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Abstract 

Ultrathin film materials have attracted significant attention in light of their potential applications in 

very large scale integrated electronics and data storage. The amount of data that can be addressed and 

stored in memory devices scales inversely with the thickness of the active layer of these components 

and ultrathin thermal sinks are required to evacuate heat from memory devices and other electronic 

components. In our thesis, we have developed a suite of scanning-probe and nano-optical techniques 

focused on understanding the electronic surface properties and thermal conductivity of ultrathin 

materials. We discuss a few specific examples in which we applied these techniques towards 

improved performance of thin films of graphene and organic polyradicals towards specific 

applications. A new nano-optical technique, near field scanning thermoreflectance imaging 

(NeSTRI), has been invented and implemented by us for contactless imaging of the thermal 

properties of graphene thin films and poly-[1,5-diisopropyl-3-(cis-5-norbornene-exo-2,3-

dicarboxiimide)-6-oxoverdazyl] (P6OV). We utilized Kelvin-probe force microscopy for 

understanding the surface properties of copper nanoparticle decorated graphene thin films with 

superior electrical conductivity, and to design energy level matched flash memory devices from 

P6OV. Our work has led to deeper understanding of the nanoscale thermal and electronic properties 

of thin films of graphene and organic polyradicals and the interplay between their performance and 

fabrication parameters. 

Keywords: 

Graphene thin films, Organic polyradicals, Graphene-polymer composites, Graphene-copper 

nanoparticles, Thermal and electronic properties, Ultrathin memory devices, Kelvin probe force 

microscopy, Scanning near field optical microscopy, scanning near field thermoreflectance 

imaging.  
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Chapter 1 

 

Thin film materials used in this thesis and their characterization methods 

My thesis is about developing and utilizing specific scanning probe techniques to understand the 

properties of ultrathin film materials at the nanoscale level, with special emphasis on their 

electronic structure and thermophysical properties. We developed a system to image the thermal 

properties of ultrathin film materials at sub-micron resolution and we also prepared specific thin 

film materials for which this type of characterization is relevant. Among the thin films 

investigated in this work, we have extensively utilized graphene-based thin films, with a number 

of nanoscale modifications, including their functionalization with copper nanoparticles. We 

studied the influence of metal nanoparticles on the electronic and thermal properties of graphene-

based thin films. Other thin film materials investigated in this thesis include oxoverdazyl-based 

organic polyradicals to demonstrate the design criteria for achieving ultrathin memory devices, 

graphene-copper nanoparticles and graphene – polymer nanocomposites. This chapter offers a 

general overview of the materials and the associated properties will be discussed in the following 

sections, as well as the characterization techniques adopted to study the properties of these 

materials. 

1.1. Objectives and background 

With the increasing miniaturization and development of electronic devices and concurrent 

increase of processing power, heat generation and nanoscale heat propagation in integrated chips 

and other optical and electronic components is becoming increasingly important. Consequently, 

nanoscale imaging of electronic and thermal properties should be equally developing. Efficient 
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thermal management at nanoscale is of both scientific and industrial interest and requires 

fabrication of components from materials with high thermal conductivity. Materials that are 

being developed to this end are both nano-structured [1, 2] and heterogeneous, and include 

composites [3], bilayers [4] and multilayers [5]. Thermal properties of these nanomaterials are 

expected to be strongly dependent on the microscopic thermal properties of interfaces and grain 

boundaries [6]. Interfacial thermal resistance, a well-known macroscopic phenomenon, is 

expected to also occur at nanoscale level when nanomaterials are produced for the purpose of 

heat evacuation from devices. Therefore, development of specific investigative techniques for 

studying nanoscale thermal properties is absolutely essential. 

Some methods for measuring thermal conductivity at the nanoscale have already been 

developed. Scanning Thermal Microscopy (SThM) [7, 8] is a technique which utilizes self-

heated thermal sensors, constructed from atomic force microscopy (AFM) tips, in contact with 

the studied sample to determine the thermal properties of materials at nanoscale. However, 

interfacial thermal resistance, weak thermal coupling between the sensor and the sample, as well 

as fluctuations of this coupling due to nanoscale features of sample geometry significantly 

reduce the performance of SThM in nanoscale thermal measurements. In order to overcome 

these problems, researchers have been developing modulated thermoreflectance technique [9, 10] 

as contactless method of choice for thin film thermal conductivity measurements. While the 

modulated thermoreflectance method is well suited for thermal imaging of materials with 

negligible interfacial effects, the technique is however limited by diffraction and therefore is 

inadequate to discriminate between different materials when used for imaging nanoscale objects.  
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Figure 1.1: Scheme of the characterization apparatus utilized for nanoscale investigation of 

surface electronic and thermal properties of specific ultrathin materials and devices studied in 

this thesis. Kelvin probe force microscopy (KPFM), an atomic force microscopy (AFM) – based 

technique is used for nanoscale mapping surface electronic properties. Scanning near-field 

optical microscopy (SNOM) is adapted and modified for thermal imaging. 

In this thesis, we developed a new nanoscale imaging technique based on modulated 

thermoreflectance method using atomic force microscopy coupled scanning near field 

microscopy (SNOM) system. This is intended to combine the best attributes of SThM (nanoscale 

imaging capability) and thermoreflectance (contactless) techniques in a single thermal imaging 

procedure that overcome the diffraction limits inherent in thermoreflectance method. Figure 1.1 

gives the scheme of the characterization apparatuses utilized in our new thermal imaging 

technique, which relies on the operation of atomic force microscopy. The spatial resolution of 

AFM is expected to be high enough to enable nanoscale imaging of surface electronic properties 

of ultrathin film materials using Kelvin probe force microscopy (KPFM) as we describe in 

details in the following sections. Our newly developed high-resolution modulated 
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thermoreflectance imaging enables precise detection of photo-induced effects on sample surface. 

This new thermal imaging technique, which is built on existing SNOM system is described in 

details in chapter two of this thesis. 

1.2 Characterization techniques used in this work 

1.2.1  Atomic force and scanning near field optical microscope 

Atomic force microscope system consists of probes, laser diode, four quadrant detector, 

feedback loop and piezoelectric scanner [14]. For controlling the different parts and for collation 

of data, the AFM is interfaced with a desktop computer, which also provides means of 

controlling the modes of operation of the system. As shown in Figure 1.2, three modes of AFM 

operations can be identified which differ mainly by the amount of the interaction force between 

an AFM tip and sample surface [12]. When the AFM tip is within a few angstroms from sample 

surface, non-negligible repulsive force appears between the tip and the sample due to the overlap 

of electronic orbitals at atomic distances. The repulsive force increases and becomes stronger as 

the tip gets closer to the sample as shown in Figure 1.2.  In this regime, the tip is assumed to be 

in contact with the sample surface. For imaging surface morphology of solid samples, such as 

those reported in this thesis, AFM contact mode can be utilized to produce good quality 

topography images of samples. High quality optical images using SNOM can also be achieved 

using contact mode configuration. However, in specific measurement conditions where tip-

sample interaction force is to be minimized, imaging in a non-contact configuration can be 

carried out by lifting the tip up a few microns from sample surface. As we explain in more 

details in chapter two, this measurement condition is required to overcome the thermal sinking 

problems inherent in SThM due to tip-sample contact [13]   On the other hand, operation in 
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tapping mode is based on a feedback mechanism of constant oscillation amplitude with the tip – 

surface force defined in the region shown in Figure 1.2. This is the ideal configuration for KPFM 

operation in amplitude modulation. 

 

Figure 1.2: Atomic interaction forces between the AFM tip and the sample surface, which 

define the modes of AFM operation into contact, non-contact and tapping modes. 

 

Nanoscale investigation and materials characterization presented in this thesis was carried 

out using an AFM customized for aperture-type scanning near field optical microscopy 

measurements. A Witec Alpha 300S AFM/SNOM system available in Fanchini’s group 

laboratory in the Department of Physics and Astronomy at Western University was used in our 

work.  This system can be used to investigate a variety of samples because of its flexibility to 

perform a wide range of imaging and spectroscopic experiments based on AFM, SNOM, 

confocal imaging and electrostatic and capacitive force microscopies [14]. A schematic of the 

Witec Alpha 300S system is shown Figure 1.3, together with a magnified view of the parts 

dedicated to SNOM measurement. During normal operation, the system is sensitive to 

mechanical vibrations, electromagnetic waves as well as acoustic noise. In order to minimize the 
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effects of the noise, the system which is contained in an anti-damping box with an air-pressured 

based and aluminum foil protection is placed on an optical table, a passive anti-vibration table 

during all of the measurements.  

In this thesis, we will use our Witec Alpha 300S system both in AFM and AFM/SNOM 

operation modes, for specific characterization techniques. AFM/SNOM allow simultaneous 

topographic and near field optical imaging of our samples for the purpose of obtaining relevant 

information as we discuss them in the following section. In the next sections, we will describe 

SNOM operation more in detail and we will show how the system can be integrated with Kelvin 

probe force microscopy accessories that allow nanoscale investigation of electronic properties of 

graphene thin films decorated with copper nanoparticles. 

 

 

Figure 1.3: Schematic of the Witec Alpha 300S atomic force microscope (right) used in this work 

[15]. On the left is a magnified image of a confocal microscope and hollow AFM cantilever that 

permit near field optical imaging of the studied sample. 
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1.2.2 Scanning near field optical microscopy operation 

SNOM is a nano-optical imaging technique that exploits light–matter interaction for the 

purpose of extracting relevant information about nanoscale objects. It is used to overcome the 

diffraction limit inherent in conventional optical microscopes [14]. To achieve subwavelength 

spatial resolution, SNOM uses evanescent wave generated or scattered in the proximity of a 

nano-object to probe other nano-objects, such as graphene-based thin films or copper 

nanoparticles studied in this thesis. For this reason, SNOM is classified based on the type of the 

probe generating the evanescent waves into apertureless SNOM and aperture-type SNOM [14].  

In the case of apartureless SNOM used in this thesis, evanescent light scattered from nano-hole 

of diameter, d ~ 80  10 nm is used as the probe to achieve high spatial resolution during all of 

our measurements.  Figure 1.4 shows the position of evanescent waves which resides in the near 

field at the position much less than the wavelength of light. The scattered wave region comprised 

of propagating component of the wave at distances of the order of the wavelength of light. 

 

Figure 1.4: Far field and near field obtained when incident probe light is scattered from nano-

hole of diameter, d machined at the end of an atomic force microscope cantilever. Scattered 

wave is observed at distances that are of the order of the wavelength of the light. (Figure 

courtesy of ref. 14) 
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With our AFM/SNOM system, light from a laser is directed, by a system of optical fibers, 

into a high-resolution confocal optical microscope that focuses the laser light inside a nanohole 

(d 80 nm) machined at the end of an atomic force microscope cantilever depicted 

schematically in Figure 1.5. The sample is positioned on a 100 x 100 μm piezo-scanner that has 

a maximum excursion of 10 μm in the z-direction. Sample scan can be done in contact, 

noncontact and tapping mode similar to normal operation of AFM [14], thus allowing for easy 

recording SNOM images and, simultaneously, AFM topographic images of a sample. In 

addition, the mechanical arm on which the confocal microscope is mounted can also be moved in 

z-direction for optimizing the focal plane at the level of the AFM hollow tip.  

 

Figure 1.5: Schematic of AFM/SNOM system showing the collection of probe laser light for 

operation in transmission and reflection modes. 

As shown in Figure 1.5, the system can record SNOM images in ‘transmission mode’ and 

in ‘reflection mode’ (indicated respectively with the letter ‘T’ and ‘R’ in this figure) that differs 
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in the way the laser light is collected after interaction with the sample. In transmission mode 

operation, an inverted microscope below the sample stage is used to collect the light transmitted 

through the sample. The transmitted light is subsequently launched into an optical fiber that is 

connected to a photomultiplier tube (U-68000, Hamamatsu) operating in photon-counting mode. 

In the case of the reflection mode operation also described in Figure 1.5, evanescent waves 

locally generated at the tip aperture, and scattered by the sample are subsequently collected at 

grazing angle by a subminiature accessory (SMA, Witec). In our SNOM mode operation, the 

sample surface can be scanned along the (x, y) plane at z = constant, in order to obtain relevant 

information about the amount of light scattered or transmitted through a sample at a nonzero 

distance from its surface. With this optical imaging procedure, we designed a thermal imaging 

technique to study the thermal properties of low dimensional materials at nanoscale as we 

describe in details in the following chapter.  

1.2.3 Atomic force microscopy/Scanning Kelvin Probe force microscopy system 

Kelvin probe force microscopy (KPFM), is a technique based on a scanning probe 

cantilever, which allows for the measurement of local surface potential difference between a 

reference metallic electrode at known work function and the sample surface [16]. If this 

technique is coupled with AFM, in a way that the reference electrode is a conducting scanning 

probe cantilever, the local surface potential difference at the contact between the tip and the 

sample can be mapped with high spatial resolution and thereby the work function of a sample. 

In this thesis, the Witec Alpha 300S atomic force microscope was used in a particular 

configuration that was previously modified for surface potential and work function imaging. 

[16]. The integrated Kelvin-probe force accessory includes an AC generator, a stabilized direct 
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current (DC) voltage supply, a lock-in amplifier (Stanford Research Co.) and a proportional-

integral-differential feedback control loop. The system is interfaced with a desktop computer for 

controlling the different parts and, for collating data. The schematic diagram of this system is 

shown in Figure 1.6, for which the laser beam is used primarily for the surface topography map 

[14].  

 

 

Figure 1.6: Schematic diagram of Kelvin Probe Force Microscopy. A lock in amplifier used at 

the second resonance frequency of the cantilever is operated in amplitude modulation mode. In 

this mode, the tip-sample electrostatic force is measured directly from the amplitude of the 

cantilever using a lock-in amplifier referenced to the AC potential signal by a function 

generator.  

 

The functionality of SKPFM is based on small electrostatic forces that are created 

between the conducting AFM tip and the sample when the two systems are in close proximity of 

the order of few microns. During the operation of KPFM, the local contact potential difference 

VCPD between the tip and the sample surface can be expressed as [17]: 
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sampletipCPDVq   ,                                            (1.5) 

where q = 1.6 x 10-19 C is the elementary charge and tip and sample indicate the work functions 

of the tip and the sample, respectively. Hence the right hand side of eq.1.5 corresponds to the 

difference between the Fermi levels within the two systems. For our KPFM experiments, a 

platinum-coated AFM tip with ω0 ≈ 75 kHz resonance frequency (Nano Sensors Inc.) was used. 

The tip-sample electrostatic force F can be expressed as a function of the energy 

accumulated inside the capacitor formed by these two objects (that is, tip and sample) as a 

function of their separation Z [17]:  

 
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2

1
 .                   (1.6) 

In eq. 1.6, E indicates the electrostatic energy and C is the capacitance of the tip-sample system, 

with the two objects kept at a potential difference V. To measure the contact potential 

difference indicated in eq. 1.5, a nullifying voltage VDC is applied between the tip and the sample 

in conjunction with a small modulating AC signal, VACsin(2t), which oscillates at the second-

order resonance frequency of the tip, 2 ≈ 40. The total voltage, 

)sin()( 2tVVVV ACCPDDC  ,                                (1.7) 

consists of DC and AC components. By substituting eq. 1.7 into eq. 1.6, we obtain the following 

expression for the force between the tip and the sample: 
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   ,         (1.8) 

where  = q(VDC – VCPD). In eq. 1.8, the first term is a DC component and the second and third 

terms are AC components at angular frequencies 2 and 22, respectively. Eq. 1.8 indicates that 

F is proportional to . Consequently, the value of the nullifying voltage that minimizes the 
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measured tip-sample force corresponds, at each point of our scan, to the Fermi energy difference 

between the two objects, from which the work function of the sample can be determined upon tip 

calibration. 

1.2.3.1 Tip calibration and work function determination 

In order to determine the absolute work function of a sample, the AFM/KPFM tip is calibrated 

using a material whose work function is known. Specifically, KPFM measurement was 

performed on p-type and n-type silicon. Their work functions are respectively, Si-P = 4.52 eV 

and Si-n = 3.41 eV [19]. From the relation, Δ  = tip - sample the work function of the tip can be 

extract by substituting the sample with the work functions of the silicon-based samples. 

Consequently, if the work function of the tip is known, either directly from knowledge of work 

function of the coating material, or indirectly from the work function of the silicon substrate 

which acts as reference, the work function of a sample can be determined via eq. 1.7. Both 

methods, direct and indirect, yield the same result in our case, with uncertainties of ±0.05 eV or 

less. 

1.3 Materials used in this thesis  

1.3.1 Graphene and graphene-based thin films 

Graphene is two-dimensional (2D) solid with a honeycomb structured lattice comprising 

a single layer carbon atoms [19]. It is two-dimensional, and therefore the building block of three-

dimensional graphite through the stacking of many layers of graphene. These stacks are held 

together by weak van der Waals forces. Figure 1.7 shows the schematic of carbon atoms 

arranged in a honeycomb lattice forming N = 1 layer of graphene and N ~  in graphite. Since its 
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discovery [20], graphene has attracted much attention in both academia as well as industry due to 

its many remarkable properties [21-22]. For instance, room temperature thermal conductivity 

value for single layer graphene can be as high as 5000 W m-1K-1, in addition to high optical 

transparency in near UV and the visible [1]. Graphene also exhibits high mechanical strength, 

extraordinary electrical properties and good flexibility, making it excellent material for use in 

flexible electronics. One outstanding electrical property of graphene is its mobility, with  ~ 

200,000 cm2/(V·s) at low temperature [23].  This value is substantially more than the mobility of 

electrons in Si, which at room temperature is about 1400 cm2/(V·s) [24] and that of carbon 

nanotubes, with  ~ 100,000 cm2/(V·s) at room temperature [25]. Hence, free standing graphene 

has the highest carrier mobility among all semiconductor materials. Because of this and other 

remarkable properties there are increasing and compelling need to graphene for a diverse array of 

application. 

 

Figure 1.7: The schematic structure of (a) graphene and (b) graphite. Graphene is one atom 

thick planar sheet while graphite consists of stacked layers (N ~ ) of graphene weakly bonded 

by van der Waals forces. 
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Despite the above fascinating properties, the fabrication and manipulation of single-layer 

nanosheets represents an uphill challenge and limits extensive applications of graphene in 

devices. Some of the methods in use for fabricating single- and few-layer graphene includes 

chemical vapor deposition on metal foils [26], epitaxial growth [27]and plasma enhanced 

chemical vapor deposition [28]. These fabrication methods are well established and can be used 

to produce single- and few layer graphene. However, the methods rely on specialized equipment 

with high energy requirements, thus making it difficult for scalability and mass production at low 

cost. The fabrication of graphene and graphene-based materials at low cost is essential in order to 

enhance its competitiveness with the existing Si technology which has dominated electronic 

industries for a very long time. 

Over the past couple of years, research on graphene and graphene-based materials has 

increased significantly because of new and low cost methods to produce and study graphene-

based platelets, comprising of few- and many-layers [29-34]. The procedure, which is based on 

graphene grown via liquid phase exfoliation method, includes spin coating, spray coating, drop 

casting and vacuum filtration techniques [21]. While these techniques are generally accessible to 

many researchers due to the simplicity and low cost, the use of vacuum filtration affords a more 

controlled set-up for reproducibility. Moreover, the production of graphene dispersion used for 

graphene thin film fabrication in these methods is achieved via controlled surfactants-assisted 

solution processing of exfoliated graphite [35]. The use of ribonucleic acid (RNA) as a non-ionic 

surfactant to exfoliate few layer graphene flakes [29] has recently been employed for fabricating 

large-area thin films of contiguous, multi-domain graphene. Once exfoliated and vacuum 

filtrated unto a sacrificial membrane, graphene flakes can be transferred to diverse substrates, 

thus making the method versatile for many applications, processability on plastics substrates and 
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high scalability. In the following section we will describe the solution growth technique adopted 

for the fabrication of graphene-based thin films studied in this thesis.  

1.3.1.1 Preparation of graphene-based thin films 

 

Transparent and conducting graphene-based thin films used at various stages of our work 

were prepared using the vacuum filtration method. This method was originally invented by Wu 

et al. [36] for single wall carbon nanotubes and later adapted by Eda et al. [32] for graphene 

oxide fabrication. Sharifi et al. [29] further developed the method for surfactant exfoliated thin 

films based on few-layer graphene platelets.  The fabrication steps leading to the deposition of 

graphene thin films on the desired substrate is shown in Figure 1.8. Graphite powder (Aldrich, 

332461) and Ribonucleic acid (RNA) are used as the starting materials for this fabrication 

process and to obtain graphene-based suspensions in water. RNA promotes graphite exfoliation 

and also helps to stabilize the exfoliated graphene and few layer graphene flakes against re-

aggregation, a major problem with most frequently used surfactants such as sodium 

dodecylbenzene sulfonate [37].  

In order to be exfoliated and produce few-layer graphene platelets, graphite was 

ultrasonicated for 24 h in a 3:1 H2SO4:HNO3 mixture, then mildly oxidized in Piranha reagent 

(H2SO4:H2O2 = 4:1) and subsequently dried prior to further use. Due to the very low degree of 

oxidation, this process yields material that is significantly less oxidized than “reduced” graphene 

oxide commonly prepared using the Hummers' or similar methods [21,32,38]. 6 mg of the 

resulting material were suspended for 4 h in a 0.6 g/L aqueous solution of RNA extracted from 

torula utilis (Aldrich) which acts as a non-ionic surfactant and promotes graphite exfoliation 

[29]. The slurry was left to sediment overnight at 2oC in a beaker. The top three-quarters of the 

beaker content were then centrifuged at 6000 rpm for 1 hour and the supernatant, largely 
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consisting of well dispersed single- and few-layer graphene flakes, was collected and used for 

graphene-based thin-film deposition. 

 

 

Figure 1.8: Preparation steps for the fabrication of graphene thin films. Graphene is prepared 

in solution based on exfoliation of graphite using RNA as surfactant. The resultant graphene 

layer in solution is vacuum-filtrated on a membrane and subsequently transferred on desired 

substrate. The middle image is the picture of filtration setup in Fanchini’s group laboratory in 

the Department of Physics and Astronomy at Western University. The last image is the picture of 

graphene thin films on glass substrate of different thicknesses obtained from different filtration 

volumes of graphene/RNA suspension. 

The thin-film deposition, which is the last part of the fabrication process, consists of the 

following steps. 5 ml of water suspension of graphene flakes and RNA were filtrated through a 

220-nm pore size sacrificial membrane (Millipore). Small amounts of diluted suspensions are 

used to prevent re-aggregation of the suspended flakes during deposition on the filtration 

membrane. Membranes loaded with graphene flakes are subsequently transferred to the requisite 

substrates, and dried in a vacuum desiccator. The sacrificial membrane is then etched using 

acetone baths in petri dishes, thus obtaining random distributions of graphene domains on their 
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substrate. A final methanol bath is used to remove the last traces of the membrane. The samples 

are annealed at 550 oC for 4 hours to remove RNA and, also, completely reduce them. This 

fabrication procedure yields graphene-based thin films very similar to those being currently 

investigated for several large-area applications in electronics and sustainable energy [39] and, 

therefore, offers a realistic benchmark for fundamental studies. Specifically, their electronic and 

thermal properties were investigated to determine the doping mechanisms and the effect on 

thermal conductivity of Cu-NP`s depending on NP diameter and the number of layers of 

graphene. 

 

1.3.2 Organic Polyradicals (OPR) 

As the need for higher conductivity, better stability and greater processability of 

conducting polymers increases, more attention has been given to stable organic radical polymers 

(ORP). These are special class of functional macromolecular materials in which the pendant side 

groups consist of stable organic radicals. Some of their properties, including electronic, optical, 

magnetic, etc stem from the weakly interacting unpaired electrons of the radical monomers. The 

structural disparity of ORP manifests itself in the number of atomic centres bearing the unpaired 

electrons in the polymer, so that we can have diradicals, triradicals, tetraradicals, and even higher 

radicals [40]. Ployradicals, which is the subject of this section, consist of a polymer backbone 

with many stable organic radical side groups. Due to these side groups, polyradicals contains 

many atomic centres with unpaired electrons that can influence their properties by acting as trap 

centres.  

Figure 1.9 shows a possible classification of organic polyradicals according to Ref. 41, 

into nitrogen-centered radicals, carbon-centered radicals, nitroxide-based radicals and oxygen-



18 

 

centered radicals. Among these groups, divalent nitrogen-centered verdazyl radicals are of 

particular importance because of their stability. Stability in the contest used here implies that the 

polyradical can be isolated, manipulated and stored as a pure compound [42, 43].  

 

 

Figure 1.9: Classification of organic radicals based on the atom centres into (a) nitrogen-

centred radicals, (b) carbon-centred radicals, (c) nitroxide based and (d) oxygen-centred 

radicals [41]. The dot on each atomic centre represents a singly-occupied electronic orbital (e) 

The general structure of verdazyl radicals. A family of verdazyl based polyradicals are 

developed by replacing the X group with atoms or groups such as carbonyl group or 

thiocarbonyl group.  

The chemical stability in this group of polymers is achieved through delocalization of the 

unpaired electrons across the nitrogen atoms of the cyclic hydrazyl structure [41]. Because of 

their stability, verdazyl radicals are now considered one of the larger families of stable radicals. 

Their general chemical structure shown in panel (e) of Figure 1.9 consists only of phenyl ring 

(C6H5) at the R, R’ and R’’ sites. The X group in this figure is generally different for different 
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categories of verdazyl-based radical polymers, such as ‘Kuhn verdazyls with a saturated carbon 

at C6 (R-C6-R’), thiocarbonyl containing verdazyle (S〓C6) and oxoverdazyl polyradicals that 

contains a carbonyl group (O〓C6) at the C6 ring. In this thesis, the functionality of stable 

oxoverdazyl based polyradical will be demonstrated through their application in memory 

devices. 

1.3.2.1 Synthesis of stable organic radical polymers 

Much effort has been put into synthesis of stable ORP [44-46] with the aim of enhancing 

their functionalities. Some of the synthetic procedures for ORPs include a wide range of 

polymerization techniques such as free radical polymerization, [46] Ring-opening metathesis 

polymerization (ROMP), [45,47] olefin metathesis polymerization, [48] selective polymerization 

[49] and ionic polymerization [50]. Ring-opening metathesis polymerization represents an ideal 

method for the synthesis of ORPs because it can be used to synthesize stable radical polymers 

with high degree of radical content along the polymer backbone [47]. In the last decades, the 

utility of ROMP has expanded significantly because of the development of new and well-defined 

catalysts that allow for control over molar mass and architecture in the resultant polymers [51].  

1.3.2.2 Preparation of poly-[1,5-diisopropyl-3-(cis-5-norbornene-exo-2,3-dicarboxiimide)-6-

oxoverdazyl] 

ROMP was used to synthesis poly-[1,5-diisopropyl-3-(cis-5-norbornene-exo-2,3-

dicarboxiimide)-6-oxoverdazyl] (P6OV), the nitrogen-centred poly-radical used in our thesis. 

The synthesis was carried out by Gilroy’s group in the Department of Chemistry at Western 

University. The preparation process of P6OV can be divided into sequential synthesis steps, 

which are shown schematically in Figure 1.10. First, a white microcrystalline powder of 1,5-di-
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isopropyl-3-(4-carboxyphenyl)-6-oxotetrazane (or simply tetrazane) is synthesized by slow 

condensation reaction in which a solution of 4-carboxybenzaldehyde (1.21 g, 8.09 mmol) and 

sodium acetate (0.66 g, 8.1 mmol) in methanol (50 mL) was added drop wise to a refluxing 

solution of 2,4-di-isopropylcarbazide (2.00 g, 8.09 mmol) and sodium acetate (1.33 g, 16.2 

mmol), also in methanol (50 mL) [47].   

 

 

Figure 1.10: Synthesis steps for the production of poly-[1,5-diisopropyl-3-(cis-5-norbornene-

exo-2,3-dicarboxiimide)-6-oxoverdazyl] – polymer 13 (P6OV), the polyradical used in this thesis 

work for the fabrication of organic memory device. The synthesis steps consist of (1) 

condensation, (2) oxidation, (3) esterfication and (4) polymerization reactions. Figure courtesy 

of Ref. 52. 

 

The second step of the preparation involves the production of verdazyl using tetrazane as 

the starting materials. The reaction mixture is composed of deionised H2O:tetrahydrofuran (2:1, 

45 mL),  tetrazane (2.34 g, 7.64 mmol) and sodium hydroxide (0.31 g, 7.6 mmol) in which 

solution of sodium periodate (2.45 g, 11.5 mmol) is added drop wise for a period of about 30 

(1) (2) (3) (4)

(P6OV)
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minutes.  This oxidation reaction produces dark-red precipitate of 1,5-Di-isopropyl-3-(4-

Carboxyphenyl)-6-Oxoverdazyl (verdazyl) upon reduction of the pH level to ~ 3 with the 

addition of 1 M hydrochloric acid and subsequent removal of tetrahydrofuran (CH₂)₄O in vacuo. 

In order to synthesize 1,5-diisopropyl-3-(cis-5-Norbornene-exo-2,3,- dicarboxiimide)-6-

oxoverdazyl, a solution of N,N’-dicyclohexylcarbodiimide (DCC) (0.75 g, 3.6 mmol) and 4-

dimethylaminopyridine (DMAP) (0.48 g, 4.0 mmol) in dry dichloromethane (CH2Cl2) (20 mL) 

was added verdazyl (1.00 g, 3.30 mmol) before the mixture was stirred for 10 min at room 

temperature. To this solution was added N-(3-hydroxylpropyl)-cis-5- norbornene-exo-2,3-

dicarboximide 11 (0.73 g, 3.3 mmol) and a further 10 mL of dry CH2Cl2 (for rinsing). Room 

temperature stirring and further purification by column chromatography yielded about 51.18 g of 

Oxoverdazyl [31].  

The final preparation step involves direct polymerization of the radical monomers to 

produce a stable polyradical. The reaction is initiated with the 6-oxoverdazyl monomer in a 

Schlenk flask, which is treated with 8.73 ml of Grubbs’ third generation catalyst, a transition 

metal carbene complexes, dissolved in dichloromethane. The polymerization reaction continues 

for about 1 hour before using ethyl vinyl ether to controllably terminate the reaction. After 

purification in THF and cold hexane, the resulting polymer with the structure shown in right 

most part of Figure 1.10 is an orange power of poly-[1,5-diisopropyl-3-(cis-5-norbornene-exo-

2,3-dicarboxiimide)-6-oxoverdazyl] (P6OV). This radical polymer dissolves easily in a variety of 

different solvents including chlorobenzne and toluene. As a result the polymer can readily be 

formed into smooth thin films from solution through spin coating onto requisite substrate. This is 

ideal condition for application of materials, especially polymeric materials in devices and were 
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utilized for the fabrication of memory device in which P6OV is the active memory element and 

will be presented in chapter 5 of this thesis. 

1.3.2.3 Application of organic polyradicals in memory devices  

Electronic memristors can be classified into volatile and non-volatile depending on whether 

the memory element requires a constant supply of power to retain the stored information. 

Volatile memory devices lose the stored information if it is not provided with a constant power 

supply or refreshed periodically with a pulse [53]. Conversely, non-volatile memory can provide 

the means to write and retain information long after the power to write them is switched off. 

Among these types of electronic memory, write-once-read-many times (WORM) memory are the 

most widely reported polymer memory devices in the literature [54-55]. Although no power is 

needed to maintain the information stored in WORM memory, its usage is limited by the 

inability to erase, reprogram or rewrite its stored information. Another example of non-volatile 

memory is the flash. Flash memory has attracted much attention, because not only that no power 

is needed to maintain the information stored in flash memory but also has additional advantage 

that the stored data can be erased and rewritten many times. Despite these benefits, there are only 

few reports demonstrating flash effect with ORP. In chapter five of this thesis, we will show that 

efficient design architecture and better understanding of the mechanism of operation are 

necessary for the integration of radical polymer into flash memory. 

Even prior to our thesis, stable ORPs have been explored as potential active materials in 

resistive memory devices (memristors) for data storage and data-driven computation [56, 57]. 

There are also many instances in which organic and other polymeric materials have featured as 

memory elements in devices [58-59]. Different from silicon, the polymeric materials have the 

advantages of easy processability, scalability, low-cost potential and capability of 3D stacking 
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[53]. ORP based memory devices has additional advantage of simplicity and miniaturization of 

device structure through the use of ultrathin active memory element [56]. The mechanical 

flexibility of these materials makes them compatible with plastic substrates for lightweight and 

flexible device design. Thus, ORP offers the possibility of realizing nanoscale data storage which 

will lead to increased density of data memory, fast speed, low power consumption and 

lightweight [54]. As a result, ORP are targeted as possible substitute for silicon-based 

conventional memory devices in which stability and reliability are a big challenge as the 

thickness of the memory elements are reduced to below 22 nm [53].  

The organic and polymer electronic memristors store data through the triggering of their 

electrical conductivity between high and low conductivity states when an external voltage source 

is applied to it. This property, known as electrical bistability, is different from conventional 

silicon-based memory device, in which data are stored based on the amount of charge 

accumulated in the memory cells [53]. Figure 1.11 shows typical I-V characteristics of ORP 

based memristor. The figure represents the I-V characteristics of a device that was initially in a 

high resistance state, which subsequently was tuned into high conductivity state (line /AEBC/ in 

Figure 1.11) when a negative voltage larger than threshold voltage (Vwrite) is applied to the 

electrodes. At this threshold voltage, large output current can be observed in the I-V curved as 

indicated by line /AE/ in the figure. However, a positive voltage larger than another threshold 

voltage (Verase) switches the device back to low conductivity state (line /CDE/ in Figure 1.11). 

The device state is not affected if the applied bias is within the threshold voltage, Vread, enabling 

the low-voltage read process. In this way, ORP based-memristors can provide the means for 

storing and accessing binary digital data sequences of “1’s” and “0’s” through the functionality 
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of their electrical bistability. The Boolean “1” and “0” are activated when the device is 

respectively in high and low conductivity state. 

 

Figure 1.11: Resistive switching in a typical radical polymer based memory device. The device 

which was initially in a low conductivity state (/DA/) is activated to high conductivity state at the 

threshold voltage, Vwrite. The high conductivity state persists during a positive biasing (/AEBC/) 

until another threshold voltage, Verase which returns the device to low conductivity state. The 

voltage range at which no transition occurs, Vread, can be used to read and understand the state 

of the device. 

 

The most optimal architecture for exploiting these memory effects is the sandwich 

configuration [47, 56].  This configuration allows for the memory effect to be activated through 

the electrical bi-stability of the radical polymeric thin films in response to the applied electric 

field. The fabrication of the device consists in spin coating of the active memory element, the 

polyradicals on the bottom electrode, followed by thermal evaporation of the top electrodes in an 

ultrahigh vacuum chamber. In this way, ORP thin films are interposed between the bottom and 
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top electrodes so that the area covered by the two electrodes forms the active device area. The 

most widely used electrode materials are aluminum, gold, copper, p- or n-doped silicon, few-

layer graphene thin films and indium thin oxide. The choice of one electrode over the other can 

be made based on the surface potential of the electrodes [56]. Wrong choice of electrode 

materials may constitute a potential barrier that can substantially affects the operation of the 

device by restricting the transfer of charges from the radical polymer to the electrodes. In chapter 

five of this thesis, we will show that the choice of the electrode materials can change the 

operation of the radical polymer-based memory device from flash to WORM. 

 

1.4 Electrical transport in polymer materials 

In this section, we will briefly examine the effect of electric fields on the electrical transport 

properties of polymer films. In particular, we will discuss the transport mechanisms associated 

with free carrier and hopping conduction in polymers. Carrier hopping and drifting of free 

carriers through polymer filament are the two main transport processes that, respectively, 

characterizes the low and high conductivity states of the polyradical studied in chapter five of 

this thesis. These processes can be aptly discussed using the Poole-Frenkel and Ohmic models.  

1.4.1 Poole Frankel transport  

A prominent theory of electric field dependent conduction mechanism which is applicable 

to polymers is the Poole-Frenkel transport model [60, 61]. This transport mechanism became 

important in polymers due to the effects of trap levels in polymer conductivity. It has been 

suggested that traps can be caused by a variety of factors, including the presence of radicals in a 

polymeric material [61]. For a polyradical which is the subject of chapters 5 and 6 of this thesis, 
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the traps produce localized states in each monomer of the polymer that can be positively charged 

when empty or neutral when filled [47, 56]. In this situation, Coloumbic barrier results when 

electrons interact with the positively charged states. The lowering of the barrier by the external 

electric field, E leads to Pool-Frenkel field-dependent conductivity, generally expressed as [52]: 
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Where 0 is the steady state equilibrium conductivity in the absence of an applied electric field, 

2/13 )/( req    is the Pool-Frenkel coefficient, q is the elementary charge and kBT= 0.025 eV 

at room temperature. 

Figure 1.12 is a typical I-V curve of a Pool-Frenkel type electrical transport that can be 

obtained in a highly insulating polymeric thin film under low external field. To better understand 

the I-V characteristic of insulating polymers of this type, we can reformulate the Poole-Frenkel 

model as follow. Starting with eq. 1.1, which gives conductivity in terms of the applied electric 

field, and substituting for the conductivity,  = (I/A).E, the electric field, E = V/d and expanding 

the Pool-Frenkel coefficient gives the expected Poole-Frenkel expression in terms of current 

density (J = .E ) and the electric field E [47]: 
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where 0 corresponds to the polymer conductivity in the absence of traps, q* is the dynamic 

effective charge of trapped carriers, m is the dielectric permittivity of the polymer relative to 

vacuum and kBT = 0.025 eV in our case for room temperature.   
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Figure 1.12 (a) I-V curves of highly insulating polymer thin film showing non-ohmic, Poole-

Frenkel-like behavior [47]. The polymer used in ref. 30 is poly-[1,5-diisopropyl-3-(cis-5-

norbornene-exo-2,3-dicarboxiimide)-6-oxoverdazyl]. (Figure is reprinted from “Synthesis, 

Characterization, and Thin-Film Properties of 6-Oxoverdazyl Polymers Prepared by Ring-

Opening Metathesis Polymerization”, A. Paquette, S. Ezugwu, V. Yadav, G. Fanchini and J. B. 

Gilroy; J. Polym. Sci. Part A: Polym. Chem., 2016, 54, 1803, Copyright (2016), John Wiley and 

Sons [47].) 

Poole-Frenkel-like transport mechanism observed in Figure 1.12 for polymeric thin films 

sandwiched between two metallic electrodes is assigned to hopping between localized states 

situated at specific charged monomers along a polymer filament [47]. The hopping conditions 

may be strongly dependent on the degree of alignment of the polymer filaments along the 

substrate, as previously observed in polythiophenes [62]. If all of the polymer chains are aligned 

parallel to the substrate, hopping along the z-direction must occur through localized states 

situated on different polymer chains. This consideration may account to why the thinner films, 

presumably containing polymer filaments more aligned along the substrate, are also more 

electrically insulating as we observe in Figure 1.12. In chapter 5 of this thesis, we will show that 

Poole-Frenkel model describe accurately the low conductivity state of memristor fabricated from 

thin polyradical films. 
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1.4.2 Ohmic transport processes 

Ohmic processes are found in metals, heavily doped semiconductors and even polymer 

materials at very low applied field.   In Ohmic processes, the electrical current flowing through a 

solid is determined by the carrier drift velocity, which is independent of the applied electric field 

and determines the electrical conductivity,, a material property independent of the geometry of 

the material. Therefore, in first Ohm’s law the electrical current density J is linear in the applied 

electric field: 

J =  E,         (1.3) 

A polymer based device which gives approximately linear current – voltage characteristics as 

shown in Figure 1.13 is known as ohmic, and can be accurately described by ohmic model (eq. 

1.1). The film resistivity () can be inferred from the I-V characteristics through the relationship,  

t

AR 
 ,            (1.4) 

where A is the area of the region in which the top and bottom electrodes overlap and t is the film 

thickness. Accordingly, a reduction in the film’s thickness will lead to a decrease in the 

resistance of the film at constant A since  in an ohmic system is an inherent property of the 

material, independent of the thickness of the thin film that is being considered [47]. With thicker 

films, the measured output current will decrease significantly as shown in Figure 1.13. 
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Figure 1.13: (a) The current – voltage curves of a polymer-based thin films at four different 

thicknesses in high conductivity state, which were fitted with straight lines to demonstrate ohmic 

transport [47]. (b) Film resistivity values obtained from the low-voltage portions of I-V curves. 

Resistivity is thickness-independent in the high conductivity state, while it dramatically increases 

at decreasing thickness in the low-conductivity state, possibly due to preferential alignment of 

polymer filaments along the substrate. (Figure is reprinted from “Synthesis, Characterization, 

and Thin-Film Properties of 6-Oxoverdazyl Polymers Prepared by Ring-Opening Metathesis 

Polymerization”, A. Paquette, S. Ezugwu, V. Yadav, G. Fanchini and J. B. Gilroy; J. Polym. Sci. 

Part A: Polym. Chem., 2016, 54, 1803, Copyright (2016), John Wiley and Sons [47].) 

 

1.5 Conclusions 

In this introductory section, we gave a general overview of the materials studied in this thesis 

which includes graphene-based thin films and oxoverdazyl-based organic polyradicals.  We 

presented the fabrication procedure for our graphene-based thin films and showed that our 

solution processed graphene-based thin films is versatile enough for many applications. In 

chapter 1, we will study in details, the thermal properties of these graphene-based thin films 
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using a measurement technique, NeSTRI developed specifically in this thesis. In chapter 4 and 6, 

we will present, respectively the result of our NeSTRI measurements on graphene-based thin 

films decorated with copper nanoparticles and graphene/polymer composites. In chapter 3, we 

will present the results of our study: the influence of metal nanoparticles on the electronic 

properties of graphene-based thin films and in chapter 5, we will demonstrate the design criteria 

for ultrathin memristors based on organic polyradicals 
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Chapter 2 

Nanoscale Thermal Imaging of Graphene-based Thin Films 

2.1  Scanning Near-Field Thermoreflectance Imaging 

2.1.1 Existing thermal imaging techniques  

Submicrometric devices for next generation information technology require very 

large scale component integration and high power density. To evacuate extremely high 

heat loads locally generated within these devices, it is essential to fabricate and 

characterize thin heat spreaders at high performance [1]. Understanding heat evacuation 

in thin films and low dimensional systems is vital to design heat spreaders for efficient 

thermal management in next-generation information technology [1]. Despite such a vast 

demand, experimental techniques capable of imaging thermal conductivity at the high 

lateral resolution demanded by state-of-the art electronic components, pose a tremendous 

challenge to both academia and industry. Most of the methods used to determine the 

thermal conductivity of thin solid films, including the 3- method, [2] laser flash 

techniques [3] and others, [4, 5] are macroscopic in nature and average the thermal 

properties over large areas. They are unable to recognize the local fluctuations in sample 

composition and in the local variations of the thermal properties at the nanoscale. 

To date, nanoscale thermal measurements mostly rely on scanning thermal 

microscopy (SThM), [6–13] a family of contact-mode scanning probe microscopy 

techniques that utilize thermal sensors integrated with cantilever probes. In SThM 

architectures that have been proposed to date, either the cantilever acts as the thermal 

sensor and simultaneously as a heat generator, [8,12] or the heat generated by electrical 
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current flowing through the scanning probe cantilever and the sample is detected by local 

thermometers based on infrared spectroscopy, [13] thermoelectric effects [7,9] or a 

combination of these methods. Unfortunately, in all these cases, relatively voluminous 

scanning probe cantilevers are required to be in contact with the sample. The measuring 

probe acts as an important thermal sink and the strong coupling between the probe and the 

sample cannot be neglected. Significant interfacial thermal resistivity also affects SThM 

measurements.  

Thermal sinks and interfacial thermal resistivity effects associated to SThM probes 

are largely irreproducible due to the irreproducibility of the distance and thermal contact 

between the probe and the sample, an issue that is particularly problematic in samples 

with nanoscale roughness. In an effort to improve the thermal contacts, SThM 

measurements in which the cantilever is immersed in a fluid have been attempted [11]. 

However, fundamental studies have shown that a solid-liquid interface also constitutes a 

large thermal barrier [14,15]. Subsequently, liquid-immersion SThM is unlikely to 

mitigate many of the thermal sink issues commonly associated with SThM techniques. 

Different approaches are required to overcome the constraints of SThM. 

Modulated thermoreflectance [16-20] is a contactless technique commonly used to 

determine the thermal conductivity of solids, but is macroscopic in nature. With this 

technique, the sample is periodically heated at the surface, and heat transfers to air, or 

another fluid at the interface, which experiences periodic changes in density and 

refractive index due to the subsequent periodic oscillations in temperature. The phase lag 

at which changes in the fluid refractive index occur depends on the thermal properties of 

the sample, which can thus be measured by means of a light beam. The use of light 
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eliminates the necessity of physical contact between the sample and the probe. 

Thermoreflectance measurements are contactless and alleviate many of the thermal 

sinking problems commonly associated with other contact-based thermal measurements. 

Micro-thermoreflectance was used to accurately map the thermal properties of 

micrometer-thick gold films [20]. However, differently from SThM, this technique suffers 

from inherent limitations in terms of lateral resolution. Light, the thermal probe used in 

thermoreflectance measurements, is limited by diffraction in its capability to characterize 

nanometer size objects. Optical methods that are not diffraction-limited and combine the 

advantages of SThM and thermoreflectance will be vital to enable contactless thermal 

imaging at the nanoscale. 

2.1.2 A new thermal imaging technique 

Scanning near-field optical microscopes (SNOM) are optical instruments that 

exploit the properties of evanescent waves generated by scattering of light in the 

proximity of a nanostructured sample to enable sub-wavelength resolution beyond the 

diffraction limit [21]. SNOM measurements rely on the interaction of two distinct 

nanometer-size objects: a nanoscale feature in the illuminated sample and a nanometer-

size probe. Apertureless SNOM utilizes nanoparticles as probes, while nanometer-size 

openings are used to detect the optical signal in aperture-type SNOM. With modern 

aperture-type instruments, the near-field optical signal is generated and detected by 

hollow scanning probe cantilevers and the sample topography is simultaneously scanned 

by atomic force microscopy (AFM). If visible light is used for SNOM experiments, the 

sample-probe distance can be extended up to several ten nanometers during optical 
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measurements, [22] thus enabling SNOM imaging in non-contact mode, with negligible 

mechanical and thermal interaction between the cantilever and the sample.  

In this chapter, we demonstrate that an aperture-type SNOM system operating out 

of contact with the sample can be utilized to detect modulated thermoreflectance signals 

from a nanostructured thin film, thus enabling contactless thermal imaging with nanoscale 

resolution. Due to the combination of SThM and thermo-reflectance methods, the 

technique we are here introducing for the first time can be termed near-field scanning 

thermoreflectance imaging (NeSTRI). The NeSTRI apparatus implemented in this thesis 

will include two distinct microscopes from which specimen under investigation can be 

illuminated: an inverted optical microscope from which the sample can be uniformly 

irradiated and heated by an intense time-modulated “pump” laser, and an upright, 

aperture-type SNOM microscope, from which the surface irradiated from the inverted 

microscope can be scanned at sub-wavelength resolution by a low-intensity “probe” laser 

beam at different wavelength. In addition of illuminating the sample with the probe laser 

beam, the SNOM system will be used to collect the pump laser light that traverses the 

sample and to measure its intensity. In this way, the optical absorption coefficient of the 

sample can be locally determined. The SNOM instrument is complemented by a grazing-

angle detector to collect and quantify the amount of “probe” laser light reflected by the 

sample. From the periodic modulation of the reflectivity of the probe beam, and its phase 

delay with respect to the modulation of the pump beam, the amplitude and phase of the 

temperature oscillations in the proximity of the sample can be determined. 

Due to the flexibility of the NeSTRI apparatus, two distinct sets of images are obtained 

for each sample: i) the heating profile H(x,y,t) locally generated in the sample from periodic 
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illumination by the pump beam, and ii) the amplitude 0(x,y) and phase 0(x,y) of periodic 

thermoreflectance oscillations experienced by the “probe” beam in the proximity of the 

periodically heated sample. From a combination of these two pieces of information, the Fourier 

equation governing the diffusion of heat will be numerically solved using a finite difference 

method, and images of the thermal conductivity and thermal capacity will be obtained, without 

any need of contacting the sample with a heat sink. Thermally conducting domains of multilayer 

graphene on glass will be used to test our setup. To the best of our knowledge, this is the first 

report in which modulated thermoreflectance methods are coupled with SNOM, to achieve 

simultaneous contactless imaging of thermal conductivity and thermal capacity at the nanoscale. 

2.2 NeSTRI apparatus 

The NeSTRI setup presented in this thesis has been implemented using a Witec 

Alpha 300S aperture-type AFM and SNOM system, equipped with non-contact hollow 

cantilever tips (SNOM-NC, NT-MDT Co.) [24, 27-29].  Tip apertures at 80-100 nm 

diameter are machined in these cantilevers using a focussed ion beam. The Witec Alpha 

300S instrument is capable of scanning in the near-field the optical response of a sample 

in reflection or transmission mode and, simultaneously, probing the sample topography 

via AFM 

Near-field optical response is obtained by illuminating the SNOM tip aperture 

through an upright confocal optical microscope. For reflection-mode SNOM imaging, 

evanescent waves locally generated at the tip aperture, and scattered by the sample, were 

collected at grazing angle by a subminiature accessory (SMA, Witec). The SMA was 

coupled by means of an optical fiber to a photomultiplier tube operating in photon 

counting regime (U64000, Hamamatsu). For transmission-mode SNOM, evanescent 
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waves locally generated at the tip aperture and scattered through the sample were 

collected by an inverted optical microscope and conveyed to the photomultiplier tube. In 

this way, continuous wave (CW) reflection-mode and transmission-mode SNOM images 

of the sample were obtained by illuminating the cantilever aperture with a 405 nm, diode-

pumped laser (500 mW, Apinex) launched into a single-mode optical fiber coupled with 

the upright confocal microscope. Combination of reflection and transmission SNOM 

images were acquired with this assembly, shown in Figure 2.1a, and provided maps of 

the sample absorbance, A0(x,y) via the relationship 

   A0(x,y) = 1 – τ(x,y) – (x,y)                                     (2.1) 

 

where τ(x,y) and (x,y) are, respectively, the  transmittance and reflectance of the sample 

recorded by SNOM at 405 nm. Information on the absorbance, in conjunction with 

knowledge of the laser power P0, were used to determine the sample heating profile upon 

uniform illumination. 

To record modulated thermoreflectance images, we used the setup shown in 

Figure 2.1b. Picture showing all the pieces of apparatus assembled to achieve our new 

thermal imaging is also shown in Figure 2.2. With this assembly, the above mentioned 

500-mW laser at 405-nm is coupled with the inverted optical microscope situated below 

the sample, equipped with a 20x long working distance objective complete of glass-

substrate correction ring. Large sample areas (500 m2) could be uniformly illuminated 

at P0 = 50 W/m2 power. The laser beam is intersected with a mechanical chopper 

(SciTec Instruments) operated at angular frequencies from = 75 Hz to 450 Hz. In this 

way, we obtain a pulsed “pump” beam that illuminates the sample and generates, at any 

time t, a periodic heat profile accordingly to the equation. 
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Figure 2.1: (a) (a) Setup used for recording transmission () and reflection () SNOM 

images, from which A0(x,y), the absorbance of the sample can be obtained and used to 

determine the heat generation profile according to eq.(2). (b) NeSTRI setup used for 

scanning near-field thermoreflectance images in phase (0) and amplitude (0). A 405-

nm pump beam, modulated at frequency , heats the sample over a large area from the 

inverted microscope. Heat, after diffusing along the thin film surface, is transferred to air. 

Air changes in volume and thus experiences, at a certain phase lag, periodic changes in 

refractive index that induce small oscillations in reflectance at the air-sample interface. 

Such oscillations are probed, in amplitude and phase, by a CW 532-nm probe beam 

originating from the upright SNOM microscope and detected in lock-in mode via the SMA 

coupler. A set of filters at the SMA coupler eliminate 405-nm light scattered from the 

pump beam. 
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H(x,y,t) = P0A0(x,y)/D(x,y) exp{it} = H0(x,y)exp{it},              (2.2) 

 

where D(x,y) is the thickness of the absorbing film, determined from AFM topography 

referenced to the glass substrate, and H0(x,y) = P0A0(x,y)/D(x,y)  represents the amount of 

heat locally deposited per sample unit volume. During pulsed heating from the pump 

beam, the sample surface was locally scanned in the near-field by evanescent light 

originating from a continuous “probe” laser (50 mW, Spectra Physics) at 532 nm 

wavelength and significantly lower power than the pump beam. The probe laser was 

coupled with the SNOM tip aperture by means of the upright confocal optical 

microscope. The amount of 532-nm evanescent radiation reflected at each point (x,y) of 

the surface was detected by the Witec SMA reflection SNOM accessory. A 405-nm 

holographic notch filter (Witec) and a 530-nm long-pass filter (Melles-Griot) were 

positioned in series with the SMA coupler to completely reject stray light from the pump 

beam and ensure that reflected light reaching the photo-multiplier tube originates entirely 

from the probe beam. 

Upon sample heating, heat is transferred from the sample to air. Air increases in 

volume and experiences a consequent decrease in refractive index. The change in 

refractive index of the sample is negligible over the change in refractive index in air, 

because thermal dilatation is significantly higher in liquids than solids [23]. The 

amplitude 0(x,y) of thermoreflectance oscillations, experienced by the CW probe beam 

due to periodic heating of air from sample heating, is proportional to the temperature 

oscillations at the sample surface.  
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Figure 2.2: Picture of different pieces of apparatus coupled used to achieve our NeSTRI 

measurement. (a) Witec Alpha 300S aperture-type AFM/SNOM system in Fanchini’s 

group laboratory in the Department of Physics and Astronomy at Western University (b) 

A magnified view of the system showing the upright confocal microscope for focusing the 

probe green laser onto the hollow AFM tip, scan stage and the reflection mode accessory. 

The inverted microscope used to focus the pump beam laser is not visible in this picture. 

(c) The bump beam laser, mechanical chopper for frequency modulation of pump beam 

and the pump beam optics for focusing and alignment. (d) The controller of the 

mechanical chopper and dual phase lock-in amplifier. 
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The phase lag 0(x,y) relative to the pump beam depends on the average mean free path 

of the thermal waves reaching each point (x,y) from the surrounding region. The complex 

thermoreflectance at the sample surface is thus given by 

(x,y,t) = 0(x,y)exp{i[t +0(x,y)]}.                                         (2.3) 

 

In NeSTRI, 0(x,y) and 0(x,y) can be separately recorded at each point by connecting the 

photomultiplier tube with a lock-in amplifier (3207, Princeton Instruments) referenced by the 

chopper. The output of the lock-in amplifier was subsequently coupled to the controller of the 

WiTec Alpha 300S instrument to produce 512x512 pixels in the scanned area. Phase and 

amplitude images of the complex thermoreflectance at the sample-air interface could then be 

obtained. 

2.3 Materials 

Samples used to test our NeSTRI setup are multilayer graphene films, exfoliated 

from graphite using a surfactant-assisted method and deposited on transparent and 

thermally insulating glass substrates (BK7, Corning). Graphene-based thin films were 

chosen as test samples due to the strong interest displayed by the scientific and 

technological community on the thermal properties of this material. [24] Multilayer 

graphene in water was exfoliated from pyrolytic graphite by a surfactant-based process 

previously developed by Sharifi et al. [25,26] and described in details in chapter 1. A 

distinct advantage of this process is that the starting material obtained for exfoliation is 

less oxidized and less defective than graphite oxide prepared by the Hummers’ method, 

[27] with significantly higher thermal conductivity [28]. Briefly, 6 mg of graphitic 
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material, pretreated in acid mixture and Piranha solution as discussed in chapter 1, was 

ultrasonicated for 4 hours in a 0.6 g/l aqueous solution of RNA, which promoted 

exfoliation. The resulting slurry was left to sediment overnight at 2oC in a beaker. The top 

three-quarters of the beaker content were centrifuged at 6,000 rpm for 1 h. The 

supernatant, consisting of N-layer graphene flakes, (N = 1-200 [25]) was used for the 

deposition multilayer graphene thin films by vacuum filtration. 

For graphene-based thin film deposition, 5 ml of RNA-based suspension of N-

layer graphene flakes in water were filtrated through a 220-nm pore size sacrificial 

membrane (Millipore). Small amounts of diluted suspensions are used to prevent re-

aggregation of the suspended flakes during deposition on the filtration membrane. 

Membranes loaded with graphene flakes are transferred to the requisite substrates, and 

dried in a vacuum desiccator. The sacrificial membrane is etched using acetone baths in 

Petri dishes, thus obtaining random distributions of graphene domains on their substrate. 

A final methanol bath is used to remove the last traces of the membrane. Samples were 

annealed at 540oC for 5 h in a nitrogen-loaded glove box to completely remove any traces 

of RNA [25] prior to thermal measurements. The films are formed by sparse domains of 

light-absorbing and heat-conducting multilayer graphene on uniform, transparent, and 

thermally insulating surfaces of glass. 

2.4. Numerical model 

A numerical model was developed by Sina Kazemian in a collaboration within our 

research group with the objective to calculate the thermal conductivity k(x,y) and heat 

capacity C(x,y) of inhomogeneous thin films from the quantities imaged by NeSTRI: the 

heat generation profile (eq. 2) and the amplitude and phase of the complex 
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thermoreflectance at the sample surface (eq. 3). In this model, the substrate is assumed to 

be transparent and thermally insulating, a reliable assumption for our test samples and 

many other thin films of practical interest. The model requires a numerical solution of the 

inverse equation of heat [29] using a finite difference method. 

Radiation from the pump beam is absorbed in different amounts at different 

locations of the thin film under investigation and heat locally generated by photons 

preferentially diffuses along the film surface, which leads to a thermal profile accordingly 

to the Fourier equation [29, 30]: 
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Equation 2.4 is reminiscent of the conservation of energy in a control region about point 

(x,y), in which heat can be accumulated, transferred and generated. It is worthwhile 

noting that, in our work, T(x,y,t) does not represent the absolute temperature, but 

corresponds to the local temperature difference between the sample surface at point (x,y) 

and the environment. 

In our experiments, H(x,y,t) is periodic with the same periodicity as the chopper 

frequency, as seen from eq. 2.2. In this configuration, a solution of eq. 2.4 can be written 

by considering that the thermoreflectance carries only the Fourier component that is 

oscillating at such frequency: T(x,y,t)=T0(x,y)exp{i[t+0(x,y)]}. Substitution of this 

solution into eq. 2.4 leads to the following expression for the equation of heat written in 

the Fourier domain: 
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Equation 2.5 has two components, real and an imaginary, and their physical meaning is 

associated to the finite thermal diffusivity at which heat propagates along the thin film 

surface, due to nonzero lateral thermal diffusion length.  

Equations 2.4 and 2.5 indicate that, for any given profile of heat generation (x,y,t) 

depend on the thermal conductivity and heat capacity at any other points on the thin film 

surface. At very short lateral thermal diffusion lengths, heat is released to air close to the 

point (x’,y’)at which it is generated, T(x,y,t) only depends on the value of H(x’,y’,t) at 

points situated in the very proximity of (x,y), and eq.2.5 is real, with 0(x,y)0. 

Conversely, at large thermal diffusion lengths, heat travels relatively long distances along 

the surface, before being released to air. In this way, relatively large heated domains will 

contribute to T(x,y,t), and eq. 2.5 will be predominantly imaginary, with 0(x,y) closer to 

90o. Since the lateral thermal diffusion length along the surface is inversely proportional 

to the pump beam frequency, NeSTRI measurements at different values of , leading to 

different phase lags, are needed to exhaustively understand the film thermal properties. 

         A linear relation exists between T0(x,y) and the thermoreflectance[31].   

  

                                                 0(x,y) = hT0(x,y),          (2.6) 

where h, a negative proportionality coefficient, is independent of x, y and . It is 

convenient to write eq.2.5 in terms of 0(x,y) instead of T0(x,y) because this is the 

quantity actually measured by NeSTRI. By replacing eq. 2.6 into eq. 2.5, we can write a 

complex equation in the Fourier domain, which links the phase and amplitude of the 

complex thermoreflectance with the heat capacity and thermal conductivity at any generic 

point of the thin film: 
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The physical meaning of the real and imaginary parts of eq. 2.7 is the same as in the 

corresponding components of eq. 2.5. The two components can be separately equated 

leading to the identities  
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for the real part, and 

),(sin),(),()],(),([

)],(),(2),(),()[,(

),(),(

00000

000

2

0

0

yxyxAhPyxyxyxk

yxyxyxyxyxk

yxyxc









          (2.9) 

.  

for the imaginary part. The solution of the real equation (eq. 2.8) provides k(x,y), a map of the 

thermal conductivity of the thin film, which can then be replaced into eq. 2.9. c(x,y) can thus be 

explicitated. In this way, the solution of the imaginary equation (eq. 2.9) provides a map of the 

film heat capacity.  

Due to the nonanalytic nature of 0(x,y), 0(x,y) and A0(x,y), the known quantities 

recorded by NeSTRI experiments, the solution of eq. 2.8 must be obtained numerically, using a 

finite difference method [32, 33]. The generality of this solution makes it suitable to analyze a 

large variety of thin films measured by NeSTRI. The numerical computer routine used to solve 

eq. 2.8 is described in detail in ref. 31. Boundary conditions for the numerical problem are the 

known values of k(xb,yb) at (x,y) = (xb,yb), the boundaries of the NeSTRI image, at which the 
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surface is made of glass and the thermal conductivity is known. In the specific case of our test 

samples, the thermal conductivity of glass was set at k(xb,yb) = 1.1 W/m/K [34]. The quantity 

k(x,y)/h can be extracted from the numerical solution of eq. 2.8, and represents the thermal 

conductivity in specific arbitrary units that depend on the geometry of the used NSOM tip and its 

distance from the surface, via the proportionality coefficient of eq. 2.6. Due to the difficulty to 

estimate the tip-sample distance, the actual value of h involved in the right-hand term of eq. 2.8 

needs to be determined experimentally. This can be done via eq. 2.9 because the specific heat 

capacity of glass, c(xb,yb) = 860 J/Kg/K, is also known [34]. In this way, solution of eqs. 2.8 and 

2.9 was implemented using a MatlabTM computer program available in ref. 31 and leads to the 

determination of k(x,y) and c(x,y). 

2.5. Results 

2.5.1    Sample absorbance 

Figure 2.3 demonstrates that the phase and amplitude images measured using the 

NeSTRI setup shown in Figure 2.1b are from genuine thermoreflectance phenomena originating 

from thermally-induced oscillations of the probe beam reflectivity at the air-sample interface. To 

demonstrate this, we carried out a set of measurements in which the pump and probe beams were 

alternatively switched off during the scan. These measurements show that NeSTRI images can 

only be observed when both the pump beam and the probe beam are impinging the sample. 

When either laser is turned off, the NeSTRI signal vanishes. These tests were carried out on a 

multilayer graphene flake which topography, measured by AFM, is shown in panel a of Figure 

2.3. The corresponding CW reflectance image is shown in Figure 2.3b. Filters rejecting 405-nm 

purple light from the pump beam were in place, as shown in Figure 2.1b. In these conditions, it is 
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expected that the signal is entirely coming from 532-nm green light from the probe beam. As 

expected, it can be observed that, without any heating from the pump laser, the amplitude of the 

thermoreflectance image is below the detection limit, as demonstrated by Figure 2.3c. However, 

even in the absence of heating, a small phase lag is still observed in the correspondence of the 

graphene flake in Figure 2.3d, but this is no more than 2% of the phase shifts observed in the 

second and fourth quarter of the scan, when the sample is heated. This background phase lag can 

be assigned to limited sample self-heating from the probe beam. In summary, Figure 2.3c and 

2.2d show that phase images are more sensitive than amplitude images in detecting small 

thermoreflectance oscillations, but undesired effects associated to weak self-heating from the 

probe beam are negligible at the pump power levels used in our experiments. 

 

 

Figure 2.3: (a) AFM topography, (b) SNOM CW reflectance, and (c) amplitudeand (d) 

phase of thermoreflectance modulations recorded from a multilayer graphene flake. The 

pump laser, modulated at = 150 Hz, was switched off and on every 128 lines of a 512-

line sample scan. Pump laser modulation has no effects on the topography and CW 

reflectance images, but it is essential for observing thermoreflectance images.  
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Although sample illumination from the pump beam is uniform, the value of 

H(x,y,t)at a specific point also depends on the local value of the absorbance. Specifically, 

H(x,y,t)= 0 at any points on bare glass, at which A0(x,y) = 0, while is more significant, up 

to 0.09 mW/m2, at points on relatively thick multilayer graphene. To quantify A0(x,y) 

from eq. 2.1 we imaged the reflectance and transmittance of the test sample using the 

SNOM setup shown in Figure 2.1a. The result of these measurements is presented in 

Figures 2.4a–2.4c that show, respectively, AFM topography, transmittance and 

reflectance images of the test sample. To determine the absolute intensities of the 

transmittance and reflectance from the photomultiplier counts shown in panels b and c of 

Figure 2.4, we considered τ(xb,yb) = 92% and (xb,yb) = 8% for glass [36], while zero 

counts correspond to 0%of both transmittance and reflectance. In this way, SNOM 

images can be normalized and the heat deposited at each point can be estimated from eq. 

2.2. 

Figure 2.4d shows the variation of A0(x,y) in multilayer graphene platelets as a 

function of the number of graphene layers. From the transmittance image shown in Figure 

2.4b, it can be observed that the glass substrate is always significantly more transmitting 

than multilayer graphene. On the other hand, from Figure 2.4c, it can be noticed that the 

reflectance of glass and graphene are both relatively small and comparable, except at a 

few locations in which graphene flakes are particularly wrinkled and rich in ridges, and 

become highly reflecting with  up to 30%. There is a wide range of thicknesses and 

number of layers in the platelets shown in Figure 2.4. Nine different regions with relative 

thickness variations of no more than 10% were selected from panel a and their 

transmittance and reflectance were determined from panels b and c, respectively.  
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Figure 2.4: (a) AFM topography, (b) Transmission mode and (c) Reflection mode SNOM 

images of graphene platelets comprising of different number of layers. The topography 

was obtained simultaneously during SNOM measurements. (d) Absorbance, A0 versus 

number, N of graphene layers. The absorbance was determined from the transmittance 

and reflectance data obtained from the SNOM images in (b) and (c).  Multilayer 

graphene platelets are highly absorbing, while few-layer are semi-transparent. All of 

them are weakly reflecting.  

 

From the thicknesses (x,y) shown in Figure 2.4a, the number of layers could be calculated 

for each selected region using the relationship N = D/c0, where c0 = 0.3 nm is the 
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interlayer spacing in graphene [37]. In this way, the average optical absorbance could be 

determined for each of the nine selected regions, and is plotted in Figure 2.4d.  

Figure 2.4d shows that A0(x,y) increases at increasing number of layers, consistently with 

previous macroscopic observations that showed absorbance increase according to the Beer-

Lambert law, A0 1-exp(N/M)(M 50) in multilayer graphene platelets [38]. We can thus infer 

that this relationship is valid in our system even at the nanoscale level. These results indicate that 

few-layer graphene platelets with less than 50 layers are locally transparent, with relatively low 

heat load applied to them. Dark areas in the SNOM transmittance image in Figure 2.4b are 

highly absorbing, and will also be affected by high thermal load. Due to such unavoidably 

different levels of heat generated at each point of the sample, knowledge of optical absorbance, 

calculated from eq. 2.2, will be critical for quantitative estimates of the thermal conductivity and 

thermal capacity of the test sample, as described in the next section. 

2.5.2 Multi-frequency NeSTRI imaging 

 

Figure 2.5 shows NeSTRI images in phase and amplitude of the test sample, recorded at 

75 Hz. A close correlation between these images, recorded in non-contact from the sample, and 

the corresponding SNOM and topography images, recorded in contact with the sample and 

reported in Figure 2.4, can be observed. The thermal diffusion length along the surface decreases 

as the pump beam modulation frequency increases. Therefore, thermoreflectance measurements 

at different values of  lead to different amplitude and phase lags, and decrease the arbitrariness 

in the determination of the thermal properties [16-20].   
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Figure 2.5: (a) NeSTRI amplitude and (b) phase images recorded at 75 Hz pump beam 

modulation frequency in non-contact from the test sample. Dotted squares highlight the detail 

that is further investigated in figures 2.6 to 2.8. Negative phase is a consequence of h < 0 in eq. 

2.6 and is a strong indication of the fact that images are from genuine complex 

thermoreflectance signals. An excellent correlation between NeSTRI images in the present figure 

and the corresponding contact AFM and SNOM images from figure 2.4 can be observed.  

Figure 2.6 show SNOM and multifrequency NeSTRI measurements on a detail of Figure 2.5. It 

shows the AFM topography (panel a) SNOM reflectance (panel b) and thermal amplitude and 

phase of the temperature profile for two different modulation frequencies of the pump beam. The 

amplitude and phase images at a larger set of frequencies is presented in the Appendix. Typical 

amplitude and phase of the temperature profile for graphene flake are obtained from the thermal 

images and fitted using Gaussian function. The peak of the Gaussian curve was taken as the 

representative amplitude and phase shown respectively in panel (g) and (h) of Figure 2.6.  

Panels (c) ( = 45 Hz) and (e) ( = 450 Hz) in Figure 2.6 show that the 

thermoreflectance amplitude is significantly different between thin and thick regions of the flake 

on the one hand, and between graphene and the glass substrate on the other hand. These images  

0(x,y) 0(x,y)
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Figure 2.6: (a) Detail of AFM and (b) SNOM reflectance images of multilayer graphene (MLG) 

flake from figure 2.4. (c) Thermo-reflectance amplitude and (d) phase at  = 45 Hz frequency 

and (e) thermoreflectance amplitude and (f) phase at  = 450 Hz. It is always observed 0(x,y) 

< 0, as a consequence of h< 0 in eq. 2.6 (see ref. 31) which means that (x,y,t) and T(x,y,t) are 

in phase opposition of 180o. (g) The amplitude monotonically decreases as increases, as a 

consequence of shorter thermal diffusion length at increasing frequency. (h) The phase in 

graphene increases from about -1.6o to nearly zero and, from comparison of panels d and f, it is 

evident that 0 is lower in graphene than glass at 25 Hz, while, at 450 Hz, it is lower in glass 

than graphene. 
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represent the small changes in reflectivity of the probe beam directly measured in our setup by 

collimating the beam on the PMT detector and amplifying the periodic output voltage of the 

detector in a low noise lock-in amplifier referenced at the frequency,  of the pump beam. When 

the changes in the reflectivity are larger due to stronger heat dissipation, the measured amplitude 

is higher, which leads to bright features in the amplitude images. In general, the magnitude of the 

amplitude always tends to monotonically decrease as  increases, due to shorter thermal 

diffusion length at increasing frequency, as demonstrated in panel (g). The thermal diffusion 

length [29] can be defined as 

Lth (d/)1/2,                      (2.10) 

where d(x,y) = k(x,y)/c(x,y) is the local thermal diffusivity of the sample, and the amplitude of 

the thermoreflectance signal is controlled by the thermal diffusion length. This is a very general 

trend in both thermoreflectance [16-20] and photothermal [38] experiments: when heat is 

delivered in short pulses, the thermal diffusion length is shorter at a constant heat diffusivity and 

less heat can be collected from a sample surface. 

While the amplitude is always decreasing at increasing , phase images exhibit a more 

intriguing trend that also depends on the specific sample location. Panels (d) and (f) of Figure 2.6 

show NeSTRI phase images at 45 Hz and 450 Hz, respectively. It is immediate that in panel (d), 

at low frequency, the graphene flake exhibits a larger phase lag than glass. Conversely, in panel 

(f), at high frequency, the glass substrate exhibits a larger phase lag than graphene. It is 

worthwhile noting that heat generation only occurs in graphene, because glass is optically non-

absorbing. Instead, thermal dissipation may occur either from glass, which possess a very short 

thermal diffusion length regardless of the used pump beam frequency, or graphene where the 
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thermal diffusion length is significantly higher, up to several m [39] and is determined by eq. 

2.10.   

 

Figure 2.7: (a) Large thermal diffusion length (Lth) at low frequency, dominated by the diameter 

(DG) of graphene flake, with heat dissipation mainly occurring in glass, and (b) Large thermal 

diffusion length at high frequency, in which eq. 2.10 holds and heat dissipation mainly occurs in 

graphene. A smaller phase lag occurs from the medium from which the largest amount of heat is 

dissipated to air. The dependency of Lth on  leads to the 150 Hz crossover between regimes a 

and b, which results in phase images is, respectively, brighter and darker than the glass 

substrates as in figures 2.6b and d. 

 

At low frequencies, the thermal diffusion length in graphene is larger than the size of the flake 

probed in Figure 2.7 (i.e. about 10 m). Thus, the heat generated within the graphene sample is 

transferred in significant amounts to glass and a more significant phase lag is observed in 

graphene than glass, as demonstrated in Figure 2.7a. Conversely, at high frequencies, Lth is 

shorter than the flake size and heat generated in graphene is mostly dissipated within the same 

flake and minimally transferred to glass, as demonstrated in Figure 2.7b. The crossover between 

the high frequency and low frequency conditions can be estimated from Figure 2.6g, to 

corresponds to about  = 150 Hz. From these considerations, it is evident that multifrequency 
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NeSTRI will be a very powerful and effective technique to visualize the thermal diffusivity and 

thermal diffusion length in layered materials. 

2.6. Discussion 

Figure 2.8 shows the specific heat images obtained by processing the 

thermoreflectance data shown in Figure 2.6 by using eqs. 2.8 and 2.9. It can be observed 

that, within the experimental errors, the specific heat is independent of the frequency used 

in the measurements. It can also be observed that the specific heat is not significantly 

different in glass (860 J/Kg/K) and graphite (720 J/kg/K). At room temperature, Dulong-

Petit law holds for a large class of materials for which the thermal properties are 

determined by lattice properties [40]. Consequently, a slowly varying specific heat along 

the entire surface is realistic. Local variations can only be observed at locations in which 

the low-dimensional nature of the thin film is more evident, including graphene edges, 

defects, and particularly thin regions. 

 

Figure 2.8. (a) Images of specific heat for the multilayer graphene flake previously 

reported in figure. 2.6 and independently obtained at (a)  = 75 Hz, (b)  = 200 Hz, and 

(c)  = 450 Hz 
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Figure 2.9 shows the thermal conductivity maps extracted from NeSTRI 

thermoreflectance images from the same regions and at the same frequencies as the 

specific heat images in Figure 2.8. From panel b we notice that the thermal conductivity is 

higher at certain edges than at the center of the graphene flake. There are two types of 

edges in graphene, armchair and zigzag. Different atomic spacing along the armchair and 

zigzag edges results in distinctly different electron and phonon density distributions, with 

armchair edge atoms forming shorter and stronger bonds [31].  

 

Figure 2.9: Thermal conductivity maps for three different frequencies, (a) 75 Hz, (b) 200 

Hz and (c) 450 Hz. Although the images are slightly different, the thermal conductivity is 

expected to not depend on the modulation frequency of the pump beam since kth is a 

material property. The discrepancy in kth may be related to slight drift in pump beam 

power that sometimes occurs and also on possible contribution from convection. The role 

of convection is however very limited in NeSTRI because air molecule velocity is  0 near 

the sample surface when scanning in out of contact but in close proximity to sample 

surface.  

 

Although the zigzag edges are less dense than armchair edges, the armchair edges have 

lower energy due to the fact they can form triple bonds [32, 33]. Armchair and zigzag 
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edges also have different phonon distribution of states with the armchair edges having 

more zone boundary phonons than zigzag edges. Since Umklapp process [26] is 

responsible for thermal resistivity effects, it is expected that the edge modes with higher 

density of states at the zone boundary would have a lower thermal conductivity. Also due 

to anisotropy in the phonon dispersion for graphene nano layers, zigzag graphene nano 

layers have higher thermal conductance than armchair graphene nano ribbons of 

comparable widths [34]. For the flake under consideration we recognize both armchair 

and zigzag edges, in consideration of its triangular shape. The different thermal 

conductivity at the edges may be related to different edge nature. 

2.7. Conclusion 

 

We measure the phase shift and amplitude of the sample thermoreflectance. We 

implement them into Fourier heat equation and we derive the thermal conductivity and 

heat capacity at each point, and therefore we have thermal conductivity and specific heat 

capacity images for the sample.  By using contactless method for developing thermal 

conductivity maps, we measured the thermal conductivity of the surface of the sample 

more accurately and reliably than the previously measured data by photothermal 

deflection microscopy (PDS) [38]. The thermal properties of graphene-based thin films 

measured by NeSTRI are consistent with the previous measurements by Raman [24], with 

room-temperature thermal conductivity values between ~0-5000 W/m/K. Our NeSTRI 

apparatus have allowed the imaging of fluctuations at the nanoscale of the thermal 

properties of thin films of graphene and other thin film materials and the results prove that 

a direct relationship exists between the microstructure of thin film materials and their 
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thermal properties.  Our method is suitable to be extended to image the thermal properties 

of a large class of sparse, layered and thin film materials. 
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Chapter 3 

 

Nanoscale investigation of graphene-based thin films decorated with copper Nanoparticles2 

 

3. 1 Introduction 

In order to utilize graphene-based materials in nanoelectronics and sustainable energy 

applications, it is of paramount importance to establish physical relationships between their 

fabrication conditions and electronic performance. Modeling the effects of the incorporation of 

specific heteroatoms and impurities in graphene is a typical example of such a requirement. It is 

well known that the electronic properties of graphene can be tailored via substitutional doping or 

by chemically bonding specific functional groups to the graphene layer [1-5]. However, 

substitutional doping and functionalization also lead to additional undesired effects, because the 

alteration of graphene through chemical bonding significantly affects its electronic structure near 

the canonical point, which is responsible for the exceptional carrier mobility in graphene-based 

materials [6]. Chen et al. demonstrated that the carrier mobility decreases with increasing dopant 

density in graphene that was substitutionally doped with potassium, as a result of the scattering 

of -electrons in graphene from potassium centers [5]. 

Controlling the electronic structure of graphene flakes by assembling metallic structures 

on their surface is another promising direction of research for tailoring their electronic properties, 

with significant applications in the fabrication of batteries [7], supercapacitors [8], fuel cells [9] 

and other devices for electronics and energy applications [10, 11]. Using first principle 

calculations Giovannetti et al. [12] showed that the electronic band structure of graphene can be 

________________________________________ 
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altered by applying metallic layers on its surface. They demonstrated that this effect is strongly 

dependent on the specific type of metal being used, with the formation of chemical bonds that 

may significantly alter the band structure of graphene near the Dirac point in the case of some 

specific metals (such as Co, Ni, and Pd). However, for other metals (Cu, Al, Ag, Au, and Pt), 

bonding with metals only caused shifts in the Fermi energy of graphene, which resulted in the 

doping of this material without significant alteration to its band structure. The distinct behavior 

of different metals was attributed to differences in their work function relative to graphene [12]. 

While the work of Giovannetti et al. pointed out at an attractive avenue for producing 

doped large-area graphene thin films while limitedly altering their electronic band structure near 

the Dirac point, assembling metallic layers on top of graphene sheets is not viable for practical 

applications, for which access to the graphene surface is required [7-11]. To this end, the use of 

nanoparticles of specific metals, including gold [13] and copper [14-15], has been explored for 

graphene-based devices. However, the roles of the size, shape and concentration of these 

nanoparticles in affecting the microscopic properties of the resulting nanocomposite systems 

have never been investigated in detail. For instance, it is not clear if the increase in electrical 

conductivity that has often been observed in graphene layers decorated with metallic 

nanoparticles [16] is due to some form of substitutional doping, like in crystalline materials, or to 

other effects. Furthermore, it is unclear if the specific location at which a metallic nanoparticle is 

positioned (e.g. at the center of a graphene flake, or near an edge with a specific conformation) is 

important in affecting the electronic structure and electrical properties of the system [17-18]. 

In this chapter, we investigate the influence of metal nanoparticles on the electronic 

properties of graphene-based thin films formed by collections of few-layer graphene domains 

that have been decorated with copper nanoparticles (Cu-NPs) [19] at different diameter and 
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surface area coverage. We developed a theoretical model at the tight-binding level in order to 

understand the Fermi level shifts and changes in electrical conductivity that we observed using 

scanning Kelvin-probe force microscopy (SKPFM) and electrical conductivity measurements.  

 

3.2 Experimental 

Transparent and conducting graphene-based thin films were deposited onto Si(100) and 

glass substrates using the vacuum filtration process discussed in section 1.2.1 of Chapter 1. This 

fabrication procedure yields graphene-based thin films very similar to those being currently 

investigated for several large-area applications in electronics and sustainable energy [20,21,22] 

and, therefore, offers a realistic benchmark for realistic theoretical studies of their doping 

mechanisms. The thin-film deposition process basically consists of three steps: i) 5 mL of water 

suspension of graphene flakes and RNA are vacuum-filtrated through a 220-nm pore size 

nitrocellulose filtration membrane (Millipore) which leads to the deposition of graphene flakes 

on the membrane if sufficiently small amounts of diluted suspensions are used to prevent re-

aggregation of the flakes; ii) the filtration membrane loaded with graphene flakes is subsequently 

transferred onto the requisite substrate and dried under load in a vacuum desiccator; iii) the 

filtration membrane is etched in consecutive acetone and methanol baths, leaving behind a 

random distribution of graphene domains and RNA aggregates on their substrate; and iv) the 

samples were pre-annealed at 550oC for 5 hrs to remove RNA and, also, completely reduce them. 

To decorate graphene-based thin films with Cu-NPs, we introduced them into an ultra-

high vacuum radio-frequency (RF) magnetron sputtering chamber (base vacuum ~10-7 mTorr) 

attached to a nitrogen-filled glove box (VAC Nexus II) to allow for storage and manipulation of 

samples with no oxygen exposure [19,21]. The sputtering system is complete with a process gas 
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flow meter (Omega F900) and RF matching network (RF VII). RF sputtering of Cu was carried 

out from a high purity target (>99.99%) and using argon as a process gas. Two different sets of 

identical graphene thin films were thus decorated with Cu-NPs. The first set, obtained by varying 

the annealing temperature from 200oC to 550oC at a constant annealing time of 4 hours, yielded 

to different Cu-NP diameters as shown in Figure 3.1(a)-(d). The second set, obtained by varying 

the annealing time from 1 hour to 4 hours at a constant annealing temperature of 550oC, resulted 

in different copper area coverage on the graphene surface. In both cases, non-annealed Cu films 

formed a semi-continuous system of interconnected Cu particles [21] and the subsequent 

annealing process in the contiguous glove-box was a critical step for obtaining well-isolated Cu-

NPs [19,21]. Control Cu-NP samples were also deposited and annealed on indium tin oxide 

(ITO) thin films (15 / sheet resistance, Aldrich) in the same system described above.  

Four-point probe electrical characterization of the samples (Signatone S725 probe 

station) in planar configuration indicates a strong increase in electrical conductivity of each film 

upon its decoration with Cu-NPs. Optical transmittance of the samples was measured at normal 

incidence in a range of wavelengths between 400 nm and 800 nm using a Varian DMS80 

spectrometer. SKPFM measurements were performed at room temperature using a Witec Alfa 

300S AFM system integrated with a Kelvin-probe force accessory described previously in 

Section 1.3.2 of chapter 1. The work function and topography of graphene decorated with Cu-

NPs were mapped simultaneously using this equipment that is housed in a nitrogen-purged 

compartment, in which capsules containing the samples are directly transferred from the glove 

box. During SKPFM, the local contact potential difference VCPD between the tip and the sample 

surface [22] can be expressed as  

sampletipCPDVq   ,                 (3.1) 
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where q = 1.6 x 10-19 C is the elementary charge and tip and sample indicate the work functions 

of the tip and the sample, respectively. Their difference corresponds to the difference between 

the Fermi levels within the two systems. For our SKPFM experiments, a platinum-coated AFM 

tip with ω0 ≈ 75 kHz resonance frequency (Nano Sensors Inc.) was used. 

 

3.3 Results 

3.3.1 Control of Cu-NP’s size and distribution on graphene surface 

A unique advantage offered by our RF sputtering system is that it allows us to 

independently control the average particle diameter and the area of graphene-based films covered 

by Cu by varying the sputtering time, annealing temperature and annealing time [19, 21]. Figure 

3.1 (a)-(c) show the scanning electron microscope (SEM) images of a graphene-based film 

decorated by Cu-NPs obtained at different thermal treatments in glove box.  

At a constant RF power and pressure, samples sputtered for 5 minutes have higher area 

coverage of nanoparticles on graphene than samples sputtered for lower times (2 min. or 3 min.). 

Samples with higher concentration of particles also require higher annealing temperature to 

achieve complete nucleation to obtain copper islands with larger diameter as shown in Figure 

3.1(d). By extrapolating the surface area covered by Cu-NPs from AFM micrographs, we find 

that the annealing time decreases the surface coverage area of our graphene films, as shown in 

Figure 3.1(e). Using these adjustable experimental variables, samples were produced for a 

comprehensive parametric study of the effect of Cu-NPs on the electronic properties of graphene 

films.  

3.3.2 Transparency of graphene thin films decorated with Cu-NPs 

A clear fingerprint of the incorporation of Cu-np onto graphene thin films is represented 

by the appearance of a dip (or a peak in case of absorption spectra) situated around 550 - 590 nm,  
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Figure 3.1: SEM images of graphene-based thin films decorated with Cu-NPs. Cu-NPs were 

deposited at different sputtering times of 2, 3 and 5 minutes, respectively, and annealed at (a) 

300oC, (b) 400oC and (c) 550oC. (d) Variation of the average diameter of Cu-NPs decorated on 

the graphene samples shown in the SEM images. (e) Fraction of graphene surface covered by 

Cu-NPs obtained after annealing at different times. 

which can be assigned to surface plasmon resonance absorption of metallic nanoparticles [23, 

24]. The position of the surface plasmon peak maximum can be red-shifted depending on the 

particle diameters [25]. In Figure 3.2, the transmittance spectra are plotted for the bare graphene 

film and the films decorated with Cu-NP’s for a range of particle diameters and surface area 

coverage.  
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From both panels of Figure 3.2, it can be observed that the presence of Cu-NPs produces 

a significant change in the transmittance spectra and position of resonance bands based on the 

distribution of the particles on the graphene surface. The variation of coverage area from fj = 0.18 

to fj = 0.54 results in a decrease in optical transmittance of the samples due to increased 

concentration of Cu-NPs on the surface of graphene without significantly shifting the wavelength 

of the copper surface plasmon resonance peak as can be seen in Figure 3.2(a). On the other hand, 

panel b of Figure 3.2 shows that the transmittance spectra of copper doped-graphene films 

depend on the size distribution of the Cu-NPs. In this case, the position of the plasmon resonance 

peak shifts to higher wavelength, from 540 nm to 580 nm, at increasing particles diameter, from 

D = 12 nm to D = 23 nm. 

 

Figure 3.2: UV-visible transmission spectra of a set of samples at (a) increasing area coverage 

by Cu-NPs, showing a decrease in transmittance and (b) increasing nanoparticle diameter. The 

dips at ~550 nm are assigned to surface plasmon resonance of Cu-NPs. The transmittance of a 

bare graphene thin film is also included in both plots as a reference.  

 

3.3.3 The work function of graphene-based thin film decorated with Cu-NPs 

AFM and SKPFM micrographs of a transparent and conducting graphene film with fj = 
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155% Cu-NP area coverage by Cu are shown in Figure 3.3(a) and (b), respectively. We 

observe that the variation in the work function of graphene decorated with Cu-NPs principally 

depends on the nanoparticle diameter and more limitedly on the area coverage by Cu.  

 

Figure 3.3: (a) AFM and (b) SKPFM micrographs of graphene-based thin film decorated with 

Cu-NPs. (c) Plot of the work function vs. Cu-NP diameter for Cu-NPs on graphene (d) AFM and 

(e) SKPFM micrographs of Cu-NPs on ITO. (f) Plot of work function vs. Cu-NP diameter for 

Cu-NPs on ITO. As AFM tend to overestimate NP diameters, the indicated diameter in (c) and (f) 

was obtained from the height profile of NP’s shown in (a) and (d) and similar images obtained 

during simultaneous AFM/SKPFM measurements. The different trends for  as a function of the 

diameter are consistent with the fact that electrons are withdrawn by graphene from Cu-NPs.  
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The work function of metal nanoparticles decreases at decreasing diameter of the particles, based 

on a classical description of the image potential for metals: in order to remove an electron from a 

metal, work need to be done against the image force which increases inversely with the curvature 

of the metal surface [17]. This classical description for the size dependence of nanoparticles on 

their work function has been verified experimentally for spherical metallic nanoparticles (with 

diameters of several nm) based on photoemission measurements [3]. Figure 3.3(c) is a plot of 

the work function of Cu-NPs vs. the particle diameter simultaneously measured by SKPFM and 

AFM. The diameter of the Cu-NPs was extracted from the AFM topography micrographs. The 

trace in Figure 3.3(c) comes from the theoretical model based on the method of images [18]: 

 

eV
D

08.1
  ,                   (3.2) 

where   is the work function of a very large particle in the limit of infinite diameter, and D is 

the diameter of the metallic nanoparticle in nanometer. This model is in good agreement with our 

KPFM experiments without any adjustable parameters as demonstrated in Figure 3.3(c). 

Figure 3.3(c) also shows that the work function for the absorbed Cu-NPs is lower than the 

work function of bare graphene, which indicates that the Fermi level of graphene islands shifts 

into the conduction band. This shift increases the electron carrier density, effectively making 

graphene n-type as doped by Cu-NPs. Analysis of Figure 3.3(c) also suggests that very small Cu-

NPs with diameter below ~5 nm might have a work function larger than graphene, effectively 

shifting the Fermi level into the valence band (where the majority carriers become holes), 

provided these particles retain their metallic character.  For comparison, the work function of Cu-

NPs on ITO, which is known to be 4.7 eV [11], was also determined. The SKPFM and AFM 

images of Cu-NPs on ITO are shown in Figure 3.3(d) and (e) respectively. Their work function 
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vs. particle diameter extracted from SKPFM is plotted in Figure 3.3(f) showing a decreasing 

trend in the work function of absorbed Cu-NPs with decreasing diameter, contrasting with the 

behavior for Cu-NP absorbed on graphene. The continuous line in Figure 3.3(f) indicates that the 

model given by eq. 3.2 satisfactorily fits our data.  

 

3.4 Theoretical results 

To gain insight into the effects on the band structure of graphene domains as a 

consequence of local changes in their work function due to the presence of Cu-NPs, a theoretical 

framework was developed by Dr. Arash Akbari-Sharbaf in a collaboration between our research 

group and Prof. M. Cottam’s theoretical research group at Western University. Their theoretical 

model is based on a modified tight-binding model written in second quantization [26]. The tight-

binding Hamiltonian describing the -electron system of graphene in the absence of Cu-NPs is 

given by  

 
  

sji

sjiji

si

sisii cctccH
,,

,,,

,

,,  ,                                               (3.3) 

where c+ (c) indicates a creation (annihilation) fermionic excitation operator, i is the ionization 

energy corresponding to the local work function at a lattice site i, ti,j is the hopping integral 

between nearest-neighbor sites i and j, and s is the spin projection index. Cu-NPs were 

incorporated in our model by introducing a modified tight-binding potential Umod for sites in 

contact with the particles. We therefore assume that interaction between C and Cu atoms takes 

place within a specific contact region in which the tight-binding potential is affected and 

modifies the diagonal (i) and off-diagonal (ti,j) matrix elements of the Hamiltonian. We label 

these modified diagonal and off-diagonal elements by mod and tmod, respectively, which 

correspond to carbon sites interacting with Cu. The unaffected interactions corresponding to the 
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local ionization potential and nearest-neighbor interaction energy of bare carbon sites in 

graphene are labeled with 0 and t0. The eigenvalues of the modified Hamiltonian matrix were 

thus determined and the changes in the work function of graphene as a consequence of the 

modifications of the tight-binding potential were calculated. 

Results indicate that the introduction of modified off-diagonal elements in the 

Hamiltonian matrix generates shallow electronic states for tmod < t0, as seen in Figure 3.4(a), and 

deep states for tmod > t0, as seen in Figure 3(b). These states appear symmetrically in both the 

valence and conduction band of graphene domains decorated with Cu. Consequently, the 

graphene Fermi level is unaffected by the appearance of these states because the electron-hole 

symmetry is preserved in the band structure. However, when specific diagonal elements are 

modified with mod  0, asymmetric states are generated either in the conduction band, for mod > 

0 as in Figure 3.4(c), or in the valence band, for mod < 0 as in Figure 3.4(d), thereby breaking 

the electron-hole symmetry and shifting the graphene work function and Fermi level. If all sites 

on the graphene lattice were modified in the same way, the diagonal matrix elements in the 

Hamiltonian would be identically equal to mod and to the Fermi energy at the Dirac point, with 

no doping effect and in apparent contradiction with the results of Giovannetti et al. [12], 

indicating that a uniform distribution of Cu on graphene moves the graphene Fermi level into the 

conduction band, which leads to n-type doping and charge injection. In fact, even for a uniform 

Cu distribution, graphene doping [12] can be well understood in the framework of our tight-

binding model as the result of two different ionization energies, i = 0 and j = mod, for two 

homogeneously distributed but nonequivalent subsets, {i} and {j}, of C sites interacting and non-

interacting with Cu, with a fraction of {j}-type sites much lower than fj = 50%. 
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Figure 3.4: Electronic density of state (DOS) calculated for a bare graphene flake of dimensions 

80x80 rings (black trace) and graphene covered with 59 Cu-NPs with radius r = 3a distributed 

randomly (red trace). Panels (a)-(d) illustrate the dependence of the DOS on the modified 

diagonal and off-diagonal matrix elements. (a) tmod = 0.5t0, generating shallow states near the 

Fermi level, (b) tmod = 2t0, generating deep states symmetrically in the valance and conduction 

bands. (c) Effect of a positive Δ = mod –0 = 0.3 eV on the DOS, generating states in the valence 

band, and (d) Effect of a negative Δ = mod –0 = -0.3 eV, generating states in the conduction 

band. Both situations c and d are breaking the electron-hole symmetry. 

 

In order to investigate the influence of different copper nanoparticle distributions on the 

work function of graphene, we randomly generated specific small clusters of {j}-type C sites on 

a 200 x 200 atom graphene layer, as demonstrated in Figure 3.5(a) and (b). In the first 
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distribution, illustrated in panel (a), 59 clusters of C sites interacting with Cu of diameter D = 

0.85 nm were randomly positioned on the graphene lattice. In the second distribution, illustrated 

in panel (b), a single, but larger, cluster of radius D = 6.5 nm was placed at the center of the same 

graphene domain.  

 

Figure 3.5: Schematic representation of superlattices of (a) 59 Cu-NPs of D = 0.85 nm diameter 

distributed randomly on a graphene lattice and (b) 1 Cu-NP of D = 6.5 nm (both with fj = 20%) 

(c) Calculated shift in the work function vs. Δ for the two distributions in panels a (black trace) 

and b (red). (d) The density of states for the two distributions indicated in panels a (red) and b 

(black) assuming Δ = 0.3 eV. (e) and (f) show the DOS for the two distribution at Δ = 2 eV. 



77 

 

For the subset of {i}-type C sites not interacting with Cu, typical tight-binding parameters for sp2 

C systems (0 = 4.58 eV and tij = 2.87 eV [27]) were assumed. The area fraction covered by Cu-

NPs, fj = 20%, was nearly the same for both distributions in Figures 3.5(a) and 3.5(b). A plot of 

the work-function shift as a function of the difference,  = mod – 0, of the local ionization 

energy of {i}-type and {j}-type C sites is reported in Figure 3.5(c). For relatively low energy 

difference between the Dirac point of graphene and the work function of metallic nanoparticles, 

thus for Δ = mod – 0 < 0.3 eV, the shift in the work function of graphene away from the Dirac 

point is about the same for both distributions. For  > 0.3 eV, the differences in  between the 

two systems become more important, which indicates that, at a stronger metal-carbon bonding, 

the particle diameter plays a more significant role in shifting the work function away from the 

Dirac point of graphene, in addition to the major role played by the area fraction covered by 

metallic particles.   

 

 

3.5 Comparison and discussion of theoretical and experimental results 

The role played by the Cu-NP diameter at high values of  can be understood by 

examining its effects on the -electron density of states (DOS) of graphene. At small  the DOS 

is only marginally different for the two distributions of Cu shown in Figures 3.5(a) and 3.5(b), as 

demonstrated in Figure 3.5(d). Conversely, an important feature of the DOSs at high energy 

differences between the Dirac point of graphene and the work function of metallic nanoparticles, 

shown in Figure 3.5(e) and (f), is that they are significantly affected by the particle size. If very 

small particles are randomly distributed on the graphene lattice, as demonstrated in panel (a), the 

DOS near the Fermi level is dramatically altered in its profile, compared to pristine graphene. 

However, even at the largest values of , the DOS profile near the Dirac point is preserved for 
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large metallic nanoparticles, as demonstrated in panel (b) for D = 6.5 nm, and arguably even at 

larger diameters. This suggests that for particles of D > 10 nm, such as those used in our 

experiments, the metal particle diameter plays a negligible role over the covered area fraction in 

determining the work-function shifts of graphene domains.  

 

 

Figure 3.6: (a) Comparison of tight-binding (solid lines) and experimental (dots) trends of the 

work function of graphene as a function of area coverage by Cu-NPs. (b) Model for Cu-NPs with 

contact diameter, d, different from the maximum particle diameter. 

 

These theoretical findings corroborate our SKPFM experiments indicating that the Cu-NP 

diameter has a very moderate, if any, effect on both  and the electrical conductivity, , which 

suggests ε < 0.3 eV. Specifically, our theoretical model [see Fig. 3.5(c)] suggests that work 

function shifts of  = 0.2 eV at fj = 20% as shown in Figure 3.6(a) are consistent with ε = 0.1 

eV, compatible with a relatively weak interaction between Cu-NPs and graphene. Conversely, 

our experiments show that the graphene area fraction covered by Cu-NPs appears to have a more 

important effect on , as demonstrated in Figure 3.6(a). Our tight-binding simulations, 
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performed at ε = 0.1 eV, indicate that  is decreasing at increasing fj, even though the 

decreasing rate is strongly depending on the graphene domain size, L. Three different theoretical 

curves of  as a function of fj are shown in Fig. 5(a), for L = 42 nm, L = 64 nm and L = 168 

nm, respectively, and show that the decrease is more significant at larger L. Each curve is 

obtained from the interpolation of a number of simulations. The experimental values of , 

determined by SKPFM, are also reported in the same figure and show a decreasing trend as a 

function of the Cu-NP area coverage. Although the flake diameter (up to a few m) in our 

graphene based thin films is generally larger than the values of L used in our simulations, it can 

be observed that several reasons may be invoked to quantitatively reconcile our theoretical 

predictions and SKPFM data, which both qualitatively indicate the decrease of  with fj. 

One of such reasons is the presence of wrinkles in graphene flakes, which are clearly 

visible in both panels a and b of Figure 3.3. Wrinkles break the continuity of graphene flakes and 

limit the delocalization of -electrons. Consequently, in graphene flakes with wrinkles, it is more 

realistic to assume that the values of L introduced in our theoretical tight-binding calculations 

should be compared to the distance between neighbor wrinkles on a graphene flake, instead of 

the flake side or diameter. Wrinkle distances of a few tens nm appear to be consistent with those 

that can be experimentally observed in Figure 3.3(a) and decrease as the Cu-NP coverage 

increase and flakes become more corrugated, which could explain why SKPFM experiments at fj 

= 34% are consistent with theoretical values of L between 42 nm and 64 nm while higher values 

of L, between 64 nm and 168 nm are required to reconcile our theoretical and experimental 

values for fj = 18%. Another reason that may lead to discrepancies between experimentally and 

theoretically determined values of  is that graphene-based thin films lead to the overlap of 

few-layered graphene flakes to form a continuous pathway between them, while our set of tight-
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binding simulations was performed on single-layer domains. It may be expected that the 

interaction between Cu-NPs and graphene is stronger for the upper layer of a few-layer graphene 

stack, while its strength exponentially decays for the underlying layer due to electron screening 

effects, for which ε will be lower in few-layer graphene flakes and when two juxtaposed flakes 

overlap.  

Another key factor that may be invoked to quantitatively reconcile our theoretical and 

experimental results is the fact that AFM and SKPFM tend to overestimate the Cu-NP diameters. 

Specifically, the diameter detected by AFM is the maximum diameter of the nanoparticles 

(referred as D in Figure 3.6(b)) while the area coverage is determined by the contact diameter 

(indicated as d in Fig. 3.5 (b)). Dewetting of Cu on graphene has been extensively studied [28] 

and it has been found that, under equilibrium conditions, the contact angle between Cu-NPs and 

graphene may be up to 150o, with a d/D ratio of 2. We used this value to adjust our theoretical 

results by determining the area coverage with d as the Cu-NP diameter, with our experimental 

values of area coverage assuming D as the Cu-NP diameters. The x-axis scale of Figure 3.6(a) 

refers to the experimentally measured values of fj with the values of the theoretical calculations 

adjusted to them. Summarizing our theoretical and experimental findings, it is apparent they 

concur in indicating that the Cu-NP area coverage is more important than the Cu-NP diameter in 

affecting the work function of graphene.  

Similar trends on both  and  as a function of the Cu-NP area coverage can be noticed 

from the comparison of Figure 3.7(a) and (b). Consequently, a relationship between  and , 

shown in Figure 3.7(c), can be inferred and may be understood assuming a Poole-Frenkel model 

[29] for -electrons of graphene localized in the proximity of Cu-NPs, their detrapping at 

moderate electric field E, and their subsequent diffusion within the graphene lattice.  
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Figure 3.7: (a) Relationship between work function and area coverage fraction and (b) 

relationship between electrical resistivity and area coverage fraction for a set of graphene films 

decorated by Cu-NPs at a constant diameter D  20 nm. (c) Relationship between work function 

and electrical conductivity obtained by combining the data in panel a and b, which is excellently 

reproduced by the Poole-Frenkel model as in eq. (3.5). (d) Example of fit of J-V characteristic in 

using eq. (3.4). (e) Poole-Frenkel model for detrapping at moderate electric fields of -electrons 

localized in the proximity of metallic nanoparticles. 
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As discussed previously in Section 1.2.4.1 of Chapter 1, Poole-Frenkel model leads to the 

following relationship between the field and the current density J flowing through a system of 

electron traps disseminated within a less conducting medium: 


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where 0 is a prefactor that corresponds to the sheet conductivity of the bare graphene film 

without Cu-NPs, for which 0 = 0.015 -1 , q* is the dynamic effective charge of the carriers 

trapped on graphene in the proximity of a Cu-NP, m is the medium dielectric permittivity and 

kBT = 0.025 eV in our case for room temperature.  Figure 3.7(d) shows that eq. (3.4) fits our data 

extremely well with q*= 0.34q and m = 3.0 when graphene is decorated with Cu-NPs. 

Conversely, an ohmic trend was found in the entire 15V range for bare graphene-based films.  

 The Poole-Frenkel mechanism, depicted schematically in Figure 3.7(e), indicates that the 

probability of carriers to tunnel between traps is weakly dependent on the local electric field E/m 

inside the graphene medium, provided that field is sufficiently low. Only under such low-field 

conditions, which figure 3.7(d) indicates to be fulfilled at less than 2V, the film electrical 

properties are ohmic even in the presence of Cu-NPs. In this case, the relationship between J and 

E assumes Ohm’s linear form J =  E, in which the conductivity can be written as [29]. 

  0 exp(– q*/kBT).     (3.5) 

Figure 3.7(c) shows that eq. (3.5) reproduces with no adjustable parameters our set of data 

recorded on graphene-based thin films at variable area fraction covered by Cu-NPs, since the 

value used for q* is the same inferred from Figure 3.7(d). Consequently, the comparison of our 

theoretical and experimental results suggests that the increase in electrical conductivity obtained 

upon decoration of graphene thin films by metallic nanoparticles is a mechanism profoundly 
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different from the process with large and flat metallic contacts, described by Giovannetti et al. 

[12], which requires chemical bonding between carbon and a metal to effectively dope graphene.  

Eq. (3.4) shows that decoration of graphene thin films with metallic nanoparticles leads 

to an electronic process for which only at low enough electric fields an activation energy for the 

electrical conductivity can be defined via eq. (3.5), equivalently to what is done in ref. [12]. 

These differences require a completely different theoretical treatment of the interface between 

metallic objects and graphene at the nanoscale, as thoroughly discussed in section 3.3.2.  On the 

other hand, the superlinear increase in current density as a function of the applied voltage 

ensured by the Poole-Frenkel mechanism suggests that metallic nanoparticles are more effective 

than large metallic contacts in improving graphene-based thin films as electrical conductors. 

 

3.6 Conclusion 

In this chapter, we developed the physical framework for understanding graphene doping 

by metallic nanoparticles. We show that large contacts are less effective at modifying the band 

structure of graphene in comparison with an ensemble of many particles randomly distributed on 

the graphene surface A modified tight-binding model has been utilized to complement our 

experimental results and to investigate the influence of Cu-NPs on the band structure and work 

function of graphene-based thin films. Local variations in the graphene work function due to the 

presence of Cu- NPs break the electron-hole symmetry of graphene shifting the Fermi level away 

from the Dirac point, effectively doping graphene even in the absence of charge transfer or 

chemical bonding. Theoretical calculations have been reported here for completeness, and are in 

good agreement with our SKPFM experiments. Our combined experimental and theoretical study 
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shows that Cu-NP area coverage is the most important factor in controlling the decrease of the 

work function of graphene in the presence of Cu, as well as the subsequent decrease in electrical 

resistivity. We also demonstrate that the electrical transport of graphene-based thin films in the 

presence of Cu-NPs is controlled at room temperature by a PooleeFrenkel mechanism. 

A unique advantage conferred by Cu-NP doping is evident when we compare the 

electrical conductivity of doped and undoped graphene thin films. For a graphene film with fj = 

18% ± 5% area coverage of Cu-NPs, the transmittance reduces by only ~9%, while its 

conductivity increases by more than 400%. In addition to the enhanced conductivity and the 

preservation of transparency, the presence of Cu-NPs gives rise to surface plasmons, which can 

be used for wide range of applications, including transparent electrodes in plasmonically 

enhanced thin film solar cells [19] and surface-plasmon sensors. 
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Chapter 4 

Thermal conductivity of Cu-NP decorated multi-layer graphene platelets 

4.1  Introduction 

A single-layer graphene sheet exhibits many outstanding properties such as ultrahigh 

thermal conductivity, high carrier mobility, optical transparency and mechanical strength [1-4]. 

Despite these remarkable features, the fabrication and manipulation of single-layer nanosheets 

represents an uphill challenge and limits extensive applications of graphene in devices. Instead, 

graphene-based thin films, comprising of many layers are attracting more technological interest 

than mostly single layer CVD graphene due to their low cost, processability on plastics 

substrates, and high scalability [3, 5-9]. While the use of multi-layer graphene circumvents the 

difficulty in manipulating a single-layer graphene, it also limits many of the outstanding 

properties observed only in single- and few-layers. For instance, experimental study revealed the 

room temperature thermal conductivity, kth value for single layer graphene exceeding 5000 

W/mK [10]. This value is substantially more than that of bulk graphite, which at room 

temperature is about 2000 W/mK. The reduction in the value of thermal conductivity from single 

to many layers indicates a strong dependence of Kth on the number of graphene layers [11]. 

Hence, there must be some trade-offs in optimizing the number of layers in order to fabricate 

graphene that could be easily manipulated and still retain, to appreciable levels, the outstanding 

properties of single layer. Such trade-offs will allow for increased use of graphene for heat 

evacuation in devices [11]. 

Recent attempts at enhancing the thermal conductivity of graphene-based thin films has 

lead to the fabrication of graphene-based composites using metallic nanoparticles and/or thin 

films to decorate graphene surface [12].  The incorporation of metallic nanoparticles on graphene 
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surface for the purpose of thermal management application is inspired by the improvement on 

the electrical properties of graphene-based thin films by metallic nanoparticles [13]. However, 

thermal transport in graphene-metal nanocomposites is expected to be more complicated and can 

not be interpreted purely on the basis of its electrical conductivity performance. While electrons 

are the principal elementary carrier for both the electrical and thermal transport in metals, lattice 

vibration play a major role in controlling thermal transport in carbon materials such as graphene 

[14]. As such, interfacial thermal transport between graphene-based thin films and the metallic 

nanoparticles is expected to play a key role in controlling the overall thermal performance of 

graphene – metal nanocomposites. While efforts are put into fabricating graphene – metal 

nanocomposites, it is not yet well understood how the materials parameters such as the number 

of layers of graphene-based platelets affects the overall thermal behaviour in these materials. 

In this chapter, we investigate the influence of the addition of copper nanoparticles on the 

thermal properties of graphene-based thin films. Our target is to correlate the thermal properties 

of graphene-based platelet of different layer thicknesses with the thermal performance of the 

same platelet when decorated with Cu-NPs. This will enable us to study the role of interfacial 

thermal effects due to absorbed Cu-NPs on graphene-based platelets. The thermal conductivity 

of graphene-based thin films will be determined independently of copper nanoparticles by means 

of near-field scanning thermoreflectance imaging (NeSTRI) technique described in details in 

chapter two. Using this method, the thermal parameters such as the phase and amplitude of 

temperature profile; the topography and SNOM images are measured and recorded 

simultaneously. After the first measurement on graphene-based platelets, a second set of 

measurement is conducted on the same sample with absorbed Cu-NPs. It is expected that our 

measurement technique is sufficient to understand the influence of the metallic nanoparticles on 
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the thermal properties of graphene-based thin film at nanoscale level, as well as the impact of the 

number of layers of graphene on the thermal performance of the sample.  

 

4.2 Methods 

Graphene-based thin films were first prepared from 15 ml of suspension of graphene 

flakes obtained from freshly exfoliated nanographite in Ribonucleic acid (RNA) solution [3]. 

The film, which was deposited on a cellulose membrane by vacuum-filtration, was then 

transferred to BK7 glass substrate.  The substrate loaded with graphene was baked overnight at 

50°C, etched in a consecutive acetone and methanol baths (to eliminate the filter membrane), and 

subsequently annealed at 540 oC for 1 hr to eliminate residual RNA. 

In order to obtain islands of graphene platelets for our thermal conductivity 

measurements, scotch tape method [15] was employed to transfer patches of graphene-based 

platelets to a new glass substrate. In our scotch tape method, graphene-based platelets are 

detached from pre- existing graphene-based thin films described above using adhesive KaptonTM 

tape. After taking the tape off the film, few- and multi-layer graphene remains on it. Cleaved 

graphene layers are subsequently attached to newly cleaned glass substrate by pressing the tape 

gently onto it. This process leaves isolated platelets on the substrate which we used for the 

thermal measurement. Island of graphene platelets are required in this particular study for easy 

identification, enabling re-use of same graphene-based platelets even after incorporation of 

nanoparticles on the surface. 

We utilized multi-layered graphene-based platelets as our target sample aimed at 

assessing the performance dependence of the thermal interface on the number of graphene layers 

decorated with copper nanoparticles. In Figure 4.1 (a), we show the AFM topography of a large 
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area graphene-based platelets that satisfy the requirements of multiplicity of layer and which has 

been used for our thermal measurements. The sample comprises of stacking of different number 

of layers on different regions labeled A – E, as indicated in the AFM topography. Figure 4.1 (b) 

gives the height profiles of some of the regions labeled in panel (a), from where the thicknesses 

of the layers can be determined, ranging from 5.1 nm to 27 nm. The histogram of the thickness 

and the associated number of layers are presented, respectively in panels c and d of Figure 4.1.  

We carried out thermal measurements on the sample presented in Figure 4.1 using 

NeSTRI apparatus described in details in chapter two.  The topography, SNOM images, 

thermoreflectance amplitude and phase images of this sample were measured simultaneously 

using this apparatus. Two modulation frequencies of 105 Hz and 350 Hz were used for this 

study. Prior to the second thermal measurement, thermally evaporated [16]15-nm copper films 

were annealed at 350 oC for 2 hrs. in glove box which resulted to copper nanoparticles on the 

surface of graphene-based platelets. The sample, decorated with copper nanoparticles was re-

measured in the same condition as without nanoparticles, including laser power, modulation 

frequencies, etc. In order to investigate defect related contributions to the measured thermal 

properties, Cu-NPs were etched from the surface of the graphene-based platelets in conc. HNO3 

for 30 minutes. The sample was rinsed thoroughly in deionized water, air-dried and re-measured 

using the NeSTRI apparatus, again under the same experimental conditions. From the 

experimental results, we determined the changes in the measured properties as a result of the 

incorporation/etching of Cu-NP onto/from our graphene-based samples. 
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Figure 4.1: (a) AFM topography of graphene based platelets showing regions (A-E) of the 

platelets of different thicknesses. (b) The height profiles of regions A, C and E of the graphene-

based platelets used to determine layer thicknesses. (c) Histogram of the thicknesses of the 

different regions of the graphene-based platelets indicated in (a) and (d) The calculated number 

of layers based on inter-layer thickness of t = 0.35 nm. The fact that the platelet has varied layer 

thicknesses makes it ideal for the present study, allowing to investigate interface performance 

with Cu-NPs. 
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4.3  Results and Discussion 

4.3.1  Topography and SNOM transmittance and reflectance images 

In Figure 4.2, we present the topography, SNOM transmittance and reflectance images 

of bare graphene-based platelets without Cu-NPs, with adsorbed Cu-NPs and after Cu-NPs 

etching. The topography shows that the adsorbed Cu-NPs comprising of different sizes are 

uniformly distributed on the surface of the platelets. Panel (c) indicates that the nanoparticles 

were not completely etched after 30 minutes in conc. HNO3. The figure also shows un-etched 

Cu-NPs, possibly copper oxides, exist mainly on the substrates and the graphene edges and very 

limitedly on the bulk even though a large number of Cu-NPs nucleated on the bulk, as 

demonstrated in panel (b). The preferential attachment of copper oxides on edges presumably 

indicates stronger bonding between the oxides and the graphene edges and may play significant 

role in controlling the thermal properties of the sample. 

The SNOM transmittance images presented in panels (d) - (f) show that the transmittance 

images are clearly different before and after coating with Cu-NPs. Even by visual inspection, we 

notice a variation in the transparency according to number of layers of graphene domains shown 

in Figure 4.1, suggesting that SNOM transmittance decreases at increasing number of layers. 

When decorated with Cu-NPs, panel (e) shows that the transmittance of the substrate also 

decreases, consistently with light absorption by the nanoparticles nucleated on the substrate. 

Since we are interested in the region with graphene domains, we quantified the transmittance and 

reflectance of graphene domains in the SNOM images using the Witec software. We found, on 

average, that the transmittance from our graphene-based platelets decreases by ~ 24 % with Cu-

NPs incorporation, and ~ 10 % after Cu-NPs etching. Similar analysis on the SNOM reflectance 
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images, shows that the change in the reflectance is only 4% between Cu-NPs coated and 

uncoated graphene-based platelets and 3% after Cu-NPs etching. 

 

Figure 4.2: AFM topography of (a) bare graphene-based platelets with no Cu-NPs (b) the same 

graphene-based platelets decorated with Cu-NPs and (c) after etching Cu-NPs in conc. HNO3. 

The SNOM transmittance images of graphene-based platelets (d) without Cu-NPs (e) decorated 

with Cu-NPs and (f) after Cu-NPs etching. All the samples were deposited on glass substrate. 

The SNOM reflectance images obtained simultaneously during the NeSTRI measurements on the 

same graphene-based platelets (g) without Cu-NPs (h) with adsorbed Cu-NPs and (i) after Cu-

NPs etching. 

Since the differences in the transmittance data cannot be accounted for by the differences in the 

reflectance data, it can be seen that the incorporation of Cu-NPs on our graphene-based samples 

increases the absorption of laser light upon illumination. Highly absorbing region will also be 
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affected by high thermal load according to eq. 2.2 (see Section 2.1.3 in Chapter 2), we expect 

that heat generation in the sample can be increased by incorporating Cu-NPs on the graphene 

surface.  In the following section, we present the result of our NeSTRI measurement of thermal 

parameters on the same sample discussed above. 

4.3.2:  NeSTRI images 

Figure 4.3 is the result of our NeSTRI measurement on graphene-based thin films 

showing respectively, the thermal amplitude (top images) and phase (bottom images) of the 

thermoreflectance oscillations obtained at 105 Hz modulation of pump beam. Although the 

amplitude image from the sample decorated with Cu-NPs is not as distinct as similar images 

recorded on pure graphene-based platelets and the same sample after Cu-NPs etching, the z-scale 

shows that the amplitude of the thermoreflectance oscillation that can be measured in the 

presence of Cu-NPs is significantly high. The fact that we can not distinguish distinctively the 

graphene domain in the image of panel (c) is an indication that thermal conductivity of graphene 

platelets decreases with Cu-NPs. In order to better understand the effect of Cu-NPs, we 

quantified the changes in the thermoreflectance oscillation amplitudes and phases, for different 

graphene layers shown in Figure 4.1, using the following relation: 

0
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01
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
         (4.1) 

where   and   are respectively the amplitude and phase of thermoreflectance oscillations 

experienced by the probe beam due to periodic heating of air from graphene-based platelets 

decorated with Cu-NPs, and  0 and  0are the recorded amplitude and phase without Cu-

NPs. Similar calculation can be obtained after Cu-NPs etching by replacing 1 in the above 
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equation with 2. The result of this calculation is present in Figure 4.4. 1 show that the 

amplitude decreases with the number of layers of graphene-based platelets in the presences of 

Cu-NPs. No clear trend can be obtained in the case of 2 calculated from etched Cu-NPs.  

 

 

Figure 4.3: Simultaneously measured thermal amplitude and phase images of thermoreflectance 

oscillation. The amplitude images were measured from the same graphene-based platelets (a) 

without Cu-NPs (b) decorated with Cu-NPs and (c) after Cu-NPs etching. The phase images are 

from the same sample (d) without Cu-NPs (e) decorated with Cu-NPs and (f) after Cu-NPs 

etching. 

Since the amplitude data represent small changes in reflectivity of the probe beam 

directly measured in our NeSTRI setup, the observed changes in  is an indication of the 

changes in the reflectivity due to dissipation from the sample upon laser illumination. When the 

changes in the reflectivity is strong due to more dissipation, the measured amplitude is expected 
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to be higher and the reverse is also true. The decreasing trend of 1 observed in panel (a) of 

figure 4.4 is a clear manifestation of the contribution to the thermal amplitude due to Cu-NPs. 

We observe in this figure significantly higher amplitude when the number of layers is, N ≤ 40 

layers. Since the amplitude of NeSTRI signal at a constant absorption coefficient of a sample is 

proportional to the thermal conductivity, it can be concluded that at N ≤ 40 layers, Cu-NPs 

decorated graphene-based platelets is more thermally conducting than defect induced changes in 

the thermal amplitude after Cu-NPs etching.  

 

Figure 4.4: (a) Changes in thermoreflectance oscillation amplitudes as a function of the number 

of layers. 1 was obtained from the difference between the amplitude of graphene-based 

platelets decorated with Cu-NPs and the amplitude of same sample without Cu-NPs. is the 

difference between the amplitude of graphene-based platelets after Cu-NPs etching and the 

amplitude of same sample prior to Cu-NPs deposition.  (b) The variation of the measured 

changes in the phase of thermoreflectance oscillation with the number of layers of graphene-

based platelets. Differences in phase are measured with respect to value of pure graphene-based 

platelets. 
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The fact that the sample is more thermally conducting in the presence of Cu-NPs with N 

≤ 40 layers is further confirmed when we consider the change in the amplitude 2 determined 

after Cu-NPs etching. Although Cu-NPs can interact only weakly with graphene when nucleated 

on graphene surface [17] Cu-NPs assisted etching has been demonstrated to create pores and 

defect in graphene-based thin films [18]. Consequently, Cu-NPs etching from the surface of our 

graphene based platelets is expected to introduce defects such as pinholes and cracks that can 

strongly influence its thermal properties by acting as trap and scattering centres for phonon [19, 

20]. In our sample, these traps lower the thermoreflectance oscillation amplitude, and 

consequently the thermal conductivity of the graphene-based thin films in the region in which the 

number of graphene layer is less than 40. Low value of 1 observed in the smallest graphene 

layer (N  7) indicates that the pinhole that can be induced on graphene upon Cu-NPs etching is 

of the order of 6-8 nm. This can be the reason why the effects of defect induced changes is less 

significant at high number of graphene layer. 

In panel (b) of Figure 4.4, the phase of thermoreflectance oscillation increases with the 

number of graphene layer in the case of 1 suggesting that temperature profile exhibits higher 

phase delay in the region of higher number of graphene layers. Conversely, 2 deceases to 

lowest value at N = 40, before increasing with increasing number of layer. These results show 

that heat diffuses faster, with less phase delay when Cu-NPs is decorated on few layer graphene 

while the presence of pinhole and defects introduces large phase delay by limiting the heat 

propagation rate across the sample. 

In Figure 4.5, we show the variation of the thermoreflectance oscillation amplitude due 

to Cu-NPs decorated graphene-based platelets as a function of the diameter of the nanoparticles. 

It can be observed from this image that the amplitude increases with the average particle 
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diameter. This can be attributed to more heat dissipation resulting from higher absorption of 

pump laser beam. Another explanation can be made of the observed trend in the amplitude data 

presented in Figure 4.5 by considering the thermal interface effects due to the size of the 

absorbed Cu-NPs. Better thermal coupling between the graphene-based platelets and the 

nanoparticles can result in improved thermal conductivity of the composites, which as we 

indicated above will lead to higher amplitude of the thermoreflectance oscillation. The fact that 

the measured amplitude increases with the size of the nanoparticles can also be indicative that 

interfacial resistance could be lowered by increasing the size of the metallic nanoparticles. Thus, 

by using nanoparticles of sizes of the order of few nanometer, interfacial thermal effects will be 

significantly higher which will lead to very low thermal amplitude and consequently lower 

thermal conductivity. This can presumably be responsible for the previously observed decrease 

in the thermal conductivity of few layer graphene decorated with Au-NPs [21]. 
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Figure 4.5: Variation of thermoreflectance amplitude with Cu-NPs diameter. The change in 

amplitude with the size of NPs is indicative of possible size effects in lowering interfacial thermal 

resistance at increasing particles size. 
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4.4 Conclusion 

In this chapter, we used the NeSTRI set-up to image the amplitude and phase of 

thermoreflectance oscillation due to heat generated and dissipated by graphene-based platelets 

consisting of different number of layer, ranging from 7 to 75 layers. The same graphene sample 

was studied when decorated with Cu-NPs and after Cu-NPs etching in conc. HNO3 for 30 

minutes. The SNOM optical images showed lower transparency of graphene-based platelets in 

the presence of Cu-NPs that increased significantly upon Cu-NP etching. Our NeSTRI 

measurements shows that Cu-NPs is more suitable at enhancing the nanoscale thermoreflectance 

oscillation amplitude than Cu-NPs etching induced defects in the same sample. 
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Chapter Five 

Physical Properties of Organic Polyradical P6OV and Its Bistability3 

 

5. 1 Introduction 

Memory devices are a critical component in the field of information technology [1,2]. 

They can be divided into volatile and non-volatile, depending on the time for which they can 

retain the stored information [2]. Volatile memory devices, including dynamic and static random 

access memory components, require stored data to be refreshed every few milliseconds. They 

cannot store data after the removal of the voltage used to write them. Most electronic systems 

require non-volatile memory components for bootstrap and persistent data storage. To date, the 

most common non-volatile memory components used in information and communication 

technology are devices that are writable once and readable multiple times (WORM). Flash 

memories that are writable, readable and erasable multiple times are more attractive, because 

they can be reused, but their costs are still high [3]. Silicon-based flash devices consisting of a 

metal–oxide–semiconductor field effect transistor, with high k-dielectric oxides [4] and an 

additional floating gate in each memory pixel, have been dominating the market of non-volatile 

devices writable and erasable multiple times, [5] but suffer from limited margins of improvement 

and high fabrication costs. Inorganic floating gates used to store the information cannot be less 

than 32 nm thick in such components [6].  

Organic memristors, memory devices based on organic thin films with multistable 

resistivity characteristics, are being explored as possible substitutes for volatile, WORM and 

flash inorganic memory devices [7–9]. They have the advantage of low fabrication costs and can 

___________________________________________ 

3This chapter is published: S. Ezugwu, J. Paquette, V. Yadav, J. Gilroy and G. Fanchini. Adv. Electron. Mater. 2016, 1600253 
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be processed from organic compounds in solution. Although continuous organic thin films with 

thicknesses down to 10 nm have been demonstrated, [10] the minimum thickness that can be 

reached by organic “flash” memristors is still too high, at more than 15 nm [11]. Proposed 

systems for organic memory devices include polyimide containing moieties, [12] polymers 

containing metal complexes [13] and nonconjugated polymers incorporating other organic 

materials (e.g., fullerenes, graphene oxide, carbazoles) directly [14,15] and blended with 

polymers [16]. In most of these devices, two or more layers or phases are required, which poses 

insurmountable limitations to the ultimate thinness of the device. Flash memory devices 

comprising only a single layer of polymer are essential to keep their thickness to a minimum, and 

have been proposed [17,18]. However, no devices thinner than 50 nm have been reported to date 

due to lack of general design criteria for these devices. Another significant issue with organic 

memristors is to obtain stable flash effects, devices that are reproducibly writable and erasable a 

very large number of times. Although memory devices based on radical polymers have been 

proposed, [19,20] their stability so far have been limited to a few writing cycles, in spite of the 

excellent quality of the active layer, which indicates that more fundamental knowledge of the 

physics of these devices is required.  

In this chapter, we present the result of our work on single-layer organic flash memristors 

fabricated from poly-[1,5-diisopropyl-3-(cis-5-norbornene-exo-2,3-dicarboxiimide)-6-

oxoverdazyl] (P6OV), a recently synthesized polyradical, [21]. P6OV is here presented as an 

alternative to semiconducting, π-conjugated organic polymers [10–16] which are more 

commonly used in memristors. We show that a decisive advantage of P6OV is that it exhibits 

three tunable and switchable charge states (positive, neutral and negative) [21] while the few 

previous examples of polyradicals incorporated into memristors exhibited no more than two 
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charge states [19,22,23]. The chapter includes a discussion on the physical model for optimizing 

single-layer polyradical memristors. We will show that the energy levels of the positively and 

negatively charged states of the radical polymer need to align, respectively, to the cathode and 

anode work functions of the radical polymer in order to offer efficient non-volatile “flash” 

memory effects. Our model explains why, in previous works, [19,20,22,23] combinations of 

multiple different polyradicals were required to observe memory effects, either in layered 

battery- like structures, [19] or by combining a pendant radical and an ion containing block 

copolymer, [20] but often led to WORM devices, with no bistable flash memory effects.  

 

5.2 Experimental  

5.2.1 Device Fabrication 

P6OV, the polyradical used in this thesis work as a case study for memristor 

optimization, was synthesized via ring-opening metathesis polymerization (ROMP) by Gilroy’s 

group in the Department of Chemistry, as described in chapter one. The quality and purity of the 

raw radical polymer material was assessed at various synthesis steps by X-ray diffractometry, 

cyclic voltammetry (CV), electron spin resonance spectroscopy, gel-permeation 

chromatography, nuclear magnetic resonance spectroscopy, and infrared and UV–vis absorption 

spectroscopy [21]. This polyradical dissolves readily in a variety of different solvents and can be 

easily formed into smooth thin films via spin coating, even at the lowest thicknesses.  

P6OV thin film preparation was carried out in a nitrogen-loaded glove box (Nexus II, 

Vacuum Atmospheres Co.). The glove box is directly attached to an ultrahigh vacuum (UHV) 

chamber dedicated to thin-film contacting and metallization for memristor device fabrication 

from organic thin films. The glove box is also equipped with a multi-probe station for electronic 
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device testing [40]. The oxygen and moisture levels in the glove box were less than 5 ppm. With 

the UHV chamber attachment, the entire device fabrication and testing process could be directly 

carried out without direct sample exposure to air. P6OV thin films were spun from a solution of 

P6OV (25.0 mg) in anhydrous chlorobenzene (2.0 mL) in the aforementioned glove box. The 

solution was stirred overnight at 50 °C and subsequently filtered through 0.45 μm pore-size 

syringe filters (Cole–Parmer). Different spin speeds from 3000 to 500 rpm were used on a KW4 

spin coater (Chemat Technologies Inc.) to obtain a set of films of thicknesses ranging from 10 ± 

4 to 50 ± 4 nm, respectively.   

BK7 glass substrates (Corning) with a variety of different pre-deposited bottom contact 

electrodes were used for P6OV thin-film growth in this study: (i) indium–tin oxide (15 Ω sq−1 

sheet resistance, purchased from Sigma-Aldrich, cat no. 50926-11-9), (ii) few layer graphene 

(FLG) layers grown using the solution-based processing technique described in chapter one 

introduced, a method previously developed by our group, [41,42] (iii) thermally evaporated 

aluminum (50 nm thickness) layers, and (iv) top calcium (20 nm) and bottom Al (30 nm) 

bilayers. Al/Ca bilayer electrodes are widely used in organic solar cell technologies because they 

offer work functions of ≈ 2.9–3.5 eV that is intermediate between Ca and Al [24]. 

Al/Ca and Al bottom contact electrodes of the memristors investigated in this thesis work 

were directly deposited by thermal evaporation in the vacuum chamber adjacent to the 

fabrication glove box, immediately prior to spin-coating the overlying P6OV films. For Ca and 

Al deposition, pellets of these metals (KJ Lesker, no. EVMCAX203MMD and Aldrich no. 7429-

90-5, respectively) were placed in alumina crucibles (KJ Lesker, no. EVC9AO). Crucibles were 

mounted in resistive tungsten basket heaters (KJ Lesker, no. EVB8B3030W) in the thermal 

evaporator chamber. These heaters were connected to a HP 6466C DC high-current power 
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supply and currents of 30 and 75 A (at 3 and 8 V) were used to evaporate Ca and Al, 

respectively. The thickness of thermally evaporated metal electrodes was measured in situ during 

growth using a Sycom STM-2 thickness monitor equipped with a quartz crystal oscillator. Each 

one of the four different predeposited bottom contact electrodes, Al/Ca, Al, FLG or ITO, was 

pre-patterned to obtain four identical areas on each glass substrate, following the architecture 

shown in Figure 5.1 below.  

 

Figure 5.1: The memristor architecture used in this study. Sixteen memristors were 

simultaneously fabricated by spin coating a 10 nm thick layer of P6OV onto four identical 

prepatterned cathode electrodes, with four orthogonal anodes on top. The work function of the 

cathode materials is also indicated.  

 

Even at the lowest thickness, 10 ± 4 nm, P6OV films on pre-patterned electrodes were 

previously shown to be continuous [21]. All of the memristor devices investigated in work were 

completed with electrode contacts on top of P6OV films, which consisted in Ca/Al bilayers (20 

nm thick Ca and 30 nm thick Al). Top contacts were also thermally evaporated in the UHV 

chamber contiguous to the fabrication glove box immediately after P6OV thin film deposition. It 

is worthwhile noting that a symmetric device, with equal top and bottom contact work functions, 
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is obtained when bottom Al/Ca electrodes are used. Top contact devices were also patterned 

using an evaporation shadow mask, therefore our fabrication process allowed the formation of a 

4 × 4 matrix of sandwich memristors from the same P6OV thin film, as shown in Figure 5.1, 

which were used for uncertainty estimates on the device performance.  

 

5.2.2 Characterization  

The topography and surface potential of P6OV thin films were simultaneously 

determined by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM), 

respectively. AFM/KPFM images were recorded using a Witec Alpha 300S atomic force 

microscope system integrated with a KPFM accessory and a Stanford DS 345 function generator 

[43]. The operation and functionalities of this equipment were described in details in Section 1.3 

of Chapter one. During the KPFM measurement, the function generator is locked-in at the 

second order harmonics of the AFM cantilever using the Stanford SR844-RF lock-in amplifier 

that is directly operated by the digital controller of the Witec instrument [43]. The KPFM 

measurements were performed in the correspondence of aluminum film (80 nm thickness), 

which was evaporated on the polymer thin film in the same deposition chamber described above. 

To minimize KPFM artifacts due to lateral contact of the tip with the film edge, [35] sample 

scans were performed parallel to the polymer-Al interface, resulting in a significant reduction in 

lateral contact artifacts. It is worthwhile to note that KPFM is capable of detecting effects at the 

mesoscopic level (i.e., a few nm or more) [43]. This technique is ideal to probe our system with a 

spatial resolution of about the length of an entire polyradical chain. At this scale, localized 

phenomena occurring at the individual monomer level are averaged, and the technique is ideal 
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for probing collective changes in a polyradical chain that switch it from low conductivity to 

high-conductivity states in P6OV memristors. 

Current–voltage characteristics of the devices were recorded in sandwich configuration 

using a computer automated Keithley 2400 source meter with 10 mV scan step. In order to 

investigate the electrical bistability and optimize the write voltage (VW), read voltage (VR), and 

erase voltage (VE) associated with the memory performance under different electrode properties, 

the current–voltage scans were performed at ±10 V, a voltage range in which the device is 

known not to breakdown [21]. The stability tests were performed by repeated application of VW, 

VR, VE, and VR, in this order. Control devices, consisting in Al/Ca/P6OV/Ca/Al stack, were 

similarly investigated for comparison.  

5.3 Current–Voltage Characteristics and Electronic Energy Levels in P6OV  

The current–voltage (J–V) characteristics of one of our devices are shown in Figure 5.2. 

When tested for the first time, devices always exhibited a low-conductivity state. The low-

conductivity J–V curve, indicated by red open dots in Figure 5.2, was recorded by sweeping the 

voltage at ±10 mV s−1 rate. Starting from V = 0, increasing negative voltages were applied, 

which led to relatively low current densities, ≈10−1 A cm−2, until “write” voltage conditions were 

reached at VW ≤ −4.8 V. At these voltage levels, the system gradually transitioned to a high-

conductivity state, with significantly higher current densities, about 1–10 A cm−2. The 

corresponding J–V curve is indicated by black solid dots in Figure 5.2 and is representative of 

significantly higher conductivity in P6OV. The high-conductivity state persists at increasing 

positive voltages, until “erase” conditions are reached at VE ≥ +3.5 V. Sweeping at voltages 

larger than +3.5 V led the device to gradually revert to the low-conductivity state. As no 

transitions from high to low-conductivity state and vice versa occur in the VR = ±1.0 V range, 
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any voltage −VR < V < + VR can be used to “read” the device and understand in which state it 

lays.  

 

Figure 5.2: Current density–voltage (J–V) characteristics of a device showing memory effects, in 

which the write (VW), read (VR), and erase (VE) voltages are indicated. Arrows along the J–V 

curves indicate the scanning direction, starting from V = 0. Red open dots correspond to the 

low-conductivity regime (for V < 0 until V = VW is reached). Black solid dots correspond to the 

subsequent high-conductivity regime (for VW < V < VE). The system gradually reverts to the low-

conductivity regime at V = VE. 

 

In order to optimize the performance of P6OV as an active memory material, it is 

imperative to construct an energy-level matched electronic structure for the devices. P6OV in its 

neutral state is expected to possess a singly occupied molecular orbital (SOMO) at about mid-

gap between the doubly occupied highest occupied molecular orbital (HOMO, π-bonding), and 

the lowest unoccupied molecular orbital (LUMO, π*-antibonding). Considering that P6OV is a 
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nonconjugated polymer, the HOMO– LUMO energy band gap Eππ*, corresponding to π → π* 

interband optical transitions is expected to sit in the near-UV photon energy range, comparable 

to or slightly lower than 5.6 eV in benzene [28,29]. From our UV–visible (UV–vis) absorption 

measurements, reported in panel (a) of Figure 5.3, a broad and intense optical absorption feature 

is observed at 4.6 eV, with tails up to 5.0–5.2 eV. We therefore assign this optical absorption 

peak to π → π* optical transitions between HOMO and LUMO molecular orbitals, with the 

formation of a delocalized electron–hole pair.  

From Figure 5.3a, two less intense optical absorption features are also observed at lower 

energy, in the blue photon energy range. These peaks can be understood due to the presence of a 

SOMO energy level within the π–π* optical band gap of P6OV and they can be assigned to 

SOMO → π* and π → SOMO transitions, respectively. In SOMO → π* transitions, an electron 

is promoted from an initially neutral (0) SOMO state to the LUMO, with the formation of a 

localized hole (+) in the correspondence of the SOMO and an electron delocalized in the 

conduction (π*) band. In a π → SOMO transition, one electron is promoted from the HOMO to 

an initially neutral (0) SOMO state, at which a localized electron (−) is formed in conjunction 

with a delocalized hole in the valence (π) band. Closeness of the SOMO→LUMO and 

HOMO→SOMO optical absorption peaks, sitting at E(0),(+,π*) ≈ E(0,π),(–) = 3.0 ± 0.1 eV, suggests 

that neutral SOMO energy levels are situated at ε(0) ≈ ½ (επ + επ*), thus at mid-gap between the π 

and π* band energy levels, επ and επ*. This leads to the diagram of π, π*, and (0) density of 

electronic states reported in Figure 5.3b.  
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Figure 5.3: (a) P6OV absorbance versus photon energy. An intense absorption band at Eππ* = 

4.6 eV is observed, which is assigned to π→π* interband transitions. Two less intense optical 

absorption bands at 3.1 ± 0.1 eV are assigned to SOMO→LUMO and HOMO→SOMO 

transitions. (b) Diagram of optical transition energies. The neutral SOMO level (0) sits close to 

mid-gap, which is corroborated by the closeness of SOMO→LUMO and HOMO→SOMO 

transition energies E(0),(+,π*) and E(0,π),(–) (yellow and red lines in (a)). However, E(0),(+,π*) + 

E(0,π),(–) > Eππ* due to non-negligibility of the Hubbard energy U in the SOMO level. The SOMO 

becomes positively charged (+) when losing an electron, actually leading to (0)→(+,π*) 

transitions, and becomes negatively charged (−) when gaining one electron, actually leading to 

(0,π)→(−) transitions. 

 

Although the energies E(0),(+,π*) and E(0,π),(–) we assign to (0) → (+, π*) (i.e., SOMO → 

LUMO) and (0, π) → (−) (i.e., HOMO → SOMO) transitions in Figure 5.3b are similar, it is 

interesting to observe that their sum, E(0),(+,π*) + E(0,π),(-) ≈ 6.2 eV, is significantly larger than Eππ* 

= 4.6 eV, the π → π* interband transition energy. This phenomenon can be understood by 
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considering the few-electron nature of (+), (0), and (−) electron states. Delocalized π and π* 

electronic bands are multielectron systems that are marginally affected by the addition or 

removal of one electron [30–32]. However, these effects are expectedly more significant when a 

neutral SOMO state, a single-electron system, undergoes (0) → (+, π*) or (0, π) → (−) 

transitions, with the consequent removal or addition of one electron, and the formation of an 

unoccupied (+) positively charged state or a doubly occupied (−) negatively charged state.  

In few-electron systems, the actual position of an electron energy level is dramatically 

affected by their occupation number [31]. The subsequent change in energy levels, known as the 

Hubbard interaction energy U, corresponds to the energy lost or gained by the system due to the 

addition or removal of one electron [30,32] as a consequence of the increase or decrease in 

electron–electron Coulombic repulsion. When positively charged, a neutral (0) SOMO state 

sitting at ε(0) below the vacuum level is expected to generate an unoccupied energy level situated 

at ε(+) = ε(0) + U. Conversely, when the same SOMO state is negatively charged due to the 

addition of one extra electron, negative electron–electron Coulombic repulsion energy is more 

significant and the corresponding doubly occupied energy level will be situated at ε(−) = ε(0) – U. 

Consequently, under the assumption that ε(0) sits at mid-gap, nonzero Hubbard interaction energy 

results in (0) → (+, π*) and (0, π) → (−) optical transitions occurring at 

E(0)(+,*)  = *  (+)  ½E*   U;          E(0,*) () = ()    ½E*   U              (5.1) 

respectively, which indicates U  0.8 eV, consistent with similar values that were previously 

found in small carbon clusters [33].  

In order to corroborate our UV-vis analysis and confirm the positions of επ, ε(−), ε(0), ε(+), 

and επ* energy levels, we used Kelvin probe force microscopy (KPFM) images to directly 

measure the surface potential of P6OV. Surface potentials determined by KPFM may either 
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correspond to the position of the HOMO level, [34] the SOMO level, [35] or a combination of 

the two. In the specific case of P6OV, a polyradical exhibiting memory effects, the voltage used 

for KPFM imaging may influence the occupation number of mid-gap states, which may 

transition from neutral to positively or negatively charged, depending on the value of the 

nullifying bias voltage applied to the atomic force microscopy (AFM) tip used for the 

measurements, and affect the actual value of the surface potential. In order to solve this issue our 

KPFM images were performed after a first scan at which a high constant voltage +7 V, higher 

than the erase voltage of the device, was applied to the tip. Under those conditions, the device is 

erased, and the value of the surface potential is expected to reflect the position of the HOMO and 

SOMO levels.  

Figure 5.4a shows the AFM and KPFM images, recorded simultaneously, of a P6OV 

thin film (bottom half of the images) in proximity of an aluminum contact thermally evaporated 

on top of it (top half of the images). The AFM image shows that P6OV is smooth and 

homogenous, which is indicative of nearly ideal conditions for KPFM measurements [35]. The 

KPFM image is also entirely uniform, with the exception of the sharp P6OV-Al interface. The Al 

contact can be used as a reference, since the work function of aluminum is known to be φAl = 4.0 

eV, [25] which compares well with the absolute values of surface potential obtained from 

nullifying KPFM voltages in that region. The histogram of surface potentials obtained from the 

Kelvin probe force image in Figure 5.4a is presented in Figure 5.4b, from which a value of 4.0 ± 

0.1 eV, in excellent agreement with the known value of φAl, could be determined. Consequently, 

from the same histogram, it could be inferred that the HOMO energy level of P6OV sits at επ = 

6.2 ± 0.2 eV below the vacuum level.  
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Figure 5.4: (a) AFM (top) and KPFM (bottom) images of P6OV film and nearby Al contact. (b) 

Histogram of surface potential obtained from KPFM image in (a). The HOMO energy level of 

P6OV sits at επ = 6.2 ± 0.2 eV below the vacuum level as shown in Figure 5.3b. 

 

From Figure 5.4b, it can also be observed that, in addition to the sharp peak at φ =  = 

6.2 eV, the histogram of the surface potential of P6OV possesses a relatively broad tail at lower 

values of φ, down to about 4 eV. Although a quantitative multipeak fit would be too arbitrary, 

this low-energy tail indicates that values of (0) = 4.0 ± 0.2 eV are consistent with those that were 

directly inferred from Equation (5.1) and UV–vis absorption data. These results corroborate the 

band energy diagram of P6OV reported in Figure 5.3b, from which it is worthwhile noting that 

the energy level of unoccupied and positively charged polyradical sites, (+) = 4.7 ± 0.2 eV, 

aligns well with the work function of ITO electrodes, ITO = 4.7 eV. Conversely, the energy level 

of doubly occupied and negatively charged polyradical sites, () = 3.1 ± 0.2 eV, aligns well with 

the work function of Ca/Al electrodes, Ca/Al = 3.1 eV [24]. Finally (0), the energy level of the 
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neutral SOMO state, matches the work function of pure Al (Al = 4.0 eV) [25]. We anticipate 

that these findings will be essential for the construction and optimization of P6OV memristors, 

as well as for studying their transport properties, both in the high-conductivity and low-

conductivity regimes.  

 

5.4 Memristor Design Criteria 

Panels (a) and (b) of Figure 5.5 compare the current–voltage characteristics in the high-

conductivity and low-conductivity regimes of four different devices. Such devices have the same 

anode, an Al/Ca bilayer, but utilize four different cathode materials at work functions ranging 

from φ = 3.1 eV (for Ca/Al) to φ = 4.7 eV (for ITO). Pure aluminum and weakly oxidized few-

layer graphene (FLG = 4.5 eV) have work functions with intermediate values between those of 

Ca/Al and ITO [25–27]. Figure 5.5a reports the J–V curves of the devices in the high-

conductivity regime, which are representative of typical values that were consistently found in a 

large number of similar devices. Conductivity in the high-conductivity regime was found to 

decrease in the order of  

H(ITO) > H(FLG) > H(Al) > H(Ca/Al)                        (5.2) 

and, therefore, is higher for ITO-based devices, of which the cathode work function aligns with 

the surface potential of positively charged P6OV, ITO  = (+) = 4.7 eV. 

In the other three types of devices, with FLG, Al and Ca/Al cathodes and    (+), H decreases 

at decreasing work function of cathode, proportionally to exp((+)   / kBT). H is lowest in 

devices with symmetric anode and cathode, both made out of Ca-coated aluminum. Even though 

their electrode work function matches the surface potential of negatively charged P6OV at Ca/Al  

= () = 3.1 eV, the (+) energy level is much higher, at 4.7 eV, which leads to very significant 
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contact resistance.  

 

Figure 5.5: Current density versus voltage characteristics of P6OV thin films as a function of the 

cathode material in a) high-conductivity and b) low-conductivity regime. Output currents are 

strongly dependent on the work function of the cathode material. c) High-conductivity and low-

conductivity current densities of Al/Ca-P6OV-FLG devices, showing ohmic and Poole–Frenkel 

behavior in the high and low conductivity regimes, respectively. d) Poole–Frenkel model at 

moderate electric fields, which leads to hopping in the low-conductivity regime. 

 

The nearly ohmic characteristics of the J-V curves, demonstrated in Figure 5.5c for a device 

with FLG cathode, indicates extended-state transport in the high-conductivity regime for all of 

the devices irrespectively of the cathode material, consistently with previous observations in 

P6OV [21]. These observations strongly suggest that H is determined by the contact resistance 

between positively charged P6OV monomers and the cathode in the same way as the contact 
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resistance between negatively charged P6OV monomers and the anode. Consequently, it is 

demonstrated that both positively charged (+) and negatively charged () oxoverdazyl rings in 

P6OV are required to observe extended state transport and high-conductivity regime in thin film 

memristors of this polyradical. 

Further insight into the bistability and transport properties of P6OV memristors can be 

gained by observing their behavior in low-conductivity regime. In such regime, their 

conductivity can be inferred from the J-V curves in Figure 5.5b, and was observed to decrease in 

the order of 

L(Al) > L(FLG) > L(ITO) > L(Ca/Al).                     (5.3)     

Consequently, L is higher for cathodes of pure aluminum, with work function Al  = (0) = 4.0 

eV, aligning to the SOMO of neutral P6OV. In the other three types of devices, with FLG, ITO 

and Ca/Al cathodes at    (0), L decreases as exp((0)   / kBT). This indicates that the 

conductivity of P6OV memristors in the low-conductivity regime is determined by the contact 

resistance between the SOMO and the cathode. Such an observation agrees with previous 

findings [21] that the transport properties in such regime obey a Poole-Frenkel transport 

mechanism, demonstrated in Figure 5.5d, which involves diffusion of a limited number of 

localized electrons that are hopping through an array of neutral P6OV repeating units. 

Figure 5.6 summarizes the information on the charge transport mechanism of our 

memristors in the low-conductivity (panel a) and high-conductivity (panel b) regimes, as can be 

inferred from the results shown in Figure 5.5. In the low-conductivity regime, P6OV monomers 

are in the neutral charge state. This finding is corroborated by previous electron spin resonance 

(ESR) measurements [21] showing a number of paramagnetic radicals comparable to the number 

of monomers. Optimal charge injection in the low-conductivity state occurs by electrons  
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Figure 5.6: Energy band diagram of P6OV-based memristors demonstrating optimized charge 

transport in (a) low-conductivity and (b) high-conductivity regime. Energy bands in different 

memristor components are shown. Optimal charge injection in the low-conductivity regime 

occurs at 4.0 eV for electrons transferred to P6OV from the Al cathode. These electrons hop 

from monomer to monomer in a Poole-Frenkel transport mechanism (bottom left). In the high-

conductivity regime, optimal hole injection occurs at 4.7 eV, when the cathode work function 

matches the (+) level of P6OV, and optimal electron injection occurs at 3.1 eV, when the anode 

work function matches the () level of P6OV. Simultaneous optimization of injection of electrons 

and holes is necessary to maximize extended state charge transport in the high-conductivity 

regime (bottom right). 

transferred from the Al cathode at 4.0 eV work function. Such electrons hop between polymer 

repeating units in a Poole–Frenkel transport mechanism, for which a limited number of 
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monomers become positively charged. Hopping processes are relatively inefficient transport 

mechanisms, due to the localized nature of the carriers [36]. This explains the low conductivity 

in this regime. 

Application of sufficiently high electric fields leads to charge polarization of thin film 

dielectric materials [37]. This is consistent with the fact that the 3.5 V threshold for erase 

voltages in our devices correspond to an energy eVE  4U, which is the sum of the formation 

energies of a doubly occupied, negatively charged monomer and an unoccupied and positively 

charged monomer. This configuration, shown in Figure 5.6b, preserves the charge neutrality of 

the polymer chain and is consistent with the observed lack of ESR signal in P6OV thin films in 

the high-conductivity state. In this regime, which occurs after the P6OV is polarized by an 

external   electric field, ambipolar transport may occur by extended states, via diffusion of 

electrons toward the anode and simultaneous migration of holes through the cathode. It is 

worthwhile noting that, in this regime, optimal hole injection occurs for charges transferred from 

ITO to the (+) level of P6OV, both at ~4.7 eV, while optimal injection of electrons occurs for 

charges transferred from Ca/Al to the () level of P6OV, both at ~3.1 eV. For practical 

memristor applications, the “on” current in the high-conductivity state needs to be maximized, 

while the “off” current in the low-conductivity state needs to be kept to a minimum. Therefore, 

Al/Ca-P6OV-ITO architectures are optimal for the fabrication of polyradical thin film 

memristors based on P6OV, and our design criteria can be extended to ultrathin memory devices 

from a large variety of polyradicals, clearly indicating the generality of our study.  

It is also important to bear in mind that the transport mechanism we propose in Figure 5.6 

for our polyradical system in the high-conductivity state requires the polarization of an entire 

polyradical chain, not only individual monomers. Thus, our model is mesoscopic in nature and 
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not limited to individual quantum systems. The fact that, in our case, the Hubbard interaction 

energy of a single radical monomer coincides with the corresponding quantity averaged over an 

entire polyradical is a consequence of the fact that P6OV is nonconjugated and, therefore, each 

monoradical can be treated as a nearly isolated system. However, this does not limit the 

generality of the model, which can be applied to conjugated systems by considering that U can 

still be defined in such cases, and decreases with the number of monomers in the polyradical.  

 

5.5 Memristor Performance 

To demonstrate the critical significance of the electrode work functions in relation to the 

energy levels of the polyradical and the performance of the memory devices we fabricated, we 

carried out multiple consecutive cycles of electrical switching between low and high-

conductivity regimes, as illustrated in Figure 5.7. Switching cycles presented in this work were 

performed for devices with the same anode, an Al/Ca bilayer, but different cathode materials 

with work functions decreasing from  = 4.7 eV (for ITO, panel a) to  = 3.1 eV (for Ca-coated 

Al, panel d). In all of these devices, the write, read and erase conditions were implemented by 

applying an appropriate external voltage, as previously shown in Figure 5.2. The switching of 

applied voltages is demonstrated by the lower red curves in Figure 5a-d.  

Figure 5.7 confirms that negative 4.8 V write voltages brought the devices shown in 

panels (a–c) to a high-conductivity state. This regime led to relatively high output currents that 

could be read at +1.0 V applied voltage, while no appreciable transition could be observed in the 

symmetric Al/Ca-P6OV-Ca/Al device shown in panel (d). In panels (a)–(c) of Figure 5.7, a 

positive 3.5 V erase voltage eliminated the previously established high-conductivity regime, and 

returned the device to the low-conductivity state, as could be confirmed by subsequent readings   
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at +1.0 V. Once the devices switched to either state, they produced output currents 

commensurate with the conductivity in such regime, accordingly to Equations (5.2) and (5.3). 

Dramatically different behaviors and on/off ratios are therefore expected with different cathode 

materials.  

Current changes during multiple sequences of write-read-erase-read cycles are 

demonstrated by the top blue curves in Figure 5.7, with the currents measured during six read 

cycles at VR = 1.0 V are indicated by black dotted lines. In panels a and b, the two dotted lines 

are parallel and well distinguishable, indicating that different currents are reproducibly measured 

in the high-conductivity and low-conductivity regimes even after several write and erase 

operations. Figures 5.7a-b demonstrate that a bit can be written, stored, read and erased multiple 

times in P6OV based memristors with ITO and FLG cathodes. High on/off current ratios are 

generally associated with superior memory device performance [17,18]. Our memristors 

fabricated on ITO and FLG cathode materials (work functions: ITO = 4.7 eV and FLG = 4.5 eV, 

respectively) exhibited on/off current ratios of 400 and 30, respectively. These results point to 

the strong significance of the work function of the cathode materials on the performance of these 

memristors and with the fact that ITO cathodes are optimal for the performance of our devices, 

consistently with the band diagrams drawn in Figure 5.6. Stability and reproducibility of both 

ITO-based and FLG-based devices indicate that they both exhibit flash memory effects. 
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Figure 5.7: Measured output current (top curves) and corresponding applied voltages (red 

bottom curves) during multiple write–read–erase–read cycles of P6OV-based memristors with 

different cathode materials: (a) ITO (b) FLG (c) Al, and (d) Ca/Al. High-conductivity and low-

conductivity states read at VR = +1.0 V are indicated by black dashed lines, from which the 

on/off current ratios can be inferred. The work function of the cathode (e.g. FLG and ITO) needs 

to be 4.5-4.7 eV, comparable to the energy level (+) of the positively charged polyradical, in 

order to produce stable on/off ratios and ensure flash effects. Cathode work functions of the 

order of (0)  4 eV, the energy level of the neutral SOMO of P6OV, produce WORM effects, e.g. 

with Al. No memory effects were observed with symmetric Ca/Al and Al/Ca electrodes. 
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Panel c in Figure 5.7 shows that the “on” current of P6OV memristors with cathodes of 

pure Al decreases linearly with time after multiple write and erase cycles. Specifically, the on/off 

current ratio was about 6 during the first cycle, but decreased to 4 after the third writing cycle in 

this device architecture. Consequently, devices with Al cathode do not possess the same degree 

of stability and reproducibility of flash devices built on ITO and FLG electrodes, and they 

exhibit WORM effects. We assign this phenomenon to the lower work function of Al which 

aligns with the neutral energy level of P6OV, (0) = 4.0 eV. In this configuration, electron 

transport from Al/Ca to the negatively charged energy level of P6OV and Al, at 4.0-eV is still 

optimized, but hole transport is not. Specifically, the positive energy level of P6OV, at (+) = 4.7 

eV, acts as a high-energy trap for holes diffusing from 4.0 eV energy in Al to 3.1 eV energy in 

Ca. This leads to the gradual depolarization and neutralization of some of the charged radical 

monomers of P6OV, corresponding to the gradual collapse of the high-conductivity state shown 

in Figure 5.6b. We suspect this effect is general enough to lead to lack of flash effects in several 

non-optimized polyradical memory devices that have been recently proposed in the literature 

[21-23]. 

In view of the above mentioned considerations, the major obstacle to polyradical 

memristor performance is in carefully engineering the contact resistance between the polymer 

thin films and the electrodes. Panel (a) in Figure 5.8 demonstrates that a relationship exists 

between the cathode–anode work function difference and the measured on/off current ratios of 

the devices. Specifically, in symmetric Al/Ca-P6OV-Ca/Al devices, in which no surface 

potential difference between the electrodes exists, the high-conductivity state is extremely 

volatile and can only be retained for a relatively short time. Although J–V curves in the high-

conducting regime can be obtained with relatively rapid scans as in Figure 3b, no on/off current 
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ratio higher than 1 could be obtained during write–read–erase–read cycles, and nonvolatile 

devices could not be achieved. 

 

 

Figure 5.8: (a) On/off current ratio vs. device cathode surface potential. A high surface potential 

of the cathodes matching the positive charge state of P6OV are critical for high performance of 

the devices as shown in the optimized Al/Ca-P6OV-ITO memristor. (b) Current response (top 

curve) and corresponding applied voltage (bottom curve) obtained during the stability test of 

Al/Ca-P6OV-ITO memristor under constant write-read-erase-read voltage cycles. High on/off 

current ratios ~102 at 1.0 V reading voltage were achieved in the optimized device, with high 

reproducibility over several tens cycles of write–read–erase–read. 
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only with appropriate voltage bias. Figure 5.8b shows the result of the stability test studied on 

the same device under repeated cycles of bias conditions. The figure revealed that this device 

maintains excellent switching characteristics without degradation for several tens of cycles of 

on–off switching. These excellent switching cycles are a further demonstration that these types 

of devices, fabricated using a homogeneous layer of an organic polyradical, exhibit promising 

characteristics for operation as nonvolatile flash memristors.  

 

5.6 Conclusion 

In this chapter, we presented the fabrication of P6OV thin films and their 

characterization, and we outlined a design criterion for the fabrication of thin memristors based 

on a homogeneous active layer of this material. P6OV memristors may serve as a case study for 

the optimization of a broader class of polyradical thin film memristors. Devices presented in this 

chapter utilized a sandwich configuration with aluminum–calcium bilayers as anode material, 

and we investigated four cathode materials at different work functions, ranging from  = 4.7 eV 

for ITO electrodes to  = 3.1 eV for calcium–aluminum bilayers. The energy levels of the 

positive, neutral, and negative charge states of P6OV have been determined from a combination 

of UV–vis and KPFM measurements. The behavior of the SOMO energy level of P6OV at 

different degrees of charging could be understood in the framework of the Hubbard model [30] 

by assuming a correlation energy U = 0.8 eV. Knowledge of the positive, neutral and negative 

energy levels were vital to configure our memristor architectures for maximum performance.  

Current–voltage characteristics show that a high-conductivity regime can be created, and 

subsequently eliminated by applying an erase voltage to the devices of the order of VE  4U/e. 

Resistivity in the high-conductivity regime was found to be lower for ITO-based devices, in 
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which the work function of the cathode matches the surface potential of positive charged P6OV 

radicals: Al  = (0) = 4.0 eV. In the other three types of devices, with FLG, Al and Ca/Al 

cathodes, and   < (+), the “on” current decreased at decreasing work function of the cathode. In 

the low-conductivity regime, the resistivity of P6OV memristors was determined by the contact 

resistance between the SOMO energy of neutral P6OV and the cathode. Consequently, the 

electrical conductivity was higher for devices with cathodes of pure aluminum, with work 

function Al  = (0) = 4.0 eV, but lower in the other types of devices with FLG, ITO, and Ca/Al 

cathodes, as the mismatch between the SOMO level (0) and the cathode work function increases. 

We demonstrated that the electrical bistability of our devices is due to two distinct transport 

regimes in P6OV, extended states and Poole–Frenkel. 

Optimized flash memory effects were demonstrated in Al/Ca-P6OV-ITO, in which the 

energy levels of the positive and negative charged states of the polyradical align, respectively, to 

the cathode and anode work functions. More than 103 s of write–read–erase–read cycles were 

performed without significant current degradation. Conversely, Al/Ca-P6OV-Al devices, in 

which the cathode work function aligned with the neutral energy level of P6OV, exhibited 

WORM effects. Our results demonstrate the critical importance of energy-level matched 

electronic structures as the basis on which ultrathin, single-layer memristors can be successfully 

implemented. 
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Chapter 6 

Electrical, Optical and Thermal properties of P6OV:Graphene nanocomposites 

In the previous chapter we discussed in detail the properties of poly-[1,5-diisopropyl-3-

(cis-5-norbornene-exo-2,3-dicarboxiimide)-6-oxoverdazyl] (P6OV) with emphasis on their 

electrical bi-stability and we showed the physical mechanisms as well as the most promising 

structural design that leads to ultrathin flash memory device from organic polyradicals. In this 

chapter, we investigate the optical, electrical, morphological and thermal properties of 

nanocomposites formed by the incorporation of P6OV into graphene-based thin films. The work 

presented in this chapter is motivated by the world-wide need for advanced composites materials, 

for instance, polymer-based nanocomposites for thermal management applications [1-3].  

Polymer based materials are especially needed in applications where light weight is desirable, 

such as in modern day aerospace structures [4].  

In the first section of this chapter, we will discuss the fabrication of nanocomposite thin 

films produced by spin coating P6OV on graphene-based thin films deposited by vacuum 

filtration of exfoliated nanographite. Same thickness of P6OV will be coated on graphene-based 

thin films of different fraction, f of substrate covered area. In order to understand the effect of 

addition of graphene of different fraction of covered area f, we characterized the graphene 

samples with and without P6OV coatings.   

6.1 Experimental 

6.1.1  Thin film deposition 

Graphene solution was made by surfactant-assisted exfoliation of nanographite described 

in details in chapter one [5]. We controlled the fraction of graphene platelets deposited on the 
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substrate by using different volumes of graphene/RNA suspension, rom 5 ml to 40 ml. The 

suspensions were vacuum filtrated onto 0.22 m sacrificial (GSWP Millipore) filter membrane 

using the filtration set-up described in chapter one. Membranes loaded with graphene flakes were 

transferred to the glass substrate and dried in the oven at 60°C for 4 hours. The filter paper was 

then etched off in acetone and methanol baths leaving only the graphene on glass. These samples 

were subsequently annealed using a hot plate at 540°C for an hour inside glove box.  

In order to enhance the electrical conductivity of our graphene-based thin films, we 

employed the procedure described by Parekh et al [6] for post-deposition treatment of the 

samples. The graphene thin films deposited on glass substrates were treated in nitric acid (HNO3) 

and thionyl chloride (SOCl2) by sequentially submerging the samples in the solution. The 

samples were dried gently with air after the HNO3/SOCl2 baths. To eliminate residual chemicals, 

samples were again submerged in water bath in 5 consecutive steps, dried with air and 

subsequently annealed at 540° C for 20 minutes inside the glove box. The resulting transparent 

and conducting graphene-based thin films on glass were then used as the substrate for coating 

P6OV to form P6OV/graphene composites. 

The solution of P6OV was prepared by dissolving 12.5 mg of the polymer in 1 ml of 

anhydrous chlorobenzene. The solution was stirred overnight at 50 oC, filtered through 0.45 m 

pore size syringe filters and spun on graphene/glass substrate. In order to promote adhesion, the 

P6OV solution was allowed to rest on the graphene/glass substrate for 2 minutes before spinning 

for 1 minute at 4000 rpm. The optimized thicknesses of P6OV were obtained by spin coating 

solution of the polymer on glass substrate at different spinning speeds. These thicknesses were 

measured by atomic force microscopy [7]. In order to perform the thickness measurements, part 

of the substrate was masked prior to spinning the polymer. The mask was then removed and 
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samples were analyzed in contact-mode using the Witec Alpha300S AFM microscope, from 

which topography profiles of the step in the correspondence of the masked area were obtained. 

Figure 6.1 shows that the sample deposited on glass at spinning speed of 4000 rpm is about 10 

nm thick. All the graphene-based samples studied in this chapter were coated with P6OV at 4000 

rpm, which leads to the variation of only the fraction of the substrate covered with graphene-

based platelets.  
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Figure 6.1: Variation of the thickness of P6OV films with the spin coating speed. P6OV was 

deposited on bare glass substrate for thickness optimization. 

 

6.1.2 Characterization of P6OV/Graphene nanocomposites 

The graphene-based thin films deposited on glass substrate were characterized prior to 

and after coating with P6OV. Optical images were taken to determine the fraction of the 

substrate covered with graphene-based platelets as a function of the filtration volume of 

graphene suspension. The sheet resistance of graphene with and without P6OV coating were 
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measured from current – voltage (I-V) curves recorded at room temperature using a Keithley 

2400 source meter attached to a four-point probe station. Voltages in the ±2.5 V range were 

applied in order to obtain I – V characteristics of the samples. Four-point probe experiments and 

measurements at different distances between the electrodes were performed in order to rule out 

the presence of a significant contact resistance between the contacts and the films. UV–vis 

transmittance of the samples was measured at normal incidence in a range of wavelengths 

between 380 nm and 500 nm using a Varian DMS80 spectrometer. This wavelength range was 

specifically chosen to cover the low intensity absorption peak observed in P6OV [8].  The 

thermal images of the samples were obtained using the near field scanning thermoreflectance 

imaging (NeSTRI) techniques described in details in chapter two. The topography, SNOM 

images and the phase and amplitude of the thermal images were recorded simultaneously during 

the NeSTRI scans. 

6.2 Optical images and transmittance of Graphene and P6OV/Graphene nanocomposites 

In this section the results of the optical images of graphene-based platelets deposited on 

glass substrate from different filtration volume of graphene suspension and the UV-Vis 

transmittance of the samples are presented. Optical microscope equipped with a 20x long 

working distance objective is used to obtain the images of graphene platelets deposited on glass 

substrates from different filtration volumes. Although optical microscope gives a relatively low 

resolution images compared to modern scanning probe microscopy techniques, the images 

obtained using optical microscope can advantageously cover a larger surface area of the sample 

than can be acquired using scanning probe techniques. In the specific case where high resolution 

images are not extremely important, such as obtaining the statistics of area of substrate covered 
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by samples the optical microscopes, provide on the microscale, images that correlate well with 

physical sample [9]. For the optical images of graphene-based platelets fabricated in this work, 

image J, a free program package for image processing and manipulation [10] was used to process 

the images to obtain the fraction of substrate area covered by the graphene platelets. 

Figure 6.2 (a-d), show the images of graphene-based platelets on glass substrate 

measured with the optical microscope. In these figures, white color represents the graphene  

 

Figure 6.2: Optical images of graphene thin films deposited from different filtration volumes of 

(a) 5 ml (b) 20 ml, (c) 30 ml and (d) 40 ml. The optical images were processed using image J, an 

image processing package to obtain the fraction of the substrates covered by the graphene 

platelets. (e) Variation of graphene area fraction with the filtration volume. 
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platelets and black indicates voids or absence of graphene on the substrate. Assuming f is the 

fraction of glass substrate covered with graphene platelets, then (1 – f) represents the fraction of 

voids on the same sample. A close observation of the images indicates that the area of the 

substrate covered by graphene platelets increases with the volume of solution used to prepare the 

samples, as expected. The coverage area as a function of filtration volume is reported in Figure 

6.2(e) from where it can be observed that the faction of covered area, f is linearly proportional to 

the filtration volume. Figure 6.3 shows the AFM micrographs of same graphene samples after 

coating with P6OV at 4000 rpm. At this spinning speed, only about 10 nm of the polymer can be 

coated on the samples as demonstrated in Figure 6.1.  

 

Figure 6.3: AFM topography of P6OV/graphene composites from different area coverage of 

graphene of (a) 0.20, (b) 0.46, (c) 0.53 and (d) 0.68 
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The AFM micrographs show that morphology of P6OV coated graphene platelets is 

affected by the fraction of covered area of the platelets. With small fraction of covered area (f 

=0.2) the AFM micrograph shows that the P6OV forms a continuous layer and embeds sparse 

graphene platelets as in panel (a) of Figure 6.3.  When f ≥ 0.56, P6OV intermix with graphene 

and the polymer tends to isolate the graphene-based platelets, which also preserves the 

morphology of the platelets. However, panel b shows that P6OV coated on graphene of f = 0.46 

forms agglomerates at the opposite of smooth films. While the reason for the topography 

difference is not clear since the conditions for the depositions were the same, such variation will 

offer us the opportunity to understand the morphological preference required for optimal 

performance and improved properties of our P6OV-based nanocomposites.  

The optical transmittance of graphene-based thin films with and without P6OV is 

presented in Figure 6.4. Prior to coating with P6OV, the transmittance, T of the graphene-based 

samples, irrespective of the fraction of covered area, is nearly independent of the wavelength 

(dashed line in Figure 6.4). Similar observation has been reported for graphene thin films 

deposited from surfactant assisted exfoliation of graphite and is indicative of high transparency 

of graphene in the visible and near UV [11]. The behavior of the transmittance spectra is 

however different after coating with P6OV. Figure 6.4 shows a decrease in the transmittance 

spectra of the nanocomposites at around 400 nm wavelength. This is remarkable because the 

wavelength corresponds to the energy, h = 3.1 eV in the optical absorption bands of P6OV at 

which we previously observed a SOMO→LUMO and HOMO→SOMO transitions [8]. These 

transitions involve only few charge carriers: electrons from the neutral SOMO levels are 

promoted to LUMO energy band upon absorption of photon energy, h = 3.1 eV from the 

incident light and electrons from HOMO state being promoted to the SOMO level with the 
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formation of delocalized electrons in the LUMO and holes in the HOMO, respectively. Since 

SOMO states are few electron states, optical absorption associated with transitions to/from 

SOMO levels is expected to lead only to small changes in the transmittance of the samples as 

demonstrated in Figure 6.4. 

 

Figure 6.4: Optical transmittance of graphene thin films and P6OV/graphene nanocomposites 

measured in the wavelength range  = 380 – 500 nm. This wavelength range was specifically 

selected to cover the previously observed SOMO-LUMO optical absorption peak in P6OV. The 

fraction of covered area is indicated on the right of the color code.  

Figure 6.5 gives the value of the change in the transmittance at  = 400 nm obtained from 

the difference in the transmittance values of P6OV/graphene nanocomposites and uncoated 

graphene-based thin films. The values of T are very small as expected from P6OV coatings of 

extreme thinness and from the fact that the transitions involve the SOMO levels. However, the 

fact that T is not constant with f is indicative of the amount of P6OV adsorbed on the surface of 
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graphene of different fractions of covered area. With f  0.2, P6OV tends to form a continuous 

film around a few graphene platelets that results in a significant optical absorption in this sample. 

Phase segregation of P6OV solution to solid-state agglomerate during spinning operation on 

graphene platelets with f = 0.46 leads to the out of trend shift in the measured optical 

transmittance. 

 

 

Figure 6.5: Change in transmittance, T of graphene thin films without and with P6OV as a 

function of fraction, f of graphene covered area. T was determined at the wavelength  = 400 

nm in which P6OV show significantly higher absorption due to SOMO→LUMO and 

HOMO→SOMO transitions [6]. 

The observed differences in the value of T can also be understood by considering that 

graphene thin films obtained from large filtration volume and consequently higher fraction of 

covered area are less transparent which is indicative of significantly higher thickness. The fact 
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that the top surface of the sample at f  0.46 is formed by floating graphene platelets is evident 

from the AFM micrographs, demonstrated previously in Figure 6.3, where the z-scale is 

comparatively high. Consequently, more graphene platelets are loosely attached to graphene 

layer below it by weak van dar Waal force that can be detached during spin-coating of P6OV. 

This would lead to higher transmittance in the absence of any P6OV coating and consequently 

smaller T. 

6.3  Electrical conductivity of Graphene and P6OV/Graphene nanocomposites 

Room-temperature sheet conductivity of our graphene-based samples with and without 

P6OV coating as a function of surface area covered by graphene platelets was determined from 

current – voltage characteristics obtained using a Keithley 2400 source meter. Voltages in the 

±2.5 V range were applied in order to obtain the current – voltage curves shown in Figure 6.6. 

The figures show that the measured current is linearly related to the applied voltage even after 

coating with P6OV, which is indicative that the ohmic conduction is preserved in the presence of 

thin layer of P6OV coating. In sandwich configuration, freshly fabricated P6OV sample is 

expected to exist in the low conductivity state in which the conduction mechanism obeys Poole – 

Frenkel electrical conduction model [8]. The fact that the I-V characteristics are ohmic shows 

that the electrical properties of the nanocomposites are dominated by the intrinsic high electrical 

conductivity of the graphene.  
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Figure 6.6: Current – voltage characteristics of graphene thin films and P6OV/graphene 

nanocomposites for different faction of graphene covered area of (a) 0.2, (b) 0.46, (c) 0.53 and 

(d) 0.68. 

The electrical transport in such graphene-based platelets is usually conceptualized in terms 

of the percolation theory [12, 13] as demonstrated in Figure 6.7. At a certain fraction of 

substrate area coverage, which is known as the percolation threshold (f0), the graphene-based 

platelets form a network leading to a sudden change in the conductivity of the system from 

insulator to semi-metal conductor as conceptualized in panel (b) of Figure 6.7. In this and other 

materials of this kind, voids are also expected to play an important role in limiting the electrical 

transport of the sample. This is because, in view of percolation theory, no percolating pathway 

can be drawn through the sample if the critical threshold of covered area f0 is not achieved. 

Consequently, graphene thin films of covered area, f less than the threshold, f0 are expected to be 
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highly insulating, as depicted in Figure 6.7(a). If we neglect possible contribution of the contact 

resistance between platelets, the electrical conductivity can be found from the following relation 

[11, 13]: 

n

el ffSK )( 00             (6.1) 

where Kel is the sheet electrical conductivity of bulk graphene-based thin films, S0 is the effective 

conductivity of a platelet and n is the critical exponent. From the current - voltage curves 

presented in Figure 6.6, we determined the sheet conductivity of both the graphene thin films and 

the nanocomposites as the inverse of the sheet resistance. In Figure 6.8, we show the sheet 

electrical conductivity (Kel) as a function of the fraction, f of surface area covered by graphene-

based platelets with and without P6OV. The results of the conductivity presented in Figure 6.8(a) 

shows that the fraction of covered area strongly influences the electrical properties of the 

graphene-based films as we expected from eq. 6.1. As shown in this figure, eq. 6.1 is best fitted 

with n = 1.8, S0 = 400 S m-1 and f0 = 0.32.  

 

 

Figure 6.7: The conceptual representation of percolation of graphene-based platelets on the 

glass substrate - (a) about graphene percolation threshold, f  f0, the films are mostly insulating 

and (b) above the threshold f0, the platelets form continuous conducting pathway along the 

substrate surface and the films have high electrical conductivity 
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Figure 6.8: (a) Electrical conductivity (Kel) as function of the fraction, f of surface area covered 

by graphene platelets for graphene-based thin films (open dots) and P6OV/graphene 

nanocomposites (solid dots). Solid lines represent simulation of experimental data according to 

eq. 6.1. Restructuring of P6OV in a graphene-based film into three regions of (b) below 

graphene percolation threshold, in which P6OV forms a continuous layer embedding sparse 

graphene-based platelets, (c) about graphene percolation threshold, in which P6OV tends to 

aggregate and does not affect the electrical conductivity of the film and (d) quite above graphene 

percolation threshold, in which P6OV tends to isolate the graphene-based platelets, playing a 

detrimental role to the electrical conductivity. 

Figure 6.8 also gives the sheet conductivity of the same graphene-based thin films after 

coating with P6OV. The electrical conductivity variation in the P6OV/graphene nanocomposites 

occurs in three stages, as illustrated in panels (b), (c) and (d) of Figure 6.8. Here, the process is 

explained in view of the morphological disparity of the polymer when coated on graphene-based 

platelets of different fraction of covered area. Below the graphene percolation threshold, the 

addition of thin layer of P6OV to sparse graphene platelets make the platelets contact to form 

effective conducting paths as in panel (b). In this morphological state, P6OV surrounds sparse 
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graphene platelets hence reducing the voids in the sample. Thus the polymer participates in the 

transport properties of the nanocomposites and improves the electrical conductivity of the sparse 

platelets as demonstrated in Figure 6.8 (a). 

At higher graphene coverage area for which f ~ f0, aggregate P6OV plays passive role and 

the electrical conductivity of the nanocomposites is nearly the same. This condition is described 

in panel (c) of Figure 6.8, where it can be seen that P6OV aggregates limitedly connect the 

graphene-based platelets. Going further, panel (d) demonstrates that at higher coverage area 

(quite above graphene percolation threshold) for which there is sufficient pathway for charge 

transport, the polymer imbeds the platelets and acting more as an insulating layer. In this 

morphology regime, all the graphene platelets tend to interlace with each other and only a thin 

P6OV layer of a few nm separates them. Transport between graphene platelets is therefore 

facilitated by the quantum mechanical tunneling and hopping between localized states situated at 

specific charged monomers along the polymer filament [14]. Since charge hopping is less 

efficient than free carrier transport, the electrical transport in the nanocomposites also becomes 

less efficient. This is responsible for the decrease in conductivity in the sample with the lowest 

(1-f) voids shown in Figure 6.8(a). 

6.4  Thermoreflectance imaging of P6OV/Graphene nanocomposites 

The thermal parameters of P6OV/graphene nanocomposites, such as the amplitude and 

phase of thermoreflectance oscillations were studied using NeSTRI setup described in chapter 

two. NeSTRI allows direct nanoscale mapping of the transmittance and reflectance of the sample 

and consequently the absorbance, A0(x, y). The amount of heat H(x, y) deposited at each point (x, 
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y) of the sample upon illumination with the pump beam is determined from the following 

relation: 

}exp{),(/),(),( 00 iwtyxDyxAPyxH          (6.2) 

where D(x,y) is the thickness of the absorbing film, determined from AFM topography 

referenced to the glass substrate, and H0(x,y) = P0A0(x,y)/D(x,y)  represents the amount of 

heat locally deposited per sample unit volume when uniformly illuminated at P0 = 0.05 

mW/m2.  

 

Figure 6.9: AFM topography (a, b), SNOM transmission (c, d) and (c) SNOM reflection images 

(e, f) of P6OV/graphene nanocomposites comprising of graphene platelet with f = 0.46 (top 

images; a, c, e) and f = 0.53 (bottom images; b, d, f). The topography was obtained 

simultaneously during SNOM measurements. 
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In Figure 6.9, we present the AFM topography, SNOM transmittance and reflectance 

images recorded on P6OV/graphene nanocomposites from the sample with different 

graphene area fraction of 0.46 (top images) and 0.53 (bottom images). The transmittance 

image in panels (c) and (d) provide the fraction of incident probe beam intensity 

transmitted through the sample at each point (x, y). We observe from the images a good 

contrast between the transmittance in the region (1-f), containing only thin layer of P6OV 

and the region, f covered with P6OV/graphene composites. Figure 6.9(e) and (f) show 

that the P6OV/graphene nanocomposites are only weakly reflecting. The SNOM data was 

normalized using the transmitted and reflected laser intensity from bare glass substrate. 

The nominal transmittance and reflectance of the glass substrate at the laser beam 

wavelength (p = 405 nm) are 92% and 8% respectively [15]. Measurements at the same 

laser intensity for both samples and bare BK7 glass substrate were carried out to obtain a 

conversion factors. The absorbance, A0(x,y) of the sample was calculated via the relation 

A0(x,y) = 1 – τ(x,y) – (x,y)                                     (6.3) 

where τ(x,y) and (x,y) are, respectively, the normalized transmittance and reflectance of the 

sample obtained from recorded SNOM data at 405 nm. 

The information on the absorbance, in conjunction with the laser power P0, were 

used to determine the sample heating profile upon uniform illumination in each of the two 

samples shown in Figure 6.9. Figure 6.10 (b) provides a map of the amount of heat H(x, 

y) typically deposited on P6OV/graphene nanocomposites computed using eq. 6.2. The 

left image of this figure is the mirror image of the platelets measured from the marked red 

box in Figure 6.9(c). The image of the heating profile shows that a significantly larger 
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amount of heat is deposited in the correspondence of graphene platelets. Since P0 is 

reasonably constant, it can be inferred that, even at the nanoscale regime, the sample’s 

absorption increases with the fraction, f of the substrate covered with graphene-based 

platelets, similar to the bulk transmittance data presented in Figure 6.5. In both samples, 

the oscillatory nature of the heating profile provides changes in the thermoreflectance that 

give rise to measureable thermal parameters such as the amplitude and phase as we 

present them in the following paragraphs.   

 

Figure 6.10: (a) Mirror image of graphene platelets indicated by rectangular box in Fig. 

6.9(c) and (b) heat profile image of P6OV/graphene nanocomposite. Large amount of 

heat is generated in the correspondence of graphene platelet that can be attributed to 

more absorption of pump beam. 

With NeSTRI, we detect the small changes in the amplitude and phase of the temperature 

profile from changes in the thermoreflectance oscillations of the probe beam. Figure 6.11 (a-d) 

is the result of our NeSTRI measurement on P6OV/graphene nanocomposites showing 

respectively, the thermal amplitude (top images) and phase (bottom images) of the temperature 

profile obtained at 105 Hz modulation of pump beam. The phase lag of the NeSTRI signal 

relative to the pump beam depends on the average mean free path of the thermal waves reaching 
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each point (x, y) from surrounding regions and consequently on the thermal diffusivity of the 

sample. Depending upon the thermal diffusivity of the material, a thermal wave generated at the 

sample surface as a consequence of illumination by a modulated pump beam, propagates to the 

adjoining air with a specific time delay. Figure 6.10 (c, d) shows that more delay is measured in 

the correspondence of the graphene platelets signifying that the lateral thermal diffusion lengths 

are smaller in this region. The ratio of the phase lag in the two samples with different graphene 

area coverage, f(0.53)/f(0.46) is 0.16. This shows that the higher the graphene coverage area, the 

less the phase lags, so that heat generated at different points propagate faster with more graphene 

coverage. The contribution/effects of the polymer on the thermal properties of the samples is also 

evident from the aggregated P6OV in Figure 6.11 (c). The P6OV aggregates in this figure have 

high phase lag which implies low thermal diffusivity. However, some of the aggregates do not 

have low diffusivity, indicating they are possibly in a high-conductivity state [8].  

The amplitude measured in the two samples have features that are comparatively 

different between the sample and within each sample as well. In line with our previous 

observation in chapter 2, the amplitude of NeSTRI signal is expected to directly depend on 

thermosreflectance oscillations due to periodic heating of air close to sample. From the 

illuminated region of sample, heat diffuses along the surface and to the adjoining air and the 

higher the thermal conductivity the larger the diffusion of heat along the surface of the sample. 

Heat is subsequently transferred from the nanocomposite surface to the adjoining air, which 

indicated that the amplitude of the NeSTRI signal, at a constant absorption coefficient of the 

film, is proportional to the thermal conductivity, Kth. The results of our NeSTRI presented in 

Figure 6.11 shows that at higher f, phase is normally more homogenous while the amplitude is 

higher, indicating higher thermal conductivity. It can be concluded that, since the sheet 
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conductivity show the polymer in high-state, the observed high amplitude and consequently 

higher Kth indicates that P6OV diminishes the contact thermal resistance between graphene 

platelets. On the other hand, a comparison of the amplitude of the two samples averaged over the 

entire image, show that the sample with higher graphene coverage area is higher by 7x.  

 

Figure 6.11: Thermal amplitude (a, b) and Phase (c, d) of P6OV/graphene nanocomposites, 

comprising of graphene platelet with f = 0.46 (top images; a, c) and f = 0.53 (bottom images; b, 

d). These images were obtained during the NeSTRI scan at a pump beam modulation frequency 

of 105 Hz. 
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6.5 Conclusion 

In this chapter, we studied the thermophysical properties of nanocomposites formed by 

incorporation of P6OV via spin coating the polymer onto graphene platelets. The thickness of the 

polymer was kept constant by coating the film at the same deposition condition while varying the 

thickness of the base graphene-based thin films. P6OV/graphene nanocomposites show slight 

decrease in the optical transmittance at wavelength,  ≤ 400 nm in which the polymer is known 

to experience light absorption due to SOMO→LUMO and HOMO→SOMO transitions.  The 

electrical conductivity of the base graphene thin films increased with increasing coverage area of 

graphene platelets, consistent with percolation theory predictions. The calculated threshold of 

covered area f0 required to provide minimum pathway for electrical conduction was 32% of the 

substrate surface. However, coating with P6OV decreased the conductivity in sample in which 

graphene coverage area is more than 50%. 

NeSTRI studies shows that phase of the modulated thermosreflectance images are, in 

general, more homogenous with high f, the fraction of graphene covered area. However, some of 

the P6OV form aggregates with relatively higher diffusivity that can presumably be associated 

with high electrical-conductivity-state in the polymer. In this high state, the polymer tends to 

diminish the inter-platelet thermal resistance thereby increasing the thermal conductivity and 

consequently high thermal amplitude. The associated future work would be to design a suitable 

device architecture that would permit tuning the electrical conductivity of the P6OV from low 

conductivity state to high state and to study the thermal properties in the two states. This could 

serve as thermal switch for next generation electro-thermal devices. 
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Chapter Seven 

Conclusion and Future work 

7.1.  Conclusions 

In this thesis, we presented the results of our studies on the thermal and electronic 

properties of graphene-based thin films and organic polyradicals. The near field scanning 

thermoreflectance imaging (NeSTRI) we developed in this thesis work was employed to 

investigate at nanoscale, the thermal properties of thin films of graphene and graphene based 

nanocomposites. Using NeSTRI, we determined the thermal conductivity of micrometre-size 

multilayer graphene platelets to be about 600 W/m/K, consistent with theoretical predictions. We 

also find that the thermal conductivity is locally higher at specific crystallographic edges of 

multilayer graphene platelets, which is indicative of the spatial resolution of our method. 

NeSTRI measurements on large area graphene platelets decorated with copper nanoparticles 

(Cu-NPs) shows that the nanoparticles suppress the thermal conductivity of graphene due partly 

to the interfacial thermal resistance arising from poor thermal coupling between graphene and 

copper nanoparticles.  

On the electronic properties of graphene decorated with copper nanoparticles, we 

developed the physical framework for understanding graphene doping by metallic nanoparticles. 

We showed that large contacts are less effective at modifying the band structure of graphene in 

comparison with an ensemble of many particles randomly distributed on the graphene surface. 

We employed a modified tight-binding model to investigate the influence of Cu-NPs on the band 

structure and work function of graphene. Local variations in the graphene work function due to 

the presence of Cu-NPs break the electron-hole symmetry of graphene shifting the Fermi level 

away from the Dirac point, effectively doping graphene even in the absence of charge transfer or 
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chemical bonding. Our calculations are in agreement with SKPFM experiments and show that 

Cu-NP area coverage is the most important factor in controlling the decrease of the work 

function of graphene in the presence of Cu, as well as the subsequent decrease in electrical 

resistivity. We also demonstrated that the electrical transport of graphene-based thin films in the 

presence of Cu-NPs is controlled at room temperature by a Poole Frenkel mechanism. A unique 

advantage conferred by Cu-NP doping is evident when we compare the electrical conductivity of 

doped and undoped graphene thin films. For a graphene film with fj = 18% ± 5% area coverage 

of Cu-NPs, the transmittance reduces by only ~9%, while its conductivity increases by more than 

400%. In addition to the enhanced conductivity and the preservation of transparency, the 

presence of Cu-NPs gives rise to surface plasmon bands, which can be used for wide range of 

applications, including plasmon enhanced solar cells and surface-plasmon sensors.  

In chapter five, we presented a design criterion for ultrathin memristors based on a 

homogeneous active layer made out of poly-[1,5-diisopropyl-3-(cis-5-norbornene-exo-2,3-

dicarboxiimide)-6-oxoverdazyl] (P6OV), a polyradical. The devices we fabricated utilized a 

sandwich configuration with aluminum–calcium bilayers as anode material, and we investigated 

four cathode materials at different work functions, ranging from φ = 4.7 eV for ITO electrodes to 

φ = 3.1 eV for calcium–aluminum bilayers. The energy levels of the positive, neutral, and 

negative charge states of P6OV have been determined from a combination of UV–vis and KPFM 

measurements. The behavior of the SOMO energy level of P6OV at different degrees of 

charging could be understood in the framework of the Hubbard model by assuming a correlation 

energy U = 0.8 eV. Knowledge of the positive, neutral and negative energy levels were vital to 

configure our memristor architectures for maximum performance. Current–voltage 

characteristics show that a high-conductivity regime can be created, and subsequently eliminated 



154 

 

by applying an erase voltage to the devices of the order of VE ≈ 4U/e.  Resistivity in the high-

conductivity regime was found to be lower for ITO-based devices, in which the work function of 

the cathode matches the surface potential of positively charged P6OV radicals: ITO = (+) = 4.7 

eV. In the other three types of devices, with FLG, Al and Ca/Al cathodes, and  < (+), the “on” 

current decreased at decreasing work function of the cathode. In the low-conductivity regime, the 

resistivity of P6OV memristors was determined by the contact resistance between the SOMO 

energy of neutral P6OV and the cathode. Consequently, the electrical conductivity was higher 

for devices with cathodes of pure aluminum, with work function Al = (0) = 4.0 eV, but lower in 

the other types of devices with FLG, ITO, and Ca/Al cathodes, as the mismatch between the 

SOMO level (0) and the cathode work function increases. We demonstrated that the electrical 

bistability of the devices is due to two distinct transport regimes in P6OV, extended states and 

Poole–Frenkel. 

Optimized flash memory effects were demonstrated in Al/Ca-P6OV-ITO, in which the 

energy levels of the positively and negatively charged states of the polyradical align, 

respectively, to the cathode and anode work functions. More than 103 s of write–read–erase–read 

cycles were performed without significant current degradation. Conversely, Al/Ca-P6OV-Al 

devices, in which the cathode work function aligned with the neutral energy level of P6OV, 

exhibited WORM effects. Our results demonstrate the critical importance of energy-level 

matched electronic structures as the basis on which ultrathin, single-layer memristors can be 

successfully implemented. 

In chapter six, we presented the results of the optical, electrical and thermal 

characterization of nanocomposites fabricated by coating a thin layer (thickness ~ 10 nm) of 

P6OV on graphene-based platelets of different fraction of substrate covered area. The optical 
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transmittance of the nanocomposites shows a marked decrease in the transmittance spectra due to 

absorption at h = 3.1 eV photon energy, corresponding to the SOMO→LUMO and 

HOMO→SOMO transitions in the polyradical. Changes in the optical transmittance, T between 

the P6OV coated and uncoated graphene-based thin films shows a preferential adsorption of the 

polyradical on the surface of graphene of different fractions of covered area. The electrical and 

thermal properties of the nanocomposites were similarly discussed in view of graphene area 

fraction.  

The benefit of P6OV coating on the electrical conductivity manifests only when the 

fraction of graphene covered area, f is slightly below the percolation threshold f0. In this regime, 

the sheet electrical conductivity increases by over 500 % as a result of P6OV providing an 

effective conducting paths between sparse graphene-based platelets. However, at higher 

graphene coverage area for which f    f0, P6OV imbeds the platelets and tends to acts as an 

insulating layer between contacting platelets. On the other hand, the polymer tends to diminish 

the inter-platelet thermal resistance thereby increasing the thermal conductivity which resulted in 

increased thermal amplitude measured by NeSTRI. The fact that the electrical conductivity 

increased significantly at lower f by incorporating P6OV of only few nanometer thickness 

provides the means of cost reduction in fabricating polymer/graphene nanocomposites. 

 

7.2. Future Work 

The NeSTRI we developed in this thesis work is a material characterization technique 

that facilitates investigation of thermal properties of low dimensional and nanostructured 

systems. Heat generated in the sample upon illumination with pump beam is transferred to the 

adjoining air causing a change in its refractive index that is detected via thermoreflectance 
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technique. To increase the resolution and efficiency of the thermoreflectance detection, it would 

be ideal to replace air with photothermal fluid that has a high temperature coefficient of 

refractive index. This would increase the sensitivity of thermoreflectance detection and 

consequently enable measurement of very thin samples such as soft biological samples due to the 

non-destructive nature of our NeSTRI. Automating the setup would also enhance its capability 

and data collection can be achieved at a range of incident photon energies, a range of modulation 

frequencies of excitation beam and a range of incident beam powers. 

Although switching effects have been demonstrated by us in a sandwich configuration, 

conducting AFM will be essential as a future tool for probing memory switching effects in P6OV 

at the nanoscale. Conducting AFM measurements are particularly challenging in this system 

because of the thinness of the soft polyradical samples, which are easily damaged by the AFM 

tip when working in contact-mode as required by conducting scanning probe measurements. 

Native oxide at the AFM tip surface may also affect spin polarization. This is a very critical issue 

in radical polymers in which transport is highly spin polarized, as clearly shown by us in Figure 

5.6. Nanoscale transport and conducting AFM measurements in polyradical memory devices can 

be the subject of future work.  

In another important follow-up to our work on organic polyradicals, we are proposing the 

fabrication of bi-stable thermal device from P6OV as an active electro-thermal material. This is 

in line with the observed electrical bistability exhibited by P6OV polyradicals. We anticipate that 

a more detailed study on the thermal properties of P6OV in the two electrical conductivity 

regimes may lead to a breakthrough in polymer based electro-thermal devices with bistable 

thermal properties. This would require careful architectural design that facilitates in-situ 
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electrical switching of the device while performing nanoscale thermal measurement. The device 

can potentially be used as thermal switch in a variety of applications.  
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Appendix A:  

Complementary Images to Chapter 2 

 

SNOM reflectance images at different frequencies of (a) 25 Hz, (b) 75 Hz, (c) 105 

Hz, (d) 135 Hz (e) 150 Hz (f) 200 Hz (g) 250 and (h) 350 Hz (i) The corresponding 

AFM topography of the same sample 
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NeSTRI amplitude images at different frequencies of (a) 25 Hz, (b) 75 Hz, (c) 105 

Hz, (d) 135 Hz (e) 150 Hz (f) 200 Hz (g) 250 and (h) 350 Hz (i) Typical Gaussian 

fit on the amplitude data. The peak of the Gaussian fit is taken as the representative 

value for the data. 
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NeSTRI phase images at different frequencies of (a) 25 Hz, (b) 75 Hz, (c) 105 Hz, 

(d) 135 Hz (e) 150 Hz (f) 200 Hz (g) 250 and (h) 350 Hz (i) Typical Gaussian fit 

on the phase data. The peak of the Gaussian fit is taken as the representative value 

for the data. 
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