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Abstract 

Nodal and related ligands are highly conserved members of the TGF-beta superfamily 

with well-established and essential roles in the early embryonic development of 

vertebrates, and in cell fate decisions in human embryonic stem (hES) cells. Aberrant 

NODAL signaling also generally promotes pro-tumourigenic phenotypes and the 

progression of a wide array of human cancers. Despite being pursued as a potential 

therapeutic target, many aspects of NODAL’s molecular biology remain poorly 

understood. This thesis provides a comprehensive characterization of gene expression 

from the human NODAL locus at multiple levels. First, an intronic NODAL SNP known 

as rs2231947 was found to be functional in its modulation of a novel alternatively spliced 

exon. This exon contributed to a full-length processed NODAL variant transcript. The 

existence of this genetically regulated NODAL isoform suggests that NODAL biology is 

more complex than currently appreciated. At the protein level, the alternatively spliced 

NODAL variant differs in the C-terminal half of the NODAL mature peptide. The 

NODAL variant was preferentially secreted relative to constitutive NODAL, but 

displayed similar extracellular stability and processing. Differential N-glycosylation was 

partially responsible for this increased secretion, and for NODAL secretion in general. 

The NODAL variant protein is unlikely to adopt a constitutive NODAL-like structure, 

and did not induce expression of targets of canonical NODAL signaling in the zebrafish 

embryo. However, the NODAL variant did efficiently complex via inter-chain disulfide 

bonds, and induced pro-tumourigenic phenotypes to a limited extent relative to 

constitutive NODAL. In summary, this work demonstrates previously unknown 

complexity governing human NODAL gene expression and function. These molecular 

details will help broaden our understanding of NODAL function as well as aid in the 

continued development of potential targeted therapies to inhibit NODAL signaling in 

cancer. 
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Chapter 1  

1 Introduction and literature review 

1.1 The cancer problem 

As the leading cause of death in Canada, cancers of various forms were responsible for an 

estimated 78,000 deaths in 2015 [1]. The term “cancer” describes a collection of cellular 

pathologies, originating in a multitude of organs as diverse as the skin, lungs, and brain. 

Regardless of their origin and etiology, cancers share certain hallmarks including 

uncontrolled cell growth, resistance to therapy, and the ability to spread systemically and 

to other organs in a process known as metastasis [2, 3]. Research in the last half century 

has shown that these hallmarks are manifestations of widespread genomic DNA 

alterations ranging from point mutations to gross chromosomal abnormalities including 

duplication or deletion of entire chromosomes. Since genomic DNA serves as the 

template for all gene expression, widespread DNA mutation and genomic instability 

drastically alters cellular behaviour. Thus, in a broad sense, cancers involve disruptions 

of normally exquisitely regulated cellular and sub-cellular processes.  

1.2 Modelling cancer biology in vitro 

Human cancers are generally studied through two complementary approaches: 1) 

Analyzing clinical specimens such as tumour biopsies, and 2) The establishment of 

model systems amenable to experimental manipulation. These include tumour cells 

adapted for culture in vitro as cell lines, and the propagation of human cancer cells as 

tumour xenografts in animal models such as mice.  

1.3 The cancer stem cell hypothesis and phenotypic plasticity 

As a population, tumour cells have an uncanny ability to withstand an onslaught of host 

defenses including cell cycle blockade and apoptosis normally invoked in response to 

DNA damage, and targeted cytotoxicity against transformed cells by host 

immunosurveillance mechanisms [2, 3]. Beyond surviving these initial transforming 

events, a highly proliferative tumour must also meet the rapidly increasing demands for 
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both energy production and biosynthesis of cellular materials. This involves a dramatic 

shift in cellular metabolism to favour glycolysis in what has been described as 

“reprogramming energy metabolism” (reviewed in [2, 3]). In malignant tumours, those 

cells that do metastasize beyond the site of the primary neoplasia must also survive 

relatively harsh environments including the bloodstream and lymphatic circulation, as 

well as other organs where they may lack support provided by other tumour cells as in a 

primary tumour. Indeed, multiple steps in the metastatic cascade, especially colonization, 

are very inefficient in experimental models of metastasis [4]. Beyond these challenges 

intrinsic to their natural environment, tumours can also withstand various toxic 

chemotherapies deployed as a major part of cancer patient treatment regimens. While 

such treatments are generally effective in eliminating a great majority of the tumour 

mass, a very small number of cancer cells almost invariably survive. These cells 

eventually contribute to patient relapse manifested by a thriving tumour that is often now 

highly resistant to the initial treatment [5]. 

There are two general and non-mutually exclusive aspects of tumour biology that account 

for this resilience. First, the cancer stem cell model suggests that there is a subpopulation 

of tumour cells with the ability to clonally regenerate an entire tumour. These cells are 

self-renewing and can also give rise to a heterogeneous tumour (reviewed in [6]). 

Whether the genesis of these stem-like cells is a stochastic process, or they are a 

biologically distinct cell type at the “top” of a tumour cell hierarchy has been the source 

of great debate (e.g. [7-10]). Regardless of their origin or exact nature, these cells are 

thought to be imperative for maintenance of tumour growth, seeding of metastases, and 

resistance to therapy. Therefore, it is unsurprising that cancer stem cells have received a 

great deal of attention and hold much promise as viable targets in the next generation of 

precision cancer therapy development.   

Behaviourally, a cancer stem cell, and likely other tumour cells, must be able to respond 

to external cues in order to promote the appropriate cellular behaviour required for 

propagation. Of course, this requires signal transduction pathways and other sub-cellular 

machinery to be intact, despite a high mutation load and general genetic instability. As an 

example, a tumour cell may sense a lack of oxygen and respond by secreting pro-
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angiogenic growth factors such as vascular endothelial growth factor A (VEGFA/VEGF) 

to promote recruitment of host endothelial cells and subsequent local blood vessel 

extension through angiogenesis [11]. This ability to respond to microenvironmental cues 

can consist of much more complex cellular responses including changes in cell identity, 

in a process that can generally be referred to as “phenotypic plasticity.” Phenotypic 

plasticity is generally potentiated by a reversible change in epigenetic state(s) (reviewed 

in [12]). Perhaps one of the most well-studied examples of this plasticity is the ability to 

undergo an epithelial-to-mesenchymal transition, or “EMT.” This process is a major 

driver of the carcinoma cell’s ability to escape the primary tumour, invade through a 

basement membrane, and enter the circulation for potential seeding of secondary 

metastases. Although a hallmark process in cancer, EMT is actually a normally occurring 

process at numerous stages of early embryonic development (reviewed in [13], and was 

first characterized in the primitive streak of a chick blastocyst [14]—a structure that 

initiates germ-layer formation and sets the stage for gastrulation. While initially referred 

to as epithelial-to-mesenchymal transformation, it has more recently been dubbed a 

transition, after the EMT process was remarkably shown to be reversible in the form of a 

mesenchymal-to-epithelial transition (MET) [15]. Furthermore, there is now evidence of 

a cancer-specific partial EMT hybrid phenotype [13, 15, 16]. These transitions are 

hallmark examples of extreme phenotypic plasticity afforded to cancer cells through the 

“hijacking” of normal cellular processes out of their appropriate contexts. This 

exploitation is the very rationale for the study of non-cancerous models of normal stem 

cell biology to inform our understanding of human cancer.  

1.4 Human embryonic stem cells 

Non-human models such as zebrafish, xenopus, mouse, and chicken are commonly used 

to study early embryonic development in complete biological systems. Owing to the 

relatively high degree of genetic relatedness between humans and these model organisms, 

as well as evolutionary constraints on embryonic development, a great deal of our basic 

understanding of embryology gleaned from model organisms is generally applicable to 

human development. However, due to the practical and ethical limitations of studying 

early human embryonic development in utero, direct study of early human development 
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has generally been limited to established human pluripotent stem cell (hPSC) lines, as 

well as surplus embryos from in vitro fertilization processes. The first hPSCs to be 

derived were human embryonic stem (hES) cells [17]. These cells were isolated from the 

inner cell mass of pre-implantation blastocysts and adapted to in vitro cell culture. 

Human ES cells are both self-renewing and able to ultimately derive the full panoply of 

adult cell types—a property known as pluripotency. More recently, human induced 

pluripotent stem (iPS) cells have been derived from human adult somatic cells such as 

skin fibroblasts [18]. These cells are generally reprogrammed with the “Yamanaka 

factors” POU5F1 (OCT4), SOX2, KLF4, and MYC, to activate and reinforce core 

regulatory gene expression networks for pluripotency [18]. Successfully reprogrammed 

iPS cells are functionally equivalent to hES cells as they are both self-renewing and 

pluripotent. Induced pluripotent stem cells are extremely useful for modelling stem cell 

biology across different genetic backgrounds of interest. Accordingly, iPS cells have 

been praised for their potential applications in personalized and regenerative medicine, 

and have also been used as cancer models to enhance patient and cancer-specific disease 

modelling [19].  

Unlike their previously derived mouse embryonic stem (mES) cell counterparts, it has 

been suggested that hES cells continue along their developmental trajectory during 

derivation from pre-implantation inner cell mass cells, and share many features with post-

implantation embryos, including X inactivation in female cells, and high expression of 

genes related to NODAL/Activin signalling [20]. Furthermore, hES cells share several 

characteristics with mouse epiblast stem cells (mEpiSC) subsequently derived from post-

implantation embryos [21, 22]. These include flat colony morphology, inefficient single-

cell cloning ability, and reliance on similar signalling pathways [23, 24]. Further work 

has demonstrated that hES cells and EpiSCs exist in an epigenetically “primed” 

pluripotent state poised for differentiation, defined in part by bivalent histone marks. 

Both the inhibitory H3K27me3 histone modification and the activating H3K4me3 histone 

modification are found at promoters of genes to be transcribed as part of an early 

differentiation response in hES cells [25]. Notably, additional histone marks are also 

important in maintaining the pluripotent state (reviewed in [26]), and bivalent chromatin 

marks have also been characterized in mouse ES cells [27]. Human “naive” ground-state 
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pluripotent stem cells have subsequently been derived that share features with mouse ES 

cells [28, 29]. Thus in both mouse and human, there are multiple distinct pluripotent stem 

cell states that can be modelled in vitro [30]. 

1.5 The transforming growth factor (TGF)-beta superfamily 

Research aimed at elucidating the mechanisms by which pluripotency is maintained and 

cell fate choice is made in early embryonic stem cells has uncovered signalling by TGF-

beta superfamily members as a major regulator of the epigenetic changes governing these 

processes [31-34]. More generally, the TGF-beta gene family plays major and complex 

roles in early embryonic development, stem cell biology, and cancer. The TGF-beta 

superfamily contains at least 30 members in humans, and is well conserved across 

vertebrates, with its family members playing important roles in a myriad of cellular 

processes including cellular differentiation, proliferation, and migration in a wide variety 

of cell types and contexts (reviewed in [35]). Classes of proteins that constitute the 

superfamily include the TFG-betas themselves, bone morphogenic proteins (BMPs), 

activins, growth and differentiation factors (GDFs), and other members such as anti-

Mullerian hormone (AMH) and nodal growth differentiation factor (NODAL).   

Members of the superfamily generally share similar structures including an N-terminal 

signal peptide for secretion, an adjacent pro-domain, and a C-terminal peptide cleaved 

from the pro-domain to yield mature and active ligand. Family members also contain a 

cystine knot motif consisting of three or four intrachain disulfide bonds that follow the 

growth factor cystine knot (GFCK) pattern. The TGF-beta protein represents one of four 

prototypical GFCK structures [36]. The participating cysteines provide TGF-beta 

characteristic structure and are similarly positioned across family members. Additionally, 

TGF-beta proteins utilize an additional cysteine that does not participate in the cystine 

knot to form homodimers or heterodimers with other related proteins. Structurally, TGF-

beta proteins consist of a helical “wrist” with two beta-sheet-rich “finger” domains 

extending outward. The finger domains form a pocket for the wrist domain of the 

dimerizing ligand, with the interchain disulfide bond at the centre of the structure (Figure 

1.1). 
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Figure 1.1: A NODAL chimera homodimer illustrating TGF-beta superfamily 
structure. 
Each polypeptide subunit is coloured separately. Descriptions for portions of the 
structure are shown for the top subunit only. Side chains of the interchain 
disulfide bond-forming cysteine residues are shown in yellow.  
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In terms of signalling, extracellular TGF-beta ligands bind heterodimeric complexes 

consisting of one of seven type I and one of five type II serine/threonine kinase receptors. 

Upon ligand binding, receptor complex formation triggers phosphorylation of the type I 

receptor via kinase activity of the constitutively active type II receptor [37, 38]. 

Additional membrane-bound co-receptors also modulate ligand-induced signalling for 

some family members. Some co-receptors are essential for downstream signalling [39], 

while others are enhancing or even inhibiting [40]. Upon activation, the type I receptor 

directly phosphorylates intracellular proteins known as mediator Smads [41]. 

Fascinatingly, and seemingly contrary to the diversity of receptor-ligand interactions in 

the TGF-beta superfamily, downstream of receptor activation, signals from most family 

members converge on one of two main groups of mediator Smads [42]. These are the 

BMP-activated Smads (Smad1, Smad5, Smad9), and the TGF-beta-activated Smads 

(Smad2, Smad3) (reviewed in [35]). Phosphorylation of mediator Smads potentiates their 

association with the common mediator Smad, Smad4. Complex formation promotes their 

accumulation in the nucleus where Smad complexes regulate gene expression of various 

target genes in cooperation with DNA binding proteins and other co-repressors or co-

activators [43-45]. TGF-beta superfamily members have also been shown to induce 

Smad-independent signalling events including activation of the MAP kinase pathway 

[46]. In addition to conventional serine/threonine kinase activity, superfamily receptors 

can also display limited tyrosine kinase activity[47]. Lastly, there are various points of 

direct cross-talk between TGF-beta signalling and other singling pathways such as the 

Wnt signalling cascade [48]. 

1.6 The TGF-beta superfamily member NODAL 

One of the aforementioned TGF-beta superfamily members is “nodal growth and 

differentiation factor” in human (gene symbol: NODAL, NCBI gene ID: 4838), and the 

closely related “nodal” in mouse (gene symbol: Nodal, NCBI gene ID: 18119). Nodal is 

aptly named after its discovery in the mouse node [49], a cluster of cells at the distal end 

of the primitive streak in gastrula-stage embryos [50]. Nodal is a gene with numerous 

essential roles in early development, and it has been well studied in numerous vertebrate 

embryos and in vitro models of early development and stem cell biology [51-54]. 
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1.7 Nodal signalling 

Signal transduction initiated by extracellular Nodal ligands is illustrated in Figure 1.2. 

Nodal is secreted as a pro-protein where it is generally extracellularly cleaved by the 

proteolytic activities of secreted pro-protein convertases Furin and Pcsk6 (also known as 

Pace4) [55]. The resultant mature Nodal peptides can homo-dimerize to engage both type 

I tyrosine kinase receptors Alk4 or Alk7 (also known as Acvr1B and Acvr1C, 

respectively), and type II receptors Acvr2A or Acvr2B (formerly known as ActrIIa and 

ActRIIB, respectively) (reviewed in [35]). Two glycosylphosphatidylinositol (GPI)-

linked and membrane bound members of the epidermal growth factor-cysteine-rich 

Cripto-1/FLR1/cryptic (EGF-CFC) family serve as requisite co-receptors for Nodal 

signals. Cripto or Cryptic bind the type I Nodal receptor and help recruit type II receptors 

to facilitate a functional receptor complex [56]. Interestingly, although Cripto is generally 

required for Nodal signalling, Cripto-independent signalling has been described in the 

mouse embryo [57, 58]. Complete receptor complex formation triggers Nodal signal 

transduction through phosphorylation of mediator Smads Smad2 and Smad3 and their 

subsequent interaction with Smad4 to facilitate nuclear translocation. In the nucleus, 

Smad complexes interact with transcription factors such as forehead box 1 (FoxH1) to 

drive transcription of target genes including Gsc [59], as well as Nodal itself. This 

positive feedback transcriptional response is facilitated by a Smad2/FoxH1-bound 

enhancer in intron 1 of Nodal [60]. Other transcriptional targets of Nodal signalling 

include Lefty. Lefty proteins are secreted endogenous inhibitors of Nodal signalling. 

Direct binding of Lefty to either Nodal or Cripto/Cryptic can prevent successful receptor 

ligand complex formation [61]. Simultaneous upregulation of both agonists and 

antagonists of Nodal signalling suggests that Nodal signals are carefully regulated during 

embryonic development. Indeed, the spatiotemporal regulation of Nodal signalling needs 

to be carefully balanced and precisely regulated as cells are sensitive to both the dose and 

duration of Nodal signals [62]. Co-expression of both Nodal and Lefty takes advantage of 

differential diffusion of these two secreted proteins, with the more stable Lefty protein 

restricting Nodal expression far from the source, whereas short range Nodal signals are 

more potent [63-65]. However, the pervasiveness of this effect was recently challenged 

by the finding that a short-range temporal “window” of Nodal-related expression was  
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Figure 1.2: A schematic of Nodal signal transduction. 
Nodal is extracellularly processed and facilitates receptor complexing, activating 
type I receptors Acvr1B or Acvr1C that directly phosphorylate intracellular 
Smad2/3 proteins. Phosphorylation facilitates their interaction with Smad4, 
forming complexes that are able to translocate to the nucleus. In the nucleus, 
these complexes interact with transcription factors to transcribe target genes 
such as Nodal itself and the Nodal inhibitor Lefty. Extracellular Lefty can inhibit 
Nodal signaling through interactions with Nodal or Cripto, preventing proper 
signalling receptor complex formation. “pro” indicates the N-terminal Nodal pro-
domain/peptide. “mat” indicates the C-terminal mature Nodal domain/peptide. 
“TF” = transcription factors. Pointed arrows indicate activation. Blunt arrows 
indicate inhibition.   
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sufficient to establish a Nodal signalling gradient in the zebrafish embryo, and that the 

duration of this window was regulated by micro RNA-mediated translational repression 

of Lefty [66]. Other endogenous Nodal inhibitors outside of Lefty known as Cerberus 

proteins also bind Nodal directly to inhibit receptor-ligand interactions [67].  

1.8 Nodal in the developing mouse embryo 

Much of our general understanding of Nodal’s role in embryonic development comes 

from the study of mouse embryos. In blastocyst stage embryos, Nodal expression is high 

in the epiblast and promotes expansion of this structure while preventing spontaneous 

differentiation [68]. Following implantation, Nodal is expressed throughout the epiblast 

and contributes to specification of the distal visceral endoderm (DVE; [69]). In turn, the 

DVE secretes Nodal inhibitors, establishing a proximal-distal Nodal gradient. This 

morphogen gradient is one of the first in the developing embryo and helps define the first 

embryonic axis to develop [70]. Nodal subsequently directs the DVE toward the 

prospective anterior side of the embryo where it is now termed the anterior visceral 

endoderm (AVE), and contributes to definition of the anterior-posterior axis [70, 71]. 

Collectively, these coordinated events result in the restriction of Nodal expression to the 

proximal posterior epiblast prior to the onset of gastrulation. Through interactions with 

the extra-embryonic ectoderm, Nodal is amplified in the epiblast as a requisite to initiate 

primitive streak formation [72, 73]. The primitive streak is established on the posterior 

side of the embryo. As epiblast cells invaginate into the streak from the proximal end of 

the embryo, they undergo EMT. Those that migrate laterally are exposed to a relatively 

low Nodal dose and become mesoderm. Those that continue to migrate toward the distal 

end receive a high dose Nodal signal specifying definitive endoderm (reviewed in [54]). 

These cells form the primitive node, around the periphery of which Nodal is expressed 

[49]. This structure is an organizing centre for establishing left-right asymmetry of organ 

development in vertebrates [74]. To the left of the node, Nodal activity is relatively high 

in the left lateral plate mesoderm, while Nodal activity is restricted by expression of 

Lefty in the right lateral plate mesoderm [75-77].  

Unsurprisingly, these Nodal functions are imperative to proper development. 

Specifically, Nodal-/- mutation is embryonic lethal in mice [49, 73], likely due to the 
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failure of these embryos to form the primitive streak for the initiation of gastrulation [72]. 

However, Nodal wt/- mice develop normally [78, 79], suggesting that either lower levels 

of Nodal are sufficient, or that the embryo naturally compensates for reduced Nodal 

expression. Furthermore, mice with hypomorphic Nodal allele(s) display partial lethality 

and a spectrum of developmental defects concerning heart and brain development, as 

well as laterality [80, 81].  

1.9 NODAL in human pluripotent stem cells 

Owing to practical and ethical limitations concerning research on human embryos, 

human-specific study of NODAL biology has generally been limited to cultured hES 

cells. In hES cells, NODAL helps maintain pluripotency [82], and block differentiation 

toward neuroectoderm lineages [83], in part through positive regulation of NANOG 

expression [84]. Transcriptional changes driving cell fate decisions are mediated by 

nuclear complexes containing active SMAD2/3 [32-34, 84]. NODAL/Activin signalling 

is also involved in the deposition of activating H3K4me3 marks at gene promoters [31]. 

A role for NODAL in both the maintenance of stem cell pluripotency and the promotion 

of mesendoderm differentiation as described above may seem paradoxical. However, the 

dose and duration of NODAL signal (reviewed in [62]), as well as the presence of 

SMAD2/3 complexing proteins such as NANOG [34] are important in determining how 

NODAL affects cell fate. Thus, it is apparent that NODAL plays several distinct roles in 

early embryonic development, and context is very important in dictating NODAL 

function. The next section will detail the impact of NODAL expression in human cancers, 

where normal developmental contexts are all but lost. 

1.10  The impact of NODAL expression in human cancers 

NODAL expression in cancer was first identified by Postovit and Topczewska and 

colleagues in the aggressive C8161 human melanoma cell line [85]. These cells were able 

to induce ectopic outgrowths or a complete secondary axis after injection into zebrafish 

embryos at the blastocyst stage. NODAL was identified as the primary factor responsible 

for this induction as inhibition of NODAL signalling by LEFTY1, and reduction of 

NODAL levels using a NODAL antisense oligonucleotide morpholino both abrogated 
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C8161-induced outgrowth. Clinically, immunohistochemistry revealed NODAL protein 

was present in human metastatic melanoma tissues, but not in normal skin. 

Experimentally, inhibition of NODAL in C8161 cells reduced anchorage-independent 

growth capacity in a soft agar colony formation assay, as well as tumour growth in a 

mouse xenograft model. Since this pioneering discovery, NODAL expression has been 

shown to affect numerous tumour phenotypes in experimental models of several human 

cancers including cancers of the breast [86-90], prostate [91, 92], ovary  [93, 94], and 

pancreas [95], as well as glioma [96, 97], glioblastoma [98], endometrial cancer [99], 

hepatocellular carcinoma [100], and choriocarcinoma [89, 101, 102]. In these models, 

NODAL impacts numerous processes including phenotypic plasticity, proliferation and 

apoptosis, migration and invasion, EMT, angiogenesis, and metastasis (reviewed in [53]). 

In general, a pro-tumourigenic role for NODAL has been shown, although a notable 

minority of studies have demonstrated decreased proliferation and increased apoptosis 

resulting from NODAL signaling [93, 103].  

There is also strong correlative evidence of a link between high NODAL expression and 

poor clinical outcome in numerous cancers. Prominent examples include a study of over 

400 breast cancer patients where NODAL correlated positively with tumour stage and 

grade, independently of estrogen receptor/progesterone receptor (ER/PR) or HER2 status 

[104]. Moreover, a recent meta-analysis of NODAL expression in human cancers 

originating from 11 different tissues and including more than 800 cancer patients 

revealed significantly higher expression in cancerous tissue relative to healthy control 

tissue. A subset of studies analyzed also revealed significant positive correlations 

between NODAL expression and high tumour grade (III & IV relative to I & II) and 

tumour size, and a significant negative correlation between NODAL expression and 

degree of differentiation [105]. 

After fulfilling its early embryonic functions, NODAL is epigenetically silenced at least 

in part through polycomb repressive complex-mediated H3K27me3 deposition at the 

NODAL locus [106]. In adults, NODAL expression is thought to be generally limited to 

select niches including the mammary gland, cycling endometrium, adult liver stem cells, 

and pancreatic beta cells (reviewed in [53]). Still, in most adult tissues, NODAL 
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expression is silenced in normal tissue. During cancer progression, NODAL expression is 

activated via mechanisms that are not yet well understood [53]. 

Notably, despite coordinated induction of NODAL and Lefty gene expression in 

development, low or undetectable levels of Lefty have been reported in several cancers in 

both patient samples and cell lines [99, 107], suggesting that NODAL is not always 

subject to this mechanism of endogenous inhibition in cancer. Another study has also 

shown that NODAL can engage non-canonical receptor complexes in cancer but not in 

hES cells [108]. These are examples of how the context dictating NODAL function can 

differ dramatically between evolutionarily constrained and carefully-regulated 

developmental systems, and much more chaotic and deregulated cancerous systems. 

These and other not yet discovered differences are important to consider when studying 

NODAL function in cancer, and are further complicated by inter-tumour and intra-

tumour heterogeneity.  

1.11  Inhibition of NODAL activity as a targeted cancer 
therapeutic strategy 

Inhibitors of components of the NODAL signalling pathway are currently being 

developed for targeted cancer therapy. These consist of a monoclonal antibody targeting 

Cripto-1 [109], and an inhibitor with activity against Alk4/7 [110]. More recently, 

encouraging pre-clinical results have been reported for a newly developed monoclonal 

antibody termed 3D1 that targets NODAL protein directly [111, 112]. This antibody was 

developed against the pre-helical loop region of mature NODAL implicated in Cripto-1 

binding. Treatment of NODAL-expressing cancer cells with 3D1 recapitulated many of 

the previous effects of NODAL inhibition, including reduced phosphorylation of SMAD2 

and ERK. In mouse a mouse xenograft model, treatment with 3D1 resulted in reduced 

tumour growth and reduced metastatic potential. Notably, most of these results were 

demonstrated for the C8161 melanoma cell line. It will be of interest to see if future 

preclinical modelling of NODAL inhibition by 3D1 is robust across different cancer 

types. Additionally, it was not demonstrated if the effects of 3D1 were specific to 

NODAL. Regardless of the strategy used to inhibit NODAL signalling, successful 

development of any targeted therapy depends on a detailed understanding of the target 
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molecule.   

1.12  Direct study of human NODAL is lacking 

Like many genes, the molecular complexity of NODAL’s regulation and expression are 

often either overlooked or difficult to incorporate into conventional experimental model 

systems. Furthermore, a great deal of molecular and functional knowledge of NODAL has 

been obtained from study of non-human embryos and stem cells. Thus, while model 

systems such as the mouse embryo have been extremely valuable for studying NODAL, 

this knowledge must be supplemented with data from human models to fully appreciate 

its human-specific role in development and cancer pathology. Indeed, considerable 

differences in development exist between species as divergent as mouse and human. 

NODAL is no exception, as differences in NODAL biology between human and mouse ES 

cells have been described [113]. In addition, many aspects of NODAL biology are also 

inferred from similar superfamily members such as TGF-beta, Activin, and the GDFs. 

For example, Alk4/5/7 receptors transmit signals from several TGF-beta superfamily 

members, but inhibition of these receptors with the small molecule inhibitor SB-431542 

[114] is often used to infer NODAL function, although the inhibitor is not specific to this 

ligand (e.g. [82, 84, 115]). As another example, the NODAL cysteines ostensibly 

involved in disulfide bond formation and homo-dimerization are annotated by similarity 

to other superfamily members, and have not been directly studied.  

1.13  Transcriptional regulation of gene expression  

For a typical protein coding gene, regulation of its expression takes place at numerous 

stages. Transcription is perhaps the most well-studied point of regulation for many 

protein coding genes. Transcription is generally governed by recruitment of transcription 

factors to enhancer elements that associate with the basal RNA polymerase II machinery 

to initiate transcription. Epigenetic contexts such as DNA methylation and post-

translational histone modifications help to modulate transcription at a given locus [116]. 

Control over Nodal transcription has been particularly well studied, again mainly in 

mouse systems [117, 118]. Characterized enhancer elements influencing Nodal 

transcription are shown in Figure 1.3. In the mouse embryo, Nodal controls its own  
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Figure 1.3: Mouse Nodal enhancers.  
The approximate genomic locations of characterized Nodal enhancers (pink) are 
shown relative to Nodal exons (black; untranslated regions included). Numbers 
indicate approximate coordinates relative to the Nodal transcriptional start site 
(“TSS”). The dashed lines indicate introns. “PEE” = proximal epiblast enhancer. 
“NDE” = node-specific enhancer. “AIE” = asymmetric initiator element. 
“HBE/ERE” = highly bound element or epigenetic regulatory element. “ASE” = 
asymmetric enhancer. Locations of all elements are approximate.  
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expression through a positive feedback loop mediated by a FoxH1-responsive 

asymmetric enhancer (ASE) element in the first intron of Nodal [60, 118]. Other 

characterized Nodal enhancer elements include a node-specific Nodal enhancer (NDE; 

[74, 118-120], a proximal epiblast enhancer (PEE;[118, 121]), and an asymmetric 

initiator element/left side specific enhancer (AIE;[122]). 

More recently, an enhancer termed the “highly bound element” (HBE) has been 

described [123]. This element is required for Nodal expression in the mouse epiblast and 

drives Nodal expression in an Oct4-dependent manner. Furthermore, previous studies had 

identified the HBE locus as a multi-transcription factor-binding locus in ES cells [124-

126]. Transcription factors found to be bound to this element include the master 

regulators of pluripotency Oct4, Nanog, and Sox2. Another study also termed this region 

the “epigenetic regulatory element” (ERE) and found it was subject to DNA methylation 

that regulated Nodal expression and Oct4 binding [127]. Although our understanding of 

the transcriptional regulation of NODAL in cancer cells is far less comprehensive, it has 

been demonstrated that embryonic enhancers such as the NDE are active in the 

promotion of NODAL expression in response to hypoxia via induced Notch signalling in 

both breast cancer and melanoma cells [128]. 

1.14  Co-transcriptional regulation 

Beyond control of transcription initiation, there are several points at which protein-coding 

gene expression is controlled that occur concomitant with or directly after transcription 

and are generally referred to as co-transcriptional regulatory mechanisms. These include, 

but are not limited to, transcriptional start site selection, (alternative) mRNA splicing, and 

the coupled processes of transcription termination and polyadenylation (reviewed in [129, 

130]). For a typical transcript, these processes contribute to the identity of a transcribed 

and fully processed mRNA. First, the 5’ end of the transcript is defined by the 

transcriptional start site and marks the start of the 5’ untranslated region (UTR) upstream 

of the translational start site. The AUG methionine “start” codon marks the end of the 5’ 

UTR and the first codon to be read by the translational machinery during translation. 

During transcription, removal of pre-mRNA introns and subsequent joining of flanking 

exons takes place in a process known as splicing. Splice donor sites define the 5’ ends of 
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introns, while downstream splice acceptor sites define their corresponding 3’ ends. Some 

mRNAs have only a single exon and thus do not undergo splicing, but the vast majority 

contain at least two exons separated by intronic sequences. A TGA, TAG, or TAA “stop” 

codon marks the end of the translated open reading frame [131]. The stop codon also 

marks the start of the 3’ UTR. The 3’ end of a translationally-competent mRNA is also 

modified to terminate in a stretch of non-templated adenine (A) bases known as the 

polyA tail. A corresponding modification is also made to the 5’ end of messages, in the 

addition of a single methylated guanosine base. Collectively, these sites define the 

termini of transcripts (reviewed in [132]). The full-length nature of NODAL transcripts 

has not been specifically assessed. 

1.15  Alternative splicing 

Alternative splicing of messenger RNA is perhaps the most well-studied aspect of co-

transcriptional regulation of gene expression (reviewed in [129]). Mechanisms of 

alternative splicing (AS) exist for many genes, whereby different combinations of exons 

within a single pre-mRNA can be included in distinctly processed transcripts. Alternative 

splicing, as for splicing in general, actually takes place co-transcriptionally [133]. 

According to the kinetic model, a slower rate of transcription allows inclusion of weak 

alternative exons, while the recruitment model posits that specific splicing factors can 

bind RNA polymerase II to increase their local concentration at target splice sites and 

thereby strengthen the interaction [134, 135]. 

1.16  Mechanisms of alternative splicing 

The effects of growth factors and other components of the microenvironment on AS are 

mediated by intracellular signaling cascades [136, 137]. These cascades ultimately affect 

splicing regulatory proteins such as members of the serine and arginine-rich (SR) and 

heterogeneous nuclear ribonucleoprotein (hnRNP) families [138, 139]. Two “splicing 

hubs” through which a multitude of cascades converge to regulate AS have been 

identified as hnRNP K and Sam68 (reviewed in [139]). hnRNP K has been shown to bind 

pre-mRNA splicing enhancers and silencers, with direct phosphorylation of hnRNP K by 

Src-kinases, Protein Kinase C (PKC), ERK1/2, and JNK altering protein-protein and 
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protein-RNA binding patterns of this splicing factor  [140]. Similarly, Sam68 binds 

elements within pre-mRNA and can become phosphorylated by kinases such as ERK 

[141]. These splicing hub proteins mediate normal developmental AS programs, and also 

contribute to pathology in various cancers. Expression levels of hnRNP K and Sam68 are 

often altered in cancer [142, 143]. Furthermore, aberrant upstream signalling in cancer 

such as hyperactive MAPK signalling can alter normal post-translational modifications of 

splicing factors, affecting their localization and function [141, 144]. Collectively, these 

alterations in expression and activity of splicing factors hnRNP K and Sam68 can disrupt 

normal splicing patterns of target transcripts important in pro-tumourigenic phenotypes 

[145].  

For splicing to take place, splice donor and splice acceptor motifs must be precisely 

recognized by the splicing machinery. This machinery is referred to as the spliceosome, 

which consists of five nuclear ribonucleoprotein particles (snRNPs), and a large number 

of proteins. There are two different spliceosome complexes known as the major and 

minor spliceosomes that are involved in the removal of introns with different sequence 

features at splice donor, branch point, and splice acceptor sites. The major or U2 snRNP-

dependent spliceosome catalyzes the removal of the majority (>99.5%) of introns. Of 

these introns, the vast majority (99%) contain GU and AG dinucleotides at their 5’ and 3’ 

ends, respectively. Notably, about 0.7% of U2 introns are defined by terminal GC and 

AG dinucleotides. Conversely, the minor or U12 snRNP-dependent spliceosome 

catalyzes the removal of less than 0.5% of human introns [146]. While it was originally 

thought that U12 introns universally contained AU and AC terminal dinucleotides, it was 

later revealed that U12 introns are instead primarily defined by specific and highly 

conserved sequence motifs relative to U2 introns at their 5’ splice donor sites and branch 

point sequences, and contain both GU-AG and AU-AC terminal dinucleotides [146, 147].    

Mutation of constitutive splice sites in tumour-suppressor genes may disrupt normal gene 

processing and thus offer a selective advantage for growth in cancer cells. For example, 

in breast and ovarian cancer, mutations in the tumor suppressor BRCA1 often disrupt 

constitutive splice sites, leading to loss of functional protein [148]. Indeed, bioinformatic 

tools to predict the impact of virtually any cancer-associated mutation on patterns of 
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alternative splicing have been developed [149-152]. For human NODAL, inheritance of a 

rare mutation within a splice site motif of a constitutively spliced exon is associated with 

abnormal development [153]. Notably, mutations or polymorphisms can also result in 

cryptic splice sites and resultant alternative splicing in regions normally constitutively 

spliced out as introns. 

1.17  Types of alternative splicing 

The relative positions of utilized 5′ donor and 3′ acceptor splice sites are used to classify 

different types of AS events as cassette alternative exon (or exon skipping), mutually 

exclusive exon, alternative 5′ splice site, alternative 3′ splice site, or complete intron 

retention. Cassette alternative exon splicing is the most common form of AS in humans 

[154]. Beyond differential inclusion of exons in processed transcripts, a more exotic form 

of splicing produces circular RNAs through “back-splicing” of downstream 5’ splice 

donor sites that form junctions with upstream 3’ splice donor sites of either their own 

exon or upstream exons, resulting in completely closed circular RNA transcripts lacking 

free ends. Although often generated from protein coding pre-mRNAs, these transcripts 

are not generally protein-coding, but can act to regulate gene expression either at the 

level of transcription, or post-transcriptionally through modulation of miRNA activity 

[155].  

1.18  Widespread alternative splicing of human genes 

Genome-wide analyses suggest that AS might affect as many as 95% of multi-exon 

human transcripts [156]. This newfound appreciation of the ubiquity of AS suggests there 

are numerous alternatively spliced transcript isoforms yet to be characterized. 

As is true for gene transcription, patterns of AS also differ between tissues such as brain, 

skeletal muscle, breast, liver, and colon. Some alternatively spliced variants are virtually 

absent in one tissue, and constitute virtually all expressed transcripts of that gene in 

another tissue [156]. It follows that AS is tightly regulated over the course of 

development, and that specific patterns of splicing must be maintained in adult tissues to 

preserve distinct cellular identities and functions. Along with widespread changes in gene 

expression, reprogramming of AS coincides with EMT [157, 158], indicating that AS 
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plays an important role in phenotypic plasticity. It has been proposed that regulation of 

numerous alternative splicing events is part of a coordinated EMT “splicing signature.” 

Such signatures have proven useful in the classification of breast cancer cell lines as 

either luminal (generally poorly metastatic) or basal (generally more aggressive and 

metastatic) [157]. The existence of splicing signatures for other processes integral to 

tumor progression such as angiogenesis has also been hypothesized [159-162]. In human 

embryonic stem cells, induced differentiation is accompanied by widespread changes in 

alternative splicing [163, 164]. A switch in the alternative splicing of a key regulator of 

stem cell pluripotency and differentiation also dictates cell fate [165]. Furthermore, splice 

variants have been described for two of the most well-studied “core” pluripotency 

transcription factors OCT4 [166, 167] and NANOG [168, 169]. Perhaps unsurprisingly, 

alternative splicing is frequently deregulated in cancer [138, 170, 171], and cancer cells 

can hijack stem cell alternative splicing programs to enhance the maintenance of cancer 

stem cells [172].  

Evidently, AS is important for normal cell function, and dysregulation of AS is 

widespread in cancer. Therefore, AS may present opportunities for therapeutic 

intervention and novel prognostic biomarker identification for specific cancers [173, 

174]. In addition, alternatively spliced gene products of cancer therapy targets must be 

extensively characterized to ensure desired targeting. Going forward, if these goals are to 

be achieved, alternatively spliced transcripts will need to be carefully documented, 

characterized, and incorporated into modelling of gene function in models of normal and 

malignant cell function. 

1.19  Impact of alternative splicing on the human proteome 

Although alternative splicing takes place at the RNA level, its manifestation at the level 

of corresponding translated protein products has always been of great interest. Alternative 

splicing is widely touted as a major contributor to the generation of proteomic diversity 

from a limited genome. Despite this realization, the extent to which alternative splicing 

contributes to productive translation of multiple protein isoforms from a single locus on a 

genome-wide scale remains unclear and controversial [175]. As a result, there is a distinct 

lack of predictive tools to decipher if a novel alternative splicing event is likely to be 
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biologically relevant at the protein level.  

One study has attempted to identify defining features of bona fide alternative splicing 

events for which multiple protein isoforms have been experimentally confirmed [176], 

and will be briefly reviewed here: When focusing on cases where alternative splicing 

leads to truncation of conserved protein domains, the authors found that experimentally 

confirmed alternatively spliced protein isoforms always satisfied at least one of the two 

following criteria: truncated domain size/original domain size >0.6, or truncated domain 

size/protein size <0.3. That is, there were no experimentally confirmed cases where the 

truncated domain size/original domain size was very low, AND the truncated domain 

size/protein size was large. Thus, alternative splicing events leading to substantial domain 

truncation of large domains are unlikely to result in stable protein products. While this 

represents an exciting finding, such cases represented only 10% of all putative 

alternatively spliced variant entries in Swissprot. Therefore, identification of a typical 

domain disruption event where truncated domain size/original domain size >0.6, and/or 

truncated domain size/protein size <0.3 does not have much predictive value. Similarly, 

analysis of alternative splicing events validated at the RNA level revealed increased 

frequency of domain truncations with truncated domain size/original domain size 

between 90 and 100% relative to all entries of alternative splice variants. When the same 

comparison was made for percentage of protein disorder in the region affected by 

alternative splicing, validated alternative splicing events were less likely to have 0-10% 

disorder, and more likely to have 90-100% disorder. However, this finding was again not 

applicable to any individual case of alternative splicing, as alternatively spliced regions 

with 0-10% disorder were much more frequent than those with 90-100% disorder overall. 

Lastly, while this study reported 505 “minor” isoforms with evidence of expression at the 

protein level, a comprehensive search of the protein data bank (PDB) revealed only 15 

genes for which experimentally confirmed protein structures corresponding to multiple 

isoforms have been obtained. This underscores the dramatic lack of genome-wide 

characterization of alternative splicing at the protein level. 

Recently, an impressive large scale screen of protein-protein interactions for a collection 

of human open reading frames revealed functional significance of alternative splicing at 
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the proteome level on a genome wide scale [177]. This study found that linear motifs 

were more frequent in isoform-specific regions associated with promoting protein-protein 

interactions, and that their interaction partner proteins were more likely to contain linear 

motif binding domains than proteins involved in non-isoform-specific interactions. 

Alternative splicing events resulting in the truncation of conserved protein domains were 

also enriched for protein-protein interaction losses relative to alternative splicing events 

resulting in truncation in general. Quantitative analysis of protein-protein interactions for 

alternatively spliced proteoforms revealed cases with identical, intermediate, and 

completely distinct interaction profiles. Analysis also revealed that alternatively spliced 

proteoforms were indistinguishable from protein products of distinct genes in their 

interaction networks and disease associations. Isoform pairs with the most dramatic 

“rewiring” of protein-protein interactions were enriched for intrinsically disordered 

regions relative to alternatively spliced pairs with more similar interaction networks [178-

180]. Another study revealed that alternatively spliced exons with tissue-specific 

expression were enriched for phosphorylation sites [181]. The extent to which alternative 

splicing modulates other post-translational modifications has not yet been assessed. 

Collectively, these studies suggest that alternative splicing is a bona fide mechanism for 

the modulation of biologically relevant protein function and interaction networks at the 

protein level. 

1.20  The functional impact of alternative splicing 

The alternative splicing of VEGFA is an excellent example of the ability of AS to confer 

functional divergence to products of the same gene. VEGFA is integral to angiogenesis—

the expansion of blood vessel networks essential for normal tissue development and a 

hallmark of cancer (reviewed in [2, 3, 182]). Although VEGFA gene products are 

generally pro-angiogenic, alternative splicing yields a subset of VEGFA transcript 

isoforms that display anti-angiogenic activity (reviewed in [160]) that are in fact the 

predominant class of isoforms in most normal adult tissues [183]. Remarkably, these 

isoforms differ from their pro-angiogenic counterparts in only the six most C-terminal 

amino acids resulting from alternative utilization of nearby splice acceptor sites in the 

most 3’ exon. A splicing switch promotes expression of the pro-angiogenic isoforms in 
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cancer [162, 184]. 

Despite the prevalence of alternative mRNA splicing, no alternatively spliced transcripts 

for the human NODAL gene have been described. During writing of this thesis, an 

alternative transcript annotation (NM_001329906.1) was added to the NCBI RefSeq 

database that utilizes an alternative first exon relative to the primary NODAL isoform 

(NM_018055.4). Still, no alternative splicing of NODAL transcripts has been described, 

and no putative isoforms have been characterized at either the transcript or protein levels. 

1.21  Transcript cleavage and polyadenylation 

Downstream of splicing events, the identity of the 3’ UTR of a mature mRNA is 

determined by the coupled processes of pre-mRNA cleavage and polyadenylation. There 

are several sequence elements that guide the selection of polyadenylation sites (reviewed 

in [130, 185]), referred to as the upstream sequence element (USE) [186], 

polyadenylation signal (PAS) [187], and downstream sequence element (DSE) [188, 

189]. The highly conserved PAS is found 10-30 bases upstream of the mRNA cleavage 

site. Analysis of PAS sequences at 7,000 bona fide human mRNA cleavage sites revealed 

that two motifs account for the majority of sites, with AAUAAA and AUUAAA 

accounting for 47% and 16% of all sites, respectively [190]. The USE is less well-

defined, while the DSE is a U- or GU-rich element. As with splicing, polyadenylation can 

occur at multiple sites for a single transcript in a process known as alternative 

polyadenylation (APA) (reviewed in [130, 185]). Interestingly, different tissues show 

global preferences for the selection of either more distal PAS resulting in longer 3’ UTRs 

(e.g. brain), or more proximal PAS resulting in shorter 3’ UTRs (e.g. blood)  [191]. 

Patterns of APA are also dynamic during development, with distal site selection 

becoming favoured during differentiation and embryonic development [192], whereas 

high levels of cell proliferation found in cancer and reprogramming of somatic cells to 

iPS cells involves selection of more proximal PAS and generally shorter 3’ UTRs [193-

195]. 

1.22  Post-transcriptional regulation of gene expression 

Subsequent points of regulation are often broadly referred to as post-transcriptional 
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regulation. At the RNA level, these include regulation of mRNA nuclear export and 

stability, and regulation by complementary RNAs such as microRNAs and natural 

antisense transcripts (NATs). Antisense transcription occurs when two transcripts are 

expressed from the same genomic locus—one from each complementary strand of the 

genome. These transcripts are transcribed in opposite directions to yield RNAs with 

complementary sequence—the extent of which depends on their degree of genomic 

overlap. Unsurprisingly, the complementary nature of natural antisense transcripts often 

confers the ability of one transcript to regulate the expression (translation or otherwise) of 

its antisense counterpart (reviewed in [196, 197]). Although there is a putative antisense 

transcript in GenBank (accession AK001176) mapping to the constitutive exon 2 NODAL 

locus, this transcript has not been curated into the RefSeq database, and has not been 

directly studied.  

Further points of post-transcriptional regulation include control over protein translation, 

protein trafficking and enzymatic processing, quaternary protein complex formation, and 

post-translational modification (PTM) of specific amino acid side chains of the protein. 

PTMs are integral to normal cell function and are most widely appreciated for their role 

in the modulation of enzyme activity through phosphorylation [198]. Several classes of 

PTMs play numerous roles in a myriad of cellular processes including signal 

transduction, protein folding and stability, and protein-protein interactions (reviewed in 

[199]). Unsurprisingly, PTMs also play numerous roles in the regulation of human 

embryonic stem cell pluripotency [200].  

One post-translational modification characteristic of TGF-beta superfamily members and 

secreted proteins in general is N-glycosylation, which consists of the covalent addition of 

a glycan oligosaccharide to asparagine residues within N-X-S/T motifs [201]. N-

glycosylation generally aids in protein folding in the ER, and impacts both protein 

secretion and stability (reviewed in [202]). As examples, extensive N-glycosylation is 

required for dimerization of Quercetin 2,3-dioxygenase subunits [203], and N-

glycosylation of TGF betas promote the secretion of active ligand [204]. Intracellular 

full-length/pro-Nodal is found in an N-glycosylated form, and corresponding pro-Nodal 

secreted into conditioned media was found to contain complex carbohydrate 
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modifications, indicative of further N-glycan processing along the secretory pathway 

[205]. Similar modifications to both full-length pro-Nodal and the cleaved pro-domain 

indicate that the pro-domain is the site of these post-translational modifications. In 

contrast to the pro-domain, the mature peptides of both human and mouse mature Nodal 

ligands do not contain N-glycosylation sites. Once cleaved from the N-glycosylated pro-

domain, it has been suggested that the mature Nodal peptide is rapidly degraded and thus 

limited in its signalling range  [206]. Interestingly, experimental introduction of different 

N-glycosylation motifs found in BMP6 or the Xenopus nodal related (Xnr) proteins into 

the Nodal mature domain increased the accumulation of mature Nodal peptide in 

conditioned media and consequently signalling range in zebrafish blastulae [206]. 

However, the effect of this N-glycosylation on Nodal secretion, processing, or 

dimerization was not reported. Furthermore, the specific residues in the pro-domain at 

which endogenous N-glycosylations take place have not been directly studied, nor has the 

impact of these modifications on NODAL processing.   

1.23  Genetics is the basis for many aspects of gene expression 

One common thread to all of the processes discussed above, and indeed virtually every 

process in the cell, is that they are influenced by sequences in genomic DNA. Prominent 

examples discussed above include transcription factor binding sites, splice site 

dinucleotides, and polyadenylation signals. Beyond these elements, DNA obviously also 

templates the transcription of complementary RNA, interpreted as codons by the 

translational machinery, and thus the amino acid identity of cellular proteins. Many 

PTMs such as N-glycosylations are catalyzed at strict consensus sequences that are 

therefore templated by genomic DNA. Collectively, these aspects of genomic DNA 

underscore the impact of widespread DNA mutation on gene expression and cellular 

function in cancer. Even in the absence of cancer, genomic DNA is not static between 

generations and individuals, as non-lethal germline mutations occurring at low 

frequencies over evolutionary time persist in populations [207]. 

1.24  Genetic variation in human populations 

Genetic variation between human individuals and within populations pose challenges to 



26 

 

biomedical research in terms of heterogeneity between individuals. Traditionally 

overlooked, the importance of characterizing genetic variation and considering its impact 

on modelling biological processes is now becoming increasingly appreciated. Going 

forward, these considerations will contribute to research findings that more readily 

translate to humans and can be incorporated into highly sought after personalized 

medicine approaches for combatting diseases such as cancer.  

Ever since the completion of the human genome project between 2000 and 2003, there 

has been an intensified interest in inherited genetic variation in humans. The first step 

toward incorporating genetic variation into experimental models is to survey the extent 

and nature of genetic heterogeneity on a global scale. The 1000 Genomes Project is the 

most comprehensive project ever completed to catalogue this variation [207]. Recently 

completed in 2015, this project employed various genotyping technologies including 

deep sequencing to reconstruct the genomes of 2054 individuals from 26 populations 

representing different ancestries from around the world. The 1000 Genomes Project has 

detailed over 88 million genetic variants. By far the most common type of genetic 

variation in humans is the single nucleotide polymorphism (SNP), representing 

approximately 84.7 million or 96% of the variants detected [207]. A typical genome 

deviates from the reference genome at about 4.1 to 5.0 million sites, or about 0.15% of 

the genome [207]. While most variants in the entire catalogue are rare (73% have a 

frequency < 0.5%), most variants in a given genome are common; between 96% and 99% 

have a frequency of > 0.5% [207].  

Although the percentage of polymorphic bases in a typical genome (0.15%) may seem 

underwhelming, the putative functional impact of these polymorphisms is staggering: A 

typical genome is estimated to contain between 149 and 182 SNP alleles resulting in 

protein truncation, 10,000 to 12,000 SNP alleles that alter peptide sequence, and roughly 

500,000 SNPs in known regulatory regions [207].  

1.25  Genome-wide association studies 

There has also been a great deal of interest in identifying genetic variations or SNPs that 

are responsible for variation in human traits, including susceptibility to complex diseases 
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such as cancers, as well as response to and tolerance of specific classes of drugs. The 

simplest study design to identify such SNPs is to perform a genome-wide association 

study (GWAS) that identifies SNPs with different genotype frequencies between two 

populations of interest, for example subjects who have received a cancer diagnosis and 

subjects who have not.  

1.26  The challenges and benefits of linkage disequilibrium 

A major complicating aspect to identifying potentially functional SNPs from association 

studies is linkage disequilibrium [208]. Since any given SNP allele is generally inherited 

as part of an entire chromosome, it is inherited along with numerous other SNP alleles 

known as a haplotype. Two SNP alleles that are always inherited together throughout a 

population are said to be in perfect linkage disequilibrium (LD). Thus, if one of these 

SNPs was causally responsible for the given trait of interest and the other SNP had no 

function, the two SNPs would be indistinguishable in a GWAS.  Although useful to 

reduce genotyping costs and for imputation of unknown SNPs, LD has remained a major 

obstacle to the identification of causal genomic variants.  

Early expectations were that GWA studies would uncover numerous variants in protein-

coding regions that dramatically affected protein function. Perhaps surprisingly, most 

GWAS hits or trait/disease-associated SNPs (TASs) instead lie in either intronic or 

intergenic non protein-coding regions. The NHGRI-EBI GWAS Catalog reported such 

variants to make up 88% of GWAS hits [209]. These high rates are retained even after 

more complex fine mapping approaches have been applied (e.g. 90% in [210]). These 

findings not only suggest that non-protein coding regions of the genome are undoubtedly 

functionally important, but also demand increased efforts to functionally annotate non-

coding regions of the human genome.  

The most massive effort to extensively functionally annotate the human genome has been 

the Encyclopedia Of DNA Elements (ENCODE) project. This project maps results from 

numerous genome-wide studies including transcription factor and histone protein ChIP-

seq, DNase sensitivity assays, and RNA-seq to the human genome [211, 212]. These 

annotations can be extremely useful in assessing the potential function of a candidate 



28 

 

SNP based on its genomic location.  

Many other types of data from genotyped samples are also useful for directing further 

study of SNPs of interest. As an example, expression quantitative trait loci (eQTL) 

studies link SNP alleles with expression of genes in cis or even global gene expression in 

trans [213], and splice site software can be used to predict how a given SNP may affect 

proximal splice site selection, possibly through modulation of splice site motifs [149].   

1.27  SNPs in the human NODAL gene locus 

Within the human NODAL gene locus, there are 630 total SNPs. Of these, 39 have a 

minor allele frequency (MAF) of >1% (dbSNP build 147 from UCSC Genome Browser). 

There are seven SNPs within the NODAL gene with ClinVar annotations. Of these, three 

are listed as “pathogenic” or “likely pathogenic.” These three SNPs are associated with a 

developmental condition known as situs ambiguus, also known as visceral heterotaxy 

[153, 214], which is characterized by the random orientation of organs such as the heart, 

lungs, liver, spleen, and stomach, with respect to the left-right body axis (OMIM.org). 

The minor allele for rs104894169 results in the single amino acid change R183Q and the 

minor allele for rs121909283 results in the single amino acid change G260R, while the 

minor allele for rs878855044 results in abrogation of the constitutive exon 2 splice donor 

site. Beyond these annotated ClinVar polymorphisms, numerous other rare family-

specific NODAL polymorphisms have been found in the genomes of individuals suffering 

from heterotaxy and other laterality abnormalities, a plethora of congenital heart defects 

(CHD), and holoprosencephaly (HPE)—a failure of the developing forebrain to divide 

into two separate hemispheres [153, 215]. Roessler and colleagues [215] used a NODAL 

signalling luciferase reporter in zebrafish embryos to quantify the signalling capacities of 

various NODAL proteins harbouring numerous polymorphisms and mutations. Many of 

the polymorphisms associated with abnormal developmental phenotypes conferred 

reduced signalling capacity upon NODAL. Interestingly, this was true of the extremely 

common minor allele for NODAL SNP rs1904589 resulting in amino acid substitution 

H165R, along with several other mutations in the NODAL pro-domain. Mutations in 

other components of the NODAL signalling pathway resulting in reduced NODAL signal 

strength have also been linked to HPE as well as heart and laterality defects [215, 216]. 
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Importantly, many of these polymorphisms are very rare and therefore do not provide 

enough statistical power for association analysis with typical cohort sizes. To date, no 

GWAS associations have been described for any NODAL SNPs. The study by Roessler 

and colleagues has also been the only report to functionally assess genetic 

polymorphisms at the NODAL locus. Furthermore, only polymorphisms in coding regions 

were functionally assessed. This is indicative of a general inability to predict the effect of, 

or experimentally model, non-coding polymorphisms.  

1.28  The advent of precision genome editing 

Traditionally, direct functional study of SNPs has been limited to over expression of 

different plasmid constructs where the genetics of interest can be easily manipulated. 

However, such systems do not recapitulate the endogenous genomic context. Thus, it is 

very difficult to model non-coding polymorphisms, especially in cases where the 

potential functional impact of the SNP is unknown. Thankfully, recent advances in 

precision genome editing now potentiate the ability to modulate endogenous SNP alleles 

of interest in cultured human cells. Technologies such as the Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) [217]and 

Transcription Activator-Like Effector Nuclease (TALEN) [218] systems allow rapid 

construction of engineered nucleases for virtually any target of interest and have been 

quickly adopted by numerous fields conducting molecular biological research [219-222]. 

These technologies have already been used to mutate disease-associated SNP alleles (e.g. 

[223]). Furthermore, comprehensive computational and experimental pipelines for the 

mutation of SNP alleles have started to emerge [224], and were used to endogenously 

manipulate a cancer-associated SNP for the first time. Notably, this SNP was a non-

coding intronic SNP. Precise editing of endogenous SNP alleles is the holy grail of 

experimental models to assess SNP function, and will unquestionably lead to the 

validation and/or invalidation of countless putative functional SNPs in the coming years, 

with tremendous implications for advancing goals of personalized medicine. 

Beyond SNP editing, precision genome editing has many other applications. Perhaps the 

most appealing application of precision genome editing is functional gene knockout. This 

can be achieved by exploiting the error-prone non-homologous end joining (NHEJ) 
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pathway active in nuclease-induced double-stranded DNA break repair. This process 

results in short indel mutations at the target site [225]. Cells with translational frameshift-

altering mutations in all alleles will not translate normal protein and can be used as 

knockout models. The use of precision nucleases also greatly enhances gene targeting 

abilities and introduction of exogenous constructs into the genome; a process that was 

previously extremely inefficient in human pluripotent stem cells despite much success in 

mouse counterparts (reviewed in [226]). To date, precision genome editing has not been 

used in any fashion to functionally knockout or otherwise study the human NODAL gene 

locus.  

1.29  Thesis rationale, hypothesis, and aims 

There is currently only one human NODAL transcript isoform that has been 

characterized. However, genome-wide transcriptome profiling suggests that multiple 

transcripts are expressed from virtually all multi-exon human genes [227]. I hypothesize 

that there is more than one distinct transcript expressed from the human NODAL locus. 

Comprehensive analysis will be performed to identify and characterize potential novel 

NODAL locus transcripts (chapter 3). I will also explore how genetic heterogeneity can 

regulate expression of novel NODAL transcripts (chapter 2), and how their translation 

impacts the processing and function of NODAL protein (chapter 4). Thus, I will 

characterize human NODAL gene expression at multiple levels, with an emphasis on how 

these levels are inter-connected. Lastly, I aim to develop tools to streamline precision 

genome editing workflows, and use these tools to establish robust over-expression and 

functional knockout NODAL models. Collectively, elucidation of these molecular details 

and development of genetic models of NODAL function will enrich our understanding of 

human-specific NODAL biology in models of development and disease.  
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Chapter 2  

2 Characterization of a functional non-coding NODAL 
single nucleotide polymorphism (SNP) 

2.1 Introduction 

2.1.1 Genetics of human pluripotent stem cells 

In recent years, a growing body of literature has focused on genomic instability and the 

accumulation of copy number alterations that occur within human embryonic stem cell 

(hESC) lines [1-3]. However, no work has addressed how inherited genetic variation is 

associated with hESC pluripotency, or any other characteristics of this cell type. Such 

findings will be crucial to achieving the International Stem Cell Initiative’s (ISCI) goal of 

understanding heterogeneity in human embryonic stem cell line models to potentiate 

generalizable discoveries [4-6]. It has been suggested that modeling pluripotency with 

cell lines of diverse genetic ancestries will be necessary to achieve this goal [7, 8]. 

Despite this realization, the two most commonly studied hESC lines (H9 and H1) appear 

in more publications than the next 20 most common hESC lines combined, and account 

for over 25% of all hESC citations (http://www.umassmed.edu/iscr/). Thus, genetic 

polymorphisms in these and other cell lines likely contribute to bias in our current 

understanding of human pluripotency and early embryonic development.  

The genome-wide impact of genetic heterogeneity on gene expression for established 

hES cell lines is confounded by differences in their derivation. However, this impact has 

been examined in induced pluripotent stem (iPS) cells where derivation of multiple lines 

in parallel can be carefully controlled [9, 10]. Strikingly, germ-line genetic variation 

between individual donors was found to explain more variance in gene expression than 

the somatic cell type used for reprogramming. Genetic variation has also been implicated 

in subsequent differentiation potential of iPS cells [11, 12]. Still, beyond the general 

impact of genetic variation on gene expression profiles, no inherited polymorphisms have 

been associated with any characteristics of human pluripotent stem cells.  
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2.1.2 NODAL in human pluripotent stem cells 

One gene that plays an important role in determining hES cell fate is the TGF-beta 

superfamily member nodal growth differentiation factor (NODAL). In hESCs, NODAL 

signalling helps maintain pluripotency, partially through transcriptional activation of the 

transcription factor NANOG [13]. NODAL also activates gene expression from poised 

epigenetic marks, facilitating early differentiation events [14, 15]. To date, only two 

common single nucleotide polymorphisms (SNPs) in the NODAL gene have been 

functionally studied, along with numerous rare disease-associated mutations [16]—all of 

which are found in protein coding regions of NODAL. However, it is currently unknown 

how any genetic polymorphisms at the NODAL gene locus impact hESC biology. 

Furthermore, no non-coding NODAL SNPs have ever been functionally characterized in 

any context. Here I explore the associations and functional impact of a non-coding 

intronic NODAL SNP (rs2231947) in hES cell lines.  

2.2 Results 
Using SNP genotyping data from the International Stem Cell Initiative’s (ISCI’s) global 

survey of hESC lines [5], and associated gene expression data [4], I discovered two 

interesting associations in hES cell lines for NODAL SNP rs2231947. The relative 

location of rs2231947 is shown in the context of the human NODAL gene in Figure 2.1. 

First, I found the minor allele for rs2231947 (T on the sense strand) to be drastically 

under-represented in male hESC lines of European ancestry relative to ancestry-matched 

female hESC lines (Figure 2.2). The association between rs2231947 genotype and an 

individual’s sex was not present in the European reference super population from the 

1000 Genomes Project, suggesting this bias does not occur under normal developmental 

conditions. Furthermore, the minor allele frequency (MAF) for rs2231947 in female 

hESC lines did not differ from that of the European reference super population, 

suggesting that prospective male cell lines with the minor allele for rs2231947 may have 

been negatively selected against. The sex association was not due to an ancestry 

stratification effect, as analysis of all five available European subpopulations showed 

extremely low differentiation for rs2231947 (Table 2.1).   



54 

 

  

 

 

 

 

 

 

 
Figure 2.1: Schematic of the human NODAL gene locus on chromosome 10. 
Orientation is based on the sense strand, with the 5’ end on the left and 3’ end on 
the right. Thick bars indicate coding regions, intermediate bars indicate 
untranslated regions, and thin lines indicate introns. The approximate position of 
single nucleotide polymorphism (SNP) rs2231947 is indicated. Diagram scale is 
approximate.   

SNP rs2231947 (C/T)human NODAL locus (5’→3’)
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Figure 2.2: NODAL SNP rs2231947 sex bias in hES cell lines. 
Upper: From left to right: rs2231947 allele frequencies in male (T=2, C=52, n=54) 
and female (T=16, C=60, n=76) hES cell lines, male (T=101, C=379, n=480) and 
female (T=103, C=423, n=526) individuals from the 1000 Genomes Project 
(1KG), and female (n=76) hES cell lines and all (male and female, n=1,006) 
individuals from the 1000 Genomes Project. n=number of alleles. All cell lines 
and individuals are of European (EUR) ancestry (see methods). P values for 
each pair indicate results of two-tailed Fisher exact tests. Bottom: Forest plot of 
the odds ratio (OR) for a cell line or individual having the T allele for rs2231947 in 
males versus females. Black square indicates OR, lines indicate 95% confidence 
interval (CI). Numbers to the right are OR [minimum of CI, maximum of CI]. 
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Table 2.1: Extent of genetic differentiation among European 
subpopulations for SNP rs2231947. 

 
Weir and Cockerham’s Fst was calculated for each pair of European 
subpopulations from the 1000 Genomes Project. This metric is a measure of the 
extent to which two populations are genetically different, and generally ranges 
from 0 (identical allele frequencies) to 1 (complete allele switching). All 
comparisons shown here are very close to 0, suggesting there is very little 
differentiation at the rs2231947 locus between European subpopulations. Note 
that this method for calculating Fst may yield slightly negative values, but such 
values have no biological meaning. Population codes: CEU= Utah Residents 
(CEPH) with Northern and Western European Ancestry, FIN= Finnish in Finland, 
GBR= British in England and Scotland, IBS= Iberian Population in Spain, TSI= 
Toscani in Italia. 
  

Populations compared rs2231947 Fst

CEU_FIN 0.004693

CEU_GBR 0.000016

CEU_IBS -0.004606

CEU_TSI -0.004883

FIN_GBR -0.004823

FIN_IBS 0.004043

FIN_TSI 0.003740

GBR_IBS -0.000386

GBR_TSI -0.000707

IBS_TSI -0.004676
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Since rs2231947 alleles showed a sex bias in human embryonic stem cells, I 

hypothesized that rs2231947 genotype may correlate with sex-specific gene expression. I 

chose to analyze X-inactive specific transcript (XIST), a major driver of the female-

specific X-chromosome inactivation (XCI) process that takes place in early embryonic 

development [17]. In female hESC lines (n=17), I found that the rs2231947 T allele had a 

strong positive association with XIST expression. Female T|T or C|T (n=5) cell lines 

expressed XIST transcript at a median level of 1,648-fold higher than the median of C|C 

(n=12) cell lines (P=0.015, Figure 2.3).  

To assess a potential function for SNP rs2231947 and assess its contribution to NODAL 

biology, I first examined the sequence context of the rs2231947 locus. When the T allele 

is present, the locus closely resembles a typical human splice site motif (Figure 2.4 and 

[18]). Conducting more detailed “Automated Splice Site And Exon Definition Analyses” 

[19] revealed that relative to the C allele, the T allele of SNP rs2231947 was predicted to 

both slightly strengthen a putative splice acceptor site, as well as contribute to a strong 

cryptic 5’ splice donor site not formed by the rs2231947 C allele (Figure 2.4).  

Until recently, there was only one annotated NODAL transcript isoform (NCBI RefSeq 

NM_018055.4). During writing, a second isoform was curated into the RefSeq database 

(NM_001329906.1). These isoforms differ in their use of alternative first exons. No other 

NODAL transcript variants have been described. Based on the bioinformatic splice site 

predictions, I next conducted RT-PCR to detect any potential novel exons. I designed 

primers to target constitutive exons 2 and 3 flanking the rs2231947 SNP within intron 2. 

The H9 hES cell line was chosen for analysis as it was found to be homozygous for the 

minor T allele of rs2231947 predicted to contribute to a strong cryptic splice donor site. 

In addition to the expected product corresponding to the primary annotated NODAL 

transcript, a second product was detected. Cloning and sequencing of this amplicon 

revealed a 116 base-pair cassette exon forming upstream and downstream junctions with 

the second and third constitutively spliced NODAL exons, respectively (Figure 2.5). The 

5’ splice donor site defining this alternative exon corresponded to the site predicted to be 

strengthened by the T allele of rs2231947. Next, a panel of hES and human induced   
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Figure 2.3: NODAL SNP rs2231947 genotype is associated with XIST levels 
in female hES cell lines. 
Boxes indicate median and inter-quartile ranges. Whiskers indicate minimum and 
maximum observations. XIST expression is lower in C|C compared to C|T or T|T 
female hES cell lines. P=0.015 by one-tailed t test. 
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Figure 2.4: Splice site prediction at the NODAL SNP rs2231947 locus. 
Sequence “web logos” show human NODAL rs2231947 locus relative to both 
splice acceptor sites (left) and splice donor sites (right). rs2231947 is shown as 
C/T SNP in sequences. For splice acceptor sites, position “0” marks the intron-
exon boundary and is the first (most 5’) base of an exon. For splice donor sites, 
position “0” marks the exon-intron boundary and is the first (most 5’) base of an 
intron. “Putative C” and “putative T” refer to predicted splice sites at the 
rs2231947 locus contributed by each SNP allele. Exons 1, 2, and 3 are the 
constitutively spliced NODAL exons. The dashed lines indicate the predicted 
minimum threshold of 2.4 bits for splice site utilization.   
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Figure 2.5: Novel NODAL transcript isoform in H9 hES cells. 
Reverse-transcription PCR amplification of NODAL reveals a novel NODAL 
transcript at hg19 coordinates: chr10:72193855-72193971. Constitutively spliced 
NODAL exons are shown in orange. The alternative cassette exon is shown in 
blue. Black arrows indicate PCR primer sites. Red arrow indicates the SNP 
rs2231947 locus. Diagonal lines indicate splice site utilization. 
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pluripotent (iPS) stem cell lines were genotyped for rs2231947 and assayed for both the 

primary annotated NODAL and the new-found NODAL variant transcripts using real time 

PCR assays. While all cell lines expressed the primary annotated NODAL transcript, only 

cell lines with at least one T allele (T|T or C|T genotypes) expressed the novel NODAL 

transcript (Figure 2.6). 

Next, a minigene splicing reporter plasmid [20] was modified to include NODAL 

sequence spanning from the 3’ region of constitutively spliced exon 2, to the 5’ region of 

constitutively spliced exon 3. Transfection of cells with this minigene plasmid followed 

by RT-PCR analysis of NODAL gene expression specific to the plasmid demonstrated 

that expression of the two NODAL isoforms is characteristic of true alternative splicing 

from a single locus, as opposed to mutually-exclusive splicing of one isoform or the other 

based on the SNP allele present in cis. Furthermore, the generation of minigenes with 

different alleles (C or T) for rs2231947 also revealed that SNP rs2231947 directly 

regulates this alternative splicing event, and that the SNP rs2231947 T allele is necessary 

for inclusion of the alternative cassette exon (Figure 2.7).  

Allele-specific gene expression can be used to determine to what extent each 

chromosome/ allele contributes to expression of a given transcript. A significant fraction 

of genes in human embryonic stem cells display allele-biased gene expression [21]. Since 

these biases can result from parent-of-origin effects, and I found NODAL SNP rs2231947 

genotypes displayed a sex bias in hES cells, I was interested in assessing allelic 

expression of NODAL in hES cells. A heterozygous SNP allele in an exon serves as an 

ideal marker to assess allelic gene expression. A survey for such polymorphisms with 

relatively high population MAFs (> 5%, and therefore likely to be heterozygous) in 

NODAL exons found three such SNPs, with constitutive exon 2 SNP rs104894169 having 

the highest MAF. I surveyed a panel of hES cell lines and found the CA1 line to be 

heterozygous for this SNP. This cell line was also ideal for analysis as it was 

heterozygous for SNP rs2231947 (Figure 2.6). Sequencing of clones of a PCR amplicon 

within constitutive exon 2 encompassing the rs104894169 locus amplified from CA1 

cDNA revealed expression of both A and G SNP alleles (Figure 2.8A). Similar analysis   
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Figure 2.6: NODAL variant expression is associated with SNP rs2231947 
genotype in human pluripotent stem cell lines. 
Real time PCR isoform-specific analysis of NODAL reveals NODAL variant 
expression in only a subset of human pluripotent (hES and hiPS) cell lines with at 
least one T allele at SNP rs2231947 (C|T or T|T, blue). C|C genotypes are 
indicated in yellow. Cell line codes: “B” = 0901B, “C” = 0901C, “BJ” = BJ10, “D7” 
= 1681D7. hES= human embryonic stem cell, hiPS= human induced pluripotent 
stem cell. 
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Figure 2.7: The SNP rs2231947 T allele is necessary for alternative splicing 
of a NODAL minigene.  
Portions of constitutively spliced NODAL exons are shown in orange. The 
alternative cassette exon is shown in blue. Red arrow indicates rs2231947 
position. “Already spliced” refers to plasmids where NODAL genomic DNA 
template has been replaced with the corresponding cDNA amplified using the 
same primers. Black arrows indicate primer sites used for RT-PCR analysis of 
minigene splicing. “alt” = alternative. 
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Figure 2.8: NODAL expression is biallelic in CA1 hES cells. 
A) Both rs19048589 alleles are expressed in total NODAL transcript from the 
heterozygous CA1 hES cell line. B) Only A alleles are expressed in NODAL 
variant transcripts from the CA1 cell line also heterozygous for rs2231947. C) 
Example of ddPCR results for high throughput detection of allelic expression of 
NODAL transcript. D) Left: quantification of ddPCR results for total NODAL 
transcript. Right: quantification of ddPCR results for genomic DNA copy number 
baseline. 
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of rs104894169 alleles in an amplicon specific to NODAL variant transcripts revealed 

expression of only the A allele (Figure 2.8B). This was consistent with heterozygous 

alleles for rs2239147 and indicated that the A allele for rs104894169 was found on the 

same chromosome as the T allele for rs2231947. These results also confirmed 

endogenous true alternative splicing of NODAL. For total NODAL transcript, since more 

clones were found with the rs104894169 G allele than the A allele, I utilized a more high-

throughput approach to determine if NODAL expression demonstrated allelic bias in this 

fashion. Using a droplet digital PCR (ddPCR) SNP genotyping assay for rs104894169 

(Figure 2.8C), expression was found to be only slightly biased toward the G allele (16% 

higher than the A allele, P<0.05), and this difference could not be attributed to 

differences in genomic DNA copy number between the two chromosomes (Figure 2.8D).  

The identification of rs2231947 as a functional polymorphism prompted me to fully 

characterize the genetic variation represented by the NODAL splicing SNP rs2231947. I 

performed linkage disequilibrium (LD) analysis using raw SNP genotyping data for 

European reference populations from the 1000 Genomes Project [22] using VCFtools 

[23], followed by functional annotation of obtained variants using the UCSC Genome 

Browser’s Variant Annotation Integrator [24]. Fourteen SNPs were identified as being in 

high LD (R2 > 0.8) with rs2231947 (Table 2.2 and Figure 2.9). Post-hoc empirical testing 

of SNPs in lower LD with rs2231947 (R2 < 0.8) genotyped in the hESC line sample [5] 

did not reveal any statistically significant associations with the sex of hESC lines (Table 

2.3). Variant Annotation Integrator results revealed none of the high LD SNPs were 

within gene coding regions, had ClinVar annotations, or matched NHGRI GWAS hits. 

However, several of the high LD SNPs were found in well-characterized NODAL 

enhancers upstream of the transcriptional start site (Figure 2.9). These included the 

asymmetric enhancer (ASE) within a CpG island, the node enhancer (NDE), and the 

proximal epiblast enhancer (PEE) [described in [25-27]]. ENCODE data also revealed 

that the PEE contained a transcription factor “hotspot” bound by 18 different 

transcription factors in H1 hESCs. One SNP in the PEE (rs35210846) was found within 

14 of these binding sites, including a NANOG binding site, and was just downstream of a 

POU5F1 (also known as OCT4) binding site. These two transcription factors are well-

documented master-regulators of pluripotency (reviewed in [28]). Therefore, in addition   
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Table 2.2: SNPs in high LD (R2 > 0.8) with rs2231947 in each 1000 Genomes 
Project reference European subpopulation. 

 
  

CEU FIN GBR IBS TSI

rs35345134 rs35345134 rs35345134 rs35345134 rs35345134

rs34843983 rs34843983 rs34843983 rs34843983 rs34843983

rs58202646 rs58202646 rs58202646 rs58202646 rs58202646

rs35914122 rs35914122 rs35914122 rs35914122 rs35914122

rs36038032 rs36038032 rs36038032 rs36038032 rs36038032

rs60746183 rs60746183 rs60746183 rs60746183 rs60746183

rs2231947 rs2231947 rs2231947 rs2231947 rs2231947

rs7094345 rs7094345 rs7094345 rs7094345 rs7094345

rs12777854 rs12777854 rs12777854 rs12777854 rs12777854

rs17512976 rs17512976 rs17512976 rs17512976 rs17512976

rs35356045 rs35356045 rs35356045 rs35356045 rs35356045

rs35767814 rs35767814 rs35767814 rs35767814 rs35767814

rs71012206 rs71012206 rs71012206 rs71012206 rs71012206

rs12764201 rs12764201

rs35210846 rs35210846 rs35210846 rs35210846 rs35210846
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Figure 2.9: SNPs in high LD with rs2231947. 
Various tracks from the UCSC genome browser are shown to provide genomic 
context to the various polymorphisms identified. The image is the reverse of the 
default orientation for chromosome 10 so that the sense strand of NODAL (5’- 3’) 
is shown left to right. Note: only NANOG and POU5F1 (OCT4) hits are shown in 
the ENCODE transcription factor ChIP-seq track. A “1” beside the ChIP-seq hits 
indicates presence in the H1 hES cell line. For the NODAL regulatory elements, 
“PEE” = proximal epiblast enhancer, “NDE” = node specific enhancer, “AIE” = 
asymmetric initiator element, “HBE” = highly bound element, “ASE” = asymmetric 
enhancer. 
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Table 2.3: SNPs genotyped in the hES cell line sample with R2 to rs2231947 
< 0.8 do not have alleles represented at different frequencies in male 
versus female cell lines.  
All SNPs with significant LD (R2 >0.2) to rs2231947 genotyped in the ISCI hES 
sample are shown. Note that 100% of SNP rs17512976 alleles match rs2231947 
alleles (in terms of minor and major allele), as reflected by the high LD between 
these two SNPs (0.97≤ R2 ≤1.00). 
 
    R2 with rs2231947  

SNP Minor 
allele 
count 

Major 
allele 
count 

% Match 
to 

rs2231947 

CEU FIN GBR IBS TSI EUR 

rs17512976    0.97 1.00 1.00 1.00 1.00 0.99 

Male 2 52 100%       

Female 16 60 100%       

Fisher Test P = 0.0044         

          
rs10740348    0.63 0.48 0.64 0.49 0.52 0.55 

Male 13 39 58%       

Female 26 46 72%       

Fisher Test P= 0.2404         

          
rs7082255    0.57 0.52 0.44 0.57 0.44 0.51 

Male 13 41 67%       

Female 23 45 79%       

Fisher Test P = 0.318         

          
rs2279253    0.25 0.24 0.22 <0.2 0.21 0.22 

Male 24 28 27%       

Female 38 38 55%       

Fisher Test P = 0.7207         

          
rs3812706    0.25 0.22 0.23 <0.2 0.20 0.22 

Male 22 28 32%       

Female 38 38 55%       

Fisher Test P = 0.5856         
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rs10762381    0.25 0.24 0.23 <0.2 0.22 0.22 

Male 24 30 30%       

Female 39 37 55%       

Fisher Test P = 0.4796         

          
rs1904589    0.30 0.30 0.26 0.27 0.30 0.29 

Male 17 37 52%       

Female 29 43 72%       

Fisher Test P = 0.353         

          
rs4607991    0.47 <0.2 0.44 <0.2 0.27 0.26 

Male 8 44 69%       

Female 15 61 68%       

Fisher Test P = 0.6415         

          
rs10740344    0.32 0.29 0.39 0.27 0.23 0.26 

Male 16 38 56%       

Female 27 47 68%       

Fisher Test P= 0.4534         

          
rs10740345    0.24 0.22 0.22 <0.2 0.20 0.22 

Male 24 28 27%       

Female 37 37 57%       

Fisher Test P= 0.7194         

          
rs10823529    0.24 <0.2 0.36 <0.2 <0.2 <0.2 

Male 18 34 38%       

Female 30 44 54%       

Fisher Test P= 0.5776         

          
rs4570507    0.38 <0.2 0.51 <0.2 0.31 0.26 

Male 11 41 62%       

Female 27 47 62%       
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Fisher Test P= 0.0775         

          
rs7084009    0.30 <0.2 0.36 <0.2 <0.2 <0.2 

Male 10 42 65%       

Female 15 61 68%       

Fisher Test P= 1.0000         
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to rs2231947, other polymorphisms in high LD such as rs35210846 may also be 

functional in hESCs in their effect on NODAL gene expression. 

I was also interested in determining the degree of conservation of the rs2231947 locus, 

the splice donor site that encompasses it, and the alternatively spliced cassette exon of 

NODAL. PhyloP conservation scores were obtained for each individual base of interest. 

Positive numbers correspond to conservation or slower evolution than expected under 

neutral drift, while negative numbers correspond to accelerated or more rapid evolution 

than expected under neutral drift [29, 30]. The splice donor site defining the cassette 

alternative exon shows no highly conserved bases, with the highest scoring base from 

positions -3 to +5 having a score of only 0.04 (Figure 2.10). For comparison, the splice 

donor site for NODAL’s second exon contains six bases with PhyloP scores greater than 

2. Interestingly, the base immediately 3’ (on the sense strand) to SNP rs2231947 is very 

poorly conserved, with a score of -4.94. Of the species with sequence alignments to the 

rs2231947 locus (all mammals), only one had a base other than C or T (the alleles of 

human SNP rs2231947). Of the remaining aligned genomes, 5 had a T, and 35 had a C at 

this position (Figure 2.10). PhyloP scores were also used to profile the typical 

conservation of a base in the cassette alternative exon relative to the flanking intronic 

regions (Figure 2.11). Bases in the alternative exon had a significantly higher (P<0.01) 

mean PhyloP score (0.28) than the remainder of the intron which has a score very close to 

zero (-0.03). In the alternative exon, 64% of bases had a positive score, while in the 

remainder of the intron that figure was 52%. Notably, the alternatively spliced exon also 

had a significantly lower average score (0.28) than the highly conserved constitutively 

spliced second exon of NODAL (1.09). Notably, the poorly conserved position 

immediately adjacent to the rs2231947 locus (Hg19 chr10:72193853) and within the 

alternative exon splice donor site is predicted to be the most rapidly evolving in the entire 

intron (Figure 2.11).  

Another model for assessing genomic conservation is PhastCons. Instead of the single 

base independence of PhyloP, this model incorporates the effects of neighbouring bases 

to identify short runs of conservation or conserved genomic elements [31]. PhastCons   
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Figure 2.10: Base-wise conservation at the NODAL alternative exon splice 
donor site. 
Position -3 to position +5 on the sense strand is shown left to right. PhyloP 
scores of individual bases are represented graphically. Aligned sequences are 
shown for mammals. “-” indicates no bases in the aligned region (insertion or 
deletion). “-” indicates bases that could not be aligned.   
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Figure 2.11: PhyloP conservation scores for bases within various NODAL 
elements. 
Box edges indicate interquartile ranges. Thick line indicates median values. 
Dashed lines extend 1.5 interquartile ranges from box, or to maximum value as 
for constitutive exon 2. Only outliers are shown as individual data points. Red 
data points highlight rs2231947 position and the adjacent base at hg19 
chr10:72193853. * indicates P<0.01 using one-way ANOVA and Tukey HSD 
Test. 
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revealed a cluster of three large conservation peaks that are closely bound by the ends of 

the alternative exon (Figure 2.12). 

Population differentiation analysis was conducted to assess differences in allele 

frequencies for rs2231947 and its linkage group between human populations of different 

ancestry. High population differentiation was apparent between the East Asian super 

population and every other super population (African, European, South Asian, and Ad 

Mixed American). This differentiation was the highest between the East Asian and 

European super populations (Figure 2.13). The MAF is approximately 1% in the East 

Asian super population and 20% in the European Super population. Analysis of all 

similar SNPs on chromosome 10 reveals that rs2231947 is highly differentiated, ranking 

in the 78th percentile of all similar SNPs (Figure 2.13). 

2.3 Discussion 
I have shown that the intronic NODAL SNP rs2231947 is associated with both XIST 

expression and the sex of human embryonic stem cell lines. Furthermore, I demonstrated 

that this SNP is highly functional in modulating the novel alternative splicing of human 

NODAL, resulting in expression of a NODAL variant transcript also described here.  

The virtual absence of the rs2231947 T allele in male hES cell lines suggests that 

prospective cell lines of this genetic background were negatively selected, either 

naturally, or as a consequence of their undesirability for continued use. This selection 

could have taken place at various stages during cell line derivation, expansion, or 

continued propagation. It has been previously reported that the derivation of hES cell 

lines from embryos is a very inefficient process, with only a small fraction of initial 

embryos used successfully deriving cell lines [32]. Given this inter-embryo variability in 

the ability to derive established cell lines, the possibility of a genetic influence is 

unsurprising. Such selection could take place at numerous stages of the process. For 

example, some prospective cell lines could fail to survive the initial shock of relatively 

harsh cell culture conditions. Alternatively, some prospective cell lines could be 

relatively unstable in the pluripotent state and display an undesirable propensity for   
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Figure 2.12: NODAL intron 2 conservation in mammals. 
Scale is shown at top of figure. Blue box indicates footprint of NODAL alternative 
exon. For the “multiz alignments” track, vertical lines indicate aligned bases. 
Horizontal lines indicate gaps in alignments.  
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Figure 2.13: Population differentiation analysis for SNP rs2231947. 
Top panel: Fst is Weir and Cockerham’s population differentiation statistic. 1000 
Genomes Super Population Codes: AFR= African, EUR= European, SAS= South 
Asian, AMR= Ad Mixed American, EAS=East Asian. Bottom panel: Box plot of 
population differentiation between East Asian and European super populations 
for chromosome 10 SNPs with both European MAF≅0.2 and MAF <0.2 in EAS 
(n=2,455). Boxes indicate interquartile range. Thick vertical bar indicates median. 
Dashed lines extend to minimum and maximum values in sample. SNP 
rs2231947 is noted in red and is in the 78th percentile. 
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spontaneous differentiation. Such cell lines would have been less likely to be propagated 

and shared by researchers. 

Strikingly, the under-representation of a genetically defined subset of male hESC lines 

may help explain the previously reported yet still unexplained female bias in established 

hESC lines [33]. Indeed, the 59% female-to 41% male bias in the ISCI European sample 

is very similar in magnitude to the female bias reported by Ben-Yosef and colleagues 

[33]. The genetic association presented here is very strong (odds ratio = 0.14, Figure 2.2). 

To my knowledge, this is the first genetic association of any kind reported for human 

embryonic stem cell lines. This is likely due to the single SNP-of-interest approach 

utilized here. In contrast, a typical genome-wide survey would not be appropriately 

statistically powered to detect any genetic associations given the number of hES cell lines 

available. Importantly, the sex association is not due to an ancestry stratification effect, as 

analysis of all five European reference subpopulations from the 1000 Genomes Project 

show extremely low differentiation (differences in allele frequencies) for rs2231947 

using Weir and Cockerham’s Fst statistic (Table 2.1). SNP rs2231947 genotyping error is 

also not a source of the observed bias, as the highly linked SNP rs17512976 shares 100% 

of genotypes with rs2231947 in the ISCI dataset (Table 2.3). It appears that the sex bias is 

a cell culture-specific effect and does not appear under normal developmental conditions 

(Figure 2.2 and [33]). This is unsurprising given that in the embryo, altered or 

heterogeneous morphogen signals are generally balanced through intricate morphogen 

gradients, intact feedback loops, and compensating signals [34, 35]. Of course, such 

compensatory mechanisms are likely completely lost in more homogenous cell culture 

conditions where growth factors are largely supplied exogenously by culture medium at 

high doses. Thus, only those cells suited for specific culture conditions are able to be 

maintained as cell lines in vitro. 

In addition to the sex bias, I also found a strong positive association between the 

rs2231947 T allele and levels of the female specific XIST transcript. This was perhaps 

surprising given the well-documented heterogeneity and plasticity in both XIST 

expression and XCI in female hES cell lines, not only between cell lines of different 

origin, but also between isolates of a single cell line [4, 36, 37]. This result suggests that 
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genetic variation at the NODAL gene locus may explain some of the considerable inter-

cell line variability in XIST transcript levels. Indeed, the International Stem Cell 

Initiative found the inter-cell line variability in XIST levels intriguing as it was 

highlighted in their profiling of hESC lines [4]. Possible causes of this variability were 

not offered and have since remained elusive.  

Further characterization of rs2231947 revealed that this SNP was functional and had a 

drastic impact on gene expression from the NODAL locus. In silico analysis suggested 

that the SNP possibly modulates overlapping putative splice acceptor and splice donor 

sites. This was unsurprising given that both splice acceptor and splice donor sites share 

similar sequence motifs, although with different base-wise conservation profiles (Figure 

2.4 and [18]). The T allele for rs2231947 was predicted to affect relative binding affinity 

at the splice donor site more strongly (Figure 2.4), and indeed was concomitant with 

expression of a novel NODAL exon defined by the predicted splice site in hES cell lines 

(Figure 2.6). Direct manipulation of the SNP allele in a minigene system provided 

experimental evidence that rs2231947 can directly affect the alternative splicing of 

NODAL (Figure 2.7). 

Perhaps surprisingly, many reports of putatively alternatively spliced transcripts do not 

present minigene analyses or comment on the potential proximity of SNPs or other 

variation that may impact splice site selection. This is important given that allele specific 

splicing has been documented in human cells [38]. In the absence of a minigene analysis, 

the presence of two distinct transcripts from the same gene locus is not by itself sufficient 

evidence to demonstrate true alternative splicing from a single locus. It is of course 

possible that heterozygous SNP alleles could result in distinct transcripts being expressed 

from only one of two chromosomes in a diploid cell. The inclusion of genetically distinct 

minigenes, expression of two distinct NODAL isoforms in the rs2231947 homozygous 

T|T H9 hES cell line, and the presence of a single allele of a heterozygous SNP in both 

NODAL and NODAL variant transcripts collectively demonstrate true alternative splicing 

of NODAL. 
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In general, the NODAL variant transcript made up a small proportion of total NODAL 

transcript, despite the strong predicted strength of the alternative exon splice donor site. 

This suggests other genomic epigenetic elements likely discourage constitutive splicing 

of the alternative exon. This exemplifies the non-deterministic nature of splicing patterns, 

in that splice site motifs alone cannot perfectly predict splice site utilization or efficiency. 

Low NODAL variant transcript levels were even observed for the H9 cell line 

homozygous for the splice site-contributing T allele of rs2231947. I did not examine if 

there was an allelic dose effect on the proportion of NODAL variant spliced given 

variability in the NODAL splicing proportions between different isolates of the same cell 

line.  

It is tempting to speculate how the associations and functional finding related to SNP 

rs2231947 may be mechanistically connected. An intriguing hypothesis is that the T 

allele for rs2231947 potentiates expression of the NODAL variant transcript isoform, 

which preferentially negatively affects the derivation of male hES cell lines. Of course, 

testing such a hypothesis would be difficult given the large number of cell lines assessed, 

the retrospective nature of the analysis, and the ethical considerations of research on 

human embryos. The fact that I have determined a function for a SNP with interesting 

associations is in no way sufficient to declare it functionally responsible for the observed 

associations. Others have emphasized that restraint should be exercised in assigning 

causality to polymorphisms based on associations, or even indirect experimental evidence 

[39]. Indeed, even the best and largest genetic association studies often fail to identify 

any functional polymorphisms at all, let alone the causal variant(s) responsible for the 

given trait of interest. This is undoubtedly due to the general inability to model 

endogenous complexity concerning how SNP alleles affect intricately controlled gene 

expression networks, as well as the difficulty in untangling contributions of individual 

SNPs within larger haplotypes.   

Indeed, it cannot be ignored that genetic variations such as SNP alleles are inherited in 

the context of chromosomes, leading to varying degrees of high linkage disequilibrium 

(LD) between nearby SNPs that constitute a haplotype. Therefore, in any study of 

inherited genetic variation, it is informative to perform detailed LD analysis to define the 
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linkage group marked by the SNP of interest, as I have done here. Although such analysis 

is often overlooked, it has become increasingly appreciated in recent years as many SNPs 

identified through GWA studies have been found to be non-functional (at least to the 

extent to which their function can be assessed given how well current models recapitulate 

endogenous biology). The number of genomic variants catalogued by efforts such as the 

1000 Genomes Project now makes it possible to derive a comprehensive list of genetic 

variants in high LD with a SNP of interest using reference populations of various 

ancestries. Furthermore, these SNP loci can be cross-referenced with numerous genomic 

annotations that have become increasingly available from large scale projects such as the 

ENCODE project. Together, these analyses allow for the identification of potentially 

functional variants for further study. Of course, SNPs in regions with no annotations may 

still be functional, as certainly many functional genomic elements remain to be 

discovered.   

The relatively small linkage group with high LD to rs2231947 provided a manageable 

number of SNPs that may have contributed to the associations reported here. Several of 

these SNPs lie in experimentally validated NODAL enhancer regions. The most 

interesting of these was the proximal epiblast enhancer (PEE), where three SNPs in the 

rs2231947 linkage group are located. Since human ES cells have been shown to represent 

a similar developmental state to “primed” mouse epiblast stem cells (reviewed in  [40]), it 

is possible the PEE identified in mouse epiblast cells is also an active driver of NODAL 

expression in hES cells. This is supported by the ENCODE data, as the NODAL PEE 

contains a DNase hypersensitivity site present all three hPSCs surveyed (H1 and H7 hES 

cells, and an iPS cell line). There is also a transcription factor “hotspot” within the PEE 

bound by 18 different transcription factors in H1-hES cells (Figure 2.9). No transcription 

factor binding sites were detected in this region in any non ES cell lines assayed so far, 

suggesting that this is an active regulatory region specific to ES cells. In the rs2231947 

linkage group, SNP rs35210846 lies within 14 of these binding sites, and is found 

adjacent to (within 15 base pairs of) three more. These include binding sites for both 

NANOG and OCT4—two master regulators of stem cell pluripotency. Thus, SNP 

rs35210846 is a good candidate to also be functional in hES cells. One hypothesis is that 

SNP rs35210846 affects NODAL expression in hES cells through modulation of NANOG 
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and/ or OCT4 binding at the PEE. If this is the case, experimental modelling of this LD 

group would have to consider the combinatorial effects of alternative NODAL splicing as 

well as NODAL enhancer activity. I have fully characterized a linkage group of fourteen 

SNPs with two interesting associations in hES cells, identifying rs35210846 as a 

potentially functional SNP, and providing detailed experimental evidence for the NODAL 

splicing function of rs2231947. 

The conservation analysis conducted here suggests that the splice donor site for the 

alternatively spliced NODAL exon is moderately conserved in mammals. Splice donor 

site motifs are generally highly conserved across vertebrates [18]. Therefore, it is possible 

that other species also contain functional splice sites for inclusion of a NODAL cassette 

alternative exon similar to the human exon described here. Of the 42 species with 

sequence alignment that included the human G[C/T] splice donor site dinucleotide, 4 

have a GT dinucleotide matching the derived allele for human rs2231947. Since the 

human major allele (C) is the ancestral allele, the human SNP is not the first time that a 

putative canonical U2 splice site has evolved at this locus. It is also interesting that the 

ancestral C allele contributes to a non-canonical U2 GC-AG intron (canonical introns are 

defined by GT-AG). These non-canonical introns constitute approximately 0.7% of 

introns in both humans and mice [18]. There is evidence of evolutionary switching 

between these two U2 subtypes (either GT-AG to GC-AG or vice versa) occurring 

between species [18]. However, analysis of functional GC-AG splicing events reveals 

stricter conservation at surrounding bases compared to canonical splice sites, presumably 

to strengthen the weakened binding affinity of the C versus T nucleotide. Non canonical 

GC-AG introns have an average information content of 12.4 bits, while the canonical 

GT-AG splice sites have an information content of only 8.2 [18]. However, in the context 

of the human NODAL alternative exon splice site, the C allele was not predicted (Figure 

2.4) or shown experimentally (Figure 2.7) to contribute to a splice site. It is possible that 

functional GC-AG splicing could take place in non-human species with adjacent 

sequence differences or other factors that contribute to enhanced binding affinity.  

Evidence of sequence and element conservation within the cassette alternative exon locus 

also supports the possibility of conserved alternative splicing of NODAL. Lower base-
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wise conservation scores for the alternative exon compared to the second constitutive 

exon were not surprising given NODAL coding regions are highly conserved; 

homozygous Nodal deletion is embryonic lethal in mouse [41, 42]. Relative to 

constitutively spliced exons, alternatively spliced exons are often recently evolved and 

not as well conserved between species. For example, in an analysis of alternatively 

spliced human exons, only 46% were found to be conserved in mouse, with only 7% of 

those found to also be alternatively spliced in mouse [43]. Notably, although the NODAL 

cassette alternative exon locus is somewhat conserved across mammals, the entire 

alternative exon locus (and almost the entire intron it lies within) shares no sequence 

alignment with mouse. Collectively, these analyses suggest there may be some conserved 

function to the alternatively spliced NODAL exon locus, although the novel NODAL 

transcript described here represents a major difference in NODAL gene expression 

between mouse and human stem cell models.  

Population differentiation analysis suggests that individuals (and thus cell lines) of East 

Asian ancestry rarely have the minor allele for rs2231947, suggesting that the alternative 

NODAL isoform is not widely expressed in hES cell lines of these ancestries. One 

prediction of this low minor allele frequency is that hES cell lines of East Asian origin 

may not display the female sex bias. This analysis was not possible with the ISCI dataset 

due to low statistical power provided by a small number of such cell lines available for 

analysis. It is difficult to determine if this population differentiation is a result of drift, or 

negative selection in the East Asian population. Indeed, several human populations 

including the East Asian ancestral population endured a strong and sustained population 

bottleneck between 15,000 and 20,000 years ago [22], an event that can enhance both 

selection and genetic drift.   

To the best of my knowledge, this work is the first to identify SNPs in association with 

any characteristics of human pluripotent cells. Thus, this study adds considerable and 

tangible depth to our understanding of inter-cell line heterogeneity in hES cells. The 

genetic associations reported here suggest specific genetic variation encompassing the 

NODAL gene as a source of previously reported and unexplained phenomena including 

the female sex bias in hESC lines [33] and highly variable XIST expression levels in 
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female hESC lines [5]. I also demonstrated how a single SNP in a non-coding region can 

have a large impact on gene expression. In this case, rs2231947 promotes the alternative 

splicing of a novel NODAL transcript that has never been described. The intronic SNP 

rs2231947 is likely one of many “buried treasure[s] within our genes” [44], that promote 

splicing of diverse transcript variants yet to be discovered [45]. Lastly, I have provided a 

comprehensive characterization of the genetic linkage group that it tags, in the process 

identifying another potentially functional SNP in hES cells. The H9 cell line represents a 

genetically rare sample for the linkage group marked by rs2231947, but has been 

extensively relied on as the primary model of early human embryonic development and 

pluripotency. This study is only one such manifestation of how genetics can both make 

substantial contributions to, and confound or bias, the study of biology. 

2.4 Methods 

2.4.1 Single nucleotide polymorphism (SNP) analysis 

Human embryonic stem cell rs2231947 genotypes were obtained from dataset GSE33522 

[5] from the NCBI’s Gene Expression Omnibus (GEO). These data are the result of the 

largest effort to genotype the most frequently used human embryonic stem (hES) cell 

lines on a global scale. The sex, ancestry, and genetic relatedness of the cell lines were 

determined from supplementary files obtained from [5] and directly from the authors of 

the study as needed. For identical and related cell lines, the cell line with the lowest 

sample number was kept for analysis while all other related cell lines were excluded. Cell 

lines classified according to [5] as “European” or “Middle East-East European” were 

used for genotype analysis since they represented the largest cohort of cell lines with 

highly similar genetic ancestry according to principal component analysis performed in 

[5]. Cell line cohorts of other ancestries contained too few cell lines for independent 

genotype analysis. Genotypes were also obtained for rs2231947 from individuals 

included in the 1000 Genomes Project as a reference population for comparison. 1000 

Genomes Project data was downloaded on September 2014 from the most current release 

(release 5 of phase 3). Two-tailed Fisher exact tests were performed using GraphPad 

software. Since I was specifically interested in SNP rs2231947 for its effect on NODAL 

splicing, this was the only SNP tested for any association and was not part of a genome 
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wide association study. Therefore, reported P values did not require correction for 

multiple hypothesis testing. Odds ratios were calculated by VassarStats 

(http://vassarstats.net/odds2x2.html). Forest plots were generated using the metafor 

package (http://www.metafor-project.org/doku.php) in R (https://www.r-project.org/).  

All genotype, linkage disequilibrium, and population differentiation (Fst) analyses were 

performed using VCFtools version 0.1.12b (http://sourceforge.net/projects/vcftools/files/) 

and Samtools version 1.1 (http://sourceforge.net/projects/samtools/). LD analysis was 

conducted considering all polymorphisms within 1Mb (±500 kb) of rs2231947 (at hg19 

chr10:72193854). All analyses were conducted with only genetically unrelated (no first, 

second, or third order relationship detected) founder individuals for all populations 

assessed.  

For human pluripotent cell lines cultured in the lab, genomic DNA was isolated from hES 

and iPS cell lines using the Wizard Genomic DNA Purification Kit (Promega; Madison, 

Wisconsin, USA). SNP rs2231947 genotypes for cell lines not included in GEO dataset 

GSE33522 were determined using PCR amplification of the rs2231947 locus followed by 

restriction fragment length polymorphism (RFLP) assays specific to each of the C and T 

alleles.  

For any cell line with known rs2231947 genotype from [5], XIST expression data was 

obtained from [4]. For two cell lines with expression reported for more than one sample, 

the mean of these expression values was used for analysis. ∆Ct values were converted to 

fold changes relative to the median expression of cell lines with C|C genotype for 

rs2231947, using the equation: fold change = 2-(∆∆Ct), where ∆∆Ct = ∆Ct sample - ∆Ct 

median C|C. An unpaired one-tailed t-test was performed using GraphPad software.   

2.4.2 Splice site prediction analysis 

Splice site prediction analysis was conducted using the “Automated Splice Site And Exon 

Definition Analyses” web server (splice.uwo.ca) and described in [46]. Sequence logos in 

Figure 2.4 were created using WebLogo version 2.8.2 (http://weblogo.berkeley.edu/ and 

[47, 48]). 
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2.4.3 Cell culture 

Human Embryonic Stem (hES) cell lines and human induced Pluripotent Stem (iPS) cell 

lines were maintained on irradiated CF-1 Mouse Embryonic Fibroblasts (GlobalStem; 

Gaithersburg, Maryland, USA) with standard media composed of knockout DMEM/F12 

(Life Technologies; Carlsbad, California, USA), 20% knockout serum replacement (Life 

Technologies), 1X non-essential amino acids (Life Technologies), 2 mM glutamine (Life 

Technologies), 0.1 mM 2-mercaptoethanol (Thermo Fisher Scientific; Waltham, 

Massachusetts, USA), and 4 ng/ml of basic fibroblast growth factor (Life Technologies). 

Cells were passaged mechanically and harvested only from feeder-free conditions that 

consisted of growth on a Geltrex matrix (Life Technologies) with defined mTeSR1 media 

(Stem Cell Technologies; Vancouver, British Columbia, Canada). H1, H9 and HES-2 

lines were purchased from WiCell (Madison, Wisconsin, USA), the CA lines were 

provided by Dr. Cheryle Seguin (The University of Western Ontario), and the iPSC lines 

were provided by Dr. Bill Stanford (University of Ottawa). HEK 293 (ATCC; Manassas, 

Virginia, USA) cells were maintained in DMEM (Life Technologies) supplemented with 

10% fetal bovine serum (Life Technologies). All cells were cultured at 37°C with 5% 

CO2 in a humidified environment.  

2.4.4 NODAL splicing analysis 

Total RNA was isolated using PerfectPure RNA Cultured Cell Kit (5-PRIME; Hilden, 

Germany) and included on-column DNase treatment. Reverse transcription was 

performed using the High Capacity cDNA Reverse Transcription Kit (Life Technologies) 

to reverse transcribe 1 µg total RNA. NODAL was amplified from 1/20th of the cDNA 

product for semi-quantitative PCR analysis using AmpliTaq Gold 360 Master Mix (Life 

Technologies). NODAL RT-PCR in Figure 2.5 used a forward primer in exon 2: 

TGTGAGGGCGAGTGTCC, and reverse primer in exon 3: 

GAGGCACCCACATTCTTCCA. An annealing temperature of 60°C was used. The 

NODAL variant transcript was identified by gel purification of the longer and unexpected 

NODAL amplicon in Figure 2.4 using the QIAquick Gel Extraction Kit (Qiagen; Hilden, 

Germany) followed by cloning with the TOPO TA Cloning Kit for Sequencing (Life 

Technologies) and subsequent DNA sequencing. 
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Real time PCR in Figure 2.6 was performed using Power SYBR Master Mix (Life 

Technologies). 1/20th of the cDNA corresponding to 50 ng RNA was loaded in duplicate 

for detection and quantification of constitutive NODAL and NODAL variant. Constitutive 

NODAL forward primer: TACATCCAGAGTCTGCTG. Constitutive NODAL reverse 

primer: CCTTACTGGATTAGATGGTT. NODAL variant forward primer: 

CTGTTGGGGAGGAGTTTCA. NODAL variant reverse primer: 

AGGCTTGGCATGGAGGATA. Cloned PCR products were sequenced to confirm 

amplicon identity. The cloned products were also linearized, quantified, and diluted to 

various concentrations (copy number/µL). These standards were run alongside samples to 

obtain standard curves to estimate the number of copies of NODAL and NODAL variant 

transcripts detected in each cell line. Primer sets were checked for specificity using melt 

curve analysis. An annealing/extension temperature of 55° C was used. 

2.4.5 Minigene analysis 

A portion of NODAL from upstream of the 3’ end of constitutive exon 2 to downstream 

of the 5’ end of constitutive exon 3 (the final most 3’ exon) was used for minigene 

analysis. This fragment was amplified from H9 gDNA (for rs2231947 = T) or HEK 293 

gDNA (for rs2231947 = C) for splicing analysis using the forward primer: 

GGGCTCCTGGATCATCTACC, and the reverse primer: 

ACTCTGCCATTATCCACATAC. The same primers were used to amplify “already 

spliced” NODAL and corresponding NODAL variant control fragments from H9 cDNA. 

The forward and reverse primers also included restriction sites for ClaI and AgeI, 

respectively. The NODAL amplicon was then digested with ClaI and AgeI (New England 

Biolabs; Whitby, Ontario, Canada) for insertion into the FRE5 minigene plasmid 

backbone described in [20]. Ligation was performed with the Rapid DNA Dephos & 

Ligation Kit (Roche Applied Science; Penzberg, Germany). Site directed mutagenesis 

was also performed using the QuikChange Lightning Site-Directed Mutagenesis Kit 

(Agilent; Santa Clara, California, USA) to mutate SNP rs2231947 in the “H9” minigene 

from T to C (sense strand) using the primer 

ATGCCAAGCCTCAGGCGGGATTCAGGGTCTC (mutated base underlined). 

Minigene plasmid DNA was transfected into HEK 293 cells with Lipofectamine 2000 
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(Life Technologies) following the manufacturer’s protocol. 72 hours after transfection, 

total RNA was isolated for RT-PCR analysis. Primers specific to the minigene plasmid 

backbone were used to avoid amplification of endogenous NODAL. Forward primer: 

CAAAGTGGAGGACCCAGTACC. Reverse primer: 

GCGCATGAACTCCTTGATGAC. 

2.4.6 Allelic expression analysis 

Amplicons containing SNP rs1904589 were amplified from CA1 hES cell cDNA using 

AmpliTaq Gold 360 Master Mix (Life Technologies). For analysis of total NODAL, the 

forward primer: CCCAGGTCACCTTTTCCTTGG and reverse primer: 

TGAGAGACTGAGGTGGATTGTC were used. For ddPCR analyses, the Taqman assay 

C___1853986_10 (Applied Biosystems; Foster City, California, USA) was used using 

standard cycling conditions. 

2.4.7 SNP loci characterization 

Functional genome annotations overlapping with SNP loci were obtained using the 

UCSC Genome Browser’s Variant Annotation Integrator (https://genome.ucsc.edu/cgi-

bin/hgVai) and extracted from the hg19 assembly. Conservation scores and sequence 

alignments were obtained with the UCSC Table Browser and Genome Browser as 

appropriate. 
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Chapter 3  

3 Characterization of human NODAL locus RNA variants 

3.1 Introduction 

Transcription is an important point of control over gene expression. However, there are 

numerous other points at which gene expression is controlled prior to mRNA translation 

into protein. These include, but are not limited to, mRNA splicing and the coupled 

processes of transcription termination and polyadenylation. The precise locations that 

mRNAs are transcribed from and processed at can vary for products of an individual gene 

locus, resulting in multiple distinct mRNA products (reviewed in [1]). For example, the 

use of alternative transcriptional start sites can modulate the 5’ end of a transcript, 

affecting the nature of the 5’ untranslated region (UTR) or even translational start site 

usage and the resulting translated protein product. A more complex system involves 

antisense transcription whereby two transcripts are expressed from the same genomic 

locus—one from each complementary strand of the genome. These “natural antisense 

transcripts” or “NATs” yield a pair of RNAs with sequence complementarity—the extent 

of which depends on the amount of overlap in their shared genomic locus. 

Unsurprisingly, this complementary nature of natural antisense transcripts often confers 

the ability of one transcript to regulate the expression (translation or otherwise) of its 

antisense counterpart (reviewed in [2, 3]).  

Alternative splicing is perhaps the most well studied and most utilized process the cell 

exploits for generating expanded transcript diversity, with estimates suggesting as many 

as 95% of multi-exon human protein coding genes undergo alternative splicing [4]. While 

several different types of splicing choices are possible, exon skipping is the most 

frequently observed event; an alternatively spliced exon flanked by two constitutive 

exons is either spliced into processed transcripts, or spliced out after being passed over as 

intronic sequence. Alternative splicing is a major mechanism regulating tissue-specific 

gene expression [4]. In human embryonic stem cells, induced differentiation is 

accompanied by widespread changes in alternative splicing [5, 6]. Perhaps 

unsurprisingly, alternative splicing is frequently deregulated in cancer (reviewed in [7-
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9]), and cancer cells can hijack stem cell alternative splicing programs to enhance the 

maintenance of cancer stem-like cells [10].  

Beyond differential inclusion of exons in linear processed transcripts, a more exotic form 

of splicing produces circular RNAs through “back-splicing” of downstream 5’ splice 

donor sites that form junctions with upstream 3’ splice donor sites of either their own 

exon or upstream exons, resulting in completely closed circular RNA transcripts lacking 

free ends. Although often generated from protein coding pre-mRNAs, these transcripts 

are not generally protein-coding, but can act to regulate gene expression either at the 

level of transcription or post-transcriptionally through modulation of miRNA activity 

[11].  

Similar to splicing, alternative polyadenylation of transcripts is also pervasive, with at 

least 70% of mammalian mRNAs undergoing alternative polyadenylation (APA) [12, 

13]. Alternative polyadenylation sites in the 3’ UTR can modulate RNA stability, nuclear 

export, susceptibility to miRNA targeting, and translation (reviewed in [14]). Like 

alternative splicing, APA is also involved in cell fate decisions in early development [15, 

16]. Remarkably, control over alternative splicing and alternative polyadenylation can be 

coupled [4]. However, it appears as if this link is limited to the definition of 3’ terminal 

exons and selection of intronic polyadenylation sites [17, 18].   

While great strides have been made in appreciating the global complexity and diversity of 

gene expression at the RNA level, for any given gene of interest, many aspects of its 

expression likely remain undiscovered or not well characterized. Furthermore, analysis of 

alternative splicing events is often limited to specific exon junctions, with the full-length 

nature of the corresponding transcripts rarely assessed. Indeed, alternatively spliced full-

length transcripts containing open reading frames are only beginning to be appreciated 

and catalogued on a genome-wide scale [19].  

Nodal is no exception, as many studies concerning its expression focus on transcriptional 

regulation in mouse systems [20-23]. The alternatively spliced NODAL transcript 

reported in the previous chapter was the first alternatively processed NODAL transcript 

discovered, while many molecular details of the constitutively spliced human NODAL 
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transcript have not been directly studied. This chapter fully characterizes the NODAL 

splice variants identified in the previous chapter, in terms of their transcriptional start 

sites and sites of polyadenylation. I also identify several additional RNAs transcribed 

from the NODAL locus, including a natural antisense transcript and a circular RNA. I also 

develop and validate droplet digital PCR (ddPCR)-based methods to potentiate absolute 

quantitative comparison between distinct transcript isoforms. Collectively, this work 

provides a comprehensive and quantitative assessment of NODAL locus transcript 

expression in human embryonic stem cells and human cancer cell lines and samples of 

various origin. I show that full-length constitutive NODAL transcripts are expressed at 

low levels in cancer samples, and that comprehensive analysis of NODAL transcript 

diversity helps to explain previously mentioned discrepancies hindering the confident 

detection of NODAL transcripts [24].   

3.2 Results 

To characterize the newly discovered genetically-regulated and alternatively spliced 

NODAL transcript isoform, a set of several primers were first used to assess exon 

junctions formed with the novel alternative exon (Figure 3.1A,B). Relative to constitutive 

NODAL, the NODAL variant isoform contains a 116 base cassette exon between the 

second and third constitutive exons. I next examined if a putative NODAL variant open 

reading frame (ORF) delineated by the canonical NODAL start codon and an alternative 

exon-induced premature termination codon (PTC) in constitutive exon 3 was present in 

hES cells. This ORF consisting of constitutive exon 1, constitutive exon 2, the 

alternatively spliced exon, and part of constitutive exon 3, was successfully amplified 

from H9 hES cell cDNA (Figure 3.1C,D). Notably, this cDNA was generated using oligo 

dT primers to convert only polyA tail-containing mRNAs. Hence, the alternative NODAL 

exon is spliced into full-length processed NODAL transcripts. 

Beyond the open reading frames of the two NODAL isoforms, I sought to determine the 

transcript termini for each isoform that define the 5’ untranslated region (UTR) upstream 

of each start codon and the 3’ UTR downstream of each stop codon. For processed 

mRNA transcripts, 3’ ends are marked by the start of a polyA tail approximately 15-30 

nucleotides downstream of a polyadenylation signal (PAS) (reviewed in [25]). Sequence   
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Figure 3.1: The alternative NODAL exon forms junctions with adjacent 
constitutive exons and is found within a fully spliced and polyadenylated 
open reading frame-containing transcript in H9 hES cells. 
A) Locations of primers used in end-point PCR analysis in (B) of NODAL 
transcripts containing the cassette alternative exon. B) The alternatively spliced 
NODAL exon can be amplified from polyadenylated transcripts and forms 
junctions with constitutive exon 2 and constitutive exon 3 in hES cells. C) Primers 
used to target the predicted open reading frame contained within NODAL variant 
transcripts. D) The predicted NODAL variant open reading frame can be 
amplified from polyadenylated transcripts in hES cells. “F” = forward primer 
identical in sequence to the sense strand of NODAL. “R” = reverse primer of 
antisense sequence. “hES” = human embryonic stem cell. “RT” = reverse 
transcriptase. “NTC” = no template control. ATG marks the constitutive NODAL 
start codon. “PTC” = premature termination codon in constitutive exon 3 in frame 
with the NODAL variant reading frame. “ALT.” = cassette alternative NODAL 
exon.  
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analysis of NODAL’s constitutive exon 3 for common polyadenylation signals revealed 

two AUUAAA motifs and a single AAUAAA motif (Figure 3.2A). These two motifs are 

the most commonly utilized for polyadenylation of human transcripts [26], although other 

less-frequently utilized putative PASs were also found in the annotated 3’ UTR. 3’ rapid 

amplification of cDNA ends (3’ RACE) for total NODAL transcript revealed two 

isoforms with distinct polyadenylation sites. Sequencing of these products confirmed that 

NODAL transcripts are alternatively polyadenylated in hES cells closely downstream of 

either a more proximal AUUAAA site, or a more distal AAUAAA site, at roughly equal 

levels (Figure 3.2A,B). Conducting the same procedure with primers designed to 

specifically detect NODAL variant transcripts also showed alternative usage of the same 

polyadenylation sites, but in a manner highly skewed toward the distal site (Figure 

3.2C,D).  

A similar approach to determine 5’ ends of transcripts known as 5’ RACE was conducted 

for total NODAL transcripts (Figure 3.3A), and specifically for the NODAL variant 

(Figure 3.3B). For total NODAL, a single product was obtained. Sequencing revealed a 5’ 

end 14 bases upstream of the annotated NODAL translational start codon (Figure 3.3C), 

but 28 bases downstream of the annotated NODAL transcriptional start site in RefSeq. In 

contrast, several different products were detected for the NODAL variant (Figure 3.3D). 

The shortest and most abundant product corresponded to a 5’ end within the coding 

region of constitutive exon 1. The middle band contained a more distal 5’ end also within 

constitutive exon 1. Notably, it is possible that these products resulted from incomplete 

reverse transcription, and other samples did reveal 5’ ends upstream of the NODAL 

translational start codon. 

Surprisingly, the longest band did not contain any sequence from constitutive exon 1. 

Instead, there was a novel splice junction between constitutive exon 2 and a putative exon 

shortly upstream of constitutive exon 1. This product appeared to be enriched in the 

NODAL variant transcripts as no products containing this novel splice junction were 

detected in analysis of total NODAL transcripts. 
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Figure 3.2: Both the NODAL variant and total NODAL are alternatively 
polyadenylated and utilize the same polyadenylation sites, but with 
different frequencies.  
A) 3’ transcript end analysis reveals roughly equal utilization of two NODAL 
polyadenylation sites. B) Sequencing mapped these sites to the two more 
proximal of three “canonical” polyadenylation sites defined by A[A/T]TAAA motifs 
in the annotated NODAL 3’ UTR. C) and D) The same analysis limited to 
transcripts containing the cassette alternative exon reveals polyadenylation at the 
same two sites, but with usage skewed heavily toward the more distal site. “F1” 
and “F2” represents forward primers for initial PCR and nested PCR, 
respectively. “R” represents the reverse primer used to prime reverse 
transcription. “ALT” = cassette alternative exon. “UTR” = untranslated region. 
“PAS” = polyadenylation sequence. “AAAAAA” represents the polyA tail at the 3’ 
end of transcripts. Numbers left of gels in A and C indicate size of DNA markers 
in base pairs. Exons upstream (5’) of the alternative exon or exon 3 are not 
shown.   
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Figure 3.3: Discovery of an alternative 5’ transcriptional start site and first 
exon of human NODAL that is enriched in NODAL variant transcripts 
relative to total NODAL.  
5’ RACE was conducted to determine the nature of the 5’ ends of NODAL 
transcripts. A) Analysis of “total” NODAL transcripts was conducted with primers 
specific to constitutive exon 2. B) Analysis of NODAL variant transcripts was 
conducted with primers specific to the cassette alternative exon and constitutive 
exon 2. C) Only one distinct 5’ end product was detected for total NODAL, 
corresponding to a short 5’ UTR upstream of the annotated start codon. D) 
Several distinct products were obtained for analysis of NODAL variant 
transcripts. The shorter two products both had 5’ ends mapping to constitutive 
exon 1 and likely resulted from incomplete reverse transcription. The longest of 
the three products did not contain any exon 1 sequence and revealed novel 
splicing to an alternative first exon upstream of constitutive exon 1. Numbers to 
the left of gels in C and D indicate size of DNA markers in base pairs.   
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Now that the full-length nature of constitutive and variant NODAL transcripts had been 

determined, in order to quantitatively study NODAL splicing, it was important to develop 

and validate detection assays that were both quantitative and isoform-specific. I 

developed a series of PCR assays to quantify each alternatively spliced NODAL isoform. 

The relative benefits and drawbacks of each of these methods are elaborated on in the 

Discussion.  

The first and most commonly employed type of assay to assess exon skipping events is 

an end-point PCR assay that employs a single primer set; a forward primer targets a 

constitutive exon upstream of an alternative splicing event of interest, and a reverse 

primer targets a constitutive exon downstream [27]. The isoform ratio can be obtained by 

relative quantification of the two resultant bands after agarose gel electrophoresis. 

Another option is separate real-time PCR reactions; one for transcripts that include the 

alternative exon, and another to detect either both transcript variants or transcripts that 

skip the alternative exon [28]. An estimate of the isoform ratio is determined using 

standard curves of cloned or synthetic dsDNA corresponding to each splice variant of 

interest. Real-time PCR assays can be implemented using either non-specific fluorescent 

probes such as SYBR green, or sequence-specific fluorescent probes. Examples of end-

point and real-time PCR assays developed for detection of human NODAL splice variants 

used in the previous chapter are shown in Figure 3.4.  

In digital droplet PCR (ddPCR), a single sample is fragmented into approximately 20,000 

droplets, each of about 1 nL in volume, prior to target amplification. This fragmentation 

allows a large number of physically isolated PCR reactions run in parallel, with many 

reactions containing zero or one copy of the target. This method offers absolute 

quantitation, increased sensitivity and precision relative to real time PCR assays, as well 

as detection at the level of single molecules. I next developed a duplexed ddPCR assay 

for simultaneous detection of alternatively spliced NODAL transcripts. This assay 

provided absolute quantification and completely specific detection of both constitutive 

NODAL and NODAL variant transcripts in a single assay (Figure 3.5A,B). A single probe 

ddPCR assay targeting the boundary between constitutive exon 1 and constitutive exon 2 

was also effective in detection of total NODAL transcripts (Figure 3.5C,D).  
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Figure 3.4: End-point PCR and real-time PCR assays for quantitative 
analysis of NODAL splice variant ratios.  
A) Top shows a common strategy for the quantification of transcript isoforms 
resulting from alternative splicing. Bottom shows an example of human NODAL 
splicing analysis from chapter 2. B) An example of a real time PCR strategy for 
separate detection of NODAL variant and constitutive (or total NODAL) 
transcripts. C) and D) example standard curves for determination of constitutive 
NODAL (C) and NODAL variant (D) transcripts. Equations for standard curves 
and corresponding coefficients of determination (R2) and amplification efficiencies 
are shown. “F” = forward primer (sense strand sequence). “R” = reverse primer 
(antisense strand sequence). “ALT.” = cassette alternative exon. “hES” = human 
embryonic stem cell. “RT” = reverse transcriptase. “Ct” = threshold cycle. 
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Figure 3.5: Droplet digital PCR assays for detection of NODAL splice 
variants and total NODAL transcript.  
A) Design strategy for duplexed detection of NODAL splice variants using a HEX 
probe targeting common constitutive exon 3, and a FAM probe targeting the 
cassette alternative exon. B) Validation of the assay for specific detection of both 
constitutive NODAL and NODAL variant. C) Primer and probe layout for Taqman 
NODAL assay Hs00415443_m1. D) Validation of Hs00415443_m1 in ddPCR 
with H9 hES cells. “F” = forward primer (sense strand sequence). “R” = reverse 
primer (antisense strand sequence). “ALT.” = cassette alternative exon. “hES” = 
human embryonic stem cell. “RT” = reverse transcriptase. 
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In using these assays to detect NODAL expression levels, I noticed that NODAL was not 

reliably expressed in H9 hES cells, as transcript levels were extremely variable between 

samples of different passage cultured at different times in different locations. As an 

example, one such pair of samples differed in total NODAL expression by 3,000-fold, 

with only 26 copies of total NODAL transcript detected for the low-expressing sample in 

cDNA from 100 ng of total RNA. Notably, both samples expressed markers of 

pluripotency. (Figure 3.6A). Similarly, there was also variability in the ratio of NODAL 

variant to total NODAL transcript between hES samples of different passage, and this 

variability was evident even between cells of subsequent passage cultured under the same 

conditions. As an example, a second pair of samples differed in NODAL isoform ratio by 

five-fold (Figure 3.6B).  

To experimentally investigate possible factors that may influence NODAL transcript 

levels, I focused on hES media, as either defined media such as mTESR-1, or media 

conditioned by mouse embryonic fibroblasts (MEFs), are regularly employed in the 

maintenance of hES cells. H9 hES cells adapted for culture on a Matrigel matrix in 

defined media were manually passaged. Half of the cells were kept in defined media 

(mTESR-1), while the other half were switched to MEF-conditioned media (see 

methods). When cells were ready to again be passaged, they were harvested for RNA. 

While the cells grown in defined conditions expressed low levels of total NODAL 

transcript, after only several days of culture in MEF-conditioned media, H9 hES cells 

displayed markedly increased NODAL transcript levels (Figure 3.7A). Furthermore, this 

effect could be reversed. After two more continuous passages in MEF-conditioned media, 

cells were again returned to defined conditions, and NODAL expression decreased by 

approximately the same factor as it had increased previously (Figure 3.7B). Therefore, 

the culture media system employed was identified as a factor that directly affected 

NODAL transcript expression in hES cells. Notably, cells expressed similar levels of 

markers of pluripotency (Figure 3.7C) and had morphology typical of pluripotent stem 

cells under both conditions (Figure 3.7D). 
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Figure 3.6: Highly variable expression and splicing ratio for NODAL 
transcript in H9 human embryonic stem cells. 
NODAL expression can vary dramatically between RNA isolated at different 
times from cells grown under different conditions in different physical locations. 
A) ddPCR droplet plots for examples of “high” and “low” total NODAL expression 
in H9 hES cells using a primer probe assay spanning exon 1 and exon 2. “RT” = 
reverse transcriptase. Blue droplets are positive for NODAL, black droplets are 
negative. Pink line indicates arbitrary amplitude threshold for a positive call. B) 
Top: Total NODAL levels are more than 3,000-fold different between the “high” 
and “low” H9 hES samples. Error bars indicate 95% confidence interval for 
Poisson-calculated copies of transcript detected. Bottom: Both “high” and “low” 
NODAL samples were positive for markers of pluripotency using end-point RT 
PCR. “-” = no template control. C) 2D duplexed ddPCR plots for examples of 
“high” and “low” NODAL splice variant ratio (alternative exon included/ total 
NODAL) H9 hES samples. Heat map droplet view is shown. D) The NODAL 
isoform ratio is 5-fold different between the “high” and “low” NODAL isoform ratio 
samples.  
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Figure 3.7: Total NODAL transcript levels and the proportion of 
alternatively spliced NODAL variant transcript are both reduced in H9 hES 
cells cultured in mTESR1 relative to MEF-CM.  
A) H9 hES cells previously adapted to culture in defined mTESR-1 media 
expressed low levels of NODAL which were increased upon culture in MEF-CM. 
Subsequent return to mTESR-1 resulted in a reduction in NODAL levels of a 
similar magnitude. Error bars indicate 95% confidence interval for Poisson-
calculated copies of transcript detected. B) The NODAL isoform ratio (NODAL 
variant/ total NODAL) was 50% higher for cells grown in MEF-CM relative to 
mTESR-1. The average of two samples from cells cultured in each media is 
shown. Error bars indicate standard deviations. P value is the result of a t-test. 
“mT” = mTESR-1. “CM” = mouse embryonic fibroblast-conditioned media. C) 
Expression of pluripotency markers was not lower in mTESR-1 relative to MEF-
CM culture conditions. Error bars indicate standard deviations. D) Representative 
images of hES cells cultured in mTESR-1 (top) and MEF-CM (bottom) at 
increasing magnifications (left to right). Scale bars are shown.   
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Since aberrant expression of NODAL in numerous patient samples and human cancer cell 

lines has been described [29, 30], I next surveyed several human cancer cell lines of 

various origins for their levels of NODAL transcript. A survey of commonly utilized 

breast cancer cell lines that have previously been used to model NODAL biology showed 

variable but low expression of total NODAL transcript (Figure 3.8A). Notably, only 2 

copies per 100 ng input RNA were detected for the triple-negative MDA-MB-231 cell 

line which has previously been used as a model where knockdown of NODAL reduces 

pro-tumourigenic phenotypes [31, 32], as has the included C8161 melanoma cell line 

[33], for which extremely low levels of NODAL transcript were also detected. 

I was interested in investigating whether this unexpectedly low expression in cancer cell 

lines was a technical issue. To this end, two different MDA-MB-231 RNA samples 

isolated separately from different cell stocks were compared. Both samples revealed 

similar low levels of total NODAL transcript (Figure 3.9A). Next, a thermostable reverse 

transcriptase was utilized to determine if performing the reverse transcription reaction at 

an increased temperature improved reverse transcription efficiency through the partial 

denaturing of presumably complex secondary structure. When either random primers or 

oligo dT was used to prime thermostable reverse transcription, extremely low or 

undetectable levels of total NODAL transcript were still observed (Figure 3.9B). Low 

NODAL detection was also not limited to one specific assay, as transcript levels were not 

higher when using a primer probe assay targeting the exon 2 - exon 3 boundary (Figure 

3.9B). Similarly, the use of a thermostable reverse transcriptase did not result in higher 

NODAL transcript detection in the H9 RNA sample with low NODAL expression (Figure 

3.9C). Low NODAL levels were also detected even when cancer cell line samples were 

processed in parallel with high NODAL-expressing hES samples, and high levels of 

housekeeping genes such as RPLP0 were detected in all samples. In summary, even the 

cancer cell line with the highest detected NODAL expression expressed more than 1,800-

fold less transcript than hES samples with “high” NODAL expression, and several cell 

lines had no detectable NODAL transcript. 

Since NODAL expression was low in many samples, including from H9 hES cells, I was 

interested in comparing assays that targeted different regions of the full-length transcript 

to determine if there were locus-dependent differential reverse transcription efficiencies  
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Figure 3.8: Quantitative analysis of total NODAL transcript levels reveals 
extremely low transcript abundance in human cancer cell lines and patient 
samples of various origin. 
A) NODAL transcript levels were profiled in several human breast cancer cell 
lines of various subtypes and the C8161 melanoma line, most of which have 
been previously used to model NODAL function in cancer. “149” = SUM 149. 
“231” = MDA-MB-231. B) NODAL transcript levels were profiled in a panel 
consisting of one immortalized ovarian surface epithelial cell line (“OSE”), several 
ovarian carcinoma cell lines (“V3” = SKOV3, “429” = OVCA429, “A” = A2780S, 
“3” = OVCAR3), and three samples of carcinoma cells from patients with ovarian 
carcinoma, briefly cultured in vitro (P#1-3). “N.D.” = no transcript detected in 
cDNA from 100 ng total RNA input. Error bars indicate 95% confidence interval 
for Poisson-calculated copies of transcript detected.  
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Figure 3.9: low NODAL expression is consistent and not improved by 
utilization of different reverse transcription strategies and PCR assays. 
A) MDA-MB-231 cells from different cell stocks both revealed virtually no 
detectable NODAL transcript. B) NODAL transcript levels remained extremely 
low or undetectable for a MDA-MB-231 sample from (A) when using different 
reverse transcription strategies or different primer probe assays to target different 
regions of the NODAL transcript. C) The use of oligo dT primers or thermostable 
reverse transcriptase also did not improve NODAL transcript detection in an H9 
hES sample with “low” NODAL levels. “AB hex” = applied biosystems high 
capacity cDNA kit with RT primed by random hexamers. “SSIV hex” = 
SuperScript IV Reverse Transcriptase with RT primed by random primers. “SSIV 
dT” = SuperScript IV Reverse Transcriptase with RT primed by oligo dT. “RT” = 
reverse transcription. Error bars indicate 95% confidence interval for Poisson-
calculated copies of transcript detected. 
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that would help improve detection. Such inter-assay comparisons are made possible by 

ddPCR since the method is absolutely quantitative and PCR amplification efficiency only 

influences the fluorescent magnitude of droplets and not the number of droplets positive 

for amplification used for quantification, thus the digital nature of the signal. In the H9 

sample with “high” NODAL expression, the number of transcripts detected did not differ 

substantially between the assays: There was no more than a 1.5-fold difference seen when 

assays targeting the exon 2 - exon 3 junction, exon 1 – exon 2 junction, or exon 2 alone, 

were compared (Figure 3.10A). However, when the same assays were applied to the H9 

sample with “low” NODAL expression, NODAL levels were 39-fold or 140-fold higher 

for the assay specific to exon 2, relative to the assays targeting exon 2 - exon 3, or exon 

1- exon 2, respectively (Figure 3.10A). Since this assay did not cross an exon-exon 

junction, the inclusion of no reverse transcription controls demonstrated this signal was 

specific to RNA and did not result from genomic DNA or other DNA contamination of 

the RNA sample (Figure 3.10B). Collectively, these results suggest that increased signal 

in exon 2 is not the result of more efficient reverse transcription, and that an additional 

transcript sharing sequence with exon 2 may exist. A survey of human RNAs from 

Genbank [34] revealed AK001176 as a transcript that completely encompasses exon 2 of 

NODAL, extending about 500 bases upstream and downstream. Using primers internal to 

this transcript’s annotated termini but both outside of NODAL’s exon 2 (within the 

adjacent introns), a product was detected from oligo dT reverse-transcribed RNA from 

hES cells (Figure 3.11A-B). Next, a ddPCR primer probe assay was developed that is 

specific to the AK001176 transcript but unable to detect constitutive exon 2 of NODAL 

(Figure 3.11C-D).  

To verify the transcribed strand and orientation for AK001176, 3’ RACE was conducted 

(Figure 3.12A). Similar to NODAL, two distinct products were detected. Sequences 

corresponding to the larger band revealed polyadenylation at a distal site about 200 bases 

downstream of a more proximal polyadenylation site corresponding to the smaller band 

(Figure 3.12B). While the proximal site revealed polyadenylation adjacent to a PAS with 

sequence “AGUAAA,” the distal site was not proximal to any known PAS and was 

adjacent to a short polyA tract. The “AGUAAA” PAS was previously found to be the 

fourth most utilized PAS by human transcripts, although it should be noted that 15% of   
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Figure 3.10: Higher levels of NODAL transcript were detected using a 
primer probe assay within constitutive exon 2. 
A) For an H9 hES sample with high levels of NODAL transcript, similar levels 
(within 1.5-fold) were detected using assays targeting various regions of the 
transcript. Notably, utilizing the assay within constitutive exon 2 did not result in 
the highest levels of NODAL detection in this sample. In a sample with low 
NODAL transcript levels, the exon 2 assay detected over 38-fold more transcript 
than the next highest assay. B) Despite not crossing an exon-exon boundary, 
signal from the exon 2 assay did not result from genomic DNA contamination as 
no reverse transcriptase controls were negative. “RT” = reverse transcriptase. 
Error bars indicate 95% confidence interval for Poisson-calculated copies of 
transcript detected.  
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Figure 3.11: A transcript transcribed from a region encompassing the 
second constitutive exon of human NODAL is expressed in H9 hES cells. 
A) and C) Locations of primers used to amplify the putative transcript spanning 
constitutive exon 2 of human NODAL. The relative locations of NODAL exon 2 
and the putative transcript are shown, with the light blue box indicating shared 
sequence. “F” = forward primer. “R” = reverse primer. “x” indicates no primer 
binding site in full-length NODAL transcripts. “FAM” = fluorescent probe. B) The 
putative transcript is detected in H9 hES cells. “NTC” = no template control. D) 
The ddPCR assay in (C) detects the putative transcript in H9 hES cells. “RT” = 
reverse transcriptase. 
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Figure 3.12: 3’ RACE analysis of the putative transcript confirms antisense 
transcription relative to full-length NODAL, as well as alternative 
polyadenylation. 
A) Primers used for 3’ RACE analysis of the AK001176 transcript. Note that the 
orientation is flipped relative to figure 3.11, such that the putative open reading 
frame of AK001176 is shown left to right. The darker orange and thicker region of 
AK001176 indicates the putative open reading frame. The light blue box indicates 
shared sequence between NODAL exon 2 and the AK001176 transcript. “F1” = 
forward primer used for first round of PCR. “F2” = forward primer used for nested 
PCR. “R” = reverse adapter primer used for reverse transcription. B) AK001176 
is alternatively polyadenylated. A nearby upstream common PAS for the longer 
PCR product could not be identified. The shorter PCR product resulted from 
polyadenylation at a more proximal AGUAAA PAS. “PAS” = polyadenylation site. 
“RT” = reverse transcriptase. 
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polyadenylated transcripts do not contain a known PAS [26]. This finding suggests that 

the AK001176 transcript is alternatively polyadenylated and confirmed that this transcript 

is transcribed from the opposite strand to NODAL and can thus be classified as an 

overlapping natural antisense transcript (NAT).  

In the H9 “high” NODAL sample, signal from this assay was 23-fold less than that from 

the NODAL exon 2 assay (Figure 3.13A), suggesting that full-length NODAL was more 

highly expressed in this sample. In contrast, in the H9 “low” NODAL sample, signal from 

this assay was very similar (within two-fold) to that from exon 2 (Figure 3.13B), 

suggesting that the overlapping transcript contributed to the corresponding higher signal 

from exon 2 relative to other assays in this sample. I next compared expression of 

NODAL and the AK001176 transcript in several breast cancer cell lines. All of MCF7, 

T47D, and SUM 149 cell lines showed relatively high levels of NODAL according to the 

exon 2 assay, and extremely low levels of NODAL according to both exon 1 - exon 2 and 

exon 2 - exon 3 assays. The AK001176 transcript was detected at much higher levels than 

NODAL assays to exon 1 - exon 2 and exon 2 - exon 3, but at comparable levels to the 

assay for exon 2. Collectively, these results suggest that AK001176 NAT expression 

confounds analysis of full-length NODAL transcript within constitutive exon 2.  

Since the signal from the AK001176 transcript was lower than that from the exon 2 assay 

in all samples tested, I was also interested in testing for expression of other transcripts 

containing exon 2 sequence. I discovered that NODAL exon 2 was an excellent candidate 

to form a circular RNA. Circular RNA forms when the 5’ splice donor site of an intron 

forms a “back splice” with an upstream 3’ splice site of the same or other exons in the 

transcript [11]. Relative to splice sites in general, it has been shown that circular RNA 

splice sites are more likely to be flanked by upstream and downstream intronic Alu repeat 

elements and that these genomic elements are more likely to be in opposite orientations. 

Single circularized exons were also found to be among the longest of all human exons, 

with an average length of 690 nucleotides [11]. In addition to constitutive exon 2 of 

NODAL being an extremely long exon (698 nucleotides), analysis of Alu repeats in the 

intronic sequences flanking NODAL exon 2 revealed two upstream Alu repeats and two 

downstream Alu repeats within 2 kb of NODAL exon 2 splice sites (Figure 3.14A).   
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Figure 3.13: Expression of the NODAL natural antisense transcript (NAT) 
AK001176 in breast cancer cell lines. 
A) Very different transcript levels were detected by the NODAL exon 2 assay and 
a NAT-specific assay in a sample with high NODAL transcript levels. Similar 
transcript levels were detected by these two assays in a sample with low NODAL 
transcript levels. B) Assays for both exon 2 and the NAT transcript detected high 
and similar transcript levels relative to exon boundary-spanning NODAL assays.   
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Figure 3.14: A circular RNA formed by the second constitutive exon of 
human NODAL is expressed in H9 hES cells. 
A) Locations of Alu SINE elements from the repeat masker track of the UCSC 
human genome browser are shown relative to locations of NODAL exon 2 (blue) 
and the NAT transcript (orange). Locations of forward (“F”) and reverse (“R”) 
divergent primers are shown. Hg38 chromosome 10 coordinates and scale are 
shown at the top of the image. Arrows indicate orientation/strand of Alu elements. 
B) End-point PCR detection of circular exon 2 amplicons (and products resulting 
from template switching) with two different primer sets in two different H9 hES 
samples (“1” and “2”). “NTC” = no template control. Images were inverted for 
better visualization of bands. C) Schematic of NODAL exon 2 circular RNA and 
corresponding PCR strategy used. A back-splice of exon2 SD with the upstream 
exon 2 SA results in circular RNA formation. Red bars indicate PCR amplicons. 
“x” indicates non-productive amplification of linearly-spliced exon 2. “SA” = splice 
acceptor. “SD” = splice donor. 
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Moreover, Alu repeats in each intron had the same orientation, and were opposite in 

orientation relative to repeats in the adjacent intron. Divergent PCR of NODAL exon 2 

revealed a single band for H9 hES cell RNA. Cloning and sequencing of this band 

confirmed the expression of a single exon circular RNA for NODAL exon 2 (Figure 

3.14).  

Having extensively characterized several transcripts within the NODAL locus, I was 

interested in further investigating the dynamics of some of these isoforms. First, RNA 

stability analysis was conducted to compare the dynamics of the two full-length 

alternatively spliced NODAL transcripts. Actinomycin D was used to block de novo 

transcription in H9 hES cells. Relative to long half-life ACTB transcripts, levels of 

control transcripts MYC and TBP, previously identified as having short half-lives [11, 

35], were both significantly reduced after six hours of treatment with actinomycin D. 

These transcripts displayed first-order reaction-like kinetics indicative of a constant decay 

rate (Figure 3.15), validating the experimental approach used. Constitutive NODAL 

transcript was estimated to have a half-life of 5.0 hours (Figure 3.16A), while the 

estimated half-life for NODAL variant transcript was 8.9 hours (Figure 3.16B). The best 

fit curve for NODAL variant decay was a much poorer fit than that for constitutive 

NODAL, and the difference between NODAL variant and constitutive NODAL transcript 

half-lives was not statistically significant according to an analysis of covariance 

(ANCOVA) test (Figure 3.16C). Interestingly, constitutive NODAL transcript did have a 

half-life that was 2.5-fold longer than MYC (Figure 3.16D), in contrast to a genome-wide 

study in mouse ES cells which found NODAL and MYC to have very similar and very 

short (1.1 and 1.0 hours, respectively) half-lives [35]. 

Finally, to assess the impact of the alternative splicing of NODAL on human embryonic 

stem cell biology, a morpholino antisense oligonucleotide (MO) strategy was used to 

sterically block alternative exon splicing at the 5’ splice donor site (Figure 3.17A). Cells 

with high MO uptake were purified using FACS sorting and analyzed 48 hours after 

treatment. Relative to a control MO, cells treated with the alternative exon MO revealed 

an average 4.8-fold decrease in NODAL variant transcript expression (Figure 3.17B).   
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Figure 3.15: Actinomycin D treatment for assessing half-lives of RNA 
transcripts in H9 hES cells. 
A) ACTB transcript levels are not decreased by Actinomycin D treatment over 6 
hours and were used to control for differences in cell number between samples. 
Data points show transcript levels for three independent biological replications of 
the experiment (n1, n2, n3). “x” data points and the corresponding dashed linear 
regression line indicate average ACTB levels for each time point. B) Short half-
life MYC transcript was used as a positive control to confirm RNA degradation. 
C) Degradation of TBP transcripts was also evident. D) Merged decay curves for 
positive controls TBP and MYC normalized to ACTB. Error bars indicate standard 
deviations. “t1/2” = calculated half-lives in hours. “R2” = coefficients of 
determination for exponential decay curves. 
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Figure 3.16: Both constitutive NODAL and NODAL variant transcripts are 
relatively stable in H9 hES cells.  
A) Constitutive NODAL transcript decay revealed a half-life of 5.0 hours. B) 
NODAL variant transcript decay revealed a half-life of 8.9 hours. C) Comparison 
of decay for both alternatively spliced NODAL isoforms revealed similar half-
lives. D) Comparison of decay for NODAL and MYC transcripts revealed 
substantially slower decay of NODAL transcripts. Error bars indicate standard 
deviations. “t1/2” = calculated half-life. “R2” = coefficients of determination for 
exponential decay curves. P-values show statistical significance results of 
analysis of covariance (ANCOVA) tests between transcripts.   
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Figure 3.17: NODAL variant knockdown and corresponding constitutive 
NODAL levels in H9 human embryonic stem cells (see over). 
A) Schematic of experimental approach for NODAL variant-specific knockdown 
using a morpholino to block the alternative exon splice donor site and exon 
definition. Morpholino is represented by green circles. Splicing events are 
indicated by diagonal lines connecting exons. Spliced mRNA isoforms are shown 
at the bottom of the panel. B-C) Morpholino treatment was successful in 
consistently reducing levels of NODAL variant transcript. D) In three out of four 
replicates with FACS sorting, constitutive NODAL was reduced after NODAL 
variant knockdown. E-F) Analysis of 11 total experiments revealed reduced 
constitutive NODAL expression upon NODAL variant knockdown. Lines join 
control MO and alternative exon MO-treated samples from the same experiment. 
The geometric average decrease in transcript levels and P values indicating 
statistical significance results of paired t-tests for each transcript are shown for 
panels B-D. Coefficients of determination (R2) and linear regression equations 
modelling the data are shown for correlation analyses in E-F. “alt.” = alternative. 
“con” = control. “MO” = morpholino.   
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The ratio of NODAL variant to constitutive NODAL transcript also decreased an average 

of 3-fold, indicative of successfully altered alternative splicing of NODAL transcript 

(Figure 3.17C). There was no corresponding change in levels of constitutively spliced 

NODAL transcript according to a paired-t-test (P = 0.382; Figure 3.17D). To further 

assess a potential link between knockdown of the NODAL variant transcript and resulting 

constitutive NODAL expression levels, NODAL isoform levels were also measured in 

additional NODAL variant MO experiments that did not include FACS enrichment and 

displayed varying knockdown efficiencies. In a total of 11 separate experiments, there 

was a strong positive correlation between NODAL variant knockdown efficiency and 

reduced constitutive NODAL levels (Figure 3.17E). That is, the less NODAL variant there 

was after knockdown, the less corresponding constitute NODAL was present. This effect 

was not solely the result of less total NODAL to begin with in the samples with ostensibly 

“efficient” NODAL variant knockdown: There was also a strong positive correlation 

between NODAL variant knockdown efficiency, as measured by the relative ratio of 

NODAL variant to constitutive NODAL, and the extent to which corresponding 

constitutive NODAL levels were reduced (Figure 3.17F).  

To compare NODAL variant knockdown to knockdown of total NODAL, a second MO 

targeting the 5’ splice donor site of constitutive exon 2 was designed (Figure 3.18A). 

Identical parallel treatment with this MO resulted in an average 4.2-fold reduction in 

constitutive NODAL transcript levels relative to control MO-treated cells (Figure 3.18B). 

As expected, NODAL variant transcript levels were also reduced by an average of 4.4-

fold (Figure 3.18C). However, the NODAL isoform ratio was unchanged, indicative of 

uniform knockdown of total NODAL transcript (Figure 3.18D). 

To assess the potential broad impact of NODAL variant expression on hES cell biology, I 

first selected the MO experiment with the most efficient NODAL variant knockdown for 

expression analysis of genes involved in human embryonic stem cell self-renewal and 

differentiation using a PCR array. Relative to control MO-treated cells and using a 2-fold 

change as a cutoff for differential gene expression, a 96% or 25-fold reduction in   
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Figure 3.18: Total NODAL knockdown in H9 human embryonic stem cells. 
A) Schematic of experimental approach for total NODAL knockdown using a 
morpholino to block the constitutive exon 2 splice donor site and exon definition. 
Morpholino is represented by green circles. Splicing events are indicated by 
diagonal lines connecting exons. Spliced mRNA isoforms are shown at the 
bottom of the panel. Morpholino treatment was successful in consistently 
reducing levels of constitutive NODAL (B) and NODAL variant (C) transcript. D) 
The NODAL isoform ratio (NODAL variant/ total NODAL) remained unchanged 
upon morpholino treatment. Results are shown for four independent biological 
replications of the experiment. Lines join control MO and exon 2 MO-treated 
samples from the same experiment. The geometric average decrease in 
transcript levels is indicated in the top right corner of each panel. Below this are 
P values indicating statistical significance results of paired t-tests for each 
transcript.  
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NODAL variant transcript resulted in altered expression for 15% of genes tested (Figure 

3.19A,B). The same analysis in another replicate of the experiment where 62% or 3-fold 

reduction in NODAL variant transcript levels were achieved yielded differential 

expression for 8% of genes tested. While there was little overlap in the identity of the 

genes with altered expression across experiments (Figure 3.19B), genes with altered 

expression upon NODAL variant MO treatment tended to also be similarly altered upon 

parallel treatment with exon 2 MO where total NODAL levels were comparably reduced 

(Figure 3.19A-C). This effect was consistent across both independent experiments.  

Knockdown of total NODAL transcript induced more widespread changes in expression 

of genes related to embryonic stem cell identity (Figure 3.20). Notably, several genes 

involved in the maintenance of pluripotency and embryonic stem cell identity were 

downregulated in response to total NODAL knockdown. These included master regulators 

of ES cell pluripotency such as TERT [36] and MYC [37], and genes involved in NODAL 

signalling such as GDF3, TDGF1 (Cripto) and SMAD3 (Figure 3.20B). These results are 

consistent with a role for NODAL in the maintenance of ES cell pluripotency. Relative to 

knockdown of the NODAL variant, knockdown of total NODAL induced more changes in 

gene expression (Figure 3.20C). A reduction of total NODAL by 96% or 23-fold resulted 

in altered expression for 28% of genes tested, while a reduction of total NODAL by 82% 

or 5-fold resulted in altered expression for 20% of genes tested. 

3.3 Discussion 

This chapter detailed the characterization of specific transcript isoforms for the human 

NODAL locus. In addition to further study of the newly identified genetically-regulated 

splice variant reported in the previous chapter, I reported detection of an alternative 

transcriptional start site and putative first exon upstream of constitutive exon 1, 

alternative polyadenylation site usage, a circular RNA from constitutive exon 2, and 

confirmed expression of an antisense transcript encompassing the constitutive exon 2 

locus. Collectively, these results point to complex regulation of NODAL gene expression 

at the RNA level that can now be used to guide more precise and accurate assay   
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Figure 3.19: Effect of NODAL variant-specific knockdown in H9 hES cells 
on expression of genes related to pluripotency and differentiation (see 
over). 
A) Heat maps for differences in gene expression between NODAL MO treated 
and control treated hES cells. Data from two experiments with the most efficient 
NODAL variant knockdowns are shown. Differences are ranked from most 
decreased (top; red) to most increased (bottom; blue) after MO treatment for the 
NODAL variant splice blocking MO. Corresponding changes in NODAL exon 2 
MO treated cells are shown to the right. Red boxes indicate genes with log2(fold-
change > 1), corresponding to a fold-change > 2. “rep” = biological replicate. 
“MO” = morpholino used. “K.D.%” = percentage knockdown (e.g. 100% = no 
detectable transcript, 0% = no knockdown relative to control). “K.D. fold” = 
knockdown as fold-change relative to control levels (e.g. 2-fold = 50% 
knockdown). B) Genes with > 2-fold difference between control MO and NODAL 
alternative exon MO. Note: genes with non-specific PCR results in any samples 
were not included in this figure. C) Correlation of gene expression responses to 
NODAL variant knockdown and total NODAL knockdown for genes in (B). Lines 
represent linear regression equations modelling the data. Coefficients of 
determination (R2) are shown. 
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Gene
Log2 fold-change     
Alt exon MO vs. 

con MO

Log2 fold-change     
Exon 2 MO vs. 

con MO
ALB 1.67 1.31
TEK 2.03 2.25
ACTA2 2.41 1.22
T 3.22 3.22

Gene
Log2 fold-change     
Alt exon MO vs. 

con MO

Log2 fold-change     
Exon 2 MO vs. 

con MO
DPPA4 -1.20 -0.20
SOX7 1.12 1.10
ACTA2 1.15 0.55
NT5E 1.63 1.07

Target Nat log 2 Nex2 log 2

DPPA4 -1.2 -0.2

NR5A2 -0.76 -0.31

DPPA3 -0.56 -1.94

FGF2 -0.5 -0.09

POU5F1 -0.49 -0.34

OTX2 -0.48 -0.34

GDF3 -0.45 -1.27

PAF1 -0.43 -0.41

LIN28A -0.41 -0.36

NR6A1 -0.4 -0.13

PRDM14 -0.4 0.41

SALL4 -0.37 -0.05

TRIM28 -0.34 0.08

SMAD1 -0.34 -0.08

GAPDH -0.31 -0.13

ALPL -0.29 -0.13

SOX2 -0.28 -0.14

CNOT3 -0.28 0.04

DES -0.27 0.19

RPLP0 -0.24 0

PAX6 -0.24 0.26

KAT5 -0.19 -0.18

CHD1 -0.19 -0.28

TEK -0.18 0.4

TBX3 -0.15 -0.63

SMAD3 -0.14 -1.26

GATA1 -0.1 -1.73

RIF1 -0.09 0

CHD7 -0.08 0.02

MIXL1 -0.08 -0.27

SMAD2 -0.07 -0.07

TDGF1 -0.05 -0.23

STAT3 -0.03 0

ZFP42 -0.02 0.06

T 0 -0.85

CDK1 0 0.1

B2M 0 0.16

HSPA9 0.01 0.07

GATA2 0.01 -1.14

MYBL2 0.02 -0.06

CCNA2 0.02 0.04

SOX3 0.02 -0.26

TCL1A 0.06 -1.27

HPRT1 0.09 -0.08

FLII 0.09 0.03

NCAM1 0.11 0.5

MYC 0.12 0.01

TERT 0.15 -1.28

ZFX 0.16 -0.04

ACTB 0.17 0.29

CD44 0.23 0.18

CDC42 0.23 0.13

NES 0.27 0.36

ISL1 0.33 -0.65

THY1 0.37 0.11

MEIS1 0.56 0.03

HAND1 0.57 1.41

SOX17 0.59 -0.49

ETV2 0.66 -0.54

TAGLN 0.68 0.41

UTF1 0.75 -0.49

EN2 0.94 0.9

SOX7 1.12 1.1

ACTA2 1.15 0.55

NT5E 1.63 1.07

Target N alt log 2 Nex2 log2
HPRT1 -0.89 -0.42

HNF4A -0.59 1.89

DPPA4 -0.59 -0.03

PRDM14 -0.59 -0.21

POU5F1 -0.5 -0.44

TDGF1 -0.49 -1.3

OTX2 -0.49 0.98

STAT3 -0.46 -0.61

FGF2 -0.43 0.22

MYC -0.33 -1.12

CDK1 -0.3 0.54

THY1 -0.28 -1.38

ZFP42 -0.27 -0.27

SALL4 -0.24 0.48

NES -0.18 -0.16

RPLP0 -0.17 0.23

SOX2 -0.1 0.79

FLII -0.1 -0.14

TRIM28 -0.1 0.12

RIF1 -0.08 0.37

MIXL1 -0.07 -0.9

TCL1A -0.04 -0.14

HSPA9 -0.01 -0.11

TAGLN 0 -1.1

ACTB 0 -0.3

CNOT3 0.04 0.35

GAPDH 0.05 0.14

LIN28A 0.06 0.62

B2M 0.12 0

ALPL 0.15 0.47

CCNA2 0.18 0.46

SMAD3 0.19 0.3

SMAD1 0.21 -0.23

CD44 0.22 -1.28

CHD1 0.23 0.43

NANOG 0.26 0.8

ZFX 0.3 -0.42

NT5E 0.31 -1.35

NR6A1 0.36 1.03

MYBL2 0.36 0.39

SMAD2 0.37 0.65

DES 0.44 -0.31

CHD7 0.53 0.92

CDC42 0.67 0.52

HAND1 0.81 2.38

GDF3 0.85 -1.63

SOX3 0.95 0.66

ALB 1.67 1.31

TEK 2.03 2.25

ACTA2 2.41 1.22

T 3.22 3.22

Target

HPRT1
HNF4A
DPPA4
PRDM14
POU5F1
TDGF1
OTX2
STAT3
FGF2
MYC
CDK1
THY1
ZFP42
SALL4
NES
RPLP0
SOX2
FLII
TRIM28
RIF1
MIXL1
TCL1A
HSPA9
TAGLN
ACTB
CNOT3
GAPDH
LIN28A
B2M
ALPL
CCNA2
SMAD3
SMAD1
CD44
CHD1
NANOG
ZFX
NT5E
NR6A1
MYBL2
SMAD2
DES
CHD7
CDC42
HAND1
GDF3
SOX3
ALB
TEK
ACTA2
T

Target

DPPA4
NR5A2
DPPA3
FGF2
POU5F1
OTX2
GDF3
PAF1
LIN28A
NR6A1
PRDM14
SALL4
TRIM28
SMAD1
GAPDH
ALPL
SOX2
CNOT3
DES
RPLP0
PAX6
KAT5
CHD1
TEK
TBX3
SMAD3
GATA1
RIF1
CHD7
MIXL1
SMAD2
TDGF1
STAT3
ZFP42
T
CDK1
B2M
HSPA9
GATA2
MYBL2
CCNA2
SOX3
TCL1A
HPRT1
FLII
NCAM1
MYC
TERT
ZFX
ACTB
CD44
CDC42
NES
ISL1
THY1
MEIS1
HAND1
SOX17
ETV2
TAGLN
UTF1
EN2
SOX7
ACTA2
NT5E
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Figure 3.20: Effect of total NODAL knockdown in H9 hES cells on 
expression of genes related to pluripotency and differentiation (see over). 
A) Heat maps for differences in gene expression between NODAL MO treated 
and control treated hES cells. Data from two experiments with the most efficient 
total NODAL knockdowns are shown. Differences are ranked from most 
decreased (top; red) to most increased (bottom; blue) after MO treatment for the 
NODAL exon 2 splice blocking MO. Corresponding changes in NODAL 
alternative exon MO treated cells are shown to the right. Red boxes indicate 
genes with log2(fold-change > 1), corresponding to a fold-change > 2. “rep” = 
biological replicate. “MO” = morpholino used. “K.D.%” = percentage knockdown 
(e.g. 100% = no detectable transcript, 0% = no knockdown relative to control). 
“K.D. fold” = knockdown as fold-change relative to control levels (e.g. 4-fold = 
75% knockdown). B) Genes with > 2-fold difference between control MO and 
NODAL exon 2 MO. C) The proportion of genes with substantially altered 
expression resulting from NODAL MO treatment is greater for NODAL exon 2 
MO treated cells relative to NODAL alternative exon treated cells in both 
replicates. 
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log2(fold)
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Target nex N alt log 2
GDF3 -1.63 0.85

THY1 -1.38 -0.28

NT5E -1.35 0.31

TDGF1 -1.3 -0.49

CD44 -1.28 0.22

MYC -1.12 -0.33

TAGLN -1.1 0

MIXL1 -0.9 -0.07

STAT3 -0.61 -0.46

POU5F1 -0.44 -0.5

ZFX -0.42 0.3

HPRT1 -0.42 -0.89

DES -0.31 0.44

ACTB -0.3 0

ZFP42 -0.27 -0.27

SMAD1 -0.23 0.21

PRDM14 -0.21 -0.59

NES -0.16 -0.18

TCL1A -0.14 -0.04

FLII -0.14 -0.1

HSPA9 -0.11 -0.01

DPPA4 -0.03 -0.59

B2M 0 0.12

TRIM28 0.12 -0.1

GAPDH 0.14 0.05

FGF2 0.22 -0.43

RPLP0 0.23 -0.17

SMAD3 0.3 0.19

CNOT3 0.35 0.04

RIF1 0.37 -0.08

MYBL2 0.39 0.36

CHD1 0.43 0.23

CCNA2 0.46 0.18

ALPL 0.47 0.15

SALL4 0.48 -0.24

CDC42 0.52 0.67

CDK1 0.54 -0.3

LIN28A 0.62 0.06

SMAD2 0.65 0.37

SOX3 0.66 0.95

SOX2 0.79 -0.1

NANOG 0.8 0.26

CHD7 0.92 0.53

OTX2 0.98 -0.49

NR6A1 1.03 0.36

ACTA2 1.22 2.41

ALB 1.31 1.67

HNF4A 1.89 -0.59

TEK 2.25 2.03

HAND1 2.38 0.81

T 3.22 3.22

Target
GDF3
THY1
NT5E
TDGF1
CD44
MYC
TAGLN
MIXL1
STAT3
POU5F1
ZFX
HPRT1
DES
ACTB
ZFP42
SMAD1
PRDM14
NES
TCL1A
FLII
HSPA9
DPPA4
B2M
TRIM28
GAPDH
FGF2
RPLP0
SMAD3
CNOT3
RIF1
MYBL2
CHD1
CCNA2
ALPL
SALL4
CDC42
CDK1
LIN28A
SMAD2
SOX3
SOX2
NANOG
CHD7
OTX2
NR6A1
ACTA2
ALB
HNF4A
TEK
HAND1
T

DPPA3 -1.94 -0.56

GATA1 -1.73 -0.1

TERT -1.28 0.15

GDF3 -1.27 -0.45

TCL1A -1.27 0.06

SMAD3 -1.26 -0.14

GATA2 -1.14 0.01

T -0.85 0

ISL1 -0.65 0.33

TBX3 -0.63 -0.15

ETV2 -0.54 0.66

SOX17 -0.49 0.59

UTF1 -0.49 0.75

PAF1 -0.41 -0.43

LIN28A -0.36 -0.41

POU5F1 -0.34 -0.49

OTX2 -0.34 -0.48

NR5A2 -0.31 -0.76

CHD1 -0.28 -0.19

MIXL1 -0.27 -0.08

SOX3 -0.26 0.02

TDGF1 -0.23 -0.05

DPPA4 -0.2 -1.2

KAT5 -0.18 -0.19

TAT -0.17 2.19

SOX2 -0.14 -0.28

NR6A1 -0.13 -0.4

GAPDH -0.13 -0.31

ALPL -0.13 -0.29

FGF2 -0.09 -0.5

HPRT1 -0.08 0.09

SMAD1 -0.08 -0.34

SMAD2 -0.07 -0.07

MYBL2 -0.06 0.02

SALL4 -0.05 -0.37

ZFX -0.04 0.16

RPLP0 0 -0.24

RIF1 0 -0.09

STAT3 0 -0.03

MYC 0.01 0.12

CHD7 0.02 -0.08

FLII 0.03 0.09

MEIS1 0.03 0.56

CCNA2 0.04 0.02

CNOT3 0.04 -0.28

ZFP42 0.06 -0.02

HSPA9 0.07 0.01

TRIM28 0.08 -0.34

CDK1 0.1 0

THY1 0.11 0.37

CDC42 0.13 0.23

B2M 0.16 0

CD44 0.18 0.23

DES 0.19 -0.27

PAX6 0.26 -0.24

ACTB 0.29 0.17

NES 0.36 0.27

TEK 0.4 -0.18

PRDM14 0.41 -0.4

TAGLN 0.41 0.68

NCAM1 0.5 0.11

ACTA2 0.55 1.15

EN2 0.9 0.94

NT5E 1.07 1.63

SOX7 1.1 1.12

HAND1 1.41 0.57

DPPA3
GATA1
TERT
GDF3
TCL1A
SMAD3
GATA2
T
ISL1
TBX3
ETV2
SOX17
UTF1
PAF1
LIN28A
POU5F1
OTX2
NR5A2
CHD1
MIXL1
SOX3
TDGF1
DPPA4
KAT5
TAT
SOX2
NR6A1
GAPDH
ALPL
FGF2
HPRT1
SMAD1
SMAD2
MYBL2
SALL4
ZFX
RPLP0
RIF1
STAT3
MYC
CHD7
FLII
MEIS1
CCNA2
CNOT3
ZFP42
HSPA9
TRIM28
CDK1
THY1
CDC42
B2M
CD44
DES
PAX6
ACTB
NES
TEK
PRDM14
TAGLN
NCAM1
ACTA2
EN2
NT5E
SOX7
HAND1

Gene
Log2 fold-change     

exon 2 MO vs. 
con MO

DPPA3 -1.94
GATA1 -1.73
TERT -1.28
GDF3 -1.27
TCL1A -1.27
SMAD3 -1.26
SCN1A -1.22
GATA2 -1.14
NT5E 1.07
SOX7 1.10
HAND1 1.41
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utilization and enrich our modelling of NODAL biology in human pluripotent stem cell 

and cancer cell lines. 

I found the alternatively spliced NODAL exon identified in the previous chapter to 

contribute to full-length NODAL transcripts containing an ORF with a distinct C-

terminus relative to constitutive NODAL. This variant transcript is fully spliced and 

polyadenylated. Mammalian transcripts are targeted for nonsense mediated decay (NMD) 

if a premature termination codon (PTC) is present more than 50 bases upstream of an 

exon-exon junction complex according to the “EJC” model, or possibly if they result in 

very long 3’ UTRs according to the “faux 3’ UTR” model [38-40]. Notably, a recent 

genome-wide survey of NMD found widespread evidence of the EJC model explaining 

instances of NMD, but did not find consistent evidence of the faux 3’ UTR model 

influencing NMD in human cells [38]. Inclusion of the alternative NODAL exon alters the 

downstream translational reading frame relative to the constitutively spliced isoform, 

resulting in a premature termination codon (PTC) just downstream of the 5’ end of 

constitutive exon 3. However, the NODAL variant PTC is in the most 3’ and final exon 

and thus not upstream of any exon-exon junction, and is less than 150 bases upstream of 

the constitutive NODAL stop. Thus, the NODAL variant transcript is not a good candidate 

to induce NMD. Results of an RNA stability experiment where NODAL variant 

transcripts were as stable, and possibly more stable, than constitutive NODAL transcripts 

indicated that NODAL variant transcripts are not targeted for rapid degradation. 

Collectively, these results suggest the NODAL variant is processed and likely translated 

in a similar fashion to annotated NODAL. However, whether NODAL variant splicing 

induces a NMD response was not directly assessed. Determination of the exact 

transcriptional start site(s) used by NODAL transcript isoforms was confounded by 

potential incomplete reverse transcription of cDNA. A 5’ cap-specific method such as 

RLM RACE will be used in future studies for exact 5’ end determination. The 

enrichment of an alternative first exon and skewed polyadenylation site usage for the 

NODAL variant relative to constitutive NODAL suggests there is coordinated regulation 

of the NODAL variant transcript that extends beyond the direct definition of a splice 

donor site formed by the rs2231947 T allele. This apparent coordination with 

polyadenylation is interesting given that a link between alternative polyadenylation and 
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alternative splicing has been described, but only for 3’ terminal exon selection [18]. To 

my knowledge, processes that link alternative splicing events at non-adjacent exons and 

to alternative transcriptional start sites have not been described before in the literature. 

The ability to specifically analyze NODAL variant and constitutively spliced NODAL 

transcripts on a single molecule basis was potentiated by a duplexed ddPCR assay that 

offers several benefits over traditionally employed splice variant detection methods such 

as those used in the previous chapter. In the case of exon skipping events, the most 

commonly employed detection method utilizes one set of primers targeting constitutive 

exons flanking the alternative splicing event of interest. This results in the amplification 

of a shorter amplicon corresponding to the alternative exon-skipping isoform, and a 

longer amplicon corresponding to the alternative exon including isoform. Due to the 

difference in amplicon length, these two products can be easily resolved using agarose 

gel electrophoresis. This is a major advantage of this method, as it provides high 

confidence in the specific detection of each isoform. However, this method relies on 

densitometry-based analysis of end-point PCR products. This is not ideal for quantitative 

purposes since the quantity of an amplicon at the end of a PCR reaction is not necessarily 

indicative of the initial relative target quantity in the sample due to reaction plateauing 

and potentially different amplification efficiencies between amplicons that skew the final 

relative abundance. Signal detection is also prone to saturation, and for a molar 

comparison of the splice variant ratio, the signal needs to be corrected based on relative 

differences in the size of the amplicons. Lastly, isoforms with low expression may not be 

easily detected. The amplification efficiencies and thus resulting splice ratios are also 

potentially influenced by reaction conditions such as choice of annealing temperature and 

salt concentration in the PCR reaction [41]. 

Real-time PCR offers a suitable quantitative method. However, such assays are most 

reliable when implemented as separate assays for detection of each splice variant, and 

require the inclusion of standard curves of known quantity for each variant to be detected, 

so that accurate relative comparisons can be made. Thus, while more quantitative, these 

assays are more labour-intensive and their reliance on standard curves presents more 

opportunity for technical sources of error in splice variant quantification. Additionally, it 
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is difficult to be confident in the specificity of an assay targeting an exon skipping event, 

as primers designed to splice junctions may also effectively amplify transcripts with 

alternative exons in some contexts [41]. 

The advent of digital droplet PCR (ddPCR) offers an alternative strategy for splice 

variant detection that is easily duplexed as in end-point detection methods, but also 

quantitative as in real-time methods. Moreover, ddPCR methods are absolutely 

quantitative, not influenced by amplification efficiency, and do not require standard 

curves. Furthermore, ddPCR has single molecule resolution, and duplexing in a splice 

variant assay allows confident isoform classification on an individual transcript basis. 

The results presented here illustrate the power of a NODAL splicing ddPCR assay to 

quantify constitutive NODAL and NODAL variant transcripts to deliver accurate isoform-

specific quantification in knockdown and RNA stability assays.  

NODAL signalling is generally thought to be essential for human embryonic stem cell 

pluripotency [42, 43] and consistently high levels of NODAL expression have been 

reported for this cell type [44]. Here I have reported extremely low NODAL expression at 

the RNA level in some isolates of hES cells with typical pluripotent stem cell 

morphology and expression of markers of pluripotency, cultured continuously under 

standard feeder-free defined culture conditions. It is possible that low NODAL levels are 

indicative of cultures poised for (or already undergoing) early differentiation. In this vein, 

NODAL, LEFTY1, and LEFTY2 displayed some of the most rapid down-regulation upon 

spontaneous hES cell differentiation in a small panel of pluripotency markers [45]. Still, 

it is also possible that high NODAL expression is not strictly required for the maintenance 

of pluripotency, and that there are redundant or compensatory mechanisms that can 

sustain pluripotency in the absence of NODAL. Studies have shown that exogenous 

NODAL reduced or delayed spontaneous differentiation of human embryonic stem cells, 

but the effects of directly knocking down NODAL in hESCs have never been reported. In 

addition, the experimental modelling used in many studies of NODAL in hES cell biology 

is not specific to NODAL. For example, the ALK4/5/7 inhibitor SB431542 [46] is often 

used to study hES cell fate (e.g. [42, 43, 47]), but results in broad inhibition of NODAL, 

Activin, TGF-beta, and other superfamily member signalling through any of these 
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receptors. When NODAL was more specifically inhibited by Vallier and colleagues [43] 

by over-expressing or treating hES cells with Lefty or Cerberus-short, the latter of which 

has been identified as a NODAL-specific inhibitor in xenopus [48], widespread 

differentiation was not observed. TRA-160-positive cells were still evident (although 

reduced in frequency for Lefty-over-expressing cells), and stable hES cell colonies were 

as efficiently generated from cells over expressing Lefty and Cerberus-short relative to 

GFP-expressing control cells. This, together with the findings presented here suggest that 

there may be redundancy in the signaling pathways required for the maintenance of 

pluripotency. Indeed, TGF-beta1 and Activin have been identified as likely candidates to 

complement NODAL signalling. Both genes were found to be highly expressed in both 

MEF feeder cells and hES cells, while NODAL was easily detected in hES cells but not 

MEFs.  

More generally, this study supports the notion that a pluripotent gene expression 

signature is not static or universal, but rather partially stochastic, and that the 

combinations of active transcription factor networks and signalling pathways that can 

support the pluripotent state can drift with culture conditions and microenvironmental 

factors, between cell lines, and due to other unknown variables. Indeed, it has been 

suggested that there exists a spectrum or continuum of pluripotent states both in vitro and 

in vivo (reviewed by [49]). This property of ES cells may also explain why efficient 

knockdown of NODAL did not result in especially robust and consistent changes in 

specific genes between replicate experiments conducted on cells from subsequent 

passages. In this fashion, NODAL may maintain different gene expression networks 

dependent on the cellular context. Since the knockdown efficiency was different between 

experimental replicates, dosing and threshold effects could also result in different impacts 

on gene expression after NODAL knockdown.  

The observed variability in hES cell NODAL transcript levels was certainly staggering. 

That NODAL transcript levels were dramatically and reversibly influenced by culture 

conditions may be an indication that more general differences exist between hES cells 

cultured in MEF-conditioned serum replacement-based media and in more defined 

media. In general, some differences in hES cells cultured under varying conditions have 
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been observed [50, 51]. However, very little work has directly compared culture with 

MEF-conditioned media and defined media such as mTESR [52]. Perhaps surprisingly, 

there is a striking absence of work involving comprehensive and quantitative profiling of 

hES gene expression signatures between MEF-conditioned media and defined media, to 

investigate to what extent such media may promote distinct pluripotent states. While the 

choice of culture media did have a dramatic effect on NODAL expression, the magnitude 

of this effect still paled in comparison to the overall variability observed in NODAL 

expression, suggesting it may not be the only or even major factor dictating NODAL 

expression in hES cells. 

In addition to the unexpectedly low levels of NODAL transcript sometimes observed in 

hES cells, I also made the somewhat surprising discovery of especially low NODAL 

expression at the transcript level across numerous human cancer cell lines. The extremely 

low or sometimes virtually undetectable levels of NODAL transcript reported here for cell 

lines such as C8161 aggressive melanoma and MDA-MB-231 triple-negative breast 

cancer are inconsistent with functional studies in these cell lines where NODAL 

knockdown, mediated at the RNA level through RNA interference [31, 32], or inhibition 

of endogenously expressed protein [53] resulted in profound phenotypic effects. Notably, 

NODAL mRNA expression was not reported in these papers, so it is difficult to tell 

whether the detectable and functionally relevant levels of NODAL protein reported in 

these studies were expressed from cells with considerably higher NODAL mRNA levels, 

or if NODAL protein is perhaps generally translated or stabilized at high levels despite 

universally low mRNA levels. Another possibility is that there is only a minority 

population of cells expressing NODAL. At least one other group has reported 

undetectable NODAL transcript expression in MDA-MB-231 cells when using a real time 

PCR assay spanning an exon-exon boundary [54].  

Estimates for the quantity of total RNA per cell (1-50 pg/cell) suggest that 100 ng total 

RNA represents about 4,000 cells. Thus, samples for which 1-2 copies of NODAL 

transcript are detected is indicative of expression of a single transcript for every several 

thousand cells. Even if inefficiencies in RNA extraction and reverse transcription are 

considered, this undoubtedly represents extremely low gene expression, or is indicative 
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of only a subpopulation of cells that are producing NODAL. It is not likely that technical 

inefficiencies can fully account for these results, as hES samples with high NODAL 

expression have been repeatedly analyzed in parallel. Multiple priming strategies for 

reverse transcription and different PCR detection assays also consistency revealed low 

expression in cancer cell line samples. Lastly, RNA integrity analysis shows intact RNA 

with no signs of degradation, and high levels of house-keeping genes such as RPLP0 and 

other genes of interest have been routinely amplified from all of the low NODAL-

expressing samples presented here. NODAL levels in different RNA samples from the 

same cancer cell line were also variable. For example, other isolations of RNA from the 

T47D breast cancer cell line have been found to have as few as 1-2 copies of total 

NODAL transcript per 100 µg RNA, while the SKOV3 ovarian carcinoma cell line which 

had no expression in the sample shown here has revealed more than 10 copies of total 

NODAL transcript in 100 ng RNA from other isolates.  

One other study has directly compared NODAL expression levels between two cancer cell 

lines and hES cells with multiple NODAL assays, although this analysis was conducted 

using semi-quantitative end-point PCR [24]. For the C8161 cell line, an assay crossing 

the exon 2 - exon 3 boundary resulted in a very low intensity band that was barely 

detectable. In contrast, an assay internal to exon 2 yielded a band of much higher 

intensity. This result is consistent with those presented here, which reveal that this higher 

expression may at least partially result from expression of an antisense transcript sharing 

sequence with exon 2 and solely the constitutive NODAL transcript. The increased signal 

from assays internal to exon 2 is likely not the result of higher reverse transcription 

efficiency in this region of the transcript since signal was fairly uniform across all regions 

of the transcript in an H9 sample with high NODAL expression. It is also possible that 

unspliced pre-mRNA is a source of higher signal within constitutive exon 2. Although 

this possibility was not assessed here, the presence of such RNA has been shown for 

transcripts of NODAL-related genes in zebrafish [55]. Indeed, unless polyA tail-specific 

reverse transcription is performed, or PCR assays cross exon-exon boundaries, it is not 

possible to distinguish unspliced pre-mRNA from processed transcripts. Nonetheless, 

assays targeting only exon 2 of NODAL are not specific to full-length processed NODAL 

transcript. However, such assays have been widely employed when assessing NODAL 
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levels in many publications (e.g. [24, 31, 56-62]). Going forward, it is highly 

recommended that specific assays for the antisense transcript, circular RNA, potential 

unspliced pre-mRNA, and constitutive NODAL be employed to untangle the 

contributions of each transcript to any overall change in expression measured by the 

assays internal to exon 2. It will be interesting for future studies to explore whether these 

three transcripts show similar responses to altered microenvironments, and if over-

expression of NODAL affects levels of antisense or circular RNAs, and vice-versa. 

Interestingly, the antisense transcript was found to be polyadenylated. This transcript also 

contains an ORF and is predicted to code for a protein with an N-terminal signal peptide, 

suggesting it is likely translated (Appendix A). However, since it shares coding sequence 

with much of exon 2, outside of NODAL codon wobble sites, much of its coding potential 

is likely influenced and constrained by the highly conserved constitutive NODAL coding 

sequence.  

Interestingly, while NODAL was identified as having one of the shortest half-lives (just 

over 1 hour) in a global analysis of mRNA stability in mouse ES cells [35], our data 

revealed a half-life of over five hours in human ES cells. It is difficult to compare 

absolute half-lives between these studies, as different normalization strategies and other 

experimental variables can be confounding. However, the mouse ES study also identified 

the MYC transcript as having a very similar half-life to NODAL in their system, with a 

half-life of just under one hour. Inclusion of MYC in the analysis presented here revealed 

a similar half-life of two hours, substantially shorter than that of NODAL. A more 

comprehensive analysis of multiple transcripts would need to be conducted to determine 

if NODAL mRNA is more stable in human ES cells. If so, it is possible this is a result of 

altered mRNA stability in the primed, epiblast stem cell-like state of human ES cells 

relative to their naive “ground-state” mouse counterparts, although analysis of the raw 

data from [35] did not reveal substantially increased (>2-fold) stability of NODAL 

transcript when early differentiation was induced in mouse ES cells. Notably, NODAL 

variant transcript was found to be at least as stable as constitutive NODAL in hES cells. 

This finding suggests that lower levels of the NODAL variant relative to constitutive 

NODAL does not result from lower relative stability, and that the NODAL variant is not a 
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“mis-spliced” mRNA that is rapidly targeted for degradation by RNA surveillance 

pathways. 

It is tempting to conclude that since constitutive NODAL levels correlated well with 

NODAL variant levels after specific knockdown of the latter that the NODAL variant 

promotes or maintains expression of NODAL in general. There are several possible 

factors that could contribute to the observed results. First, since NODAL variant is spliced 

as a proportion of total NODAL transcribed, samples with lower levels of NODAL will 

appear to have a better absolute knockdown partially due to stochastic variability of 

NODAL levels. This factor could not explain the entire effect, as experiments resulting in 

lower ratios of NODAL variant to constitutive NODAL also resulted in lower constitutive 

NODAL levels. Another variable is the effectiveness of the MO at blocking splicing, as it 

cannot be assumed that this is constant. If there is a causal relationship between 

alternative exon MO treatment and constitutive NODAL splicing or expression, it would 

be interesting to explore if this effect is dependent on alternative exon splicing per se, or 

if targeting the alternative exon splice donor site interferes with an element such as an 

intronic splicing enhancer for constitutive exon 2. This effect could also be the indirect 

result of NODAL variant expression involving a positive feedback on NODAL expression 

in general.  

Genes with altered expression after NODAL variant knockdown tended to be altered in a 

similar fashion upon knockdown of total NODAL transcript. However, the number of 

genes with altered expression was much lower upon NODAL variant knockdown relative 

to total NODAL knockdown. It is possible that the NODAL variant shares limited 

functional redundancy with constitutive NODAL, or that the resulting decrease in 

constitutive NODAL levels is sufficient to induce a partial and similar response. More 

efficient knockdown of both total NODAL and NODAL variant in the “n2” experiment 

induced gene expression changes in a higher percentage of genes tested relative to an 

experiment with less efficient knockdowns for both total NODAL and NODAL variant. It 

is also unsurprising that total NODAL knockdown induced more changes in gene 

expression in both experiments than NODAL variant knockdown, as a genetically 

regulated splice variant sharing only partial sequence with constitutive NODAL is likely 
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to have a more limited impact on ES cell biology than a highly conserved bona fide 

regulator of stem cell fate. Despite achieving very efficient knockdown, these 

experiments were limited in their potential disruption of NODAL signalling: Only a 

portion of the total cell population was analyzed, and as a secreted paracrine growth 

factor, NODAL from cells receiving a low morpholino dose could still signal to the cells 

receiving a high morpholino dose that were analyzed. Furthermore, this experimental 

scheme is limited in its duration, and did not allow for sustained long-term reduction of 

NODAL levels. 

In summary, this chapter identified several distinct transcripts expressed from the 

NODAL gene locus. At least two of these transcripts, the constitutive and alternatively 

spliced isoforms introduced in the previous chapter, exist as full-length spliced and 

polyadenylated stable transcripts containing open reading frames. The next chapter will 

characterize the translated products of these isoforms to examine how alternative splicing 

impacts NODAL biology at the protein level.   

3.4 Methods 

3.4.1 RNA extraction  

Total RNA was isolated from cultured cells using the PerfectPure RNA Cultured Cell Kit 

(5-Prime; Hilden, Germany) including on-column DNase treatment, and quantified with 

the Epoch plate reader (Biotek; Winooski, Vermont, USA). For direct extraction from 

FACS-sorted cells, the RNeasy Micro Kit (Qiagen; Hilden, Germany) was used. The 

manufacturer’s protocol was modified to allow direct extraction from collected cells. 

Briefly, cells were collected in 500 µL buffer RLT. Excess volume obtained from FACS 

was measured with a micropipette. Additional RLT was added to the sample to obtain a 

350 µL to 100 µL ratio of RLT to excess liquid. For each 450 µL of total sample, 250 µL 

of 100% ethanol was added in place of the 350 µL of 70% ethanol typically used. The 

sample was loaded through the spin column in 700 µL stages, and the remainder of the 

protocol was performed unmodified, and included on-column DNase treatment.     
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3.4.2 Complementary DNA (cDNA) synthesis  

Total RNA was reverse transcribed with the high capacity cDNA reverse transcription kit 

(Applied Biosystems; Foster City, California, USA) following manufacturer’s 

instructions. Unless otherwise indicated, one (1) µg of total RNA was used in each 

reaction, and random hexamers were used to prime synthesis by reverse transcriptase. 

Reactions where oligo dT was used in place of random hexameters are indicated. 

Reactions performed with SuperScript IV Reverse Transcriptase (Thermo Fisher; 

Waltham, Massachusetts, USA) are indicated. “No RT” reactions included RNA template 

and all components except reverse transcriptase enzyme.  

3.4.3 End-point PCR and sequencing 

Primers for end-point PCR were designed using NCBI’s Primer-BLAST 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). AmpliTaq Gold 360 Master Mix 

(Applied Biosystems) was used for all end-point PCR analyses. Primers were used at a 

final concentration of 250 nM. Cycling conditions were as follows: 

1) Activation  95° C  5 min 

2) Melting  95°C  30 sec 

3) Annealing  Variable  30 sec 

4) Extension  72°C  Variable. Return to step 2 for 35 total cycles.  

5) Final Extension 72°C   10 min 

Variable temperatures and times are indicated for each primer set, as are sequences of 

forward (“F”) and reverse (“R”) primers. Products were analyzed using agarose gel 

electrophoresis and band sizes were confirmed using the 1 kb plus or 100 bp plus DNA 

ladders (Thermo Fisher). All end-point PCR products were cloned into the pCR 4-TOPO 

plasmid with TOPO TA cloning for sequencing kit (Thermo Fisher). Cloning reactions 

were transformed into One Shot TOP10 Chemically Competent E. coli (Thermo Fisher). 

Individual clones were selected with Kanamycin and propagated for mini prep of plasmid 

DNA using the High-Speed Plasmid Mini Kit (Geneaid/FroggaBio; Toronto, Ontario, 

Canada). Multiple clones were sequenced for each product to confirm amplicon 

identities. Sanger sequencing using the plasmid-specific M13R or M13F primers was 
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conducted by the Molecular Biology Service Unit at the University of Alberta, or the 

London Regional Genomics Centre at Western University.  

3.4.4 Exon junction end-point PCR 

Primers used for Figure 3.1B and D: 

set 1 F:  GCCCTGCCCTGCTGTCCAAG 

set 1 R: GGCTTGGCATGGAGGATATATTGCA  

set 2 F:  GTGGGGCAAGAGGCACCGTC  

set 2 R: AGGCTTGGCATGGAGGATATATTGC  

set 3 F:  CTGCCCTGCTGTCCAAGGTCAT 

set 3 R: ACTCGGTGGGGCTGGTAACG  

ORF F:  TATATAGCGATCGCCATGCACGCCCACTGCCTGCC 

ORF R: ATATATACGCGTGCAGACTCTGAGGCTTGGCATGG 

3.4.5 NODAL natural antisense transcript (NAT) PCR 

The NODAL NAT was amplified from H9 and CA1 hES polyA+ cDNA with the 

following primers used for end-point PCR in Figure 3.11B:  

F:  GCAAGAGCTATGGTGGTTGTG 

R:  TAGCAAAGCTAGAGCCCTGTC 

Annealing temperature: 54°C 

Extension time:  2 minutes  

3.4.6 Circular RNA PCR 

Two pairs of non-overlapping primers were employed for NODAL exon 2 divergent PCR. 

Forward/ sense primers were designed near the 3’ end of exon 2, and reverse/ antisense 

primers were designed near the 5’ end of exon 2. Separate reactions were prepared for 

each set of primers.  

Primers used for Figure 3.14B:  

NODAL divergent exon2 F1   TACCCCAAGCAGTACAACGC 

NODAL divergent exon2 R1   GTCCAGTTCTGCCCATCCAC 
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NODAL divergent exon2 F2   GTGAGGGCGAGTGTCCTAATC 

NODAL divergent exon2 R2   TTGGCTCAGGAAGGAGAAGTC  

Conditions:  Annealing temperature:  55°C.  

   Extension time:  1 minute 

3.4.7 3’ Rapid Amplification of cDNA Ends (RACE) analyses 

For 3’ RACE, 2 µg total RNA was used for reverse transcription. Random primers were 

substituted for an oligo dT-adapter mix of “lock-dock” [63] primers with either A, G, or 

C as the most 3’ base:  

dT adapter primer R A: GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTTA 

dT adapter primer R G: GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTTG 

dT adapter primer R C: GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTTC 

Each primer was used at a final concentration of 167 nM for a total primer concentration 

of 500 nM. 2 µL (equivalent to 200 ng RNA) of each cDNA reaction was used for 

subsequent PCR.  

For the first round of amplification, primers were used at a final concentration of 200 nM: 

Forward primers (variable for each analysis): 

total NODAL 3’ RACE F1:  TCTCCAAAGTAGTCTGTGTGTGAC 

NODAL variant 3’ RACE F1: CTGCTGTCCAAGGTCATATGGG 

NAT 3’ RACE F1:   CGCTTCAGCCACTTGGAGAG 

Reverse primer (identical for each analysis): 

Abridged universal amplification primer (AUAP) R: GGCCACGCGTCGACTAGTAC 

Conditions: 

Annealing temperature: 54°C 

Extension time:   2 minutes (total NODAL), 3 minutes (NODAL variant) 

For the second (nested) round of amplification, 1 µL of PCR product from the first round 

of PCR was diluted into a final reaction volume of 20 µL for the nested PCR reaction 

conducted with the same conditions as round one, with the following primers:   
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Forward primers (variable for each analysis): 

total NODAL 3’RACE F2 nested:  TCCCCCTCCCCAAAGATTAAGG 

NODAL variant 3’ RACE F2 nested:  AATATATCCTCCATGCCAAGCCTC 

NAT 3’ RACE F2 nested:   ACCTCCAAAACCATGCTGCC 

Reverse primer (identical for each analysis): 

Abridged universal amplification primer (AUAP) R: GGCCACGCGTCGACTAGTAC 

3.4.8 5’ Rapid Amplification of cDNA Ends (RACE) analyses 

5’ RACE analysis was conducted using the 5' RACE System for Rapid Amplification of 

cDNA Ends (Thermo Fisher) following manufacturer’s instructions. Three (3) µg of total 

RNA was used for each sample. Reverse transcription was performed for 50 minutes. 

cDNA (16.5 µL) was used for the tailing reaction. Tailed cDNA (2.5 µL) was used in a 

total volume of 25 µL for first round PCR. Primers were designed according to 

manufacturer’s guidelines and to have melting temperatures similar to primers provided 

for a positive control target. “GSP” = gene-specific primer. All primers for first and 

second round PCR were used at a final concentration of 400 nM. 2.5 µL of 1/10 diluted 

first round PCR product was used for second round nested PCR.   

Primers used for reverse transcription:  

total NODAL 5’ RACE GSP1 GAAAATCTCAATGGCAAGTGAG 

NODAL variant 5’ RACE GSP1  CATGGAGGATATATTGCAAGTC 

Primers used for first round PCR:  

total NODAL 5’ RACE GSP2 CCATGCCAGATCCTCTTGTTG 

NODAL variant 5’ RACE GSP2 TCCCATATGACCTTGGACAGC 

Abridged anchor primer (AAP) GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG 

The same primer targeting constitutive exon 2 of NODAL was used for second round 
nested PCR analysis of both total NODAL and NODAL variant transcripts:    

total NODAL 5’ RACE nested GAAGGAGAAGTCAAAAGCAAACG 

Abridged universal amplification primer (AUAP): GGCCACGCGTCGACTAGTAC 

Conditions used:  

Annealing temperature: 56°C 
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Extension time:  2 minutes 

3.4.9 SYBR green real time PCR 

Amplification of both NODAL isoforms in Figure 3.4A were amplified using the 

following primers using an annealing temperature of 60°C.  

exon 2 F: TGTGAGGGCGAGTGTCC 

exon 2 R: GAGGCACCCACATTCTTCCA 

SYBR green real time PCR was performed using SsoAdvanced Universal SYBR Green 

Supermix (Bio-Rad; Hercules, California, USA). Primers were used at a final 

concentration of 100 nM. The following primers were used for Figure 3.4B-D.  

SYBR green constitutive NODAL F:  TACATCCAGAGTCTGCTG 

SYBR green constitutive NODAL R:  CCTTACTGGATTAGATGGTT 

SYBR green NODAL variant F:  CTGTTGGGGAGGAGTTTCA 

SYBR green NODAL variant R:  AGGCTTGGCATGGAGGATA 

Cycling was performed on a CFX96 real time PCR detection system (Bio-Rad) using the 

following conditions:  

1) Activation   95° C  10 min 

2) Melting   95°C  15 sec 

3) Annealing/ extension 60°C   1 min. Return to step 2 for 40 total cycles.  

Results were analyzed using CFX manager (Bio-Rad) including a melt curve analysis to 

check for non-specific amplification. All SYBR green products were cloned and 

sequenced as described for end-point PCR amplicons. Cloned products for both NODAL 

and the NODAL variant were quantified using spectrophotometry and standard curves 

were prepared by calculating volumes required for a given number of target molecules.  

3.4.10 Taqman real time PCR 

Real time PCR was performed using Taqman gene expression master mix (Applied 

Biosystems) and Taqman gene expression assays for POU5F1/ OCT4 (Hs04260367_gH), 

NANOG (Hs04260366_g1), SOX2 (Hs01053049_s1), RPLP0 (4333761), and TBP 
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(Hs99999910_m1). Expression was normalized to both RPLP0 and TBP using the ∆∆Ct 

method.   

3.4.11 Duplexed NODAL splice variant ddPCR assay 

Primers and probes for a digital droplet PCR assay to detect NODAL transcript isoforms 

were designed using primer 3 plus (http://primer3plus.com/). The following primers and 

probes were used, with fluorophores, internal quenchers, and terminal quenchers flanked 

by forward slashes.  

Forward primer: GACCAACCATGCATACATC 

Reverse primer: AACAAGTGGAAGGGACTC 

Alternative exon probe: 

/56-FAM/CCTGCTGTC/ZEN/CAAGGTCATAT/3IABkFQ/ 

Constitutive exon probe: 

/5HEX/CTGGTAACG/ZEN/TTTCAGCAGAC/3IABkFQ/ 

Primers were used at a final concentration of 900 nM and probes were used at a final 

concentration of 250 nM. Droplets were generated and subject to a “two-step” PCR with 

the following conditions:  

1) 95° C 10 min 

2) 94°C 30 sec 

3) 50°C 1 min 

4) 72°C 2 min. Return to step 2 for 40 total cycles.  

5) 98°C 10 min 

Droplets that were both FAM-positive and HEX-positive, corresponding to the NODAL 

variant, were quantified using the Quantasoft software. Since constitutive NODAL was 

FAM-negative and HEX-positive, and could therefore be co-amplified in droplets 

containing NODAL variant transcript, constitutive NODAL was calculated manually using 

the equation: copies/ 20 µL sample = -ln(1-p) x 20,000 / 0.85. where ‘p’ is the proportion 

of positive droplets defined as FAM-HEX+ droplets / (FAM-HEX+ droplets + empty 
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droplets), and 0.85 nL is the average volume of a droplet as used by QuantaSoft (Bio-rad) 

[64].  

3.4.12 Other ddPCR assays 

Droplet digital PCR for total NODAL was conducted using Taqman primer probe assays 

Hs00415443_m1, Hs00250630_s1, or Hs01086749_m1 (Applied Biosystems). Unless 

indicated, Hs00415443_m1 was used for all ddPCR detection of total NODAL transcript. 

Primer probe assays were used at 1X (1/20th of supplied) concentration. For ddPCR 

detection of the NODAL NAT transcript, the following primers and probe were used at 

900 nM and 250 nM, respectively.  

NODAL NAT F TTAATAGCAAAGCTAGAGCC 

NODAL NAT R CATGCATACATCCAGGTG 

NODAL NAT FAM /56-FAM/CCCAAGGCC/ZEN/AGCTTACTG/3IABkFQ/ 

The following cycling conditions were used:  

1) 95° C 10 min 

2) 94°C 30 sec 

3) 55°C 1 min 

5) 98°C 10 min 

The number of target molecules detected was calculated using Quantasoft (Bio-Rad). For 

every sample, ddPCR was also used for detection of the housekeeping gene RPLP0 using 

Taqman gene expression assay 4333761 (Applied Biosystems).  

3.4.13 Microscopy 

Pictures of H9 hES cells in different media were taken using EVOS FL Cell Imaging 

System (Thermo Fisher) with either 4X, 10X, or 20X objective lenses. Contrast and other 

image properties were adjusted so that cells and colony boundaries were more easily 

visible.  
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3.4.14 RNA stability experiments 

H9 human embryonic stem cells grown in feeder-free conditions were treated for two or 

six hours with actinomycin D (Sigma-Aldrich; St. Louis, Missouri, USA). RNA 

extraction and was performed as described above. Equal volumes of RNA sample were 

reverse transcribed for each sample. Real time PCR was conducted in duplicate for the 

short half-life controls c-Myc (MYC) and TATA-binding protein (TBP; 

Hs99999910_m1), and for the long half-life control beta-Actin (ACTB; Hs01060665g1). 

A standard curve for each assay was used for target quantification in each sample. 

Detection of NODAL transcript isoforms was performed using the duplexed droplet 

digital PCR NODAL assay for NODAL splice variants. For each sample, 1 µL of cDNA 

was analyzed in duplicate or triplicate. Expression levels for each transcript of interest for 

each sample were normalized to ACTB levels and to the average transcript level within 

each experiment. Expression for each experiment was reported relative to cells that did 

not receive any actinomycin D treatment (t = 0). Each target of interest was fitted by an 

exponential trend line in Microsoft Excel for Mac (version 15.4, Microsoft), so that half-

lives could be calculated based on the returned equation in the form: N(t) = N0 e-λt, where 

N(t) is the quantity at a given time t. N0 is the quantity at t=0, and λ is the exponential 

decay constant. Thus the half-life can be calculated using t1/2 = ln(2)/-λ. For comparisons 

of the half-lives of two different transcripts, a one-way analysis of covariance 

(ANCOVA) for independent samples was conducted on log-transformed relative 

expression values for all actinomycin D-treated samples using treatment time as the 

concomitant variable and performed using Vassar Stats 

(http://vassarstats.net/vsancova.html).   

3.4.15 Morpholino experiments 

Antisense morpholino oligonucleotides (MOs) were synthesized by Gene Tools. All MOs 

had a 3’ fluorescein tag. The “standard control oligo” was used in all control treatments. 

MOs with the following sequences were used to target NODAL:  

NODAL alternative exon (SNP T) AGACCCTGAATCCCACCTGAGGCTT 

NODAL constitutive exon 2  CCTCACGCCTGGCATCCCACCTGGA  
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H9 hES cells were grown in feeder-free conditions on Matrigel and with MEF-CM. 

When ready for passage, cells were treated with 20 µM MO. In the presence of MO, 

colonies were manually passaged and transferred to a new culture vessel at a 1:2 split 

ratio. MO-containing media was replaced 18 hours later with fresh media that did not 

contain MO. After 48 hours, cells were sorted using FACS within the Faculty of 

Medicine and Dentistry Flow Cytometry Facility at the University of Alberta. The top 25-

50% of fluorescein-positive cells for each treatment were collected for direct isolation of 

total RNA as described above. In subsequent PCR assays, expression of each sample was 

normalized using Taqman gene expression assays (Applied Biosystems) for three 

housekeeping genes RPLPO (4333761), TBP (Hs99999910_m1), and 18S (4333760F).   

3.4.16 PCR arrays 

The human “Embryonic Stem Cells” RT2 Profiler PCR Array (SA Biosciences/ Qiagen) 

was used for SYBR green real time PCR detection of genes related to human embryonic 

stem cell pluripotency and differentiation. Plates were cycled according to 

manufacturer’s instructions using the CFX 96 real time PCR system and results were 

analyzed with CFX manager (Bio-Rad). Melt curve analysis was used to exclude samples 

with low melt peaks and inconsistent melt profiles for the same target between samples, 

indicative of non-specific amplification. Genes with any excluded samples were not 

included in heat maps comparing the effects of NODAL and NODAL variant 

knockdowns. Expression values were normalized using the median for all five 

endogenous control targets included in the array, and the ∆∆Ct method. 
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Chapter 4  

4 Function and post-translational regulation of NODAL 
proteins 

4.1 Introduction 

Nodal is a TGF-beta superfamily member with several key roles in early embryonic 

development in vertebrates. These include specification of mesendoderm, induction of 

gastrulation, and establishment of anterior-posterior and left-right axes (reviewed in [1-

4]). There are several aspects to Nodal protein dynamics that are key to its function in the 

early embryo. As a paracrine growth factor, Nodal must be efficiently secreted from 

expressing cells to exert its effects on both neighbouring and distant cells as an 

embryonic morphogen. A 26 amino acid N-terminal signal peptide directs nascent 

translated peptide into the endoplasmic reticulum (ER) for processing along the secretory 

pathway. The remainder of the protein is translated into the ER as an approximately 37 

kDa pro-protein consisting of a 211-amino acid N-terminal pro-domain of about 24 kDa, 

and a 110-amino acid C-terminal mature domain of about 13 kDa.  

Cleavage of the pro-domain from the mature Nodal peptide occurs as a result of the 

proteolytic activity of secreted pro-protein convertases Furin and Pcsk6 (also known as 

Pace4) via recognition of an R-X-R-R motif [5, 6]. The resultant mature Nodal peptides 

can homo-dimerize to engage both type I tyrosine kinase receptors Alk4 or Alk7 (also 

known as Acvr1B and Acvr1C, respectively), and type II receptors Acvr2A or Acvr2B 

(formerly known as ActrIIa and ActRIIB, respectively). Receptor complex formation 

triggers phosphorylation of mediator Smads (Smad2 and Smad3) and their subsequent 

interaction with Smad4 to affect expression of target genes (reviewed in [7]).   

Proteolytic processing enhances or activates Nodal signalling, as it is a point of regulation 

for Nodal signalling range in the embryo [8]. Furthermore, processing is essential for the 

induction of mesendoderm differentiation and subsequent gastrulation of the mouse 

epiblast [6, 9]. However, mutant Nodal (Xnr2) constructs resistant to cleavage were still 

able to induce mesoderm in xenopus [10], which is induced at a lower threshold of signal 
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relative to endoderm [1]. Also, homozygous cleavage-resistant Nodal mice still 

underwent EMT and primitive streak formation before development was arrested, 

whereas Nodal-null mice lacked a primitive streak entirely [11]. Several dominant 

negative roles for cleavage-resistant Nodals have also been described [12]. Collectively, 

these results suggest that proteolytic processing plays an important role in the regulation 

of Nodal activity.  

Two GPI-linked and membrane bound members of the epidermal growth factor-cysteine-

rich Cripto-1/FLR1/cryptic (EGF-CFC) family serve as co-receptors for Nodal signals. 

Cripto (Tdgf1) and Cryptic (Cfc1) bind the type I Nodal receptor and help recruit type II 

receptors to facilitate a functional receptor complex [13, 14]. Beyond receptor assembly, 

Cripto also binds Furin and Pace4 on signal-receiving cells to facilitate proteolytic 

maturation of Nodal [15]. Furthermore, Cripto facilitates Nodal inhibition by Lefty 

proteins, as direct binding of Lefty to either Nodal or Cripto/Cryptic can prevent 

successful receptor-ligand complex formation [16]. Interestingly, although Cripto is 

generally required for Nodal signalling, Cripto-independent signalling has been described 

in the mouse embryo [17, 18]. Collectively, these findings suggest a role for EGF-CFC 

proteins as multifaceted facilitators of Nodal signalling. Among TGF-beta superfamily 

members, Nodal is not unique in its utilization of EGF-CFC co-receptors, as growth and 

differentiation factors Gdf1 and Gdf3 also utilize the same receptors as Nodal [2]. 

Interestingly, Gdf1 can also hetero-dimerize with Nodal [19, 20]. 

Another TGF-beta superfamily member closely related to Nodal is Activin. While 

utilizing the same receptor complexes as Nodal and also signalling through Smad2 and 

Smad3, Activin signalling is distinct from Nodal in that it does not require Cripto as a co-

receptor, and is refractory to inhibition by Lefty [21, 22]. However, Cripto can participate 

in Activin receptor complex formation, where it actually inhibits productive signal 

transduction [23].  

Elegant work by Cheng and colleagues utilized chimeras of squint (sqt; a zebrafish 

Nodal) and Activin to determine specific regions of the mature peptide responsible for 

Nodal’s Cripto dependence [22]. A construct where the most C-terminal third of the 
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Nodal mature domain corresponding to the second “finger” projection was replaced with 

Activin sequence was able to induce ectopic expression of both gsc and ntl, even in one-

eyed pinhead (oep; a zebrafish Cripto homolog) mutant embryos, thus relinquishing 

Nodal’s dependence on Cripto. This work highlights the importance of the C-terminus of 

Nodal in conferring its function and specificity relative to other related ligands. 

To investigate which structural aspects confer such divergent function between the 

closely related NODAL and Activin proteins, chimeras of NODAL and TGF-beta 

superfamily member BMP2 mature peptides were generated and screened for proteins 

that could both refold efficiently and induce NODAL phenotypes in vitro and in vivo 

[24]. One such chimera (NB250) consisting of N-terminal and C-terminal BMP2 

sequence flanking a large segment of NODAL sequence, induced SMAD2 

phosphorylation in cells over-expressing Cripto, and was able to reverse heart looping in 

chick embryos. A corresponding crystal structure for this chimera revealed a BMP2-like 

structure. The authors suggested this is evidence that NODAL likely folds in a similar 

fashion to BMP2, although it should be noted that despite the NODAL functionality of 

the chimera, the C-terminal region known to confer functional specificity to NODAL did 

consist of BMP2 sequence.  

A major structural and functional characteristic of TGF-beta superfamily members is 

their ability to form intrachain and interchain disulfide bonds. Indeed, NODAL contains a 

set of seven cysteines in its mature domain analogous to other TGF-beta superfamily 

members, with six of these cysteines participating in intrachain disulfide bonds, and the 

seventh cysteine participating in an interchain disulfide bond to form a Nodal-Nodal 

homodimer. While highly conserved across superfamily members both within and 

between vertebrate species, these cysteines, and their corresponding disulfide bonds and 

homo-dimerization have not been directly experimentally assessed for human NODAL. 

One post-translational modification characteristic of TGF-beta superfamily members and 

secreted proteins in general is N-glycosylation, which consists of the covalent addition of 

a glycan oligosaccharide to asparagine residues within N-X-S/T motifs [25]. Full-length 

intracellular pro-Nodal is found in an N-glycosylated form [26], and corresponding pro-
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Nodal secreted into conditioned media was found to contain complex carbohydrate 

modifications, indicative of further N-glycan processing along the secretory pathway. 

Similar modifications to both full-length pro-Nodal and the cleaved pro-domain indicate 

that the pro-domain is the site of these post-translational modifications, although the 

exact sites of these modifications were not assessed. N-glycosylation generally aids in 

protein folding in the ER and thus protein stability (reviewed in [27]). In contrast to the 

pro-domain, the mature peptides of both human and mouse mature NODAL/Nodal 

ligands do not contain N-glycosylation motifs. Once cleaved from the N-glycosylated 

pro-domain, it has been suggested that the mature Nodal peptide is rapidly degraded and 

thus limited in its signalling range [28]. Interestingly, experimental introduction of 

different N-glycosylation motifs found in Bmp6 or the Xenopus nodal related (Xnr) 

proteins into the Nodal mature domain increased the accumulation of mature Nodal 

peptide in conditioned media and consequently signalling range in zebrafish blastulae 

[28]. However, the effect of this N-glycosylation on Nodal secretion, processing, or 

dimerization was not reported.   

Multiple functional NODAL-related genes are present in the genomes of some model 

organisms such as zebrafish (squint, cyclops, and southpaw), and xenopus (Xnr1-6). 

Conversely, mouse and human each have only one NODAL/Nodal gene. To date, no 

proteins resulting from alternative splicing or otherwise differentially processed 

transcripts have been described for human NODAL or mouse Nodal. Furthermore, much 

of our knowledge of NODAL protein function is provided by study of endogenous 

NODAL-related genes in non-human systems. While these studies have made immense 

and important contributions to our understanding of NODAL biology and many NODAL 

functions are highly conserved between species, there is a distinct lack of work 

characterizing the processing and dynamics of human NODAL protein specifically. 

Appreciation of nuances between species will undoubtedly help improve modelling of 

human NODAL function. This is paramount for the advancement of regenerative 

medicine projects and cancer therapy development where human specific NODAL 

biology is highly relevant.  
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In recent years it has become increasingly appreciated that a large number of protein 

coding genes are subject to at least some degree of alternative splicing, a process found to 

be much more widespread in primates including humans relative to other vertebrates 

[29]. It is now estimated that over 90% of multi-exon protein coding gene loci are subject 

to alternative splicing [30, 31]. Not all alternatively spliced RNA transcripts are 

ultimately translated into protein. For example, some alternative splicing events have 

been shown to introduce premature termination codons (PTCs) as a means of negatively 

regulating gene expression through nonsense-mediated decay (NMD) of affected 

transcripts [32-35]. Still, alternative splicing is widely accepted as a major contributor to 

the generation of proteomic diversity from a limited genome [36]. It has been recently 

proposed that different distinct proteins coded by the same gene locus be identified as 

“proteoforms” analogous to the term “isoform” used to describe distinct nucleic acids 

from the same gene [37]. To date, the extent to which alternative splicing contributes to 

productive translation of multiple proteoforms from a single locus on a genome-wide 

scale remains unclear. For example, a comprehensive search of the protein data bank 

(PDB) revealed only 15 genes for which experimentally confirmed protein structures 

corresponding to translated products of multiple mRNA isoforms have been obtained 

[38], underscoring the dramatic lack of genome-wide characterization of alternative 

splicing at the protein level. Despite this, an increasing number of individually studied 

alternative splicing events illustrate cases of alternative splicing affecting protein 

localization, protein-protein interactions, protein domain structure, and protein stability, 

as well as enzymatic properties and other protein functions (reviewed in [39, 40]). Hence, 

alternative splicing likely contributes substantially to the production of a complex and 

functionally diverse proteome.  

The discovery of a full-length processed splice variant for NODAL detailed in the 

previous chapters prompted my investigation of this novel isoform at the protein level. 

This chapter consists of a comprehensive comparative assessment of the two NODAL 

proteoforms in terms of their post-translational modification, secretion, proteolytic 

processing, extracellular dynamics, complex formation, and signalling capacity. Novel 

aspects of constitutive NODAL processing are also revealed that complement previous 

studies on the topic. 
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4.2 Results 
Alternative splicing of human NODAL results in inclusion of a 116 base-pair cassette 

exon downstream of constitutive exon 2 that codes for unique amino acids. Inclusion of 

this alternative exon also alters the translational reading frame, resulting in non-

constitutive NODAL peptide sequence into constitutive exon 3. Shortly into constitutive 

exon 3, this altered translational reading frame results in a TGA “stop” codon marking 

the end of a 338 amino acid open reading frame (ORF), relative to constitutive NODAL’s 

347. The NODAL variant and constitutive NODAL proteins share identical signal 

peptides, pro-domains, and N-terminal halves of the NODAL mature peptide. The 

constitutive C-terminal NODAL sequence is absent in the NODAL variant protein, where 

41 unique amino acids are instead found (Figure 4.1). A sequence alignment between the 

mature domains of constitutive NODAL and the NODAL variant reveals partial 

alignment in the divergent C-terminal region (Figure 4.2). Overall, these domains share 

identical amino acids at 55% of the alignment positions. Downstream of the amino acids 

coded by constitutive exon 2, the NODAL proteoforms are distinct in sequence, with 

alignment indicating identical amino acids at 14% of positions and similar amino acids at 

17% of positions (Figure 4.2). The unique C-terminal NODAL variant sequence did not 

contain any known protein domains and did not return any BLAST alignments with E-

values of less than 1.  

I used two general approaches to compare the two NODAL proteoforms. First, sequence-

based approaches were used to assess potential differences in domain structure and sites 

of post-translational modification. Second, analysis of previously reported experimentally 

generated structures as well as structural prediction models were used to compare 

potential structural differences between the two NODAL proteoforms. Results of these 

analyses were incorporated into experimental modelling.  

For direct experimental study of NODAL proteins, I generated expression vectors for 

each NODAL proteoform with C-terminal MYC-DYK tags. These constructs were used 

for over-expression in HEK 293 cells. Western blot analysis of cell lysates revealed 

multiple bands for each NODAL proteoform. Specifically, constitutive NODAL   
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Figure 4.1: Constitutive NODAL and the NODAL variant open reading 
frames differ in sequence at the C-terminal region of the mature NODAL 
peptide. 
Proteins are shown with N-terminus at the left and C-terminus at the right. 
Numbers mark amino acid positions for the start and end of each element. N72, 
N199, and N328 mark positions of putative N-glycosylation sites. A) Constitutive 
NODAL open reading frame. C312 marks cysteine at position 312 involved in 
putative interchain disulfide bond formation. B) The NODAL variant open reading 
frame. The darker protein region indicates novel sequence unique from 
constitutive NODAL. “PTC” = premature termination codon. “ALT.” = alternatively 
spliced cassette exon. 
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Figure 4.2: Sequence alignment between constitutive NODAL and the 
NODAL variant proteins. 
A) Darker region of the NODAL variant indicates unique peptide sequence from 
constitutive NODAL. B) EMBOSS Needle pairwise alignment between 
constitutive NODAL and the NODAL variant mature peptides only. Numbers 
indicate position in the mature peptide from N-terminus to C-terminus. “|” = exact 
match amino acid pairs. “:” = similar amino acids. “.” = no similarity. “-” = gap in 
alignment. C) Aligned amino acids by category. “All mature” = entire alignment 
from B. “Past exon 2” = aligned amino acids coded by the NODAL variant open 
reading frame downstream of exon 2 which is common to both isoforms.  
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expression resulted in two bands very close in size and consistent with the predicted size 

of full-length protein. NODAL variant expression resulted in three bands very close in 

size and similar in size to those for NODAL (Figure 4.3).  

Since NODAL is putatively N-glycosylated and N-glycosylation sites have a well-

defined (although not deterministic) N-X-S/T-X (where X is any amino acid other than 

proline) sequence motif, I was interested in determining whether the different banding 

pattern between the two proteoforms was the result of differential N-glycosylation. 

Furthermore, N-glycosylation is known to be important for secreted protein function, and 

has been artificially shown to enhance NODAL signalling range in the zebrafish embryo 

[28]. However, the endogenous N-glycosylation of NODAL has not been directly 

explored. Indeed, N-glycosylation site prediction using the NetNGlyc tool revealed two 

N-glycosylation motifs in the pro-domain shared by both NODAL proteoforms, and a 

third unique potential N-glycosylation site in the mature domain of the NODAL variant. 

The most N-terminal N-glycosylation motif at N72 was predicted to be unmodified, 

while the motif at N199 and the motif at N328 (of the NODAL variant) were both 

predicted to be N-glycosylated (Figure 4.4 and 4.5). 

Next, cells were subject to different treatments to determine the nature of the different 

bands. First, cyclohexamide was used to arrest translation to assess the dynamics of each 

NODAL peptide species. After 24 hours of treatment, the smaller NODAL peptides had 

decreased in intensity as expected in the absence of de novo translation, while the largest 

peptide for each species actually accumulated and increased in intensity after 24 hours of 

treatment (Figure 4.6A). This suggested that the difference between the bands was the 

result of a post-translational process. Next, tunicamycin was used to block global N-

glycosylation of proteins, which resulted in partial or complete loss of all NODAL bands 

for both proteoforms, and the emergence of a smaller band (Figure 4.6B). Finally, 

mutation of N72 and N199 in the constitutive NODAL protein recapitulated the 

tunicamycin result, while the largest band was lost upon mutation of N328 in the 

NODAL variant protein (Figure 4.6C). Collectively, these results suggest that the 

NODAL proteins are differentially N-glycosylated. One proteoform is likely modified at 

one site and unmodified at the other, while the other proteoform is likely modified at both   
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Figure 4.3: Stable expression of both NODAL isoforms reveals multiple 
bands in HEK 293 cell lysates. 
Approximate sizes of detected bands are indicated. Constitutive NODAL 
revealed two bands. NODAL variant revealed three bands. Tubulin was included 
as a loading control, and NODAL was detected with an anti-Myc tag antibody.  
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Figure 4.4: NODAL is predicted to be N-glycosylated at one of two N-
glycosylation motifs in the pro-domain. 
A) Constitutive NODAL protein is illustrated with the N-terminus on the left and C-
terminus on the right. Numbers mark amino acid positions for the start and end of 
each peptide element. “Y” indicates positions of potentially N-glycosylated 
asparagine residues. Sequences above asparagine residues show the complete 
NX[ST]X (where “X” is any amino acid except for proline) N-gylcosylation motif 
context for each site. “N” in black indicates a site predicted to remain unmodified. 
“N” in orange indicates a site predicted to be N-glycosylated. B) N-glycosylation 
prediction for each motif from the NetNGlyc 1.0 Server. Dashed grey line at 
potential = 0.5 indicates general threshold for positive N-glycosylation prediction. 
“-” prediction result indicates threshold < 0.5. “++” indicates potential >0.5 and 
jury agreement 9/9. See methods for full range of possible predictions. 
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Figure 4.5: The NODAL variant is predicted to be N-glycosylated at a novel 
N-glycosylation motif in the mature peptide. 
A) NODAL variant protein is illustrated with the N-terminus on the left and C-
terminus on the right. Numbers mark amino acid positions for the start and end of 
each peptide element. “Y” indicates positions of potentially N-glycosylated 
asparagine residues. Sequences above asparagine residues show the complete 
NX[ST]X (where “X” is any amino acid except for proline) N-gylcosylation motif 
context for each site. “N” in black indicates a site predicted to remain unmodified. 
“N” in orange indicates a site predicted to be N-glycosylated. B) N-glycosylation 
prediction for each motif from the NetNGlyc 1.0 Server. Dashed grey line at 
potential = 0.5 indicates general threshold for positive N-glycosylation prediction. 
“-” prediction result indicates threshold < 0.5. “+” indicates potential > 0.5. “++” 
indicates potential >0.5 and jury agreement 9/9. See methods for full range of 
possible predictions. 
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Figure 4.6: Both full-length NODAL isoforms display distinct patterns of N-
glycosylation.  
NODAL is differentially N-glycosylated at two sites, while the NODAL variant is 
differentially N-glycosylated at three sites. A) Western blot of NODAL or NODAL 
variant-expressing cells treated with cyclohexamide. “cyclo.” = cyclohexamide. B) 
Western blot of NODAL or NODAL variant-expressing cells treated with 
tunicamycin. C) Western blot of NODAL and NODAL variant N-glycosylation 
motif mutants. Tubulin was included as a loading control. NODAL was detected 
with an anti-Myc tag antibody. Approximate sizes of detected bands are shown. 
An equal amount of protein was loaded for each sample. A) and B) Amido black 
staining of membranes was used to verify equal protein transfer.  
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sites. Similarly, the NODAL variant is likely modified at either one, two, or all three 

sites.  

Since N-glycosylation is a common modification for secreted proteins, I was interested 

characterizing the secretion of each NODAL proteoform and assess if the novel N-

glycosylation had any impact on secreted protein. Collection of serum-free conditioned 

media from over-expressing cells revealed both full-length and processed NODAL 

peptides for both NODAL and the NODAL variant (Figure 4.7). Secreted NODAL 

variant protein with a mutated N-glycosylation site in the mature peptide also revealed a 

shift in the size of the mature processed peptide, confirming alternative N-glycosylation 

of this site. Furthermore, the mature NODAL peptides had different profiles, again 

indicative of differential post-translational modification. The constitutive NODAL 

isoform had two bands with a very small difference in size. Mature NODAL variant had a 

similar profile, with two sets of two bands each, for each of the N-glycosylation states 

(Figure 4.7). Since this modification is shared between both isoforms, it is therefore 

likely to take place in the N-terminal half of the mature domain.  

The ratio of mature:full-length NODAL was determined using the integrated intensities 

of bands detected in the conditioned media. This ratio did not differ between NODAL, 

the NODAL variant, or the NODAL variant with a mutated N-glycosylation motif at 

N328 according to an ANOVA test (P = 0.340; Figure 4.8A). However, the ratio of total 

NODAL protein in the media relative to the lysate was higher for the NODAL variant 

than the constitutive NODAL proteoform, and this difference was partially restored to 

constitutive NODAL levels upon mutation of N328, according to an ANOVA test (P = 

0.041; Figure 4.8B). These results suggest that the NODAL variant is either more 

efficiently secreted or stabilized in the media relative to constitutive NODAL, and that 

the former’s unique N-glycosylation is at least partially responsible for this effect.  

To determine whether preferential accumulation of NODAL variant could explain its 

increased extracellular presence, conditioned media collected from NODAL-expressing 

cells was transferred to naive untransfected cells where no newly translated and secreted 

NODAL would interfere with analysis (Figure 4.9A). This system allowed tracking of   
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Figure 4.7: Both NODAL proteoforms are present in conditioned media. 
Both NODAL isoforms are processed and mature peptides for each isoform are 
differentially post-translationally modified in distinct fashions. Mutation of NODAL 
variant N328 results in loss of a larger mature NODAL variant band and a 
banding pattern that more closely resembles that of constitutive NODAL. Only 
full-length NODAL peptides are present in corresponding cell lysates. 
Approximate sizes of detected bands are shown. Cell lysate from the same 
number of cells, and conditioned media from the same number of cells were 
analyzed for each sample. Image light was adjusted for clear visualization of full-
length NODAL peptides in conditioned media, resulting in less clear definition of 
NODAL bands in corresponding cell lysates. Tubulin was included as a loading 
control, and NODAL was detected with an anti-Myc tag antibody. A 
representative image from two analyses is shown.  
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Figure 4.8: The NODAL variant protein is preferentially secreted relative to 
constitutive NODAL. 
This difference is reduced upon abrogation of N-glycosylation of the mature 
peptide of the NODAL variant. “N” = constitutive NODAL. “Nv” = NODAL variant. 
Error bars indicate standard deviations. P values shown are results of ANOVA 
tests for all three time constructs. For ANOVA tests with P < 0.05, Tukey HSD 
post hoc tests were performed. Different letters (e.g. ‘a’ and ‘b’) indicate a 
statistically significant (P < 0.05) difference between two samples according to 
the Tukey HSD test. Pairs of samples with the same letter (e.g. ‘a’), are not 
statistically different.  
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Figure 4.9: Development of a conditioned media transfer system. 
This system was used to quantitatively study NODAL protein processing and 
breakdown in the absence of chemical inhibitors. A) Schematic of methodology 
used. Identical volumes of the original conditioned media were collected at each 
time point. B) Validation of the quantifiable linear range of western blot assays 
used to quantify NODAL levels in conditioned media. R2 values indicate the 
coefficient of determination for full-length and mature peptides. Examples shown 
are for NODAL. Similar standard curves were utilized for each construct tested. 
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natural NODAL processing (from full-length to mature peptide), and protein break-down/ 

turnover. Standard curves corresponding to each sample were used to ensure accurate 

quantification (Figure 4.9B). As expected, constitutive NODAL was continually 

processed in the media (Figure 4.10A), resulting in less full-length protein over time 

(Figure 4.10B). Mature NODAL protein remained unchanged after three days, but began 

to decrease by day six (Figure 4.10C). Consequently, total NODAL levels remained 

unchanged after three days, and began to decrease after six days, while the ratio of 

mature:full-length NODAL increased over time (Figure 4.10D). These experiments 

revealed similar dynamics between constitutive NODAL, the NODAL variant, and the 

novel N-glycosylation-mutated NODAL variant (Figure 4.11). The levels of total 

NODAL protein in the media did not differ between constitutive NODAL and NODAL 

variant after either three or six days (Figure 4.11C). This suggests that increased 

secretion, and not increased intrinsic stability, is responsible for increased NODAL 

variant in the media. Interestingly, the accumulation of mature protein relative to its full-

length precursor was more prominent for the NODAL variant relative to constitutive 

NODAL (Figure 4.11D). The ratio of mature:full-length protein was partially restored to 

constitutive NODAL levels in the NODAL variant N-glycosylation mutant, suggesting 

N-glycosylation of the NODAL variant may confer a small stabilizing effect on the 

mature peptide. 

These findings for the NODAL variant led me to test whether N-glycosylations in the 

NODAL pro-domain common to both NODAL proteoforms also impact the amount of 

NODAL protein in conditioned media. Dual mutation of N72 and N199 residues resulted 

in a decrease in the amount of total NODAL present in the conditioned media relative to 

the cell lysate according to a t-test (P = 0.009; Figure 4.12A,C). Interestingly, the ratio of 

mature:full-length NODAL in the conditioned media was also increased upon loss of N-

glycosylation in the pro-domain according to a t-test (P = 0.075; Figure 4.12A,B). In a 

conditioned media transfer experiment, dual mutation of N-glycosylation motifs did not 

reduce full-length or total NODAL levels relative to unmutated protein after three or six 

days (Figure 4.13). Consequently, there was also no corresponding increase in the 

mature:full-length NODAL ratio in the N-glycosylation mutant after three or six days 

(Figure 4.13). Collectively, these results suggest N- glycosylations promote secretion of   
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Figure 4.10: All of full-length, mature, and total constitutive NODAL protein 
shows significant reduction after six days in protein turn-over experiments. 
A) A representative Western blot of constitutive NODAL processing and break 
down over time in conditioned media. NODAL was detected with an anti-Myc tag 
antibody. A representative image from two analyses is shown. Approximate sizes 
of detected bands are shown. B-D) Quantification of constitutive NODAL 
peptides in cell culture media. Error bars indicate standard deviations. P values 
shown are results of ANOVA tests for all three time points. For ANOVA tests with 
P < 0.05, Tukey HSD post hoc tests were performed. Different letters (e.g. ‘a’ and 
‘b’) indicate a statistically significant (P < 0.05) difference between two samples 
according to the Tukey HSD test. Pairs of samples with the same letter (e.g. ‘a’), 
are not statistically different.  
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Figure 4.11: The NODAL variant displays a small increase in the mature: 
full-length peptide ratio relative to constitutive NODAL. 
This difference is diminished when N-glycosylation of the mature NODAL variant 
peptide is inhibited. Error bars indicate standard deviations. P value in D is the 
significance test result for differences between NODAL constructs according to 
ANCOVA at both three and six days after conditioned media transfer. None of 
full-length, mature, or total protein showed significant differences across both 
time points (all P > 0.05 by ANCOVA). 
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Figure 4.12: N-glycosylation of the NODAL pro-domain affects NODAL 
processing. 
Mutation of both N-glycosylation motifs in the NODAL pro-domain results in 
dramatically reduced conditioned media:cell-lysate ratios of NODAL protein and 
an increase in the mature:full-length ratio in conditioned media. Cell lysate from 
the same number of cells, and conditioned media from the same number of cells 
were analyzed for each sample. A) “C” = control. “N” = NODAL. “NM” = NODAL 
N72A N199A double mutant. Approximate sizes of detected bands are shown. B-
C) P values are results of significance test for differences between NODAL and 
dual N-glycosylation mutant NODAL by t-test. Tubulin was included as a loading 
control. NODAL was detected with an anti-Myc tag antibody. A representative 
image from two analyses is shown. 
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Figure 4.13: Loss of NODAL N-glycosylations has no consistent effect on 
protein break-down in conditioned media. 
Error bars indicate standard deviations. None of full-length, mature, total, or 
mature:full-length protein showed significant differences across both time points 
(all P > 0.05 by ANCOVA). 
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NODAL protein, and may regulate the processing of full-length NODAL, but do not 

stabilize extracellular NODAL protein in vitro.  

Next, I was interested in comparing the overall structure of the mature peptides for each 

NODAL proteoform. A conserved protein domain search for the NODAL variant mature 

peptide sequence revealed a partial TGF-beta family domain. Interestingly, several amino 

acids downstream of exon 2 and unique to the NODAL variant contributed to a TGF-beta 

family domain signature (Figure 4.14). Secondary structure prediction using JPred 

predicted similar stretches of secondary structure between the two NODAL isoforms, 

even for the novel C-terminus of the NODAL variant (Figure 4.15). Notable differences 

include a truncated alpha-helix towards the middle of the NODAL variant protein, and 

three rather than four segments of beta-sheet in the unique C-terminal half of the protein. 

One important element of TGF-beta superfamily members is a conserved set of six 

cysteine residues that form an intricate structure known as a cysteine knot [41]. 

Constitutive human NODAL contains seven cysteines in its mature peptide. Disulfide 

bond prediction analysis predicted disulfide bonds between cysteines 1 and 5, 2 and 6, 

and 3 and 7 characteristic of a cysteine knot (Figure 4.16A and B). Intriguingly, the 

NODAL variant mature peptide also contains exactly seven cysteines, with very similar 

spacing relative to those found in NODAL, despite four of these cysteines being coded 

downstream of the shared constitutive exon 2. These cysteines, however, are not 

predicted to form disulfide bonds in a pattern resembling a TGF-beta-like cysteine knot 

(Figure 4.16C).  

As an extension of these secondary structure and disulfide bond predictions, I compared 

predicted protein structures of NODAL and NODAL variant mature proteins. While no 

crystal structure has been reported for the mature NODAL peptide itself, there is a crystal 

structure of the NODAL:BMP2 chimeric protein with NODAL function [24] introduced 

above. This protein contains a large segment of NODAL sequence, with many other 

shared and similar residues to NODAL (Figure 4.17). A predicted structural model for 

the NODAL mature peptide reveals a very similar structure to the NODAL:BMP2 

chimera (Figure 4.18). A predicted structure for the NODAL variant was also generated.   
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Figure 4.14: Partial conservation of a TGF-beta family domain in the mature 
NODAL variant peptide. 
Red amino acids indicate exact matches between NODAL and the TGF-beta 
family domain “smart00204.” All other amino acids are blue. “-” indicates a gap in 
the alignment. Numbers above sequence indicate relative position in mature 
peptide from N-terminus (1) toward the C-terminus.   
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Figure 4.15: Similar secondary structures are predicted for the mature 
peptides of NODAL and the NODAL variant. 
Underlined amino acids in NODAL sequences indicate residues unique to 
NODAL or the NODAL variant coded for downstream of constitutive exon 2. 
Underlined amino acids for the NODAL/BMP2 chimera mark the segment with an 
exact match to NODAL. “E” indicates residues predicted to adopt a beta-sheet 
secondary structure. “H” indicates residues predicted to adopt a helical structure. 
  

NODAL:
HHLPDRSQLCRKVKFQVDFNLIGWGSWIIYPKQYNAYRCEGECPNPVGEEFHPTNHAYIQSLLKRYQPHRVPSTCCAPVKTKPLSMLYVDNGRVLLDHHKDMIVEECGCL
----------EEEEEEEEEEE-----EEEE---EEEEEEEEEE-----------HHHHHHHHHH-----------EEE-----EEEEEEE---EEEEE----EEEE----

NODAL variant:
HHLPDRSQLCRKVKFQVDFNLIGWGSWIIYPKQYNAYRCEGECPNPVGEEFHPTNHAYIQVALPCCPRSYGTKMFSFYSMKSGMRISWTCNISSMPSLRVC
----------EEEEEEEEEE------EEEE----EEEEEEEEEE------------HHH--------------EEEEEEE----EEEEEEEEE-----EE-

NODAL/BMP2 4N1D:
MQAKHKQRKRLKSSCKRHPLYVDFNLIGWGSWIIYPKQYNAYRCEGECPNPVGEEFHPTNHAYIQSLLKRYQPHRVPSTCCVPTELSAISMLYLDENEKVVLKNYQDMVVEGCGCR
---------------EEEEEEEEEE------EEEE---EEEEEEEEE-------------HHHHHHHHHH----------EEE-----EEEEEEE---EEEEEE----EEEE----
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Figure 4.16: The NODAL isoforms are predicted to form different intrachain 
disulfide bonds, with only constitutive NODAL forming bonds 
characteristic of a cysteine knot. 
A) “var.” = variable number of amino acids between flanking cysteines. Numbers 
in first row below protein schematics in B) and C) indicate number of residues 
between adjacent cysteines. Numbers below cysteines indicate their position 
along the mature peptide from N-terminus to C-terminus. Lines connecting 
cysteines indicate predicted disulfide bonds, with their thickness positively 
correlated to the score of the predicted bond. Predicted bond score (ranging from 
0-1) is indicated within a box on each line.  
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Figure 4.17: A NODAL:BMP2 chimera with known structure is similar in 
amino acid identity to human NODAL. 
A) Numbers above protein schematic indicate start (17) and end (76) positions of 
continuous NODAL sequence in the NODAL:BMP2 chimera 4N1D, also indicated 
by grey shading of the chimeric schematic. B) “|” = exact match amino acid pairs. 
“:” = similar amino acids. “.” = no similarity. “-” = gap in alignment. C) Aligned 
amino acids by category. 
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Figure 4.18: NODAL is predicted to have a similar structure to 
NODAL:BMP2 chimera NB250 (4N1D). 
Superimposition of a predicted structure for human NODAL and 4N1D revealed a 
high degree of similarity. First (N-terminal) and last (C-terminal) amino acids are 
labelled for each structure. A) Rainbow of 4N1D chimera structure, from N-
terminus (violet) to C-terminus (red). B) 4N1D chimera structure with secondary 
structure shown. Blue = beta strand/ beta bulge, grey = no structure, pink = 3-
turn, tan = 4-turn, coral = 5-turn, red = alpha helix. C) 4N1D chimera without 
colour-coding. D) Superimposition of 4N1D (blue) and a structure predicted for 
the constitutive NODAL mature peptide (grey) by Phyre2.  

A B

C D

4N1D 4N1D

4N1D & pred. NODAL4N1D
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This structure differed from the chimera structure in that the “wrist” alpha-helical 

structure is truncated, and the C-terminal end of the protein does not extend all the way 

back to the cysteine knot structure. The NODAL variant is predicted to contain two C- 

terminal anti-parallel beta sheet structures that form two “finger” projections similar to 

constitutive NODAL and the chimera structure (Figure 4.19). Additionally, while half of 

the ring structure of the cysteine knot is absent in the NODAL variant, there is a disulfide 

bond that passes through the half ring area in an identical fashion to constitutive NODAL 

(Figure 4.20).  

Aside from the six cysteine residues involved in intrachain disulfide bond formation, 

there is a seventh cysteine at position 312 of constitutive NODAL putatively involved in 

NODAL:NODAL homo-dimerization through the formation of an interchain disulfide 

bond. This function is inferred by similarity, and has never been directly experimentally 

studied for human NODAL. I sought to investigate the role of C312 on NODAL protein 

dynamics. Expression of NODAL with C312S mutation resulted in both decreased total 

NODAL detected in conditioned media relative to cell lysates, and a large increase in the 

mature:full-length peptide ratio in the conditioned media (Figure 4.21). Notably, C312S 

mutation also resulted in a higher molecular weight mature peptide, perhaps indicative of 

cryptic post-translational modification. In conditioned media transfer experiments, there 

was no consistent effect on protein processing and turnover dynamics upon loss of C312 

(Figure 4.22). 

I was also interested in assessing the dimerization capacity of NODAL proteoforms and 

different NODAL mutants in the media. Non-reducing SDS PAGE and subsequent 

Western blot analysis was employed to specifically detect size-shifted NODAL 

complexes indicative of interchain disulfide bond formation. For cell lysates, NODAL 

did not reveal any discrete complex formation, as only full-length NODAL protein was 

clearly evident. However, both the NODAL variant and NODAL variant N328A proteins 

revealed at least one discrete complex (Figure 4.23A). In corresponding conditioned 

media, bands consistent with only full-length and mature NODAL peptides were evident 

for NODAL. However, the NODAL variant and NODAL variant N328A revealed at least   
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Figure 4.19: A predicted structure for the human NODAL variant is distinct 
from the experimentally determined structure for NODAL:BMP2 chimera 
NB250 (4N1D). 
First (N-terminal) and last (C-terminal) amino acids are labelled for each 
structure. A) Rainbow of mature NODAL variant predicted structure, from N-
terminus (violet) to C-terminus (red). B) mature NODAL variant predicted 
structure with secondary structure shown. Blue = beta strand/ beta bulge, grey = 
no structure, pink = 3-turn, tan = 4-turn, coral = 5-turn, red = alpha helix. C) 
mature NODAL variant predicted structure without colour-coding. D) 
Superimposition of a structure predicted for the mature NODAL variant peptide 
(dark grey is sequence common to NODAL, red is unique sequence coded by 
downstream of constitutive exon 2), and predicted NODAL structure (light grey).  
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pred. NODAL & NODAL var.pred. NODAL var.
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Figure 4.20: Comparison of cysteine arrangements and disulfide bond 
formation between predicted structures for constitutive NODAL and 
NODAL variant. 
A) and B) Cysteine backbones and side chains are shown in yellow for NODAL 
and orange for NODAL variant, respectively. The remainder of the peptide 
backbone is shown in grey. C) Superimposition of predicted structures for 
NODAL and NODAL variant. D) Magnified view of NODAL cysteine knot region 
for superimposed structures in C). Cysteines involved in knot structure and 
putative interchain disulfide bonds are labelled.   
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pred. NODAL & NODAL var.
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Figure 4.21: Mutation of C312 dramatically affects NODAL processing. 
Mutation of C312 in the mature domain results in reduced conditioned media:cell 
lysate ratios of NODAL protein and a dramatic increase in the mature:full-length 
ratio in conditioned media. Cell lysate from the same number of cells, and 
conditioned media from the same number of cells were analyzed for each 
sample. A) “C” = control samples with no NODAL construct. “N” = NODAL. “NM” 
= NODAL C312S mutant. Approximate sizes of detected bands are shown. B and 
C) “N” = NODAL, “N C312S” = NODAL C312S mutant. P values are results of 
significance test for the differences between NODAL constructs using t-tests. 
Tubulin was included as a loading control. NODAL was detected with an anti-Myc 
tag antibody. A representative image from two analyses is shown.  
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Figure 4.22: Mutation of NODAL C312 had no consistent effect on protein 
turnover in the media. 
Error bars indicate standard deviations. None of full-length, mature, total, or 
mature:full-length protein showed significant differences across both time points 
(all P > 0.05 by ANCOVA). 
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Figure 4.23: Non-reducing analysis of conditioned media reveals less 
complex formation for NODAL relative to NODAL variant. 
“neg.” = no NODAL negative sample. “N” = NODAL. “N var” = NODAL variant. “N 
var. N328A” = NODAL variant N328A mutant. A) Relatively abundant and 
discrete complexes detected in lysates and conditioned media are indicated. 
Positions of molecular weight markers are shown. Cell lysate from the same 
number of cells, and conditioned media from the same number of cells were 
analyzed for each sample. B) Left: Comparison of NODAL and NODAL variant 
complexes in conditioned media with equal loading to compensate for increased 
secretion of NODAL variant (see Figure 4.8). Right: Loading even more NODAL 
conditioned media reveals low abundance complexes similar to those seen for 
NODAL variant-conditioned media. Equivalent complexes from A) are indicated.   
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three additional discrete and abundant complexes, including a possible homodimer 

complex between 25 and 37 kDa in size (Figure 4.23A). When increased NODAL-

conditioned media was loaded to account for differences in abundances between NODAL 

proteoforms (see Figure 4.8), NODAL complexes similar in size to those formed by the 

NODAL variant were faintly evident, although much less abundant (Figure 4.23B). 

Analysis of even higher amounts of NODAL-conditioned media did reveal low 

abundance complexes more clearly. The low levels of complex formation for NODAL 

coupled with the even lower abundance of NODAL C312S protein in conditioned media 

(see Figure 4.21) did not allow for a clear comparison of relative complex formation 

between the two proteoforms. I next investigated whether the low levels of NODAL 

complex formation were the result of the tagging strategy used. Structural analysis of the 

biological assembly formed by the chimera revealed that the C-terminal ends of the 

mature peptides extend toward the homodimer interface (Figure 4.24). I therefore 

generated NODAL expression constructs that were tagged at the N-terminal end of the 

mature peptide, which extends away from the homodimer interface, to assess if the C-

terminal tagging strategy was confounding analysis of dimerization. Qualitative 

comparison of NODAL constructs tagged at the C-terminus or the N-terminus of the 

mature peptide (Figure 4.25A) revealed similar patterns of alternative post-translational 

modification and the presence of processed mature peptides in the conditioned media 

(Figure 4.25B). However, in comparing MYC versus DYK (Sigma’s FLAG) tag, the 

MYC tag allowed for reliable detection of both full-length and mature NODAL species, 

while full-length NODAL with an internal DDK tag was undetectable (Figure 4.25B).  

Finally, a canonical NODAL signalling assay was used to assess the potential of the 

NODAL variant to signal relative to constitutive NODAL. Injection of NODAL mRNA 

into single cell stage zebrafish embryos has been shown to induce ectopic gsc and ntl 

expression at the shield stage via canonical and Cripto-dependent signalling [22]. 

Injection of constitutive NODAL (n=70) resulted in both gross disruption of gastrulation, 

and ectopic expression of both ntl and gsc at the shield stage relative to control (GFP)-

injected embryos (n=47) (Figure 4.26). Conversely, embryos injected with the NODAL 

variant (n=55) were indistinguishable in their morphological development and expression 

of gsc and ntl from both uninjected and control-injected embryos (Figure 4.26).   
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Figure 4.24: Biological assembly of NODAL:BMP2 chimera 4N1D 
homodimer. 
Each monomer mature peptide is coloured differently. N-terminal and C-terminal 
amino acids are labelled. The side chains of the cysteine analogous to NODAL 
C312 involved in interchain disulfide bone formation are illustrated in yellow. Note 
the C-terminus of each subunit (end of beta sheet at 115 R) extending toward the 
homo-dimerization interface. 
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Figure 4.25: Processing and detection of NODAL constructs with different 
affinity tags. 
N-terminal and C-terminal MYC tagging of the NODAL mature peptide produces 
similar expression profiles in lysates and conditioned media, as well as the 
presence of mature and full-length peptides. “C-MYC-DYK” = C-terminal dual tag. 
“mN-MYC” = N-terminal MYC tag of mature NODAL peptide. “mN-DYK” = N-
terminal DYK tag of mature NODAL peptide. A) Tag sequence is shown in 
orange. B) N-terminal DDK tagging of the mature NODAL peptide does not 
permit efficient detection of full-length protein. Tubulin was included as a loading 
control. C) Comparative analysis of conditioned media. “f” = full-length protein. 
“d” = possible NODAL mature homodimer. “m” = mature NODAL peptide. 
NODAL was detected with an anti-Myc tag antibody. 
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Figure 4.26: Constitutive NODAL, but not NODAL variant, induces ntl and 
gsc expression in a zebrafish model of canonical NODAL signalling. 
Constitutive NODAL signalling is also not abolished by excess NODAL variant. 
Single cell embryos were injected with mRNA of interest and allowed to develop 
to shield stage before analysis of ntl and gsc gene expression. A) “m7G” = 5’ 7-
Methylguanosine RNA cap. Blue indicates alternative exon; gold indicates 
constitutive exons. For the single cell stage, a lateral view is shown. For the 
shield stage, an animal pole view is shown. B) Animal pole views are shown for 
representative embryos for each condition. Numbers in the bottom left indicate 
portion of embryos displaying representative expression for each condition. 
Expression of ntl is restricted to the margin in control and NODAL variant 
embryos, and extends to the animal cap in NODAL embryos. Expression of gsc 
is restricted to the shield in control and NODAL variant embryos, and extends to 
the margin in NODAL embryos.   

A

B

NODAL variant ORF AAAAAAAAm7G

NODAL ORF AAAAAAAAm7G

microinjection

development

shield stagesingle cell stage

in situ 
hybridization

control only NODAL
NODAL 
variant

NODAL &
NODAL variant

ntl

gsc

20/20

GFP ORF AAAAAAAAm7G

37/39 30/31 13/16

27/27 28/31 24/24 32/35



190 

 

Specifically, gsc expression was restricted to the dorsal organizer (shield) and did not 

extend around the margin in 20/20 control-injected embryos and 30/31 NODAL variant-

injected embryos. However, gsc expression extended around at least the entire margin 

and sometimes through the animal cap in 37/39 constitutive NODAL-injected embryos. 

For ntl, expression was restricted to the margin for 27/27 control-injected embryos and 

24/24 NODAL variant-injected embryos, but extended throughout the majority of the 

animal cap in 28/31 constitutive NODAL-injected embryos. I also carried out co-injection 

of both NODAL isoforms to test if the NODAL variant could act as a dominant negative 

of canonical NODAL signalling. Co-injection did not abolish the NODAL signalling 

response (Figure 4.26B), suggesting that the NODAL variant is not a potent dominant 

negative of canonical NODAL signalling in this system.  

4.3 Discussion 
In presenting the first characterization of a newly identified NODAL isoform at the 

protein level, I have shown that the NODAL variant is biologically distinct from 

constitutive NODAL. Alternative splicing leads to partial disruption of the TGB-beta 

superfamily domain and a unique C-terminus that appears to abolish the capacity for 

canonical NODAL signalling by the NODAL variant, likely resulting from disruption of 

cysteine knot formation that promotes a TGF-beta-like structure. Despite this lack of 

canonical function, the NODAL variant was efficiently secreted, processed, and 

stabilized extracellularly in a similar fashion to constitutive NODAL. Moreover, there are 

definite intriguing differences between the two proteoforms, indicative of consequential 

biological regulation.  

In addition to investigating similarities and divergence between the two NODAL 

proteoforms, I also modelled molecular aspects of NODAL biology in general. Both 

NODAL proteoforms were found to be alternatively N-glycosylated. Steady-state 

expression seemed to favour the proteins with less N-glycosylations, while blocking of de 

novo translation revealed preferential expression of proteins with N-glycosylations at 

multiple sites. Proteins with no modified N-glycosylation sites (as in cells treated with 

tunicamycin) were not detected in untreated cell lysates. This suggests that NODAL is 

either rapidly N-glycosylated at one site after translation, or that N-glycosylated protein 
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is preferentially stabilized. My data favours the former model, as completely un-

glycosylated NODAL protein was not found to greatly affect turnover of extracellular 

protein. Intriguingly, while all variant NODAL proteoforms detected in cell lysates 

contained at least one N-glycosylation, a substantial portion, if not the majority, of 

secreted and processed NODAL variant was not N-glycosylated, but still displayed 

relatively high extracellular stability. The data presented here suggest an extremely 

inefficient secretion of NODAL with no N-glycosylation modifications. The approximate 

80% (5-fold) reduction of secreted NODAL relative to that in cell lysates suggests N-

glycosylation plays a profound role in the secretion of NODAL. This could be the result 

of poorly stabilized unmodified NODAL protein due to inefficient folding in the ER or 

Golgi. The doublet seen for full-length NODAL in cell lysates likely represent 

differentially N-glycosylated forms of NODAL, although it is possible that an individual 

N-glycosylation site is differentially processed, as separate mutation of each motif was 

not performed for constitutive NODAL. It is unclear whether NODAL proteoforms with 

a second or (in the case of the NODAL variant) third N-glycosylation represent products 

of a stochastic process, or if their relative abundance is carefully regulated by the cell. 

That all N-X-S/T sites in the both NODAL proteoforms were likely bona fide sites of N-

glycosylation points to active regulation of this process, given the redundancy of N-

glycosylation motifs and the fact that the prediction tool used did not identify all putative 

NODAL sites as strong candidates for true modification.  

This work is the first to report differential N-glycosylation of NODAL and directly 

mutate N-glycosylated amino acid residues. Furthermore, I have characterized an 

additional novel N-glycosylation site in the mature peptide of the NODAL variant. 

Putative N-glycosylation sites are found in the mature peptides of various NODAL 

homologs including several of the Xenopus NODAL-related (Xnr) genes, as well as other 

mammalian TGF-beta superfamily members such as BMP2,4,6, and 7 [28], and 

experimental introduction of such N-glycosylation sites enhanced the stability and 

signalling range of NODAL. However, human constitutive NODAL is not endogenously 

N-glycosylated in the mature domain. Here we report the existence of such a site 

endogenously encoded by the novel mRNA sequence in the alternative cassette exon. In 

contrast to the N-glycosylation previously introduced into the mature NODAL peptide, 
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this N-glycosylation site did not have a dramatic effect on the processing or stability of 

extracellular protein, other than a small increase in the mature:full-length peptide ratio 

over time in the absence of newly translated protein. However, the novel modification did 

promote increased extracellular protein relative to the constitutively spliced NODAL 

proteoform, serving as a point of regulation at which the relative abundance of isoforms 

can differ. Thus, while the NODAL variant transcript is expressed at a much lower 

frequency than the canonical NODAL transcript, the relative amount of corresponding 

secreted protein may triple its relative extracellular abundance. This is an example of how 

post-transcriptional and post-translational regulation can impact gene expression, and that 

transcripts with low expression should not automatically be dismissed as functionally 

unimportant or biological noise.  

In addition to alternative N-glycosylation, the processed mature NODAL variant peptide 

also revealed a doublet for each of the unmodified and N-glycosylated proteoforms. This 

doublet was similar to that seen for processed constitutive NODAL, and has previously 

been attributed to o-glycosylation [28]. That the two NODAL proteoforms share N-

terminal mature peptide sequence suggests this is likely the region in which NODAL is 

modified in this fashion.  

While N-glycosylation is a typical feature of secreted proteins and dramatically impacted 

NODAL secretion, I also discovered that mutation of the cysteine involved in interchain 

disulfide bond formation had a notable impact on both secretion and processing, without 

negatively impacting extracellular protein stability. Although the C312 residue is in 

proximity to the cysteine knot, it does not participate in this structure directly and its 

mutation would not be expected to disrupt the overall structure or folding of the protein. 

Furthermore, the choice to mutate this cysteine to a serine was based on the desire to 

introduce a conservative mutation to isolate the effect of interchain disulfide bond 

formation while minimizing potential structural impact. The findings reported here have 

the exciting implication that interchain disulfide bond formation, whether homo-dimeric 

or heterodimeric, is involved in normal secretion and extracellular processing of 

NODAL. Notably, the mature NODAL peptide with C312S mutation was larger in size 



193 

 

than expected, suggesting the mutation may have introduced a cryptic post-translational 

modification site which may have potentially confounded this analysis.  

Inclusion of paired cell lysates in conditioned media analysis served as an ideal control to 

account for differences in transfection efficiencies, gene expression levels, and cell 

number between cells expressing different NODAL proteins. This was of great benefit 

for analysis of mutant constructs since mutation of key structural residues may affect 

protein stability in general and thus steady-state expression levels. Thus the differences 

reported were robust and resulted from the biology of interest, and not technical 

variability. Relative differences were reported as the absolute levels of protein in the 

conditioned media and mature:full-length peptide did vary slightly between replicates.  

The conditioned media transfer experiments utilized here offered an excellent system to 

study extracellular NODAL dynamics. The ability to study protein processing in the 

absence of chemical inhibitors of translation such as cyclohexamide has several 

advantages. First, the starting quantity of extracellular protein in each cell line can be 

known precisely. Second, in cyclohexamide-treated cells, additional protein can be 

secreted into the media after translation proper is inhibited, confounding analysis. Third, 

cyclohexamide is a global inhibitor of translation, unquestionably resulting in an altered 

cellular state that may include deregulation of pathways that affect NODAL processing 

and thus stability. Since NODAL is extracellularly processed, I was not able to study 

“stability” per se in isolation. Rather, the relative levels of extracellular NODAL are the 

result of various processing events. In the absence of replenishment by newly translated 

protein, full-length NODAL may be degraded, internalized, or enzymatically cleaved to 

yield mature peptide. Similarly, mature peptide may be degraded or internalized.  

Other studies have used cleavage resistant mutants and super cleavage mutants to assess 

the dynamics of full-length and mature NODAL peptides, respectively, in isolation [28]. 

However, such interventions themselves likely also confound the normal biology and 

behaviour of the NODAL protein. Furthermore, it is important to consider that the protein 

forms detected after reducing SDS page do not necessarily represent the actual biological 

complexes whose dynamics are of interest. For example, for TGFB1, the pro-domain 
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remains associated with the mature peptide even after proteolytic cleavage [42]. In this 

study, mature peptides constituting part of an analogous NODAL complex are 

indistinguishable from “free” mature peptides. Furthermore, in utilizing tagging strategies 

and antibodies that allow detection of the mature peptide, the dynamics of the cleaved 

pro-domain in isolation were not investigated. For example, it is possible that mutation of 

N-glycosylation motifs in the NODAL pro domain has a profound effect on stability of 

this peptide once cleavage takes place, despite no effect on the dynamics of the full-

length precursor protein and the resultant accompanying mature peptide.   

In general, the conditioned media transfer experiments reported here suggest that 

NODAL proteins are quite stable in this system, with over 60% of total protein still 

detected after six days, and no significant decrease in mature NODAL peptide after three 

days. These dynamics were much different than those reported by LeGood and 

colleagues where mature NODAL peptide levels decreased in conditioned media after 

only ten hours [28]. It is possible that the cells used in the two studies were differentially 

sensitive to NODAL signals, and that responsiveness to NODAL influences protein 

turnover. There were also fundamental differences in the two experimental approaches. 

The study reported here conditioned media for a 48 hour “pulse” allowing high levels of 

secreted NODAL to accumulate before transfer to untransfected cells for protein 

breakdown analysis. In contrast, LeGood and colleagues used metabolic labelling to 

specifically analyze the dynamics of newly secreted NODAL protein for between two 

and ten hours into fresh media. It is unclear if secretion may be a confounding variable in 

assessing extracellular stability with this approach. It is possible that higher absolute 

levels of NODAL or other factors in the conditioned media in our approach had a 

stabilizing effect. In addition, LeGood and colleagues assessed NODAL uptake and 

recycling back into the media, which was enhanced with introduction of mature peptide 

N-glycosylation. Their system utilized pre-incubation of cells on ice before treatment 

with between 5-fold and 20-fold concentrated conditioned media to facilitate protein 

uptake. While I did not assess uptake directly in this fashion, no mature NODAL peptides 

were detected in HEK 293 cell lysates despite high levels of mature peptide in 

corresponding conditioned media. This was true for all proteoforms analyzed (Figures 

4.7, 4.12, and 4.21), and for both C-terminal and N-terminal mature peptide tags (Figure 
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4.25). These results suggest that spontaneous cellular uptake and stabilization of 

extracellular NODAL is not very prominent in this experimental system.  

It is possible that the tagging strategy used here affected the absolute dynamics of 

NODAL. However, the same tagging system for each NODAL proteoform investigated 

ensured that relative differences were robust. C-terminal tagging was chosen to study the 

dynamics of secretion and processing as mutation of the interface of the pro-domain and 

mature peptide can impact recognition and cleavage by convertases [43]. However, 

structural analysis suggests that the N-terminus of the mature NODAL peptide is less 

structured and extends away from the homodimer interface. Conversely, the C-terminus 

is part of the cysteine knot in the core of the protein and contributes to the 

homodimerization interface. Indeed, for constitutive NODAL, a C-terminal tag appeared 

to reduce complex formation via disulfide bonds relative to an N-terminal tag. However, 

the NODAL variant still showed high levels of complex formation when a C-terminal tag 

was used. Regardless, NODAL with a tag at the N-terminus of the mature peptide is 

likely more suitable for functional study of NODAL, and is utilized for experiments in 

the next chapter. Notably, full-length NODAL with a mature N-terminal DYK tag was 

not detected in conditioned media or cell lysates, despite detection of corresponding 

mature peptide in conditioned media. While this could be the result of “super cleavage", 

the absence of detection in cell lysates where NODAL is generally not processed 

suggests a technical problem such as internal epitope masking. Therefore, NODAL with a 

MYC tag at the N-terminus of the mature peptide was found to have more utility.  

The relatively small portion of the conserved TGF-beta superfamily domain disrupted by 

cassette alternative exon inclusion in the NODAL variant is consistent with a 

conservative role for alternative splicing in the modulation of conserved domain and 

whole protein structure [38], as it has been suggested that alternative splicing events 

leading to substantial domain truncation of large domains are unlikely to result in stable 

protein products. Recently, an impressive large-scale screen of protein-protein 

interactions for a collection of human open reading frames revealed functional 

significance of alternative splicing on a genome wide scale at the protein level [39]. 

Quantitative analysis of protein-protein interactions for alternatively spliced isoforms 
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revealed cases with identical, intermediate, and completely distinct interaction profiles. 

Analysis also revealed that alternatively spliced proteoforms were indistinguishable from 

protein products of distinct genes in the relatedness of their interaction networks and 

disease associations. 

The observation that the alternatively spliced NODAL proteoforms studied here have 

different cystine arrangements in their mature peptides and differential capacity for 

interchain disulfide bond formation raises the possibility that alternative splicing 

regulates protein-protein interactions for NODAL. In the study by Yang et al, relative to 

alternatively spliced pairs with similar interaction networks, isoform pairs with the most 

dramatic “rewiring” of protein-protein interactions were enriched for intrinsically 

disordered regions, which have been previously identified as frequently modulated by 

alternative splicing [44-47].  

Interestingly, disorder prediction analysis of the two NODAL proteoforms using Pondr-

fit [48] revealed similar disorder profiles between the two mature NODAL peptides. 

Strikingly, unique C-terminal regions of each protein modulated by alternative splicing 

(residues 103-110 for constitutive NODAL, and residues 92-101 for the NODAL variant, 

were predicted to be disordered (Appendix B). Since the NODAL C-terminus is known to 

confer specificity to NODAL signals [22], in addition to interchain disulfide bond 

formation, it likely plays a key role in receptor-ligand interactions. Another study 

revealed that alternatively spliced exons with tissue-specific expression were enriched for 

phosphorylation sites [49]. Although not experimentally assessed here, a scan of Prosite 

for biologically significant sites and patterns predicted two protein kinase C 

phosphorylation sites at the C-terminus of the NODAL variant that are absent in 

constitutive NODAL, suggesting there may be additional modulation of post-translational 

modification between the two proteoforms beyond the N-glycosylation described here. It 

is possible that other PTMs such as N-glycosylation are also frequently modulated by 

alternative splicing in a similar manner on a genome-wide scale. Collectively, these data 

suggest that alternative splicing is a bona fide mechanism for the modulation of 

biologically relevant protein function and interaction networks at the protein level. The 

findings reported here suggest that human NODAL may represent a typical case of the 
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cell’s utilization of alternative splicing as a mechanism to modulate protein processing 

and function, thus expanding the functional proteome.  

The zebrafish embryo was used to model canonical NODAL signaling. This model is 

powerful in that it is a complete and autonomous biological system providing all of the 

normal developmental context lacking in conventional cell culture models of early 

development. It also allows for following the spatiotemporal impact of overexpression of 

a gene of interest, and monitoring for any effect on gross developmental phenotypes. 

Indeed, injection of constitutive NODAL resulted in disruption of gastrulation, as 

evidenced by irregular rippling of the leading edge of the enveloping layer and a failure 

of these cells to move toward the vegetal pole during epiboly.  

In summary, I have presented evidence that alternatively spliced NODAL proteoforms 

are distinct in their post-translational modification, secretion from the cell, and their 

capacity to form protein complexes and signal. These differences are conferred by 

alternative exon inclusion leading to novel peptide sequence and moderate disruption of 

the conserved TGF-beta domain and associated cysteine knot motif, likely resulting in a 

distinct protein structure from that of constitutively spliced NODAL. While the NODAL 

variant lacked canonical NODAL signalling capacity in a well-regulated non-human 

embryonic system, the next chapter will explore its functional impact in genetically and 

epigenetically unstable human cancer models. In these systems, NODAL has been shown 

to be functionally relevant, however the mechanisms by which it signals are much less 

well-defined and likely less tightly regulated. 

4.4 Methods 

4.4.1 Peptide sequence analyses 

Pairwise sequence alignments were performed with Emboss needle 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Extent of conserved domain analysis 

was conducted using the NCBI Conserved Domain Database CD-search 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Secondary structure predictions 

were made by JPRED4 (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). N-

glycosylation site predictions were performed using the NetNGlyc 1.0 Server 
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(http://www.cbs.dtu.dk/services/NetNGlyc/). Disulfide bond prediction analysis was 

conducted using the disulfide bond connectivity prediction option in the DiANNA server 

(http://clavius.bc.edu/~clotelab/DiANNA/).  

4.4.2 NODAL-BMP2 chimera 

NODAL-BMP2 chimera NB250 sequence was obtained from the RCSB protein databank 

(PDB) record for structure 4N1D 

(http://www.rcsb.org/pdb/explore/explore.do?structureId=4N1D).      

4.4.3 Protein structural analysis 

All protein structure images and analyses were produced using ccp4/ QtMG molecular 

graphics software (version 2.10.6; http://www.ccp4.ac.uk/MG/).   

4.4.4 Plasmid cloning 

A plasmid vector coding for human NODAL open reading frame (not including the stop 

codon) cloned into the pCMV6-Entry vector in frame with a tandem MYC DYK (FLAG) 

tag (Origene Cat. No. RC211302) was used to over express the constitutive NODAL 

isoform. The equivalent plasmid for the NODAL variant was also constructed: The 

NODAL variant open reading frame (not including the stop codon) was cloned from H9 

cDNA using the following primers: 

TATATAGCGATCGCCATGCACGCCCACTGCCTGCC and 

ATATATACGCGTGCAGACTCTGAGGCTTGGCATGG. The PCR product was 

digested with AsiSI and MluI (New England Biolabs; Whitby, Ontario, Canada) for 

insertion into the plasmid backbone. The final construct was sequenced to confirm proper 

assembly. The pCMV6 plasmid containing a GFP insert was used as a negative control.  

Plasmids with internal MYC or DYK tags at the N-terminal end of the mature peptides 

were constructed as follows: The NODAL and NODAL variant plasmids were first 

mutated to eliminate a SalI restriction site upstream of the NODAL start codon, and to 

introduce a stop codon at the C-terminal end of the open reading frame. Synthetic double 

stranded DNA inserts were synthesized for each tag for each NODAL isoform. Inserts 

were of sufficient length to allow for cloning with SalI and NotI restriction sites flanking 
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the tag site. Inserts and plasmid backbones were digested with SalI and NotI and 

subsequently ligated. Final plasmids were sequenced to confirm introduction of desired 

tags.  

4.4.5 Site-directed mutagenesis 

Site-directed mutagenesis of NODAL plasmids was performed with the QuikChange 

Lightning Site-Directed Mutagenesis Kit (Agilent; Santa Clara, California, USA) 

according to manufacturer’s instructions. Mutated plasmids were sequenced to confirm 

mutation of desired residues. Mutant codons were chosen to match codons frequently 

utilized by desired residues in human NODAL.  

4.4.6 Cell culture and transfection 

HEK 293 cells were grown in DMEM supplemented with 10% fetal bovine serum 

(Gibco/Thermo Fisher; Waltham, Massachusetts, USA) at 37°C with 5% CO2 

supplementation. HEK 293 cells were transfected with desired plasmids using 

Lipofectamine 3000 (Thermo Fisher) following the manufacturer’s protocol. Cells were 

stably selected with G418 (Thermo Fisher) at 600 µg/mL starting 48 hours after 

transfection until no parallel mock-transfected cells remained, and then maintained at 100 

µg/mL. 

4.4.7 Conditioned media 

For collection of conditioned media, cells were washed once briefly with PBS, and 

incubated with excess DMEM at 37°C for one hour before replacement with fresh 

DMEM to be conditioned. Media was conditioned for 48 hours under standard growth 

conditions. For each 10 cm culture dish of confluent cells used, 5 mL of media was 

conditioned. Media was collected and spun at 300 g for 10 minutes to eliminate floating 

cells and large debris. Remaining media was carefully decanted for concentration or 

transfer. For concentration, conditioned media was concentrated using Amicon Ultra 

Centrifugal Filters (Milipore; Billerica, Massachusetts, USA) at 3,000g for approximately 

2 hours at 12°C or until media was concentrated in volume by approximately 250-fold. 

Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher) was added to 
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concentrated conditioned media. For analysis of NODAL in conditioned media and cell 

lysates, protein was extracted from cells used to generate conditioned media in parallel.  

4.4.8 Protein extraction 

Protein was extracted from cells by collecting cells into mammalian protein extraction 

reagent (mPER; Thermo Fisher) containing the Halt Protease and Phosphatase Inhibitor 

Cocktail (Thermo Fisher). Lysates were incubated at room temperature for five minutes 

and mixed thoroughly, then centrifuged at 15,000g for 20 minutes to pellet insoluble cell 

debris. Protein supernatants were decanted and retained for analysis. Protein 

concentration was determined using the Pierce BCA Protein Assay Kit (Thermo Fisher) 

with a standard curve consisting of known concentrations of albumin.    

4.4.9 Comparison of cell lysates and conditioned media 

For comparison of NODAL levels and processing between cell lysates and conditioned 

media, samples were isolated from two sets of subsequently generated stable cell lines. 

An equal number of cells were plated for each stable cell line compared. All samples 

compared were isolated and analyzed in parallel. For each analysis, cell lysates from an 

equal number of cells, and conditioned media from an equal number of cells, were 

analyzed.  

4.4.10 Stability experiments  

For stability experiments, media was conditioned for 72 hours from one confluent 10 cm 

dish per stable HEK 293 cell line as described above. On day “minus one” (-1), MDA 

MB 231 cells were plated in wells of a 12 well plate at approximately 30% confluence. 

On Day 0, these cells were washed once in PBS, and incubated for one hour in serum-

free DMEM at 37°C. Conditioned media from HEK 293 was collected and 1/3 of the 

media was stored at -80°C to constitute the t=0 sample. The remaining 2/3 of the media 

was transferred to the recipient cells. On Day 3, 1/2 of the conditioned media on the cells 

(1/3 of the original conditioned media) was stored at -80°C to constitute the t=1 sample. 

The remaining conditioned media was also transferred to fresh cells. On Day 6, all of the 

remaining conditioned media (1/3 of the original conditioned media) was stored at -80°C 
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to constitute the t=2 sample. Prior to freezing, all samples were spun at 300g for 10 

minutes to remove floating cells and large debris. Upon thawing, all samples were 

concentrated in parallel as described above.  

4.4.11 Western blotting 

All cell lysate and conditioned media samples were mixed with 4X Laemmli sample 

buffer (Bio-rad; Hercules, California, USA). For standard reducing analysis, samples 

were mixed with 5% (v/v) 2-Mercaptoethanol (Sigma-Aldrich; St. Louis, Missouri, 

USA). For non-reducing analysis, no reducing agent was added. All samples were boiled 

for five minutes. SDS-PAGE was conducted with 12.5% Acrylamide gels. Precision Plus 

Protein Dual Color Standards (Bio-rad) were used to confirm approximate molecular 

weights of detected bands. Proteins were transferred to a low auto fluorescence PVDF 

membrane (Bio-rad) using the Trans Blot Turbo (Bio-rad) with settings of 25 V and 1.3 

A for 15 minutes. After transfer, membranes were washed briefly in PBS, and then 

blocked for one hour at room temperature with Odyssey Blocking Buffer (Li-Cor; 

Lincoln, Nebraska, USA). Membranes were incubated overnight in primary antibody 

solution consisting of Odyssey Blocking Buffer with 0.1% Tween-20 (Sigma-Aldrich). 

For analysis of NODAL proteoforms with a C-terminal tag, or mature N-terminal MYC 

tag, mouse anti MYC-tag (9B11) antibody (#2276; Cell Signaling Technologies; 

Massachusetts, USA) was used at a dilution of 1/1,000. For analysis of mature N-terminal 

DYK tag proteins, rabbit anti DYK tag antibody (#2368; Cell Signaling Technologies) 

was used at a dilution of 1/1,000. Rabbit anti β-Tubulin polyclonal antibody (Li-Cor 926-

42211) was used at a dilution of 1/1,000 as a loading control for cell lysates. Membranes 

were then treated with corresponding Li-Cor anti-mouse and anti-rabbit fluorescent 

secondary antibodies for one hour at room temperature at dilutions of 1/15,000 in 

Odyssey Blocking Buffer with 0.1% Tween-20 (Sigma-Aldrich) and 0.01% SDS 

(Thermo Fisher). Membranes were imaged using the Li-Cor Odyssey Clx imaging 

system. Scans were performed at intensities that did not result in any saturated pixels. 

Quantification was performed using Li-Cor Odyssey imager software. Notably, this 

software uses only raw pixel information for quantification, and manipulation of image 

properties for presentation does not affect quantification.  
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For stability experiments, four serial dilutions of regularly collected and concentrated 

conditioned media were included on each gel specific for each stable cell line to 

constitute a standard curve for protein quantification across the three time points. These 

samples were prepared at dilutions that were equivalent to 3/2X, 1X, 1/3X, 1/9X, 1/27X, 

and, where X = input at t=0.  

4.4.12 Zebrafish experiments 

Constitutive NODAL or NODAL variant open reading frames were cloned into the pT7TS 

plasmid (Addgene; Cambridge, Massachusetts, USA; #17091) for in vitro transcription 

using a 5’ BglII site and a 3’ SpeI site. A control plasmid coding for GFP was also used. 

These constructs were linearized at a downstream BanHI site and subsequently purified 

using PureLink PCR Purification Kit (Thermo Fisher). RNA was reverse transcribed 

from 1 µg of linearized plasmid using the mMessage mMachine T7 in vitro transcription 

kit (Ambion/Thermo Fisher). Transcribed RNA was purified using the RNeasy MinElute 

Cleanup Kit (Qiagen; Hilden, Germany), and quantified using the Epoch Microplate 

Spectrophotometer (BioTek; Winooski, Vermont, USA). AB strain zebrafish embryos 

were injected at the one-cell stage with 250 pg of total RNA diluted in RNase-free water. 

All injections contained GFP as a positive control, and the total amount of RNA injected 

was constant for all conditions. Control embryos were injected with only GFP RNA. 

Embryos were allowed to develop at 28.5°C and monitored until shield stage was 

reached. Embryos were screened for GFP expression using fluorescence microscopy. 

Those lacking GFP fluorescence were discarded. Embryos were then fixed in 4% 

paraformaldehyde for whole mount in situ hybridization as previously described [50].   
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Chapter 5  

5 Differential effects of NODAL isoforms on cancer 
phenotypes, and improving NODAL modelling using 
precision genome editing. 

5.1 Introduction 

Ovarian cancer is the 5th most commonly diagnosed cancer for women and the deadliest 

cancer affecting the female reproductive system. Approximately 70-80% of all cases are 

classified as high-grade serous epithelial ovarian carcinoma [1]. While NODAL is known 

to be aberrantly expressed in numerous cancers (reviewed in [2, 3]), only a limited 

amount of work has investigated NODAL expression and function in ovarian carcinoma 

[4, 5]. In patient samples of several different cancers, NODAL expression is positively 

correlated with disease stage. Consistent with these clinical observations, NODAL has 

been shown to promote and maintain pro-tumourigenic phenotypes in numerous in vitro 

models of these cancers. Such phenotypes include increased cellular proliferation and 

increased xenograft tumour volume in mice, as well as heightened stem cell-like 

properties such as anchorage independent growth and spheroid formation (reviewed in [2, 

3]). However, in limited studies of ovarian cancer cell lines, NODAL over-expression was 

shown to promote decreased proliferation and increased apoptosis [5]. Interestingly, 

using a PCR assay that crossed the constitutive exon 1- constitutive exon 2 junction, 

detectable levels of NODAL were reported for several ovarian cancer cell lines including 

A2780S (sensitive) and A2780CP (resistant) cells commonly used to model ovarian 

cancer resistance to standard platinum-based chemotherapies [5]. NODAL expression has 

also been shown to increase in response to cisplatin treatment [6]. Perhaps surprisingly, a 

role for NODAL in conferring resistance to chemotherapy has not yet been reported, 

although inhibition of NODAL has sensitized cells to chemotherapy in models of 

pancreatic cancer and melanoma [7, 8]. 

The fact that NODAL has been found to play a pro-tumourigenic role in most cancers, 

but has so far been shown to promote anti-tumourigenic phenotypes in ovarian cancer 

models is just one example of how cancer heterogeneity poses a challenge to 
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experimental modelling of human cancers. Beyond inter-cancer and inter-tumour 

heterogeneity, heterogeneity within a tumour or cell line is also a confounding factor. 

Subcultures of a cell line can drift over time and diverge phenotypically due to intrinsic 

genetic and epigenetic instability [9-11]. It is possible that this effect is even more 

profound if antibiotic selection is applied for enrichment of efficiently transfected cells. 

Pertinent to modelling NODAL activity, there are also potential dose or duration-

dependent effects of NODAL signals [12, 13]. Moreover, specific aspects of NODAL 

biology cannot always be gleaned from more strictly regulated developmental systems. 

Even though cancers frequently hijack developmental programs, the engaged signal 

transduction pathways are not always subject to the endogenous regulation they would 

experience in normal biological systems. For example, in embryonic systems, expression 

of endogenous NODAL inhibitors such as the Lefty proteins [14] is induced upon 

activation of NODAL signalling, providing negative feedback that helps restrict NODAL 

activity and signalling range [15-17]. However, low or undetectable levels of Lefty have 

been reported in several cancers in both patient samples and cell lines [18, 19], 

suggesting that NODAL is not always subject to this mechanism of endogenous 

inhibition in cancer. Collectively, these factors present challenges to the study of NODAL 

in human cancer. As such, the development of robust experimental models to study 

NODAL in cancer will be paramount to investigating potential differences in NODAL 

function between cancers.  

Precision genome editing offers numerous opportunities for robust modelling of gene 

function through the introduction stable mutations at genomic targets of interest. To date, 

genome editing has not been used to study NODAL gene function. The advent of the 

transcription activator-like effector nuclease (TALEN) and more recently, clustered 

regularly interspaced short palindromic repeats (CRISPR-Cas) systems have accelerated 

the adoption of precision genome editing in many fields of molecular biology (reviewed 

in [20-23]). TALEN nucleases consist of a modular DNA binding domain fused to an 

endonuclease domain to induce double-stranded breaks at a DNA target. CRISPR-Cas 

systems rely on base pairing between an exogenous guide RNA (gRNA) and an 

endogenous genomic DNA (gDNA) target to deliver the CRISPR-associated (Cas) 

endonuclease. Regardless of the genome editing system used, the generation of a double 



210 

 

stranded break (DSB) is repaired by the cell using either the non-homologous end joining 

(NHEJ) pathway, or homology-directed repair (HDR). NHEJ is error-prone and 

frequently generates small indel mutations [24]. Such mutations are easily exploited for 

functional gene knock-out studies. Induction of a DSB at a desired target can also 

dramatically improve donor integration for targeted stable integration of exogenous 

DNA.  

Genome editing is already transforming how molecular biology research is conducted. 

The ability to precisely modify the genome in a targeted fashion has numerous 

applications relevant to cancer. These include the functional knockout of endogenous 

genes or alleles such as tumour suppressors or oncogenes, and the targeted introduction 

or correction of specific acquired mutations or inherited polymorphisms. In addition to 

robust modelling of genetic contributions to cancer cell function in vitro, genome editing 

has obvious potential as a therapeutic tool in the treatment of cancers [25]. Indeed, the 

first approved use of CRISPR technology in a clinical trial involves ex vivo editing of T 

cells in an effort to enhance their efficacy and longevity in cancer immunotherapy [26].  

For the promise of precision genome editing technologies to be realized, it is also 

important that reliable screening methods are available for detection of desired mutations. 

Such assays need to be quantitative, specific, sensitive, and universal in that they can be 

readily adapted to any target of interest. Genome editing experiments often result in low 

mutation frequencies in bulk populations of treated cells. Therefore, precise 

quantification of mutation rates is extremely important for optimization of genome 

editing protocols and downstream workflow, such as determining how many single cell-

derived clones to screen for desired mutations.  

While next generation sequencing offers a gold standard for quantitative determination of 

nuclease-induced mutation detection, such approaches are often not practical. Several 

different methods to screen for nuclease-induced mutations have been reported [27-30]. 

However, the most widely used assays to screen for mutations utilize the so-called 

“mismatch nucleases” T7E1 or “Surveyor” that recognize and cleave heteroduplexed 

DNA amplicons containing mismatched base-pairs [31]. These assays have several 
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shortcomings: First, they require a relatively large amount of starting material to generate 

sufficient levels of purified PCR product corresponding to the target locus. This 

requirement does not allow for rapid workflows, as significant cellular expansion is 

needed after enriching for edited cells using selection or sorting, and again after the 

generation of single cell-derived clones. Second, there are obvious limitations for 

sensitivity, as digested fragments that do not make up a large portion of the total 

amplified target molecules are hard to distinguish from background noise on an 

electrophoretic gel. Furthermore, targets that cannot be efficiently amplified may not 

result in bright bands. Indeed, due to the nature of intercalating DNA stains, each 

digested fragment loses a minimum of 50% of its signal relative to its parent band. Third, 

this method has very limited utility for screening of single-cell derived clones. For a 

typical diploid target locus, a clone with both alleles successfully mutated by NHEJ, but 

containing distinct indels, will be indistinguishable from a clone with one mutated allele 

and one wild type allele, as each of these samples would contain a 50-50 mix of distinct 

alleles. In both cases, approximately half of the duplexed DNA would be in the 

heteroduplexed form. Fourth, these assays generally require the generation of amplicons 

of at least 400 base pairs to ensure digested fragments are of sufficient length to be 

visualized. This increases the chances of the amplicon encompassing a polymorphism 

that is heterozygous in the sample or cell line being used. An endogenous heterozygous 

SNP or mutant allele anywhere in the amplicon can be recognized by the nuclease and 

lead to a false-positive signal, even in unedited cells. This is especially problematic in 

cancer cell lines and samples where mutation frequencies are extremely high and are 

often unknown for a particular locus of interest.    

The emergence of droplet digital PCR (ddPCR) technologies provide a new opportunity 

for mutation screening that provides superior sensitivity, is absolutely quantitative, and 

can easily be adapted to any target of interest. Detection of NHEJ-induced indels as well 

as donor-derived mutations of interest using ddPCR has just recently been reported  [32, 

33]. Due to the ability to obtain absolute quantifications from very small amounts of 

DNA, this methodology holds great promise as a preferred method of screening. 

However, the utility and performance of such assays have not yet been thoroughly 

assessed.  
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In this chapter, we examine the impact of over expression of both NODAL isoforms on 

cellular response to carboplatin chemotherapy in A2780S ovarian cancer cells. This is 

used as a case study to highlight potential drawbacks of over-expression studies, and a 

motivation to develop robust models for NODAL function in cancer cells using precision 

genome editing. In addition to generating two such models, we also develop tools to 

streamline cloning and ddPCR mutation screening assays that together improve genome 

editing workflows. 

5.2 Results 

To compare the functional impact of the two human NODAL splice variants in human 

cancer, we conducted over-expression studies in A2780S ovarian carcinoma cells. Since 

A2780S cells have been used as a model to study ovarian carcinoma resistance to 

chemotherapy, we were interested in testing if NODAL expression could confer resistance 

to the carboplatin, a drug commonly included in standard chemotherapy regimens for 

patients with epithelial ovarian carcinoma. Relative to stably selected control cells 

expressing GFP, over expression of constitutive NODAL resulted in a 33% increase in 

total cell metabolism according to an MTT assay when cells were treated with between 

3.1 and 12.5 µM of carboplatin (P <0.01 ; Figure 5.1A). Over-expression of the NODAL 

variant resulted in only a 6% increase in total cell metabolism, and this increase was not 

statistically significant relative to control cells (Figure 5.1A). We next tested the impact 

of stable NODAL isoform expression on colony formation potential in the absence of any 

chemotherapy. Interestingly, both constitutive NODAL and the NODAL variant promoted 

increased colony forming capacity relative to control cells. (Figure 5.1B). This result 

prompted us to test clonogenic viability of A2780S cells after treatment with carboplatin. 

In contrast to the response of all cells to carboplatin treatment, clonogenic growth 

potential was an average of 28-fold higher for NODAL-expressing cells and an average of 

6-fold higher for NODAL variant-expressing cells when treated with between 3.1 and 

12.5 µM carboplatin (Figure 5.1C).  

Based on these findings, we were interested in determining if NODAL-expressing cells 

displayed altered expression of genes known to be involved in cancer cell drug resistance. 

Using a SYBR-green real time PCR array, NODAL expressing cells were found to  
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Figure 5.1: Over-expression of NODAL and NODAL variant isoforms in 
A2780S ovarian carcinoma cells. 
NODAL isoform overexpression resulted in increased colony formation capacity 
and conferred differential resistance to carboplatin chemotherapy. A) Constitutive 
NODAL over expression results in slightly increased total cell metabolism after 
treatment with carboplatin relative to control cells, while over-expression of 
NODAL variant does not. B) Both NODAL and NODAL variant over-expression 
results in increased colony formation capacity of A2780S cells in the absence of 
drug treatment. “Neg” = GFP-expressing negative control cells. “N” = NODAL 
over-expression. “NV” = NODAL variant over-expression. C) Both NODAL and 
NODAL variant confer increased capacity for clonogenic growth in the presence 
of carboplatin, with both the magnitude and range of this effect extended for 
constitutive NODAL relative to the NODAL variant. Error bars indicate standard 
deviations for three experiments. Asterisks indicate results of ANOVA tests of 
statistical significance, with “*” = P < 0.05, “**” = P < 0.01, and “***” = P <0.001.   

R
el

at
iv

e 
cl

on
og

en
ic

 v
ia

bi
lit

y 
   

   
   

   
   

(%
 o

f u
nt

re
at

ed
)

0

25

50

75

100

125

150

175

Carboplatin concentration (uM)
3.1 6.3 12.5 25

negative NODAL NODAL variant

R
el

at
iv

e 
M

TT
 s

ig
na

l

0

20

40

60

80

100

Carboplatin concentration (uM)
3.1 6.3 12.5 25 50 100 200

negative NODAL NODAL variant

A

C

R
el

at
iv

e 
co

lo
ny

 fo
rm

at
io

n

0.00

1.00

2.00

3.00

4.00

5.00

A2780S line

Neg N NV

B

**

***

***

***
*

*

*** **
**

***
***



214 

 

display altered (> 2-fold change) gene expression for 16 of 73 genes (22%) tested relative 

to control cells (Figure 5.2). Similarly, NODAL variant expressing cells displayed 

differential expression for 21 of 74 genes (28%) tested (Figure 5.2). Except for one 

outlying gene (MET), the changes in gene expression profiles for both NODAL and 

NODAL variant were extremely similar (coefficient of determination (R2) = 0.9327 when 

MET outlier was excluded). Of the genes with differential expression between NODAL 

expressing and control cells, 15 of the 17 were also differentially expressed (>2-fold) in 

the same direction in NODAL variant expressing cells (Figure 5.2).  

We next sought to validate changes in expression for several target genes from the PCR 

array with independent primer probe assays in droplet digital PCR (ddPCR). AR 

(Androgen receptor) and ERBB4 (V-erb-a erythroblastic leukemia viral oncogene 

homolog 4) were selected as they were the two most highly upregulated genes by both 

NODAL and the NODAL variant. MET (Met proto-oncogene/ hepatocyte growth factor 

receptor) was selected as it was the most down-regulated gene upon NODAL expression, 

but unchanged in NODAL variant-expressing cells, ERCC3 (Excision repair cross-

complementing rodent repair deficiency, complementation group 3) was selected as it 

was the most differentially expressed gene between NODAL variant and NODAL 

expressing cells, and EGFR (Epidermal growth factor receptor) was selected as it was 

differentially upregulated by the NODAL variant relative to NODAL (Figure 5.2). 

Although the exact magnitudes differed, results of ddPCR assays confirmed NODAL-

induced changes in expression for each of AR, ERBB4, MET, and EGFR. Changes in 

ERCC3 expression were not confirmed, and it was not analyzed further (Figure 5.3).  

Next, a second independent set of stable cell lines was generated to assess to what degree 

the NODAL isoforms consistently induced robust changes in expression of these genes. 

These are referred to as “set 2,” and the original set of stable cell lines as “set 1.” Both 

EGFR and MET were more highly expressed in NODAL variant than NODAL expressing 

cells for both replicates (Figure 5.4A). AR was again induced by NODAL, but ERBB4 

was not (Figure 5.4B). The NODAL variant again induced ERBB4, but not AR. In fact, in 

the newly generated stable cells, AR expression was dramatically reduced in NODAL 

variant expressing cells relative to control cells (Figure 5.4C).   
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Figure 5.2: NODAL and NODAL variant over-expression induce similar gene 
expression profiles for genes related to drug resistance in cancer cells. 
Heat maps are shown for differential gene expression between either NODAL 
(“N”; left) and NODAL variant (“NV”; right) over-expressing cells relative to control 
cells. Genes are sorted from most decreased to most increased (top to bottom), 
by NODAL for the left heat map, and NODAL variant for the right heat map. 
Genes with fold changes > 2 (log2(fold-change > 1) are shown in table form. Bold 
gene symbols indicate genes selected for ddPCR validation and follow-up.  
  

MET -5.16 2.23 7.39 NAME NODAL-GFP
CYP3A5 -3.65 -3.38 0.27 ABCB1
FOS -1.62 -0.85 0.77 ABCC1 -0.21
CYP2D6 -1.51 -1.61 -0.1 ABCC2 -0.16
XPC -1.43 -1.56 -0.13 ABCC3
CDKN2A -0.71 0.14 0.85 ABCC5 0.2
MVP -0.62 0.16 0.78 ABCG2 0.65
RELB -0.59 -6.76 -6.17 AHR 1.01
CYP2E1 -0.58 -1.43 -0.85 AP1S1 0.18
ATM -0.53 -0.72 -0.19 APC -0.16
NFKB2 -0.5 -0.14 0.36 AR 3.99
GAPDH -0.47 -0.21 0.26 ARNT 0.45
RXRB -0.39 -0.11 0.28 ATM -0.53
ELK1 -0.26 0.07 0.33 BAX -0.24
GSK3A -0.26 0.53 0.79 BCL2
BAX -0.24 -0.28 -0.04 BCL2L1 0.05
ABCC1 -0.21 0.17 0.38 BLMH 0.99
GSTP1 -0.2 -0.39 -0.19 BRCA1 0.5
CCND1 -0.19 0.82 1.01 BRCA2 0.15
ERCC3 -0.19 -12.26 -12.07 CCND1 -0.19
ABCC2 -0.16 0.27 0.43 CCNE1 0.11
APC -0.16 0.57 0.73 CDK2 0.94
IGF2R -0.16 0.34 0.5 CDK4 -0.06
NFKBIB -0.13 0.43 0.56 CDKN1A 0.14
ACTB -0.11 0.27 0.38 CDKN1B 0.42
NFKBIE -0.1 -0.17 -0.07 CDKN2A -0.71
EPHX1 -0.08 0.14 0.22 CDKN2D 0.4
CDK4 -0.06 0.24 0.3 CLPTM1L 0.02
CLPTM1L 0.02 0.43 0.41 CYP1A1 1.52
BCL2L1 0.05 0.29 0.24 CYP1A2
MYC 0.05 0.07 0.02 CYP2B6
RPLP0 0.1 -0.09 -0.19 CYP2C19
CCNE1 0.11 0.56 0.45 CYP2C8
RARA 0.13 0.57 0.44 CYP2C9
CDKN1A 0.14 -0.11 -0.25 CYP2D6 -1.51
BRCA2 0.15 0.06 -0.09 CYP2E1 -0.58
AP1S1 0.18 0.24 0.06 CYP3A4
RARB 0.18 -1.42 -1.6 CYP3A5 -3.65
ABCC5 0.2 0.33 0.13 DHFR 0.74
FGF2 0.29 0.15 -0.14 EGFR 1.19
TP53 0.3 0.47 0.17 ELK1 -0.26
CDKN2D 0.4 0.07 -0.33 EPHX1 -0.08
CDKN1B 0.42 0.56 0.14 ERBB2 0.48
ARNT 0.45 0.47 0.02 ERBB3 0.6
XPA 0.45 0.12 -0.33 ERBB4 5.38
PPARD 0.47 0.36 -0.11 ERCC3 -0.19
HPRT1 0.47 0.03 -0.44 ESR1
ERBB2 0.48 0.75 0.27 ESR2
NFKB1 0.49 0.45 -0.04 FGF2 0.29
BRCA1 0.5 0.51 0.01 FOS -1.62
NAT2 0.53 0.68 0.15 GSK3A -0.26
ERBB3 0.6 0.76 0.16 GSTP1 -0.2
MSH2 0.6 0.31 -0.29 HIF1A 1.91
IGF1R 0.63 0.61 -0.02 IGF1R 0.63
TNFRSF11A 0.64 2.84 2.2 IGF2R -0.16
ABCG2 0.65 1.91 1.26 MET -5.16
TOP2A 0.66 0.64 -0.02 MSH2 0.6
DHFR 0.74 0.51 -0.23 MVP -0.62
PPARA 0.75 0.67 -0.08 MYC 0.05
RARG 0.78 0.68 -0.1 NAT2 0.53
TOP2B 0.79 0.82 0.03 NFKB1 0.49
RXRA 0.86 0.57 -0.29 NFKB2 -0.5
CDK2 0.94 0.96 0.02 NFKBIB -0.13
SOD1 0.94 0.34 -0.6 NFKBIE -0.1
BLMH 0.99 0.53 -0.46 PPARA 0.75
AHR 1.01 1.5 0.49 PPARD 0.47
UGCG 1.02 1.29 0.27 PPARG 1.53
TOP1 1.17 1.29 0.12 RARA 0.13
EGFR 1.19 2.77 1.58 RARB 0.18
RB1 1.23 1.13 -0.1 RARG 0.78
TPMT 1.31 1.08 -0.23 RB1 1.23
CYP1A1 1.52 1.09 -0.43 RELB -0.59
PPARG 1.53 1.22 -0.31 RXRA 0.86
HIF1A 1.91 1.93 0.02 RXRB -0.39
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Figure 5.3: Validation of select differentially expressed genes from PCR 
array with independent ddPCR assays.  
Differences in gene expression for each pair of stable cell lines is shown. 
Changes in expression of all genes selected for follow up except for ERCC3 
were validated. Box in the upper right hand corner of each chart indicates the 
number of genes with differential gene expression (fold-change > 2) according to 
both SYBR green real time PCR array and ddPCR assays. Dashed grey lines 
indicate threshold for differential gene expression (fold change of > 2; log2(fold-
change) > 1) in either direction. 
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Figure 5.4:Inconsistent expression of select genes related to drug 
resistance. 
Expression of select genes related to drug resistance is not consistently altered 
by NODAL or NODAL variant expression. The pairs of cell lines compared are 
indicated above each chart. Dashed grey lines indicate threshold for differential 
gene expression (fold change of > 2; log2(fold-change) > 1). Set 1 corresponds 
to the first set of cell lines used in Figures 5.1-5.3. Set 2 corresponds to a newly 
generated set of stable cell lines.   
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Collectively, these results show inconsistent induction of some gene expression changes 

upon over-expression of NODAL isoforms.   

These findings underscore a general problem with over-expression models: The stable 

selection process may provide increased opportunities for genetic and phenotypic drift 

between stably selected subcultures. This may confound analysis of differences between 

stable cell lines resulting from expression from the transfected plasmids of interest. This 

effect may be greater if transfection efficiencies are poor and a small percentage of 

transfected cells give rise to stable proliferating cells in the presence of antibiotic. In 

addition, typical transgene silencing and random insertion can result in mosaic gene 

expression in a population of stably selected cells [34].  

The use of an inducible transgene expression system avoids the confounding effects of 

selection, as cells are stably selected and then divided into control and transgene 

expressing groups after selection upon the addition of an inducing agent. Furthermore, 

recent advances in precision genome editing technologies have enabled more efficient 

gene targeting in human cells. This allows targeted transgene integration at a defined 

genomic locus to minimize transgene silencing, random integration, and mosaic 

expression.  

Since NODAL function has been well characterized in breast cancer, we began with 

human breast cancer cell lines to develop robust models using genome editing. Using 

previously designed TALENs targeting the AAVS1 safe harbour locus within the 

PPP1R12C gene locus, we developed T47D breast cancer cells with targeted integration 

of inducible NODAL variant open reading frame (Figure 5.5). First, the donor plasmid 

used in [35] with TET-ON driven by a CAG promoter and EGFP under the control of an 

inducible promoter was modified to contain a LacZ insert for blue/white colony screening 

flanked by Esp3I typeIIS restriction enzyme sites for one-step cloning (Figure 5.5A). 

This plasmid was used to clone either constitutive NODAL or the NODAL variant open 

reading frames with MYC tags at the N-terminal end of the mature peptide. We next 

developed a ddPCR assay to screen for successfully targeted AAVS1 loci with integrated 

donor plasmid. This assay used a forward primer specific for target gDNA sequence   
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Figure 5.5: Overview of AAVS1-safe harbour targeted transgene expression 
mediated by precision genome editing in T47D breast cancer cells. 
A) A newly constructed AAVS1 donor plasmid contains a LacZα insert for 
blue/white colony screening flanked by Esp3I sites to facilitate one-step cloning. 
Insertion of a gene of interest (middle; red) results in a transfection-ready 
targeting construct. “GOI” = gene of interest. “TET-P” = tetracycline-responsive 
promoter. “TET-O” = tetracycline-responsive operator. “CAG P” = chimeric 
constitutive promoter. “TET ON 3G” = protein binding TET operator in the 
presence of doxycycline. “HA-R” = homology arm right. “HA-L” = homology arm 
left. “PuroR” = puromycin resistance gene. B) Top: integrated donor plasmid from 
homology arm left to homology arm right in the context of the AAVS1 genomic 
locus. White boxes indicate PPP1R12C exons 1 (left) and 2 (right). Middle: 
ddPCR screening assay for clones positive (+) and negative (-) for AAVS1 
integration. “NTC” = no template control. Bottom: position of primers and probes 
used in ddPCR screening assay. C) Induction of NODAL variant expression in 
clones positive (+) for AAVS1 integration. “dox” = doxycycline. “NV” = NODAL 
variant.    
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outside of the plasmid homology arm, and a reverse primer and fluorescent probe specific 

to plasmid sequence not endogenously found in gDNA (Figure 5.5B). When paired with 

an assay for copy number analysis of the AAVS1 locus outside of the plasmid homology 

arms, our assay can be used to determine the proportion of AAVS1 loci successfully 

targeted in a mixed or clonal population of cells. We report successful generation of 

T47D breast cancer cells with stable donor integration and doxycycline-inducible 

NODAL variant expression. After treatment with doxycycline, NODAL variant expression 

was detectable in both cell lysates and conditioned media (Figure 5.5C). Several bands 

were evident, likely resulting from alternative N-glycosylation as reported in Chapter 4. 

However, mature peptide was not readily detected in the conditioned media of T47D cells 

as it was in HEK 293 cells.  

As a complement to over-expression studies, disruption of endogenous gene function is 

common. Such disruption has also greatly benefited from recent advances in precision 

genome editing technologies. Instead of relying on variably efficient post-transcriptional 

inhibition of gene expression using processes such as RNA interference, the induction of 

mutations can result in stable missense gene expression and complete endogenous 

functional knockout of a gene of interest. 

Droplet digital PCR assays were next developed for specific and sensitive screening of 

precision-nuclease treated cells for mutations desirable for gene knockout (Figure 5.6). 

These duplexed assays consisted of forward and reverse primers amplifying the target cut 

site, a reference probe designed to bind away from the target cut site, and a “drop-off” 

probe designed to bind the unmutated target cut site (Figure 5.6A). Droplets containing 

unmutated wild type target gDNA are positive for signal from both probes, while droplets 

containing mutated target gDNA are positive for reference probe signal but negative for 

drop-off probe signal, as the latter probe can no longer bind (Figure 5.6A). Assays for 

two targets in constitutive NODAL exon 1 and another target at the NODAL cassette 

alternative exon 5’ splice donor site were designed to test the efficiency of engineered 

TALEN proteins targeting these loci (Figures 5.7-5.9). TALENs were designed with the 

NH RVD to target G bases within high G-C content target loci according to guidelines 

from [36, 37]. For target 1 in constitutive exon 1 with 48% G bases (Figure 5.7A), a   
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Figure 5.6: Development of ddPCR assays to screen for mutations resulting 
from non-homologous end joining (NHEJ). 
A) General ddPCR assay strategy indicating primer and probe binding sites 
relative to a target cut site of interest. B) Schematic of 2D ddPCR droplet results 
for droplets containing mutated or wild type targets. “ref amp” = reference probe 
amplitude. “drop-off amp” = drop-off probe amplitude.  
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Figure 5.7: TALENs constructed with the NH RVD did not induce mutations 
at target 1 of constitutive NODAL exon 1. 
A) Sequence of target 1. TALENs are shown directly under their binding sites. 
Grey segments indicate HD, NI, or NG RVDs. Orange segments indicate NH 
RVDs. B) Schematic of 2D ddPCR droplet results for droplets containing mutated 
or wild type targets. “ref amp” = reference probe amplitude. “drop-off amp” = 
drop-off probe amplitude. C) No target mutations were detected in MCF7 cells 
sorted to enrich for TALEN-transfected cells. Droplets for untreated control cells 
are inset. D) No target mutations were detected in MDA-MB-231 cells sorted to 
enrich for TALEN-transfected cells. Droplets for untreated control cells are inset. 
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Figure 5.8: TALENs constructed with the NH RVD did not induce mutations 
at target 2 of constitutive NODAL exon 1. 
A) Sequence of target 2. TALENs are shown directly under their binding sites. 
Grey segments indicate HD, NI, or NG RVDs. Orange segments indicate NH 
RVDs. B) Schematic of 2D ddPCR droplet results for droplets containing mutated 
or wild type targets. “ref amp” = reference probe amplitude. “drop-off amp” = 
drop-off probe amplitude. C) No target mutations were detected in MCF7 cells 
sorted to enrich for TALEN-transfected cells. Droplets for untreated control cells 
are inset. D) No target mutations were detected in MDA-MB-231 cells sorted to 
enrich for TALEN-transfected cells. Droplets for untreated control cells are inset.  
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Figure 5.9: TALENs constructed with the NH RVD induce mutations at a 
NODAL alternative exon splice donor target with low guanine content. 
A) Sequence of alternative splice donor site target. TALENs are shown directly 
under their binding sites. Grey segments indicate HD, NI, or NG RVDs. Orange 
segments indicate NH RVDs. B) Schematic of 2D ddPCR droplet results for 
droplets containing mutated or wild type targets. “ref amp” = reference probe 
amplitude. “drop-off amp” = drop-off probe amplitude. C) 20% of target alleles 
were mutated in C8161 melanoma cells selected to enrich for TALEN-transfected 
cells. Droplets for untreated control cells are inset. D) 13% of target alleles were 
mutated in MDA-MB-231 cells sorted to enrich for TALEN-transfected cells. 
Droplets for untreated control cells are inset.  
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ddPCR assay did not detect any mutations in TALEN-transfected MCF7 (Figure 5.7C) or 

MDA MB 231 (Figure 5.7D) breast cancer cells, after fluorescence activated cell sorting 

(FACS) to enrich for highly transfected cells. For target 2 in constitutive exon 1 with 

35% G bases (Figure 5.8A), virtually no mutations were detected (Figure 5.8C-D). For 

the alternative exon target with only 18% G bases (Figure 5.9A), between 13% and 20% 

of target gDNA was mutated, indicative of successful genome editing (Figure 5.9C-D). 

That desired mutations were detected in only targets with low G content prompted us to 

directly assess the performance of the NH RVD relative to the previously-developed but 

less G-specific NN RVD [37, 38] for a target with high G content. For an example target 

with 43% G in exon 1 of the SFRP1 gene (Figure 5.10A), TALENs with NH RVDs 

induced mutations at an average frequency of only 1.5%, while TALENs with NN RVDs 

designed to the same target were an average of 17-fold more efficient, inducing mutations 

at a frequency of 25% (P=0.0084; Figure 5.10B).  

Since the NN RVD lacks high specificity for G bases, and constitutive exon 1 of human 

NODAL has a high GC content, we next explored the CRISPR/Cas9 precision genome 

editing system for functional knockout of NODAL. First, an “all-in-one” plasmid coding 

for both Cas9 and an associated guide RNA was modified to contain a LacZ insert for 

blue/white colony screening flanked by Esp3I typeIIS restriction enzyme sites for one-

step cloning (Figure 5.11). A CRISPR for target 1 in constitutive NODAL exon 1 (Figure 

5.12A) induced mutations in 28% of target gDNA (Figure 5.12C-D). A CRISPR for 

target 2 (Figure 5.13A) induced mutations in 11% of target gDNA (Figure 5.13C-D). 

Single cell-derived clones were then generated and screened for mutations using ddPCR 

assays followed by validation with target cloning and Sanger sequencing. Examples of 

clones with only wild type target alleles, both wild type and mutated target alleles, and 

only mutated target alleles detected are shown in Figure 5.14. For simplicity, such 

samples will be referred to as wild type, mono-allele mutation, and bi-allele mutation 

respectively, although it is possible that NODAL is not present at a normal copy number 

of two in the karyotypically abnormal cancer cell lines used.   
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Figure 5.10: TALENs constructed with the less-specific NN RVD to target 
guanines results in higher mutation efficiencies relative to TALENs with NH 
RVDs targeting the same locus. 
A) Sequence of SFRP1 exon 1 test target site. TALENs are shown directly under 
their binding sites. Grey segments indicate HD, NI, or NG RVDs. Orange 
segments indicate NH/NN RVDs to target guanine (G). Error bars indicate 
Poisson 95% confidence intervals for each ddPCR assay. Three independent 
biological replicates (“Rep.”) are shown. TALENs with NN RVDs consistently 
outperformed those with NH RVDs, by a mean difference of 17-fold.   
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Figure 5.11: Modified CRISPR “all-in-one” plasmid for one step cloning and 
blue/white screening. 
Left: Modified plasmid containing ESp3I sites and LacZ insert. Middle: example 
of a double stranded DNA insert containing gRNA sequence for target of interest. 
Right: Example of final plasmid containing desired gRNA sequence. “gRNA” = 
guide RNA. “neoR” = neomycin resistance gene. 
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Figure 5.12: A CRISPR gRNA to target 1 of NODAL constitutive exon 1 
induced mutations in MCF7 cells. 
A) Sequence of target 1. The gRNA is shown directly above its binding site. 
Black arrow indicates expected site of double strand break. TALENs for target 1 
from Figure 5.7 are shown (faded) for context. “gRNA” = guide RNA. “PAM” = 
protospacer-adjacent motif. B) Schematic of 2D ddPCR results for droplets 
containing mutated or wild type targets. “ref amp” = reference probe amplitude. 
“drop-off amp” = drop-off probe amplitude. C) Untreated parental MCF7 cells 
show virtually no mutant droplets. D) 28% of target alleles were mutated in MCF7 
cells enriched for CRISPR-transfected cells. 
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Figure 5.13: A CRISPR gRNA to target 2 of NODAL constitutive exon 1 
induced mutations in MCF7 cells. 
A) Sequence of target 2. The gRNA is shown directly above its binding site. 
Black arrow indicates expected site of double strand break. TALENs for target 2 
from Figure 5.8 are shown (faded) for context. “gRNA” = guide RNA. “PAM” = 
protospacer-adjacent motif. B) Schematic of 2D ddPCR results for droplets 
containing mutated or wild type targets. “ref amp” = reference probe amplitude. 
“drop-off amp” = drop-off probe amplitude. C) Untreated parental MCF7 cells 
show no mutant droplets. D) 11% of target alleles were mutated in MCF7 cells 
enriched for CRISPR-transfected cells. 
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These clones were next used to compare the performance of developed ddPCR assays to 

mismatch nuclease assays for detection of precision nuclease-induced mutations. 

Virtually all droplets were classified as wild type for clones with only wild type target 

alleles. Both wild type and mutant droplet clusters were detected for clones with mono-

allelic target mutation, while virtually all droplets were classified as mutant for clones 

with bi-allelic target mutation (Figure 5.14A). Thus, our ddPCR assays could very easily 

distinguish clones with partially mutated target alleles from those with fully mutated 

target alleles. In contrast, a mismatch nuclease assay for the same target 2 samples did 

not distinguish between partially mutated and fully mutated samples (Figure 5.14B).   

We next assessed the quantitative performance of ddPCR assays relative to mismatch 

nuclease assays. We spiked in different amounts of genomic DNA (gDNA) from the fully 

mutated target 2 clone into a high concentration of non-mutated wild type gDNA from 

the unmutated clone. This allowed us to create samples analogous to a small number of 

mutated cells in a larger background of non-mutated cells, while maintaining the natural 

complexity, concentration, and purity of a typical gDNA sample.  

With respect to sensitivity, even though it required concentrated and purified PCR 

product as input, the mismatch nuclease assay performed very poorly. In our assay, 0.6% 

mutant DNA (2.5 ng mutant in 400 ng total PCR product) was difficult to distinguish 

from background noise (Figure 5.15A). The absolute sensitivity of this assay was very 

poor (0.6% is 2.5 ng of mutant PCR product, which is approximately 4 x 109 copies of 

DNA), despite the large amount of input gDNA required to generate sufficient PCR 

product. In our ddPCR assays, we were able to successfully detect a minimum of between 

20 pg and 156 pg of mutant gDNA (not purified PCR product) in a high background of 

100 ng of wild type gDNA for our three targets (Figure 5.15B). We did not test below 20 

pg as this amount of gDNA was expected to contain between only 1 and 4 copies of 

target DNA (see methods) and thus served as a practical lower limit. In terms of relative 

abundance, 20 pg of mutant DNA in 100 ng of wild type DNA is a mutant frequency of 

0.02%.   
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Figure 5.14: For genome editing of NODAL, a ddPCR mutation assay 
outperforms a mismatch nuclease assay in its ability to distinguish mono-
allelic mutations from mutations that affect all target alleles. 
A) Droplet results in heat map form for ddPCR assays for NODAL target 1 and 
target 2 for mutations with different target mutation profiles. “ref amp” = reference 
probe amplitude. “drop-off amp” = drop-off probe amplitude. B) Top: expected 
results of a mismatch nuclease assay for samples with different target mutation 
profiles. Bottom: actual results of a mismatch nuclease assay for NODAL target 
2. 
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Figure 5.15: ddPCR mutation assays were more accurate, sensitive, and 
specific in detecting NODAL target mutations than a corresponding 
mismatch nuclease assay 
A) A ddPCR assay reliably detected gDNA with mutations at target 1 in a high 
background of wild type gDNA. B) A mismatch nuclease assay was not 
particularly accurate or sensitive in detection of mutant gDNA. “T7E1-” sample is 
a negative control with no nuclease. C) A ddPCR assay reliably detected gDNA 
with mutations at target 2 for concentrations above 156 ng in a high background 
of wild type gDNA. “N.D” = not detected. 
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We were also interested in comparing the accuracy of mismatch assays and ddPCR 

assays. Our mismatch nuclease assay was not very accurate in its quantification of mutant 

PCR product at any of the dilutions tested (Figure 5.15A). In the corresponding ddPCR 

assay, the 95% confidence intervals for the detected copies of mutant gDNA generally 

encompassed the expected number of mutant copies from 313 pg to 5 ng of mutant 

genomic DNA (Figure 5.15B). In the ddPCR assay for target 1, quantification of mutant 

gDNA was accurate from 20 pg to 5 ng (Figure 5.15C). For both assays, the amount of 

wild type gDNA detected by the ddPCR assay remained stable across samples and was 

not affected by the amount of mutant gDNA loaded as there was no significant 

correlation between mutant gDNA loaded and copies of wild type detected (coefficient of 

determination; R2 = 0.014 for NODAL target 1, and R2 = 0.045 for NODAL target 2). 

These data demonstrate that these assays are capable of accurate detection of extremely 

rare mutations in 100 ng of gDNA.  

5.3 Discussion 

In studying the impact of NODAL over-expression on ovarian cancer cell resistance to 

chemotherapy, we found the two NODAL isoforms to have similar yet distinct impacts. 

The constitutive NODAL isoform conferred more robust resistance to cisplatin relative to 

the NODAL variant. In the absence of chemotherapy exposure, perhaps surprisingly, both 

NODAL isoforms induced remarkably similar changes in the expression of genes related 

to drug resistance, and promoted clonogenic growth to similar extents. Given the 

divergence in C-terminal peptide sequence between constitutive NODAL and the NODAL 

variant, and the NODAL variant’s inability to induce expression of targets of canonical 

NODAL signalling in an embryonic system, it is unlikely that the NODAL variant is 

affecting cancer cell plasticity and chemotherapy resistance via a canonical NODAL 

signalling response. Therefore, there are several possibilities for the observed phenotypes 

resulting from NODAL variant over-expression: Despite lacking canonical function in a 

regulated embryonic system, the NODAL variant may be able to transduce a diminished 

canonical NODAL signal in some contexts. It is also possible that both NODAL isoforms 

can engage non-canonical signalling pathways possibly involving currently unidentified 

receptor complexes or hetero-dimerization with other related ligands. Lastly, the NODAL 
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pro-peptide (which is common between both NODAL splice variants) may also have pro-

tumourigenic function independent of the mature peptides.  

Regardless of the mechanisms by which the NODAL isoforms induced changes in ovarian 

cancer cells, the NODAL variant seemed to have a similar yet more limited impact on 

pro-tumourigenic phenotypes of A2780S ovarian cancer cells. However, the dramatic 

changes in gene expression of several genes related to drug resistance in control cells 

during stable selection highlights a drawback of over-expression models that is 

particularly problematic in cancer cell lines. Phenotypic drift resulting from bottlenecking 

of genetically and epigenetically heterogeneous cells introduces a confounding variable 

to studying changes truly induced by the activity of a gene product of interest. Even after 

selection, variability in transgene integration and expression within a stable population of 

cells can also result.  

Since precision genome editing potentiates attractive alternative models to both 

conventional over-expression studies such as those performed for NODAL here, as well 

as variably efficient post-transcriptional knockdown approaches, we sought to develop 

more robust models to study NODAL biology in cancer systems using genome editing. 

We successfully generated cancer cell lines with an inducible NODAL variant expression 

construct integrated at the AAVS1 safe harbour locus, and with reading frame-altering 

mutations in constitutive exon 1 for functional NODAL knockout. These models are 

currently being used to evaluate the performance of NODAL protein detection assays and 

as robust models to explore NODAL function in cancer systems.  

Streamlined quantitative screening of nuclease-edited cells is imperative for genome 

editing to reach its full research potential. Thus, we developed ddPCR mutation detection 

assays, using NODAL-edited cells to demonstrate their utility. These assays can be easily 

adapted to any desired target, and will be of value for the many research fields utilizing 

precision genome editing techniques. Guidelines for ddPCR mutation screening assay 

design are included in Appendix C. 

Beyond detailing ddPCR mutation screening assays, we directly tested them against the 

widely utilized mismatch nuclease assay. We demonstrated that ddPCR assays are more 
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specific, accurate, and sensitive. They also offer practical advantages: First, only a small 

amount of gDNA (as little as 5 ng total gDNA) is required for analysis. In contrast, a 

relatively large amount of input DNA (e.g. 500 ng) is generally required to generate 400 

ng of purified target PCR product required for mismatch nuclease assays. Second, these 

assays easily discriminate between single-cell derived clones with mono-allelic mutations 

and those with both alleles successfully mutated. Third, ddPCR assays are more versatile 

in that they can more easily avoid false-positive mutation calls due to pre-existing 

mutations or SNPs outside of the nuclease target site. Together, these characteristics 

translate to a much more rapid and efficient workflow for the user.  

Importantly, all of the samples used in this study were genomic DNA preparations and 

not highly purified PCR products, synthetic oligos, or gene fragments. This allowed us to 

test the practical utility of these assays in prototypical samples. The theoretical limit of 

sensitivity for any mutation detection assay is detection of a single mutated molecule in a 

high background of wild type molecules. One of our two assays was able to distinguish 

only 20 pg of mutant DNA from 100 ng of wild type DNA (0.02%). Given that a typical 

diploid human cell is estimated to contain about 6 pg of gDNA and we were using 

karyotypically abnormal cancer cell lines, it is likely that 20 pg is very close to the 

biological limit of detection, representing all the alleles from a single cell. 

Beyond showcasing their utility, we also used ddPCR assays to demonstrate poor genome 

editing performance of TALENs built with the NH RVD for guanine-rich targets. Thus, it 

may not be advisable to maximize GC target content for TALENs using the NH RVD. 

Indeed, widely followed design guidelines [37] available as options in TALEN design 

software and assembly kits [36, 39] suggest to target loci with at least 25% C+G and 

avoid stretches of 6 or more A+T. This recommendation was initially made based on the 

identification of NN (targeting G) and HD (targeting C) as “strong binders” that 

stabilized TALEN-DNA binding [37]. However, since these recommendations were 

published, NH has become widely adopted as the G-targeting RVD of choice due to 

increased specificity over NN [37, 38, 40]. Unfortunately, the strength of NH binding 

appears to be context dependent and has been characterized as an “intermediate binder.” 

Specifically, unlike NN, using NH to target G did not result in any TALEN activity for an 
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A+ T rich 11 bp target lacking any C nucleotides [37]. If the design guidelines of >25% 

C+G are extended to “maximize C+G” and the NH RVD is employed, we hypothesized 

that TALEN activity may suffer. Indeed, this was the case for our G-rich NODAL exon 1 

targets. 

We have demonstrated that ddPCR mutation detection assays have great utility and offer 

several benefits over conventional mutation screening methods. They are ideal for rapid 

genome editing workflows as they require very little sample genomic DNA, and the same 

assay can be used for screening bulk populations and single cell-derived clones. These 

assays will undoubtedly continue to increase in popularity and contribute to rapid and 

quantitative genome editing workflows. 

Upstream of screening for successfully edited targets, we also cloned new versions of 

both an AAVS1 donor plasmid and an “all-in-one” plasmid for CRISPR/Cas9 editing. 

These plasmids allow for simplified and more efficient cloning for any desired target, 

further streamlining genome editing workflows. Guidelines for cloning a desired target 

gRNA into the “all-in-one” CRISPR plasmid are detailed in Appendix C.  

The functional NODAL knockout and inducible over-expression cell lines generated and 

validated with these newly developed genome editing tools are currently being used to 

further understand NODAL biology as it pertains to cancer phenotypes. Specifically, the 

NODAL knockout cell lines are being used to validate the specificity of NODAL 

antibodies and to validate NODAL expression at the protein level in cancer cell lines. As 

the efficiency of precision genome editing continues to improve, this general approach 

can be used to experimentally manipulate specific elements of NODAL such as SNPs, 

splice sites, polyadenylation signals, and sites of post-translational modification. Since 

genome editing results in stable and heritable mutations, these modifications will 

potentiate robust modelling of endogenous NODAL expression and function.  
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5.4 Methods 

5.4.1 Cell culture 

A2780S cells were cultured in DMEM/ FF12 media supplemented with 10% fetal bovine 

serum (FBS; Thermo Fisher; Waltham, Massachusetts, USA). T47D, MCF7, and MDA-

MB-231 breast cancer cells, and  C8161 melanoma cells [41], were cultured in RPMI 

supplemented with 10% FBS (Thermo Fisher). All cells were cultured at 37°C with 5% 

C02 supplementation. 

5.4.2 MTT assays 

Cells were seeded in 96 well plates at a density of 5,000 cells/well in 100 µl of complete 

medium and exposed to varying concentrations of carboplatin (3.1-200 µM) for 72 hours. 

MTT reagent (10 µL of 5 mg/mL in PBS) was added to each well for 4 hours. After 4 

hours, the resultant formazan crystals were dissolved in 100 µL of solubilization solution 

and the absorbance at 570 nm was measured with a reference wavelength of >650 nm. 

All experiments were performed in triplicate (3 technical and 3 biological replicates), and 

the relative cellular viability (%) was expressed as a percentage relative to untreated 

control cells. 

5.4.3 Clonogenic growth assays  

A modified version of the protocol from [42] was used. Cells were seeded in 6-well 

plates at the following densities: 50 cells/ well for no carboplatin treatment, 500 cells 

/well for 3.1 µM carboplatin, 1,000 cells/ well for 6.3 µM, 1,500 cells/well for 12.5 µM, 

2,000 cells/well for 25 µM, and 2,500 cells/well for 50 µM). Six hours post-seeding, cells 

were treated with the appropriate carboplatin dose for 24 hours. The medium with 

carboplatin was then replaced with fresh medium and cells were allowed to grow for 7-10 

days in the absence of carboplatin treatment. The colonies formed were then gently 

washed with PBS, fixed with methanol/acetic acid (3:1) solution stained with crystal 

violet (0.5% in methanol). Colonies of ≥ 50 cells were counted and the viability was 

calculated using equations: Plating efficiency (PE)= count of colonies formed in control 

wells/number of cells seeded in control wells; Relative clonogenic viability (%)= count of 

colonies formed in treated wells/ number of cells seeded in these wells / PE x 100. 
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5.4.4 Colony formation assays 

The soft agar colony formation assay was used to assess cellular anchorage-independent 

growth in vitro. Cells were suspended in 2x medium containing 0.7% low melting 

agarose (1:1), and plated onto solidified 1% agarose containing 2x medium (1:1) in 6-

well culture dishes at a density of 2,000 cells per well. Cells were incubated for 2 weeks 

(medium was changed every 2-3 days). The colonies formed were then washed with PBS 

and stained with crystal violet (0.5% in methanol). Number of colonies formed was 

expressed as colony formation efficiency relative to control (A2780s GFP) cells.  

5.4.5 PCR arrays 

Total RNA was isolated from cultured cells using the PerfectPure RNA Cultured Cell Kit 

(5-Prime; Hilden, Germany) including on-column DNase treatment and quantified with 

the Epoch plate reader (Biotek; Winooski, Vermont, USA). Reverse transcription of RNA 

was performed using the RT² First Strand cDNA Kit (SABiosciences/ Qiagen; Hilden, 

Germany) according to the manufacturer’s instructions. The human “Cancer Drug 

Resistance PCR Array” RT2 Profiler PCR Array (SA Biosciences/ Qiagen) was used for 

SYBR green real time PCR detection of genes related to cancer cell drug resistance. 

Plates were cycled according to manufacturer’s instructions using the CFX 96 real time 

PCR system and results were analyzed with CFX manager (Bio-Rad; Hercules, 

California, USA). Melt curve analysis was used to exclude samples with low melt peaks 

and inconsistent melt profiles for the same target between samples, indicative of off-

target amplification. Expression values were normalized to the mean expression of four 

endogenous control targets (ACTB, GAPDH, HPRT1, and RPLP0) included in the array, 

using the ∆∆Ct method. 

5.4.6 Plasmid cloning 

A previously generated AAVS1 donor plasmid and associated TALENs for genome 

editing were gifts from Su-Chun Zhang (inducible donor plasmid: Addgene; Cambridge, 

Massachusetts, USA; plasmid # 52343; Left TALEN: # 52341; Right TALEN: # 52342). 

The donor plasmid was modified using site-directed mutagenesis to introduce Type IIS 

BsmBI/ Esp3I restriction sites flanking the inducible EGFP open reading frame. Site-
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directed mutagenesis was performed with the QuikChange Lightning Site-Directed 

Mutagenesis Kit (Agilent; Santa Clara, California, USA) according to manufacturer’s 

instructions. These sites were used to insert a LacZα cassette for blue/white colony 

screening. Note that other BsmBI sites are present in the plasmid and these regions need 

to be verified by sequencing after plasmid construction. The NODAL variant open 

reading frame containing a MYC tag at the N-terminal end of the mature peptide was 

inserted into this plasmid in place of the BsmBI-flanked LacZα insert for AAVS1 

targeting and inducible expression.  

5.4.6.1 TALEN plasmids and targets 

TALEN targets were designed using the TAL Effector Nucleotide Targeter 2.0 

(https://tale-nt.cac.cornell.edu/node/add/talen and [36, 39]), using either NH or NN to 

target G nucleotides, the Streubel et al. guidelines “on,” and the upstream base as “T 

only.” The plasmid kit used for generation of TALENs was a gift from Daniel Voytas and 

Adam Bogdanove (Addgene kit # 1000000024; 

https://www.addgene.org/taleffector/goldengatev2/ , and [39]) using either the NN or NH 

RVD to target G nucleotides. In cases where the most 3’ nucleotide was G, NH (and not 

NN) was always used for the last half repeat. Plasmids pTAL7a and pTALb were gifts 

from Boris Greber (Addgene plasmid # 48705, [43]) and were used as final destination 

plasmids.  

TALEN target sequences:  

NODAL exon 1 target 1 left/ sense:   CCAGGCGGGTGCTGCGACGG 

NODAL exon 1 target 1 right/ anti-sense: GGCGACGAGGGCTGCCCCCG 

NODAL exon 1 target 2 left/ sense:  CGTCGCCATCCCCTCTGGCG 

NODAL exon 1 target 2 right/ anti-sense: GCCCTCGGCAGCGGGTCGCG 

NODAL alternative exon left/ sense:  ATATCCTCCATGCCAAGCCT 

NODAL alternative exon right/ anti-sense: GTGCTCATGCTCCCCAGAGA 

SFRP exon 1 left/ sense:   GGGCGTGCTGCTGGCGCTGG 

SFRP exon 1 right/ anti-sense:  ACTCGCTGGCCGAGCCCACG 
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5.4.6.2 CRISPR plasmids and targets 

The all-in-one CRISPR/Cas9 LacZ plasmid was generated from the “scrambled sgRNA 

control for pCRISPR-CG01” plasmid (Genecopedia; Rockville, Maryland, USA). Two 

unique BsmBI restriction sites flanking the gRNA sequence were consecutively 

introduced using the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent). 

The LacZα fragment was then cloned into the plasmid using BsmBI, replacing the 

original gRNA. The final plasmid ready for one-step cloning is available from Addgene 

(https://www.addgene.org/74293/). Guidelines for custom gRNA cloning using this 

plasmid are provided in Appendix C. 

CRISPR gRNAs used: 

NODAL exon 1 target 1: ACTGCGCTCCTGCGTACGCG 

NODAL exon 1 target 2: GGCTCAGCATGTACGCCAGA  

5.4.7 Transfections 

Transfections were performed with GeneIn transfection reagent (GlobalStem; Rockville, 

Maryland, USA) according to manufacturer’s instructions. For enrichment of AAVS1 

targeted clones, transfected cells were selected with puromycin (Thermo Fisher) at a 

concentration of 1 µg/mL. TALEN transfected cells were enriched using flow cytometry 

to collect GFP+ cells, or selected using puromycin (0.5 µg/mL) and blasticidin (2 µg/mL). 

For enrichment of CRISPR transfected cells, transfected cultures were either selected 

with 600-1000 µg/mL Geneticin (Thermo Fisher), or sorted for mCherry+ cells using 

flow cytometry (Faculty of Medicine and Dentistry Flow Cytometry Facility at the 

University of Alberta). Single-cell derived clones were generated using either flow 

cytometry to plate a single cell per well of a 96 well plate, or filtered using a 40 µM filter 

(Thermo Fisher) and manually plated at a concentration of 0.5 cells/ well.  

5.4.8 Genomic DNA isolation 

Genomic DNA was isolated using the PureLink Genomic DNA isolation kit (Thermo 

Fisher) and quantified using the Epoch Microplate Spectrophotometer (BioTek).  
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5.4.9 Droplet digital PCR assays 

Droplet digital PCR assays consisted of the following components, with final 

concentrations indicated in parentheses: ddPCR SuperMix for Probes (no dUTP) (1x, 

Bio-Rad), forward primer (900 nM), reverse primer (900 nM), Reference probe (250 

nM), NHEJ/drop-off probe (250 nM), restriction enzyme (variable based on assay, 4 

units). All primers and probes were designed using Primer3 plus (http://primer3plus.com) 

and purchased from IDT DNA (Coralville, Iowa, USA). All probes included the ZEN 

internal quencher and 3’ Iowa Black FQ quencher. All ddPCR assays were analyzed 

using the QX200 droplet reader and Quantasoft software version 1.7.4 (Bio-Rad). 

Standard ddPCR thermal cycling conditions were used for most assays, with an annealing 

temperature of 55°C.  For NODAL exon 1 assays, a “3-step” protocol was used, with an 

annealing temperature of 56°C and an additional 2 minute extension step at 72°C 

performed for each cycle. Guidelines for primer and probe design are provided in 

Appendix C.  

Primers and probes used: 

NODAL exon 1 forward primer:   TTCCTTCTGCACGCC 

NODAL exon 1 reference probe:  

TGGGCCCTACTCCAGG (/5HEX/TGGGCCCTA/ZEN/CTCCAGG/3IABkFQ/) 

NODAL exon 1 target 1 drop-off/ NHEJ probe:  

CCGCGTACGCAGGAGC (/56-FAM/CCGCGTACG/ZEN/CAGGAGC/3IABkFQ/)  

NODAL exon 1 target 2 drop-off/ NHEJ probe:  

CTCAGCATGTACGCCAGAG  

(/56-FAM/CTCAGCATG/ZEN/TACGCCAGAG/3IABkFQ/) 

NODAL exon 1 reverse primer:   TAGGCTGCGGATGATG 

NODAL alternative exon forward primer: TTGCAATATATCCTCCATGCCA 

NODAL alternative exon reference probe: 

AAGCTCTAGTACCCCCAGGGA 

(/56-FAM/AAGCTCTAG/ZEN/TACCCCCAGGGA/3IABkFQ/) 

NODAL alternative exon drop-off/NHEJ probe: 

ACCCTGAATCCCGCCTGAG 
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(/5HEX/ACCCTGAAT/ZEN/CCCGCCTGAG/3IABkFQ/) 

NODAL alternative exon reverse primer: GGTGAGGCTCAGGACAGAT 

SFRP1 ddPCR forward primer:   CATGGGCATCGGGCG 

SFRP1 ddPCR reference probe: 

CTGGGCGTGCTGCTGG (/56-FAM/CTGGGCGTG/ZEN/CTGCTGG/3IABkFQ/) 

SFRP1 ddPCR drop-off/ NHEJ probe: 

CGCGGCGCTTCTGGC (/5HEX/CGCGGCGCT/ZEN/TCTGGC/3IABkFQ/) 

SFRP1 ddPCR reverse primer:  CGTAGTCGTACTCGCTGG 

AAVS 1 integration screen forward primer (genomic): TTGAGCTCTACTGGCTTC 

AAVS 1 integration screen reverse primer (plasmid):   GCATGTTAGAAGACTTCCTC 

AAVS 1 integration screen probe:  

TCTCCGCTGCCAGATCTC 

(/56-FAM/TCTCCGCTG/ZEN/CCAGATCTC/3IABkFQ/) 

5.4.10 Mismatch nuclease assay 

For the T7E1 mismatch assay, genomic DNA was PCR amplified using AmpliTaq Gold 

360 Master Mix (Thermo Fisher), purified using the PureLink PCR Purification Kit 

(Thermo Fisher) and quantified using the Epoch Microplate Spectrophotometer (BioTek).  

400 ng of purified PCR product was used in an annealing reaction and subsequent T7E1 

digestion (New England BioLabs; Whitby, Ontario, Canada) as previously described 

[44]. Cleavage was visualized by agarose gel electrophoresis and detection using the 

AlphaImager HP (Bio-techne; Minneapolis, Minnesota, USA). Band intensities were 

obtained by AlphaView software (Bio-techne). Analysis “bands” were placed so as to 

completely encompass each visible band. Where bands were difficult to visualize, 

analysis bands were placed in the same location as adjacent wells to provide an unbiased 

quantification. All analysis bands for bands of a given size were the same width across all 

lanes. The detected percent digested was calculated as the sum of the intensities of the 

digested fragment bands divided by the sum of the intensities of all bands. The expected 

percent digested was determined by assuming random hybridization of alleles and 

determining the expected frequency of heteroduplexes. 
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NODAL mismatch forward primer:   TCCCCAGAGGGAGGAAAGG 

NODAL mismatch reverse primer:   CAGGCTCCGGGATAAGCAAC 

5.4.11 Dilution series analysis using ddPCR 

For the ddPCR dilution series, negative control (wild-type only) reactions and positive 

control (mutant only) reactions were used to assign thresholds for all dilution sample 

wells. The wild type population was quantified by setting all other droplets as FAM-

negative and HEX-negative. The NHEJ population was quantified manually using the 

equation: copies/ 20 µL sample = -ln(1-p) x 20,000 / 0.85. ‘p’ is the proportion of 

positive droplets defined as NHEJ droplets/ (NHEJ droplets + empty droplets), and 0.85 

nL is the average volume of a droplet as used by QuantaSoft (Bio-rad) [45]. Note that for 

quantification of NHEJ, wild type droplets are excluded from the calculation, as an 

indistinguishable subpopulation of wild type droplets will also contain NHEJ targets. The 

expected number of copies was calculated based on the number of copies detected by 

ddPCR in 100 ng (as measured by spectrophotometry) of each mutant sample. 

5.4.12 Sequencing of single cell-derived clones 

All single cell-derived clones used for ddPCR and ongoing functional NODAL knockout 

were validated using Sanger sequencing of the intended nuclease target. PCR products 

for each target were generated and cloned using the TOPO TA Cloning Kit (Thermo 

Fisher), minipreped using the Diamed High-Speed Plasmid Mini Prep Kit (Frogga Bio; 

Toronto, Ontario, Canada), and Sanger sequenced by the Molecular Biology Service 

Unit, University of Alberta. Several clones were sequenced for each sample to maximize 

the chances of detecting all target alleles. 

5.4.13 Target sequences for functional knock outs 
Wild type NODAL exon 1 target 1 and 2 (gRNA targets underlined): 
GCCACTGCGCTCCTGCGTACGCGGGGGCAGCCCTCGTCGCCATCCCCTCTGGCGTACATGCTGAGCCTCTACCGCGACCCGCT  

NODAL exon 1 target 1 knockout: 
GCCAC-----------------------AGCCCTCGTCGCCATCCCCTCTGGCGTACATGCTGAGCCTCTACCGCGACCCGCT 
GCCACTGCGCTCCTG----------GGCAGCCCTCGTCGCCATCCCCTCTGGCGTACATGCTGAGCCTCTACCGCGACCCGCT 

NODAL exon 1 target 2 knockout: 
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GCCACTGCGCTCCTGCGTACGCGGGGGCAGCCCTCGT-------------------------------------CGACCCGCT 

GCCACTGCGCTCCTGCGTACGCGGGGGCAGCCCTCGTCGCCATCCCCTCT-GCGTACATGCTGAGCCTCTACCGCGACCCGCT  

5.4.14 Inducible protein expression 

T47D cells with stably integration of the inducible NODAL variant construct were treated 

for 96 hours with 1 µg/mL doxycycline (Sigma-Aldrich; St. Louis, Missouri, USA). For 

the final 24 hours, cells were cultured in the presence of serum-free RPMI media with 1 

µg/mL doxycycline for collection of conditioned media. Protein was extracted from cells 

using mammalian protein extraction reagent (mPER; Thermo Fisher) containing the Halt 

Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher). Lysates were incubated at 

room temperature for five minutes and mixed thoroughly, then centrifuged at 15,000g for 

20 minutes to pellet insoluble cell debris. Protein supernatants were decanted and 

retained for analysis. Protein concentration was determined using the Pierce BCA Protein 

Assay Kit (Thermo Fisher) with a standard curve consisting of known concentrations of 

albumin. Corresponding conditioned media was collected and spun at 300 g for 10 

minutes to eliminate floating cells and large debris. Remaining media was carefully 

decanted for concentration using Amicon Ultra Centrifugal Filters (Milipore) at 3,000g 

for 1 hour at 12°C or until media was concentrated in volume by approximately 250-fold. 

Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher) was added to 

concentrated conditioned media.  

Samples were mixed with 4X Laemmli sample buffer (Bio-rad) containing 5% (v/v) 2-

Mercaptoethanol (Sigma-Aldrich) and boiled for five minutes. SDS-PAGE was 

conducted with 12.5% Acrylamide gels. Precision Plus Protein Dual Color Standards 

(Bio-rad) were used to confirm approximate molecular weights of detected bands. 

Proteins were transferred to a low auto fluorescence PVDF membrane (Bio-rad) using the 

Trans Blot Turbo (Bio-rad) with settings of 25 V and 1.3 A for 15 minutes. After transfer, 

the membrane was washed briefly in PBS, and then blocked for one hour at room 

temperature with Odyssey Blocking Buffer (Li-Cor; Lincoln, Nebraska, USA). The 

membrane was incubated overnight in primary antibody solution consisting of Odyssey 

Blocking Buffer with 0.1% Tween-20 (Sigma-Aldrich) and mouse anti MYC-tag (9B11) 

antibody (#2276; Cell Signaling Technology; Massachusetts, USA) at a dilution of 
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1/1,000. Rabbit anti β-Tubulin polyclonal antibody (Li-Cor 926-42211) was used at a 

dilution of 1/1,000 as a loading control for cell lysates. Membranes were treated with 

corresponding Li-Cor anti mouse and anti-rabbit fluorescent secondary antibodies for one 

hour at room temperature at dilutions of 1/15,000 in Odyssey Blocking Buffer with 0.1% 

Tween-20 (Sigma-Aldrich) and 0.01% SDS (Thermo Fisher). Membranes were imaged 

using the Li-Cor Odyssey Clx imaging system.  
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Chapter 6  

6 Overall discussion 

6.1 Complexity of human gene expression 

The work presented in this thesis suggests that there is a great deal of molecular 

complexity for human NODAL gene expression at multiple levels. Specifically, I 

discovered expression of multiple transcripts transcribed from the NODAL locus, 

confirming both alternative transcriptional start site usage and alternative splicing of 

NODAL transcripts. Alternative splicing of NODAL is genetically regulated, and the 

translated protein product of the novel full-length transcript is subject to differential N-

glycosylation and is functionally distinct from constitutively spliced NODAL. This 

complexity was previously unknown and can now be incorporated into and enrich 

experimental models of human NODAL function. These details will also help refine the 

development and evaluation of inhibitors of NODAL signalling desirable for potential 

targeted therapy in cancer. 

6.2 Discovery and characterization of a human-specific alternatively 
spliced NODAL transcript 

At the genomic level, I identified a functional non-coding polymorphism in NODAL’s 

second intron. This SNP directly controls the novel alternative splicing of NODAL 

transcripts, resulting in expression of the first identified NODAL transcript variant. Thus, 

NODAL is differentially alternatively spliced between individuals. I also extensively 

characterized this transcript variant and the constitutive NODAL isoform at the RNA and 

protein levels. The alternative NODAL exon contributed to a full-length NODAL variant 

transcript containing a slightly truncated open reading frame (ORF) relative to 

constitutive NODAL. Most NODAL variant transcripts contained transcriptional start sites 

corresponding to constitutive exon 1 as was the case for total NODAL. However, a 

minority of NODAL variant transcripts did not contain constitutive exon 1, but instead 

spliced directly from constitutive exon 2 to a novel upstream first exon. I found evidence 

of this exon’s preferential splicing in NODAL variant transcripts relative to total NODAL. 
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This transcript was very rare, but is indicative of potential further transcript complexity 

for human NODAL beyond what was examined here. The 3’ ends of NODAL variant 

transcripts were defined by polyadenylation guided by the same two PAS found for total 

NODAL transcripts. However, the NODAL variant transcripts were much more likely to 

utilize the more distal PAS than NODAL transcripts in general.  

While the assays used provided confidence in the nature of 3’ transcript ends, exact 

determination of 5’ ends was difficult. This is a limitation of reverse transcription-based 

methods of 5’ end determination such as RACE, as incomplete reverse transcription can 

result in a collection of 5’ truncated cDNAs that are indistinguishable from true 5’ 

termini. This was evident for analysis of NODAL variant transcripts. Future studies will 

use the RLM-RACE technique that specifically adds an adapter oligo to capped 5’ 

mRNA ends providing the specificity required for true 5’ end determination [1]. 

Collectively, these differences are indicative of coordinated regulation of NODAL variant 

processing, beyond the genetic modulation of a splice donor site in cis.  

Our work illustrated how oft-overlooked genetic polymorphisms can play important roles 

in gene expression, specifically splicing. It also distinguished true alternative splicing 

from allele-specific expression, developed improved assays for precise quantification of 

alternatively spliced transcripts, and investigated the full-length nature of such 

transcripts. These are all aspects typically lacking in conventional analyses of alternative 

splicing events. Specifically, the interrogation of full-length transcripts containing open 

reading frames will prove important in identifying potential proteoforms translated from 

transcripts subject to AS. On a genome-wide scale, the investigation of alternatively 

spliced ORF-containing transcripts has been extremely limited. Only very recently, a 

study attempted to begin to characterize alternatively spliced transcripts contributing to 

what they term the “ORFeome”—the full collection of open reading frame-containing 

transcripts expressed by the human genome [2]. Using a targeted approach to clone and 

sequence a subset of human transcripts of interest from five pooled tissue samples, they 

found a total of 917 alternatively spliced transcripts from 506 corresponding reference 

transcripts for 506 genes. Notably, while only 11% of the exon-exon junctions contained 

within these transcripts were novel, a staggering 70% of the full-length isoforms found 
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had never been curated in any of the databases examined and were thus completely novel. 

This served as a striking indication of how little is known about the potential for AS to 

promote proteomic diversity, even at the RNA level.  

Differences in the regulation of NODAL splice variant gene expression at the level of 

protein were also apparent. First, the NODAL proteoforms resulting from translation of 

the alternatively spliced open reading frames were differentially secreted into the media. 

This capacity was enhanced for the NODAL variant relative to constitutive NODAL. A 

differential banding pattern between the processed mature peptides of the two 

proteoforms in the conditioned media was found to result from differential N-

glycosylation. Interestingly, the novel C-terminal N-glycosylation of the NODAL variant 

was similar in nature to some Nodals and other TGF-beta superfamily ligands in non-

human organisms [3]. Le Good and colleagues found that artificial introduction of an 

analogous N-glycosylation motif into the mature domain of constitutive Nodal resulted in 

increased Nodal stability and corresponding signalling range. The work presented in this 

thesis suggests that N-glycosylation of the NODAL variant mature peptide does not have 

a general stabilizing effect, though it does promote increased secretion relative to 

constitutive NODAL.  

6.3 NODAL expression in human cancer cell lines and embryonic 
stem cells 

It was unclear if NODAL is similarly alternatively spliced in cancer, owing to the 

surprising discovery that NODAL transcripts were detectable at extremely low levels in 

cancer cell lines. This is in apparent contradiction with numerous functional studies 

employing NODAL knockdown suggesting that NODAL is expressed. Careful 

quantitative parallel analysis of NODAL transcript and corresponding NODAL protein 

levels from the same cultures will be required to determine if there is a consistent 

discrepancy between transcript and protein levels. Alternatively, it is possible that the low 

levels detected here result from genuine low gene expression and reflect a tendency for 

NODAL expression to drift between isolates of the same cell lines. If the former is true, 

several mechanisms could be responsible. It is possible that NODAL transcripts are 

translated very efficiently, allowing substantial protein to accumulate from a limited 
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number of transcripts. Large pools of NODAL pre-mRNA may also be rapidly spliced, 

translated, and broken down, accounting for a very transient fully-spliced transcript pool. 

It is also possible that NODAL transcripts contain different 5’ and 3’ untranslated regions 

relative to transcripts detected in human embryonic stem cells, and that these untranslated 

regions confer complex structure that does not permit efficient reverse transcription.  

The work presented here is the first to directly compare multiple NODAL primer probe 

assays across multiple samples using absolutely quantitative ddPCR. Consequently, this 

work demonstrated that a natural antisense transcript transcribed from the human NODAL 

locus contains all of NODAL’s constitutive exon 2 sequence. This implies that transcripts 

detected with constitutive exon 2 assays are not specific for NODAL: amplicons derived 

from this region could result from amplification of both NODAL and the antisense 

transcript. Moreover, the resulting amplicons would be indistinguishable in sequence 

analyses as they would both align perfectly with the intended NODAL target. Going 

forward, assays either spanning an exon-exon boundary, or outside of constitutive exon 2 

should be used to assess NODAL transcript levels. It will also be of interest to specifically 

interrogate pre-mRNA with assays that amplify across intron-exon boundaries to 

determine if abundant unspliced NODAL transcript may also explain discrepancies 

between junction spanning assays and those exclusively within constitutive exon 2. The 

accumulation of Nodal pre-mRNA has been described in zebrafish [4].  

In addition to low transcript levels in cancer systems, low transcript levels were also 

variably found in human embryonic stem cells. This was not primarily the result of 

technical inefficiencies, and existed despite cells displaying classic pluripotent stem cell 

morphology, and expression of pluripotency markers. NODAL expression has been 

shown to decrease very quickly upon spontaneous differentiation of hES cells in 

suboptimal culture conditions [5]. Therefore, it is possible that low NODAL levels were 

an indication of early differentiation taking place, not yet apparent at the level of cell 

morphology. However, the magnitude of the difference in NODAL levels between “high” 

and “low” samples was much greater than the decrease in NODAL levels reported in [5] 

after prolonged differentiation. Another possibility is that pluripotent stem cells can be 

propagated in distinct pluripotent states, and that the microenvironment influences which 
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state is preferred. This work demonstrated that choice of culture media had a dramatic 

effect on NODAL gene expression. Both MEF-conditioned media and defined media have 

been well established in their abilities to support hES cell self-renewal and pluripotency 

[6]. Cell transfer to MEF-CM dramatically increased NODAL transcript levels. This 

effect was also reversible. Perhaps surprisingly, NODAL levels were lower in defined 

mTESR-1 media that is less prone to the batch variation and biological heterogeneity that 

accompany the use of secreted factors from MEFs. Since defined media such as mTESR-

1 contains TGF-beta, it is possible that this supplementation satisfies the cell’s 

requirement for active NODAL/Activin/TGF-beta signalling through SMAD2/3, and that 

endogenous expression of NODAL is not strictly required and thus subject to drift.  

6.4 NODAL variant function 

The NODAL variant ORF lacked the canonical activity of constitutive NODAL in an 

endogenous zebrafish embryo reporter system. However, over expression of the NODAL 

variant induced stem cell-like phenotypes in ovarian cancer in a similar fashion to 

constitutive NODAL, although to a lesser extent. This indicated that the NODAL variant 

may be functional in a less well-regulated cancerous context. It is unclear whether this 

apparent function of the NODAL variant was related to NODAL variant-specific activity, 

or resulted from activity of the peptide sequence shared with constitutive NODAL. 

Truncation mutants lacking the novel C-terminal NODAL variant region have been 

constructed that will be used to distinguish between these two possibilities. One 

possibility is that the NODAL pro-domain has function independent of the mature 

peptide after proteolytic cleavage, although this has not yet been reported. Future work 

will examine if the NODAL pro-peptide common to both proteoforms has independent 

functions, such as stabilizing endogenous NODAL or binding with GDF1 or other TGF-

beta ligands. These possible functions were not sufficient to induce a bona fide canonical 

NODAL signalling response in the zebrafish embryo model used. However, it should be 

noted that this model focused on signaling events and development only up until the early 

stages of gastrulation. It is possible that over-expression of the NODAL pro-peptide can 

impact gene expression and development at later stages of development, such as during 

the establishment of left-right asymmetry and subsequent organ development. Beyond 



255 

 

development, the pro-domain may also be functionally relevant in cancer systems. Future 

work will also examine if NODAL and NODAL variant effects on cancer cell phenotypes 

are strictly dependent on EGF-CFC co-receptors such as Cripto.   

This work also demonstrated possible coordinated regulation of the two NODAL isoforms 

in hES cells. NODAL variant specific knockdown resulted in similar changes in gene 

expression induced upon total NODAL knockdown. It is possible this is indicative of 

partially redundant function between the two isoforms. However, the sequence and 

functional divergence of the two splice variants in the zebrafish signalling assay suggest 

this is unlikely to be broadly true. This work demonstrated that knockdown of the 

NODAL variant resulted in a proportional decrease in constitutive NODAL expression. It 

is possible that this effect is direct and that interfering with NODAL variant splicing had a 

general effect on the processing of all NODAL transcripts. For example, it is possible that 

the alternative exon splice donor site locus plays a role in constitutive NODAL splicing 

(perhaps as an intronic splicing enhancer) independent of SNP rs2231947 genotype. 

Future work will test this hypothesis by treating a homozygous C|C cell line such as H1 

with the morpholino targeting the alternative exon splice site to see if a similar effect on 

constitutive NODAL transcript levels is observed.   

In general, this work did not find any negative impact of NODAL variant expression. 

Although the allele from which the NODAL variant was spliced in a rs2231947-

heterozygous hES cell line was responsible for slightly less production of processed 

NODAL transcript in general, NODAL variant splicing did not preclude productive 

processing of constitutive NODAL: NODAL variant-specific knockdown in fact reduced 

constitutive NODAL levels, indicative of a putative supporting effect on NODAL 

expression. Furthermore, even when co-injected in excess, the NODAL variant open 

reading frame did not have a dominant negative effect on the robust signalling response 

induced by constitutive NODAL in zebrafish embryos. Indeed, any potential deleterious 

effect of NODAL variant expression is likely limited in scope as high rates of the T allele 

for rs2231947 are found in numerous populations of adults that presumably experienced 

healthy development. 
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However, the genetic associations for SNP rs2231947 on characteristics of hES cell lines 

were striking. This suggests that any harmful impact of the linkage group marked by 

rs2231947 is likely compensated for in normal development, but is manifested in ex vivo 

hES cell models that have been displaced from their endogenous microenvironment. If 

NODAL variant splicing is responsible for selection against prospective male human 

embryonic stem cell lines and the X inactivation process in female hES cell lines, these 

effects are likely achieved through mechanisms and contexts that are not easily 

recapitulated experimentally. Robust and inducible NODAL variant over-expression in 

hES cells will be used to determine how this NODAL transcript potentially impacts 

pluripotency. In addition, we identified another putative functional polymorphism in an 

upstream NODAL enhancer element in high LD with rs2231947 displaying the same 

associations. Future work to endogenously manipulate combinations of alleles for this 

SNP as well as rs2231947 will examine potential combinatorial effects on NODAL gene 

expression. These NODAL SNPs and NODAL in general can also be incorporated into 

models of X chromosome inactivation in human embryonic stem cells.  

This work did not directly assess endogenous translation of the NODAL variant. Custom 

antibodies were generated against the unique C-terminal region of the NODAL variant 

proteoform. However, these antibodies were generally non-specific and it was difficult to 

consistently obtain samples with robust NODAL expression. 

6.5 Novel aspects of constitutive NODAL biology 

Beyond characterization of the novel NODAL splice variant, I also detailed many aspects 

of constitutive NODAL transcript and protein. NODAL was found to be alternatively 

polyadenylated in hES cells. If subcultures of cancer cell lines expressing high levels of 

NODAL could be obtained, it would be interesting to see if a skewed pattern of NODAL 

alternative polyadenylation exists in a cancer context. It would also be interesting to 

explore if alternative polyadenylation influences translation efficiency or miRNA 

targeting, as direct regulation of NODAL by endogenous RNA interference has not been 

described in humans.  
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This work also explored a novel relationship between NODAL processing and 

dimerization. Conservative mutation of the putative interchain disulfide bond-forming 

C312 residue dramatically affected the processing of secreted NODAL, increasing the 

mature:full-length peptide ratio. This was true for C-terminal tagged NODAL proteins 

despite lack of abundant putative homo-dimerization in the conditioned media. Future 

work will assess to what degree C312 mutation disrupts NODAL homo-dimerization, and 

whether proteolytic enzymes such as PACE4 preferentially cleave monomer NODAL 

ligands relative to their dimeric counterparts. The exact nature of the interchain disulfide 

bond complexes can also be confirmed using mass spectrometry-based techniques [7].   

6.6 Novel transcripts originating from the NODAL gene locus 

Beyond characterization of the full-length NODAL isoforms, this work also identified two 

other novel transcripts originating from the NODAL locus. Namely, these consisted of a 

natural antisense transcript encompassing constitutive exon 2, and a circular exon formed 

by a back-splice of the constitutive exon 2 splice donor to its own splice acceptor site. 

Future work will assess the function of these novel transcripts. For example, does their 

over-expression affect linearly spliced full-length NODAL transcripts? And how do these 

novel transcripts respond to microenvironmental changes such as hypoxia relative to full-

length NODAL? 

Indeed, it is also still possible that other NODAL isoforms and proteoforms exist beyond 

those detailed here. NODAL expression may differ in individuals, cell types, stages of 

development, and microenvironments not studied here. Furthermore, many of the assays 

used here are biased by what is already known about NODAL gene expression and may 

not have been sensitive to detection of currently unidentified NODAL molecules. For 

example, RACE analyses that employed primers targeting the second constitutive exon of 

NODAL could not detect potential transcripts where exon 2 is skipped. The targeted and 

gene specific methodologies used here provided excellent sensitivity that may exceed 

genome-wide methods where extensive filtering of data may be required for efficient and 

confident analyses. However, both types of studies can complement each other to provide 

a rich view of gene expression from a locus of interest. For example, whole transcriptome 
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shotgun sequencing would be able to identify the potential NODAL transcripts lacking 

constitutive exon 2. 

6.7 Widespread complexity in gene expression 

Although this work was focused on one gene, it is likely that the complexity uncovered at 

the NODAL gene locus is typical of many protein coding genes, rather than an 

exceptional case. This is supported by a tremendous amount of progress that has been 

made in recent decades in detailing the complexity of gene expression on a genome-wide 

scale [8]. At the RNA level, this complexity is generated by alternative transcriptional 

start sites, alternative splicing, and alternative polyadenylation, all of which were 

demonstrated here for human NODAL, and are each now estimated to affect gene 

expression for the majority of protein coding genes [9]. However, on an individual gene 

basis, how this alternative processing affects gene expression and function often remains 

completely unknown. This is perhaps the result of difficulty in detecting some 

alternatively processed transcripts, or difficulty incorporating them into conventional 

models used to assess gene function. Going forward, extensive characterization of these 

transcripts will enrich our understanding of countless genes, as numerous examples of 

alternatively processed transcripts already have. To what extent alternatively processed 

transcripts are translated into functional proteins remains unclear [10] and has been the 

source of some controversy [11]. Skeptics suggest that alternative processing of 

transcripts may largely represent biological noise, as the majority of alternative 

processing events are not well-conserved across species. The alternate argument is that 

extensive alternative RNA processing is one mechanism to generate proteomic diversity 

and mediate many important inter-species differences in development and physiology. 

6.8 Combinatorial complexity of gene expression 

Collectively, the effect of numerous points of regulation of gene expression on diversity 

at the protein level is quite staggering. It has been proposed that distinct protein products 

of the same gene locus resulting from allelic variation within or between individuals, as 

well as processes such as alternative splicing and post-translational modifications, be 

termed “proteoforms” [12]. This term is analogous to the term “isoform” for nucleic 
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acids. Collectively, the full array of proteoforms expressed from loci throughout the 

genome contribute to the proteome. One general process responsible for a great deal of 

proteomic diversity is post-translational modification (PTM). Over 100 distinct types of 

PTMs have been characterized (reviewed in [13]), and these modifications can be 

differentially applied to multiple amino acids of a single peptide. Collectively, it has been 

estimated that processes generating proteomic diversity account for the generation of an 

estimated 1 million proteoforms from a genome of only approximately 20,000 protein-

coding genes [14]. This implies an average of roughly 50 proteoforms from every gene 

locus. This number is given perspective once the combinatorial effects of different 

regulatory processes are considered. The diversity of NODAL gene products reported 

here will be used to illustrate: NODAL is alternatively spliced to yield two distinct 

proteins. Each of these proteins was subject to alternative N-glycosylation in the pro-

domain. Even alone, these two simple points of regulation account for 2 x 4 = 8 potential 

proteoforms if each combination of unmodified, N72 N-glyc only, N199 N-glyc only, 

and N72 & N199 N-glyc are considered. If an individual heterozygous for a common 

SNP that results in a single amino acid change such as rs1904589 is considered, this 

number quickly doubles to 16. All this diversity has important implications for protein 

function and can change dynamically with context and between individuals. Specific 

detection and characterization of distinct proteoforms is a major challenge currently 

facing research in molecular biology.  

6.9 Conclusion 

Perhaps the most profound and widely applicable finding of this work is that a single 

nucleotide polymorphism can have a substantial yet relatively benign impact on gene 

expression and function. The study of genetic polymorphisms or mutations has 

traditionally been approached from a pathogenic perspective. The mindset is that 

mutations often face substantial negative selection pressure, and generally disrupt 

“normal” expression and function of proteins, possibly conferring a disease. While this is 

undoubtedly true of some variants, the impact of the vast majority of genetic 

polymorphisms, especially those that are common, remains almost completely unknown. 

The NODAL SNP rs2231947 studied here illustrates how a common polymorphism can 
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affect both the expression and function of a highly conserved protein-coding gene with 

essential roles in early embryonic development. The high frequency of this polymorphic 

allele in multiple human populations suggests that its impact on NODAL gene expression 

is likely well tolerated endogenously, and not deleterious to the development of those 

individuals carrying it.  

The impact of this non-coding SNP is one example of how genetic heterogeneity between 

individuals impacts the molecular biology of the cell. It is unlikely that NODAL is an 

exceptional gene in this sense. Thus, the overall approach of this thesis can serve as a 

framework for the study of complexity at multiple levels for any protein-coding gene of 

interest. While there are currently not many functional annotations for non-coding 

polymorphisms, as we continue to move away from a protein-coding gene-centric view 

of molecular biology, such annotations will undoubtedly be major contributors to 

functional annotation of the human genome. This will allow for a more nuanced view of 

molecular biology in general, as we strive to understand not only differences between 

individuals, but also what makes us human.  
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Appendices 
Appendix A: Annotations and sequences 

For what I refer to as “constitutive NODAL”: 

UniProtKB/Swiss-Prot ID:   Q96S42 (NODAL_HUMAN) 

Ensemble/ Genocde transcript ID: ENST00000287139/ ENST00000287139.6 

NCBI Refseq:    NM_018055.4 

NCBI Protein:    NP_060525.3 

UCSC ID (hg38):   uc001jrc.3 

UCSC ID (hg19):   uc001jrc.2     

Another NODAL transcript is also present in several databases. During writing of this 

thesis, this transcript was curated into the RefSeq and UCSC genome browser databases. 

This NODAL transcript has an alternative first exon upstream of annotated NODAL exon 

1, and utilizes the same exon 2 and exon 3 as annotated NODAL. This transcript was not 

directly assessed in this thesis, but it was not detected in 5’ RACE analysis.  

UCSC Genome Browser ID (hg38†): uc057tvn.1 

Ensemble/ Gencode transcript ID:  ENST00000414871/ ENST00000414871.1 

NCBI RefSeq:    NM_001329906.1 

UniProtKB/TrEMBL* ID:   H7C0E4 (H7C0E4_HUMAN) 

† note that there is no alternative first exon NODAL record in hg19. 

* note that this version of the UniProt database contains entries that have not been 

manually reviewed for inclusion in the UniProtKB/Swiss-Prot database. 

The NODAL variant has not been annotated into any databases. The following is the 

sequence and genomic coordinates for the NODAL cassette alternative exon (sense 

strand): 

>Hg38_chr10:70434100-70434215 
gtggccctgccctgctgtccaaggtcatatgggaccaaaatgttttcattttactccatgaagtctggaatgagaatttcttggacttg
caatatatcctccatgccaagcctcag 
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For what I refer to as the NODAL natural antisense transcript: 

UCSC Genome Browser ID (Hg38): RP11-104F15.9 

Ensemble/ Gencode transcript ID: ENST00000624563.1 

NCBI GenBank (example):  AK001176.1 

Predicted corresponding protein product (predicted signal peptide underlined): 

>BAA91534.1_unnamed_protein_product_[Homo sapiens] 

MVGRMKLLPNRIRTLALTAIGVVLLGVDDPGAPSDQVEVHLELDLPTQLTSVWQ
VMSTVPLAPLPGQLSLLGPPGALGFPQQGGPTQLPLLLREVGVEHKEHIGGRRCG
GPRPALSSYPGHLLLQGPRALQPLGERPGHLQNHAAQGKGDLGQSDSE  
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Appendix B: Additional predictions for NODAL proteins. 

Appendix B1: Predicted intrinsic disorder of constitutive NODAL and 
NODAL variant mature peptides. 

 

Appendix B2: Prosite PKC phosphorylation sites specific to the NODAL 
variant mature peptide not present in constitutive NODAL: 

Pattern-ID:  PKC_PHOSPHO_SITE PS00005 PDOC00005 

Pattern-DE:  Protein kinase C phosphorylation site 

Pattern: [ST].[RK] 

Sites:   79       SMK 

97       SLR 
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Appendix C: Guidelines for precision genome editing 

Appendix C1: Instructions for one-step gRNA cloning into all-in-one 
CRISPR/Cas9 LacZ: 

1) Design an appropriate gRNA for your target of interest using software of choice. 

2) Order a g-Block (IDT DNA) that includes your gRNA sequence. Replace all of the 

20 “N” bases an 18-20 bp gRNA sequence in the 5’-3’ orientation (as supplied by the 

design tools). Include a 5’ G if desired. Do not leave any “N” bases in the sequence. 

Double check that this new sequence does not introduce a new BmsBI restriction site 

(“CGTCTC” or “GAGACG”). This is unlikely, but would interfere with cloning. 

There should be only two such sites in the whole g-Block sequence. 

>example_g_block_insert_for_crispr_all_in_one 

ATATATCGTCTCGAACTTGAAAGTATTTCGATTTCTTGGGTTTATATATCTTGT
GGAAAGGACGAAACACCNNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGA
AATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACC
GAGTCGGTGCTTTTTTCTAGACACAATTGCATGAAGAATCTGCTTAGGGTTAG
GCGTTTTGCGCTAGAGACGAATTAT 

3) Re-suspend g-Block in TE buffer to a final concentration of 10 ng/µL. 

4) Mix the following components in a 0.2 mL PCR tube: 

1) g-Block    25 ng 

2) All-in-one CRISPR/Cas9 LacZ   75 ng 

3) BsmBI (10 U/µL)    1 µL 

4) T4 ligase (Thermo Fisher: 15224017)  1 µL 

5) T4 buffer    2 µL 

6) Nuclease-free water    to 20 µL total 

5) Incubate in a standard thermal-cycler using the following conditions: 

1) 37°   5 min 

2) 16° 10 min 
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3) 37° 15 min 

4) 80°   5 min 

The reaction is now ready for transformation (use a maximum of 5 µL for 50 µL 

competent cells) and plasmid preparation. Colonies containing successfully cloned 

plasmids will be white if using blue/white screening. Selected clones can be sequenced 

using the SP6F primer. 

Appendix C2: Droplet digital PCR mutation screening assay design 
guidelines.  

ddPCR assays can be designed using Primer3Plus (http://primer3plus.com) with modified 

settings: 50 mM monovalent cations, 3.0 mM divalent cations, 0 mM dNTPs, and 

SantaLucia 1998 thermodynamic and salt correction parameters. Predicted nuclease cut 

sites should be positioned mid-amplicon, with 75-125 bp flanking either side up to the 

primer binding sites. Reference probe and primers should be designed distant from the 

cut site (origin of NHEJ generation). Optimal annealing temperatures should be 

determined empirically by temperature gradient. In general, it is recommended to design 

primers with Tm = 55°C, reference probes with Tm = 60°C, and NHEJ/drop-off probes 

with Tm = 56-57°C. However, higher melting temperatures are appropriate for high-GC 

targets to design primers and probes of sufficient length. 
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