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Abstract 

Proton magnetic resonance spectroscopy (MRS) non-invasively measures regional human 

brain chemistry in vivo, providing concentration estimates for several metabolites in a 

pre-selected region of interest. MRS has been applied to investigations of disease-related 

metabolic and neurochemical alterations in schizophrenia since the early 90’s.  

The objective of this research is to implement a metabolite-selective MRS method to 

quantify endogenous concentrations of human brain serine. Serine is a naturally-occurring 

amino acid and an important co-modulator of the N-Methyl D-aspartic Acid (NMDA) 

glutamate receptor. Glutamate abnormalities have been implicated in the pathophysiology 

of schizophrenia, especially its so-called negative and cognitive symptoms, which can be 

relieved by D-serine supplements.  

Measurements of serine have been impossible using standard MRS due to its low 

concentration and strongly coupled spins. In this thesis, we implement and test an 

advanced MRS pulse sequence, called DANTE-PRESS, using a narrow band 

radiofrequency (RF) pulse to isolate the serine signals from the human brain spectra for 

the first time on a 3.0 Tesla clinical scanner. 

Test-retest reliability of in vitro serine measurements in brain-mimicking samples was 

verified using ten repeated acquisitions from two serine samples with concentrations of 

0.732 mM (similar to “in vivo”) and 1.464 mM (“double in vivo”) at baseline and one 

week later. Within- and between-session reproducibility was measured with the 

coefficient of variation (CV) and one-way ANOVA, respectively. Average serine “in 

vivo” concentration at baseline, one week later, “double in vivo” at baseline, and one 

week later were 1.13 ± 0.09 (CV = 8.3%), 1.06 ± 0.10 (CV = 9.9%), 2.18 ± 0.13 (CV = 

5.7%) and 2.23 ± 0.14 (CV = 6.5%), respectively. 

The thesis also presents the first 3.0 Tesla application of DANTE-PRESS in a human 

brain region relevant to schizophrenia as proof-of-concept. Future studies can extend the 

work to implementation of DANTE-PRESS at 7.0 Tesla and in vivo test-retest.   
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Chapter 1  

 

1.1 Introduction 

The goal of this thesis is to describe the implementation of a novel proton magnetic 

resonance spectroscopy (
1
H-MRS) technique in order to measure the in vivo 

concentration of human brain serine. Detection of endogenous levels of serine has been 

impossible with standard proton MRS and no existing technique can assess in vivo brain 

serine levels on a clinical scanner of 3.0 Tesla (T) or less. The main objective of the thesis 

is to implement a customized
 1

H-MRS technique on a clinical scanner of 3.0 T and 

evaluate its test-retest reliability in phantoms. The secondary objective is to apply the 

metabolite-selective MRS technique developed to detect the endogenous concentration of 

serine in the human brain as an in vivo proof-of-concept. Precise and reliable 

measurements of endogenous serine in the human brain using a customized 
1
H-MRS may 

provide crucial information for research in neuro-psychiatric disorders particularly in 

patients living with schizophrenia. The following chapter will introduce background 

information, a brief history and description of schizophrenia, and the main motivation for 

the development of human brain serine measurements. This chapter will review the 

literature peripheral to administration of D-serine in patients with schizophrenia as an 

adjuvant to standard treatment. 

1.1.1 Schizophrenia 

In 1896, German psychiatrist Emil Kraepelin introduced the concept of dementia praecox, 

which is now known as schizophrenia.
1
 He also differentiated the unitary concept of 

psychosis into two distinct categories on the basis of their etiology and clinical courses: 

manic depression and dementia praecox. Subjects who were diagnosed with dementia 

praecox were described as experiencing positive and negative symptoms (augmented or 

diminished experiences), including hallucinations and disturbances in behaviour. He 

significantly contributed to the understanding of psychotic disorders; some of his original 



2 

 

ideas have endured to this day and are comparable to the classification of schizophrenia in 

the current Diagnostic and Statistical Manual of Mental Disorders, fifth Edition (DSM-5) 

2
 diagnostic classification psychiatric disorders. In the early twentieth century the 

introduction of the term “schizophrenia” was first discussed by a Swiss psychiatrist 

named Eugene Bleuler.
3
 

Schizophrenia is a severe mental condition with a high morbidity and mortality rate, 

which is described as a neuro-developmental brain disorder.
4
 It currently affects 

approximately 1% of the global population and patients occupy approximately 40% of 

psychiatric hospital beds.
5, 6  

The onset of symptoms is typically in late adolescence or 

young adulthood,
 7

 and often results in lifetime treatment and therapy with antipsychotic 

medications. Among the symptoms of this disease, neurocognitive and negative deficits 

are the most prominent, affecting 40-80% of patients in clinical samples.
8
 Cognitive and 

negative symptoms account for long term functional impairments. The efficacy of current 

medications is limited in alleviating these deficits.
9
 Studies have shown that the economic 

burden caused by schizophrenia remains high in Canada mainly due to the loss of 

productivity as a result of morbidity.
10, 11

 The global cost of this illness on health care 

budgets is significant; on average it amounts to about 1.5 to 3 percent of total national 

health care expenses.
11

 Currently, there is no cure for schizophrenia, although it is a 

disorder that is responsive to treatment. Thus, this severe mental disorder is worthy of 

academic investigation; it is crucial to advance our understanding of the pathophysiology 

of the disease to maximize our ability to treat schizophrenia.   

Numerous reports have investigated the role of genetics or environmental factors in 

schizophrenia. Studies indicate that environmental stressors including birth complications, 

12 
infections,

 13
 socioeconomic factors, or childhood adversity 

14
 may make a person more 

susceptible to developing schizophrenia later in life. Studies of the familial risks and 

heritability of schizophrenia have indicated that higher levels of risk for schizophrenia 

exist among relatives.
15

 Adoption reports have illustrated that the risk for developing 

schizophrenia was higher among biologic offspring even when they were adopted by 

parents who did not have any mental illnesses.
16

 In the case of twins, the concordance 

rates for schizophrenia are far greater among monozygotic twins (almost 50%)
 17
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compared to fraternal twins who only share approximately 50% of the same genes.
18, 19

 

Gene association investigations have identified several risk genes including dysbindin, 

neuregulin, and Disrupted in schizophrenia 1 (DISC1), each influencing the N-Methyl D-

aspartic Acid (NMDA) receptor that contributes significantly to the pathophysiological 

network of schizophrenia by causing neurotransmitter and synaptic anomalies.
20-23

  

Genetic studies also have provided significant evidence showing dysregulation of certain 

genes that control the metabolism of D-serine, an important modulator of NMDA 

receptor (NMDAR).
24

 While genetic studies do not provide a clear description of specific 

abnormalities underlying schizophrenia, there does seem to be a heritable genetic 

component to schizophrenia.
14

  

1.1.2 Neural models of schizophrenia:  

Numerous models of schizophrenia have been developed to rationalize its onset 

mechanism and the resulting brain abnormalities.
25-31 

Separate bodies of evidence have 

been mounted in support of specific neurotransmitter abnormalities contributing to the 

manifestation of symptoms. The earliest model recognized as the dopamine (DA) 

hypothesis proposed that certain dopaminergic pathways are overactive. It was postulated 

that the dysfunction in dopamine action on the ventral striatum region of the brain 

surrounding the nucleus accumbens is likely a common feature of all patients with 

schizophrenia.
25

 It had been postulated that over-activity of DA neurons situated in the 

mesolimbic pathway, extending from the ventral tegmental area to limbic regions, may 

have mediated positive symptoms.
32

 This hypothesis was initially suggested based on 

findings showing that dopamine-blocking agents that generated symptoms similar to 

those of acute paranoid and positive syndromes in schizophrenia.
23

 Unfortunately, this 

model does not fully explain all symptoms, especially negative and cognitive 

symptoms.
26

 Over the years, it was postulated that a dopamine neural pathway known as 

the mesocortical pathway, which also originates from the midbrain’s ventral tegmental 

area and projects to the limbic cortex, may have played a role in mediating some 

cognitive deficits, mainly the negative symptoms of schizophrenia.
25

 Several 

investigations also solidified the hypothesis that the hypoactive condition of the DA 

neurons in the mesocortical region may be responsible for the negative symptoms.
23, 27, 32 
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Subsequently, a theory called the glutamatergic deficiency model of schizophrenia was 

proposed that explains the appearance of negative symptoms disturbances of 

glutamatergic neurotransmission upstream from the dopaminergic pathway.
28

 This model 

was proposed a few decades ago after phencyclidine (PCP) was found to act on a specific 

binding site on the NMDAR resulting in channel blockade and inhibiting receptor-

mediated glutamate neurotransmission.
34

 In humans, it was discovered that PCP is 

capable of inducing all of the symptoms of schizophrenia in healthy subjects, including 

not only the positive ones but the prominent negative symptoms and cognitive deficits.
34, 

35 
The previous literature indicates the abnormalities of glutamatergic neurotransmission 

that play a vital role in the pathophysiology of schizophrenia and may account for its 

manifestations.
36
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Figure 1-1. The limbic basal ganglia thalamocortical circuits. ACC, anterior 

cingulated cortex; CB, cerebellum; HIP, hippocampus; NA, nucleus accumbens; 

PFC, prefrontal cortex; TH, thalamus; VT, ventral tegmentum. 

Figure 1-1 illustrates the limbic basal ganglia thalamocortical circuits as two parallel 

pathways that act contrastingly on the basal output nuclei. It has been suggested that 

positive, negative, and cognitive deficits in schizophrenia may be associated with 

dysfunction of the limbic basal ganglia-thalamocortical circuitry.
31, 37

 This pathway is 

comprised of glutamatergic projections originating in cortical regions that transmit 

excitatory inputs to the ventral tegmental area, which, in fact, exert an inhibitory output to 

the thalamus.
37, 38

 Evidence indicates that an imbalance in the glutamatergic pathway, due 
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to NMDA hypofunction that interacts with the cortex, limbic system and thalamus, 

contributes to the development of schizophrenia.
37

 The hypo-functionality of the 

NMDAR system is believed to prevent the activation of the cortical GABAergic 

interneurons that, in turn, causes the disinhibition of the glutamatergic inputs in the 

pyramidal neurons.
37, 39 

The glutamate model of schizophrenia postulates that a disruption 

of the NMDAR function underlies the induction of the prominent symptoms of 

schizophrenia, especially the negative and cognitive symptoms. Numerous studies have 

also revealed possible glutamate-dopamine interactions by altering the activation state of 

the NMDARs, suggesting the modulation of dopamine release by glutamatergic 

neurotransmission.
37, 41-45 

Several lines of evidence support that the hypofunction of the NMDAR is due to its 

dysregulation rather than a reduction in its numbers. Both clinical trials and pre-clinical 

investigations indicate that the administration of the agonists of the glycine modulatory 

site (GMS), that modulates the NMDAR, could restore the NMDAR function.
46

 The 

activation of the NMDAR relies on the simultaneous binding of glutamate and an agonist 

D-serine (or glycine). The enhancement of binding to the GMS is more effective than 

attempts to increase glutamate binding. GMS binding increases NMDAR function 

effectively, and does not induce neurotoxicity.
47

Among all GMS ligands, D-serine is 

known to be the primary co-agonist for synaptic NMDAR.
48-55

 Thus, it has been proposed 

to test the validity of D-serine supplementation as a therapeutic agent targeting the GMS 

in order to augment the NMDAR function.
56, 57

 Some suggest this approach could be a 

crucial advance for the treatment of the most prominent symptoms of schizophrenia not 

well controlled by current DA-based medication, i.e. the negative and cognitive 

symptoms.
29

 

1.1.3 D-Serine as adjuvant to antipsychotic Treatment: 

Since it has been postulated that the dysfunction of glutamate neurotransmission mediated 

by the NMDAR is implicated in the pathophysiology of schizophrenia, the complete and 

partial agonists of this receptor have been examined in a series of studies as possible 

modulators of glutamate neurotransmission. Modulation of the NMDAR  activity can be 
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augmented by facilitating glutamatergic signaling via the use of compounds such as 

NMDA co-agonists (i.e. D-serine, glycine) and glycine transport (Gly-T) inhibitors.
58

 

Some promising reports have demonstrated the efficacy of high doses (approximately 60 

g/day) of glycine, a direct co-agonist of NMDAR in alleviating the negative and cognitive 

symptoms of schizophrenia.
59-62

 Despite confirmation of the efficacy of glycine provided 

by two meta-analyses,
63, 64

 more investigation should be performed using larger samples 

to confirm the effectiveness of oral glycine administration in facilitating NMDAR 

neurotransmission. It has also been noted that the administration of high concentrations of 

glycine may cause extensive excitotoxicity 
64

 and hyperexcitability.
83

 In contrast, other 

NMDAR agonists, including D-serine and D-alanine, did not produce any neurotoxicity; 

previous studies revealed that this condition is a selective effect of glycine.
82, 83

 Gly-T 

inhibitors may also be used to enhance the glycine synaptic levels by preventing its 

reuptake without producing any adverse effects.
65

 In preclinical studies Gly-T inhibitors 

have proven to enhance NMDAR function in schizophrenia,
 67-78

 though the number of 

studies performed on humans is limited and poorly investigated.
66,67,79-81

 

D-serine enables the activation of the receptor, producing full agonism and induces 

maximum activation of the NMDAR glycine site, and thus the antagonistic effect 

produced by other partial agonists is avoided.
84, 85

 Not only does D-serine have a higher 

affinity for the GMS, it also crosses the blood brain barrier more readily compared to 

glyicne 
29 

and L-serine; 
86

 it is enriched within the corticolimbic areas 
87 

and its regional 

distribution and age related changes correlate well with the NMDARs.
88, 89

 Therefore, D-

serine is an attractive candidate as an adjuvant to current antipsychotic treatment. A 

number of clinical trials have examined the co-administration of D-serine along with 

standard antipsychotic medications in schizophrenia. Unfortunately, some clinical trials 

have found confounding results in terms of the efficacy of D-serine and glycine 

administrations to relieve the prominent symptoms, mainly due to their ineffective oral 

bioavailability.
47

 The confounding results in studies that included the use of D-serine may 

also be due to variations in pharmacokinetic profiles 
90 

and the doses of D-serine being 

used. A clinical trial investigated the addition of D-serine to treatment of patients with 

chronic schizophrenia resulting in the significant improvement of positive, negative and 

cognitive symptoms 
91

 and another following trial demonstrated a significant reduction in 
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all of the symptoms in risperidone or olanzapine-treated schizophrenia patients after the 

administration of D-serine.
92

 Although, a decline in symptoms was observed in previous 

studies, two clinical trials were performed with a larger sample of acutely ill population, 

93
 and chronic patients 

94
 and the results indicated no significant improvements. A double-

blind investigation of D-serine at high doses (approximately 60mg/kg and 120mg/kg) 

verified a significant improvement in neuropsychological scores and the symptoms,
 97

 in 

spite of the concerns raised about its safety issues. More clinical trials are warranted to 

examine the optimum clinical dose of D-serine that provides a safe and effective 

therapeutic benefit.
92, 95, 96

 Clinical studies have examined the effects of D-serine addition 

and its dose-dependency in plasma levels, nonetheless; ideal doses of D-serine need to be 

determined.
35, 97 

There is currently no method to determine oral dosage of D-serine for a 

given individual because the amount crossing the blood brain barrier will vary 

significantly between patients.  

Clozapine was revealed to have a greater impact for improving positive and negative 

symptoms in comparison to other conventional medications.
98 

Unfortunately, it has not 

been applied as the first-line of treatment due to its serious side effects.
99

A few studies 

have indicated that the effectiveness of clozapine in treatment of primary negative 

symptoms is inadequate.
100

 Nevertheless, clozapine is currently part of the standard of 

care for patients that do not respond to first-line antipsychotic medication. Previous 

reports have demonstrated the efficacy of the co-administration of D-serine, glycine, and 

D-cycloserine, a partial agonist, in conjunction to non-clozapine conventional 

neuroleptics for improving negative deficits in patients with schizophrenia.
5, 91, 97, 101-105

 

The co-administration of D-cycloserine which caused deterioration of positive and 

negative symptoms, 
106-110 

glycine, 
111 

and D-serine did not have any potentiated effect nor 

did it worsen the symptoms 
85

 when administered with clozapine. The combination of 

non-clozapine antipsychotic drugs along with effective adjuvants aimed at glutamate 

modulation through the GMS may provide potential therapeutic effects for patients with 

schizophrenia.  

A recent meta-analysis has revealed the inefficacy of certain glutamate positive 

modulators on cognitive functions in patients with schizophrenia.
103

 This systematic 
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review mostly highlights studies that target and enhance glutamatergic neurotransmission. 

These reports indicate the ineffectiveness of the use of compounds that mainly act on the 

AMPA receptors or positively modulate the NMDARs and some few reports 

investigating the action of amino acids (i.e. D-serine, D-cycloserine and glycine) on the 

glycine site of the NMDAR. On the contrary, other studies have proven the beneficial 

effects of NMDA-enhancing agents via the glycine site.
57 

The doses of D-serine and 

glycine that were administered in these studies were not monitored properly and not 

adjusted for body weight (an important factor when considering the administration of 

glycine).
43

 Clinical trials often include a wide range of participants who may have several 

types of responses to the treatment. Because schizophrenia is such a heterogenous 

disease, it is important to properly stratify patients for fear of obtaining inconclusive 

results due to inclusion of subgroups with confounding responses to the treatment. There 

has not been very good means or methods by which to stratify participants in clinical 

trials so far. Therefore, this review may indicate the poor efficacy of agents that act on the 

glutamate receptors directly but lacks conclusive information on the inefficacy of 

compounds that modulate the NMDAR at the GMS in improving cognition function in 

patients with schizophrenia.
103

   

1.1.4  Evidence of abnormal levels of D-serine in schizophrenia: 

A few other post-mortem studies were conducted in order to assess abnormalities in 

metabolites for those diagnosed with schizophrenia. Significant irregularities of brain 

gross anatomy and histology have been identified in specific post-mortem brain structures 

of adults with schizophrenia compared to controls. A reduction of glycine was observed 

in the plasma of medication-native patients
 112

 and a lower glycine values was 

proportional to the severity of the negative deficits.
112-114

 Considerable reductions of D-

serine levels were observed in the cerebral spinal fluid (CSF) content of medication-naive 

subjects with schizophrenia, 
115, 116

 in the serum of patients,
 117-119

 and in the putamen of 

untreated patients.
120 

Conversely, some post-mortem investigations have reported that the 

levels of total serine (D and L-serine) and glycine showed a higher level of these amino 

acids in the medial temporal lobe areas of schizophrenics when compared to controls.
146 

No changes were observed in the amount of free D-serine in the prefrontal and parietal 
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cortices in patients with schizophrenia, suggesting regional dysfunction in serine 

hydroxymethyltransferase (SHMT), an enzyme that cleaves serine to glycine.
121,144-147 

Significant correlations were found between the levels of Km SHMT and these amino 

acids in temporal but not in the frontal lobes in schizophrenic patients.
145 

It has been 

suggested that the exposure to neuroleptics could induce the abnormal SHMT activity in 

the temporal lobes.
145 

Other reports indicated a relatively low concentration of D-serine in 

the cerebellum and spinal cord, which was similar to examinations of rodents 
121 

and the 

decreased serum levels of D-serine/total serine ratio in these patients,
148 

corroborating the 

NMDA hypo-function hypothesis of schizophrenia. These studies supported the 

assumption that the distribution of D-serine and NMDA receptors are correlated in the 

human central nervous system (CNS), as suggested in the rodent study.
121,144

 In vitro 

studies have indicated that the reduction of D-serine impairs the NMDAR activity 
122-127

 

and, contrastingly, the enhancement of its levels increased the NMDAR activities 
128-130

 

and improved symptoms in patients.
131 

Post mortem studies have also revealed 

abnormalities in the expression of D-serine regulatory enzymes.
96

 Consequently, D-serine 

and its modulatory enzymes may monitor NMDAR functioning, and any irregularities in 

this pathway may induce NMDAR dysfunction. These studies indicate the importance of 

quantifying the amino acids and neurotransmitters that interact with the NMDA glycine 

receptors, and also of developing a refined technique that can monitor the changes in 

these metabolites because they underlie the pathophysiology of schizophrenia.  

1.1.5 Previous 
1
H-MRS studies of serine and glycine: 

Proton Magnetic Resonance Spectroscopy (
1
H-MRS) studies assess and quantify several 

metabolites and neurotransmitters present in the human brain.
132

 A method for assessing 

changes in in vivo serine and glycine, could be critical to demonstrating abnormalities of 

endogenous levels in schizophrenia or to the validation of the brain dose achieved in a 

study using serine/glycine as an adjuvant to standard treatment. Thus far, no 
1
H-MRS 

studies have examined the endogenous levels of serine in the psychiatric population.  

Conventional 
1
H-MRS cannot detect serine due to its relatively low levels in the human 

brain, a complex spectral signature, and interference from the neighbouring 

metabolites.
133-135 

Previous reports have employed advanced 
1
H-MRS techniques, 
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conducted at higher field strengths of 4.0 Tesla (T)
 134

 and 7.0 T 
135

, respectively, to 

measure in vivo endogenous serine concentrations in healthy subjects. Until now, no prior 

investigations have attempted to measure human brain serine on the more widely 

available, clinical field strength, 3.0 Tesla scanners. There has been no 
1
H-MRS 

schizophrenia study conducted for detecting serine non-invasively. However, the 

advanced methods mentioned above hold the promise to be applicable to the study of 

schizophrenia, especially if the technique can be implemented on a 3.0 Tesla scanner. 

Since both D-Serine and glycine can bind to the NMDA GMS, it may be relevant to the 

glutamatergic models of schizophrenia to study glycine in addition to serine.
136, 137

 

Detection of glycine has also been challenging using conventional 
1
H-MRS methods at 

short echo times due to its low concentration and MRS signature overlap with signals 

from macromolecules and myo-inositol.
138, 139 

Most studies have focused on investigating 

the glycine levels in cancerous regions 
140-142

 since it has been detected as a biomarker in 

brain tumors.
139

 One study has been able to test changes in levels of glycine after its high-

dose administration as adjunctive therapy in healthy men using 
1
H-MRS.

143
  

Until now, conventional 
1
H-MRS techniques have been unable to reliably measure 

important neurochemicals such as serine and glycine due to their low concentrations and 

low sensitivity due to spectral overlaps with the signal of other metabolites. Thus, it is 

crucial to develop advanced 
1
H-MRS methods capable of detecting these metabolites to 

enable their application in studies of schizophrenia and its treatment. Chapter 2 will 

present our implementation of such a technique. 

1.1.6 The thesis outline: 

This chapter covered background information, a brief history and description of the 

mental disorder schizophrenia, toward which the work of this thesis is aimed. This 

chapter also presents a literature review concentrating mainly on investigating the 

efficacy of the co-administration D-serine along with standard treatments of 

schizophrenia.  
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Chapter 2 is a general introduction to the fundamental principles of proton magnetic 

resonance spectroscopy and its application in in vivo. It is meant to expand on the 

theoretical foundation necessary to understand the material presented in Chapter 3 that 

would not typically be included in a peer-reviewed article format due to space limitations 

and less didactic nature. 

Chapter 3 describes a report on test-retest reliability protocol performed on phantoms to 

demonstrate the within and between session variability of the data obtained with the 

implemented novel DANTE-PRESS 
1
H-MRS sequence. The in vitro results were used to 

estimate serine concentration measurement precision and accuracy. This report also 

demonstrates an in vivo proof of concept data, which was acquired in a group of four 

healthy participants. 

Chapter 4 presents a general concluding statement on the material described in Chapter 3 

and it discusses the limitations of the presented study. This chapter also provides 

suggestions in managing the limitations of this study in future studies using the technique 

and possible future applications to measurements of other metabolites.  
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Chapter 2  

2 Introduction: 

The discovery made by Stern and his collaborators in 1933 on the magnetic moment of 

protons inspired Rabi to develop a technique which more precisely detected the 

magnitude of the moment.
1, 2, 3

 In September 1937, Dr. Gorter engaged in simulating 

experiments that determined the nuclear moments from the changes made in the 

temperature of solids while located in a constant magnetic field.
4
 Later, a molecular beam 

apparatus was created by Rabi and his team, which was capable of investigating the 

magnetic resonance properties of individual elements, including Hydrogen, 
2 

Lithium,
 4

 

and Deuterium.
5, 6

 It was not until 1946 that Purcell 
7
 and Bloch 

8
 independently 

demonstrated the nuclear magnetic resonance (NMR) properties in solids and liquids. In 

1952, both scientists were awarded the Nobel Prize in Physics for their discovery of 

NMR.  

The following paragraphs will describe the fundamental principles of nuclear magnetic 

resonance (NMR) physics and proton magnetic resonance spectroscopy concepts that are 

related to the work presented in this thesis.
8–68

 

2.1 Principles of magnetic resonance imaging and spectroscopy:  

The three main types of magnetic fields used in MRI, i.e, the external main magnetic field 

(B0), the radiofrequency (RF) field (B1) that excites the spin, and linear gradient (G) fields 

that provide localization, influence the energy state of a nucleus with a nuclear magnetic 

moment μ. In the presence of an external magnetic field (B0), these vectors tend to align. 

The applied force on the magnetic moment due to B0 induces the magnetic moment to 

precess at a fixed angle. The relationship between the precession frequency that the 

nuclear spins exhibit and the magnetic field strength was defined first by Sir Joseph 

Larmor. It is proportional to the magnetic field strength and is given by the following 

equation 0 = B0. The symbol/variable  stands for the gyromagnetic ratio, which is a 

property of each type of nucleus. A hydrogen proton possesses a  value of 267.52 * 10
6
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rad/(s*T), therefore for a 3.0 Tesla (T) field the resonance frequency equals 

approximately 128 MHz, which is in the FM radiofrequency (RF) range.    

Several nuclei (
1
H, 

13
C, 

19
F, 

23
Na, 

31
P) are known to possess a spin angular moment but 

among all, hydrogen (with an angular momentum of spin of ½) is the most used atom in 

the MRI practice since it is the most abundant molecule in the human body. When 
1
H  

nuclei experience an external magnetic field, a slightly greater number of protons will be 

in the lower energy state (longitudinal magnetization parallel to the main magnetic field) 

when compared to the higher energy state (anti-parallel to the main magnetic field). The 

parallel state possesses a lower energy and this condition causes an energy difference 

between the two states which corresponds to the energy of a photon at the Larmor 

frequency. The vector sum of all magnetic moments within a small region of space 

containing spins precessing at the same frequency (a.k.a isochromat) is denoted as net 

magnetization (M0), as illustrated in Figure 2-1.  The net magnetization acts as a vector 

with three components with respect to B0, each evolving as a function of time, known as 

longitudinal Mz(t), and transverse planes My(t) and Mx(t).  

As illustrated in the following figure, a net magnetization M0 is produced along the 

parallel state aligned with B0. 
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Figure 2-1. This figure represents the relative population size of the two possible 

energy states (Eigen states).  This does not represent the state of individual spins, but 

any single spin is in a superposition of the two Eigen states. This illustration is 

adapted from Figure 1-6 in [66]. 

 

A condition known as the equilibrium state of magnetization is induced when the net 

magnetization vector is aligned with the static main field B0, where the M0 will form 

along the z-direction. In order to generate an MR signal, a non-equilibrium state must be 

achieved by applying a rotating RF magnetic field (B1), oscillating at the Larmor 

frequency in the x-y (transverse) plane. The presence of a rotating RF magnetic field, B1, 

will result in the rotation of the M0 towards the x-y plane, and will tip it away from its 

initial direction (z-axis), perpendicular to the direction of the B0. The tip angle of the RF 

pulse applied is dependent on the strength of the RF magnetic field and the duration of the 

pulse. To achieve maximum signal, a 90° (excitation) pulse must be applied in order to 

tilt the M0 completely onto the transverse plane. A 180° flip angle (a refocusing pulse) 

can be obtained by doubling either the duration or a voltage of an RF pulse (hard pulses). 

The research presented in this thesis applies a type of spin echo sequence that will be 

discussed and it consists of an excitation pulse followed by three 180° refocusing pulses, 

one of which is a frequency-selective RF pulse.   
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Once the excitation RF pulse is terminated, the net magnetization will continue to precess 

about the z-direction at the Larmor frequency and the spinning nuclei will return to the 

equilibrium distribution. The process by which the excited protons return to their original 

equilibrium orientation is known as relaxation. There are two NMR relaxation states 

referred to as T1 and T2 relaxation time constants; the terms characterize the recovery of 

Mz, longitudinal or ‘spin-lattice’ relaxation, and the decay of the Mx and My components, 

transverse or ‘spin-spin’ relaxation, respectively. The process of T1 relaxation time 

describes an exponential regrowth of longitudinal magnetization, and is the period 

required for the z component of M to restore 63%, [1-(1/e)], of its initial value. At 

thermal equilibrium, the phase between the nuclei is incoherent. A collection of spins that 

are “alike”, meaning they possess the same chemical environment and experience a 

similar applied magnetic field, are referred to as isochromats. Following an excitation 

pulse, the spins are tipped onto the transverse plane due to the presence of the B1 field, 

and the phase coherence between isochromats is attained. The spin-spin relaxation time 

(T2) characterizes the decay of transverse magnetization, and it is caused by random 

fluctuations of the local field produced from the movement between nearby protons that 

cause a loss of phase coherence (even within isochromats). Due to static field 

inhomogeneities (field that varies between isochromats), the transverse magnetization 

decays more rapidly and accelerates the dephasing of the spins. This observed decay rate 

of the signal is said to have a characteristic time constant denoted as T2
*
.
9
 Finally, after an 

excitation pulse is applied, an MR signal is characterized by a Free Induction Decay 

(FID), which is generated as the net transverse magnetization gradually decreases 

exponentially in time as the spins lose their phase coherence (FID signal is the sum of 

signal from a large number of isochromats located within the voxel). A receive coil (for 

example, a head coil) is capable of detecting the voltage varying at the resonant frequency 

(0) which is induced in the coil by the precession of M0.  
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2.2 Signal localization:  

A pulse sequence consists of the collection of radiofrequency (RF) pulses and gradient 

pulses with specific durations and timings, capable of generating MR images or spectra. 

The magnetic field gradients in MR allow for the production of a localized signal which 

is achieved by applying gradient pulses (known as slice select gradient, abbreviated as Gs 

or Gss) that results in a linear variation of resonance frequencies along any of the three 

orthogonal planes (the x, y or z axes), and an RF pulse tuned to the Larmor frequency 

simultaneously. The thickness of the excited slice is determined by the strength of the 

gradient pulse and the RF pulse’s bandwidth. Note that the waveform of an RF pulse (i.e. 

its time-dependent amplitude modulation) greatly affects the excitation profile of the 

magnetization. The goal is to only have the signal that is appropriately refocused at the 

intersection of all three excited planes to generate a signal (the region of interest). This 

process allows for a selective excitation of a volume at the intersection of the three slabs 

and generates a voxel with a specific position, size and shape. The simultaneous 

execution of the 90° RF pulse (the first RF pulse) along with its magnetic field gradient 

(i.e. along the x-axis) generates a FID which selectively selects spins from a slice. The 

first spin echo produced by the simultaneous execution of magnetic field gradient 

perpendicular to the previous gradient (i.e. along the y-axis) and the first slice-selective 

refocusing pulse (180° RF pulse) contains signal from a bar at the intersection of the two 

orthogonal slices. The second spin echo is achieved by the simultaneous application of a 

magnetic field gradient along the last remaining orthogonal axis (i.e. along z-axis) and the 

second slice-selective 180° RF pulse and will produce signal only from the intersection of 

the three orthogonal slices, as illustrated in Figure 2-2. Pairs of gradient crushers 

adjoining the two refocusing 180° RF pulses ensure the selection of the preferred signal 

and the elimination and the dephasing of any unwanted coherences (echo responses) 

generated from the outside of the voxel (which may cause artifacts) or from spins having 

received the wrong flip angle (i.e. at the edge of RF pulse passbands). For more 

information on the optimization of the gradient crushers for the proper dephasing of the 

unwanted coherences performed for this study visit Appendix C.  
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Figure 2-2. A three-dimensional single voxel localization process. The intersection of 

the three planes selected by the three RF pulses executed simultaneously with their 

respective slice-selective gradients results in the production of MR signal only from 

the desired VOI. Signal outside of the VOI is dephased (via the gradient crushing). 

This image was adapted from Figure 1.8 in [67]. 

2.3 Chemical shift: 

Due to the applied external magnetic field, an induced magnetic field (a secondary 

magnetic field) is generated by the circulation of electrons surrounding a nucleus. The 

electrons carry a small charge and therefore exert a smaller effect on the nucleus 

compared to the external field, sufficient to produce a unique molecular spectrum that 

distinguishes them. Depending on the extent of nuclei shielding by the surrounding 

electron cloud, the absorption position shifts either to the right (up field) or to the left 

(down field) of the NMR spectrum. This phenomenon is known as chemical shift. 

Chemical shift is expressed as the following 
16

:  
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ω = γB0 (1 - σ) 

 

Overall, ω is the local precessional frequency of the resonance that corresponds to a 

certain molecular compound and σ stands for the electronic shielding constant that is 

dependent on the chemical environment. As the formula states, the displacement of the 

resonance frequency is proportional to the main magnetic field B0. The change in the 

strength of the external magnetic field is linearly proportional to the change in the 

magnitude of a chemical shift represented in Hertz. Therefore, the magnitude of the 

chemical shift for a given compound is commonly characterized in parts per million 

(ppm), and is independent of the strength of the external magnetic field. The value for 

chemical shift is determined by the differences between the absorption peak of a 

resonance frequency of a particular proton and the absorption peak of a reference proton. 

In this thesis, for measurements of the naturally occurring metabolite, serine, located at 

3.83 ppm, the reference is chosen to be N-Acetylaspartic Acid (NAA), situated at 2.01 

ppm. Serine resonates to the left of NAA since its nuclei are less shielded and resonate at 

a higher frequency. Overall, the magnitude of the chemical shift is dependent on the type 

of the nucleus and the varying electronic environment of the proton.  

2.4 J-coupling and spin systems: 

Not all protons have the same resonance frequencies according to their chemical 

environments and locations. Nuclei subjected to a similar chemical shift or chemical 

environments are known to be equivalent, while those experiencing different chemical 

environments are non-equivalent. A J-coupling or spin-spin coupling effect can be 

observed on the NMR spectrum, when non-equivalent nuclei exert an influence over the 

effective magnetic field of the adjacent nuclei. The number of peaks represents the 

number of protons present in a molecule or a compound. In most cases, the NMR 

spectrum displays a combination of multiple peaks rather than a single peak that has 

arisen from a solitary proton. Thus, the signal will be split into two or more separate 

peaks (doublets, triplets, multiplets etc) and the overall area under all these peaks will be 

the same as the total area under the corresponding singlet peak that would arise in the 
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absence of the J-coupling effect. The J-coupling constant represents the fixed frequency 

difference between the centres of the multiplet peaks and, unlike the chemical shift; its 

value is presented in Hertz. The two factors of J-coupling constant and the chemical shift 

value aid in describing the spectral signature of each compound in the sample. 

This thesis mainly focuses on measuring serine, with a molecular formula of C3H7NO3, a 

strongly coupled metabolite composed of a three spin system known as ABX.
54  

 

 

Figure 2-3. The chemical structure formula of serine is presented. This figure was 

adapted from [68] and was further modified to number the carbon atoms.  

 

The splitting of A resonance occurs in the presence of the two different spins. This spin 

system is generated by the presence of the 
2
CH and 

3
CH2 groups that form doublet-of-

doublets and have closely located resonances of 3.83, 3.94 and 3.98 ppm, respectively.
17 

This causes the resonances of serine to overlap, thereby making their identification and 

quantification difficult. Improved detection of serine with a complex spin system can be 

achieved through the use of a modified proton magnetic resonance spectroscopy (
1
H-
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MRS) technique, which will be described in more detail in Chapter 2. This method allows 

the selective excitation of the resonance of serine at 3.83 ppm (the X pattern) as indicated 

by the arrow in the figure below. This X spin resonance of serine has the least signal 

contamination from the neighbouring metabolites, including a large singlet methylene 

resonance of creatine located at 3.92 ppm, 
55 

thus making the detection of this spin pattern 

more ideal when compared to the other two resonances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4. Resonances of serine and neighboring metabolites are 

illustrated above. The ABX pattern is recognized based on its AB and X 

multiplets. The AB portion consists of an unsymmetrical 8 line pattern, 

and the X part includes a symmetrical 4 line pattern as shown above. As 

shown, the X pattern has the least interference from neighboring 

metabolites (A simulated FID 1Hz LWs). 
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2.5 Proton magnetic resonance spectroscopy:  

Nuclear Magnetic Resonance (NMR) Spectroscopy is a powerful MR-based modality that 

allows the characterization and determination of the molecular structure of certain 

metabolites and the examination of biochemical concentrations in vivo. The term 

“nuclear” may lead to misinterpreting its association with nuclear medicine and radiation, 

thus in vivo NMR is otherwise identified as Magnetic Spectroscopy Resonance (MRS). 

MRS is a valuable modality that can be applied to investigate metabolic changes in 

neuropsychiatric disorders and to follow the effect of treatment due to its non-invasive 

and repeatable nature. The investigation of neurochemicals using proton MRS could 

provide valuable insight into the possible mechanisms underlying neurotransmitter 

receptor function. Proton MRS allows the measurement of molecules with relatively low 

concentration levels (0.5-1.0 mM), but this typically requires the use of non-standard 

MRS pulse sequences. This thesis will focus on the use of an advanced single voxel 

spectroscopy (SVS) technique known as Delays for Alternating with Nutation for 

Tailored Excitation (DANTE)-PRESS 
55

 that uses very narrow-band RF pulses to 

selectively refocus the signal from metabolites of interest, thereby simplifying the 

resulting spectrum. This metabolite-selective DANTE-PRESS technique is of particular 

interest in the detection of metabolites with strongly J-coupled spin systems.   

2.6 DANTE-PRESS sequence:  

One of the most commonly used pulse sequences in acquiring in vivo single-voxel proton 

(MRS) data is known as point-resolved spectroscopy (PRESS).
23

 Generally a PRESS 

sequence consists of three broadband radiofrequency pulses (typically a 90° excitation 

pulse followed by two refocusing 180° RF pulses) that are applied in the presence of 

gradients along one of three orthogonal axes in order to select a specific three-

dimensional volume known as a voxel. A conventional symmetrical PRESS sequence 

creates a double spin echo that is generated at a time TE/4 after the second 180° 

refocusing pulse, where TE is the echo time of the sequence. The gradient crusher pairs 

placed on each side of the two refocusing pulses ensures the dephasing of signal 

generated outside of the voxel of interest (VOI).  
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In this thesis, the presented work has been obtained by using a customized, metabolite-

selective 
1
H-MRS sequence, DANTE-PRESS (D-PRESS),

 55
 which required the 

implementation of a frequency-selective, Gaussian modulated, single-DANTE pulse into 

a symmetrical PRESS sequence placed at the midpoint between the two 180° refocusing 

pulses (Figure 2-5). 
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Figure 2-5. Pulse sequence timing diagram for the 
1
H MRS acquisition 

protocol (DANTE-PRESS) employed in the experiments reported in this 

thesis. This schematic diagram shows the timing and the order of the RF 

pulses and the gradients pulses. The bracket shows the DANTE module 

(the DANTE RF pulse and its crusher pairs) added to a standard 

symmetric PRESS sequence. 
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The single-DANTE RF Pulse excites a repeating pattern of narrow passbands that can be 

centered on the 3.83 ppm resonance of serine and a reference metabolite, NAA, by 

producing a frequency-domain inversion profile with Gaussian passbands (Full width at 

half maximum, FWHM = 15 Hz) repeating every ~ 223 Hz. The frequency domain period 

(FDP) is an important parameter that represents the distance (frequency difference) in 

between two successive passbands of the DANTE pulse in the frequency domain. 

Depending on the FWHM (a parameter that describes the width of an RF pulse) value of 

the DANTE RF pulse inputted by the user, the pulse sequence dynamically generates a 

DANTE pulse with the requested characteristics. Figure 2-6 illustrates the DANTE RF 

pulse generated by the pulse sequence when the bandwidths requested by the user were 

15 Hz and 100 Hz, respectively. 

 

 

 

 

 

 

 

 

Figure 2-6. A frequency selective single-DANTE pulse, generated with 

bandwidth values of 15 Hz (on the left; duration of 118.54 ms, with FDP value of 

223 Hz) and 100 Hz (on the right; duration of 18.35 ms, with FDP value of 223 

Hz), respectively. These simulations were generated in the IDEA pulse 

programming environment via POET, an offline user interface mimicking the 

user interface of the MRI scanner (IDEA, Version VB20PSP4, Siemens, 

Erlangen, Germany). 
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A bandwidth of 15 Hz ≅ 0.11 ppm is sufficient to produce a frequency range needed to 

excite the X pattern and isolate the resonance of serine at 3.83 ppm at a 3.0 T scanner. 

This frequency-selective RF pulse enables the selection of serine resonances and 

elimination of interfering resonances from other metabolites. The signal of unwanted 

metabolites is destroyed completely due to the optimized crusher gradient pairs placed 

directly around the DANTE RF pulse along each axis, as demonstrated in figure 2-7. 

Signals are only produced by the spins that were affected by all four RF pulses of the 

DANTE-PRESS sequence. Resonances outside the passband of the pulse are eliminated 

by strong gradient crushing as shown in the image below (Figure 2-7). More details on 

the DANTE-PRESS sequence are presented in the next chapter. 

 

 

2.7 Water suppression:  

In order to reliably detect metabolites signals of interest within a selected volume of 

tissue, the water peak must be suppressed. The human brain contains approximately 

50,000 mmol/L of water, which is approximately four orders of magnitude larger 

compared to the concentration of metabolites (approximately 1-10 mmol/L).
23

 It is crucial 

Figure 2-7. Top spectrum displays a conventional MRS in vivo data 

acquired with a symmetrical PRESS sequence (TE=286ms). Bottom 

spectrum displays in vivo data obtained with the serine metabolite-selective 

protocol (DANTE-PRESS, TE= 286 ms, FDP = 2000 Hz, which only 

refocuses the serine resonances at 3.83ppm. A slight creatine contamination 

can be observed).  
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to saturate the water peak originating at approximately 4.7 ppm to avoid baseline 

distortions that may affect metabolites with resonances near that range, specifically serine 

(range of 3.93 ppm to 3.83 ppm).
17 

Prior to the measurement of metabolites of interest 

and the start of the single-voxel localization sequence, a chemical shift selective (CHESS)
 

28
 technique is implemented that usually involves a series of three Gaussian shaped 

narrow-band, frequency-selective RF pulses, centered at the resonance of water. Each of 

these RF pulses is followed by a spoiler gradient, which ensures the complete dephasing 

of the selected water signal. These pulses have long durations, which affect signals within 

a narrow range of frequencies (i.e. 20 to 60 Hz) and avoid the disruption of the spins of 

the other metabolites. To achieve optimal water saturation, the flip angle values of the 

CHESS pulses must be optimized after the manual shimming of B0 is performed. This 

task ensures best water suppression by iteratively minimizing its residuals via fine 

adjustment of the RF power of these pulses. Despite careful adjustments, the water peak 

is usually not eliminated completely. The remaining residuals can be removed during 

post-processing by using a water subtraction technique such as the Hankel-Lanczos 

Singular Value Decomposition (HSLVD, using JMRUI software)
 35

 prior to quantifying 

metabolites. A common problem associated with 
1
H-MR Spectroscopy, aside from water 

contamination, is the presence of broad macromolecule peaks, which are abundant near 

the resonances of serine.
52, 53

 On a positive note, this thesis focuses on the use of a long 

echo time that eliminates the interference from the macromolecular signals.   

2.8 MRS quantification methods, line shape corrections: 

Magnetic field perturbations, eddy currents, arise from switching field gradients.
38 

Spectral artifacts are generated under the influence of eddy currents and B0 

inhomogenities resulting in distortions of the lineshape of each peak of the spectrum. A 

post-processing approach, Quality Eddy Current Correction (QUECC) 
39, 44

, is applied to 

correct the lineshape distortions caused by the effect of eddy currents and B0 

inhomogeneities in preparation for spectral fitting assuming specific lineshapes. The 

QUECC technique is a combination of two other methods, QUALITY 
36, 44

 and ECC.
38 

This lineshape correction process is achieved by using a reference peak with a 

representative lineshape, usually the water peak from a water-unsuppressed acquisition 
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obtained with the same gradient arrangements. This reference is used to correct for the 

time-dependent phase and/or the amplitude of the complex signal obtained from the 

original data. This procedure allows for the restoration of Lorentzian lineshapes that in 

turn enables the data to be fitted more effectively using spectral models with known 

lineshapes and better minimize the differences between raw data and the spectral model, 

known as residuals. The intensity of the water peak is larger than the metabolite of 

interest and any minimal errors in estimation of fitting the water signal will cause 

significant error in metabolite concentrations. Thus, it is important to note that both the 

water reference and the data must be lineshape-corrected.  

2.9 Spectral fitting:  

After the performance of the lineshape correction and the complete removal of the water 

peak, the data is ready to be quantified. Each metabolite produces a unique spectral 

signature and some metabolite signatures can and will overlap in an in vivo spectrum. The 

area under each metabolite signature (sum of its peaks time domain amplitudes) is 

proportional to the concentration of that particular metabolite. In order to isolate the 

contribution of the signal of interest among contaminating signals and to quantify a given 

metabolite’s concentration level, it is crucial to develop a priori knowledge 
42-44 

of the 

metabolite signatures which are specific to the selected pulse sequence and selected 

timing parameters (i.e. TE). There are two general approaches for generating prior 

knowledge: scan of metabolite solutions or simulations (density matrix or product 

operator formalism).
 27, 31, 42-44, 57-65

 

In this thesis, we chose to acquire prior knowledge from metabolite solutions. Aqueous 

phantoms (pH 7.31, similar to in vivo) were prepared with metabolites of interest and a 

reference that have equal concentration levels to the ones expected in the human brain.
17 

A prior knowledge template for the metabolites was derived from in vitro experiments, 

obtained from the prepared brain-mimicking phantoms. The in vivo template included the 

modelling of five metabolites (serine, creatine, glutamate, glutamine and N-

Acetylaspartic Acid) obtained from in vitro experiments. These five metabolites were 
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selected because they have resonances near the 3.83 ppm serine resonance used in serine-

selective acquisitions. 

2.10 The fitting procedure:  

A locally-developed spectral fitting software (iterative fitting algorithm) called Fitman 

(Fitman Spectral Analysis Suite) 
42 

was used to determine the amplitude of metabolite 

peaks (area under metabolite signature) in preparation for quantification of the metabolite 

concentrations. This fitting procedure uses a template created from manual modeling of 

the resonance pattern of each individual metabolite and incorporating them into a single 

model (constrained sum of individual metabolite models). These individual metabolite 

models included the information of all the metabolite peaks (amplitudes, line-widths, 

chemical shifts, and phases). The spectra were fitted based on the information provided in 

two separate files known as “.ges” that included the initial estimates of each peak 

parameter and “.cst”, which contained a set of constraints of the minimization procedure. 

This process uses a non-linear minimization of the residuals of a fit (i.e. the data 

subtracted by the fit) and determines an estimate of all of the metabolites’ 

concentrations.
42 

The following figure illustrates the fitting components of each 

metabolite, the residual fit, and the data of an in vivo spectrum.   
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2.11 Quantification of metabolites:  

Quantification of magnetic resonance signal amplitude can provide an estimation of a 

metabolite’s concentration based on the metabolite areas determined by fitting of the 

spectral model. In order to account for scan-to-scan variability in metabolite area 

estimates, it is essential to obtain an internal concentration reference signal affected by 

the same sources of variability. The unsuppressed water signal from a voxel is typically 

used as a concentration reference, which can be seen as the denominator in the following 

general quantification formula for metabolite concentration in mM:  

 

Figure 2-8. Representative in vivo spectrum obtained from the left 

anterior cingulate of a healthy participant. Line (A) represents the 

data in black and the fitting line in red, lines (B, C) represent the 

fitting components of serine and creatine in orange and purple, 

respectively, lines (D, E) illustrate the fitting components of 

glutamate and glutamine in green and pink, respectively. Line (F) 

represents the residuals of the fit in blue. (Line broadening factor 

of 2 Hz was used for display only). 
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Equation (2-1) 

Aside from the areas of metabolite(s) and water, as the formula states, the following 

factors are taken into consideration: Mgain and Wgain which represent the receiver gain 

for the metabolite and water spectra, respectively, ScaleM and ScaleW represent the 

scaling factors of the raw data and the water data, respectively (occurs during conversion 

of MRS data file from the manufacturer’s format to the fitman “.dat” format), the number 

of protons of metabolite(s) and water indicated as protonsM and protonsW (i.e. 2
  
protons 

per water molecule) and water_percent represents the water content within a voxel.  

 

                                                Equation (2-2) 

In this thesis, we assumed that the voxel was entirely made up of grey matter (81% water 

content) and therefore, only the fractional component of grey matter was taken into 

account. The water_percent formula includes the density of water at 38 Celsius (the body 

temperature (0.99299g/cm
3
)) and the molecular weight of water at body temperature 

(18.0152g/mol) denoted as water_density and water_MW, respectively.  
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2.12 Summary:  

In conclusion, this thesis introduces the implementation of an advanced proton magnetic 

resonance spectroscopy protocol, DANTE-PRESS, at 3.0 T that enables the detection of 

metabolites with complex spectral signatures. This chapter has presented a general 

description of this advanced MRS protocol. This technique is a novel approach that looks 

promising for in vivo applications that will be described more specifically in the 

following chapter. For more information see Appendices A, B and C. 
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3 Reliability of in vitro measurements of endogenous levels of 

serine using DANTE-PRESS 
1
H-MRS at 3.0 T. 

3.1 Introduction 

Over the last two decades, there has been a growing interest in investigating the in vivo 

assessment of endogenous serine (Ser) levels in the frontal region of the human brain. 

Researchers have explored its implications for understanding the pathophysiology of 

neuropsychiatric disorders, especially schizophrenia.
1-4

 Ser is one of the naturally 

occurring amino acids present in the human brain, regulating glutamate 

neurotransmission at the glycine site of the N-methyl-D-aspartate (NMDA) receptor, 

serving as an endogenous co-agonist.
5-8

 Increasing evidence for dysfunction within the 

glutamatergic molecular cascade in schizophrenia implies a need for further investigation 

of glutamate modulatory agents via the NMDAR glycine binding site.
9
 Several lines of 

evidence suggest that abnormalities of the glutamate neurotransmission system in 

schizophrenia are possibly caused by the alteration in Ser signaling, suggesting that the 

administration of D-Ser may provide a new treatment strategy.
10-11

 It has been suggested 

that some of the most debilitating features of this mental disorder, including the negative 

(-) and cognitive (c) symptoms (i.e. avolition (-), memory and attention deficits (c)), have 

been caused by abnormalities in the glutamatergic system. These symptoms may be 

relieved by the oral administration of D-serine supplements 
12

 in addition to standard 

antipsychotic medication (which mostly mitigate positive symptoms, i.e. auditory 

hallucinations).   

Given that NMDA hypo-functionality has been associated with schizophrenia, 
40 

the use 

of D-Ser, and other agonists that bind to the same receptor site has been investigated as a 

safer alternative to the administration of glutamate, which could cause neurotoxicity.
5,13-15 

Other amino acid supplements, including glycine and D-cycloserine, enable 

improvements in negative and cognitive symptoms induced by glutamatergic 

dysfunction.
5,16-17 

When compared to these amino acids, D-Ser is known to be a full 

agonist and provides selective action on NMDA-glycine sites, suggesting that it is the 
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dominant endogenous co-agonist of NMDA receptors.
18-22 

While the academic literature 

investigating the role of glycine is extensive, there has been an increasing interest in 

investigating the contribution of D-Ser as a therapeutic agent in schizophrenia. 

Furthermore, it is evident that the distribution of D-Ser parallels that of the NMDA 

receptors more closely than glycine, 
23

 and it crosses the blood-brain-barrier more 

readily.
24

 Taken together, these reports elucidate the important role of D-Ser and its 

applicability to adjuvant treatment of the negative and cognitive symptoms of 

schizophrenia. Ultimately, MRS measurements of Ser could provide information on the 

inter-individual variability of this metabolite in the living human brain and its possible 

abnormal levels in schizophrenia. In the longer term, detection of human brain Ser could 

be used as a potential diagnostic marker, as part of tools to properly stratify participants 

of drug trials likely to respond to glutamate-modulating therapies. This process of 

stratification could also be a key part of personalized dose titration for D-serine oral 

supplements, attempting to reach a particular brain dose in the context of a variable 

ability to cross the blood brain barrier.  
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Previously, the assessment of the endogenous Ser concentration in the human brain has 

been impossible using conventional proton Magnetic Resonance Spectroscopy (
1
H-MRS). 

This is mainly due to Ser’s low endogenous concentration at approximately 0.4 -0.8 

mmol/kgww (wet weight).
25, 45-47

 The Ser spectrum consists of multiplets from an ABX 

spin system formed by interacting protons from the 
2
CH and 

3
CH2 groups featuring 

resonances at 3.83, 3.94 and 3.98 ppm, respectively.
25

 The spectral overlap with the 

methylene resonance of creatine (Cr) at 3.92 ppm also makes Ser a challenge to quantify 

in humans. Although, the Cr resonance is the most difficult source of Ser signal 

contamination to overcome, measurements of Ser are further hindered by overlap with the 

neighbouring multiplets of glutamate (Glu) (at ~3.74 ppm) and glutamine (Gln) (at ~3.75 

ppm) and possibly small contributions from ethanolamine (Eth) (at ~3.82 ppm) and 

phosphoryl ethanolamine (PEth) (at ~3.98 ppm), as illustrated in Figure 3-1.  

Figure 3-1. Resonances near the 15 Hz wide region selected by the frequency-

selective DANTE RF pulse (simulated FID, 1Hz linewidths). 
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Recently developed techniques in metabolite-selective 
1
H-MRS of the human brain have 

offered promising approaches to producing reliable measurements of brain metabolites 

important in neuropsychiatry research. Most recently, developing a method through the 

insertion of triple- or quadruple-DANTE frequency selective pulses to an adiabatic 

PRESS sequence has allowed the group of Choi et al. to measure in vivo data consisting 

of certain metabolites, including Myo-Inositol, Glu and Gln, while eliminating any 

spectral conflict from the neighbouring metabolites.
26, 27

 A recent study by Choi et al. has 

been devoted to detecting in vivo brain Ser levels from the frontal region of healthy 

subjects by utilizing an advanced proton magnetic resonance spectroscopy (
1
H-MRS) 

method at a field strength of 7.0 T.
28

 The Choi et al. study includes the implementation of 

a constant-TE, triple-refocusing, difference-editing strategy, which involves the collection 

of two interleaved datasets, retaining only the signals affected by the editing pulses. This 

technique requires the subtraction of a pair of sub spectra acquired with dissimilar sets of 

optimized sub echo times (i.e., TE1, TE2 and TE3) which preserves the Ser signal at the 

CH2 multiplet by eliminating the interfering Cr singlet at 3.92 ppm. A limitation of this 

filtering strategy may include minor subtraction errors that may cause the contribution of 

the contaminants in interfering with Ser measurements by up to 30% 
28

. The subtraction 

of the two sub spectra may also produce a reduction in the SNR of the Ser measurements. 

Prior to that project, our research group had developed an analogous technique to that of 

their previous work and was able to measure low in vivo concentrations of Ser using a 

single-shot technique on a Varian Unity Inova 4.0 Tesla system.
29

  

This project proposes the first attempt to measure endogenous brain Ser levels using a 3.0 

T clinical Siemens Biograph mMR scanner. To achieve very selective excitation, a non-

invasive spectrally selective novel method known as DANTE-PRESS or D-PRESS 
29, 30

 

was developed based on similar principles used in the Choi et al studies 
26, 27 

with a few 

key differences, such as use of single-DANTE pulses rather than triple- and quadruple-

DANTE pulses, and the use of a double spin echo rather than a triple spin echo sequence. 

The D-PRESS technique was implemented by incorporating a very frequency-selective 

single-DANTE pulse to a symmetrical PRESS sequence, placed between the two slice-

selective refocusing 180° RF pulses (Figure 3-2).  
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Figure 3-2. A sequence diagram of the DANTE-PRESS sequence, together with the 

timing and order of the slice selective gradients (Gx, Gy, Gz), the frequency selective 

pulses (RF) and the ADC axis. 

 

The Ser resonance at 3.83 ppm has the least amount of contamination from other 

interfering metabolites, making it the ideal target for selective excitation. This manuscript 

aimed to determine the test-retest reliability of assessments of Ser concentration with D-

PRESS in in vitro using
 
a series of phantom experiments. The optimized technique

 
was 

then utilized to obtain in vivo proof-of-concept data focusing on measurements of Ser 

concentration in the frontal brain (left anterior cingulate) of healthy participants, a region 

of relevance to future applications in psychiatric disorders.
31, 32
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3.2 Materials and Methods:  

3.2.1 Phantoms:  

Brain-mimicking phantoms were constructed to examine the ability of the metabolite 

selective MRS technique in 1) isolating the signal of interest, 2) testing for linearity and 

3) determining accuracy and precision of Ser detection. Overall, twelve phantoms were 

built and their information is summarized in table 3-1. The phantoms consisted of hollow 

polyethylene spheres (diameter (Dia.) [i.d.] ~5, ~7.5 or ~10 cm) filled with buffered 

saline (Milli-Q water; 10% phosphate-buffered saline (PBS); pH 7.31; 0.05% sodium 

azide (NaN3), to prevent bacterial growth overtime).
41

 A phantom (Phantom 3) with a 

high concentration of Ser (30 mM; S5386-25G; Pcode: 014K06342; Sigma-Aldrich) and 

in vivo level Cr (7.5 mM; C0780-50G; Pcode: 101101933; Sigma-Aldrich) was 

constructed in order to investigate the J-modulation of the Ser signal acquired at various 

echo times and with or without the application of the metabolite-selective RF pulse. Four 

brain-mimicking spherical phantoms (Phantoms 4,5,6 and 7, respectively, inner diameters 

(Dia.) [i.d.] ~10 cm and ~5 cm) were constructed containing a high concentration of Ser 

(30 mM), Cr (25 mM), Glu (30mM; 49449-100G; Pcode: 101097293; Sigma-Aldrich), 

and Gln (30mM; 49419-25G; Pcode: 101095200; Sigma-Aldrich) with in vivo 

concentration N-Acetylaspartic acid (NAA) (8mM, EO03308AO, Sigma-Aldrich) were 

used in order to develop the templates for in vivo data quantification. These separate 

phantoms were built to also assess the level of contamination from these neighbouring 

signals and Ser signal isolation. Phantoms (Phantoms 4, 8, 9, 10, 11 and 12, respectively) 

including serially decreasing Ser levels (30 mM, 20 mM, 10 mM, 5 mM, 2.5 mM, and 

1.25 mM) were used to calculate the calibration factor for the measured concentrations. 

Preliminary in vitro measurements were obtained in order to develop prior knowledge of 

the spectral signature of Ser. Two phantoms (Phantoms 1 and 2) containing in vivo 

(~0.732 mM) and double in vivo (~1.464 mM) Ser concentrations were used to assess the 

test-retest reliability of the MRS protocol in measuring Ser.  
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Table 3-1. A summary of all the brain-mimicking phantoms that were built for this 

study is presented.  

 Phantom No.       Chemical component        C oncentrations (mM)    Sphere Dia         Product No. 

          1               DL-Serine (Ser)                                        0.732 mM                  3.937″                   S5386-25G 

                           Creatine (Cr)                                             7.5 mM                                                   C0780-50G 

                           N-Acetyl-L-Aspartic Acid (NAA)           8 mM                                                       44,154-6                                                                 

          2               DL-Serine (Ser)                                        1.464 mM                  3.937″                  S5386 -25G 

                           Creatine (Cr)                                             7.5 mM                                                  C0780-50G 

                           N-Acetyl-L-Aspartic Acid (NAA)           8 mM                                                      44,154-6                                 

          3               DL-Serine (Ser)                                        30 mM                       3.937″                  S5386-25G 

                           Creatine (Cr)                                             7.5 mM                                                  C0780-50G  

          4               DL-Serine (Ser)                                        30 mM                       3.937″                  S5386-25G 

                           N-Acetyl-L-Aspartic Acid (NAA)           8 mM                                                      44,154-6                                 

                           3-(Trimethylsilyl)-1-propane-                                                                                  

                          sulfonic acid  (TPS)                                 1 mM                                                      17,883-7   

          5               Creatine (Cr)                                             25 mM                      3.937″                 C0780-50G  

                           N-Acetyl-L-Aspartic Acid (NAA)           8 mM                                                      44,154-6                                 

          6               L-Glutamic acid (Glu)                              30 mM                      1.969″                  49449-100G 

                           N-Acetyl-L-Aspartic Acid (NAA)           8 mM                                                     44,154-6                                 

          7               L-Glutamine (Gln)                                    30 mM                      1.969″                   49419-25G 

                           N-Acetyl-L-Aspartic Acid (NAA)           8 mM                                                      44,154-6                                 

          8               DL- Serine (Ser)                                       20 mM                      2.9530″                 S5386-25G 

                           3-(Trimethylsilyl)-1-propane-                                                                              

                           sulfonic acid,  sodium  salt  (TPS)            1 mM                                                     17,883-7   

          9               DL- Serine (Ser)                                       10 mM                      2.9530″                S5386-25G  

                           3-(Trimethylsilyl)-1-propane-                                                                               

                           sulfonic acid,  sodium  salt  (TPS)             1 mM                                                   17,883-7   

          10             DL- Serine (Ser)                                       5 mM                        2.9530″               S5386-25G  

                           3-(Trimethylsilyl)-1-propane-                                                                                  

                           sulfonic acid,  sodium  salt  (TPS)             1 mM                                                   17,883-7   

         11              DL- Serine (Ser)                                        2.5 mM                    2.9530″               S5386-25G  

                           3-(Trimethylsilyl)-1-propane-                                                                                    

                           sulfonic acid ,  sodium salt  (TPS)             1 mM                                                  17,883-7   

         12              DL- Serine (Ser)                                        1.25 mM                  2.9530″               S5386-25G  

                           3-(Trimethylsilyl)-1-propane-                                                                                

                           sulfonic acid,  sodium  salt   (TPS)            1 mM                                                  17,883-7   
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3.2.2 Human participants:  

As part of proof-of-concept application to measurements of endogenous levels of Ser in 

the human brain, four healthy volunteers (3 males, aged 24, 27 and 33 years, 1 female, 

aged 22 years) were recruited and Ser D-PRESS measurements were obtained twice, one 

week apart (except for the female participant; subject 1). Typically the periods for the 

onset of schizophrenia begin in the early adulthood or emerge in late adolescence; 

therefore, the ages of the participants make them appropriate subjects to compare to 

individuals with schizophrenia in a future study. All subjects gave written informed 

consent prior to the scan. The study was approved by the Health Sciences Research Ethics 

Board (HSREB), HSREB file number: 6319, of the University of Western Ontario.  

3.2.3 Measurements:  

MR examinations were performed on a clinical 3.0 T whole-body scanner (Siemens 

Biograph mMR scanner, a dual-modality PET/MRI imaging system 
55,56

 , St. Joseph’s 

hospital, London, Canada) using a standard Siemens 32-channel head coil whose plug 

configuration was adapted to this scanner. We implemented a D-PRESS pulse sequence 

on the 3.0 T scanner in an similar fashion to what our group previously implemented on a 

4.0 T scanner.
29

 The PRESS sequence is composed of an excitation 90° RF pulse 

(hamming filtered sinc; experimentally determined time-bandwidth product (R) for 

excitation: 8.750, duration of 2600 s) and two refocusing 180° RF pulses (Mao 

refocusing pulses 
53, 54

; experimentally determined R = 6.000, duration of 7200 s) 

supplied in an external file. The D-PRESS pulse sequence inserts a high frequency-

selective single-DANTE pulse within the standard symmetrical PRESS sequence at the 

midpoint between the two 180
o
 refocusing pulses of the PRESS sequence. The basic pulse 

sequence structure is 90-TE/4-180-TE/4-DANTE-TE/4-180-TE/4 and the full pulse 

sequence diagram is presented in Figure 3-2. The 180
o
 DANTE pulse (duration of 118.54 

ms) comprises a series of short square RF pulses 0.086 ms in duration separated by a 

fixed delay of  4.48 ms which produces a frequency profile with a predictable repeating 

pattern of narrow passbands. The exact shape of the DANTE pulse is generated at run-

time (online) by the pulse sequence in response to the parameters entered in the scanner 
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user interface (center frequency, passband full-width-at-half-maximum (FWHM) of 15 

Hz, repeating at every 223 Hz intervals (the Frequency Domain Period (FDP)) and is 

amplitude-modulated with a Gaussian envelope (truncated at 5%), frequency domain 

FWHM = 14000 Hz). For this work, an FDP of 233 Hz was selected to ensure that the 

frequency difference between repeating passbands would be equal to the frequency 

difference between the Ser 3.83 ppm resonance and the NAA 2.01 ppm singlet. NAA was 

used as a reference peak to aid in phasing of the spectrum during post-processing as well 

as with the constraining of the spectral quantification template. Figure 3-3 represents the 

DANTE pulse used as well as its corresponding frequency profile estimated by its Fourier 

Transform.   
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Figure 3-3. DANTE RF Pulse amplitude waveform in the time domain (top) and the 

corresponding frequency profile obtained by Fourier Transformation (bottom). 

DANTE pulse parameters were: passband width = 15 Hz; FDP = 223 Hz; number of 

points = 2560; Frequency Domain FWHM = 14000 Hz; amplitude modulation = 

Gaussian; amplitude modulation cut-off threshold = 5%. 
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A long echo time (286 ms) was used in these experiments since the DANTE-RF pulse’s 

bandwidth of 15 Hz (duration of 118.54 ms), which was approximately equivalent to 0.11 

ppm, was sufficient to isolate the resonance of serine at 3.83 ppm at 3.0 T. A clinically 

acceptable timeframe of approximately eight minutes was used to achieve a reasonable 

SNR due to the implementation of a long DANTE-RF pulse. Since the Ser signal 

intensity was susceptible to field drifts under the narrow band highly frequency-selective 

RF pulse during data acquisition, mainly produced by hardware imperfections, an 

assessment of scanner drift effects was performed for a scanning period of ~20 min. In 

order to minimize this effect, a parameter was implemented that compensates for 

frequency-drifts by enabling the movement of the passband of the DANTE RF pulse in 

the direction of the drift depending on its rate of movement during each experiment. The 

center frequency of the DANTE pulse was determined at run-time as 1.81 ppm downfield 

from the frequency measured for the NAA CH3 peak in a spectrum acquired with a 

traditional PRESS acquisition (D-PRESS with the DANTE pulse OFF, TR = 2.0 s, TE = 

286 ms, NA = 64). Spoiling gradient pairs along each of the three axes were applied 

immediately before and after the DANTE RF pulse to ensure the elimination of any 

unwanted signals outside the DANTE passbands. Water suppression was achieved 

through a WET water saturation module consisting of three variable flip angle RF pulses 

with 17.9 ms duration and Gaussian shape flanked by spoiler gradients.
37  

An effective 

water suppression can be achieved with the DANTE-ON application since it eliminates 

any remaining water residuals and only refocuses signals that are affected by all of the RF 

pulses. The gradient scheme (including water suppression gradients) was kept constant in 

all acquisitions to maintain comparable lineshapes between acquisitions. Prior to 

acquiring data, the gradient crushers of this sequence were optimized in order to eliminate 

any unwanted coherences (see Appendix C). The main Ser data was acquired with the 

DANTE pulse ON (TR/TE = 2.000/286 ms; NA = 256; FDFWHM = 14000 Hz, 4 dummy 

scans; sampling points = 2048; phase cycling = 8-step). In order to provide a 

concentration reference (other than internal NAA), two separate water-unsuppressed 

acquisitions were obtained with the same echo and repetition time as the DANTE ON 

acquisition (TR/TE = 2000/286 ms), with (the DANTE frequency centered on water; 

FWHM = 15 Hz; NA = 8) and without the DANTE pulse application (NA = 8).  
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The separate DANTE-ON water-unsuppressed spectrum was obtained by setting the 

DANTE-RF pulse frequency centered on water and used for the correction of eddy 

currents in phantom experiments. A Lorentzian eddy current correction technique was 

used to eliminate lineshape distortions. Spectra and metabolite concentrations were 

quantified using Fitman (locally developed spectral fitting software)
 33

, a time-domain 

fitting algorithm. In order to evaluate reproducibility for the in vitro measurements, 

coefficients of variation (CV) were computed and the results were also analyzed 

statistically using one-way ANOVA using SPSS v.24 (IBM Corp, Armonk, New York, 

USA), respectively. 

3.2.4 Experimental: 

Phantom experiments:  

In order to develop prior knowledge of the spectral signature of Ser, preliminary in vitro 

measurements were obtained. In vitro data was obtained from phantom 3 (buffered saline, 

inner diameter [i.d.] ~10 cm, pH 7.31) including a “high” concentration of Ser (30 mM) 

and Cr (7.5 mM). The data also demonstrates the ability to separate the Ser signal from 

the Cr singlet at 3.92 ppm. Considering that Ser consists of an ABX spin system and the 

DANTE pulse that was applied only to the X spins (compare Figure 3-4’s top and bottom 

traces). 

In order to determine the linearity of Ser measurements with DANTE-PRESS, spectra 

were obtained from a series of Ser-only phantoms (Phantoms 4, 8, 9, 10, 11 and 12, 

respectively) with the following concentrations: 30 mM, 20 mM, 10 mM, 5 mM, 2.5 mM, 

and 1.25 mM. This data was also used to determine the effective number of protons 

participating to the DANTE-PRESS Ser signal. With a standard PRESS spectrum, one 

would assume the total Ser signal to originate from three protons, but the Gaussian 

passband over the 3.83 ppm Ser resonance, although consistent, does not provide a flat 

inversion profile over the range of resonances associated with the X spin of Ser. The 

effective number of protons must therefore be determined empirically from the slope of 

the linearity curve linking measured and known concentrations (Figure 3-5). 
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In order to determine the accuracy and precision of Ser measurements in phantoms, ten 

consecutive DANTE-PRESS spectra were obtained from within-session at baseline (no 

phantom repositioning, with different scanning adjustments) and between-session from 

the same phantom scanned a week later. For accurate adjustments of measurement 

parameters, additional tuning and manual adjustments of frequency, first- and second-

order shim coils and water suppression were performed prior to each in vitro 

spectroscopy measurement. Two phantoms (Phantoms 1 and 2) containing either “in 

vivo” [~0.732 mM] or “double in vivo” [~1.464 mM] Ser concentrations were scanned 

during each session. Each phantom contained in vivo level Cr [~7.5 mM]. The results 

were interpreted and reported using descriptive statistics (means, standard deviations 

(SDs), and CVs) and any difference in the means of the unpaired measurements were 

assessed using a classical statistical method, one-way analysis of variance (ANOVA). 

Prior knowledge of metabolite spectral signatures for Ser (30 mM), Cr (25 mM), Glu (30 

mM), Gln (30 mM) and NAA(8 mM) were obtained from aqueous phantoms (Phantoms 

4,5,6 and 7, respectively) prepared as above. NAA’s CH3 singlet was used as a chemical 

shift reference for all phantoms. Spectral quantification templates for in vivo data were 

formed from the combination of spectral signatures for the five metabolites (Ser, Cr, Glu, 

Gln, and Naa). The resulting spectra were used to construct a Ser quantification template 

consisting of 32 resonances and 5 metabolites constrained according to chemical shift, 

linewidth and phase (0
th

 and 1
st
 order). Each metabolite had a single amplitude parameter 

associated with its spectral signature.  
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Figure 3-4. Spectra obtained from a phantom containing 30 mM of Ser and 7.5 

mM of Cr, using an echo time of 286 ms with D-PRESS (top) and symmetrical 

PRESS with an echo time of 286 ms (bottom).  
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Figure 3-5.  A series of phantoms with the following concentrations of serine were 

scanned: 20 mM, 10 mM, 5 mM, 2.5 mM, and 1.25 mM. A linear relationship 

between measured and known concentrations was confirmed (r
2
 =0.9995, (p-value < 

0.001)) 
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In vivo experiments: 

To demonstrate the applicability of the D-PRESS technique for in vivo Ser measurements 

in the healthy human brain, measurements were obtained from a single voxel (20x20x20 

mm
3
) (Figure 3-6) positioned in the left anterior cingulate’s most rostral portion using 

1
mm isotropic 3D MP-RAGE images for guidance (TR/TE/TI = 2000/2.98/900 ms; flip 

angle = 9°; field of view = 256×256×176 mm
3
; 176 slices; slice thickness = 1.00 mm). 

 

 

It was essential to use a careful voxel localization on repeat scans to reduce the amount of 

variability in concentration measurements. Accurate voxel re-localization was achieved 

by identifying local anatomical landmarks 
43, 44 

and using high resolution images 
42 

to 

ensure reproducible voxel positioning between sessions. Voxel localization was achieved 

by mainly using the midsaggital image and by placing the voxel in the pregenual anterior 

cingulate cortex (anterior to the genu of the corpus callosum)
 51 

with its inferior border 

located along the plane of the anterior-posterior commissure line.
52 

The voxel of interest 

was placed on the brain region which was dominated by gray matter (GM). Therefore, the 

tissue compositions of GM, white matter (WM), and cerebrospinal fluids (CSF) often 

used for correcting the water signal for tissue water content were not taken into 

consideration during metabolite quantification. Nevertheless, a tissue water content of 

81% was assumed for all in vivo scans (i.e. 100% grey matter content was assumed). 

Figure 3-6. This figure illustrates the voxel (20 × 20 × 20 mm
3
) positioning in the left 

anterior cingulate in a healthy participant.  
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The D-PRESS pulse sequence used the same parameters as those used in phantom 

experiments (DANTE passbands = 15 Hz (0.11ppm), amplitude modulation = Gaussian, 

FDP = 223 Hz, FDFWHM = 14000 Hz, TR/TE = 2000/286 ms; 4 dummy scans; 

sampling points = 2048; NA = 256; phase cycling = 8-step). These participants underwent 

two examinations seven days apart and two consecutive spectra were obtained at each 

session (within-session), except for the one female participant (subject 1). The First- and 

second-order shims were adjusted manually. The final in vivo template included the 

individual resonances of a total number of five metabolites (Ser, Cr, Glu, Gln and NAA), 

which were modeled and constrained. The time-domain iterative fitting algorithm used a 

tolerance value of 0.0001 that specified the percentage change in chi squared value which 

must have been achieved before the fit was considered completed. The minimum and 

maximum numbers of iterations were set to 50 and 5000 for both in vitro and in vivo 

templates respectively, the convergence criteria were usually met by the time 500 

iterations were completed. The iterative fitting procedure was seeded with initial 

conditions and constraints to guide its convergence until the residuals of fit were 

minimized. The model contained peak parameters amplitude for each metabolite, with 

one parameter for chemical shift, Lorentzian width, zero-order phase, and delay time part 

of the quantification template.
33 

There were a total number of five metabolite spectral 

signatures included in the template and the peaks from each spectral signature would 

change in amplitude together (grouped by amplitude constraints), but separate from the 

amplitude of other metabolites. Thus, a total number of nine fit parameters were 

implemented in the constraint file that were interpreted by the fitman fitting routine.  

3.3 Results: 

In a phantom solution (Phantom 3) containing a high level of Ser (30 mM) and in vivo 

concentration of Cr (7.5 mM), we demonstrated that the AB spin resonances of Ser 

displayed a J-coupling pattern acquired with D-PRESS (DANTE pulse ON) resonances 

were similar to those resonances acquired with a symmetrical PRESS sequence (DANTE 

pulse OFF) at the same echo time of 286 ms (see Figure 3-4). It can be gleaned from 

Figure 3-4 that Ser MRS spectra can be obtained without significant interference from the 

3.92 ppm Cr resonances, which can be successfully suppressed.  
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Representative in vitro test-retest spectra are displayed in Figure 3-7. The in vitro spectra 

of Ser presents two vertical solid lines (A, B) that indicate the range of Ser resonances 

that were quantified and a single vertical dashed line (C) specifying the small residual 

signal produced from the Cr peak located at 3.92 ppm. In the in vitro experiments, this 

narrow-band frequency-selective technique enabled the suppression of the main 

confounding peak arising from a Cr singlet at 3.92 ppm (suppression factor ranging 

between 97% to 99% for the “in vivo” phantom and 99% on average for the “double in 

vivo” range experiments). As illustrated in Figure 3-7, there is an apparent systematic 

effect for these ten repeated acquisitions: the residuals of Cr signal increases as the scan 

number increases and this may be caused by the scanner drifts. The amount of drift was 

below detectible, so the acquisitions were used without correction. Some residual drift is 

nevertheless observable in the final spectra. Figure 3-8 indicates in vitro demonstration of 

ten repeated measurements that were obtained from “in vivo” (~0.732 mM) concentration 

phantom and from the “double in vivo” (~1.464 mM) concentration in two scanning 

sessions occurring one week apart. One-week repeat average concentration of  the 

phantoms containing “in vivo” and “double in vivo” Ser concentrations at baseline were 

1.13 ± 0.09 and 2.18 ± 0.13, and one-week apart were 1.06 ± 0.10 and 2.23 ± 0.14, 

respectively. The differences of the mean values were compared between sessions by 

conducting one-way ANOVA analysis and no statistically significant differences in the 

values were found for the in vivo (F = 2.790, df =18, p = 0.112) and double in vivo (F = 

0.595, df =18, p = 0.452) measurements. The resulting coefficients of variation were low 

for both the in vivo (CV in the range of ~8-9%) and double in vivo (CV in the range of 

~5-6%) measurements, demonstrating sufficient repeatability to warrant in vitro MRS 

measurements. 

To assess whether field drifts can degrade the frequency calibrations, as confirmed by the 

measurements obtained from the water resonance with the DANTE application from 

phantom experiments, scanner drifts were monitored for a scanning period of ~20 min. 

The results indicated that, for that timeframe, the signal loss of the water peak is 

negligible due to this hardware imperfection (Signal loss < 1%, as verified in phantom 

experiments).  
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The average linewidth, full width at half maximum (FWHM), of the in vivo unsuppressed 

water signal was ~13 ±2 Hz at the echo time of 286 ms, after performing the first-order 

and second-order shimming adjustments. The in vivo spectra of Ser obtained with the 

DANTE application compares favorably with the spectrum obtained in in vitro, as 

illustrated in Figure 3-9. A stack of in vivo D-PRESS serine spectra obtained from the left 

anterior cingulate of three healthy participants, together with the standard PRESS 

spectrum acquired from subject 1, are presented in Figure 3-10. The signal near 3.83 ppm 

ascribes predominantly to the X spin system of Ser and some residual signal from the Cr 

peak at 3.92 ppm. As demonstrated in Figure 3-10, for the in vivo experiments a 

suppression factor of 4 (~75%) to 8 (~90%) was achieved to almost completely eliminate 

the Cr signal introduced from resonances at 3.92 ppm. This figure also illustrates the 

signals from additional potential contaminants from the neighbouring metabolites, 

including Gln and Glu, which were suppressed (as demonstrated in in vitro 

measurements) by average factors of approximately 3 (~67%) and 4 (~75%), respectively.  

Figure 3-11 displays an example of spectral fitting results, illustrating the data, the fitting 

line, the fit components, and the fit residuals. The addition of these metabolites’ spectral 

signatures in the quantification template results in lower fit residuals and thus reduces 

variability of Ser measurements by taking these sources of contaminations into 

consideration.  

The reproducibility of MRS measurements greatly depends on the quality and 

reproducibility of RF excitation parameter adjustments and availability of more advanced 

MRS adjustment capabilities, as illustrated in the MRS literature.
34

 Therefore, the 

DANTE-PRESS sequence was further modified to implement inline adjustment 

capabilities. This enabled the optimization of several parameters of the pulse sequence, 

including fine-tuning of the frequency offset of the DANTE pulse and fine adjustments of 

the transmitter voltage of the RF pulses (Figures 3-12 and 3-13).  

The calibration of these parameters and the use of advanced adjustments in each 

individual are essential to minimizing the degradation of spectral quality and signal loss. 

The optimization of the selected parameters was accomplished by using real-time 

monitoring of the measurements prior to the start of the data acquisition. In order to 
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generate proper pulse sequence profiles, the optimum flip angle values (for the excitation 

and the two refocusing RF pulses, concurrently) were determined at the beginning of each 

scanning session. To arrive at the final desired D-PRESS sequence functionality, the fine 

tuning of the adjustment of the frequency offset of the DANTE RF pulse was performed 

prior to obtaining each Ser-selected spectra. This is a critical step since any 

misadjustments in computing the DANTE-RF frequency offset cause significant signal 

loss and the proper fitting of the developed in vivo template for quantification is 

jeopardized. 

The following MRS ratio of metabolite peaks of Ser to NAA and Ser to Cr were 

computed. MRS ratio concentrations were obtained from all of the healthy participants 

whose spectra are presented in Figure 3-10. Assuming identical relaxation times, the 

concentrations of the D-PRESS Ser and PRESS NAA signals obtained from the three 

healthy participants were compared, and the Ser-to-NAA concentration ratio was 

estimated to be 0.09 ± 0.01 (mean ± SD, n = 5). This ratio is greater than the expected 

values (by ~32%, considering Ser 0.732 mM and NAA 10.3 mM) when compared to the 

findings in the literature.
25, 45-49

 The ratios of Ser-to-Cr were also obtained and the values 

were 0.20 ± 0.03 (mean ± SD, n = 5), higher (by ~38%, considering Ser 0.732 mM and Cr 

5.1 mM) than the estimations provided in the published studies.
25, 45-50 

Prior to 

implementing the inline adjustment technique, two repeated measurements from the first- 

and second-in vivo experiments (two male subjects; participant 2 and participant 4) were 

quantified. The MRS ratios of these measurements are presented in table 3-2. Although it 

is too early to draw firm conclusions regarding the in vivo data, inline adjustment 

capabilities appear to enhance the reproducibility of Ser in vivo measurements.  
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Table 3-2. MRS ratio summary * of all of the in vivo measurements are displayed. 

For all of the subjects, except subject 1, a second measurement was obtained within 

the same day. Pre adjustments include the measurements obtained prior to 

implementing the inline adjustment properties to the sequence.  
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Figure 3-7. These spectra illustrate the 10 consecutive in vitro D-PRESS 

measurements obtained from two phantoms that contain in vivo serine 

concentrations and double in vivo serine concentrations, illustrated at the left 

and the right of the figure, respectively, at baseline & one week apart (indicated 

as SCAN 1 and SCAN 2, respectively). The two vertical solid lines (A, B) 

demonstrate the spectral width for Ser resonances and the Cr residuals 

generated from the peak at 3.92 ppm are indicated by the single vertical dashed 

line (C). 

 



76 

 

 

Figure 3-8. The average value of baseline in vivo & one week (Week 1 and 

Week 2) plus baseline double in vivo & one week (*Week 1 and *Week 2) 

were 1.13 ± 0.09 (CV = 8.3%), 1.06 ± 0.10 (CV = 9.9%), 2.18 ± 0.13 (CV = 

5.7%) and 2.23 ± 0.14 (CV = 6.5%), respectively. 
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Figure 3-9. PRESS (A, C) and DANTE-PRESS (B, D) spectra (TE = 286 ms, 

TR = 2.0 s) were obtained from the anterior cingulate (A, B) and in vitro  

data acquired from a phantom composed of a solution of Ser and Cr  

(C, D). A LW correction factor of 2 Hz was applied to all of the four spectra.  
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Figure 3-10 . A stack of in vivo DANTE-PRESS spectra obtained 

at TE=286 ms from the left anterior cingulate of three healthy 

participants. Two consecutive data-set were obtained within the 

same session from participants 2 and 3.  The bottom trace is a 

standard PRESS spectrum obtained at TE=286 ms from 

participant 1. 
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Figure 3-11. Representative of an in vivo spectrum. Line (A) represents  

the data in black and the fitting line in red, lines (B and C) illustrate  

the fitting components of serine in orange and creatine in purple, lines  

(D and E) represent the fitting components of glutamate in green and  

glutamine in pink, respectively. Line (F) shows the residuals in  

blue (data minus fit). LW correction factor of 2 Hz was applied. 

 

  



80 

 

 

 

Figure 3-12. The “Special Card” illustrates the parameters which interact with the 

DANTE RF Pulse. The optimization of the DANTE frequency adjustments and the 

RF flip angle values are enabled through the use of this card.  
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Figure 3-13. The inline display illustrates the DANTE RF pulse’s chemical shift 

(CShift) value, the repetition number (REP), the signal value (Signal), and highlights 

the maximum value (MaxValue*) with a purple label. 
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3.4 Discussion: 

This study demonstrated the first investigation of the reliability of the DANTE-PRESS 

method to detect in vitro Ser using a metabolite-selective single-voxel 
1
H-MRS technique 

on a 3.0 Tesla clinical scanner. We evaluated the accuracy and precision of the 

measurements obtained in phantoms containing human brain mimicking concentration 

levels of Ser. This advanced 
1
H-MRS technique, D-PRESS, is capable of isolating the 

resonances of Ser by significantly suppressing the resonances of Cr originating at 3.92 

ppm and eliminating other interfering metabolites of Glu at ~3.74 ppm and Gln at ~3.75 

ppm.  

This study reports only the MRS ratio concentrations of Ser to other metabolites because 

of factors that make it difficult to compare the absolute numbers. The absolute values of 

NAA and Ser separately may vary significantly from scan to scan due to the voltage 

adjustments that were performed at the start of each scanning session in turn prior to each 

data acquisition. To investigate the absolute concentration, future studies may be able to 

take full advantage of voltage adjustments in obtaining higher SNR values by correcting 

the flip angle values based on the voltages.   

A limitation of this report was that it did not incorporate the contributions from PEth and 

Eth metabolites, whose resonances may be refocused by the frequency-selective DANTE-

RF pulse into the final quantification in vivo template. The Fitman program used for 

quantification applies the Levenberg-Marquardt minimization algorithm, an automated 

fitting procedure, which may result in quantification errors if certain metabolites are not 

included in the prior knowledge. The fitting procedure tends to compensate for the 

missing peaks by increasing or decreasing existing components of the fit, which may 

result in an over- or under-estimation of Ser signals. Therefore, in future studies, for a 

more precise quantification, it is critical to include all the neighbouring metabolites in the 

prior knowledge in order to assess the level of contamination and its effect on the 

concentrations of Ser.  

A long, 118.54 ms DANTE pulse with a Gaussian waveform (5.0 % amplitude cut-off) 

was used to obtain a narrow refocusing bandwidth of 15 Hz. At field strength of 3.0 
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Tesla, the 15 Hertz bandwidth ensured significant suppression of the interfering singlet of 

Cr at 3.92 ppm and allowed for the detection of Ser. The use of a long echo time (TE = 

286 ms) in these experiments was necessary to accommodate the long DANTE pulse. 

This can be a disadvantage of this method due to the associated substantial signal decay 

via transverse relaxation effects. On the other hand, it has been noted that 

macromolecular (MM) resonances are abundantly present at 4.00 ppm, near the Ser 

resonances at 3.83 ppm 
35, 36 

and their contribution to Ser signals is completely eliminated 

at such long echo times. 

Despite the scanner drift that arises from hardware imperfections, including changes in 

the temperature over time and long scanning duration, the signal intensity and line shape 

of Ser obtained using the narrow-band 180° DANTE RF pulse still generates an 

acceptable signal-to-noise ratio for this low concentration metabolite. Nonetheless, the 

implementation of the extremely narrow radiofrequency RF pulse of DANTE (at a long 

echo time of 286 ms) is still susceptible to hardware-related frequency drift and 

restriction of participant head movement is critical to avoid motion-related frequency 

drifts.
39

 

In conclusion, this novel metabolite-selective 
1
H-MRS method, dubbed D-PRESS, was 

the first attempt to measure endogenous human brain Ser levels at field strength of 3.0 

Tesla. Results suggest in vivo-like concentrations of Ser can be measured reliably with 

little contamination from other metabolites. The implementation of inline adjustment 

capabilities to this custom D-PRESS 
1
H-MRS sequence seemed critical to achieve 

reproducible Ser measurements in vitro and in vivo. Together the low CV values and the 

results obtained from the one-way ANOVA analysis for the in vitro findings suggest that 

the DANTE-PRESS sequence was capable of successfully detecting the signal of in vitro 

Ser with sufficient reproducibility and precision to justify assessment of test-retest 

reliability of endogenous in vivo levels. The proof-of-concept in vivo data showed that the 

technique is applicable to in vivo measurements. Further studies need to be performed in 

order to determine the reproducibility of these measurements in healthy controls and 

schizophrenic patients. 
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Chapter 4  

4 Thesis summary: 

In recent years, there has been a growing academic interest in in vivo detection of serine 

(Ser) concentrations in the human brain as our group, and other researchers, have 

investigated its significance and relevance to neuropsychiatric disorders.
1
 Ser 

concentrations have been implicated in the pathophysiology of schizophrenia by a 

number of research findings.
2 

Evidence suggests that alterations in the NMDA receptor, 

which causes glutamatergic abnormalities, are the main explanation for the negative and 

cognitive symptoms of schizophrenia, which may respond to the oral administration of D-

serine supplements.
3 

The detection of the naturally occurring brain levels of serine has 

been impossible using standard proton Magnetic Resonance Spectroscopy (
1
H-MRS), due 

to its comparatively weak signals, and neighboring strong signals. Advanced 
1
H-MRS 

methods conducted at non-clinical, high-field strengths of 4.0 Tesla (T) 
4
 and 7.0 T,

 5
 have 

been capable of measuring the endogenous levels of human brain serine. Nonetheless, no 

earlier research has employed these techniques at the more widely available clinical field 

strength of 3.0 T.  

In summary, this thesis has introduced an innovative 
1
H-MRS DANTE-PRESS (D-

PRESS) pulse sequence, implemented by inserting a spectrally-selective single-DANTE 

pulse into a standard symmetrical PRESS sequence. D-PRESS is capable of assessing 

endogenous levels of Ser by refocusing its signals and greatly suppressing the signals of 

other metabolites. D-PRESS uses a narrow radiofrequency pulse centred on a chosen 

spectral line of interest (i.e. the X spin of the Ser’s ABX spin system) such that 

neighboring resonances remain unaffected. Chapter 3 summarizes findings from the 

evaluation of the test-retest reproducibility of Ser measurements in brain-mimicking 

phantoms, with two concentrations in the in vivo range. It also presents preliminary in 

vivo proof-of-concept data demonstrating the feasibility of Ser measurements at 3.0 T. 

Results demonstrated the reliability and reproducibility of Ser measurements obtained in 

vitro and suggests readiness for comparable work in vivo.  
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4.1 General remarks, limitations and implications:  

The remainder of this chapter will highlight some of the advantages of the experimental 

protocol presented in this thesis. Despite the effort devoted to developing and 

implementing an advanced 
1
H-MRS sequence in conjunction with MRS adjustment 

capabilities (see Appendix A), the following will identify any limitations and deficiencies 

in the existing practice that need to be addressed, and discuss ways of improving future 

studies.  

4.2 The DANTE-PRESS protocol’s advantages and limitations:  

4.2.1 Advantages:  

The D-PRESS pulse sequence consists of the addition of a frequency-selective, single-

DANTE pulse with very narrow passband, into a symmetrical PRESS sequence (adapted 

from the MRI vendor’s product PRESS sequence version VB20PSP4). The D-PRESS 

sequence introduced in Chapter 2 is capable of selectively exciting only the spins of 

interest in a very narrow range of radiofrequencies. Thus, a major advantage of the D-

PRESS technique is that it offers an enhancement in sensitivity to distinguish proton 

signals from metabolites otherwise difficult to detect.
6, 7 

The selective pulse refocuses a 

particular resonance (or a group of resonances) within complex spectra while leaving 

adjacent resonances, which may hinder its measurement, unaffected.
8
 The most important 

advantage of the D-PRESS pulse sequence is that its metabolite-selective DANTE pulse 

is generated online in response to the user’s input. The pulse sequence allows for online 

optimization of a variety of experimental parameters, including the pulse duration of the 

DANTE pulse that determines its selectivity,
 8

 fine adjustments of the spoiler gradients 

(i.e. the height and the duration; see Appendix B), the modulation and the truncation 

value of the RF pulse (i.e. Gaussian), and the produced inversion-frequency profile of the 

pulse in order to achieve an acceptable excitation of a region of an NMR spectrum.
9 

Indeed, it is essential to select a suitable amplitude modulation function to improve the 

shape of the resulting frequency passband of the DANTE RF pulse.
10

 In this thesis a 

Gaussian-modulated DANTE RF pulse was implemented.
8
 In comparison to a rectangular 
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pulse, in most circumstances depending greatly on the selected waveform cut-off for a 

Gaussian shaped RF pulse, a Gaussian pulse with the same length generates a narrower 

profile.
10

Although, a rectangular pulse is simpler in terms of implementation, it generates 

unwanted side lobes that may lead to refocusing of unwanted resonances.
8
 A sinc-

modulated DANTE RF pulse would produce a more square refocusing profile but 

requires a longer pulse duration, pushing TE beyond the practical feasibility range.
11

A 

properly truncated, highly selective Gaussian modulation targets a narrow range of the 

NMR spectrum and eliminates the refocusing of the neighbouring resonances since its 

amplitude declines rapidly in the tails.
8
 For a detailed description of the user interface 

developed as part of this work for the online manipulation of D-PRESS pulse sequence 

parameters, see Appendix A.  

4.2.2 Limitations and implications:  

The implemented single-DANTE pulse allows the production of a frequency-domain 

inversion, with a profile repeating at a certain frequency interval (in Hz), which may 

cause the excitation of the unwanted metabolites elsewhere in crowded spectra other than 

the reference and the metabolite of interest.
11

 For example, if a sideband of the DANTE 

pulse falls near the water peak, the pulse will interfere with water-suppression and the 

resulting baseline distortions hinder the detection of metabolites, including serine (the X 

spin, 3.83 ppm), near water (~ 4.7 ppm). Another obstacle arises when the difference 

between these repeating frequency passbands (a.k.a. Frequency Domain Period, FDP) is 

roughly less than 100 Hz, which may cause a reduction in the obtained SNR, as verified 

in our experiment. In our experiments, in order to overcome these challenges, we chose a 

reference metabolite (i.e. NAA) whose peak position is far away, 1.81 ppm (~ 223 Hz), 

relative to the resonance of the metabolite of interest (i.e. serine) within the spectrum of 

interest. This practice ensures the full separation of repeating passbands’ profiles. 

However, it limits our choices in selecting a suitable reference peak.
6
 For future work, our 

recommendation is to implement a double-DANTE pulse that is capable of simultaneous 

excitation of spins, operating in two independent rotating referencing frames.
7
 The 

double-DANTE sequence was first introduced by Green et al. and allows for the 

production of two arbitrary frequencies in high-field NMR.
7,

 
11

 Not only will the 
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background contaminant signals be completely suppressed and only the desired 

metabolites will appear on the NMR spectrum, but the SNR value may not be affected 

when the frequency difference between passbands of interest is set to less than 100 Hz.  

4.3  Biograph mMR PET/MRI 3.0 Tesla scanner:  

The 3.0 T Biograph mMR MR-PET system scanner used in this study is an integrated 

multi-modal imaging device and may not be representative of all other typical 3.0 T MRI-

only scanners (i.e. Siemens’ Verio, Trio, Skyra and Prisma scanners). Aside from the 

reduction in the space within the bore of the MRI scanner 
60

 since the PET photodetectors 

are highly sensitive to temperature changes, a redesign of the gradient coils cooling 

system was required to monitor changes in heat.
61, 62

 The installation of the temperature 

sensors and the implementation of the liquid cooling approach 
63

 ensures the system to 

gain thermal stability and to operate at lower temperature in comparison to other 

conventional MRI systems.
61, 63  

The effective monitoring of the temperature of the 

detectors and the achieved thermal stability presumably aids in the reduction of the 

frequency drift. Although no data has been presented, it is possible that the rate of 

frequency drift may be more pronounced in other standard clinical 3.0 T scanners which 

may interfere with the spectral quality or reduce SNR. The loss in the SNR related to drift 

may be mitigated by dynamically adjusting frequency based on a measurement-based 

prediction of the drift rate as discussed in Chapter 3.    

4.4 Ultra-high magnetic field of 7.0 Tesla versus 3.0 Tesla:  

This work presents the first investigation of test-retest of endogenous measurements of 

serine at 3.0 T. The implementation of the single-voxel DANTE-PRESS technique on a 

clinical platform at 7.0 T relative 3.0 T will allow for a substantial increase in the signal 

to noise ratio (SNR) at higher B0, and an enhancement in spectral resolution due to an 

improvement in the separation of spectral lines of individual metabolites.
13, 14 

Since there 

will be an increase in the chemical shift dispersion, a higher FHWM value of the DANTE 

pulse (~35 Hz) will be required to target the resonance of serine at 3.83 ppm compared to 

the FHWM value of 15 Hz used at 3.0 T. Ultimately, due to the reduction in the duration 
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of the DANTE pulse (increased bandwidth/FHWM value), the implementation of a 

shorter TE value is possible, which in turn may reduce the attenuation of signal caused by 

J-coupling effects.
12 

An increase in B0 up to 7.0 T results in an improvement in the SNR 

(approximately 2-fold in comparison to 3.0 T).
15 

Because of the resulting improvement, a 

smaller number of averages can be used to produce an acceptable MRS spectra which will 

result in reduced scan time 
12

 (potentially lessening patient motion effects). Despite 

increases in spectral linewidths at 7.0 T 
16

 compared to 3.0 T, they are outweighed by 

increases in spectral dispersion. Increases in spectral dispersion, interestingly, also 

contribute to the reduction in the amount of J-dephasing of the NMR spectrum; as the 

formerly strongly coupled metabolites become more weakly coupled (chemical shift 

difference over J ratio is decreased). This fact will lessen the amount of second-order J-

coupling effects for the AB spins of Ser and will allow for a more precise and reliable 

quantification of metabolites with complex spectral signatures.
17 

Therefore, it is expected 

that the use of DANTE-PRESS at ultra-high field will lead to significant improvements in 

the detection of metabolites with low concentrations and a strongly coupled spins, 
15 

such 

as serine. 

A reasonable path for future work would be to compare the test-retest reliability of in-

vitro and in-vivo Ser measurements obtained at the ultrahigh magnetic field of 7.0 T to 

that obtained at 3.0 T. The information would be useful to investigators planning studies 

of human brain serine when deciding which field strength to use and evaluating the cohort 

size required. 

4.5 Caveats and future recommendations:  

Some limitations associated with the D-PRESS protocol were presented in Chapter 3. 

This MRS technique measures both D-serine and L-serine within a region of interest, and 

cannot distinguish these metabolites individually. It also cannot provide information 

regarding the d-/l-serine ratio which has been suggested to be a therapeutic marker in 

these patients.
18 

Another important drawback that was not mentioned within Chapter 3 

includes the accurate measurements of in vivo metabolite concentration relative to water 

concentrations of brain tissues. The calculations of the fractional components of the grey 
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matter (GM), white matter (WM), and cerebral spinal fluid (CSF) were not performed. 

Water content of GM equals 81% and WM equals 71%, as illustrated in the literature.
19 

Thus, in future in vivo work, accurate quantification of metabolite concentrations will 

need to correct for the fractional tissue content of the MRS volume. 

4.6 Future work:  

4.6.1 1
H-MRS schizophrenia:  

As stated before, it has been postulated that glutamatergic deficiency contributes to the 

pathophysiology of schizophrenia. Evidence suggests precise and reliable detection of 

glutamate (Glu) and glycine (Gly) in the human brain is crucial for research in neuro-

psychiatric diseases including schizophrenia.
20, 21, 22

 Glycine, an inhibitory 

neurotransmitter, 
23 

is an essential co-agonist 
24

 that may facilitate endogenous 

glutamatergic transmission by modulating the functional activity of N-methyl-D-aspartate 

(NMDA) receptor complex. Although detection of glycine using MRS methods with long 

echo times has been reported, 
25 

the assessment of this metabolite has been difficult due to 

its low abundance in the human brain and interference from macromolecules and myo-

inositol.
22 

As mentioned in Chapter 1, measurements of glycine in schizophrenic patients 

using 
1
H-MRS techniques have not yet been reported. Abnormalities in glutamate have 

been found in patients who suffer from schizophrenia.
51 

Glutamate quantification has 

been challenging due to its complex spectral signature and interferences from the 

neighbouring metabolites.
26 

Metabolic abnormalities of glutamate in schizophrenia have 

been investigated by applying a non-invasive standard 
1
H-MRS and the following will 

summarize most of these 
1
H-MRS findings.   

Clinical 
1
H-MRS studies demonstrated higher than normal levels of glutamine

 27
 and 

glutamate
  28

 in the anterior cingulate of healthy participants under the influence of an 

antagonist known as ketamine. Similarly, elevated levels of glutamate in the 

precommissural dorsal-caudate (a dopamine-rich region)
 29

and in the associative striatum 

and the cerebellum;
 30

 increased levels of Gln/Glu in the AC;
 31

 elevated levels of 

glutamate in the prefrontal cortex and hippocampus; 
32 

higher levels of GABA and 
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glutamate-glutamine (Glx) in the prefrontal cortex 
33

 of unmedicated, first-episode 

patients were observed by applying 
1
H-MRS. Another group found elevated 

concentrations of glutamate in the prefrontal and hippocampal regions in schizophrenic 

patients.
34

   

Our group has also been capable of assessing abnormalities in the concentration of 

glutamatergic metabolites in these affected individuals by using single voxel 
1
H-MRS 

methods. The following findings were reported by our group: higher glutamine levels in 

the AC and thalamus
 35

 and higher levels of glutamine in the left AC and thalamus 
36 

were 

observed in anti-pscychotic naïve patients; lower levels of glutamate and glutamine and 

higher than normal levels of glutamine were found in the left region of AC and the 

thalamus 
37

 respectively in chronic patients. Another group also examined the 

concentration levels in glutamine in the medial prefrontal cortex in untreated patients and 

have found an increase in the concentration compared to the healthy groups.
38 

Spectra 

obtained from the medial prefrontal cortex from adolescents who are at high genetic risk 

for developing schizophrenia have demonstrated a higher glutamate/glutamine 

concentration compared to healthy controls.
39 

Conversely, in a study conducted in twins, 

the abnormalities in glutamate concentrations in schizophrenic patients were examined 

and their unaffected twins and the levels were found to be significantly lower in both 

groups compared to healthy subjects.
40

 A different report had indicated an increase in 

glutamate and glutamine in the white matter portion of the brains of those in an elderly 

schizophrenic group.
41 

More importantly, longitudinal 
1
H-MRS studies conducted in first 

episode patients after treatment have demonstrated the normalization and the reduction of 

glutamate levels in the associative striatum and the frontal lobe, respectively.
42, 43

 

Similarly, other reports suggest which medicated first episode patients showed 

normalization of levels of GLX and GABA in the prefrontal cortex 
44

 and clinically 

stabilized patients had reduced levels of GLX in the anterior cingulate, 
45, 46 

supporting 

the results obtained by our group previously.
37

 Findings from a recent meta-analysis 
1
H-

MRS study indicate a rise in the medial frontal in Glu/Gln levels in the early stages of the 

illness and lower ratios in older patients.
47
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The 
1
H-MRS reports mentioned above provide in vivo information about the glutamate 

levels in patients diagnosed with schizophrenia. It is crucial to precisely and reliably 

assess the magnitude and extent of alterations in glutamatergic metabolites. These results 

indicate the growing appreciation of developing an effective technique, capable of 

detecting metabolites with difficult resonance structures at a high degree of precision. As 

indicated, the 
1
H-MRS findings regarding glutamate concentrations have been 

inconsistent. A few factors have been proposed that may contribute to these mixed 
1
H-

MRS findings, including a variation in glutamate levels due to impaired functional 

integrity of the neurons,
 48 

the severity of the illnesses, the effects of anti-psychotic 

medications and methodological reasons.
49

 The majority of the 
1
H-MRS studies in terms 

of investigating the alterations in glutamate in schizophrenia patients have used magnetic 

field strengths lower than 4.0 T.
50 

Reliable measurements of glutamate concentrations 

have been challenging at low magnetic fields, which may have led to the conflicting 

research results
 
found in the literature.

49 
Previous reports examined the reproducibility 

and sensitivity of 
1
H-MRS measurements of glutamate and Glx in healthy subjects and in 

schizophrenic patients. The reproducibility of glutamate measures in healthy participants 

at 1.5 T and at 3.0 T was assessed. The results indicated a coefficient of variation (CV) 

ranging from 11.0 and 13.1% in the ACC and insula at 1.5 T 
52

 and 13% at 3.0 T.
57 

Another report indicated coefficients of variation in measurements of glutamate ranging 

from 5% to 10% in the cingulate gyrus of healthy participants at 3.0 T.
59

 Measurements 

of glutamate were obtained at 1.5 T from patients with schizophrenia and the CV ranged 

from 20-50% 
55

 in the frontal lobe and 36-44% in the medial temporal lobe.
56 1

H-MRS 

assessment of Glx at 3.0 T in patients with schizophrenia were obtained, and the results 

showed a CV range of 15–24% in the frontal and caudate regions.
53 

Measures of 

glutamate provided a CV of approximately 2-3% in the ACC, conducted at 7.0 T.
54

 Given 

the significant findings related to alterations in glutamate concentrations in schizophrenic 

patients and poor CVs (at field strengths < 7.0 T), it is crucial to apply more advanced 

and robust MRS sequences. DANTE-PRESS, a promising metabolite-selective approach,  

is better suited for the reliable and precise quantification of metabolites using low 

magnetic field strengths, and might enable achieving a lower CV range (with an estimated 

value of < 15% at 3.0 T), in measuring glutamate in patients with schizophrenia.  
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Since the D-PRESS technique is capable of improving the quantification of the selected 

metabolites by isolating their signals, the next logical step would be to utilize this 

technique in order to quantify difficult metabolites implicated in the etiology of 

schizophrenia such as glutamate, glutamine and glycine. The work would help develop a 

more comprehensive understanding of the neurochemical alterations in schizophrenia in 

order to provide design or monitor new treatments. Taken together, these findings suggest 

a rationale for investigating the abnormalities in glutamate, glutamine, glycine and serine 

with higher precision methods. Longitudinal studies of these metabolies may extend our 

knowledge of the pathophysiology of schizophrenia; allow the improvement of treatment 

response prediction and categorization of patient cohorts.
58

 In vivo measurements of 

human brain serine, glycine and glutamate in schizophrenia could also allow the 

exploration of the possible link between abnormal glutamate levels in schizophrenia and 

endogenous activation of the NMDA glycine site.  
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Appendix A: DANTE-PRESS (the sequence and the special Card) 

The D-PRESS sequence and the user interface for its parameters were developed using 

the source code of the MRI scanner manufacturer’s product source as a starting point. 

This was provided by, and in collaboration with, Dr. Gerald Moran, from Siemens 

Canada under the terms of the Master Research Agreement between Lawson Health 

Research Institute and Siemens Canada. As described in Chapter 4, a custom DANTE-

PRESS pulse sequence was programmed, as well as an associated user interface, allowing 

more advanced pulse sequence parameter modification capabilities. The Integrated 

Development Environment for Applications (IDEA) provided by the manufacturer is the 

pulse programming environment and set proprietary C++ classes that were used to 

implement the D-PRESS method, interface and online post-processing capabilities. The 

new features of the D-PRESS are included in the “sequence/special” card of the scanner’s 

user interface. 

DANTE-PRESS parameters:  

Once a user clicks on the “DANTE RF Pulse” check box, it adds the DANTE RF Pulse 

and its crusher gradients to the standard symmetrical PRESS pulse sequence as the 

second refocusing pulse (non-slice selective), transforming this double spin echo 

sequence into a triple spin echo sequence. Once the DANTE RF Pulse checkbox is 

enabled, all parameters related to the DANTE RF Pulse appear on the “Special Card”.  

A DANTE pulse is formed by the convolution of a rectangular function with a comb 

function and multiplied by an amplitude modulation function (i.e. Gaussian): 
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Where t is time, t is the time between each rectangular pulse,  is the duration of each 

rectangular pulse and  is the damping coefficient of the Gaussian envelope. 
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Since the DANTE pulse is composed of individual hard pulses, the frequency profile of 

DANTE pulses is accurately represented by its Fourier Transform: 

   
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
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
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sinc        Equation A-2 

which can be seen to be a comb function multiplied by a sinc function and convolved 

with a Gaussian. Therefore, one can control the frequency profile of DANTE pulses by 

setting three parameters: t (period), Duration), and (damping coefficient) to express 

these parameters in a more practical form: FDP = 1/t, Sinc FWHM = 1.2068/and 

Gauss FWHM  

Of course, since the DANTE pulse is a digitized waveform, other parameters, such as the 

number of digitization points and the amplitude cut-off for the Gaussian modulation, must 

be used for the pulse sequence to construct a specific DANTE pulse. 

The following will briefly introduce how the parameters related to this pulse have been 

implemented in the MRI scanner user interface. 

The “DANTE Modulation” drop menu enables the user to select the shape of the DANTE 

RF pulse amplitude modulation: Sinc, Gaussian or none (square). In this thesis all the 

experiments were performed using the Gaussian modulation.   

The “DANTE AM Cut-off” parameter represents the fraction of maximum amplitude of 

the waveform to cut-off the Gaussian waveform, which would otherwise be infinite. In all 

of the experiments presented in this thesis, this value was set to 0.05, i.e. 5%, and verified 

by phantom experiments.  

The “DANTE Passband Width” represents the Full Width Half Maximum of all 

passbands, which is represented in parts per million (ppm). A tool tip has been 

programmed to display the resulting calculated duration of the DANTE RF pulse in 

milliseconds (ms). 
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The “DANTE Shift” sets the carrier frequency for the Dante RF pulse. Its value is relative 

to the reference frequency determined during the frequency adjustment of the pulse 

sequence, presented in parts per million (ppm). 

The “DANTE F Domain Period” variable, circled in purple in Figure A-1, represents the 

distance in between two successive passbands in the frequency domain. In this thesis, we 

used the acronym FDP to represent this quantity. The value is represented in Hertz (s
-1

). 

The use of this parameter is essential to allow the user to excite both the resonance of the 

metabolite of interest and a resonance of a reference metabolite simultaneously. The 

reference metabolite can be used as a phase reference, amplitude reference or chemical 

shift reference in the final spectrum. 

The “DANTE Points” parameter represents the number of digitization points of the 

DANTE RF pulse waveform.  

The “DANTE F-Domain FWHM” represents the Full Width Half Maximum (FWHM) in 

Hertz of the intrinsic sinc modulation of the frequency profile of the DANTE pulse. This 

is typically set to a very large value so that consecutive passbands have practically the 

same amplitude. 
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The optimization parameters:  

Several options were added to the special card (circled in orange), such as tools allowing 

the run time optimization of selected sequence parameters before the start of the data 

acquisition. The calibration of these parameters ensures that the final desired pulse 

sequence functionality is achieved and increases the spectral quality and reproducibility. 

 

A. The “Flip Angle Modulation” drop menu:  

The user interface provides a drop menu of “FlipAngle (FA) Modulation” that offers the 

option of calibrating either the excitation pulse flip angle, the DANTE pulse flip angle, or 

the flip angle of both non-DANTE refocusing pulses simultaneously. By placing the 

cursor near the user interface entry field, a tool tip displays the current RF pulse and 

Figure A-1. The “Special Card” illustrating the parameters which 

interact with the DANTE RF Pulse. 
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gradient crusher parameters, including the flip angle values and the gradient crushers’ 

amplitude. The starting value of each flip angle is entered manually by the user along 

with the incremental step value and the desired number of measurements. Following the 

calibration measurement loop, the optimum flip angle value observed can/should be 

entered manually prior to the start of the acquisition of the final spectrum. When the 

optimization is completed, prior to the start of acquisition of the final data, the “Standard 

RF” option must be selected to disable the calibration loop and enable normal looping 

(average and measurement loops).  

B. The “DANTE Frequency Shift Increment” parameter: 

The user interface provides another parameter adjustment loop, “DANTE Freq Shift 

INC”, which allows the user to fine tune the adjustment of the frequency offset of the 

DANTE RF pulse. This is important since the passbands are so narrow. Misadjustment of 

the DANTE frequency offset can result in significant signal loss. 

Additionally, the field defines the number of measurements desired and the incremental 

step in chemical shift of this adjustment loop.  

Following the calibration of the DANTE Frequency shift, the optimum chemical shift 

value can/should be entered manually by the user prior to the start of data acquisition.   
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Figure A-2. This figure illustrates the modulation parameters including the 

drop-down menu for the “Flip Angle Modulation” and the “DANTE Frequency 

Shift INC” parameters.  
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Appendix B: DANTE Radio Frequency (RF) Pulse 

 

The generation of the DANTE-PRESS sequence is enabled by the implementation of the 

DANTE-RF pulse along with its flanking crusher gradients in the pulse sequence as the 

second non-slice selective refocusing pulse into a symmetrical PRESS sequence (Version 

VB20PSP4, based on modification of Siemens product SVS_SE source code). The 

following code/snippet includes the customized process of the implementation of this 

“Arbitrary” Gaussian-modulated, frequency-selective, DANTE RF pulse within the 

sequence at run time. The DANTE-RF pulse can be prepared with the following 

statement and used in the fSEQRun portion of the sequence: 

   prepArbitrary (pMrProt, pSeqExpo, myRFPulseArray, EffectiveAmplitudeIntegral) 

Example code snippet: 

/* In Global Declarations */ 

 

sSample myRFPulseArray[IRF_MAX_ENVELOPE_ELEMENTS]  

/*DANTE waveform vector*/ 

 

sRF_PULSE_ARB myRFPulse;  

/*DANTE RF Pulse Object*/ 

 

fSEQInit (....)  

{ 

.... 

/* Sequence Special Card Simple DANTE-RF Pulse Variable Declaration */   

PARAM ("DANTE RF Pulse", &u_bBoolTestDante, false, "Enables or Disables 

the implementation of the Dante RF Pulse and its crusher gradients in 

the pulse sequence as the second non-slice selective refocussing 

pulse."); 

 

PARAM("DANTE PassbandWidth", "[Hz]", &u_lBandwidth, 0, 100, 1, 15, " The 

'DANTE PassbandWidth' representsthe bandwidth of the Dante RF pulse. ");  

 

PARAM("DANTE Points", "[pts]", &dante_pts, 0,8192 , 1, 2560, " The 

'DANTE Points' represents the number of points of the Dante RF pulse 

waveform.");  

 

PARAM("DANTE AM Cut-off","", &dante_cut, 0, 1, 0.01, 0.05, "The 'DANTE 

AM Cut-off' represents the fraction of maximum amplitude of the waveform 

to cut-off the Gaussian waveform."); 

.... 

} 

fSEQPrep(....)  

{ 

.... 
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/* The Gaussian modulated DANTE-RF Pulse is calculated: */   

// Set the pulse duration based on the user-requested passband width and 

amplitude modulation. 

 

/* Compute DANTE RF pulse duration in seconds for Gaussian */  

 

dante_beta = u_lBandwidth;          

/* set passband FWHM for Gaussian modulation */ 

 

dante_dur = 4.0/ pi / dante_beta * sqrt(log(2) * 1.0 * log(dante_cut)); 

 

p3=dante_dur;                                 

/* puts duration in seconds in shorter variable name for use in long 

formulas below */ 

                                

/* Calculate other DANTE-RF pulse properties */ 

 

 dante_timeres = dante_dur/dante_pts; 

 /* calculate square pulse length in number of points */ 

 

 dante_nsqpts = (int) (dante_tau/dante_timeres);  

 /* calculate time domain period in number of points */ 

 

 dante_ndtpts = (int) (dante_deltat/dante_timeres);       

  

 /*** Calculate the DANTE-RF shape ***/ 

 // ("Gaussian Pulse ON\n");     

 

    t=0; 

    tinc = dante_dur/(dante_pts-1); /*time increment*/ 

      

    for (i=0;i<dante_pts;i++)  { 

  

       /* set phase to a constant for now */ 

       myRFPulseArray[i].flPha = float (0.); 

        

       /* compute within-block index */ 

       k=i % dante_ndtpts; 

                        

       if (k < dante_nsqpts) {  

          myRFPulseArray[i].flAbs = float (1.0 * exp(pi * pi / 4.0 / 

log(2) * dante_beta * dante_beta * (t-p3/2.0) * (t-p3/2.0))); 

                } else      

 { 

          myRFPulseArray[i].flAbs= float (0.); 

       } 

 

       dRealAmpl += (myRFPulseArray[i]).flAbs * 

cos((myRFPulseArray[i]).flPha);  

       dImagAmpl += (myRFPulseArray[i]).flAbs * 

sin((myRFPulseArray[i]).flPha); 

          

       t=t+tinc; 

    } //end of for-loop 
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dEffectiveAmplIntegral = sqrt(dRealAmpl*dRealAmpl + 

dImagAmpl*dImagAmpl);  
 

} //end of fSEQPrep 

fSEQRun(....)  

{ 

myRFPulse.run(); 

}//end of fSEQRun 

 

 

Due to the RF hardware limits provided by the Biograph mMR 3.0 T scanner the 

maximum duration of an RF pulse cannot exceed 100 ms. Thus, the example code above  

allows for the implemention of an arbitrary DANTE-RF pulse with a duration of equal 

and less than 100 ms in total (~=>20 Hz). One possible way to implement long duration 

RF pulses is to split these pulses into shorter durations with small delays between them. 

In order to generate an arbitrary DANTE-RF pulse with duration higher than 100 ms (i.e. 

118.54 ms, equivalent to a FWHM equal to 15 Hertz at 3.0 Tesla) and to compensate for 

this hardware limitation, two arbitrary Gaussian modulated DANTE-RF pulses must be 

implemented each with durations equal and less than 100 ms. This is the approach that 

was used in this thesis to achieve DANTE passbands of 15 Hertz. 
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Appendix C: Inline Display 

 

The “Inline display” enables the real time monitoring of the measurement loops. The 

standard MRS signal post-processing options on the MRI scanner provide basic abilities 

to display individual spectral traces as they are being acquired as well as the accumulated 

spectrum averaged from all traces acquired at any given time. These traces display only 

one spectrum at a time (no option for displaying multiple measurements) and represent 

only the signal from the receiver channel with the largest signal (not the channel-

combined data).  

Programming within the manufacturer’s Image Calculation Environment (ICE) allows the 

user to implement custom behaviors for the inline display. The following will provide 

examples of the inline display functions implemented as used during calibration loops for 

acquisition performed in a phantom (in vitro data). Optimization scans are executed by 

using a smaller number of averages (total 1 to 8) to reduce the timeframe of these scans. 

The following parameters were optimized and their results were displayed in the inline 

display:  

 

(A) The calibration of the flip angle values for the excitation pulse and the 

refocusing RF pulses (the calibration of the flip angle value for the DANTE 

RF pulse is not demonstrated in the following examples): 
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The inline display during fine calibration of the flip angle (FA) for the 90
o
 Excitation 

pulse of the D-PRESS sequence using the water unsuppressed signal (1 average, 4 

dummy scans) is displayed in Figure C-3.  In this example, the excitation pulse voltage of 

~370 V produced maximum signal.  

 

Figure C-3. The inline display illustrates the RF pulse’s flip angle (FA) value, 

indicating the production of the maximum signal along with the actual FA 

(AFA), transmitter voltage (V), the signal value (S), and highlights the 

maximum value with a green label (MaxValue*). 
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Figure C-4. The inline display illustrates the RF pulse’s flip angle (FA) value, 

indicating the production of the maximum signal along with the actual FA (AFA), 

transmitter voltage (V), the signal value (S), and highlights the maximum value with 

a green label (MaxValue*). 

Figure C-4 illustrates the inline display during the simulations fine calibration of the flip 

angle (FA) for the two 180
o
 Refocusing RF pulses of the D-PRESS sequence using the 

water unsuppressed signal (1 average, 4 dummy scans). This example demonstrates that 

for both refocusing pulses the voltage of ~516 V produced maximum signal 

The calibration of the flip angle values for the 90
o
 Excitation pulse and the 180

o
 

refocusing pulses of the D-PRESS sequence enables the determination of the optimal flip 

angle value, which ensures the reduction in signal loss and the degradation in spectral 

quality.  
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(B) The calibration of the offset of the DANTE pulse’s carrier frequency. 

 

 

 

Figure C-5. The inline display illustrates the DANTE RF pulse’s chemical shift 

(CShift) value, the repetition number (REP), the signal value (Signal), and highlights 

the maximum value with a green label (MaxValue*). 

Fine adjustment of the center frequency of the DANTE pulse using N-AcetylAsparate 

Acid as the chemical shift (CS) reference metabolite was obtained from an in vitro 

experiment. The inline display during the calibration of the DANTE chemical shift (8 

averages, 4 dummy scans) is displayed above (Figure C-5).  

In this example, the CS value was incremented in steps of 0.015 ppm. The precise relative 

CS value of NAA is ensured and corresponds to 2.01ppm on an absolute ppm scale.  
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(C) DANTE chemical shift (CS) calibration for the water resonance:  

 

 

Figure C-6. The inline display illustrates the calibration of the DANTE chemical 

shift for the water peak and highlights the maximum value with a green label 

(MaxValue*). 

 

The Water unsuppressed concentration is used as a reference and is acquired with and 

without the DANTE pulse. CS fine tuning is used for the DANTE ON water reference. 

The inline display demonstrates the channel-combined magnitude spectrum (8 averages, 4 

dummy scans (Figure C-6)).  

In this example, the CS value of 0.030 ppm produces the maximum signal, as indicated 

by the MaxValue* label. The 0.030 ppm CS value was chosen and was entered manually 

by the user prior to the start of data acquisition to obtain the DANTE ON water reference 

spectrum. This spectrum can be compared with the DANTE OFF water signal to estimate 

the magnitude of signal losses, if any, due to the use of the DANTE pulse, yet another 

180
o
 pulse with possible flip angle imperfection. 
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Appendix D: Gradient Crusher Optimization 

In the D-PRESS pulse sequence, every 180
o
 RF pulse was flanked by crusher gradients in 

order to selectively produce signal from the triple spin echo. In order to prevent 

interference from unwanted coherences (FIDs and spin echo, and stimulated echos), the 

area of the crusher gradients of the 180
o
 RF pulses was optimized and modified 

accordingly.  
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Figure D-7. This figure illustrates how the values for the gradient crusher areas can 

be visualized at run-time by the user in response to changes in the pulse sequence 

timing and the crusher gradient amplitude allowing for efficient adjustments of 

gradient crushing resulting in the elimination of the unwanted coherences 

adequately.   

 

By placing a cursor near the user interface entry field, a tool tip displays the calculation of 

the total area of the crusher gradients by taking into account the contribution of the 

gradient crusher of one, two, three, or four RF pulses, along all three axes. During the 

calibration of the gradient crushers, the user can therefore estimate roughly what 

parameter values to use in order to effectively remove the unwanted coherences or 

quickly identify unwanted coherences with weak gradient crushing. 

The following optimized gradient values of the following RF pulses were manually 

entered by the user after the optimization procedure was completed:  

 

(RF
2
): Height of 19 mT/m, duration of 2000 ms 

(RF
3
): Height of 20 mT/m, duration of 2000 ms 

(RF
4
): Height of 18.5 mT/m, duration of 4000 ms. 



122 

 

 

Figure D-8. Representative of an in vivo spectrum obtained prior to optimizing the 

height of the gradient crushers. Line (A) represents the data in white and the fitting 

line in red, lines (B, C and D) illustrate the fitting components of NAA, Cr and Ser in 

purple, orange and yellow, respectively, lines (E, F) represent the fitting components 

of Gln in blue and Glu in green, respectively. Line (G) represents the residuals in 

blue (data minus fit). LW correction factor of 2 Hz was applied. As illustrated the 

residuals are considerably large and the template does not fit the data properly.  

 

The in vivo spectrum above was obtained from a healthy participant, with the D-PRESS 

sequence using an echo time of 286 ms (DANTE ON at 3.83 ppm, FDP 223 Hz) prior to 

gradient crusher optimization. The initial in vivo data obtained contained significant 

interference from unwanted coherences, the in vitro template did not fit the data properly, 

and the serine concentration obtained was inconsistent from scan to scan.  
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Figure D-9. Representative of an in vivo spectrum acquired after the optimizing of 

the gradient crushers was performed. Line (A) represents the data in white and the 

fitting line in red, lines (B, C and D) illustrate the fitting components of NAA, Cr 

and Ser in purple, orange and yellow, respectively, lines (E, F) represent the fitting 

components of Gln in blue and Glu in green, respectively. Line (G) represents the 

residuals in blue. LW correction factor of 2 Hz was applied. As illustrated the 

residuals are negligible and the template fits the data properly.  

The spectrum above was acquired with an updated protocol from the same healthy 

participant, but using the gradient crusher amplitude values obtained after optimization. 

The in vivo data obtained with the new protocol and optimized parameters (gradients) 

eliminated unwanted coherences and produced data that could be better modeled by the 

metabolite spectral signatures of Cr, Ser, Glu and Gln (notice the flat residuals) 
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