

spectrum) for the case of a change from illuminant CIE D65 to CIE A.

In this study metamer mismatch volumes were also computed for the color stimuli and

illuminants used in Logvinenko & Tokunaga’s color matching experiments [9]. For each

metamer mismatch body evaluated in this thesis, 1000 5-transition reflectances that map to

the metamer mismatch boundary have been computed. All these reflectances are, in fact,

metameric under the first illuminant, but disperse to a 3D volume under the second. As

a double check, any point found to be more than 0.01% away from the mean (of the 1000

values) for at least one of the three tristimulus values (i.e., X, Y or Z) was discarded as an

outlier. A complete database of the 5-transition reflectance functions for all the metamer

mismatch volumes is available on-line from http://www.cs.sfu.ca/∼color/data/. The reader

may easily compute the XYZ tristimulus values of the reflectances under any illuminant.

In particular, they all lead to equal XYZ values under the source light of the metamer

mismatching condition.

Logvinenko & Tokunaga employed 20 chromatic Munsell papers as shown in Fig. 2.9

along with a grey (N5/) and a black (N1/) paper, and six different chromatic lights that
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Figure 3.1: Metamer mismatch volume for the flat grey spectral reflectance function (i.e.,
0.5 across the visible spectrum) when the illuminant changes from CIE D65 to CIE A is
shown inside the object-color solid for CIE D65. The coordinates are XYZ in the CIE 1931
colorimetric space. The grey dot indicates the location of the color signal corresponding to
the flat grey reflectance. It is located at the centre of the object color solid and also at the
centre of the metamer mismatch volume.

were used to illuminate the papers: neutral (N), yellow (Y), blue (B), green (G), and two

reds (R1 and R2). Their spectral power distributions are plotted in Fig. 3.2. Fig. 3.3

presents the CIE 1931 chromaticity coordinates of the stimulus papers under different lights

excluding R2, which is rather similar to R1. In the rest of this thesis, results for R2 are

not included and R1 will be referred to as R. The next section investigates the extent of

metamer mismatching for these chromatic illuminants.
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Figure 3.2: Spectral power distribution of the illuminants employed in Logvinenko & Toku-
naga’s experiment. The line color indicates the color of the light each line represents. The
R2 light is represented by the dashed red line and the neutral light by the black line.

Figure 3.3: The CIE 1931 xy chromaticity coordinates of the light reflected from the stimulus
papers under the lights used in Logvinenko & Tokunaga’s experiment shown in Fig. 2.9 and
3.2. The marker color indicates the color of the corresponding light.
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Figure 3.4: Label A indicates the object color solid under red light. Label B indicates the
object color solid under neutral light. The black dot indicates the XYZ of flat grey under
red. The black square shows its XYZ under neutral. C indicates the metamer mismatch
volume of the flat grey for a change in illumination from red to neutral.

3.3 Extent of Metamer Mismatching for Chromatic Illumi-

nants

The metamer mismatch boundary surfaces were computed for the chromatic Munsell papers

depicted in Fig. 2.9 under all 8 pairs of illuminants that include the neutral. A pair of

illuminants, for example N and Y, will be referred to as an illumination condition and

written as NY. All computation was done using the CIE 1931 color matching functions [38].

Fig. 3.4 shows an example MMV for the case of a change from the red illuminant to the

neutral (RN). It is surprising that such a large fraction of the object color solid is occupied

by the metamer mismatch volume.

The overlap between multiple mismatch volumes makes it hard to have them in a 3D plot.

Alternatively, we will plot 2D projections of the volumes in the CIE 1931 xy chromaticity

diagram. The area covered in the CIE xy chromaticity plane, produced by the projection of

the points in a metamer mismatch volume will be referred to as the chromaticity mismatch

area (CMA). This area shows how much the initial chromaticity is dispersed as a result
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of metamer mismatching. Fig. 3.5 depicts the chromaticity mismatch area corresponding

to the metamer mismatch volume for the flat grey from Fig. 3.1, where the illuminant has

changed from CIE D65 to A .

Figure 3.5: Chromaticity mismatch area (yellow area) for the flat grey reflectance R (λ) =
0.5 when CIE illuminant D65 is replaced by CIE illuminant A. The red dot indicates the
chromaticity of the flat grey under CIE A and the blue dot the corresponding chromaticity
under CIE D65 lying inside the metamer mismatch area.

Figs. 3.6 and 3.7 show the chromaticity mismatch areas for the different Munsell papers

from Fig. 2.9 under NY and NB illumination conditions (i.e., resulting from changes from

the neutral illuminant to the yellow and to the blue illuminants). On the other hand, Figs.

3.8 and 3.9 depict the NG and NR illumination conditions (i.e., for the shift from the neutral

to the green and red illuminants). Note that, for each of these four illumination conditions,

to avoid cluttered and confusing plots, the chromaticity mismatch areas are shown for 10

odd-numbered Munsell papers from Fig. 2.9 as a representative sample set. As it can be seen

from the figures, the chromaticity mismatch areas are large, even for the NY illumination

condition, for which the source and target illuminants are quite close.
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Figure 3.6: Chromaticity mismatch areas for shifts from the neutral illuminant (N) to
the yellow (Y). The circles are the chromaticities of the 10 odd-numbered Munsell papers
from Fig. 2.9 under the second illuminant in each case. The closed contours indicate the
boundaries of the chromaticity mismatch areas. The color of the circles and boundaries
of the metamer mismatch areas correspond to one another, and very roughly indicate the
colors of the Munsell papers.

35



Figure 3.7: Chromaticity mismatch areas for shifts from the neutral illuminant (N) to the
blue illuminant (B). The circles are the chromaticities of the 10 odd-numbered Munsell
papers from Fig. 2.9 under the second illuminant in each case.
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Figure 3.8: Chromaticity mismatch areas for the shifts from the neutral illuminant (N) to
the green (G) illuminant. The circles are the chromaticities of the 10 odd-numbered Munsell
papers from Fig. 2.9 under the second illuminant in each case.
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Figure 3.9: Chromaticity mismatch areas for the shifts from the neutral illuminant (N) to
the red (R) illuminant. The circles are the chromaticities of the 10 odd-numbered Munsell
papers from Fig. 2.9 under the second illuminant in each case.
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3.3.1 Quantitative Assessment of Metamer Mismatch Volumes

In addition to the figures, it seems necessary here to clarify exactly how large the mismatch-

ing effect is. In order to assess the mismatching effect quantitatively, we computed the

metamer mismatch index as suggested by Logvinenko et al. in Eq. 15 of [78], where it is

defined as the ratio of the metamer mismatch volume to that of the object color solid.

In particular, let R denote the complete set of all spectral reflectance functions (i.e.,

R = {0 ≤ R (λ) ≤ 1}). When R (λ) changes over R the obtained color signals (i.e., Φ (R))

form a convex volume in the colour signal space, which is referred to as the object-color solid

[38].

For a point z in Φp1 (R) (i.e., the object color solid under illuminant p1) that under

illuminant p2 disperses into a metamer mismatch volume ρ (z; p1, p2) in Φp2 (R), the metamer

mismatch index [5] is:

imm (z; p1, p2) =
v (ρ (z; p1, p2))

v (Φp2 (R))
(3.1)

where v (ρ (z; p1, p2)) is the volume of ρ (z; p1, p2), and v (Φp2 (R)) is the volume of the

Φp2 (R) object-color solid.

The metamer mismatch indices in percent for different illumination conditions and Mun-

sell papers are presented in Table 3.1. Note that also the metamer mismatch index of a

Grey paper has been added into the last row of the table. Also, to make the results easier

to follow, Fig. 5.17 graphically illustrates the trend of metamer mismatch indices for the

shift from the neutral to other illuminants. As an example, the first entry in the table (i.e.,

0.32%) stands for imm (z1;N,G), where z1 is the CIE tristimulus values for Munsell paper

#1 (Fig. 2.9) under the neutral (N) illuminant (Fig. 3.3).

As can be observed from the figures, the least amount of metamer mismatching occurs for

NY and YN illuminant conditions, for which the metamer mismatch index averaged across

all papers (excluding flat grey) is just 0.008%. On the other hand, the largest amount of

mismatching is observed for the red illuminant for which the average metamer mismatch

indices are 9% and 11% for the NR and RN conditions, respectively.

Note that, in 2D figures (Figs. 3.6, 3.7, 3.8, and 3.9), the mismatching effect looks much

more serious than the numbers tabulated in Table 3.1. The first reason for this impression

is that the metamer mismatch index is defined as a measure in 3D volume space, not in 2D

or linear space. For example a hypothetical metamer mismatch volume having the same

shape as the object color solid but 25% its size (in each dimension) would have a metamer

39



Munsell 
Paper 

Illumination Condition 

NG NB NY NR GN BN YN RN 

1 0.32 0.14 0.0024 5.4 1.1 0.69 0.0023 9.3 

2 0.55 0.10 0.0019 6.3 1.2 0.53 0.0019 7.2 

3 3.4 0.55 0.0064 7.5 4.1 1.3 0.0059 9.1 

4 3.0 0.13 0.0047 5.0 2.3 0.54 0.0026 5.5 

5 4.2 0.23 0.0048 5.4 3.9 0.70 0.0042 5.9 

6 5.9 0.77 0.0088 11 5.7 1.4 0.0082 9.6 

7 6.3 0.37 0.0056 8.5 4.9 0.86 0.0051 6.6 

8 5.5 0.96 0.0072 5.6 6.1 1.3 0.0068 6.9 

9 4.3 1.5 0.0089 6.1 6.3 1.9 0.0086 9.8 

10 4.2 1.9 0.0090 6.3 6.7 2.1 0.0097 11 

11 7.5 3.4 0.016 14 8.4 2.8 0.017 14 

12 3.9 2.6 0.0102 7.0 6.8 2.5 0.011 13 

13 3.6 2.9 0.0105 7.0 6.7 2.7 0.011 13 

14 3.7 2.9 0.0110 7.5 6.9 2.8 0.012 14 

15 3.5 2.8 0.0117 9.2 6.5 3.0 0.013 15 

16 1.4 1.5 0.0075 7.8 4.0 2.0 0.0083 15 

17 1.2 1.2 0.0074 9.9 3.4 1.9 0.0079 15 

18 0.81 0.84 0.0064 10 2.7 1.6 0.0066 14 

19 2.0 1.29 0.0078 22 4.0 1.9 0.0074 16 

20 0.98 0.65 0.0051 15 2.9 1.4 0.0054 13 

Flat Grey 13 4.1 0.021 47 9.7 3.1 0.018 20 
Average Excluding 

Flat Grey 3.3 1.3 0.0077 8.8 4.7 1.7 0.0077 11.1 

Average Including 
Flat Grey 3.8 1.5 0.0083 10.6 5.0 1.8 0.0082 11.6 

 

 
Table 3.1: Metamer-mismatch indices in percent. Rows correspond to papers that are
numbered as in Fig. 2.9. Columns correspond to illumination conditions.
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Figure 3.10: Metamer mismatch indices in percent (from Table 3.1) for the shift from the
neutral to colored illuminants. The marker color indicates the color of illuminant. The
abscissa is the number of the corresponding Munsell paper from Fig. 2.9. The color of
squares on abscissa roughly represents each paper’s color.

.

mismatch index of (1/4)3× 100 = 1.6%. If the ratios were measured in 2D, the index would

have been (1/4)2 × 100 = 6.25%. The other reason is that the metamer mismatch volumes

might be thin in the luminance dimension and wide when projected in the chromaticity

plane.

An important conclusion emerges here. The large size of metamer mismatch volumes

and chromaticity mismatch areas shows that finding a correspondence between an object

color seen under the first illuminant to when it is seen under the second is impossible.

In addition, the significantly large size of chromaticity mismatch areas leads to another

interesting observation that is the chromaticity mismatch area for a single paper covers the

chromaticities of many other papers. For example, for the blue illuminant, the metamer

mismatch area of paper #2 covers the chromaticities of 18 of the 20 Munsell papers. For

the green and red illuminants, some of metamer mismatch areas cover the entire set of 20

Munsell papers. This emphasizes the extent of metamer mismatching even more seriously.

The next section moves on to discuss the performance of human subjects on the same

color matching experiment.
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3.4 Analysis of Logvinenko & Tokunaga’s Experiments and

Prediction of the Results

The data used here originates from the color matching experiment performed by Logvinenko

& Tokunaga [9]. They have provided an interesting investigation of human observers’ per-

formance but not in light of metamer mismatching. In this thesis, their results are analyzed

in the context of metamer mismatching and a comparison of our findings with the von Kries

adaptation transform is provided.

In Logvinenko & Tokunaga’s experiment [9], for each paper seen under each of the

illuminants, four observers were asked to find the matching paper (least dissimilar) seen

under each of the six lights. Each observer repeats this task three times for each paper

and illuminant pair. Throughout this thesis, for a given test Munsell paper, the average

chromaticity of the matches taken over four observers and three repetitions is considered as

the indicator of the observers’ match.

Figs. 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, and 3.18 illustrate the asymmetric color

matching experiment data in terms of the following items for different pairs of illuminants:

• The chromaticities of the 20 Munsell stimulus papers (Fig. 2.9) under the target lights

(Fig. 3.2) indicated by circular dots connected by black lines;

• The averaged matches indicated by squares connected by red lines;

• The mismatch centroid chromaticities given the illumination condition indicated by

asterisks connected by green lines;

• The von-Kries-coefficient-rule-based prediction for the given illumination condition

indicated by diamonds connected by blue lines.

When a circle and square of the same color are close it means that for that test paper the

observers (on average) have chosen a closely matching paper. On the other hand, a circle

close to a square of a different color indicates a mismatch i.e., the observers chose a different

Munsell paper under the matching illumination than the given test paper. Generally the

corresponding circle and squares (the ones having the same color) must be overlapped in

case of an exact match (i.e., perfect color constancy).
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We computed the centroids of the metamer mismatch volumes and projected them onto

the chromaticity diagrams. We will refer to these projected points as mismatch centroid

chromaticities and approach the centroids as a possible vehicle for color prediction. Predic-

tions were also made using the von Kries [79] coefficient-rule-based model of color constancy.

Since the CIE 1931 color matching functions x (λ) , y (λ) , and z (λ) are used as the color

matching functions, the color signal is represented initially in CIE XYZ coordinates. In

order to make predictions of a von Kries type, the XYZ are first transformed to a new set

of primaries using the Hunt-Pointer-Estevez transformation as described by Hunt [80, 81].

This transformation is used, for example, as a component of the RLAB color appearance

model [82]. The plots compare matches made by observers to predicted matches based on

the mismatch centroid chromaticities and on the von Kries coefficient rule under 4 different

illumination conditions.

Figs. 3.11 and 3.12 depict the asymmetric color matches made by observers in Logvi-

nenko & Tokunaga’s experiment as well as the predicted matches based on the mismatch

centroid chromaticities and on the von Kries coefficient rule for the Neutral/Yellow and

Yellow/Neutral conditions.

In particular, Fig. 3.11 demonstrates the NY condition: (i) The chromaticities of the

papers under the yellow light indicated by circles connected by the black lines; (ii) The av-

eraged matches indicated by squares connected by the red lines; (iii) The mismatch centroid

chromaticities for the neutral/yellow (NY) illumination condition indicated by asterisks con-

nected by the green lines; and (iv) The von-Kries-coefficient-rule-based prediction for the

neutral/yellow (NY) illumination condition indicated by diamonds connected by the blue

lines.

Similarly, Fig. 3.12 shows the analogous results for the yellow/neutral (YN) illumination

condition. Note that all the data in Fig. 3.12 are from an entirely separate, though related,

experiment than for Fig. 3.11. In Fig. 3.11 the squares connected by red lines indicate the

matches made under the yellow illuminant when the stimulus papers are lit by the neutral

illuminant. In Fig. 3.12 it is the other way around: matches are made under the neutral

illuminant when the stimulus papers are lit by the yellow illuminant. Similarly, in Fig. 3.11

the mismatch centroid chromaticities and the von-Kries-based predictions are calculated for

the NY condition, while in Fig. 3.12 they are calculated for the YN condition.

For the conditions involving the yellow illuminant, most of the circles and squares of

the same color are either overlapped or quite close together. To assess the accuracy of the
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Illuminant Condition Neutral Yellow

Neutral 92 77

Yellow 80 93

Table 3.2: The average exact match rates (i.e., percentage of cases when the same paper was
chosen as the match) of symmetric and asymmetric illumination conditions involving Yellow
and Neutral illuminants in Logvinenko & Tokunaga’s experiment [9]. Rows and columns
correspond to source and target illumination conditions.

matching quantitatively, for each illumination condition, the average exact match rate (i.e.,

percentage of cases when the same paper was chosen as the match) was also calculated.

The average exact match rate for neutral-neutral and yellow-yellow, and neutral-yellow

and yellow-neutral cases have been tabulated in Table 3.3. The rates for the asymmetric

illumination conditions in this case are only slightly less than under symmetric illumination

conditions, whether neutral-neutral or yellow-yellow. Both of the figures and the table are

a good illustration of rather good color constancy in these cases, even when one illuminant

was neutral and the other yellow.

Figs. 3.11 and 3.12 also show that for the NY and YN illumination conditions the

observers’ matches are generally more accurate than those provided by the von Kries pre-

diction method or mismatch centroid chromaticities. But still, the predictions, are not too

far from the observers’ matches for both the NY and YN cases.
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Figure 3.11: Comparison of asymmetric color matches made by observers in Logvinenko &

Tokunaga’s experiment to predicted matches based on the mismatch centroid chromaticities

and on the von Kries coefficient rule for the Neutral/Yellow asymmetric color matching

(see Figs. 3.12 through 3.18 for more). Circular dots connected by the black lines stand

for the stimulus papers. The squares connected by the red lines represent the averaged

observer matches. Asterisks connected by the green lines stand for the mismatch centroid

chromaticities. Squares connected by the blue lines indicate the von Kries prediction. The

dashed line is a segment of the spectrum locus.
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Figure 3.12: Continuation of the comparisons in Fig. 3.11. Yellow/Neutral asymmetric

color matching. Note, however, that in here the squares connected by red lines indicate

matches made under the neutral illuminant, whereas in Fig. 3.11 the matches were under a

yellow illuminant and so forth.

In Figs. 3.13 through 3.18 that correspond to other illumination conditions it is evident

that the accuracy of the predictions is much worse than the observers’ matches. The von

Kries predictions are especially bad because they are not guaranteed to be in the metamer

set. It is somewhat surprising that this leads to the von Kries coefficient rule even pre-

dicting points falling outside the chromaticity diagram (i.e., it predicts non-existent lights).

The mismatch centre chromaticities make reasonable predictions only for the NB and NG

illumination conditions.

Section 3.4.1 studies the metamer mismatch volumes of flat grey under chromatic illu-

minants. This section presents more surprising results.
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Figure 3.13: Continuation of the comparisons in Fig. 3.11. Neutral/Blue asymmetric color
matching. Note that some of the von Kries predictions (blue curve) in fact fall outside the
spectrum locus.
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Figure 3.14: Continuation of the comparisons in Fig. 3.11. Blue/Neutral asymmetric color
matching.
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Figure 3.15: Continuation of the comparisons in Fig. 3.11. Neutral/Green asymmetric
color matching where again some of the von Kries predictions (blue curve) fall outside the
spectrum locus.
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Figure 3.16: Continuation of the comparisons in Fig. 3.11. Green/Neutral asymmetric color
matching.
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(a)

Figure 3.17: Continuation of the comparisons in Fig. 3.11. Neutral/Red asymmetric color
matching.
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(a)

Figure 3.18: Continuation of the comparisons in Fig. 3.11. Red/Neutral asymmetric color
matching.
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3.4.1 Color Dispersion of Grey Patch

In this section we talk about the metamer mismatch volume that arises for the flat grey

(i.e., R(λ) = 0.5) under different illuminant pairs. Fig. 3.19 demonstrates the seriousness

of the problem for the GN illumination condition. This figure illustrates the object-color

solids for the green and neutral illuminants (normalized to CIE Y=100), and the metamer

mismatch volume for the flat grey (i.e., for the object-color solid centre) inside the latter. It

is large with a metamer mismatch index of 9.7%. The corresponding chromaticity mismatch

area is presented in Fig. 3.20.

Figure 3.19: Label A indicates the object color solid under the green (G) illumination. B

indicates the object color solid under neutral (N). The black dot indicates the XYZ of flat

grey under G. The black square shows its XYZ under N. C indicates the metamer mismatch

volume of the flat grey for a change in illumination from G to N.

Let us inspect this case in more detail. It is the metamer mismatch volume for the

flat grey. It means that for each point inside this volume there exists a reflecting object

such that, under the green illumination condition, it induces the same CIE XYZ tristimulus

values as the flat grey, while, under the neutral illumination, it induces different CIE XYZ
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Figure 3.20: Chromaticity mismatch area (grey region) of the flat grey for the GN illumi-
nation condition. The green asterisk indicates the chromaticity of the flat grey reflectance
under G. The black squares are the chromaticities of the Munsells falling inside the metamer
mismatch area under N.

tristimulus values from the flat grey.

Given its large size, it would be interesting to know how different the color of the

metamers of the grey sample can become under the neutral light. In other words, the goal

is to compute the range of colors that a flat grey could lead to under the neutral light.

To solve this problem we determined which of the 1600 Munsells papers from the complete

Munsell glossy set [83] fall inside the metamer mismatch volume of flat grey under the GN

condition presented in Fig. 3.19. In this figure, under the neutral light, 14% of the 1600

Munsell papers lead to CIE XYZ tristimulus values that fall into the metamer mismatch

volume. These Munsell chips give an indication as to the range of colors the flat grey

reflectance might become. Note that these Munsell chips themselves are not necessarily

metameric to the flat grey under the green illumination, but indicate the colors that a

potential metamer to the flat grey under the green light can become under the neutral light.

Fig. 3.21 renders a series of 20 Munsell papers from every other page of the Munsell

book of color that were all found to lie inside the metamer mismatch volume for flat grey.
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Note the high Munsell Chroma of these, which is 8 or higher for 14 or the 20 papers.

Figure 3.21: Pictorial representation of the 20 Munsell papers lying inside the metamer
mismatch volume of flat grey for the GN illumination condition. The colors in the figure
only approximate those of the actual Munsell papers. For the correct colors refer to the
actual Munsell papers, which starting from 1 are: 5R 8/6, 10R 8/6, 5YR 8/6, 10YR 8/8,
5Y 8.5/12, 10Y 8/10, 5GY 8/10, 10GY 7/10, 5G 7/10, 10G 7/8, 5BG 7/8, 10BG 7/8, 5B
7/8, 10B 7/8, 5PB 7/8, 10PB 7/8, 5P 7/8, 10P 8/6, 5RP 8/6, and 10RP 8/6.

Therefore metamer mismatching results in a set of objects appearing as having the same

color under one light, but a wide range of different colors under another light. In particular,

it is shown that there exist 20 reflecting objects that, under the green illumination, all induce

the same color as flat grey, but, under the neutral illumination, become the set of different

saturated colors making a hue circle as in Fig. 3.21. This finding is surprising and suggests

that the very concept of color constancy understood in its conventional terms cannot exist.

Generally, when talking about color constancy, the question to solve is whether the color

of an object stays constant under a change to another illuminant. This is clearly an ill-posed

problem, because this color depends on which object arises that color under the given two

illuminants. Therefore, the concept of constancy can apply only to objects, not to colors.

Fig. 3.21 shows that when the illumination is changed from green to neutral, the colors of
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Illumination condition
GN BN YN RN

MMV 223 (13.9%) 71 (4.4%) 1 (0.001%) 452 (28%)

CMA 1293 (80.8%) 1132 (70.8%) 122 (7.6%) 1311 (81.9%)

Table 3.3: The number and percentage of Munsell papers falling within the metamer mis-
match volume (MMV) and chromaticity mismatch areas (CMA) of flat grey for four illumi-
nation conditions involving N.

the objects that are all the same under the green illumination disperse into a wide range

of colors. From a theoretical point of view, there is an infinite subspace of colors from

which the carrier of the color must be chosen. Therefore the color signals under different

illuminations cannot be unambiguously be related to another.

Contrary to expectations, 81% of Munsell papers fall into the chromaticity mismatch

area (for the GN illumination condition). This proportion for Munsell papers falling into

the metamer mismatch volume is 14%. The papers falling outside the metamer mismatch

volume but within the chromaticity mismatch area differ from the corresponding objects

only in luminance. This is a surprising finding that, if one ignores the color appearance

variation induced by the luminance change, then one can claim that grey under the green

light can turn into 81% of the possible colors from Munsell collection. Surprisingly, a very

close proportion was found for the RN illumination condition(82%). Percentages for the

other illuminants can be found in Table 3.3. The BN and RN cases have been illustrated in

Figs. 3.22 - 3.23).

3.4.2 Color Dispersion of Chromatic Papers

Even for the NY illumination condition and the high-chroma papers used by Logvinenko

& Tokunaga (Fig. 3.6) the chromaticity mismatch areas overlap and, for example, two of

the papers, #15 and #14, fall inside the metamer mismatch volume of paper #15. In

Logvinenko & Tokunaga’s experiment, the asymmetric NY match for paper #14 was #14,

and for #15 it was #15 i.e., the true papers.

The situation is even more extreme for other illuminant pairs. For instance, for the NR

illumination condition the metamer mismatch volume of paper #10 covers 11 of the papers

(#8 to #18).
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Figure 3.22: Chromaticity mismatch area (grey region) of the flat grey for the BN illumi-
nation condition. The green asterisk indicates the chromaticity of the flat grey reflectance
under B. The black squares are the chromaticities of the Munsells falling inside the metamer
mismatch area under N.
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Figure 3.23: Chromaticity mismatch area (grey region) of the flat grey for the RN illumi-
nation condition. The green asterisk indicates the chromaticity of the flat grey reflectance
under R. The black squares are the chromaticities of the Munsells falling inside the metamer
mismatch area under N.
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Figure 3.24: Chromaticity mismatch area for Munsell paper #2 for the NB condition. It
covers the chromaticities of 18 of the 20 Munsell papers. Squares indicate chromaticities
of Munsell papers under N. Dots indicate chromaticities of the papers under B. The black
square and black dot correspond to paper #2.
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Figure 3.25: Chromaticity mismatch area for Munsell paper #1 for the NG condition. It
covers the chromaticities of 20 of the 20 Munsell papers. Squares indicate chromaticities
of Munsell papers under N. Dots indicate chromaticities of the papers under B. The black
square and black dot correspond to paper #1.

60



Figure 3.26: Chromaticity mismatch area for Munsell paper #8 for the NR condition. It
covers the chromaticities of 20 of the 20 Munsell papers. Squares indicate chromaticities
of Munsell papers under N. Dots indicate chromaticities of the papers under B. The black
square and black dot correspond to paper #8.
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The above analysis was in terms of 3D metamer mismatch volumes. However the mis-

matching is even more extensive in the 2D chromaticity plane as the metamer mismatch

volumes turn out to be rather thin along the luminance axis.

Some of the metamer mismatch areas contain the chromaticities of nearly all 20 Munsell

papers. For example, under the blue light, paper #2 disperses into a chromaticity mismatch

area that covers 18 of the 20 Munsell papers shown in Fig. 3.24. Paper #1 under the green

light (Fig. 3.25) and paper #8 under the red light (Fig. 3.26) disperse into chromaticity

mismatch areas covering all 20 Munsell papers.

Therefore, ignoring the luminance dimension, the color inconstancy problem is more

severe. Because one can select 20 objects of identical color when lit by the neutral light

that will be dispersed into 20 different colors lying on a hue circle when lit by the red (or

green) light that will differ from those depicted in Fig. 2.9 only in that some colors will have

a different luminance factor.

3.5 Conclusion

A set of experiments on metamer mismatching was done forming an essential part of the joint

project with Logvinenko, Funt, and Tokunaga [1], that tries to reconsider the concept of color

constancy due to the extreme degree of metamer mismatching. Metamer mismatching was

shown to be extremely large and result in a set of objects appearing as having the same color

under one light, but a wide range of different colors under another. In addition to the large

size of metamer mismatch volumes for different Munsell papers under chromatic illuminants,

an interesting scenario originally suggested by Logvinenko was found: In some illumination

conditions, there exist 20 natural reflecting objects that, under the first illumination, all

induce the same color as flat grey, but, under the second illumination, become a complete

set of different saturated colors making a full hue circle.

In other words, there can be several objects resulting in the color seen under the first

light. The essential question is: which object is the actual carrier of that color? From a

theoretical point of view, there is an infinite subspace of colors from which the carrier of the

color must be chosen. Therefore the color signals under different illuminations cannot be un-

ambiguously related to another. This finding is rather surprising and suggests that the very

concept of color constancy understood in its conventional terms needs to be reconsidered.

62



Chapter 4

Metamer Mismatching as a

Measure of the Color Rendering of

Lights

4.1 Summary

We propose a new method for evaluating the color rendering properties of lights. The new

method uses the degree of metamer mismatching for the CIE XYZ corresponding to flat

grey (constant reflectance of 0.5) quantified in terms of the metamer mismatch volume index

proposed by Logvinenko et al. [5]. A major advantage of this method is that unlike many

previous color rendering indices it does not depend on the properties of a chosen set of

representative test objects. A version of this chapter has been published in proceedings of

the Congress of the International Colour Association (AIC 2015) [25].

4.2 Introduction

Evaluating the color rendering properties of lights is an important issue in the lighting

industry. It is well known that the colors of objects viewed under lights of identical correlated

color temperature may look very different under the different lights. Several color rendering

indices have been used in the past. Perhaps the most widely used is the CIE color rendering

index CIE Ra [84], which is based on computing the average color difference induced by the
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illuminant for a fixed set of reflectances. The CIE Ra is a color fidelity measure. There have

also been preference-based measures such as Judd’s flattery index [85] and Thornton’s color

preference index [86], in which the focus is more on the subjective preferability of lights.

More recently Smet et al. [10, 87] have suggested a memory-color-similarity measures, Sa

and Rm (a non-linear scaling of Sa), based on how a light affects the colors of a sample set of

familiar objects (green apple, banana, orange, lavender, Smurf, strawberry yoghurt, sliced

cucumber, cauliflower, Caucasian skin, sphere painted Munsell N4 grey) in comparison to

the average subjects memory of the colors of those objects as determined by psychophysical

experiments.

The CIE Ra is defined in terms of a reference illuminant and the test light being eval-

uated. For test lights of CCT less than 5000K the reference illuminant is chosen to be the

ideal blackbody radiator of the same CCT. For test lights with CCT of 5000K or greater,

the reference light is chosen to be the standard CIE daylight D-series illuminant of the

same CCT. There are 8 test color samples (Munsell papers) whose color differences, after

an adjustment for chromatic adaptation, under the test and reference lights are evaluated.

The CIE Ra has been widely criticized, especially for the evaluation of LED lights. One

of the key problems with it is that it is based on measuring the color differences that arise

across a small sample of 8 (sometimes generalized to 14) colored papers. Not only may such

a sample not represent what the color differences for all other possible surface reflectances

may be, it also gives manufacturers the opportunity to tune the spectra of their lights to

perform well on the standard sample.

Variants of metamer mismatching have been previously used as a measure of the color

rendering of daylight simulators. In particular, the CIE Metamerism index is a measure

based on calculating the average color difference between each of a set of reflectance pairs

that are initially metameric matches under the reference light but not necessarily metameric

matches under the target light. However, this method is limited to the specific reflectances

used. Whitehead et al. [22] extend this general idea by using a large number of randomly

generated metameric spectra and then assessing the fraction of them that noticeably change

color when the illuminant changes. In contrast, the method proposed here is based on

measuring the size of the metamer mismatch volume, which is the volume of color signals

(i.e., XYZs) induced under the second light by the set of all theoretically possible reflectances

that make a metameric match under the first light.
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4.3 Metamer Mismatch Index

The background for the proposed measure of color rendering is the concept of metamer

mismatching. Consider a color signal XYZ (in CIE standard coordinates) observed under

a first light. Metamer mismatching refers to the fact that the possible XYZ that might be

observed under a second light is only constrained to lie within a convex volume of possible

XYZ values. The size of the volume depends on the XYZ and the lights involved; however,

the volume for the XYZ of flat grey is the largest. The metamer mismatch volume represents

the range of possible XYZ that can arise under the second light and so provides a measure

of how varied the XYZ under the second light can be–the less the variation, the better the

color rendering.

The boundary of the metamer mismatch volume can be calculated using the code of

Logvinenko et al. [5], which finds the maximum amount of metamer mismatching that can

occur for any given XYZ and pair of lights. Fig. 4.1 shows an example of the metamer

mismatch volume for the XYZ of flat grey for a change in illuminant from an ideal 2900K

blackbody radiator to a 2900K LED. Even though the two illuminants are of the same

CCT the metamer mismatch volume is quite large: it fills a sizable fraction of the entire

object-color solid. The object-color solid is the set of all possible XYZ that can arise for all

possible reflectance functions R(λ) (i.e., 0 ≤ R(λ) ≤ 1, 380 ≤ λ ≤ 780nm). The metamer

mismatch volume depicted is the set of all possible XYZ that could arise under the second

illuminant for any reflectance that is metameric to flat grey under the first illuminant.

Since both the object color solid and the metamer mismatch volume change with the

second illuminant, we consider size of the metamer mismatch volume relative to the size of

the object color solid it generates. In particular, both scale with the intensity of the second

illuminant. Hence, the metamer mismatch volume index (MMVI) (see equation 3.1 on page

39 for a formal definition) for a given XYZ and a pair of illuminants is defined as the ratio:

MMV I =
volume of the metamer mismatch volume for the given illuminant pair

volume of the object color solid under the second illuminant
(4.1)

Note that this ratio is also independent of any linear transformation of the color coor-

dinate space and so will be the same for any LMS space obtained as a linear transform of

CIE XYZ as for CIE XYZ itself.

In terms of color rendering, the larger the MMVI, the poorer the color rendering of the
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Figure 4.1: Top: Spectra of a 2900K LED (blue) and that of an ideal 2900K blackbody
radiator (dashed red). Bottom: Metamer mismatch volume (for the XYZ of flat grey lit
by a 2900K blackbody) shown inside the object-color solid of the 2900K LED for the case
when the illuminant is changed from the blackbody to the LED. Coordinates are the CIE
1931 XYZ space.
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second light relative to the first light is likely to be. Since the MMVI is volume based, we

find it more intuitive to consider MMV I(1/3). The Metamer Mismatching color Rendering

Index (MMCRI) is then defined as:

MMCRI = (1− 3
√
MMV I)× 100 (4.2)

where the MMVI is for that of the XYZ of flat grey under the first illuminant. The scaling

by 100 is simply to make its range match that of the CIE CRI Ra.

4.4 Comparison to Other Color Rendering Indices

The MMCRI can be computed for any pair of illuminants as a measure of the color rendering

properties of the second light relative to the first. However, the CIE CRI Ra for a light L

is defined relative to an ideal illuminant (blackbody or D-series) of the same CCT as L. For

comparison with Ra we use the same choice of ideal illuminant as the first illuminant when

computing the MMCRI of L.

We have computed the MMCRI and CIE Ra for several light spectra across a range

of CCTs and technologies and compared them. In particular, we measured the spectra of

several commercially available LED lights and also used the spectra of the CIE standard

illuminants. When plotted as in Fig. 4.2 we see a good correlation between the two indices–

an indication that the MMCRI behaves reasonably–but with notable differences for some

illuminants. It is exactly such differences that the proposed new method is intended to

reveal. In particular, we note that F11 and F12 have a high CIE Ra but a low MMCRI.

Since F11 and F12 are both dominated by three narrowband peaks, it seems unlikely that

their color rendering properties are very good, and this is confirmed by the MMCRI.

As second test, we make use of the set of lights Smet et al. included in their paired

comparison experiment [10]. Smet’s set contains: a halogen lamp (H), a fluorescent lamp

approximating CIE F4 (F4), a Neodymium incandescent lamp (Nd), a Philips Fortimo

LED module with a green filter (FG), an RGB LED lamp (RGB) and a LED cluster (LC)

optimized to obtain a high Sa, all of which are plotted in Fig. 4.3 The various color rendering

measures are compared in Table 4.1.

The results in Table 1 show a general agreement in ranking across all the methods in

that the same lights are given ranks 3 (FG), 5 (F4), and 6 (RGB). Ra and CQSa rankings

for all six lights are identical. MMCRI agrees with Ra and CQSa on 4 of the rankings, but
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Figure 4.2: (2a) The illuminant spectra used for testing: D65 (red), F3 (black), F4 (dashed
green), F8 (dashed magenta), F11 (dashed green), F12 (dashed black), 2900K LED (dashed
cyan), Nexus LED (dashed red) and iPhone LED (blue). (2b) CIE CRI versus MMCRI
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Figure 4.3: The spectral power distributions of the six light sources (provided by Smet) and
used for the comparison of the color rendering measures listed in Table 1. The lights (see
text) are F4 (blue curve), FG (green), Nd (red), LC (cyan), H (purple) and RGB (black).
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Table 1. Comparison of Color Rendering Measures. Measures include: Sa, memory color 
similarity (Smet 2010), Ra (CIE CRI), NIST CQSa Color Quality Scale (Davis 2010), and 
MMCRI (proposed metamer mismatch index). The data reported in the table for Sa, CIE 
CRI Ra and NIST CQSa are quoted from Table 2 of Smet et al. (Smet 2010, page 26235). 
The MMCRI results were computed based on the MMVs for a change from the blackbody 
radiator having the CCT of the given illuminant to the given illuminant. The lights were 
approximately equal illuminance ranging from 239 to 251 lux, and CCT ranging from 
2640 to 2878. The spectra of the lights are plotted in Figure 3.  

Light 
source 

 Sa CIE Ra NIST CQSa MMCRI 

Sa Rank Ra Rank CQSa Rank MMCRI 
(Grey) Rank 

F4 0.6672 5 52.8 5 53.9 5 55.53 5 
FG 0.7787 3 80.6 3 87.2 3 83.99 3 
Nd 0.7841 2 73.7 4 87.0 4 89.46 2 
LC 0.7899 1 81.0 2 89.0 2 74.95 4 
H 0.7662 4 99.6 1 97.2 1 99.64 1 

RGB 0.6548 6 31.9 6 50.5 6 49.30 6 
 

The results in Table 1 show a general agreement in ranking across all the methods in 
that the same lights are given ranks 3 (FG), 5 (F4), and 6 (RGB). Ra and CQSa rankings 
for all six lights are identical. MMCRI agrees with Ra and CQSa on 4 of the rankings, but 
swaps the rankings of Nd and LC, ranking Nd 2nd, in agreement with Sa and the reported 
popularity of Neodymium lights in terms of their sales. Since LC is an LED cluster 
designed to optimize Sa, it is not surprising that it is ranked first by Sa. Similarly, since H 
is a halogen light closely approximating a blackbody radiator, it is also not surprising that 
MMCRI, Ra and CQSa all rank it first since they assume that a blackbody is the ideal light 
source in terms of color rendering. This is an assumption that Smet et al. (Smet 2012) 
challenge, but as yet no general alternative has been proposed.  

It should be noted that the Sa rankings in Table 1 do agree with the ‘preference’ and 
‘fidelity’ rankings reported in Table 3 of Smet et al. (Smet 2010, p. 26237). However, one 
problem Table 1 reveals about the Sa measure is that it ranks many of the lights almost 
identically. In particular, FG, Nd, LC and H all have Sa values of 0.778 ±0.012. 
Effectively, Sa divides the lights into just two groups: (FG, Nd, LC, H) and (F4, RGB). In 
comparison, with MMCRI there are clear differences in the scores such that there are four 
distinct groups: (F4, RGB), (LC), (FG, Nd) and (H). 

 

4. CONCLUSION  

A new measure of the color rendering properties of lights is proposed based on the general 
concept of metamer mismatching. The amount of metamer mismatching—effectively the 
range of theoretically possible color signals arising under a second light—is taken as an 
indicator of the difference in the color rendering properties of the second light relative to 
the first. The greater the degree of metamer mismatching, the poorer the color rendering is 
considered to be. Previous color rendering indices have been based on a fixed selection of 
object reflectances. Although there have been attempts to optimize the set of test 
reflectances (Smet 2013) a finite set will always remain the source of some bias. In 

Table 4.1: Comparison of Color Rendering Measures. Measures include: Sa, memory color
similarity [10], Ra (CIE CRI), NIST CQSa Color Quality Scale [11], and MMCRI (proposed
metamer mismatch index). The data reported in the table for Sa, CIE CRI Ra and NIST
CQSa are quoted from Table 2 of Smet et al. ([10], page 26235). The MMCRI results
were computed based on the MMVs for a change from the blackbody radiator having the
CCT of the given illuminant to the given illuminant. The lights were approximately equal
illuminance ranging from 239 to 251 lux, and CCT ranging from 2640 to 2878. The spectra
of the lights are plotted in Fig. 4.3.

swaps the rankings of Nd and LC, ranking Nd 2nd, in agreement with Sa and the reported

popularity of Neodymium lights in terms of their sales. Since LC is an LED cluster designed

to optimize Sa, it is not surprising that it is ranked first by Sa. Similarly, since H is a halogen

light closely approximating a blackbody radiator, it is also not surprising that MMCRI, Ra

and CQSa all rank it first since they assume that a blackbody is the ideal light source in

terms of color rendering. This is an assumption that Smet et al. [88] challenge, but as yet

no general alternative has been proposed.

It should be noted that the Sa rankings in Table 1 do agree with the preference and

fidelity rankings reported in Table 3 of Smet et al. ([10], page 26237). However, one problem

Table 1 reveals about the Sa measure is that it ranks many of the lights almost identically.

In particular, FG, Nd, LC and H all have Sa values of 0.778 +/- 0.012. Effectively, Sa

divides the lights into just two groups: (FG, Nd, LC, H) and (F4, RGB). In comparison,

with MMCRI there are clear differences in the scores such that there are four distinct groups:

(F4, RGB), (LC), (FG, Nd) and (H).
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4.5 Conclusion

A new measure of the color rendering properties of lights is proposed based on the gen-

eral concept of metamer mismatching. The amount of metamer mismatching–effectively

the range of theoretically possible color signals arising under a second light–is taken as an

indicator of the difference in the color rendering properties of the second light relative to

the first. The greater the degree of metamer mismatching, the poorer the color rendering is

considered to be. Previous color rendering indices have been based on a fixed selection of ob-

ject reflectances. Although there have been attempts to optimize the set of test reflectances

[89] a finite set will always remain the source of some bias. In comparison, the proposed

method, through the calculation of the metamer mismatch volume, takes into account all

theoretically possible reflectances 1.

1The author wishes to thank Kevin Smet for providing his spectral data.
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Chapter 5

Towards a new Object-Color Space

5.1 Summary

A robust and accurate hue descriptor that is useful in modeling human color perception

and for computer vision applications is explored. The hue descriptor is based on the peak

wavelength of a Gaussian-like function (called a wraparound Gaussian) and is shown to

correlate as well as CIECAM02 hue to the hue designators of papers from the Munsell and

Natural Color System color atlases and to the hue names found in Moroney’s Color The-

saurus. The new hue descriptor is also shown to be significantly more stable under a variety

of illuminants than CIECAM02. The use of wraparound Gaussians as a hue model is similar

in spirit to the use of subtractive Gaussians proposed by Mizokami et al., but overcomes

many of their limitations. This chapter has led to publications in the IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2015, Color and Imaging Conference, So-

ciety for Imaging Science and Technology, 2013, and 12th International Colour Congress,

International Colour Association, 2013 [24, 29, 30].

5.2 Introduction

Hue is an important component of color appearance. We explore [24, 29, 30] a representation

of hue for object colors in which, for a given color stimulus arising from the light reflected

by an object, its hue is represented in terms of the peak wavelength of a Gaussian-like

reflectance function metameric to that stimulus. Conventionally, hue is represented in terms

of the angular component of the polar representation of a color in an opponent color space
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such as CIELAB in which two of the axes are roughly orthogonal to lightness [4]. Although

these color spaces may work well for a fixed illuminant, they can lead to unstable results

when the illuminant is changed. The source of this instability is that CIELAB and related

spaces account for the illumination via von Kries scaling, but von Kries scaling can be

subject to very large errors [1]. This is a serious problem even when the scaling is applied

in a ‘sharpened’ [67] basis as in CIECAM02 [59].

To overcome this problem, we explore [24, 29, 30] basing hue on the peak wavelength

of a metameric Gaussian-like reflectance from Logvinenko’s pseudo-color atlas as the repre-

sentation of hue.

Similar, but somewhat different, Gaussian-based representations of hue have been pro-

posed previously by Mizokami et al. [54, 90] and further explored by O’Neil et al. [91] and

shown to explain the class of hue shifts known as the Abney effect. As well, Mizokami et

al. have shown that Gaussian-like functions can be used to provide reasonable 3-dimensional

models of reflectance spectra.

The tests reported below demonstrate that the proposed hue descriptor correlates well

with the hue designators for the 1600 glossy Munsell papers and the Natural Color System

samples. It also correlates well with the hue names used in Moroney’s Color Thesaurus.

In addition, to correlating well with the hue categories in these datasets, we find that it is

considerably more consistent under different illuminants than CIECAM02 hue. Given these

features, we show that it is also useful for automatic hue classification in digital images.

5.3 Background

The Gaussian-like representation for hue used here has its roots in Logvinenko’s illumination-

invariant object-color atlas[49, 52]. Logvinenko [52] defines a set of Gaussian-like spectral

reflectance functions defined in terms of their scaling, km, standard deviation, σm, and peak

wavelength, µm. The functions are defined in equations 2.11, 2.12, 2.13, and 2.14, in page

20. Although the equations defining them are piecewise and a bit complex, intuitively they

simply describe a Gaussian centered at µm on the hue circle.

Note that Logvinenko’s wraparound Gaussians are neither the same as the “inverse

Gaussians” defined by Golz [55] nor the same as the “subtractive Gaussians” defined by Mi-

zokami [54] or others [53]. In the inverse Gaussian representation, illuminant and reflectance

spectra are characterized by three parameters: the spectral centroid, spectral curvature, and
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scaling factor. The inverse Gaussian spectrum P (λ) is defined as:

P (λ) = γ.e−C(λ−T )2 (5.1)

where γ is the scaling factor, C is the curvature and T is the centroid. Note that depending

on the sign of the quadratic term these functions are either Gaussians or the reciprocals of

Gaussians.

In another Gaussian model, Mizokami et al. [54] investigate reflectance spectra defined

by varying the amplitude α, φ (peak), and standard deviation σ of the function:

S(λ) =


αe

−0.5

(
λ− φ
σ

)2

for α ≥ 0

1 + αe
−0.5

(
λ− φ
σ

)2

for α < 0

(5.2)

We will refer to these two cases as Gaussians of type G+ and type G−, respectively.

Note that Logvinenko’s wraparound Gaussians are neither the same as the “inverse

Gaussians” defined by Golz [55] nor the same as the “subtractive Gaussians” defined by

Mizokami [54] or others [53].

5.3.1 Comparison to other Gaussian Representations

Figure 5.1 shows an example of an inverse Gaussian, a subtractive Gaussian, a wraparound

Gaussian metamer and a rectangular metamer for the spectral reflectance of Munsell paper

7.5 PB 5/8.

The gamuts of chromaticities in the CIE 1931 XYZ tri-stimulus space for subtractive

Gaussians, inverse Gaussians, and wraparound Gaussians under illuminant CIE D65 are

compared in Figs. 5.2, 5.3, and 5.4. To compute the gamut for the wraparound Gaussians,

we simply set the scaling factork = 1 and stepped through all the possible standard devi-

ations, σ, in steps of 10nm, and central wavelength, µ, in steps of 2nm, and computed the

CIE1931 xy-chromaticities arising under CIE D65. In the case of wraparound Gaussians,

there is no need to consider scaling factors k < 1 since the chromaticity for a given kµ does

not depend on k. In computing the gamut for subtractive Gaussians there are two main

cases. For the α > 0 case, α = 1 is used since for α > 0 the chromaticity is independent of
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Figure 5.1: The spectral reflectance of Munsell 7.5 PB 5/8 (dashed black) illuminated by
D65 and metameric inverse Gaussian (solid cyan), subtractive Gaussian (dashed green),
rectangular (dashed blue), and wraparound Gaussian (solid red) spectra. Figure is copied
from [8].
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Figure 5.2: The gamut of chromaticities obtained using only true reflectance functions
(i.e., all values in [0,1] across the visible spectrum) for all subtractive Gaussian reflectance
functions forming either peaks (blue) or troughs (red).

α. For the α < 0 case, chromaticity does depend on α so values −1 < α < 0 are sampled,

but any resulting reflectance with values not in [0, 1] is excluded. Similarly, for inverse

Gaussians the gamut is computed by stepping through its parameters. For positive curva-

tures (C > 0) the chromaticity is independent of γ so γ was fixed to γ = 1. However, for

negative curvatures (C < 0) we regularly sample γ and exclude all reflectances that are not

physically realizable.

The chromaticity gamut of the subtractive Gaussians is shown in Fig. 5.2, where it is

clear that the gamut does not fill the entire chromaticity space. To reach these missing

chromaticities requires subtractive Gaussians having negative values. Similarly, for inverse

Gaussians Fig. 5.3 reveals two gaps in the gamut of chromaticities. The gamut of the

wraparound Gaussians, however, includes the entire chromaticity space, as shown in Fig. 5.4.

In summary, the gamuts of chromaticities in the CIE 1931 XYZ tri-stimulus space for

subtractive Gaussians, inverse Gaussians, and wraparound Gaussians show that neither

subtractive Gaussians nor inverse Gaussians can cover the entire chromaticity gamut when

the functions are restricted to being reflectance functions (i.e., all values in [0,1]). On the

other hand, wraparound Gaussians do cover the entire chromaticity gamut.

Given an XYZ, the parameters of the subtractive and wraparound Gaussians can be
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Figure 5.3: The gamut of chromaticities obtained using only true reflectance functions (i.e.,
all values in [0,1] across the visible spectrum) for all inverse Gaussian reflectance functions
with positive curvature (blue) or negative curvature (red).

Figure 5.4: The gamut of chromaticities obtained using only true reflectance functions
(i.e., all values in [0,1] across the visible spectrum) for all wraparound Gaussian reflectance
functions.
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found via a two-parameter optimization, explained in the next section, that is independent

of the scaling parameter; however, in the case of inverse Gaussians such a decomposition is

not possible, so a much more difficult, three-parameter optimization is required. Given that

inverse Gaussians are more difficult to compute and do not cover the chromaticity gamut,

we do not consider them further here.

5.3.2 Other Gaussian Hue Descriptors

The work of Mizokami et al. [54, 90] and O’Neil et al. [91] has shown that Gaussian spectra

may provide a good model of hue in the case of lights. However, there are some difficulties

that arise in applying Gaussians of the subtractive type as a descriptor of hue for objects. In

particular, the G+ and G− chromaticity gamuts overlap (see Fig. 5.2) quite significantly. For

the wraparound Gaussian, however, there is no such overlap (see Fig. 5.4). The overlap for

the subtractive Gaussians implies that for a given XYZ we might find metameric Gaussians

of both type G+ and G−. Searching for just such a case, we easily found the example shown

in Fig. 5.5. The fact that there are two metameric (up to 4-digit precision) subtractive

Gaussians differing significantly in their peak wavelengths (380nm versus 621nm) poses a

serious impediment to using them as a hue correlate. A similar search of the space of

wraparound Gaussians found no two different sets of KSM parameters resulting in metameric

wraparound Gaussians. Note that this is excluding ‘white’ and ‘black’ reflectances, where

there is a well-known singularity–What is the hue of black, grey or white? Of course, not

finding such a case does not mean that it might still not exist, so we are not claiming that

the wraparound Gaussians are better than subtractive Gaussians in this regard, only that

there clearly is a problem with subtractive Gaussians.

Another difficulty with subtractive Gaussians is that the scaling parameter affects the

chromaticity of the resulting Gaussian differently depending on the type. In the case of type

G+ changing has no effect on the resulting chromaticity; however, for type G− changing α

results in a different chromaticity. Gaussians of type G− of the same chromaticity will differ

in their φ and σ. Fig. 5.6 shows an example. Whether it is preferable for a hue descriptor to

remain the same for all XYZ of the same chromaticity or instead differ with the scaling can

be debated, but it makes little sense for it to do both. In the case of wraparound Gaussians,

all XYZ of the same chromaticity are always represented by Gaussians of the same σ and

µ.
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Figure 5.5: Two metameric subtractive Gaussian functions, one of type G+ (black) and type
G− (red). Under D65, both these reflectances have CIE XYZ values (63.69, 64.97, 20.95).
Parameters (α, σ, φ) defining these G+ and G− spectra are (0.8670, 93.5557, 621.1427) and
(-1.0000, 118.4952, 380.0106), respectively.

Figure 5.6: Three G− spectra having the same chromaticity but with their XYZ differing by
a scale factor. Red curve: G− spectrum having XYZ = (77.9114, 79.2585, 20.8546). Dotted
blue curve: 0.95 x XYZ. Dashed green curve: 0.9 x XYZ. Parameters (α, σ, φ) defining these
three G spectra are (1.0000, 38.5005, 469.9995), (0.8835, 56.2495, 455.2326) and (0.8922,
74.5022, 436.1658), respectively. Although the three curves appear to intersect at a common
point in the plot, they in fact do not.
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5.4 Calculating colour descriptors by optimization

Computing the parameters of a wraparound Gaussian that is metameric to a given colour

signal is analogous to computing those of the corresponding rectangular metamer, and

we have applied the same basic interpolation approach developed by Godau et al. [92]

for rectangular metamers. An alternative strategy could be to use a variant of the k-d

tree approach of Finlayson et al. [93], which basically uses as a structured look up table

without further optimization to get quick, but not necessarily as accurate results. Our

implementation is available online. Given a colour signal φ0 under a given illuminant, the

KSM coordinates specify a wraparound Gaussian reflectance that is metameric to φ0 under

that illuminant.

To determine the KSM colour descriptor corresponding to colour signal, φ0, requires

finding (k, σ, µ) minimizing the angular error:

E(k, σ, µ) = arccos
φ0.φ(k, σ, µ)

|φ0||φ(k, σ, µ)|
(5.3)

between φ0 and the colour signal of the wraparound Gaussian specified by (k, σ, µ) under

the given illuminant. This at first would appear to require a 3-parameter optimization;

however, since the angular error does not depend on the scale factor k, it can be reduced to

an optimization involving only two parameters by setting k = 1. With only 2 parameters,

it becomes possible to build a table relating (σ, µ) pairs to sensor responses φ(1, σ, µ) that

can then be used to find good initial values σ and µ for the optimization. In many cases,

these initial values are sufficiently accurate and no further optimization is required. Once

σ and µ are determined, the scaling k can be calculated directly as:

E(k, σ, µ) = arccos
φ0

φ(1, σ, µ)
(5.4)

As an example of the KSM descriptors, we computed the XYZ under D65 for each

pixel in the “Fruits and Flowers” multispectral image obtained from the Joensuu spectral

database [94]. The approximate sRGB rendering of this image is shown in Fig. 5.7.a.

Unfortunately, when solving for the parameters of either the inverse Gaussians or the

subtractive Gaussians it is not possible to break the three-parameter problem into a two-

parameter sub-problem and a one-parameter sub-problem, so the required optimization is

much more computationally intensive.
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5.5 Tests and Results

We address two main questions: How well does the peak wavelength, µ, correlate with

hue? And is µ, as a hue descriptor, robust to changes in the illumination? In terms of the

first question we compare how well it describes the hues of the Munsell papers, the NCS

papers, and the hues Moroney tabulated in a Color Thesaurus [95] that were derived from a

large, crowd-sourced, color-naming experiment [96, 97]. In terms of the second question, we

compare the shift an illuminant change induces in µ and compare it to the shift it induces in

CIECAM02 hue. The results show that µ is an accurate hue descriptor that is more robust

relative to the illuminant than CIECAM02 hue.

Note that in what follows, the plots are of hue versus log(σ) or hue versus CIECAM02

saturation, but all the analysis is strictly in terms of hue. Possible perceptual correlates of

σ will be investigated elsewhere. In the present context, it is simply being used to spread

out the hue plots nicely.

5.5.1 Munsell Dataset

As a comparison of KSM µ and CIECAM02 hue correlates, we consider the set of 1600

papers of the Munsell glossy set. This follows a similar analysis by Logvinenko [49] of his

ADL hue correlate λ. We synthesized the XYZ tristimulus values of all 1600 papers based

on the Joensuu Color Group spectral measurements [94] under the illuminant C using the

2-degree color matching functions and then computed the corresponding KSM (µ), ADL (λ),

and CIECAM02 hues. When calculating the CIECAM02 appearance attributes, we adopted

the parameters suggested for the “average surround” condition and full adaptation. Figs.

5.8, 5.9, and 5.10 illustrate that qualitatively both KSM µ and CIECAM02 hue appear to

correlate quite well with the plotted hues (approximate hues since published version is on an

uncalibrated print/display) of the 1600 papers of the Munsell glossy set. The correlation is

indicated by the fact that the colors of the same hue align vertically. The plot of ADL λ, on

the other hand, shows some intermingling of the reds and yellows. Here and in what follows,

the units of λ and µ will be reported in degrees, rather than nanometers for consistency

with CIECAM02 for which hue is specified in degrees around the hue circle. The conversion

of wavelength ω to degrees d is d = (ω − 380)/(780− 380)x360.

As a further qualitative comparison, we plot the KSM, ADL, and CIECAM02 hues of

the papers of maximal chroma, but varying value, from five pages (10B, 10G, 10Y, 10R,
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Figure 5.8: Plot of the 1600 papers from the Munsell glossy set as a function of KSM hue
descriptors specified in degrees on the hue circle (see text). Each dot color only roughly
approximates that of the corresponding Munsell paper under illuminant C.

Figure 5.9: Plot of the 1600 papers from the Munsell glossy set as a function of ADL hue
descriptors specified in degrees on the hue circle (see text). Each dot color only roughly
approximates that of the corresponding Munsell paper under illuminant C.
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Figure 5.10: Plot of the 1600 papers from the Munsell glossy set as a function of CIECAM02
hue descriptors specified in degrees on the hue circle (see text). Each dot color only roughly
approximates that of the corresponding Munsell paper under illuminant C.

and 10PB) of the Munsell Book of Color. As shown in Fig. 5.11, Munsell hue aligns better

with the Gaussian KSM coordinate µ and CIECAM02 hue than with the rectangular ADL

coordinate λ.

To provide a quantitative measure of how well the three different hue descriptors account

for the Munsell hue data, we trained a hue classifier based on genetic algorithm optimiza-

tion. The problem is defined as finding the optimized hue boundaries that categorize the

Munsell papers into 10 main hue groups (R, YR, Y, GY, G, BG, B, PB, P, RP) with the

smallest misclassification rate. The misclassification rate then provides a measure of how

well the given hue descriptor models Munsell hue. Note that the papers with Neutral Mun-

sell designator have been excluded. These optimized boundaries are found in 3 separate

optimizations using the GA optimization strategy [98]. For each optimization, the feature

vector (i.e., vector of hues along with corresponding KSM Gaussian peak wavelengths µ,

ADL rectangular central wavelengths λ, or CIECAM02 hues) is input to Matlab’s ga func-

tion from the Matlab Global Optimization Toolbox. The Matlab ga function optimizes the

choice of hue boundaries so as to minimize the number of misclassified samples in the given

feature vector. The resulting misclassification rates for KSM µ and CIECAM02 hue are low

at 7% and 6%, respectively, but higher at 19% for ADL λ.

To evaluate the hues of Munsells papers in more detail, we have used the same genetic
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algorithm optimization to determine the optimal hue boundaries for the intermediate Mun-

sell hue classes and measured the corresponding misclassification rates. Fig. 5.12 shows the

misclassification rates for the intermediate Munsell hue designators which are red (Munsell

hues R, 2.5R, 5R, 7.5R, and 10R) yellow-red (YR, 2.5YR, ...), yellow, green-yellow, green,

blue-green, blue, purple-blue, purple, and red-purple papers. The average misclassification

rate across all the hues combined is 31% for KSM µ versus 41% for CIECAM02 hue.

5.5.2 NCS Dataset

The Natural Color System (NCS) [99] provides another set of hue data. In the NCS notation

hue is defined in terms of the percentage of the distance between the neighboring pairs of

the ‘elementary’ hues red, yellow, green, blue. The two other components of the NCS

notation specify the blackness and chromaticness. We carried out a sequence of tests using

the NCS data that are similar to those described above using the Munsell data. The plots

of the 1950 NCS papers analogous to Figs. 5.8, 5.9, and 5.10 are qualitatively very similar

and therefore are not included here. As in the case of the Munsell papers, KSM µ and

CIECAM02 hue show a very good correlation with NCS hue, while ADL correlates, but

not as unambiguously. Fig. 5.13 plots the NCS papers of NCS hues R, Y50R, Y, G50Y, G,

B50G, B, and R50B as a function of the KSM µ, ADL λ and CIECAM02 hue descriptors

in a manner analogous to that of Fig. 5.11 for the Munsell papers.

Fig. 5.11 plots Munsell hue versus hue descriptor specified in degrees. The triangle inte-

riors represent the approximate color under illuminant C of the Munsell papers of different

Munsell value, each at maximal chroma for the given value, for the five hues 10B, 10G,

10Y, 10R, and 10PB. The triangle boundaries are colored with the maximal chroma for

the given Munsell hue. Top left, top right, and bottom plots are of the KSM Gaussian

peak wavelength µ, the ADL rectangular central wavelength λ, and CIECAM02 hue. The

vertical alignment in the left and right panels shows that papers of the same Munsell hue

but differing value are all being assigned the same hue descriptor. In the bottom panel,

there is some mingling of the red with the yellow and of the blue with the purple hues.
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Figure 5.11: Munsell hue versus hue descriptor specified in degrees. The triangle interiors
represent the approximate color under illuminant C of the Munsell papers of different Mun-
sell value, each at maximal chroma for the given value, for the five hues 10B, 10G, 10Y,
10R, and 10PB. The triangle boundaries are colored with the maximal chroma for the given
Munsell hue. Top left, top right and bottom plots are of the KSM Gaussian peak wavelength
µ, ADL rectangular central wavelength λ, and CIECAM02 hue. The vertical alignment in
the left and right panels shows that papers of the same Munsell hue but differing value are
all being assigned the same hue descriptor. In the bottom panel, there is some mingling of
the red with the yellow and of the blue with the purple hues.
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and measured the corresponding misclassification 
rates.  Fig. 6 shows the misclassification rates for the 
intermediate Munsell hue designators which are red 
(Munsell hues R, 2.5R, 5R, 7.5R, and 10R) yellow-
red (YR, 2.5YR, …), yellow, green-yellow, green, 
blue-green, blue, purple-blue, purple, and red-
purple papers.  The average misclassification rate 
across all the hues combined is 31% for KSM μ 
versus 41% for CIECAM02 hue. 
 

B. NCS Dataset 

The Natural Color System (NCS)  [23] provides 
another set of hue data. In the NCS notation hue is 
defined in terms of the percentage of the distance 
between the neighboring pairs of the ‘elementary’ 
hues red, yellow, green, blue. The two other 
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correlates, but not as unambiguously.  

 Fig. 7 plots the NCS papers of NCS hues R, 
Y50R, Y, G50Y, G, B50G, B, and R50B as a 
function of the KSM μ, ADL λ and CIECAM02 hue 
descriptors in a manner analogous to that of  Fig. 5 
for the Munsell papers.  

        
Fig. 5. Munsell hue versus hue descriptor specified in degrees. The triangle interiors represent the approximate color under illuminant C of the 

Munsell papers of different Munsell value, each at maximal chroma for the given value, for the five hues 10B, 10G, 10Y, 10R, and 10PB. The triangle 
boundaries are colored with the maximal chroma for the given Munsell hue. Left to right the plots are of the KSM Gaussian peak wavelength μ, the 
ADL rectangular central wavelength λ, and CIECAM02 hue. The vertical alignment in the left and right panels shows that papers of the same Munsell 
hue but differing value are all being assigned the same hue descriptor. In the central panel, there is some mingling of the red with the yellow and of 
the blue with the purple hues.  

 
Fig. 6. Hue misclassification rate for KSM μ (grey) versus CIECAM hue (black) over papers of the intermediate Munsell hues. The average 

misclassification rate for all the hues combined is 31% for KSM μ versus 41% for CIECAM02 hue.  
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Figure 5.12: Hue misclassification rate for KSM µ (grey) versus CIECAM hue (black) over
papers of the intermediate Munsell hues. The average misclassification rate for all the hues
combined is 31% for KSM µ versus 41% for CIECAM02 hue.

5.5.3 Thesaurus Hue Names

The issue of color naming is in many ways similar to hue classification. In terms of color

naming data, Moroney’s color thesaurus summarizes the result of a very large online, crowd-

sourced color naming experiment [95, 97]. Subjects were asked to provide unconstrained color

names for colors displayed against a uniform grey background viewed on an uncalibrated

computer display. The question we ask is: How well do KSM hue and CIECAM02 hue

predict the color names found in this color thesaurus? Many of the hue names in the

thesaurus are not standard hue names (e.g., ‘crimson,’ ‘sunburst,’ ‘sea foam’). However,

many others like ‘fire red’ and ‘sea green’ include a standard hue name as a component

of the name. To limit the set of hues to ‘standard’ ones, the tests described below are

based on all the color names from the color thesaurus that included the 8 color names red,

green, yellow, blue, brown, purple, pink, and orange from Berlin and Kay [100], excluding

black, gray, and white. All the color names that include one of these 8 as a component are

extracted from the thesaurus; however, those that include more than one of the 8 names

as components are excluded. For example, names such as ‘delft blue’ and ‘sage green’ are

include under the categories blue and green, but ‘blue green’ is excluded since it is not

clear whether it describes a blue or a green. The result is 8 sets of color names of which

there are 22 red, 99 green, 18 yellow, 79 blue, 14 brown, 21 purple, 28 pink, and 14 orange.

Each entry in the thesaurus has an associated sRGB color descriptor. This sRGB value

is converted to CIECAM02 and KSM [33, 101] coordinates under the assumption that the
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Figure 5.13: NCS hue versus hue descriptor specified in degrees. The triangle interiors
represent the approximate color under illuminant C of the NCS papers of hues R, Y50R, Y,
G50Y, G, B50G, B, and R50B for chromaticness greater than or equal to 40. The triangle
boundaries are colored to indicate the given NCS hue name. Top to bottom the plots are
of the KSM Gaussian peak wavelength µ, the ADL rectangular central wavelength λ, and
CIECAM02 hue. The vertical alignment in the left and right panels shows that papers of
the same NCS hue but differing chromaticness and blackness are all being correctly assigned
the same hue descriptor. In the central panel, there is some intermingling of the red, orange
and yellow.
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display settings and viewing environment are intended to be D65. It should be noted that

Logvinenko’s color object color atlas describes the colors of objects (surfaces) not lights.

Converting sRGB to KSM implies that the sRGB values are recorded from a surface, when

in fact in Moroney’s experiment they were not, but rather from the light emanating from

an emissive display. This might mean that KSM hue will not model displayed colors as well

as object colors, but the results below show that it models display colors well in any case.

Fig. 5.14 plots the 8 color-name sets in terms of hue and saturation.

As can be seen from Fig. 5.14, KSM hue appears to correlate with the hue names as

well or better than CIECAM02 hue in terms of compactness of the hue range along the hue

axis, and distinctiveness of the hues from one another. To compare the two hue descriptors

quantitatively, we again test their effectiveness in terms of hue classification with class

boundaries determined by genetic algorithm optimization. The optimized boundaries are

drawn as vertical dashed lines in Fig. 5.14. The misclassification rate for the classifier based

on KSM hue is 7%, whereas, for the classifier based on CIECAM02 hue it is 10%.

5.5.4 Robustness of KSM Hue to Illuminant

Thus far KSM µ has been shown to provide a good perceptual correlate of hue. The next

question is whether or not this hue descriptor remains relatively consistent under different

illuminants.

To determine the relative stability of KSM versus ADL and CIECAM02 hue coordinates

under a change in illuminant, we synthesize the XYZ tristimulus values of 1600 Munsell

chips under two illuminants (e.g., D65 and A) using the 2-degree observer color matching

functions and then determine the corresponding hue coordinates. Table 5.1 provides a

quantitative comparison based on circular statistics (since hue is defined on the hue circle)

where it can be seen that KSM hue is significantly more stable than either ADL hue or

CIECAM02 hue.

It might be argued that one reason KSM hue is more stable than CIECAM02 is that it

incorporates knowledge of the full illuminant spectrum. Of course, there is no reason why

CIECAM02 could not have been defined to make use of this additional spectral information

too since it is readily available in the type of laboratory setting in which CIECAM02 is

generally applied. In terms of digital imaging, however, it is often the case that only a 3-

channel measurement of the illuminant’s “color” is available, so we consider the situation in

which the KSM hue calculation is based only on the illuminant XYZ, not its spectrum. For
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Figure 5.14: The color thesaurus samples from the 8 sets of color names (green, red, blue, yel-
low, purple, brown, pink and orange) plotted in terms of their KSM µ (left) and CIECAM02
hue (right). A dot’s color indicates the corresponding hue set to which the sample belongs.
The dashed vertical bars indicate the hue boundaries minimizing the misclassification rate.
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ADL and CIECAM02 hue coordinates under a 
change in illuminant, we synthesize the XYZ 
tristimulus values of 1600 Munsell chips under two 
illuminants (e.g., D65 and A) using the 

 2-degree observer color matching 
functions and then determine the corresponding hue 
coordinates. Table I provides a quantitative 
comparison based on circular statistics (since hue is 
defined on the hue circle) where it can be seen that 
KSM hue is significantly more stable than either 
ADL hue or CIECAM02 hue. 

It might be argued that one reason KSM hue is 
more stable than CIECAM02 is that it incorporates 
knowledge of the full illuminant spectrum.  Of 
course, there is no reason why CIECAM02 could 
not have been defined to make use of this additional 
spectral information too since it is readily available 
in the type of laboratory setting in which 
CIECAM02 is generally applied. In terms of digital 

imaging, however, it is often the case that only a 3-
channel measurement of the illuminant’s “color” is 
available, so we consider the situation in which the 
KSM hue calculation is based only on the 
illuminant XYZ, not its spectrum. For this we 
follow the procedure proposed by Mirzaei et al.  [26] 
in the context of predicting the change in XYZ 
induced by a change in illuminant. Given the 
illuminant XYZ, a metameric wraparound Gaussian 
illuminant spectrum is found, and then this 
spectrum is used in the KSM hue calculation in 
place of the true illuminant spectrum. We will 
denote this method (KSM)2 since it involves two 
sets of KSM coordinates: one for the wraparound 
Gaussian illuminant and the other for the 
wraparound Gaussian reflectance. The last row of 
Table I gives the hue shift using the (KSM)2 
approach, which is comparable to the KSM result. 

 

 
Fig. 8. The color thesaurus samples from the 8 sets of color names (green, red, blue, yellow, purple, brown, pink and orange) plotted in terms of 

their KSM μ (left) and CIECAM02 hue (right). A dot’s color indicates the corresponding hue set to which the sample belongs. The dashed vertical 
bars indicate the hue boundaries minimizing the misclassification rate.  
 

TABLE I  

KSM, ADL AND CIECAM02 HUE SHIFTS FOR D65 TO A IN DEGREES 

 Median Mean 
KSM hue μ 2.10 3.87 
ADL hue λ 5.16 9.27 

CIECAM02 (full adaptation) hue 4.99       5.69 
(KSM)2  hue μ 2.43 3.76 

 
As a further test, we use all non-identical pairings 

of the different illuminants used by Logvinenko and 
Tokunaga  [27] in their asymmetric color matching 
experiments. The illuminant spectra are plotted 
in  Fig. 9. With the exception of the neutral 
illuminant, these lights are quite distinctly colored. 
As in the test described above using D65 and A, we 

first calculate the XYZ tristimulus values of 
Munsell chips under each of the illuminants and 
then compute the corresponding KSM and 
CIECAM02 hues.  

The mean and median differences (circular 
statistics) of the KSM hues, (KSM)2 hues and 
CIECAM02 hues for the different illuminant pairs 

CIE 1931 x y z

Table 5.1: KSM, ADL AND CIECAM02 Hue Shifts for D65 to A in Degrees

this we follow the procedure proposed by Mirzaei et al. [27] in the context of predicting the

change in XYZ induced by a change in illuminant. Given the illuminant XYZ, a metameric

wraparound Gaussian illuminant spectrum is found, and then this spectrum is used in the

KSM hue calculation in place of the true illuminant spectrum. We will denote this method

(KSM)2 since it involves two sets of KSM coordinates: one for the wraparound Gaussian

illuminant and the other for the wraparound Gaussian reflectance. The last row of Table

5.1 gives the hue shift using the(KSM)2 approach, which is comparable to the KSM result.

As a further test, we use all non-identical pairings of the different illuminants used by

Logvinenko and Tokunaga [9] in their asymmetric color matching experiments. As in the

test described above using D65 and A, we first calculate the XYZ tristimulus values of

Munsell chips under each of the illuminants and then compute the corresponding KSM and
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CIECAM02 hues. The mean and median differences (circular statistics) of the KSM hues,

(KSM)2 hues and CIECAM02 hues for the different illuminant pairs are tabulated in the

Table 5.2. Clearly, KSM hue µ is significantly more stable than ADL λ and CIECAM02

hues. Surprisingly, there is very little penalty, if any, for using the metameric Gaussian

illuminant spectrum in place of the true illuminant spectrum(KSM)2 hue is as stable as

KSM hue on average.

5.5.5 Real Images

The tests above show that KSM hue is quite stable with respect to the illuminant, but is it

also stable on images of real scenes? As a test, we consider the “Flowers” multispectral image

from the University of Columbia spectral database [2] and synthesize the XYZ tristimulus

values for it under illuminants CIE D65 and CIE A using the 2-degree observer. For each

pixel, we then compute the corresponding KSM µ and CIECAM02 hue and classify each

according to the 8 hue ranges shown in Fig. 5.14 that were determined as described above

using the Moroney dataset. The results are shown in Fig. 5.15. The upper row shows an

approximate sRGB rendering of the image under the illuminant D65, along with KSM µ

and CIECAM02 hue classification maps. The pixel colors have been chosen to indicate the

hue names (but not the hues themselves). The lower row provides the corresponding results

for illuminant A.

Comparing the results in the two rows of Fig. 5.15, we can see, for example, that the

CIECAM02 hue class assigned to a large portion of the central flower in the image changes

from purple under D65 to pink under A. Fig. 5.16 shows a map of the difference in assigned

hue class between the upper and lower rows. Since there are eight classes, and they are

defined on the hue circle, the differences range from 0 to 4. It is clear from Fig. 5.16 that

the classes defined by KSM µ remain relatively constant, while those of CIECAM02 change.

In quantitative terms, the class shift averaged over all distinct colors in the image was 0.07

for µ versus 0.21 for CIECAM02 hue. To avoid large areas of a single color biasing the class

shift results, we bin the XYZs and count each bin only once when computing the statistics

of hue class shift. Each of the X, Y, and Z ranges is divided into 50 equal intervals so the

total number of bins used is 503.

As a second example, results of a similar test using the “Oil Painting” multispectral

image from the Columbia dataset, along with illuminants D65 and CIE F3 (fluorescent) in

place of D65 and A, are shown in Fig. 5.17 and Fig. 5.18. Again, it is clear that KSM µ is
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is that it is more costly to compute than CIECAM02 
hue, a problem that can be easily addressed by 
appropriate use of lookup tables and kd-trees  [20]. 
Although very important, hue is only one perceptual 

dimension of color. Future work will involve using 
the other KSM parameters in modeling dimensions 
such as purity/saturation.  

 
Fig. 10. Hue classification using KSM μ versus CIECAM02 hue of the Flowers image from the Columbia University spectral database  [28]. First 

and second rows depict the classification results for illuminants D65 and A, respectively. Left panel: Approximate sRGB rendering of the image. 
Middle: segmentation based on μ. Right: classification based on CIECAM02 hue. Each pixel is colored to roughly represent the hue name assigned to 
it. 

 
Fig. 11. Map of hue class shift for μ (left) and CIECAM02 hue (right) when the illuminant is changed from D65 to A. Class shifts can range from 0 

to 4. 
 

 
Fig. 12. Hue classification using KSM μ versus CIECAM02 hue of the Flowers image from the Columbia University spectral database  [28]. First 

and second rows depict the classification results for illuminants D65 and F3, respectively. Left panel: Approximate sRGB rendering of the image. 
Middle: classification based on μ. Right: classification based on CIECAM02 hue. Each pixel is colored to roughly represent the hue name assigned to 
it. 

Figure 5.15: Hue classification using KSM µ versus CIECAM02 hue of the Flowers image
from the Columbia University spectral database [2]. First and second rows depict the
classification results for illuminants D65 and A, respectively. Left panel: Approximate
sRGB rendering of the image. Middle: segmentation based on µ. Right: classification
based on CIECAM02 hue. Each pixel is colored to roughly represent the hue name assigned
to it.
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Fig. 12. Hue classification using KSM μ versus CIECAM02 hue of the Flowers image from the Columbia University spectral database  [28]. First 

and second rows depict the classification results for illuminants D65 and F3, respectively. Left panel: Approximate sRGB rendering of the image. 
Middle: classification based on μ. Right: classification based on CIECAM02 hue. Each pixel is colored to roughly represent the hue name assigned to 
it. 

Figure 5.16: Map of hue class shift for µ (left) and CIECAM02 hue (right) when the illu-
minant is changed from D65 to A. Class shifts can range from 0 to 4.
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Fig. 12. Hue classification using KSM μ versus CIECAM02 hue of the Flowers image from the Columbia University spectral database  [28]. First 

and second rows depict the classification results for illuminants D65 and F3, respectively. Left panel: Approximate sRGB rendering of the image. 
Middle: classification based on μ. Right: classification based on CIECAM02 hue. Each pixel is colored to roughly represent the hue name assigned to 
it. 

Figure 5.17: Hue classification using KSM µ versus CIECAM02 hue of the Oil Painting
image from the Columbia University spectral database [2]. First and second rows depict
the classification results for illuminants D65 and F3, respectively. Left panel: Approximate
sRGB rendering of the image. Middle: classification based on µ. Right: classification based
on CIECAM02 hue. Each pixel is colored to roughly represent the hue name assigned to it.

more stable than CIECAM02 hue. The average class shift is 0.29 for KSM µ versus 0.48 for

CIECAM02 hue.

To investigate how hue stability might vary with the illuminant, we consider the “Flow-

ers” image when the illuminant is changed from D65 to each of 10 very different illuminants:

G, B, N, Y, R1, R2, CIE F12, CIE F3, and a standard LED light bulb of correlated color

temperature 2900o Kelvin. The average hue class shift for a change from D65 to each of

these illuminants, respectively, is plotted in Fig. 5.19.

To investigate how hue stability might vary with the image content, we consider the

entire set of images from the Columbia multispectral image dataset. Fig. 5.20 is a bar chart

comparing KSM to CIECAM02 for each image for a change in illuminant from D65 to F3.

Fig. 5.21 provides a similar plot for a change from D65 to the 2900o K LED. Although the

average shift in hue class varies from image to image, in the significant majority of cases the

KSM hue class shift is less than the CIECAM02 hue class shift. This is reflected in the mean

and standard deviation of the hue class shift across all the images in the dataset, which for
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Fig. 13. Map of hue class shift for KSM μ (left) and CIECAM02 hue (right) when the illuminant is changed from D65 to F3 for the Flowers image. 

Class shifts can range from 0 to 4
 

 
Fig. 14. Average shift in hue class for KSM hue μ (grey) and 

CIECAM02 hue (black) for the “Flowers” image for a change in 
illuminant from D65 to each of 10 other illuminants. 

 

 
Fig. 15. Average hue class shift for each image when using 

KSM hue μ (grey) and CIECAM02 hue (black) for the whole 
Columbia dataset when the illuminant is changed from D65 to F3.  
Abscissa: image number. Ordinate: average hue class shift over 
corresponding image. 

 
Fig. 16. Average hue class shift for each image when using 

KSM hue μ (grey) and CIECAM02 hue (black) over the entire 
Columbia dataset when the illuminant is changed from D65 to the 
2700o K LED. Abscissa: image number. Ordinate: average hue 
class shift over corresponding image. 
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Figure 5.18: Map of hue class shift for KSM µ (left) and CIECAM02 hue (right) when the
illuminant is changed from D65 to F3 for the Oil Painting image. Class shifts can range
from 0 to 4.

Fig 5.20 are KSM (0.38 mean; 0.10 s.d.) versus CIECAM02 (0.61 mean; 0.21 s.d.); and for

Fig 5.21 are KSM (0.14 mean; 0.05 s.d.) versus CIECAM02 (0.18 mean, 0.10 s.d.).

5.6 Conclusion

Hue descriptors based on Gaussian models of spectra in which the peak wavelength of the

Gaussian is used as a hue descriptor have been proposed previously by Mizokami [54, 90]

and Logvinenko [52]. Mizokami et al. directly model illuminant and reflectance spectral

functions as Gaussians. In contrast, Logvinenko considers objects and suggests [52] (but

 10 

TABLE II 

KSM, ADL AND CIECAM02 HUE SHIFTS IN DEGREES FOR EACH ILLUMINANT PAIR 

Illuminants Median Mean  
From To KSM (KSM)2   ADL CIECAM02 KSM (KSM)2  ADL CIECAM02 

G B 11.23 13.17 21.79 17.43 22.36 25.77 43.42 27.37 
G N 12.94 15.56 17.71 15.45 14.16 16.66 28.56 20.95 
G Y 12.60 14.67 17.34 15.73 14.40 16.55 30.30 21.42 
G R1 29.25 28.23 50.67 34.24 36.36 31.44 54.39 46.22 
B N 11.83 17.34 36.23 33.77 21.38 25.22 51.19 36.87 
B Y 12.48 17.96 39.21 37.66 23.70 27.14 53.93 40.10 
B R1 32.12 31.59 68.26 61.97 41.22 38.46 69.00 71.28 
N Y 0.90 1.17 2.38 3.54 1.89 2.18 4.51 3.56 
N R1 15.68 11.85 19.43 32.48 24.87 17.98 31.91 36.93 
Y R1 14.93 11.79 18.00 29.38 23.94 17.51 29.01 33.57 

Column Means 15.40 16.33 29.10 28.17 22.43 21.89 39.62 33.83 

 

V. CONCLUSION 
Hue descriptors based on Gaussian models of 

spectra in which the peak wavelength of the 
Gaussian is used as a hue descriptor have been 
proposed previously by Mizokami  [8] [9] and 
Logvinenko  [12]. Mizokami et al. directly model 
illuminant and reflectance spectral functions as 
Gaussians. In contrast, Logvinenko considers 
objects and suggests  [12] (but does not test) using 
Gaussian reflectance functions that are metameric to 
the observed object color signal (XYZ).   

In this paper, we have investigated both the 
subtractive Gaussians Mizokami et al. use and the 
wraparound Gaussians that Logvinenko suggests in 
terms of three fundamental issues. First, what is the 
gamut of colors they can represent and is the 
representation unique? Second, in comparison to 
CIECAM02 how well does the peak wavelength of 
the Gaussian correlate with Munsell and NCS hue 
descriptors, as well as with the color names found in 
Moroney’s Color Thesaurus  [16]. Third, in 
comparison to CIECAM02 how stable is the hue 
correlate (i.e., Gaussian peak wavelength) across 
different illuminants? Logvinenko had previously 
shown  [11] that the central wavelength of the 
rectangular reflectance functions correlated 
reasonably well with hue so we include tests with 
those functions for comparison. 

In answer to the first issue, we found that the 
chromaticity gamut of subtractive Gaussians does 
not cover the entire chromaticity space. Perhaps 
more importantly, the subtractive Gaussian 
representation was found to be non-unique in the 
sense that two metameric subtractive Gaussians 

with different peak wavelengths exist in many 
cases. Whether or not the wraparound Gaussians are 
unique is an open question until a uniqueness proof 
is provided; however, numerical searching failed to 
turn up a metameric pair. A uniqueness proof is an 
important issue for future work. 

In terms of the second and third issues, tests with 
the Munsell, NCS and Moroney data under D65 
clearly show that the peak wavelength of the 
metameric wraparound Gaussian correlates with the 
different hue descriptors as well as CIECAM02 hue 
does on average. However, in terms of stability 
under a widely varied set of illuminants, the 
Gaussian hue descriptor is significantly more stable 
than CIECAM02 hue. This was also shown to hold 
true for (KSM)2 which relies only on the illuminant 
XYZ, not its full spectrum. The fact that the 
Gaussian hue descriptor correlates well with hue as 
defined by the Munsell and NCS color systems as 
well as the Moroney color naming data supports the 
hypothesis  [9] that Gaussian spectra may in some 
way underlie hue perception.  

As demonstrated by the example of classifying the 
hues in two sample images, the fact that the 
Gaussian hue descriptor is relatively unaffected by 
the illuminant shows that it could be advantageous 
in any image processing application that depends on 
naming or classifying hues. The fact that in the case 
of (KSM)2 it was also shown to be stable even when 
a metameric Gaussian illuminant spectrum is 
substituted for the actual spectrum of the illuminant 
is important in the context of image processing 
when only the illuminant color, not its spectrum, is 
available. 

The chief disadvantage of the KSM hue descriptor 

Table 5.2: KSM, ADL AND CIECAM02 Hue Shifts in Degrees for Each Illuminant Pair
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Fig. 13. Map of hue class shift for KSM μ (left) and CIECAM02 hue (right) when the illuminant is changed from D65 to F3 for the Flowers image. 

Class shifts can range from 0 to 4
 

 
Fig. 14. Average shift in hue class for KSM hue μ (grey) and 

CIECAM02 hue (black) for the “Flowers” image for a change in 
illuminant from D65 to each of 10 other illuminants. 

 

 
Fig. 15. Average hue class shift for each image when using 

KSM hue μ (grey) and CIECAM02 hue (black) for the whole 
Columbia dataset when the illuminant is changed from D65 to F3.  
Abscissa: image number. Ordinate: average hue class shift over 
corresponding image. 

 
Fig. 16. Average hue class shift for each image when using 

KSM hue μ (grey) and CIECAM02 hue (black) over the entire 
Columbia dataset when the illuminant is changed from D65 to the 
2700o K LED. Abscissa: image number. Ordinate: average hue 
class shift over corresponding image. 
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Figure 5.19: Average shift in hue class for KSM hue µ (grey) and CIECAM02 hue (black)
for the “Flowers” image for a change in illuminant from D65 to each of 10 other illuminants.

does not test) using Gaussian reflectance functions that are metameric to the observed

object color signal (XYZ). In this study, we have investigated both the subtractive Gaussians

Mizokami et al. use and the wraparound Gaussians that Logvinenko suggests in terms of

three fundamental issues. First, what is the gamut of colors they can represent and is

the representation unique? Second, in comparison to CIECAM02 how well does the peak

wavelength of the Gaussian correlate with Munsell and NCS hue descriptors, as well as

with the color names found in Moroney’s Color Thesaurus [95]. Third, in comparison to

CIECAM02 how stable is the hue correlate (i.e., Gaussian peak wavelength) across different

illuminants? Logvinenko had previously shown [49] that the central wavelength of the

rectangular reflectance functions correlated reasonably well with hue so we include tests

with those functions for comparison.

In answer to the first issue, we found that the chromaticity gamut of subtractive Gaus-

sians does not cover the entire chromaticity space. Perhaps more importantly, the subtrac-

tive Gaussian representation was found to be non-unique in the sense that two metameric

subtractive Gaussians with different peak wavelengths exist in many cases. Whether or

not the wraparound Gaussians are unique is an open question until a uniqueness proof is
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Fig. 13. Map of hue class shift for KSM μ (left) and CIECAM02 hue (right) when the illuminant is changed from D65 to F3 for the Flowers image. 

Class shifts can range from 0 to 4
 

 
Fig. 14. Average shift in hue class for KSM hue μ (grey) and 

CIECAM02 hue (black) for the “Flowers” image for a change in 
illuminant from D65 to each of 10 other illuminants. 

 

 
Fig. 15. Average hue class shift for each image when using 

KSM hue μ (grey) and CIECAM02 hue (black) for the whole 
Columbia dataset when the illuminant is changed from D65 to F3.  
Abscissa: image number. Ordinate: average hue class shift over 
corresponding image. 

 
Fig. 16. Average hue class shift for each image when using 

KSM hue μ (grey) and CIECAM02 hue (black) over the entire 
Columbia dataset when the illuminant is changed from D65 to the 
2700o K LED. Abscissa: image number. Ordinate: average hue 
class shift over corresponding image. 
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Figure 5.21: Average hue class shift for each image when using KSM hue µ (grey) and
CIECAM02 hue (black) over the entire Columbia dataset when the illuminant is changed
from D65 to the 2900o K LED. Abscissa: image number. Ordinate: average hue class shift
over corresponding image.
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provided; however, numerical searching failed to turn up a metameric pair. A uniqueness

proof is an important issue for future work.

In terms of the second and third issues, tests with the Munsell, NCS and Moroney data

under D65 clearly show that the peak wavelength of the metameric wraparound Gaussian

correlates with the different hue descriptors as well as CIECAM02 hue does on average.

However, in terms of stability under a widely varied set of illuminants, the Gaussian hue

descriptor is significantly more stable than CIECAM02 hue. This was also shown to hold

true for (KSM)2 which relies only on the illuminant XYZ, not its full spectrum. The fact

that the Gaussian hue descriptor correlates well with hue as defined by the Munsell and

NCS color systems as well as the Moroney color naming data supports the hypothesis [54]

that Gaussian spectra may in some way underlie hue perception. As demonstrated by

the example of classifying the hues in two sample images, the fact that the Gaussian hue

descriptor is relatively unaffected by the illuminant shows that it could be advantageous

in any image processing application that depends on naming or classifying hues. The fact

that in the case of (KSM)2 it was also shown to be stable even when a metameric Gaussian

illuminant spectrum is substituted for the actual spectrum of the illuminant is important

in the context of image processing when only the illuminant color, not its spectrum, is

available.

The chief disadvantage of the KSM hue descriptor is that it is more costly to compute

than CIECAM02 hue, a problem that can be easily addressed by appropriate use of lookup

tables and kd-trees [93]. Although very important, hue is only one perceptual dimension of

color. Future work will involve using the other KSM parameters in modeling dimensions

such as purity/saturation.
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Chapter 6

Robust Chroma and Lightness

Descriptors

6.1 Summary

In an attempt to represent the main dimensions of object colors robustly, Chapter 5 pre-

sented a hue descriptor. In this chapter, new descriptors for lightness and chroma are

presented that are based on properties of a wraparound Gaussian metameric to the given

XYZ tristimulus coordinates. For the 1600 samples of the Munsell glossy set, both descrip-

tors are found to correlate to Munsell value and chroma at least as well as the corresponding

CIECAM02 descriptors when the Munsell samples are under the CIE C illuminant. How-

ever, when the illuminant is changed the new descriptors were found to be considerably

more consistent under the second illuminant than those of CIECAM02. A version of this

chapter has appeared in the Color and Imaging Conference, Society for Imaging Science and

Technology, 2015 [6].

6.2 Introduction

Object color can be described in terms of three main dimensions, which are often specified

as hue, chroma, and lightness [4]. In Chapter 5, we proposed using the peak wavelength of

a metameric wraparound Gaussian as a hue descriptor [24, 30] and showed that it correlates

as well as CIECAM02 hue does to Munsell hue [94], NCS hue [99], and the hue names in

Moroney’s color thesaurus [95–97]. The Gaussian-based hue descriptor was also shown to
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be more stable than CIECAM02 when the illuminant differs from CIE Standard Illuminant

C.

Given a CIE XYZ and the spectrum of the illuminant, the key idea of the hue descriptor

is to determine the wraparound Gaussian reflectance function that is metameric (i.e., leads

to the same XYZ) under the given illuminant and then base the hue on a property of that

reflectance, namely the wavelength at which the Gaussian peaks. This chapter introduces

Gaussian-based chroma and lightness descriptors and compares them to CIECAM02 in

terms of:

1. How well they each correlate with the chroma and value designators of the 1600

Munsell [94] papers.

2. How stable the respective descriptors are under a change in the illuminant.

Similar to Chapter 5, the new descriptors are defined in terms of the parameters of the

wraparound Gaussian function as defined in Equations 2.11, 2.12, 2.13, and 2.14 in page 20.

As before, we will refer to triples kσµ as KSM coordinates, where σ stands for standard

deviation, µ for peak wavelength, and k for scaling. Based on these KSM coordinates, we

define descriptors for lightness (called KSM lightness) and chroma (called KSM chroma)

and compare them to CIECAM02 lightness and saturation. Our tests show two important

properties of both KSM lightness and chroma. First, they correlate well with the value

and chroma designators of Munsell papers. Second, KSM descriptors are much more stable

under a change of illuminant than CIECAM02.

6.3 CIE Lightness

The CIE defines lightness in terms of brightness, where brightness is “a visual perception

according to which an area appears to exhibit more or less light.” (page 26 of [56]). Lightness

is then defined as the brightness of an area judged relative to the brightness of a similarly

illuminated reference white (page 26 of [56]).

6.4 KSM Lightness

Given the XYZ coordinates (CIE 1931 2-degree observer) for light reflected from an object

illuminated by light of known spectrum, the parameters k, σ, and µ of the metameric
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wraparound Gaussian reflectance are determined. Given these KSM parameters, the KSM

lightness is defined by:

L(k, σ, µ) = 100

∫
max

min

gk,σ,µ(λ)y(λ)dλ (6.1)

6.5 Chroma and Saturation

Chroma is defined as “the colourfulness of an area judged as a proportion of the brightness

of a similarly illuminated reference white” (page 27 of [56]); where colourfulness is defined

as “that attribute of a visual sensation according to which an area appears to exhibit more

or less chromatic content.” (page 26 of [56]). Saturation is defined as “the colourfulness of

an area judged in proportion to its brightness” (page 27 of [56]). The distinction is between

judging the chromatic content of the object with respect to the brightness of a reference

white versus the object’s own brightness. Both chroma and saturation are open-ended scales

with a zero origin at neutral colors.

6.6 KSM Chroma

Generally, the chromatic content of a wraparound Gaussian will decrease with increasing σ

since as σ increases the corresponding wraparound Gaussian reflectance function becomes

broader and flatter. Therefore it is natural for KSM chroma to be inversely proportional

to σ. However, simply using σ is insufficient in that there is also some dependence on hue.

Therefore, KSM Chroma, C, is defined as:

C(σ, µ) =
h

σ
(6.2)

where h is defined to be h = 2.4 + | µ−λmin

λmax−λmin
× 2π − t|, λmin ≤ µ ≤ λmax and offset, t,

is determined empirically as t = 1.15π for the Munsell dataset. The region around 1.15π

corresponds to a greenish yellow hue. As µ departs from t, h increases. Note that the offset

of 2.4 is included to avoid zero chroma when we are at t.

6.7 Modeling Munsell Designators Under CIE C

To see how well the Munsell designators are modeled using the KSM lightness and chroma

descriptors, we evaluate them on the set of reflectances of the 1600 papers from the Munsell
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glossy set. We synthesized the XYZ tristimulus values of all 1600 papers based on the

Joensuu Color Group spectral measurements [94] under illuminant C using the CIE 1931 2-

degree observer colour matching functions and then computed the corresponding KSM and

CIECAM02 lightness descriptors. When calculating the CIECAM02 descriptors, we adopted

the parameters suggested for the “average surround” condition and full adaptation.

In the following figures, the Munsell reflectances used are those of the papers of hue 5RR,

5YR, 5YY, 5GY, 5GG, 5BG, 5BB, 5PB, 5PP, and 5RP, chroma 2, 4, 6, 8, 10, and value

5, 6, 7, 8, and 8.5. Figure 6.1 plots a marker encoding the Munsell value for each of these

Munsell papers at a location determined by the KSM/CIECAM02 lightness descriptor. It

can be seen that lightness descriptors in both systems appear to correlate very well with the

Munsell value designator. This is indicated by the fact that the colors of the same Munsell

value align horizontally. Note that KSM lightness descriptors L(k, σ, µ), which are originally

in [0, 1], have been scaled by 100 for easier comparison to CIECAM02.

One numerical measure of how well the lightness descriptors account for Munsell value

is the correlation coefficient between the Munsell value designators and the lightness de-

scriptors. Correlation coefficients for the two lightness descriptors are high: 0.991 (KSM)

and 0.995 (CIECAM02). As a second quantitative measure, we trained a lightness classifier

based on genetic algorithm optimization. The problem is defined as finding the lightness

boundaries that optimally categorize the Munsell papers into 5 Munsell value groups (5,

6, 7, 8, 8.5) with the lowest misclassification rate. The misclassification rate then provides

a measure of how well the given descriptor models Munsell value. As can be seen from

Fig. 6.1, there is no sample that is misclassified based on either its CIECAM02 lightness or

KSM lightness.

A similar test was carried out on the chroma designators of Munsell papers. Fig. 6.2

plots a marker encoding the Munsell chroma for each of the Munsell papers at a location de-

termined by the KSM chroma (upper plot) or CIECAM02 saturation (lower plot) descriptor.

The different marker shapes (i.e., upward-pointing triangles, left-pointing triangles, circles,

right-pointing triangles, and stars) in the plots correspond to the Munsell chroma of 2, 4,

6, 8, and 10, respectively. The horizontal alignment of similar symbols indicates that KSM

chroma and CIECAM02 saturation both correlate well with Munsell chroma.

We are using CIECAM02 saturation rather than CIECAM02 chroma because we found

that it correlated better with Munsell chroma. Note that KSM chroma is scaled to match

the Munsell chroma range. The correlation coefficient of Munsell chroma designators with
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Figure 6.1: Lightness descriptor versus Munsell value for Munsell papers of Munsell hue
5RR, 5YR, 5YY, 5GY, 5GG, 5BG, 5BB, 5PB, 5PP, and 5RP; chroma 2, 4, 6, 8, 10; and
value 5, 6, 7, 8, 8.5. The marker shape represents the Munsell value: 5 (star), 6 (upward
pointing), 7 (left pointing), 8 (circle), and 8.5 (right pointing). Top and bottom plots are of
the KSM and CIECAM02 lightness descriptors, respectively. The horizontal alignment in
the panels shows that papers of the same Munsell value but differing chroma and hue are
all being assigned the same lightness descriptor. The horizontal dashed lines are the class
boundaries as determined by genetic algorithm optimization.
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Figure 6.2: Chroma/saturation descriptor versus Munsell chroma for Munsell papers of
Munsell hue 5RR, 5YR, 5YY, 5GY, 5GG, 5BG, 5BB, 5PB, 5PP, and 5RP; chroma 2, 4, 6,
8, 10; and value 5, 6, 7, 8, 8.5. The marker shape represents the Munsell chroma: 2 (upward
pointing), 4 (left pointing), 6 (circle), and 8 (right pointing), 10 (star). The horizontal
alignment in the panels shows that papers of the same Munsell chroma but differing hue and
value are all being assigned the same chroma/saturation descriptor. The horizontal dashed
lines are the chroma class boundaries as determined by genetic algorithm optimization.
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respect to KSM chroma and CIECAM02 saturation are 0.96 and 0.94, respectively. In

comparison, the correlation coefficient for CIECAM02 chroma was 0.86. The chroma mis-

classification rates for a chroma classifier trained using genetic algorithm optimization are

14.4% and 19.3% for KSM chroma and CIECAM02 saturation, respectively.

6.8 Robustness to illuminant change

The tests above have shown that the proposed KSM lightness and chroma descriptors cor-

relate well with the Munsell value and chroma designators. In Chapter 5, we found that

the Gaussian-based hue descriptor was more stable with respect to a change of illuminant

than CIECAM02 [24, 30]. This leads to the question as to whether the same will be true

for KSM lightness and chroma. As we have pointed out, however, any color descriptor–

whether CIECAM02, KSM or any other alternative–is limited by the existence of metamer

mismatching since a given XYZ under one illuminant can become any of a multitude of

possible XYZ within its metamer mismatch volume under the second illuminant; and as

shown in Chapter 3 this theoretical metamer mismatch volume can be surprisingly large.

However, an advantage of the KSM descriptors over CIECAM02 descriptors under a change

of illuminant is that the KSM descriptors are guaranteed to lead to a physically plausi-

ble answer since they are based on the properties of a metameric reflectance. In contrast,

CIECAM02 updates its descriptors to account for a change in illuminant using a von Kries

diagonal transformation, for which there is no guarantee of a physically plausible answer.

To determine the relative stability of the KSM descriptors to those of CIECAM02 un-

der a change in illuminant, we synthesize the XYZ tristimulus values of the 1600 Munsell

reflectances under two illuminants (e.g., D65 and A) and then determine the corresponding

descriptors. Fig. 6.3 plots the lightness descriptor under A versus the lightness descriptor

under D65 for KSM (upper) and CIECAM02 (lower). Fig. 6.4 makes a similar comparison

but in terms of chroma/saturation. From the figures it can be seen that, in each case,

the CIECAM02 descriptors deviate from the diagonal more than their KSM counterparts.

Table 6.1 provides a quantitative comparison based on the coefficient of variation of the

root-mean-square error [102] and clearly shows that the KSM descriptors are more stable

than the CIECAM02 descriptors.
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Figure 6.3: KSM (upper) and CIECAM02 (lower) lightness descriptors of the 1600 Munsell
papers under illuminants D65 and A. A lightness descriptor that is completely invariant to
the illumination will lead to points lying strictly on the diagonal.

 

 

 

 
Figure 5. KSM chroma (upper) and CIECAM02 saturation (lower) descriptors 
of the 1600 Munsell papers under illuminants D65 and A. A descriptor that is 
completely invariant to the illumination will lead to points lying strictly on the 
diagonal. 

Table I: Coefficient of variation of the RSME of the descriptors 

obtained for the 1600 Munsell papers under illuminant D65 

versus illuminant A.  

 Lightness Chroma 
CIEAM02 3.89 3.98 
KSM 0.27 2.21 

 

Conclusion 
The proposed lightness and chroma descriptors were shown to 

correlate as well as CIECAM02 descriptors to those of the 
corresponding Munsell designators, but have the additional 
advantage that they are more consistent across illuminants. Used in 
conjunction with the earlier Gaussian-based hue descriptor  [2] they 
provide a foundation for the specification of the hue, lightness and 
chroma dimensions of object colours under average viewing 
surround conditions. 
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Table 6.1: Coefficient of variation of the RMSE of the descriptors obtained for the 1600
Munsell papers under illuminant D65 versus illuminant A.

106



Figure 6.4: KSM chroma (upper) and CIECAM02 saturation (lower) descriptors of the 1600
Munsell papers under illuminants D65 and A. A descriptor that is completely invariant to
the illumination will lead to points lying strictly on the diagonal.
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6.9 Conclusion

The proposed lightness and chroma descriptors were shown to correlate as well as CIECAM02

descriptors to those of the corresponding Munsell designators, but have the additional ad-

vantage that they are more consistent across illuminants. Used in conjunction with the

earlier Gaussian-based hue descriptor (chapter 5) [24] they provide a foundation for the

specification of the hue, lightness and chroma dimensions of object colors under average

viewing surround conditions.
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Chapter 7

Object color Signal Prediction

using Wraparound Gaussian

Metamers

7.1 Summary

In the present chapter, Logvinenko’s wraparound Gaussians are used in predicting illuminant-

induced colour signal changes. For a given colour signal, his atlas specifies a unique re-

flectance that is metameric to it under the given illuminant. The method proposed in this

chapter is based on computationally ‘relighting’ that reflectance to determine what its colour

signal would be under any other illuminant. The fact that the object colour atlas is com-

plete guarantees that a physically realizable metameric reflectance always exists. Since that

reflectance is in the metamer set the prediction is also physically realizable, which cannot

be guaranteed for predictions obtained via von Kries scaling. Testing on Munsell spectra

and a multispectral image shows that the proposed method outperforms the predictions of

both those based on von Kries scaling and those based on the Bradford transform.

Subsequently, an alternative method is proposed that employs metameric Gaussian-like

functions to model both illuminant and reflectance spectra. It is unlike the first proposed

method that uses the full power spectra of the illuminants. The method’s prediction is based

on relighting the Gaussian-like reflectance spectrum with the second Gaussian-like illumi-

nant. Tests show that the second proposed method significantly outperforms CIECAT02.
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The results presented in this chapter have led to publications in the Journal of Optical

Society of America, JOSA A, 2014, and Color and Imaging Conference, Society for Imaging

Science and Technology, 2014 [8, 27].

7.2 Introduction

The problem of predicting how the color signal (i.e., cone LMS, CIE XYZ or sRGB) aris-

ing in response to light reflected from the surface of an object changes when the lighting

changes is a long-standing and important one. It arises in computer vision applications such

as color-based object identification and tracking, where it is important to be able to rec-

ognize the same object under different illuminants. It also arises in white balancing digital

imagery, and when re-rendering printed material for viewing under a second illuminant (e.g.,

changing from D65 to D50). In this paper, we approach the problem using tools provided by

Logvinenko’s [49] color atlas. Note that predicting the resulting color signal under a change

of illuminant is not equivalent to predicting the resulting color appearance [82]. Also, it is

not equivalent to the problem of predicting corresponding colors on displays since then the

‘corresponding colors’ are the colors of lights, not object colors. In some cases such as part

of the Luo et al. LUTCHI dataset [103], corresponding color experiments are performed

using objects, but the comparison of the colors is nonetheless made in terms of the XYZ of

the light reflected from an object without regard to its reflectance or the spectra of the two

illuminants. One exception in this regard is the Spectral Adaptation method proposed by

Fairchild [104].

Note also that because of metamerism there is no unique answer to the prediction prob-

lem. Since there are many reflectances that can lead to the same color signal under the first

light, the set of possible color stimuli that results under the second light forms a volume

in color space, often referred to as the metamer mismatch volume. Logvinenko et al. [5]

describe how to compute this volume precisely. Since any color signal in the metamer mis-

match volume is a possible ‘correct’ answer, our goal has to be limited to finding the color

signal that fits the experimental data best on average. It must be kept in mind that the

potential error for any particular color signal prediction is bounded only by the size of the

associated metamer mismatch volume of the color signal for the given pair of illuminants.

In this work, we use the wraparound Gaussians as a tool for predicting how a given

color signal changes when the lighting changes from illuminant A to illuminant B. Others,
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for example Brill [53], Mizokami [54], and McLeod and Golz [55] have also proposed other

Gaussian-based models of reflectance, which will be discussed as well.

7.3 Gaussian-Metamer-Based Prediction

A common approach to predicting the color signal under a second illuminant from a color

signal under a first illuminant is the von Kries transformation [60] in which each color chan-

nel is independently scaled by the ratio of the color signals obtained from an ideal reflector

under the two illuminants. This transformation is used as a chromatic adaptation trans-

form, the first step in a color appearance model such as CIECAM02 [82] where the von Kries

transformation is applied in a sharpened space [105]. In comparison, the proposed Gaus-

sian Metamer (GM henceforth) method bases the prediction on relighting the wraparound

Gaussian reflectance, explained in equations 2.11, 2.12, 2.13, and 2.14, in page 20.

7.3.1 GM Method

In GM method, given a color signal XYZ under a first illuminant there are two steps:

1. compute the corresponding KSM coordinates (i.e., find the metameric wraparound

Gaussian reflectance);

2. compute the color signal that will result when that wraparound Gaussian is lit by the

second illuminant.

A significant advantage of predicting the new color signal in this way is that it is guaran-

teed to be in the metamer mismatch volume of the actual object. As Logvinenko points out

[49], for the von Kries method there is no such guarantee, which means that, in principle,

the von Kries error can be arbitrarily large. The same relighting strategy could be based

on the rectangular reflectance functions of Logvinenko’s original color atlas, but since those

functions contain sharp transitions, they are less likely to model the behavior of typical

reflectances found in practice. For this reason, we choose to work with the Gaussian pa-

rameterization of his atlas since its functions are smooth while at the same time retaining

all the benefits (completeness, uniqueness and illuminant invariance) of the original color

atlas.

As discussed previously in section 5.3.1, an important drawback of the inverse and sub-

tractive Gaussians is that in many cases non-physically realizable reflectances are required
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in order to create a (theoretical) metamer to a given color signal. Even when it is possible to

find a physically realizable metameric inverse or subtractive Gaussian, computing it involves

a very slow three-dimensional optimization with a high chance of getting stuck in a local

minimum. In comparison, “wraparound Gaussians” are easily computed through a quick

lookup followed by a two-dimensional optimization. Given these difficulties in using inverse

and subtractive Gaussians, we do not include them in our experimental results.

7.4 Gaussian Reflectance and Illuminant Spectra

The Gaussian Metamer method requires knowledge of the full spectrum of the incident

illumination, not just its color signal. To eliminate the need for the full illuminant spectrum,

we propose replacing the true illuminant spectrum with a metameric Gaussian spectrum.

Although the prediction error increases when using a metameric illuminant, it remains,

nonetheless, less than two thirds of the CIECAT02 error. The details are presented below.

Suppose that we have a set of Gaussian-like spectral reflectance functions defined in

terms of their scaling, km, standard deviation, σm, and peak wavelength, µm, as defined in

equations 2.11, 2.12, 2.13, and 2.14, in page 20.

Now let us consider also the three-parameter set of illuminant functions of the same

form defined in terms of their scaling, kl, standard deviation, σl, and peak wavelength, µl:

If µl ≤ (λmin + λmax)/2 we have two cases:

1. For µl ≤ λ ≤ µl + Λ/2:

gl(λ; kl, θl, µl) = kl exp[−θl(λ− µl)2] (7.1)

2. For µl + (Λ/2) ≤ λ ≤ λmax:

gl(λ; kl, θl, µl) = kl exp[−θl(λ− µl − Λ)2] (7.2)

where Λ = λmax − λmin.

On the other hand when µl > (λmin + λmax)/2, again we have two cases:

1. For λmin ≤ λ ≤ µl + Λ/2:

gl(λ; kl, θl, µl) = kl exp[−θl(λ− µl − Λ)2] (7.3)
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2. For µl − (Λ/2) ≤ λ ≤ λmax:

gl(λ; kl, θl, µl) = kl exp[−θl(λ− µl)2] (7.4)

For the spectral power distributions, the restriction on the scaling is simply kl ≥ 0 since

the intensity of the light is not limited. We will refer to triples (km, σm, µm) and (kl, σl, µl)

as the KSM coordinates of the reflectance and light, respectively.

7.4.1 G2M Method

Given the color signal specified in CIE XYZ (or cone LMS) coordinates of light reflected

from a surface and the spectra of the first (F) and second (S) illuminants, the first step in

the original GM method is to determine the KSM coordinates of the wraparound Gaussian

reflectance that is metameric (i.e., of identical XYZ) to the given surface under F. This

metameric reflectance spectrum is relit–in other words, multiplied by the full spectrum

of S–and the color signal under S is then calculated using the CIE XYZ color matching

functions.

The proposed new method models the surface reflectance as well as both illuminants

using wraparound Gaussian metamers and will be denoted G2M.

1. determine the KSM coordinates (kF , σF , µF ), using a fast interpolation method, of

the Gaussian illuminant spectrum that is metameric to F.

2. find the KSM coordinates (km, σm, µm) of the Gaussian reflectance that under Gaus-

sian illuminant (kF , σF , µF ) has the same XYZ as the given surface under F.

3. find the Gaussian illuminant with coordinates (kS , σS , µS) that is metameric to S.

4. relight the Gaussian reflectance (km, σm, µm) using the Gaussian illuminant (kS , σS , µS)

and determine its resulting XYZ color signal.

7.5 Experimental Results

The first step in the GM color prediction process is to compute a KSM descriptor for each

XYZ. The speed of calculating the KSM coordinates depends on the required precision.

There is a trade-off between precision and speed. Once the interpolation table is built for
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(c) σ map 

 

(d) μ map 

Fig. 3. KSM colour descriptor  maps for the Fruits and Flowers scene under D65. (a) sRGB rendering; (b) map of k values; (c) map of σ values; (d) map of μ 
values.  Panel (d) illustrates the correspondence between μ and hue.

Although the lower average prediction errors obtained using GM 
prediction shown in  Table 1 are one advantage, a second important 
advantage, as mentioned above, is that the GM predictions are guaranteed to 
be within the metamer set so long as the KSM coordinates have K ≤ 1 since 
that condition ensures that the resulting wraparound Gaussian is a reflectance 
function. For a very few colour signals the KSM coordinates have K > 1. 
For any such case, we use a rectangular metamer function from 
Logvinenko’s original object colour atlas in place of a wraparound Gaussian. 
Of the 1600 colour signals, the KSM coordinates of only 39 of them had K 
> 1. For these, 39 cases rectangular metamer functions were used in place of 
wraparound Gaussian functions. Since the atlas is complete, we are 
guaranteed that there will always be a rectangular reflectance function that is 
metameric to any given colour signal. As a result, all colour signal 
predictions are guaranteed to be feasible in that they lie within the metamer 
mismatch volume of the given colour signal.  

In contrast, von Kries scaling can lead to predictions of colour stimuli that 
fall outside the metamer mismatch volume. As an example of the type of 
large errors von Kries can lead to, consider the illuminant and reflectance 
spectra shown in Figure 4. The illuminants are Logvinenko and 
Tokunaga’s  [20] red (R2) and neutral (N) as shown in Figure 5 along with 
the other spectra they used. Under the second illuminant (N) the true XYZ is 
(34.90, 22.24, 7.30), while von Kries predicts (58.52, 70.03, 10.13), 
Bradford predicts (71.94, 43.99, 49.62) and GM predicts (39.79, 30.09, 
6.20), with corresponding CIEDE2000 errors of 56.51, 26.36, and 14.96 ΔE.  

As another test of the proposed GM prediction method versus von Kries 
and Bradford, we used the 20 Munsell papers used in the asymmetric 
matching experiments of Logvinenko et al.  [20] under their green and 
neutral (“white”) illuminants. The spectra of both these illuminants are 
plotted in Figure 5. The Munsell designators of the 20 papers they are: 5 R 
4/14, 10 R 5/16, 5 YR 7/14, 10 YR 7/14, 5 Y 8/14, 10 Y 8.5/12, 5 GY 7/12, 
10 GY 6/12, 5 G 5/10, 10 G 5/10, 5 BG 6/10, 10 BG 5/10, 5 B 5/10, 10 B 
5/12, 5 PB 5/12, 10 PB 4/12, 5 P 4/12, 10 P 4/12, 5 RP 5/12, 10 RP 5/14. 

As another test of GM method of predicting the colour signal under a 
change of illuminant, we considered the problem of predicting what the 
image of the Fruit and Flowers scene (from  [16]) under D65 (see  Fig. 3a) 
would be under illuminants A and F11. In other words, given the XYZ 
values for each pixel’s reflectance under D65, predict what the 
corresponding XYZ values will be under A and F11. Once again we 
compare the GM prediction (only 1 pixel had K > 1) to that of von Kries and 

Bradford. Figure 7 shows a pixel-by-pixel map indicating when one of the 
methods outperforms the other by more than 2 ΔE. 

As a final test of GM prediction in comparison to von Kries and Bradford 
prediction, we used all 30 non-identical pairs of the 6 Logvinenko and 
Tokunaga’s  [20] illuminants shown in Figure 5. Table 3 lists the mean, 
median and 95th percentile CIEDE2000 colour differences. The Wilcoxon 
Sign Test  [21] finds this performance difference to be significant at the 95% 
confidence level. 

Because of the potentially large extent of metamer mismatching  [22], it is 
inevitable that GM predictions can be poor some of the time.  The illuminant 
pair and reflectance shown in Figure 8 provide one example.  Under the 
second illuminant this reflectance has XYZ = (123, 53, 0.1), whereas 
wraparound Gaussian predicts (31, 14, 0.1). This corresponds to a colour 
difference of 37 ΔE between the GM prediction and the true value, however, 
the von Kries and Bradford prediction differences are even worse at 59 and 
55 ΔE, respectively.  

 

Table 1. Comparison of colour signal prediction accuracy for 
the 1600 Munsell reflectance spectra using the proposed GM 
method, von Kries scaling, and the Bradford transform in 
terms of CIEDE2000 for a change in illuminant from CIE 
D65 to CIE A and CIE F11.  

 
To Method Median Mean 95th  

Percentile 
A GM 0.95 1.18 2.84 
 von Kries 3.70 3.70 6.91 
 Bradford 1.80 2.01 4.37 
F11 GM 1.43 1.75 4.16 
 von Kries 2.04 2.62 6.97 
 Bradford 1.49 1.87 5.17 

Table 7.1: Comparison of color signal prediction accuracy for the 1600 Munsell reflectance
spectra using the proposed GM method, von Kries scaling, and the Bradford transform in
terms of CIEDE2000 for a change in illuminant from CIE D65 to CIE A and CIE F11.

a given illumination, computing the KSM for an XYZ requires approximately 0.01 seconds

on a 2.66 GHz Quad-Core Intel Mac Pro.

7.5.1 GM Color Signal Prediction Results

In order to compare the accuracy of the color signal predictions made by the proposed

method to those of von Kries scaling or those involving the Bradford transform, as a first

test we synthesize the CIE XYZ tristimulus values of the 1600 Munsell chips [94] under CIE

D65 using the CIE 1931 color matching functions [38] and then predict the CIE XYZ values

under a second illuminant (CIE F11 or CIE A) using the proposed method, von Kries scaling

and the Bradford transform [72]. For the von Kries scaling, the XYZ color signal is first

transformed to cone coordinates using the Hunt-Pointer-Estevez transformation [106? ],

and then von Kries scaling is applied. The Hunt-Pointer-Estevez step is part of the RLAB

color appearance model [82]. The predictions of the three methods are compared to the

computed ground-truth values under the second illuminant (i.e., XYZ of the actual Munsell

chip reflectance spectra multiplied by the illuminant spectrum). The results for a change

in illuminant from CIE D65 to CIE A and CIE F11 are tabulated in Table 7.1 and show

that color signal prediction using Gaussian metamers is better than using either von Kries

scaling or the Bradford transform in terms of the CIEDE2000 color difference measure.

Although the lower average prediction errors obtained using GM prediction shown in

Table 7.1 are one advantage, a second important advantage, as mentioned above, is that the

GM predictions are guaranteed to be within the metamer set so long as the KSM coordinates

have K ≤ 1 since that condition ensures that the resulting wraparound Gaussian is a

reflectance function. For a very few color signals the KSM coordinates have K > 1. For any
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Figure 7.1: Reflectance and illuminant pair example for which von Kries fails. Black curve
is the reflectance of Munsell chip 7.5 R 5/16. Blue curve is the corresponding wraparound
Gaussian metamer for that Munsell chip. The dashed red curve and the grey curve are the
relative spectral power distributions of the first (R2) and second (N) illuminants.
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such case, we use a rectangular metamer function from Logvinenko’s original object color

atlas in place of a wraparound Gaussian. Of the 1600 color signals, the KSM coordinates of

only 39 of them had K > 1. For these 39 cases, rectangular metamer functions were used

in place of wraparound Gaussian functions. Since the atlas is complete, we are guaranteed

that there will always be a rectangular reflectance function that is metameric to any given

color signal. As a result, all color signal predictions are guaranteed to be feasible in that

they lie within the metamer mismatch volume of the given color signal.

In contrast, von Kries scaling can lead to predictions of color stimuli that fall outside the

metamer mismatch volume. As an example of the type of large errors von Kries can lead

to, consider the illuminant and reflectance spectra shown in Fig. 7.1. The illuminants are

Logvinenko and Tokunaga’s [9] red (R2) and neutral (N). Under the second illuminant (N)

the true XYZ is (34.90, 22.24, 7.30), while von Kries predicts (58.52, 70.03, 10.13), Bradford

predicts (71.94, 43.99, 49.62) and GM predicts (39.79, 30.09, 6.20), with corresponding

CIEDE2000 errors of 56.51, 26.36, and 14.96 ∆E.

As another test of the proposed GM prediction method versus von Kries and Bradford,

similar to Chapter 3, we used the 20 Munsell papers used in the asymmetric matching

experiments of Logvinenko et al. [9] under their green and neutral (“white) illuminants.

The Munsell designators of the 20 papers are: 5 R 4/14, 10 R 5/16, 5 YR 7/14, 10 YR 7/14,

5 Y 8/14, 10 Y 8.5/12, 5 GY 7/12, 10 GY 6/12, 5 G 5/10, 10 G 5/10, 5 BG 6/10, 10 BG

5/10, 5 B 5/10, 10 B 5/12, 5 PB 5/12, 10 PB 4/12, 5 P 4/12, 10 P 4/12, 5 RP 5/12, 10 RP

5/14.

As another test of GM method of predicting the color signal under a change of illuminant,

we considered the problem of predicting what the image of the Fruit and Flowers scene (from

[94]) under D65 (see Fig. 5.7.a) would be under illuminants A and F11. In other words,

given the XYZ values for each pixel’s reflectance under D65, predict what the corresponding

XYZ values will be under A and F11. Once again we compare the GM prediction (only 1

pixel had K > 1) to that of von Kries and Bradford. Fig. 7.3 shows a pixel-by-pixel map

indicating when one of the methods outperforms the other by more than 2 ∆E.

As a final test of GM prediction in comparison to von Kries and Bradford prediction, we

used all 30 non-identical pairs of the 6 Logvinenko and Tokunaga’s [9] illuminants shown in

Fig. 3.2. Table 7.3 lists the mean, median and 95th percentile CIEDE2000 color differences.

The Wilcoxon Sign Test [107] finds this performance difference to be significant at the 95%

confidence level.
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Table 7.2: Comparison of the color signal predictions made by the GM, Bradford and von
Kries methods in terms of the CIEDE2000 error statistics for the 20 chromatic stimulus
papers used in Logvinenko’s color matching experiment [9] when the illuminant changes
from G to N. Paper number corresponds to the order in the sequential list of Munsell
designators given in the text.

Because of the potentially large extent of metamer mismatching [31], it is inevitable that

GM predictions can be poor some of the time. The illuminant pair and reflectance shown

in Fig. 7.4 provide one example. Under the second illuminant this reflectance has XYZ =

(123, 53, 0.1), whereas wraparound Gaussian predicts (31, 14, 0.1). This corresponds to a

color difference of 37 ∆E between the GM prediction and the true value; however, the von

Kries and Bradford prediction differences are even worse at 59 and 55 ∆E, respectively.

7.5.2 Tests Including G2M

We compare the prediction results using GM and G2M to those of CIECAT02, which is

a chromatic adaptation transform and the first step in the CIECAM02 color appearance
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Figure 7.2: Color signal prediction for the 20 Munsell papers when the illuminant is changed
from G (green) to N (neutral). Top left GM, top right von Kries, and bottom Bradford. Plot
is of CIE xy-chromaticities. An arrow tail indicates the actual chromaticity of the paper
under the neutral illuminant and the corresponding arrow head its predicted chromaticity.
The red line curve simply links the arrow tails for clarity and is the same in all 3 panels.
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Figure 7.3: Maps of the difference in CIEDE2000 error of the color signals predicted by
GM versus Bradford for an illuminant change from CIE D65 to CIE A (left) and to CIE
F11 (right). White indicates that the GM error is at least 2 ∆E less than von Kries; grey
indicates the absolute error difference between them is less than 2 ∆E; black indicates a
von Kries error at least 2 ∆E less than that of GM. Results for von Kries are qualitatively
similar to those of Bradford and are not shown here.

  
 

 

Fig. 6. Colour signal prediction for the 20 Munsell papers when the illuminant is changed from G (green) to N (neutral).  Left  GM, center von Kries, and right Bradford. 
Plot is of CIE xy-chromaticities. An arrow tail indicates the actual chromaticity of the paper under the neutral illuminant and the corresponding arrow head its predicted 
chromaticity. The red line curve simply links the arrow tails for clarity and is the same in all 3 panels. 

 

 
Fig. 7. Maps of the difference in CIEDE2000 error of the colour signals predicted by GM versus Bradford for an illuminant change from CIE D65 to CIE A (left) and to 

CIE F11 (right). White indicates that the GM error is at least 2 ΔE less than von Kries; grey indicates the absolute error difference between them is less than 2 ΔE; black 
indicates a von Kries error at least 2 ΔE less than that of GM. Results for von Kries are qualitatively similar to those of Bradford and are not shown here.  

Table 3.   CIEDE2000 colour difference statistics taken over all Munsell reflectances and 30 illuminant pairs.  

Median ΔE Mean ΔE 95th percentile ΔE 

GM von Kries Bradford GM von Kries Bradford GM von Kries Bradford 

3.50 9.16 8.08 5.64 12.58 10.91 17.88 35.49 33.82 

 
Table 7.3: CIEDE2000 color difference statistics taken over all Munsell reflectances and 30
illuminant pairs.
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Figure 7.4: Reflectance and illuminant pair for which GM prediction yields a poor result.
Black curve is the spectral reflectance of (Munsell 2.5 R 4/14). Green curve is the rela-
tive spectral power distribution of G, the first illuminant. Dashed red curve is the second
illuminant, R2. Blue curve is the wraparound Gaussian metamer to the reflectance under
G.
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 3

min maxm     and positive m , we have a Gaussian-like 

reflectance function. 

Now consider also the three-parameter set of illuminant 
functions of the same form:  

If ( ) / 2max minl    : 

For / 2min l     
    

 
        (5) 

 
 

For / 2 maxl          

     (6) 

 

If ( ) / 2max minl     we have two cases:   

For / 2min l          

 
(7) 

 

For / 2 maxl          

 
      (8) 

Note that for the spectral power distributions the restriction is 
on the scaling is simply kl >= 0 since the intensity of the light is 
not limited. We will refer to triples (km, σm, μm) and (kl, σl, μl) as the 
KSM coordinates of the reflectance and light, respectively. 

Proposed Method 
 
Given the colour signal specified in CIE XYZ (or cone LMS) 

coordinates of light reflected from a surface and the spectra of the 
first (F) and second (S) illuminants, the first step in the original 
GM method is to determine the KSM coordinates of the 
wraparound Gaussian reflectance using a fast interpolation 
method  [10][10] that is metameric (i.e., of identical XYZ) to the 
given surface under F.  This metameric reflectance spectrum is 
relit—in other words, multiplied by the full spectrum of S—and 
the colour signal under S is then calculated using the 
CIE 1931 x y z  colour matching functions.  

The proposed new method models the surface reflectance as 
well as both illuminants using wraparound Gaussian metamers and 
will be denoted G2M. The first step in the G2M method is to 
determine the KSM coordinates (kF, σF, μF), again using the fast 
interpolation method, of the Gaussian illuminant spectrum that is 
metameric to F. The second step is to find the KSM coordinates 
(km, σm, μm) of the Gaussian reflectance that under Gaussian 
illuminant (kF, σF, μF) has the same XYZ as the given surface under 
F. The third step is to find the Gaussian illuminant with 
coordinates (kS, σS, μS) that is metameric to S. The fourth step is to 
relight the Gaussian reflectance (km, σm, μm) using the Gaussian 
illuminant (kS, σS, μS) and determine its resulting XYZ colour 
signal. 

Tests  
 
We compare the prediction results using GM and G2M to 

those of CIECAT02, which is a chromatic adaptation transform 
and the first step in the CIECAM02 colour appearance 
model  [4][4]. The three methods’ predictions are compared to the 
computed ground-truth values under the second illuminant (i.e., 
XYZ of the actual reflectance spectra multiplied by the spectrum 
of the second illuminant).  

Munsell Papers under CIE Illuminants 
 
In the first test we consider the set of 1600 Munsell 

papers  [11][11] under CIE D50 as the first illuminant and CIE A 
and CIE D65 as two different second illuminants. The accuracy of 
each colour signal prediction is measured in terms of the 
CIEDE2000 colour difference measure. Table 1 lists the results 
where it can be seen that the GM and G2M predictions are better 
than those of CIECAT02 using complete adaptation. Although the 
performance of G2M is, as expected, slightly worse than that of 
GM, the difference is surprisingly small given that in G2M the 
spectra of both illuminants are replaced with wraparound 
Gaussians. 
 
Table 1: CIEDE2000 prediction errors of CIECAT02, GM 
and G2M for the case of the 1600 Munsell papers with 
the illuminant changing from CIE D50 to CIE A and to 
CIE D65. 
 

To Method Median Mean 
95th  

Percentile 

A 
GM 0.70 0.86 2.06 
G2M 0.80 0.97 2.22 

CAT02 1.53 1.77 4.04 

D65 
GM 0.28 0.37 0.98 
G2M 0.33 0.40 0.99 

CAT02 0.40 0.47 1.08 
 

Although GM and G2M make better predictions than 
CIECAT02, an additional advantage of these methods is that their 
predictions are guaranteed to be within the metamer set so long as 
the KSM coordinates have km ≤ 1 since that condition ensures that 
the resulting wraparound Gaussian is a reflectance function (i.e., 
strictly within the range 0 to 1). For a very few colour signals the 
KSM coordinates have km > 1. For any such case, we use a 
rectangular metamer function from Logvinenko’s original object 
colour atlas  [12][12] in place of a wraparound Gaussian. Of the 
1600 colour signals of the Munsell papers under D50, GM found 
the KSM coordinates of only 44 of them had km > 1 and G2M 
found only 43. For these few cases rectangular metamer functions 
were used in place of wraparound Gaussian functions. Since the 
rectangular reflectance atlas is complete, we are guaranteed that 
there will always be a rectangular reflectance function that is 
metameric to any given colour signal. As a result, all colour signal 
predictions are guaranteed to be feasible in that they lie within the 
metamer mismatch volume of the given colour signal.  

 

2
( ; , , ) exp[ ( ) ]g k kl l l l l l l       

2
( ; , , ) exp[ ( ) ]g k kl l l l l l l l        

2
( ; , , ) exp[ ( ) ]g k kl l l l l l l        

2
( ; , , ) exp[ ( ) ]g k kl l l l l l l       

Table 7.4: CIEDE2000 prediction errors of CIECAT02, GM and G2M for the case of the
1600 Munsell papers with the illuminant changing from CIE D50 to CIE A and to CIE D65.

model [59]. The three methods’ predictions are compared to the computed ground-truth

values under the second illuminant (i.e., XYZ of the actual reflectance spectra multiplied

by the spectrum of the second illuminant).

7.5.2.1 Munsell Papers under CIE Illuminants

In the first test we consider the set of 1600 Munsell papers [94] under CIE D50 as the first

illuminant and CIE A and CIE D65 as two different second illuminants. The accuracy of

each color signal prediction is measured in terms of the CIEDE2000 color difference measure.

Table 7.4 lists the results where it can be seen that the GM and G2M predictions are better

than those of CIECAT02 using complete adaptation. Although the performance of G2M is,

as expected, slightly worse than that of GM, the difference is surprisingly small given that

in G2M the spectra of both illuminants are replaced with wraparound Gaussians.

Although GM and G2M make better predictions than CIECAT02, an additional advan-

tage of these methods is that their predictions are guaranteed to be within the metamer

set so long as the KSM coordinates have km ≤ 1.Of the 1600 color signals of the Munsell

papers under D50, GM found the KSM coordinates of only 44 of them had km > 1 and

G2M found only 43. For these few cases rectangular metamer functions were used in place

of wraparound Gaussian functions.

7.5.2.2 Chromatic Illuminants and Varying Chroma/Value

As a further test of the proposed G2M method of color signal prediction, we consider the

set of illuminants Logvinenko and Tokunaga used in their asymmetric color matching ex-

periment [9]. The spectra of these illuminants are shown in Fig. 3.2.

121



We considered 20 different hues from the Munsell Book of Color that sample the full hue

circle. They are: 5 R, 10 R, 5 YR, 10 YR, 5 Y, 10 Y, 5 GY, 10 GY, 5 G, 10 G, 5 BG, 10

BG, 5 B, 10 B, 5 PB, 10 PB, 5 P, 10 P, 5 RP, and 10 RP. To evaluate the effect of Munsell

chroma and value on the predictions, we test the three methods at these hues while varying

the chroma over 2, 4, 6, and 8, and value over 5 and 7.

For a change of illuminant from G, B, Y, or R1 to N, Table 7.5 gives the median and

average CIEDE2000 error in the predictions taken across the 20 Munsell hues at a given

value and chroma. It can be seen that both GM and G2M methods consistently outperform

CIECAT02.

To assess the results visually, consider the example of G to N prediction. Fig. 7.5 plots

the GM, G2M, and CIECAT02 predictions in chromaticity space for the 20 hues at value

7, and chroma 8. The average error over the 20 papers in this case is 8.82 CIEDE2000 for

GM, 9.72 for G2M, and 15.54 for CIECAT02.

In terms of how the prediction error varies with chroma, Fig. 7.6 plots the median error

for the same 20 hues at value 7, with the chroma varying over 2, 4, 6, and 8. The illuminant

change is from G to N. The error tends to increase with increasing chroma for all three

methods; however, the GM and G2M errors are significantly less than those of CIECAT02

in all cases.

7.6 Discussion

A new method, called the Gaussian Metamer (GM) method, is proposed for predicting what

a color signal (e.g., CIE XYZ, camera RGB, or cone LMS) observed from a surface under

a first light will be when the same surface is lit instead by a second light. The GM method

first determines a metameric wraparound Gaussian reflectance to the color signal under the

first light. Second, it computes what the color signal of that metameric reflectance would

be under the second light. The color signal determined for the second light is used as its

prediction of what the color signal under the first light will be under the second light.

Tests show that the GM method outperforms other existing prediction methods such

as von Kries scaling or the Bradford transformation. To be fair, those methods are used

as the chromatic adaptation transform step in many color appearance models [82] and

their goal is generally to predict the ‘corresponding colors’ subjects see, and these do not

necessarily correspond to the actual color stimuli under the second illuminant that are the
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Table 2: The median and average prediction error in CIEDE2000 for the change from each of the 5 different chromatic illuminants to 
N (‘white’). Each row is for papers of the 20 Munsell hues at the specified value and chroma. The last row reports the mean of the 
values in the corresponding column. 

 

First 
Illuminant 

Munsell Attribute Median CIEDE2000 Mean CIEDE2000 
Value Chroma GM G2M CAT02  GM G2M CAT02 

G 5 2 2.13 2.94 5.89 2.83 4.04 5.99 
G 5 4 4.93 5.79 10.31 4.42 6.13 9.90 
G 5 6 6.54 7.50 12.55 6.02 7.59 12.38 
G 5 8 5.44 8.56 14.22 6.94 8.61 13.89 
G 7 2 2.30 2.49 7.18 3.11 3.56 6.33 
G 7 4 6.03 5.50 12.14 6.38 7.11 11.13 
G 7 6 6.51 6.88 14.81 7.65 8.40 13.30 
G 7 8 6.96 7.30 17.62 8.82 9.72 15.54 
B 5 2 0.22 0.69 0.57 0.31 0.75 0.71 
B 5 4 0.42 1.03 1.10 0.50 1.15 1.19 
B 5 6 0.56 1.26 1.45 0.68 1.42 1.51 
B 5 8 0.66 1.38 1.87 0.74 1.61 1.83 
B 7 2 3.88 6.67 6.57 5.15 6.44 7.63 
B 7 4 4.19 9.47 11.35 6.46 9.79 12.67 
B 7 6 6.18 11.33 15.69 7.63 11.72 15.44 
B 7 8 7.15 12.67 18.74 8.80 13.19 17.87 
Y 5 2 2.13 2.94 5.89 2.83 4.04 5.99 
Y 5 4 4.93 5.79 10.31 4.42 6.13 9.90 
Y 5 6 6.54 7.50 12.55 6.02 7.59 12.38 
Y 5 8 5.44 8.56 14.22 6.94 8.61 13.89 
Y 7 2 2.30 2.49 7.18 3.11 3.56 6.33 
Y 7 4 6.03 5.50 12.14 6.38 7.11 11.13 
Y 7 6 6.51 6.88 14.81 7.65 8.40 13.30 
Y 7 8 6.96 7.30 17.62 8.82 9.72 15.54 
R1 5 2 0.22 0.69 0.57 0.31 0.75 0.71 
R1 5 4 0.42 1.03 1.10 0.50 1.15 1.19 
R1 5 6 0.56 1.26 1.45 0.68 1.42 1.51 
R1 5 8 0.66 1.38 1.87 0.74 1.61 1.83 
R1 7 2 3.88 6.67 6.57 5.15 6.44 7.63 
R1 7 4 4.19 9.47 11.35 6.46 9.79 12.67 
R1 7 6 6.18 11.33 15.69 7.63 11.72 15.44 
R1 7 8 7.15 12.67 18.74 8.80 13.19 17.87 

Mean - - 4.01 5.72 9.51 4.78 6.33 9.21 

 

Fig. 3. Different methods’ median CIEDE2000 prediction error as a 
function of Munsell chroma (2, 4, 6, 8) at value 7 for a change of 
illuminant from G to N. The GM, G2M, and CIECAT02 results are 
plotted in solid green, dotted red, and dashed blue, respectively. 
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Table 7.5: The median and average prediction error in CIEDE2000 for the change from
each of the 5 different chromatic illuminants to N (‘white’). Each row is for papers of the
20 Munsell hues at the specified value and chroma. The last row reports the mean of the
values in the corresponding column.
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Figure 7.5: color signal prediction for the 20 Munsell papers (of chroma 8 and value 7)
when the illuminant is changed from G (green) to N (neutral). Top left GM, right G2M
and bottom CIECAT02. Plot is in CIE xy-chromaticity space. An arrow tail indicates the
actual chromaticity of the paper under the neutral illuminant with the corresponding arrow
head its predicted chromaticity. The red and green curves simply connect all the arrow tails
and arrow heads for clarity. The red curves are the same in all 3 panels.
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Figure 7.6: Different methods’ median CIEDE2000 prediction error as a function of Munsell
chroma (2, 4, 6, 8) at value 7 for a change of illuminant from G to N. The GM, G2M, and
CIECAT02 results are plotted in solid green, dotted red, and dashed blue, respectively.
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prediction goal discussed here. Fairchild [82, 104] investigated spectral prediction as an

alternative chromatic adaption transform with some positive tentative results. However,

his method assumes complete knowledge of the reflectance spectrum and both illuminant

spectra. A question for further study is to investigate what correlation, if any, there is

between corresponding colors and the color stimulus predictions made by the proposed

Gaussian metamer method. Unfortunately, this is not as simple a test as it sounds because

the existing LUTCHI corresponding color data includes only the tristimulus values of the

illuminants, not their complete spectral power distributions.

Underlying the GM method is Logvinenko’s object color atlas. The KSM atlas coor-

dinates specify a wraparound Gaussian. For a given surface, the atlas coordinates will be

roughly the same under different illuminants. To the extent that they are not the same is

due to the unavoidable, metamerism-induced phenomenon Logvinenko [49] terms the color

stimulus shift. The proposed GM method relies on the assumption that the color stimulus

shift (change in atlas coordinates) will generally be small, and therefore the color signal un-

der the second illuminant can be predicted simply to be the color signal that keeps the KSM

atlas coordinates under the second illuminant to be the same as under the first illuminant.

The fact that our testing showed that the GM predictions are quite accurate is evidence

that this assumption is justified.

Subsequently, the G2M method was proposed that eliminates the requirement of the

previous Gaussian Metamer (GM) method that full spectral power distributions of the two

illuminants be known. Although the tests show that the accuracy of G2M is somewhat less

than that of GM, it is still significantly more accurate than CIECAT02 as measured in terms

of CIEDE2000 color differences. G2M shares with GM the fact that, unlike von Kries based

prediction methods, all of its predictions are guaranteed to represent a physically realizable

change in color signal.
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Chapter 8

Conclusion and Future Directions

There are several important areas where this study makes original contributions. In light

of metamer mismatching, I carried out a set of experiments, providing the foundation for a

larger project titled “Rethinking Colour Constancy” [1] where the impact of metamer mis-

matching on color constancy is explored. This project proved that metamer mismatching is

so huge that undermines the idea of color constancy in its conventional terms. In particular,

based on Logvinenko’s idea, in some illumination conditions, we found 20 Munsell papers

that, under the first illumination, all arise the same color as flat grey, but, under the second

illumination, disperse into a wide range of saturated colors making a full hue circle.

Later, metamer mismatch volume was proposed to be employed as a measure of color

rendering ability of illuminants. With the new definition, illuminants that result in a smaller

mismatch volume, when a change is occurred from the given illuminant to the ideal light, will

have a better index. The idea behind this new measure is that a good illuminant spectrum

must be able to render different reflectance samples faithfully compared to the ideal smooth

spectra. With classical color rendering indices that are based on the rendering accuracy of

a limited number of reflectance samples, due to metamer mismatching, the light spectrum

could be optimized only for those samples to get a better index. However, with the new

method, the rendering index is not based on a limited set and cannot be tuned for only

those samples. The preliminary results substantiate the effectiveness of the new measure,

compared to various measures presented in the literature. However, it is a topic of future

research and further experiments.

Returning to the subject of object colors, where the main issue with color description is

the illumination variation, we demonstrated that although the common color spaces such as
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CIELAB and related spaces in the literature may work well for a fixed illuminant, they can

lead to unstable results when the illuminant is changed. To be able to describe the object-

colors robustly, we proposed novel hue, chroma, and lightness descriptors that are robust to

illumination changes. We defined the new descriptors based on the wraparound Gaussians

that Logvinenko suggests and investigated them in three aspects: the gamut of colors these

Gaussians can represent, how well these new descriptors correlate with the appearance

attributes in different datasets, and how stable the new correlates across different illuminants

are. Experiments proved that the new Gaussian based appearance descriptors correlate with

the hue descriptors in different datasets as well as or better than CIECAM02 appearance

model. In terms of stability under different illuminants, the Gaussian-based descriptors

are remarkably more stable than the descriptors defined in CIECAM02 appearance model.

These new descriptors provide a foundation for the specification of the hue, lightness and

chroma dimensions of object colors under average viewing surround conditions. As a new

research direction, a new color difference metric in this three-dimensional color space can

be developed.

After developing a robust hue-chroma-value description of colors, in the next step, the

problem of predicting how the object-color signal changes when the lighting alters was

investigated. A new method, called the Gaussian Metamer (GM) method, was proposed

for predicting what a color signal observed from a surface under a first light will be when

the same surface is lit instead by a second light. This method is then improved for a more

limited case when we only know the color of the illuminants and not their spectral power

distribution (G2M). Although the tests show that the accuracy of G2M is somewhat less

than that of GM, it is still significantly more accurate than CIECAT02 as measured in terms

of CIEDE2000 color differences. Perhaps more importantly, for both G2M and GM, unlike

von Kries based prediction methods, predictions are guaranteed to represent a physically

realizable change in object-color signal.

In summary, this thesis aimed at first criticizing the conventional approaches of color

description, and then laying the foundation to robustly describe the object colors under

varying illumination conditions. A robust hue-chroma-value description of object colors was

built up, and novel methods to perform the prediction of the colors when lighting alters

were developed.
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[42] GÜNTER WYSZECKI. Evaluation of metameric colors. JOSA, 48(7):451–452, 1958.
12

[43] Jozef B Cohen and William E Kappauf. Metameric color stimuli, fundamental
metamers, and wyszecki’s metameric blacks. The American journal of psychology,
pages 537–564, 1982. 12

[44] Jozef B Cohen and William E Kappauf. Color mixture and fundamental metamers:
Theory, algebra, geometry, application. The American journal of psychology, pages
171–259, 1985. 12

[45] Scott A Burns, Jozef B Cohen, and Edward N Kuznetsov. Multiple metamers: preserv-
ing color matches under diverse illuminants. Color Research & Application, 14(1):16–
22, 1989. 12

[46] K. Takahama and Y. Nayatani. New method for generating metameric stimuli of
object colors. Journal of the Optical Society of America, 62:1516–1520, 1972. 13

[47] N. Ohta. Generating metameric object colors. Journal of the Optical Society of
America, 65:1081–1082, 1975. 13

[48] Philipp Urban and Rolf-Rainer Grigat. Metamer density estimated color correction.
Signal, image and video processing, 3(2):171–182, 2009. 13

[49] Alexander D Logvinenko. An object-color space. Journal of Vision, 9(11):5, 2009. 14,
17, 18, 21, 73, 82, 95, 110, 111, 126

[50] Erwin Schrödinger. Theorie der pigmente von grösster leuchtkraft. Annalen der
Physik, 367(15):603–622, 1920. 14

[51] V. V. Maximov. Transformatsii tsveta pri izmenenii osvescheniya. Nauka, Moscow,
1984. 14

[52] A. D. Logvinenko. Object-colour manifold. International Journal of Computer Vision,
101(1):143–160, 2013. 17, 19, 20, 30, 73, 94

[53] Michael H Brill and Graham Finlayson. Illuminant invariance from a single reflected
light. Color Research & Application, 27(1):45–48, 2002. 20, 73, 74, 111

132



[54] Yoko Mizokami and Michael Webster. Are gaussian spectra a viable perceptual as-
sumption in color appearance? Journal of Vision, 10(7):399–399, 2010. 73, 74, 78,
94, 98, 111

[55] Donald IA MacLeod and Jürgen Golz. A computational analysis of colour constancy.
Colour perception: Mind and the physical world, pages 205–242, 2003. 20, 73, 74, 111

[56] Ming Ronnier Luo and Changjun Li. Ciecam02 and its recent developments. In
Advanced Color Image Processing and Analysis, pages 19–58. Springer, 2013. 21, 100,
101

[57] M Ronnier Luo, Guihua Cui, and B Rigg. The development of the cie 2000 colour-
difference formula: Ciede2000. Color Research & Application, 26(5):340–350, 2001.
22

[58] MR Luo and RWG Hunt. The structure of the cie 1997 colour appearance model
(ciecam97s). Color Research & Application, 23(3):138–146, 1998. 22

[59] Nathan Moroney, Mark D Fairchild, Robert WG Hunt, Changjun Li, M Ronnier Luo,
and Todd Newman. The ciecam02 color appearance model. In Color and Imaging
Conference, volume 2002, pages 23–27. Society for Imaging Science and Technology,
2002. 22, 73, 121

[60] Johannes von Kries. Chromatic adaptation. Festschrift der Albrecht-Ludwigs-
Universität, pages 145–158, 1902. 24, 111

[61] David H Brainard and Brian A Wandell. Asymmetric color matching: how color
appearance depends on the illuminant. JOSA A, 9(9):1433–1448, 1992. 24

[62] Gerhard West and Michael H. Brill. Necessary and sufficient conditions for von
kries chromatic adaptation to give color constancy. Journal of Mathematical Biol-
ogy, 15:249–258, 1982.

[63] Graham Finlayson, Mark Drew, and Brian Funt. Color constancy: Generalized diago-
nal transforms suffice. Journal of the Optical Society of America A,, 11(11):3011–3020,
1994. 26

[64] James A Worthey and Michael H Brill. Heuristic analysis of von kries color constancy.
JOSA A, 3(10):1708–1712, 1986. 24, 26

[65] Gerhard West and Michael H Brill. Necessary and sufficient conditions for von
kries chromatic adaptation to give color constancy. Journal of Mathematical Biol-
ogy, 15(2):249–258, 1982.

[66] Michael H Brill. Minimal von kries illuminant invariance. Color Research & Applica-
tion, 33(4):320–323, 2008. 26

133



[67] Graham Finlayson, Mark Drew, and Brian Funt. Spectral sharpening: Sensor trans-
formations for improved color constancy,. Journal of Optical Society of America A,
11(5):1553–1563, May 1994. 26, 73

[68] Graham D Finlayson and Brian V Funt. Coefficient channels: Derivation and re-
lationship to other theoretical studies. Color Research & Application, 21(2):87–96,
1996.

[69] Kobus Barnard, Florian Ciurea, and Brian Funt. Sensor sharpening for computational
color constancy. JOSA A, 18(11):2728–2743, 2001. 26

[70] Graham D Finlayson, Mark S Drew, and Brian V Funt. Color constancy: Enhancing
von kries adaptation via sensor transformation, spie. 1993. 26

[71] Mark D Fairchild. A revision of ciecam97s for practical applications. Color Research
& Application, 26(6):418–427, 2001. 26

[72] KM Lam. Metamerism and colour constancy. PhD thesis, University of Bradford,
1985. 114

[73] Changjun Li, M Ronnier Luo, Bryan Rigg, and Robert WG Hunt. Cmc 2000 chromatic
adaptation transform: Cmccat2000. Color Research & Application, 27(1):49–58, 2002.
26

[74] Graham D Finlayson, Steven D Hordley, Cheng Lu, and Mark S Drew. On the
removal of shadows from images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(1):59–68, 2006. 27

[75] Mark S Drew, Graham D Finlayson, and Steven D Hordley. Recovery of chromaticity
image free from shadows via illumination invariance. In IEEE Workshop on Color
and Photometric Methods in Computer Vision, ICCV03, pages 32–39, 2003.

[76] Graham D Finlayson, Mark S Drew, and Cheng Lu. Intrinsic images by entropy
minimization. In Computer Vision-ECCV 2004, pages 582–595. Springer, 2004. 27

[77] Graham D Finlayson, Steven D Hordley, and Mark S Drew. Removing shadows from
images. In Computer VisionECCV 2002, pages 823–836. Springer, 2002. 27

[78] A. D. Logvinenko, B. Funt, and C. Godau. Metamer mismatching. IEEE Trans. on
Image Processing, 23(1):34 – 43, 2014. 30, 39

[79] Johannes Von Kries. Influence of adaptation on the effects produced by luminous
stimuli. In David L. MacAdam, editor, Sources of color science, pages 120–126. MIT
Press, Cambridge, MA, 1970. 43

[80] R. W. G. Hunt and M. R. Pointer. A colour-appearance transform for the 1931
standard colorimetric observer. Color Research and Application, 10:165–179, 1985. 43

134



[81] R. W. G. Hunt. The reproduction of colour. John Wiley and Sons, Ltd, Chichester,
England, sixth edition edition, 2004. 43

[82] Mark D. Fairchild. Color Appearance Models. Wiley publication in Imaging Science
and Technology. Wiley, Chichester, UK, 2 edition, 2005. 43, 110, 111, 114, 122, 126

[83] Albert Henry Munsell. The Munsell book of color glossy edition. X-rite Inc., Grand
Rapids, MI. 54

[84] CIE. Method of measuring and specifying colour rendering properties of light sources.
CIE Publication, 3(13), 2011. 63

[85] Deane B Judd. A flattery index for artificial llluminants. 1967. 64

[86] WA Thornton. A validation of the color-preference index. Journal of the Illuminating
Engineering Society, 4(1):48–52, 1974. 64

[87] K. Smet and P. Hanselaer. Memory and preferred colours and the colour rendition
evaluation of white light sources. Lighting Research and Technology., 2015. 64

[88] KAG Smet, WR Ryckaert, Michael R Pointer, Geert Deconinck, and Peter Hanselaer.
A memory colour quality metric for white light sources. Energy and Buildings, 49:216–
225, 2012. 70

[89] Kevin AG Smet, Janos Schanda, Lorne Whitehead, and Ronnier M Luo. Cri2012: A
proposal for updating the cie colour rendering index. Lighting Research and Technol-
ogy, page 1477153513481375, 2013. 71

[90] Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster. Nonlinearities in color
coding: Compensating color appearance for the eye’s spectral sensitivity. Journal of
Vision, 6:996–1007, 2006. 73, 78, 94

[91] Sean F ONeil, Kyle C McDermott, Yoko Mizokami, John S Werner, Michael A Crog-
nale, and Michael A Webster. Tests of a functional account of the abney effect. JOSA
A, 29(2):A165–A173, 2012. 73, 78

[92] Christoph Godau and Brian Funt. Xyz to adl: calculating logvinenko’s object color
coordinates. In Color and Imaging Conference, volume 2010, pages 334–339. Society
for Imaging Science and Technology, 2010. 80

[93] Graham D Finlayson, Michal Mackiewicz, and Anya Hurlbert. Making the calculation
of logvinenko’s coordinates easy. In Color and Imaging Conference, volume 2012, pages
264–269. Society for Imaging Science and Technology, 2012. 80, 98

[94] U. of Joensuu Color Group. Joensuu color group spectral database.
http://spectral.joensuu.fi/. Accessed 2010. 80, 82, 99, 100, 102, 114, 116, 121

[95] N Moroney. The color thesaurus. magcloud. com, June, 2008. 82, 87, 95, 99

135



[96] N Moroney. http://www.hpl.hp.com/personal/nathan-moroney/. Accessed March.
2013. 82

[97] Nathan Moroney. Unconstrained web-based color naming experiment. In Electronic
Imaging 2003, pages 36–46. International Society for Optics and Photonics, 2003. 82,
87, 99

[98] Andrew R Conn, Nicholas IM Gould, and Philippe Toint. A globally convergent
augmented lagrangian algorithm for optimization with general constraints and simple
bounds. SIAM Journal on Numerical Analysis, 28(2):545–572, 1991. 84

[99] Anders H̊ard and Lars Sivik. Ncsnatural color system: a swedish standard for coloer
notation. Color Research & Application, 6(3):129–138, 1981. 85, 99

[100] Brent Berlin and Paul Kay. Basic color terms: Their universality and evolution. Univ
of California Press, 1991. 87

[101] Christoph Godau and Brian Funt. The logvinenko object color atlas in practice. Color
Research & Application, 37(2):117–125, 2012. 87

[102] Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy.
International journal of forecasting, 22(4):679–688, 2006. 105

[103] M Ronnier Luo, Anthony A Clarke, Peter A Rhodes, André Schappo, Stephen AR
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